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ABSTRACT 

Rapid advancements in the field of site reliability engineering in the past few decades have 

made it an indispensable part of how humans create scalable and highly reliable software systems. 

The inherent need of a reliable site Infrastructure Monitoring System brings with it a great set of 

advantages in terms of monitoring availability, latency, performance and efficiency of the services. 

The main objective of this work is to design and implement an intuitive Real-Time 

Infrastructure Monitoring System (RIMS) that acts as a one-stop shop for keeping track of overall 

system’s health, services, downtimes and availability. RIMS extract a wide variety of machine log 

data and transforms it into consistent and presentable format for the end-users. Data-driven 

business decisions using RIMS monitoring technique were reached and 98.46% availability of Site 

Systems was captured using all-time data. The learning curve of RIMS aims for higher SLOs over 

a period of its functioning.  



 

iv 

ACKNOWLEDGMENTS 

I would like to express my sincerest gratitude to my graduate advisor Dr. Simone Ludwig, 

Department Chair, Computer Science, North Dakota State University, Fargo, for her motivation, 

patience and immense knowledge. Specifically, I want to thank her for being available whenever 

I required her help and guidance. I feel extremely fortunate to have had the opportunity to work 

with her. 

I am equally grateful to my supervisory committee members Dr. Pratap Kotala, Senior 

Lecturer, Department of Computer Science, North Dakota State University, Fargo and Dr. Jacob 

Glower, Professor, Department of Electrical and Computer Engineering, North Dakota State 

University, Fargo for serving on the committee. I would also like to thank Department of Computer 

Science at North Dakota State University of Agriculture and Applied Science for providing 

necessary tools and resources that helped me in pursuing my research interests. 

I would like to express my gratitude to all my family members for their immense support, 

love and motivation. 

 

  



 

v 

DEDICATION 

To my parents Raman Kumar Garg, Kiran Garg and lovely sister Sheena Garg 

  



 

vi 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................. iii 

ACKNOWLEDGMENTS .............................................................................................................. iv 

DEDICATION ................................................................................................................................. v 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ........................................................................................................................ ix 

LIST OF ABBREVIATIONS ......................................................................................................... x 

1. INTRODUCTION ....................................................................................................................... 1 

2. RELATED WORK ...................................................................................................................... 2 

2.1. Google Theory of Availability Levels .................................................................................. 3 

2.2. Objective ............................................................................................................................... 4 

3. COMPONENTS AND IMPLEMENTATION OF RIMS ........................................................... 5 

3.1. Environment Used to Build the Monitoring System ............................................................. 6 

3.2. The User Interface ................................................................................................................. 7 

3.3. Implementation of Log Data Extraction Workflow ............................................................ 11 

3.3.1. Prometheus Log Data Extraction Strategy for Site Availability .................................. 11 

    3.3.1.1. Prometheus Features and Components ................................................................. 12 

    3.3.1.2. Architecture of Prometheus ................................................................................... 12 

    3.3.1.3. Node Exporter Metrics .......................................................................................... 14 

    3.3.1.4. Prometheus Configuration .................................................................................... 15 

3.3.2. Ansible Log Data Extraction Strategy for Site Systems .............................................. 16 

    3.3.2.1. Ansible Features .................................................................................................... 16 

    3.3.2.2. Ansible Structure Components and Configuration ............................................... 17 

3.4. Remote End Points and Log Data Storage .......................................................................... 21 

3.4.1. Remote Read and Write Data to RIMS ........................................................................ 21 



 

vii 

    3.4.1.1. Remote Write to RIMS ......................................................................................... 21 

    3.4.1.2. Exclusion of Remote Read for RIMS ................................................................... 22 

3.5. Understanding Log Data Scrape Intervals for RIMS Site Availability .............................. 24 

3.6. RIMS Alerting Rules for Site Systems Availability ........................................................... 25 

4. RIMS AVAILABILITY AND SITE SYSTEMS DASHBOARDS .......................................... 27 

4.1. RIMS Site Systems Dashboard ........................................................................................... 27 

4.2. RIMS Site Availability Dashboard ..................................................................................... 30 

5. CONCLUSION AND FUTURE WORK .................................................................................. 34 

REFERENCES .............................................................................................................................. 35 

  



 

viii 

LIST OF TABLES 

Table Page 

2.1. Google Site Availability Projections [4]. ............................................................................ 3 

4.1. Time Series Data for Sydney Cluster. ............................................................................... 30 

4.2. RIMS Allowed Unavailability Window ............................................................................ 33 

 

 

  



 

ix 

LIST OF FIGURES 

Figure Page 

3.1. Architecture of RIMS .......................................................................................................... 5 

3.2. RIMS User Interface for Entry Point ................................................................................... 7 

3.3. RIMS User Interface for Relative Time Selection .............................................................. 8 

3.4. RIMS User Interface for Date & Time Range Selection ..................................................... 9 

3.5. RIMS Line Chart for Downtimes in April ......................................................................... 10 

3.6. RIMS Line Chart for Downtimes in June .......................................................................... 10 

3.7. Architecture of Prometheus [6] ......................................................................................... 13 

3.8. Architecture of Ansible [7] ................................................................................................ 17 

3.9. RIMS Remote Read Write Mechanism ............................................................................. 21 

4.1. Site Systems Clusters ......................................................................................................... 28 

4.2. Cluster Details ................................................................................................................... 28 

4.3. Host Level Details of a Cluster .......................................................................................... 29 

4.4. Profiling of Cluster Systems .............................................................................................. 29 

4.5. SPL Query for Total State Calculation .............................................................................. 30 

4.6. 30-Days Site Availability .................................................................................................. 31 

4.7. All-Time Site Availability ................................................................................................. 32  



 

x 

LIST OF ABBREVIATIONS 

RIMS ............................................................. Real-Time Infrastructure Monitoring System 

YAML ........................................................... Yet Another Markup Language 

SPL ................................................................ Search Processing Language 

HTTP ............................................................. Hypertext Transfer Protocol 

SLO ................................................................ Service Level Objective 

PromQL ......................................................... Prometheus Query Language 

SLA ................................................................ Service Level Availability 

KPI ................................................................. Key Performance Indicators 

API ................................................................. Application Programming Interface 

TSDB ............................................................. Time Series Database 

SA .................................................................. Site Availability 

SS ................................................................... Site Systems



 

1 

1. INTRODUCTION 

In this era of rapid changes in Software Development methodologies, an integrated 

approach of monitoring Infrastructure during DevOps software development life cycle remains a 

challenge. The paper has been focused towards design and implementation of a Real-Time 

Infrastructure Monitoring System (RIMS) which aims at easy and efficient monitoring of 

Infrastructure. The system helps track planned and unplanned downtimes of site clusters that are 

being used in DevOps software development by their geographical location. 

The implementation of RIMS consists of a user interface which allows end-users to monitor 

the Infrastructure through Site Systems and Site Availability dashboards. The main component of 

RIMS is the log data extraction process. An integrated solution of Prometheus and Ansible on site 

systems scrapes data from the build systems through HTTP 500 requests and Ansible playbooks. 

The scrapped data is processed as logs to Splunk. Key Performance Indicators are studied and 

Service Level Objectives (SLO) are identified for determining the percentage values of Site 

Availability of the Site Systems. 

The rest of the paper is organized as follows: Chapter 2 discusses about our objectives and 

gives an overview of earlier work that has been done in realms of Infrastructure Monitoring. 

Chapter 3 describes the architecture, key components, log data extraction process and the key 

challenges with data storage of RIMS. Chapter 4 discusses about monitoring and highlights key 

decisions that were made from Site Availability and Site Systems dashboards. 



 

2 

2. RELATED WORK 

Adoption of DevOps as a software development methodology has its own set of challenges 

when it comes to understanding and monitoring the underlying infrastructure of the applications. 

One such challenge is the extensive possibility of having a visualized on-premise and cloud 

infrastructure and the other is enlarged usage of configuration management of systems for 

transparent development operations. 

An integrated set of DevOps tools for monitoring has the power to improve visibility and 

productivity, achieve higher-performing systems, and establish cross-functional collaboration. An 

effective monitoring tools improves system performance and productivity and helps reduce or even 

eliminate unplanned downtimes. 

Defining and calculating SLA and SLO are increasingly becoming the key criteria for 

service selection [1]. DeVSi [2] an Infrastructure Monitoring Solution can monitor a single cluster. 

It  targets scalability, efficiency and reliability but not availability of Infrastructure systems for 

tracking planned and unplanned downtimes. The system lacks the capability to monitor and 

manage an environment with multiple clusters at different geographical locations. It does not 

define its own SLA instead it assigns a cost function to calculate SLA which further defines SLO. 
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2.1. Google Theory of Availability Levels 

Google [4] defines SLA on an hourly, day, weekly, monthly, quarterly and yearly basis as 

a desired level of service availability Table 2.1. and this is usually expressed in terms of the number 

of “nines” 99.9%, 99.99%, 99.999% but that’s not the ground reality. 

Table 2.1. Google Site Availability Projections [4] 

Availability 
Level 

Allowed Unavailability Window 

Defining and creating first own set of SLOs is important for development Infrastructure 

[5]. SLOs can be defined over various time intervals and can either use a rolling window. 

 

 Per year Per quarter Per month Per week Per day Per hour 

90% 36.5 days 9 days 3 days 16.8 hours 2.4 hours 6 minutes 

95% 18.25 days 4.5 days 1.5 days 8.4 hours 1.2 hours 3 minutes 

99% 3.65 days 21.6 hours 7.2 hours 1.68 hours 14.4 
minutes 

36 seconds 

99.5% 1.83 days 10.8 hours 3.6 hours 50.4 
minutes 

7.20 
minutes 

18 seconds 

99.9% 8.76 hours 2.16 hours 43.2 
minutes 

10.1 
minutes 

1.44 
minutes 

3.6 seconds 

99.95% 4.38 hours 1.08 hours 21.6 
minutes 

5.04 
minutes 

43.2 
seconds 

1.8 seconds 

99.99% 52.6 
minutes 

12.96 
minutes 

4.32 
minutes 

60.5 
seconds 

8.64 
seconds 

0.36 
seconds 

99.999% 5.26 
minutes 

1.30 
minutes 

25.9 
seconds 

6.05 
seconds 

0.87 
seconds 

0.04 
seconds 
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2.2. Objective 

Traditionally, monitoring has been a function performed by humans, but ideally, 

monitoring should be a function driven by machine learning and algorithms. Eliminating the need 

for human intervention and remediation, a continuous Infrastructure Monitoring Solution is the 

need of the hour. The objective is to design and implement an infrastructure monitoring mechanism 

that helps in understanding and identification of Key Performance Indicators from machine data 

for calculating the Infrastructure availability and defining SLO. The system is developed by 

writing up the code in Ansible Playbooks and YAML files, along with defining the rules in 

Prometheus files for scrapping machine metrics for calculating site uptime and downtimes. The 

integration of system is achieved by designing Splunk Processing Language (SPL) queries for 

understanding the logs from machine data and designing dashboards for monitoring the 

Infrastructure. Since monitoring could have also been done using Prometheus Query Language 

(PromQL) but Prometheus stores data only on local machines, which instead limits disk space. 

Due to long-term capacity planning and for calculating SA a longer retention period of data is 

desirable, I chose Splunk as the most effective solution for storing, searching and visualizing the 

data. 
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3. COMPONENTS AND IMPLEMENTATION OF RIMS 

The technical structure of Real-Time Infrastructure Monitoring System (RIMS) can be 

classified into two segments. The first segment is comprised of a user interface and the second 

segment is the data extraction setup and its process for log monitoring. The user interface is a web-

based medium designed on Splunk tool that lets user makes selection of time for displaying the 

site availability, downtimes and other health related statistics displayed in a readable and user-

friendly format. 

 

Figure 3.1. Architecture of RIMS 

The data extraction program leverages the power of Ansible and Prometheus. Both are 

open source tools that have been configured for mining the data from logs generated from various 

build systems. Infrastructure systems composition data is gathered through configuring Ansible on 

site systems. Site availability log data that is extracted using Prometheus. Data is then indexed 

through Splunk into a time-series mechanism and then logs are analyzed and processed using 

Splunk’s Search Processing Language (SPL) to design the user interface of RIMS. 
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Section 3.1 briefs about the environment used to build the system. Section 3.2 discusses 

about the user interface and Section 3.3 discusses about the process of data extraction program for 

mining the logs that are of interest for determining the Key Performance Indicators required for 

monitoring the infrastructure. Section 3.4, 3.5 and 3.6 discusses about log data storage challenges, 

data scrapping intervals and alerting rules respectively. Figure 3.1 illustrates the proposed 

architecture of RIMS. 

3.1. Environment Used to Build the Monitoring System 

The environment used to develop the user interface for RIMS is Splunk. Splunk eases the 

process for searching, monitoring and analyzing the machine-generated big data via a Web-Style 

user friendly interface. The main reason for choosing Splunk is that it easily captures, indexes and 

corelates real-time data in a searchable repository from which it allows Machine Learning 

engineers to generate graphs, reports, alerts, dashboards and visualizations. Splunk helps in easy 

identification of data patterns, diagnosing problems, and providing business cum operational 

intelligence through web analytics. 

The underlying design technique behind user interface is Splunk Processing Language 

(SPL), Extensible Marked Language (XML), Hypertext Markup Language (HTML), Cascading 

Style Sheets (CSS) and JavaScript.  

XML is a markup language that provides the capability of software and hardware 

independent way of storing, transporting and sharing the data which is both human-readable and 

machine-readable. XML is chosen because the underlying technique for data extraction is based 

on XML HTTP data requests sent and received for gathering data from build systems. Capabilities 

of HTTP API’s via Prometheus are used as a source of data extraction process from build systems. 

 



 

7 

3.2. The User Interface 

The User Interface provides user a cylindrical view of two buckets that lets user visualize 

Site Availability and Site Systems data. Figure 3.2 shows the entry point from where the user 

makes his selections for viewing either Availability or Systems dashboards. Interface is intended 

to be very simple and easy. Additional capabilities in dashboards provides users with various 

drilldowns. Home button, time-range selection are other such additional features. 

 

Figure 3.2. RIMS User Interface for Entry Point 

Dropdown menus in Site Systems dashboard provides options for selecting site clusters 

that projects Key Performance Indicators of the systems in a cluster from all geographical 

locations. KPI’s includes Memory Used, Memory Available, Cluster Location, Hostname, IP 

Address, Processor Cores, CPUs, Threads Per Core. More details are discussed in Chapter 4. 
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Dropdown menus in Site Availability dashboard lists various options for selecting real-

time SA data. For instance, a user can select data for last 7 days or any random date or time range 

and get meaningful insights from overall Key Performance Indicators that are being used for 

monitoring different services pertaining to infrastructure health, availability and glitches. Default 

time range for data is set to be as last 24 hours. Figure 3.3 shows the time selection input board for 

the last 7 days. Figure 3.4 shows the time selection input board for the specified date and time 

range. 

 

Figure 3.3. RIMS User Interface for Relative Time Selection 

Once the user makes the selection of time from the dropdown menu and hits the submit 

button, user will be able to see the dashboard form that displays the percentage values and total 

instances of each cluster at a geographical location. Service Level Availability (SLA) value 100% 
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states that all the hosts within a build system are up and running without any glitches for the 

selected time range from the dropdown menu. 

SLA values less than 100% and greater than or equal to 90% indicates there were 

downtimes. Any SLA value less than 90% RIMS defines it as a major failure. Downtimes can be 

planned or unplanned. RIMS cater to both types of downtimes. 

HTTP 500 requests data is available for all the hosts within a build system. The user 

interface allows users to track unresponsive requests from hosts that were not serviced and helps 

users gain meaningful insights into data through graphical charts as a visualization strategy.  

 

Figure 3.4. RIMS User Interface for Date & Time Range Selection 

The user interface gives flexibility to the users to re-arrange default displayed panels and 

add new visualizations for tracking meticulous glitches in real-time or historical data. Figure 3.5–

3.6 shows the downtimes that were tracked on a site system in the month of April and June. 
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Figure 3.5. RIMS Line Chart for Downtimes in April 

 

Figure 3.6. RIMS Line Chart for Downtimes in June 
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3.3. Implementation of Log Data Extraction Workflow 

The log data extraction workflow forms the core part that drives the functioning of RIMS. 

Enabling Prometheus and Ansible on remote site systems serves to be as the main components for 

scraping the data. Configuration of Prometheus on remote systems helps in scrapping of HTTP 

500 requests data whereas system metrics such as Memory Used, Memory Available, Cluster 

Location, Hostname, IP Address, Processor Cores, CPUs, Threads Per Core are scrapped using 

Ansible and fed through a timely Jenkins job as logs to the Splunk. 

Dynamic analysis of logs is done in Splunk and meaningful information is concatenated 

and captured in the form of queries using Splunk Processing Language (SPL) for Site Systems and 

Site Availability dashboards.  

Section 3.3.1 gives details on Prometheus features, components and configuration. Section 

3.3.2 gives details on core Ansible features, components and configuration. Figure 3.7 illustrates 

the architecture of Prometheus; Figure 3.8 illustrates the architecture of Ansible and gives us a 

detailed flow of events on how metrics are scrapped from remote systems. 

3.3.1. Prometheus Log Data Extraction Strategy for Site Availability 

The log data extraction strategy using Prometheus for RIMS can be categorized into four 

segments which are: 

1) Prometheus Features and Components 

2) Architecture of Prometheus 

3) Node Exporter Metrics 

4) Prometheus Configuration 
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3.3.1.1. Prometheus Features and Components 

Prometheus is an open-source system monitoring and alerting tool. The main features of 

Prometheus are: 

1) Prometheus offers a multi-dimensional data model with time series data identified by 

metric name and key-value pairs 

2) Prometheus does not rely on distributed storage 

3) Single server nodes are autonomous 

4) Pushing time series is supported via an intermediary gateway 

Prometheus ecosystem consists of multiple components, many of which are optional. The 

components are: 

1) The main Prometheus server scraps and stores time series data 

2) Provision of client libraries for instrumenting application code 

3) A push gateway for supporting short-lived jobs 

3.3.1.2. Architecture of Prometheus 

Prometheus scrapes data from instrumented jobs either directly or via an intermediary push 

gateway. It stores all scraped samples locally and runs rules over this data to either aggregate or 

record new time series from existing data. 

Prometheus works well for recording numeric time series. It fits both machine-centric 

monitoring as well as monitoring of highly dynamic service-oriented architectures. In a world of 

microservices, its support for multi-dimensional data collection and querying is a strength. 
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Figure 3.7 illustrates the architecture of Prometheus and its ecosystem components. 

 

Figure 3.7. Architecture of Prometheus [6] 

The design of Prometheus is highly focused towards achieving reliability. Prometheus 

allows end-users to quickly track outages and diagnose infrastructure problems. Irrespective of 

network storage or other remote services each Prometheus server is standalone. At times when 

some parts of the infrastructure are non-functional, Prometheus is a highly reliable service. Also, 

there is not a need to set up extensive infrastructure for using it. 

 

 



 

14 

3.3.1.3. Node Exporter Metrics 

The Prometheus Node Exporter is installed on each of RIMS cluster Linux hosts through 

which a wide variety of hardware and kernel-related metrics are exposed, which further are 

visualized through Splunk. The first step that draws our attention is installing and running Node 

Exporter.  Below are the steps for its installation. 

Step1: Extracting and running Node Exporter Package on a host. 

wget https://github.com/prometheus/node_exporter/releases/download/v*/node_exporter-*.*-
amd64.tar.gz 
 
tar xvfz node_exporter-*.*-amd64.tar.gz 
 
cd node_exporter-*.*-amd64 
 
./node_exporter 
 

Output indicating that the Node Exporter is running and exposing metrics on port 9100 

INFO[0000] Starting node_exporter (version=0.16.0, branch=HEAD, 
revision=d42bd70f4363dced6b77d8fc311ea57b63387e4f)  source="node_exporter.go:82" 
 
INFO[0000] Build context (go=go1.9.6, user=root, date=20200515-15:53:28)  
source="node_exporter.go:83"cd node_exporter-*.*-amd64 
 
INFO[0000] Enabled collectors:                           source="node_exporter.go:90" 
 
INFO[0000]  - boottime                                        source="node_exporter.go:97" 
 
INFO[0000] Listening on :9100                            source="node_exporter.go:111" 
 

Step2: Once the Node Exporter is installed and running you can verify the metrics that are being 

exported by curling the metrics endpoint. 

curl http://localhost:9100/metrics 
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Expected output of curl command 

# HELP go_gc_duration_seconds A summary of the GC invocation durations 

go_gc_duration_seconds{quantile="0"} 3.8996e-05 

go_gc_duration_seconds{quantile="0.25"} 4.5926e-05 

go_gc_duration_seconds{quantile="0.5"} 5.846e-05 

Evident from the above output Node Exporter is now exposing metrics that Prometheus can scrape, 

including a wide variety of system metrics further down in the output (prefixed with node_). The 

same can be viewed using the below command. 

curl http://localhost:9100/metrics | grep "node_"s 

3.3.1.4. Prometheus Configuration 

Prometheus instances needs to be properly configured in order to access node exporter 

metrics. The first step towards achieving this is Prometheus installation and starting it up followed 

by configuring the .yml file. 

Step1: Prometheus Installation 

wget https://github.com/prometheus/releases/download/v*/prometheus-*.*-amd64.tar.gz 
 
tar xvf prometheus-*.*-amd64.tar.gz 

cd Prometheus-*.*s 

Step2: Prometheus Startup 

./prometheus –config.file=./prometheus.yml 
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Step3: The following scrape_config block in a Prometheus.yml configuration file will tell the 

Prometheus instance to scrape metrics from the node exporter via localhost:9100. 

Scrape_configs: 
- job_name: ‘RIMS-probes’ 
  metrics_path:/probe 
  params: 
    module: [http_500] 
   static_configs: 
    -targets: 
      - 10.200.20.01 
      - 10.200.20.02 
      - 10.200.20.03 
      - 10.200.20.04 
      - 10.200.20.05 
      # The above IP address are just for demo       
labels: 
       group: ‘RIMS-probes’ 
 

3.3.2. Ansible Log Data Extraction Strategy for Site Systems 

The log data extraction strategy using Ansible for RIMS can be categorized into two 

segments which are: 

1) Ansible Features 

2) Ansible Structure Components and Configuration 

3.3.2.1. Ansible Features 

Ansible is an open-source software provisioning, configuration management and 

application deployment tool that enables system administrators to manage and control multiple 

servers from one central location. Ansible runs on many Unix-like systems and can configure both 

Unix-like systems as well as Microsoft Windows. Ansible has its own declarative language for 

describing system configuration i.e.: YAML (Yet Another Markup Language). Ansible is an ideal 
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choice when multiple and repetitive tasks are to be performed on multiple systems. The main 

features of Ansible are: 

1) Ansible is agentless i.e.: Ansible does not deploy agents to nodes. This feature 

eliminates the need for having an additional agent pre-installed. 

2) Ansible uses SSH as a transport medium that helps in remote connection via SSH 

allowing remote PowerShell execution to perform its tasks. 

3) Eliminates the need for logging into each of the remote systems to carry out the tasks. 

4) Ansible is Python based and very easily extendable. 

3.3.2.2. Ansible Structure Components and Configuration 

Figure 3.8 illustrates the architecture of Ansible and its connection with Splunk 

ecosystem components. 

 

Figure 3.8. Architecture of Ansible [7] 
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Ansible ecosystem consists of multiple components. The components which are of interest 

for RIMS are: 

Inventory: An inventory is a text file that contains a list of servers or nodes that system 

administrators intends to manage or configure. Default location for inventory file is 

/etc/ansible/hosts. An inventory file consists of IP addresses of remote systems. Below is an 

example: 

11.200.20.01 

Metrics identification of RIMS Site Systems has been accomplished by placing servers in 

a group named as RIMSSYSTEMS. Grouping makes the task easier as we can access remote 

systems using their group name not their IP addresses. This further simplifies the operation 

processes. RIMS cater to multiple groups with multiple servers clustered under specific group. 

[RIMSSYSTEMS] 

# The site systems are for  Sydney cluster 

# The above IP address are just for demo  

10.200.20.01 

10.200.20.02 

10.200.20.03 

10.200.20.04 

10.200.20.05 

Playbook: A playbook is a set of configuration management scripts that define how tasks 

are to be executed on remote hosts or a group of host machines. The scripts or instructions are 

written in YAML format. Each playbook is composed of one or more ‘plays’ in a list. The goal of 

play is to map a group of hosts to some well-defined roles, represented by things ansible calls 
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tasks. For a basic level understanding task is nothing more than a call to ansible module. 

Composing a playbook of multiple ‘plays’, it is possible to orchestrate multi-machine 

deployments, running certain steps on all machines in RIMSSYSTEMS group. Below steps gives 

more insights into creating a playbook and defining its tasks. 

The below playbook ssh into remote systems defined as RIMSSYSTEMS in inventory file. 

Step1: Creating a Playbook 

$ touch RIMS_TOOL.yml 

Step2: Structure of Playbook 

--- 
- hosts: RIMSSYSTEMS 
  remote_user: root 
  gather_facts: True 
 
  tasks: 
  - name: ssh 
    ping: 
    remote_user: yourname 
 

Hosts and Users: Each play in a playbook defines the machines in the infrastructure to 

target. The hosts line is a list of one or more groups or host patterns separated by colons. The 

remote_user is just the name of the user account. Facts from remote systems are gathered through 

gather_facts. 

--- 
- hosts: RIMSSYSTEMS 
 
  remote_user: root 
 
  gather_facts: True 
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Modules: Modules are discrete units of code used in playbooks for executing commands 

on remote hosts or servers. Each module is followed by an argument. The basic format of module 

is key: value. Below represents YAML code snippet where name and ping are modules. 

- name: ssh 
 
  ping: 
 

Task List: Each play contains a list of tasks that are executed in order, one at a time against 

all machines matched by the host pattern before moving onto the next task. If a task fails 

modification of playbook can be done by taking out the failed tasks from playbook and re-running 

it. The structure of task includes a name which gets included in the output from running the 

playbook. The output is human readable, so it is useful to provide a good description of each task. 

Below is an example demonstrating how a basic task looks like. 

tasks: 
 
- name: ssh 

  ping 

  remote_user: yourname 

The end goal of each task is to execute a module with specific arguments. Variables can 

also be passed as an argument to modules. Below is an example demonstrating a variable vhost in 

the vars section and is passed as an argument to module. 

tasks: 
 
- name: ssh for {{ vhost }} 
    
   ping: 
    
   remote_user: yourname 
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Follwing the above hierarchy of steps I was able to successfully scrape mertics from all the 

cluster hosts from all the geographical locations. Challenges of log data read and write are 

discussed in next sections. Complete panel details of SA and SS are discussed in Chapter 4. 

3.4. Remote End Points and Log Data Storage 

The HTTP 500 requests data from site systems of our Infrastructure forms to be a core 

component of RIMS Site Availability dashboard. Prometheus shares the ability to directly interact 

with its time-series database storage using the remote API. These API’s allows third party systems 

to interact with metrics data through two methods. The methods are discussed in Section 3.4.1 

Fixing data scrape interval for RIMS is discussed in Section 3.6. 

3.4.1. Remote Read and Write Data to RIMS 

The remote write and remote read features of Prometheus allows seamlessly and 

transparently sending and receiving the samples of data. This is primarily intended for long term 

storage. Let us understand how remote API’s data synchronization strategy works through an 

architectural diagram. 

  

Figure 3.9. RIMS Remote Read Write Mechanism 

• Write – receives samples pushed by Prometheus 

• Read – pull samples from Prometheus 

3.4.1.1. Remote Write to RIMS 

In the growing world of Prometheus remote write is the most popular feature which is used 

to replicate Prometheus data into Splunk. A Prometheus Metrics for Splunk app has been installed 
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on a forwarder to receive HTTP 500 requests log data. In remote write mode Prometheus streams 

samples of data and periodically sends a batch of samples to the given endpoints. 

In RIMS Prometheus is sending a lot of performance, system and service information data 

which is further analyzed and visualized using the capabilities of Splunk for creating dashboards. 

Site Systems dashboard is developed by considering various Key Performance Indicators and the 

same has been discussed in Section 4.1. 

Limiting the type and amount of data that is being sent through Prometheus 

write_relabel_configs have been configured to drop metrics that are not deemed necessary. Below 

are two such metrics node_boot_time_seconds, probe_ip_protocol that have been dropped. 

remote_write: 

  - url: “<Node URL>” 

    bearer_token_file: /var/run/secrets/splunk-token/remote-rewrite-token 

    write_relabel_configs: 

      - source_labels: [__name__] 

         regex: node_boot_time_seconds 

         action: drop 

    write_relabel_configs: 

      - source_labels: [__name__] 

         regex: probe_ip_protocol 

         action: drop 
 

3.4.1.2. Exclusion of Remote Read for RIMS 

Remote read is a less common method. The key strategy behind remote read is that it allows 

querying Prometheus storage Time Series Database (TSDB) directly without Prometheus Query 

Language (PromQL) evaluation. 

The remote read API exposes a simple HTTP endpoint that expects following protobuf 

payload: 
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message ReadRequest { 

     repeated Query queries = 1; 

} 

 
Message Query { 

     int64 start_timestamp_ms = 1; 

     int64 end_timestamp_ms = 2; 

     repeated prometheus.LabelMatcher matchers = 3; 

     prometheus.Read hints = 4; 

} 
 

With this payload, the client can request certain series matching given matchers and time 

range with end and start. Below is the response. 

message ReadResponse { 

     repeated Query queries = 1; 

} 

 
message Sample { 

     double value = 1; 

     int64 timestamp = 2; 

} 

 
message TimeSeries { 

     repeated Label labels = 1; 

     repeated Sample samples = 2; 

} 

 
message QueryResult { 

     repeated prometheus.TimeSeries timeseries = 1; 

} 
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There are two key problems associated with remote read. Though remote read is easy to 

understand but there were no streaming capabilities within the single HTTP request for the 

protobuf format. Secondly the HTTP 500 request response included raw samples (float64 value 

and int64 timestamp) instead of an encoded, compressed batch of samples called “chunks” that are 

used to store metrics inside Time Series Database. 

The server algorithm for remote read without streaming can be categorized into six unique 

steps: 

1) Parse HTTP 500 request 

2)  Select metrics from Time Series Database 

3) For all decoded series for all samples add to response protobuf 

4) Marshal response 

5) Snappy compress 

6) Send back the HTTP 500 response 

Now the whole response of the remote read had to be buffered in a raw, uncompressed 

format in order to marshal it in a potentially huge protobuf message before sending it to the client. 

The whole response message needs to be completely buffered in the client again to be able to 

unmarshal it from the received protobuf. Following this step, the client was able to use raw 

samples. Excessive memory utilization and time consumption limitations led us to choose remote 

write as a novel technique for scrapping the HTTP 500 data for RIMS. 

3.5. Understanding Log Data Scrape Intervals for RIMS Site Availability 

By default, Prometheus scrapes data from targets every minute. Considering one such 

example of long-distance targets in North America and Asia scrapping data from different 

geographical locations in a minute time frame is not a viable option for the functioning of RIMS. 
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As RIMS is scrapping logs from distant targets the Prometheus instance has been 

configured with a longer time interval and a higher timeout to avoid dropping scrapes from long 

distance targets. The section to change the intervals can be found in the values.yml under ‘server:’, 

then ‘global:’. The table below shows the default setting. Scrape interval, timeout and evaluation 

intervals are changed in later Section 3.6. for RIMS. 

global: 
 
   ## How frequently to scrape targets by default 
   ## 
   scrape_interval: 1m 
 
   ## How long until a scrape request times out 
   ## 
   scrape_timeout: 30s 
 
   ## How frequently to evaluate rules 
   ## 
   evaluation_interval: 1ms 
 

 

3.6. RIMS Alerting Rules for Site Systems Availability 

Operational intelligence through data-driven business decisions are important for the 

success of RIMS. The key feature for reaching this stand-off point is by defining alerting rules for 

the alert manager. Alerting rules allows us to define expressions using Prometheus expression 

language. On the occasion when an alert condition defined in the expression is met, an alert is 

recorded and send to the alert managers for tracking downtimes of RIMS. Referring Prometheus 

documentation below is the syntax for alerting rules. 

alert: <string> 
 
# The PromQL expression to evaluate. Every evaluation cycle this is 
# evaluated at the current time, and all resultant time series become  
# pending/firing alerts. 
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expr: <string> 
 
# Alerts are considered firing once they have been returned for this long. 
# Alerts which have not yet fired for long enough are considered pending. 
[ for: <duration> | default = 0s ] 
 
# Labels to add or overwrite for each alert. 
labels: 
   [ <labelname>: <tmpl_string> ] 
 
# Annotations to add to each alert. 
annotations: 
    [ <labelname>: <tmpl_string>] 
 

Alerting Rules for RIMS Site Availability 

rules: 
   groups: 

- name: RIMSSYSTEMS 
   rules: 
       - alert: InstanceDown 
   expr: up == 0 
   for: 5m 
   labels: 
      severity: critical 
   annotations: 
        description: ‘{{ $labels.instance }} of job {{ $labels.job }} has been down 
   for more than 5 minutes.’ 
         summary: Instance {{ $labels.instance }} down 
 

The current alert setup of RIMS shows that if the ‘expr: up’ does not equals to zero for five 

minutes an alert will be fired. As defined in Section 3.5. log data scrape intervals in Prometheus 

has been configured to check once a minute for changes. If a site system does not report as being 

‘up’ and fails all the five checks, then alerts are sent to the alert managers. A reference table is 

present under Site Systems Dashboard section in Chapter 4. 
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4. RIMS AVAILABILITY AND SITE SYSTEMS DASHBOARDS 

Determining a logistical and reliable solution for replicating the site systems data into 

Splunk for calculating Site Availability has been a major challenge for developing an integrated 

RIMS system. The integration of data with third party systems was possible with the help of remote 

API’s. 

4.1. RIMS Site Systems Dashboard 

Section 3.2 walks us through the user interface of RIMS. Rightful selection from 

cylindrical view takes user to the Site Systems dashboard. RIMS categorize Site Systems 

dashboard into four unique panels. Each panel gives end user a variety of machine related 

information pertaining to all the clustered Site Systems. The panels are: 

1) Clusters 

2) Cluster Details 

3) Host Details 

4) Systems by Profile and Location 

Clusters: RIMS Site Systems dashboard scrapes machine related data from multiple 

infrastructure sites. Systems at each of the sites have been grouped into six different clusters at 

their respective geographical location. 

Figure 4.1 gives us the cluster details such as cluster name and the host systems that are 

present within a cluster. Addition or removal of any host from a cluster can be monitored through 

real time data. Trends from past data can also be analyzed for determining yearly trends of clusters. 

The count of each of the cluster has been calculated by uniquely identifying and understanding the 

scrapped logs from site systems and writing a SPL query. 
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Figure 4.1. Site Systems Clusters 

Clusters Details: Figure 4.2 gives us the overall cluster level details of RIMS not only 

limiting to the location but also details about the total number of nodes that have been provisioned 

for a cluster and the total number of CPU’s that are available for the task allocation. 

 

Figure 4.2. Cluster Details 

Cluster_Name Nodes CPU
FARGO 16 104
IRELAND 12 48
SHANGHAI 13 52
MUMBAI 16 64
SYDNEY 6 60
SINGAPORE 12 48

Cluster Details
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Host Details: Host details panel gives in depth information about all the hosts. Hosts within 

a cluster can be identified using the IP address and a further distinction can be done whether a host 

is a control plane or worker node. Hardware relevant information such as processor cores, threads 

per core, vcpus and memory gives key information about the host systems of RIMS. 

 

Figure 4.3. Host Level Details of a Cluster 

Systems by Profile and Location: Profiling of systems is also an important feature of Site 

Systems dashboard of RIMS. Profiling of systems by placing them in correct tiers helps Site 

Reliability Engineers with easy path finding of the hosts within a given cluster. 

 

Figure 4.4. Profiling of Cluster Systems 

Location Tier1 Tier2 Tier3 Total
FARGO 6 8 2 16
IRELAND 6 3 3 12
SHANGHAI 7 4 2 13
MUMBAI 8 5 3 16
SYDNEY 1 2 3 6

SINGAPORE 7 1 4 12

Systems by Profile and Location
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4.2. RIMS Site Availability Dashboard 

RIMS use some instances of five clusters and some instances of other clusters are kept for 

backup. The image shown in Figure 4.6 shows us five clusters at different geographical location 

for calculation of SA using last 30 days of data. Similarly Figure 4.7 shows us the SA for all-time 

data since the system has been enabled. HTTP 500 requests data is stored internally in a Time-

series based database as shown in Table 4.1. and count of total state of system responses for 

determining uptime and downtime is done using the logic that we have embedded in the SPL query 

in Figure 4.5. 

Table 4.1. Time Series Data for Sydney Cluster 

Instance/Frame 1min 2min 3min 4min 5min 

Instance 1 1 1 1 0 1 

Instance 2 1 1 1 0 1 

Instance 3 1 1 1 1 1 

Instance 4 1 0 0 0 0 

Instance 5 1 1 1 1 1 

 SPL logic for calculating the uptime and downtime state of Sydney Instances. 

 

Figure 4.5. SPL Query for Total State Calculation 

Using the total state data Site Availability of a cluster at a specific geographical location is 

calculated using the formula. 

Site	Availability =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 ∗ 100 
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The above calculations are shown just for one such cluster instances. The rest of the used 

instances within clusters follows the same logic for calculating the total sate of systems and similar 

mathematical hierarchy is followed for calculating the Site Availability for each of the clusters. 

 

Figure 4.6. 30-Days Site Availability 

As our objective is to define SLO using the Site Availability data. SLOs are defined using 

the all-time data. Evident from Figure 4.7, we have calculated individual availabilities of each of 

the clusters using the above formula. The Net Availability or Reliance of entire Infrastructure is 

defined as the minimum value of Site Availability amongst clusters. So, the Net Availability that 

we were able to trace through RIMS is 98.46%. 
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Referring to the Google’s unavailability definition Table 2.1., we will calculate allowed 

unavailability window for a given year, meaning the total time within a year when systems within 

Infrastructure were not functioning due to either of planned or unplanned downtimes. 

 

Figure 4.7. All-Time Site Availability 
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The acceptable number of downtimes to reach a given number of nines of availability can 

be concluded from the table below for RIMS. 

Table 4.2. RIMS Allowed Unavailability Window 

Availability 
Level 

RIMS Allowed Unavailability Window 

Through this we define Service Level Objective as 98.46% meaning out of 365 days, for 

3.63 days Infrastructure services were not available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Per year Per quarter Per month Per week Per day Per hour 

98.46% 3.63 days 21.4 hours 7.16 hours 1.67 hours 14.32 
minutes 

35.8 
seconds 
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5. CONCLUSION AND FUTURE WORK 

This work has presented us with a technique for building a Site Monitoring and Alerting 

system that facilitates the job of Site Reliability Engineers and helps them with efficient 

management of the Infrastructure. Existing Site Monitoring Systems are internal to the 

organization as each organization sets its unique set of standards and requirements for meeting 

their Infrastructure needs. Defining Service Level Objectives (SLO) are incremental to the success 

of RIMS. SLOs are key to making data-driven decisions about reliability. RIMS lay a common 

platform so that organizations can quickly adopt this mechanism of monitoring and consider pre-

defined SLOs for their Infrastructure at a reduced cost. Also, enabling RIMS will help 

Infrastructure teams reduce manual engineering effort that Site Reliability Engineers had to spend 

for tracking unplanned downtimes of the site systems. 

In a world of rapid changing technology, as new demands and complexity grows with 

insane amount of data traffic, Site Engineering requires even much more attention. My future work 

lies in design and development of a more sophisticated system that not only limits to Site 

Availability but also caters to Site Reliability and Data Durability. Long-term data protection for 

avoiding degradation or corruption has been a major challenge for decades. In future, I would also 

work towards addressing this challenge of data protection and design much more intuitive and 

efficient Real-time Infrastructure Site Monitoring Systems. Redefining SLOs for achieving higher 

site availability will also be considered.  
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