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ABSTRACT 

Annual Average Daily Traffic (AADT) data in the transportation industry today is an 

important tool used in various fields such as highway planning, pavement design, traffic safety, 

transport operations, and policy-making/analyses. Systematic literature review was used to 

identify the current methods of estimating AADT and ranked. Ordinary linear kriging occurred 

most. Also, factors that influence the accuracy of AADT estimation methods as identified include 

geographical location and road type amongst others. In addition, further analysis was carried out 

to determine the most apposite kriging algorithm for AADT data. Three linear (universal, ordinary, 

and simple), three nonlinear (disjunctive, probability, and indicator) and bayesian (empirical 

bayesian) kriging methods were compared. Spherical and exponential models were employed as 

the experimental variograms to aid the spatial interpolation and cross-validation. Statistical 

measures of correctness (mean prediction and root-mean-square errors) were used to compare the 

kriging algorithms. Empirical bayesian with exponential model yielded the best result.  
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1. INTRODUCTION 

1.1. Background 

Annual Average Daily Traffic (AADT) data in the transportation industry today is an 

essential tool which is used in various fields such as highway planning, pavement design, traffic 

safety, transport operations, analyses, and policy-making. Minnesota Department of transportation 

defines AADT as the hypothetical estimation of the total number of vehicles using a specific 

section of roadway (in both directions) on any given day of the year (MnDOT, 2017). The Federal 

Highway Administration (FHWA) defines AADT as the “total volume of vehicle traffic of a road 

for a year divided by 365” (FHWA, 2001). This represents the total number of vehicles in a year 

divided by 365 and this is developed by using factors to adjust for the vehicle type, season (winter, 

summer, holidays) and which day of the week (weekend days). These all contribute significantly 

to the variability observed in AADT data.  

Transportation planners and policy decision-makers rely heavily on AADT metrics to 

assess highway performance and guide their future planning and funding decisions. For instance, 

AADT data is used in the calculation of vehicle miles traveled (VMT), which in turn establishes 

the basis for distributing highway funds related to maintenance and safety (Staats, 2016). 

Transportation planning requires the use of accurate traffic data to produce estimates of traffic 

volume predictions over time and space (Shamo et al, 2015). Thus, annual average daily traffic 

(AADT) data is an important component of transportation design, operation, policy analysis, and 

planning. The use of traffic volume forecasting models for the characterization, analysis, and 

estimation of transportation data has shown to be a beneficial method for reducing high costs, 

overcoming spatial constraints, and limiting the errors associated with data collection and analysis 

in transportation planning (Shamo et al, 2015). Furthermore, AADT serves as the framework for 
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estimating other transportation planning factors including crash rate predictions, vehicle 

emissions, and forecasting future travel demand (Reginald et al, 2016). For these reasons, the state 

department of transportation (DOT) planners and other affected stakeholders often take great 

efforts to collect and utilize this data (Staats, 2016). 

Thus, AADT values are essential for numerous transportation planning and engineering 

tasks, such as evaluating the level of service, prioritizing capital investments, and assessing 

accident exposure rates (TII 2016). It is used as an input to scheme appraisal, environmental 

models, road planning studies, and pavement design (TII 2016). However, it is not feasible to 

continuously monitor every street in a community to obtain annual volumes, so AADT typically 

is approximated using short-duration (usually 48 h) ‘‘coverage counts’’ that are then multiplied by 

adjustment factors to account for daily and seasonal variations. This may be a source of uncertainty 

during the estimation of AADT values. 

A common method for collecting coverage counts is to install pneumatic-tube counters 

temporarily at locations across the city and rotate the devices as needed (Lowry, 2014). Several 

other techniques and tools have been used in the estimation of AADT over the years. These 

techniques and tools include Machine learning techniques, Origin-Destination centrality-based 

method, Ordinary Linear regression, Florida Turnpike state model, Geographically Weighted 

Regression, Travel demand modeling, Kriging interpolation, Elasticity variables, Short Traffic 

Counts and Artificial Neural Network.  

1.2. Problem Statement 

The importance of annual average daily traffic data in the US and the world at large today 

cannot be over-emphasized. Various approaches have been used in predicting AADT in the past. 

Shamo et al. (2015) used three linear geostatistical interpolation kriging techniques in combination 
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with the variogram models to predict AADT values at unsampled locations. Castro-Neto et al 

(2009) applied support vector regression (SVR) in predicting AADT. Sharma et al. (1999) applied 

neural networks (multilayered, feed-forward and back, propagation algorithms) to estimate AADT 

for 63 sites in the Minnesota state highway network.  

Another approach is the use of exponential smoothing. Exponential smoothing (ES) 

techniques are relatively simple and effective methods for time series forecast for short-term 

horizons (De Lurgio, 1998). Time series modeling is based on the assumption that the historical 

values of a variable provide an indication of its value in the future (Box and Jenkins, 1970). Eom 

et al. (2006) used a spatial regression model to estimate AADT for roads in Wake County, North 

Carolina. The study used observed traffic counts from 200 of the county’s 1,200 monitoring 

stations to estimate traffic volumes. Wang and Kockelman (2009) used spatial interpolation 

techniques to characterize and interpolate traffic counts in Texas and California. They came up 

with the conclusion that kriging performed far better than other options for spatial extrapolation - 

such as assigning AADT based on a point’s nearest sampling site, which yields errors of 80%.  

Several shortcomings and challenges were identified from the existing AADT estimation 

methods. One of the main challenges of accurate measurement of AADT as mentioned by Sababa 

in his 2016 article is having a complete, precise and reliable traffic data. In his research, he 

indicated that often the transportation agencies reported the problem of missing hourly volume 

from the permanent traffic count stations with a percentage of missing traffic data varying between 

10% to 60%. Transport Infrastructure Ireland (TII) in its October 2016 publication identified a 

number of variables that need to be considered as they affect the quality of AADT estimation. 

These factors include geographical location, road type, the day of the week and seasonality. The 

use of the same approach for each data type has a risk of generating prediction errors and may 
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result in inaccurate estimate adversely affecting aspects of the transportation design, planning, and 

policy-making processes (Wang and Kockelman, 2009).  

Several AADT estimates have been carried out using the kriging method and researchers 

have looked at the differences between some of these kriging methods. Asa et al. (2012) compared 

linear and non-linear kriging methods for characterization and interpolation of soil data. Moyeed 

and Papirtz (2002) in their research, ‘an empirical comparison of kriging methods for non-linear 

spatial point prediction’ also compared linear and non-linear kriging methods.  Other researchers 

have compared the kriging method with other methods, but none has compared linear, non-linear 

and bayesian methods of kriging which was carried out in this research. 

1.3. Research Questions 

With the help of this research, the following questions would be addressed 

1. What are the methods of AADT estimation and prediction? 

2. What are the factors that influence the accuracy of AADT estimation and prediction methods? 

3. Which of the kriging methods is best used for AADT estimation and prediction? 

4. What differences can be inferred between these kriging methods? 

1.4. Research Objectives 

The objectives of this study are as follows: 

1. Perform a systematic literature review to identify the current approaches used in the 

estimation of annual average daily traffic data 

2. Identify the factors that influence the accuracy of estimation and prediction methods 

3. Investigate which of the kriging methods is best for AADT prediction. 

4. Postulate a hypothesis to test if the prediction means an error of the kriging methods are the 

same or not. 
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1.5. Research Contribution  

This research is part of the continual effort at adding to the body of knowledge by testing 

and comparing the effectiveness of the different kriging methods at estimating and predicting 

AADT values. This research broadly categorizes the kriging method into three and compare them 

to test which of the methods has the least prediction error in predicting AADT data. A systematic 

literature review was also conducted to document AADT research that has been performed to date 

as well as research gaps. 

1.6. Research Organization 

This thesis comprises of chapters 1 through 6. Chapter 1 introduces the research 

background, describes the problem to be solved and sets the research objectives to be achieved. 

Chapter 2 provides a comprehensive review of the existing AADT estimation and 

prediction methods. The main purpose of this review is to research and document the methods that 

are being used for AADT estimation and to identify the factors that contribute to the accuracy of 

AADT estimation methods. 

Chapter 3 describes the exploratory data analysis of the AADT data from the Washington 

Department of Transportation. Histogram, normal probability plot and run sequence plot were 

carried out to analyze the trend and characteristics of the data.  

Chapter 4 describes the research methodology used. This consists of data exploration, 

structural analysis, cross-validation and hypothesis postulation. 

Chapter 5 discusses the results, infer differences and evaluates the performance of the 

prediction tools in the analysis of AADT.  

Finally, Chapter 6 draws conclusions, summarizes the main contribution of this research 

and provides recommendations for further studies. 
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1.7. Summary 

This chapter introduces the research background, describes the problem to be solved and 

sets the research objectives to be achieved, the research contribution to the knowledge base and 

the research organization then followed.  
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2. ESTIMATING ANNUAL AVERAGE DAILY TRAFFIC DATA: A SYSTEMATIC 

LITERATURE REVIEW 

2.1.  Introduction 

Several methods are being used today to estimate AADT values across the United States 

and the world in general. Most of these methods are being used by the transportation agencies were 

developed by Academic Universities and the Department of Transportations (DOT) working at 

improving the accuracy of AADT estimation.  The electronic databases that were searched for this 

research were the American Society of Civil Engineers [ASCE], Web of Science [WOS], Science 

Direct [SD], and Engineering Village (EV). An additional database (web-based source) used i.e., 

Google. 

 Of the articles retrieved, 52 articles published from 1979 to 2017 met the inclusion criteria 

and were included in the final review. 8 AADT estimation and prediction method were identified 

in the 52 articles used. Descriptive and Anderson-Darling statistical methods were used to analyze 

the resulting articles and the results of the analysis showed the following as some of the commonly 

used methods of AADT estimation and prediction: Machine learning techniques, Origin-

Destination centrality based method, Ordinary Linear regression, Florida Turnpike state model, 

Geographically Weighted Regression, Travel demand modeling, Kriging interpolation, Elasticity 

variables, Short Traffic Counts and Artificial Neural Network.  

Table 2.1 below shows the AADT estimating methods identified, their proponents and 

application in the real world. 

 



 

8 

 

Table 2.1. Identified AADT Estimation Methods and Applications  

AADT ESTIMATION 

METHODS 

PROPONENTS APPLICATIONS 

Florida Turnpike state model Florida Department of 

Transportation (2005) 

Roads without traffic counts 

Geographically Weighted 

Regression 

Zhao and Park (2004) County roads 

Artificial Neural Network Sharma et al. (2001), 

Sharma et al. (1999) 

Rural roads 

Kriging interpolation Selby and Kockelman 

(2011), Eom et al. 

(2006), Shamo et al. 

(2015), Wang and 

Kockelman (2009) 

All roads in Texas, Non-

freeway roads in a county, 

Roadways with ATR data, 

All roads in Texas 

respectively 

Travel demand modeling Wang T. (2012), Wang 

et al. (2013), Zhang and 

Hanson (2009) 

All roads in Florida, All 

roads in Florida, Low-class 

roads respectively 

Ordinary Linear regression Lu et al. (2007), Shen et 

al (1999)., Zhao and 

Chung (2001), Lowry 

and Dixon, Mohammad 

et al. (1998) 

All roads in Florida, Off-

system roads in Florida, 

County roads in Florida, 

Streets in an urban area, 

County roads in Indiana 

respectively  

Origin-Destination centrality-

based method 

Lowry (2014) Community roads 

Support vector regression with 

data-dependent parameters 

Castro-Neto Jeong, and 

Han (2009) 

Both rural and urban roads 

(25 counties) in Tennessee 

Estimating and predicting values in a particular area of interest is challenging and 

sometimes complicated due to the unavailability of data from the chosen area. Consequently, the 

AADT estimation process becomes complex when considering these unknown factors which 

include the day of the week, season and location amongst others. This chapter provides a 

systematic review of the existing AADT estimation and prediction methods with the aim of 

identifying different methods of AADT estimation and their different applications or usage at 

different locations.  
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2.2. Previous Studies 

Traffic forecasting involves the application of computational, intelligent, statistical and 

mathematical techniques to model and estimate key parameters such as annual average daily traffic 

(AADT), design hour volumes (DHV), directional design hour volume (DDHV), and other 

variables that are inputs in transportation planning, design, operations, and policy analysis (Shamo 

et al. 2015). Many transportation resources, such as the ASSHTO guidelines for traffic data 

programs (AASHTO, 1992), outline many transportation engineering activities that require 

estimates of traffic volume demand parameters such as the annual average daily traffic. 

Many AADT prediction studies have been published over the years due to the importance 

of knowing the traffic demand and using it to design and plan transportation operations. Manoel 

et al. (2009), identified two main categories of AADT prediction studies from literature: current-

year and future-year AADT estimation studies. In the current year approach, the AADT for a 

particular year (usually current-year) is estimated using predictor variables associated with that 

year. The AADT values for future years are estimated based on the AADT from previous years, 

and external variables are also sometimes used (Manoel et al. 2009).  

Manoel et al. (2009) evaluated the performance of a modified version of the Support Vector 

Machine for Regression (SVR) technique in forecasting AADT one year into the future without 

using any external (predictor) variable. The proposed procedure computes the SVR prediction 

parameters based on the spreading of the training data, consequently, the proposed method used 

was termed SVR with data-dependent parameters (SVR-DP), which in order to evaluate its 

performance, SVR-DP was compared to Holt exponential smoothing (Manoel et al. 2009). The 

modified SVR uses data-dependent parameters in order to reduce computational time and to 

achieve better predictors. A comparison of the results showed that SVR-DP outperformed the 



 

10 

 

OLS-regression technique, which is commonly used for future-year AADT forecasting purposes 

(Manoel et al. 2009).  

The SVR-DP also performed better than the Holt’s ES, but one can as well argue that both 

techniques performed in likewise manner (Manoel et al. 2009). The g performance of SVR-DP 

can be attributed to the remarkable characteristics of SVR and the incorporation of a data-

dependent procedure for computing SVR parameters, this inevitably reduces uncertainty related 

to parameter selection and computation time (Manoel et al. 2009). They concluded that the SVR-

DP technique provides an accurate forecasting technique where no external explanatory variable 

is used. This can be advantageous because the inclusion of external variables might not be feasible.  

Sharma et al. (1996) researched the accuracy of AADT estimates using traffic data from 

63 ATR sites in Minnesota. These ATR sites used were grouped into five clusters based on their 

characteristics. Two of the five groups represented the regional routes with low seasonal traffic, 

one represented the average rural routes, and the rest groups represented routes serving recreational 

areas. The results of the study showed predicted AADT values to be off by 11% in 95% of the 

cases with “regional routes serving commuters and business trips” enjoying the smallest AADT 

estimation errors and heavy-traffic rural routes serving recreational areas suffering the highest 

errors. They concluded that it is important to assign each site to its correct group; incorrect 

assignment carries the greatest potential for significant estimation error. They also found that 

estimation error fell only moderately with count duration, from 16.5% at 24 hours to 13.13% at 72 

hours.  

Lam and Xu (2000) also analyzed data at 13 locations and found that neural networks 

consistently performed better than regression analysis, and 8-hour counts (if AADT is estimated 

from something less than a 24-hour interval) are most appropriate.  Jiang et al. (2006) used a 
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weighted combination of past and present counts along 122 highway segments over a 10-year 

period to estimate AADT. They concluded that accuracy improved when the averaging was 

applied on a large scale and that the number of short-period traffic counts (SPTCs) could be 

reduced on many segments.   

Eom et al. (2006) used spatial statistics to improve AADT prediction along non-freeway 

facilities in Wake County, North Carolina. They found that a model which takes both spatial trend 

and spatial correlation into account provides better predictions for locations where no observed 

count data existed. Wang and Kockelman (2009) used spatial interpolation techniques to 

characterize and interpolate AADT data in Texas and California. They concluded that kriging is a 

promising way to explore spatial relationships across a wide variety of data sets, including, for 

example, pavement conditions, traffic speeds, population densities, land values, household 

incomes, and trip generation rates. They further concluded that further refinements, including 

spatial autocorrelation functions based on network (rather than Euclidean) distances and inclusion 

of far more explanatory variables, are possible, and will further enhance estimation. 

Utmost recently, Shamo et al. (2015) applied the geostatistical procedure of kriging to 

predict AADT values at unmeasured locations with the aim to reduce the extra cost imposed on 

the current Highway Performance Monitoring System (HPMS). The modeling techniques they 

used applies position and spatial relationships to estimate probable values of AADT at unmeasured 

locations considered. They came with the same conclusion as Chu (1993) that even though there 

are good iterative graphical programs, the user would do better than a sophisticated fully automatic 

fitting procedure. This implied that the same kriging method could not be used for the same data 

type from year to year due to the changing dynamics of AADT attribute (Shamo et al. 2015). 
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2.3. Research Methodology 

This study was performed as a systematic literature review (SLR) to search electronic 

databases to retrieve relevant literature and papers. Systematic reviews aim to identify, evaluate 

and summarize the findings of all relevant individual studies, thereby making the available 

evidence more accessible to decision-makers (Centre for Reviews and Dissemination, 2008). The 

SLR allowed for an evidence-based approach to identify, select, analyze, and synthesize data for 

a specific research topic by documenting all the steps. (Cook et al. 1997; Tranfield et al. 2003). 

The flow chart of the processes used for this research is shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural Analysis (Selecting Kriging Method 

and Variogram fitting) 

• selection of a kriging method 

• selection of variogram and 

• combining kriging and variogram 

models 

 

Change 

 Kriging Method 

and variogram 

model 

Crossvalidation 

• compare the predicted value to 

the observed value 

• Crossvalidation statistics 

 

Data Exploration 

• data examination 

• statistical analysis 

Hypothesis Testing (mean prediction error is same or not) 

• H0: µ1 = µ2 = µ3 

Where  µ1 = linear kriging – 3 (OK, SK and UK) 

 µ2 = non – linear kriging – 3 (IK, PK and DK) and  

µ3 = Bayesian – 1 (EBK) 

• HA = There is difference in mean prediction error 

 

Discussion of Results 

• Ranking of results 

• Making Inferences and 

• Conclusions 

Figure 2.1. Research Method Flowchart 
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2.3.1. Databases Searched 

Five major databases were searched, and resources searched about AADT estimation or 

prediction were selected. The approach and databases searched are shown in Figure 2.2. The 

systematic review was performed by searching a combination of databases (such as the American 

Society of Civil Engineers [ASCE], Web of Science [WOS], Science Direct [SD], and Engineering 

Village (EV). The additional database was other web-based sources (i.e., Google). 

  

 

 

 

 

 

 

 

 

 

 

 

 

The databases were selected to ensure that a broad range of published literature was 

retrieved on AADT estimation and prediction. The ASCE, WOS, EV, and SD are major electronic 

databases involving engineering transportation projects and are highly regarded by the academic 

community. In order to cross-reference sources, the Google search engine was also included to 

search for others which might be difficult to find somewhere else and to identify their 

Systematic Literature Review 

ASCE EV WOS SD Google 

Identification of AADT Estimating Methods 

Literature Data Analysis 

Discussions of AADT Estimating Methods 

Conclusion 

Figure 2.2. The Systematic Literature Review Process 
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contributions. The same search sequence was used for all the databases, but the words were slightly 

modified to suit the format of each particular database in order to avoid missing any important or 

new information.  

To capture all the information, searches were performed directly on the databases. The 

following keywords were used when the search was conducted: ‘annual average data traffic,’ 

‘AADT,’ ‘annual average data traffic estimation,’ ‘traffic forecasting,’ and ‘AADT forecasting.’ 

Other keywords list included ‘AADT prediction methods,’ ‘AADT calculations’ and ‘estimating 

AADT.’  

The articles were retrieved from different journals and government reports based on the 

criteria formulated as described in 2.3.2 below. The procedure involved reading the abstracts, and 

in cases where the information was not available, the entire paper was read. The wide range of 

databases together with the use of predetermined terms searched was aimed at performing a review 

to generate a comprehensive list of articles that might be useful for this research. After a document 

has been retrieved, AADT estimating or prediction methods are used to examine the literature to 

check its suitability for the review.  

2.3.2. Search Inclusion and Exclusion Criteria 

The criteria used for inclusion and exclusion of studies in the systematic literature review 

includes the following. Studies in English were considered from conference papers and peer-

reviewed journals (abstracts and full papers), published from 1979 to 2017. The papers included 

must have focused on AADT estimations and predictions and be available for download. Studies 

not in English, or not explicitly related to AADT estimations and predictions, or are not related to 

the review questions were excluded. Also excluded were prefaces, editorials, and poster sessions. 

Published research which had been peer-reviewed was not independently assessed for study 



 

15 

 

quality and was assumed to be of good quality and coded accordingly. The following is a short 

description of each of the databases used. 

American Society of Civil Engineers (ASCE): According to the website, The American 

Society of Civil Engineers (ASCE) represents more than 150,000 members of the civil engineering 

profession in 177 countries. Founded in 1852, ASCE is the nation’s oldest engineering society. It 

stands at the forefront of a profession that plans, designs, constructs, and operates society’s 

economic and social engine – the built environment – while protecting and restoring the natural 

environment. ASCE operates with these goals in mind which are: 

• An ever-growing number of people in the civil engineering realm are members of, and 

engage in, ASCE. 

• Civil engineers develop and apply innovative, state-of-the-art practices and 

technologies. 

• All infrastructure is safe, resilient, and sustainable. 

• ASCE advances the educational and professional standards for civil engineers. 

• The public values civil engineers’ essential role in society. 

• ASCE excels in strategic and operational effectiveness. 

The database can be accessed through https://ascelibrary.org/journals. 

Engineering Village (EV): According to the website, Engineering Village takes 

engineering research to the next level with a comprehensive database that includes the most 

authoritative engineering resources available to answer today’s most timely questions—from 

theoretical to applied, and basic to complex. Academics, government institutions, business 

researchers and practicing engineers gain an immediate advantage with access to today's most 

authoritative engineering research, with enhanced user features, that provide deep insight into 
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published engineering work and related disciplines. It offers access to 12 engineering literature and 

patent databases providing coverage from a wide range of trusted engineering sources. The 

databases have been carefully selected to provide both breadths as well as the depth of content. 

The database can be accessed through https://www.elsevier.com/solutions/engineering-village. 

Web of Science (WOS): According to the website, the web of science group powers our 

integrated suite of research intelligence and workflow solutions to help people at every stage of 

work in a more open, seamless and connected way. The Web of Science Core Collection is the 

most authoritative global citation index – consistently and continuously curated by an independent 

team of full-time editors to include only the highest quality and most impactful journals across 254 

subject areas. Whether providing pinpoint access to the content one needs, helping one find the 

best place to publish, or communicating one’s research to the world, WOS make sure one has the 

essential information, analytics, and tools one requires to succeed. The database can be accessed 

through https://clarivate.com/products/web-of-science/.  

ScienceDirect (SD): According to the website, ScienceDirect is built on the widest range 

of trusted, high-quality, interdisciplinary research. It helps find answers to the most pressing 

research questions, stay on top of your field and gain in-depth insights into trending research topics 

as one takes next steps in discovery. This platform gives access to a large database of scientific and 

medical research. It hosts over 12 million pieces of content from 3,500 academic journals and 

34,000. The journals grouped into four main sections include Physical Sciences and Engineering, 

Life Sciences, Health Sciences, and Social Sciences and Humanities. The database can be accessed 

through https://www.sciencedirect.com/.  
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2.3.3. The Literature Selection Process 

Figure 2.3 below shows the flow chart of the systematic review which shows the number 

of papers identified at the various stages of the searches and reviews. From the search and reviews, 

601 articles were identified from the 4 databases, 53 abstracts and full-text articles were assessed 

for eligibility, and 21 abstracts and full papers were considered in the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The Search, Review and Selection Process of The Systematic Literature Review 

A number of papers were not selected because the studies did not specifically discuss 

AADT estimating or prediction or other related terms to AADT estimating and therefore does not 

meet the criteria for inclusion. The selected articles were from the 1979 to 2017 period. Table 2.2 

Databases Searched 

Other Database (Google) 4 Databases Searched 

523 primary articles identified 
through databases searched 

632 articles/reports downloaded 
for preliminary analysis 

548 irrelevant and 
duplicates articles / reports 

removed after abstract 
review 84 articles/journals/reports for 

abstract and full text review  

32 articles/journals/reports 
did not meet final review 

criteria 

52 articles/journals/reports 
included in the systematic 

literature review and analysis 

109 secondary articles identified 
through other sources searched 
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below showed the tabulation of papers at the various selection stages from the databases used for 

this research study. The results showed that the ASCE database had 22 publications which were 

the highest number, followed by the Google database with a total of 15 publications. SD and EV 

databases had 9 and 6 respectively. WOS did not produce anything useful for the research after 

the full review.  

Table 2.2. Paper Reviewed at Different Stages of Analysis 

Databases Articles 

identified 

Duplicates 

and not 

relevant 

articles 

Articles 

after 

duplicate 

removal 

Articles 

removed 

after 

abstract 

review 

Articles 

for the 

abstract 

and 

full-text 

review 

Articles 

which 

did not 

meet 

criteria 

Articles 

included 

in the 

analysis 

ASCE 261 84 177 148 29 7 22 

EV 23 8 15 7 8 2 6 

SD 212 36 176 162 14 5 9 

WOS 12 0 12 10 2 2 0 

Other 109 48 61 40 21 6 15 

The research papers, journals, and books were selected based on their discussion of AADT 

estimating or prediction methods. The final papers used for this research study totaled 52 scientific 

journal articles including dissertation and thesis. Table 2.3 presents an overview of the publications 

used in this research and the factors each focused on. These publications below are few examples 

out of the 52 publications that were used for the entirety of the thesis. 
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Table 2.3. An Overview of the Publications Used for the Research Study 

Author(s) Year Journal/book 

title 

Type of Study  Remarks/Assumptions 

Shashank G; 

Atul M; and 

Kara M 

2007 Estimates Of 

AADT: 

Quantifying the 

Uncertainty 

Variations in 

AADT estimation 

errors are 

investigated across 

roadway and area 

types, for both 

Minnesota and 

Florida automatic 

traffic recorder 

(ATR) sites. 

The analytical results of 

the investigation 

suggested a variety of 

recommendations for 

agencies seeking to 

reduce and appreciate 

errors in their AADT 

estimates. These include 

sampling in spring and 

summer months (on 

weekdays), exercising 

greater caution with 

counts on multilane and 

low-AADT roadways, 

pursuing appropriate site 

assignment to ATR 

groups, and recognizing 

the effects of distance to 

the sampling site. With 

adequate attention, 

(average) errors in 

AADT estimates can 

probably be reduced to 

the 10 percent level. 

Nevertheless, this still 

will have an impact on 

investment decisions, 

crash rate calculations, 

travel demand model 

validation, and other 

analyses. 

Satish 

Sharma, 

Pawan 

Lingras, Fei 

Xu, and 

Peter 

Kilburn 

2001 Application of 

Neural 

Networks to 

estimate AADT 

on low-volume 

roads 

 

AADT estimation 

errors resulting 

from various 

durations and 

frequencies of 

counts are 

analyzed by 

computing average 

and percentile 

errors. 

The results of the study 

indicated a clear 

preference for two 48-h 

counts as compared to 

other frequencies (one or 

three) or durations (24- 

or 72-h) of counts. 
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Table 2.3. An Overview of the Publications Used for the Research Study (Continued) 

Author(s) Year Journal/book 

title 

Type of Study  Remarks/Assumptions 

Miguel 

Figliozzi; 

Pam 

Johnson; 

Christopher 

Monsere; 

and Krista 

Nordback, 

2014 Methodology to 

Characterize 

Ideal Short-

Term Counting 

Conditions and 

Improve AADT 

Estimation 

Accuracy Using 

a Regression-

Based 

Correcting 

Function 

 

The proposed 

methodology for the 

analysis of AADT 

estimation errors 

using regression 

models to estimate a 

correcting function 

that accounts for 

weather and activity 

factors 

The results indicated that 

the proposed 

methodology is simple 

and useful for finding 

ideal short-term counting 

conditions and improving 

AADT estimation 

accuracy. 

Y. F. Tang; 

William H. 

K. Lam; and 

Pan L. P. Ng 

2003 Comparison of 

Four Modeling 

Techniques for 

Short-Term 

AADT 

Forecasting in 

Hong Kong 

 

The historical data 

(1994–1998) and 

available current-

year data for 1999 

partial daily flows 

are the input data 

used for model 

development. The 

results of the four 

models were 

compared with the 

real data for 

validation. The 

daily flows 

estimated by the 

four models were 

used to calculate the 

AADT for the 

current year of 1999 

Based on the comparison 

results, the GML model 

appears to be the most 

promising and robust of 

these four models for 

extensive applications to 

provide the short-term 

traffic forecasting 

database for the whole 

territory of Hong Kong. 

 
 

 

 

 



 

21 

 

Table 2.3. An Overview of the Publications Used for the Research Study (Continued) 

Author(s) Year Journal/book 

title 

Type of Study  Remarks/Assumptions 

Mark R. 

McCord; 

Prem K. 

Goel; 

Zhuojun 

Jiang; and 

Patrick 

Bobbit 

2002 Improving 

AADT and 

VMT Estimates 

with High-

Resolution 

Satellite 

Imagery: 

Simulated 

Analytical 

Results 

 

Developed 

computer software 

to simulate AADT 

and VMT 

estimation errors 

with and without 

the use of satellite 

data. 

Results indicate that 

adding satellite-based 

data to ground-based 

data would decrease 

AADT and VMT 

estimation errors and 

allow for a substantial 

reduction in ground-

based samples for a 

large range of inputs. 

Other numerical results 

show that using satellite-

based data could lead to 

improved estimates 

while reducing the 

number of the 

permanent automatic 

traffic recorders used to 

determine temporal 

adjustment factors in 

traffic monitoring 

programs and that there 

are decreasing marginal 

benefits from increased 

satellite supply. 

Ehsan 

Bagheri; 

Ming 

Zhong; and 

James 

Christie 

 

2015 Improving 

AADT 

Estimation 

Accuracy of 

Short-Term 

Traffic Counts 

Using Pattern 

Matching and 

Bayesian 

Statistics 

 

Two pattern-

matching methods 

and their 

combination with 

Bayesian statistics 

were proposed and 

tested using 

permanent traffic 

counter (PTC) data 

from Alberta, and 

their results were 

compared to the 

method. 

Study results show that, 

compared to the FHWA 

method, the proposed 

methods reduce the 95th 

percentile of the absolute 

percent AADT 

estimation errors (P95) 

by 0.5 to 31.9 when 

applied to different 

testing sites. 
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Table 2.3. An Overview of the Publications Used for the Research Study (Continued) 

Author(s) Year Journal/book 

title 

Type of Study  Remarks/Assumptions 

Mei Chen; 

Jingxin Xia; 

and 

Alejandro 

Anaya 

2004 Estimating 

Average Daily 

Traffic Using 

ITS Data 

 

In the study, data 

collected by two 

regional ITS 

deployments were 

screened to weed 

out erroneous data. 

It was observed that, 

while ITS detector data 

might not be as accurate 

as those collected by 

automatic traffic 

recorders used in planning 

applications, it is possible 

to obtain relatively 

accurate estimates based 

on short-term traffic data 

that has high quality. 

Satish C. 

Sharma; Brij 

M. Gulati; 

and 

Samantha N. 

Rizak 

1996 Statewide 

Traffic Volume 

Studies and 

Precision of 

AADT 

Estimates 

 

Investigated in the 

paper is the 

statistical precision 

of annual average 

daily traffic 

(AADT) estimates 

resulting from short 

period traffic counts 

(SPTC). 

It was found that AADT 

estimation errors are very 

sensitive to assignment 

effectiveness. The study 

results suggested that 

highway agencies should 

put more emphasis on 

sample site assignments 

to correct automatic 

traffic recorder (ATR) 

groups than on the 

duration of the count, i.e., 

whether it be a 24-, 48-, 

or 72-hr traffic count 

Ehsan 

Bagheri; 

Ming Zhong; 

and James 

Christie 

2011 Improving 

Group 

Assignment and 

AADT 

Estimation 

Accuracy of 

Short-term 

Traffic Counts 

using Historical 

Seasonal 

Patterns 

Two pattern 

matching methods 

are proposed and 

tested with the data 

from a permanent 

counter on a winter 

recreational road in 

Alberta, Canada 

It is found that the 

resulting 95th percentile 

(P95) AADT estimation 

errors of the two methods 

are 10.5% and 8.4% 

respectively, with contrast 

to 62.1% from the FHWA 

method 
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Table 2.3. An Overview of the Publications Used for the Research Study (Continued) 

Author(s) Year Journal/book 

title 

Type of Study  Remarks/Assumptions 

Benedict 

Shamo; 

Eric Asa; 

and Joseph 

Membah 

2015 Linear Spatial 

Interpolation and 

Analysis of 

Annual Average 

Daily Traffic 

Data 

 

Applied three 

different linear 

kriging techniques 

[simple kriging (SK), 

ordinary kriging 

(OK), and universal 

kriging (UK)] and 

five variogram 

models (nugget 

effect, spherical, 

exponential, 

Gaussian, and power) 

to characterize and 

interpolate the annual 

average daily traffic of 

Washington State 

Results from the study 

suggest that using the 

same combination of 

kriging and variogram 

algorithms to 

characterize and 

interpolate different 

AADT datasets (2008, 

2009, and 2010) could 

lead to suboptimal results 

Zhuojun 

Jiang; 

Mark R. 

McCord; 

and Prem 

K. Goel 

2006 Improved AADT 

Estimation by 

Combining 

Information in 

Image- and 

Ground-Based 

Traffic Data 

 

Proposed a weighted 

combination of both 

earlier year coverage 

counts and a current 

year image containing 

traffic information for 

AADT estimation 

The accuracy was 

markedly improved and 

stable over a large range 

of important input values. 

The demonstrated 

improvements in 

accuracy and the ease of 

using this method with 

existing data are great 

enough that field testing 

should now be 

considered. 

Venkata 

Ramana 

Duddu; and 

Srinivas S. 

Pulugurtha 

2013 The principle of 

Demographic 

Gravitation to 

Estimate Annual 

Average Daily 

Traffic: 

Comparison of 

Statistical and 

Neural Network 

Models 

The paper focuses on 

the application of the 

principle of 

demographic 

gravitation to 

estimate link-level 

annual average daily 

traffic (AADT) based 

on land-use 

characteristics 

The results obtained 

indicate that statistical 

and neural network 

models ensured 

significantly lower errors 

when compared to 

outputs from the 

traditional four-step 

method used by regional 

modelers 



 

24 

 

2.4. Results 

A summary of the results of the review questions is presented. 

2.4.1. Methods of AADT Estimation and Prediction 

Review question 1 is related to identifying the methods of AADT estimation that have been 

used in the industry to date. After conducting the literature search and analyzing the results, eight 

methods were identified as the methods for AADT estimation and prediction. Table 2.4 presents 

the breakdown and frequency of the identified methods that were used for AADT estimation and 

prediction. The significance of a factor was weighed by the number of times the factor occurred in 

the literature. The factors with the largest integer are ranked 1, the second highest as 2, and others. 

A total of five methods received just one author’s opinion, which was ranked as the lowest rank 

of 4. 

The findings from the analysis identified different methods for AADT estimating out of 

which ordinary linear regression occurred most with kriging interpolation following closely. Four 

other methods were used which are, Florida turnpike state model, geographically weighted 

regression, artificial neural network, support vector regression with data-dependent parameters, 

and origin-destination centrality-based method occurred least. 
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Table 2.4. Identified AADT Estimation and Prediction Methods (8 Methods) 

Table 2.4 showed the 8 identified methods of AADT estimation and prediction that was 

identified from the 52 publications that were used for this research. 

2.4.2. Factors That Influence the Accuracy of AADT Estimation and Prediction Methods 

Review question 2 is related to identifying the factors that influence the accuracy of AADT 

estimation and prediction methods. After conducting the search, a number of factors that influence 

the accuracy of AADT estimation and prediction were identified and indicated in Table 2.5 below. 
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Florida 

Turnpike state 
model 

                          x       4 

Geographically 

Weighted 
Regression 

                              x   4 

Artificial 

Neural 

Network 

                        x          4 

Kriging 

interpolation 
x             x       x         x 2 

Travel demand 
modeling 

                x x         x     3 

Ordinary 

Linear 

regression 

      x x x x       x             1 

Origin-

Destination 

centrality-
based method 

  x                               4 

Support vector 

regression with 

data-dependent 
parameters 

    x                             4 
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Table 2.5. Factors that Influence AADT Accuracy 

Transport Infrastructure Ireland (TII) in its October 2016 publication identified a few 

variables that need to be considered which affect the quality of AADT estimation. These include 

geographical location, road type, day of week and seasonality. One of the main challenges of 

accurate measurement of AADT as mentioned by Sababa in his 2016 article is having a complete, 

precise and reliable traffic data. In his research, indicated that often the transportation agencies 

reported the problem of missing hourly volume from the permanent traffic count stations with a 

percentage of missing traffic data varying between 10% to 60%. In addition to these factors 

mentioned earlier, Paul (2016) identified equipment theft, damage, vandalism, and human error as 

some of the challenges that influenced the accuracy of AADT estimation. 

2.5. Discussions 

As authorized by Congress (23 U.S.C. 502(h)), every state in the United States submits 

data from their highway performance monitoring system (HPMS). This is for the purpose of 

biennial conditions and performance report of the future highway investment needs of the nation 

(U.S. Dept. of Transportation FHWA 2001). A primary goal of the HPMS traffic data collection 
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effort is to provide a statistically valid estimate of total annual vehicle distance traveled (VDT) 

(U.S. Dept. of Transportation FHWA 2001).  AADT estimation could tend to be tedious and not 

as straight forward as it seems. It requires some insight into the data which does take time and 

effort with resources to get it done. The aim of this section is to discuss the methods of AADT 

estimating that was identified in the literature review and to discuss in depth the kriging methods 

that are being used to date. These methods are widely used across the transportation field today 

for AADT estimation and prediction. 

2.5.1. Ordinary Linear Regression 

Regression analysis may be one of the most popular methods to estimate AADT (Yang et 

al. 2011). Many papers choose different variables (AADT data) that contribute to AADT and then 

uses an ordinary linear regression method to estimate or predict the outcome of these variables in 

connection to AADT. Mohammad et al. (1998) incorporated relevant demographic variables for 

county roads into a traffic prediction model.  Xia et al. (1999) discovered that roadway 

characteristics such as the number of lanes, functional classification, and type of area can be used 

to predict AADT values for non-state roads in urbanized areas in Florida. Zhao and Chung (2001) 

well developed and compared four multiple linear regression models using geographic information 

system technology. They used four sets of independent variables and these are the roadway 

characteristics, socioeconomic characteristics, expressway accessibility, and accessibility to 

regional employment centers. Zhao and Park (2004) used a geographically weighted regression 

(GWR) method to estimate AADT values. They argued that the GWR models were comparable to 

ordinary least square models. Kingan and Westhuis (2006) used robust regression methods for 

AADT forecasting. Once the variables (AADT data) are collected no matter how large. A critical 
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step that must not be missed is to keep significant variables and exclude the non-significant 

variables in the final model.  

As mentioned by Zhao and Chung (2001), although most variables were statistically 

significant, few added enough explanatory power to be practical and useful. So, it is important to 

find a criterion to maximize the explanatory power. Thus, it is fundamentally important to do the 

variable selection in AADT estimation effectively to ensure the efficiency of estimation and 

accuracy of prediction. Yang et al. in their 2011 publication noted that using the t-test, f-test, or 

selection of the best model according to the Akaike information criterion (AIC) and bayesian 

information criterion are some of the commonly used methods that are used to select significant 

variables. Fan and Li (2001) mentioned that these stepwise deletion procedures may suffer 

stochastic errors inherited in the multiple stages, and there is no theory on the validity of these 

multiple selecting steps. Smoothly clipped absolute deviation penalty (SCAD) variable selection 

was used based on regression models to select the variables that are significant and left out the 

non-significant variables in their four groups of 19 variables that they collected at the very 

beginning (Yang et al; 2011).  

Once the process of selection and elimination is completed, an estimate of the unknown 

regression coefficients is then performed. The attractive point of this variable selection for the 

regression procedure is that it is not only critical for local AADT estimation but also flexible to be 

applied to other related areas, where the relevant statistics play a key role, e.g., very large-scale 

intelligent transportation systems and networks (Yang et al. 2011). 

2.5.2. Kriging Interpolation 

Kriging is a geostatistical interpolation technique that considers both the distance and the 

degree of variation between known data points when estimating values in unknown areas (ESRI 
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2018). Kriging is the generic name adopted by geostatisticians for a family of generalized least-

square regression algorithms in recognition of the pioneering work of Danie Krige (Goovaerts 

1997). A kriged estimate is a weighted linear combination of the known sample values around the 

point to be estimated (ESRI 2018).   This is an advanced geostatistical procedure. It creates a 

projected surface from a dispersed set of points with z-values (ESRI 2018).  

According to ESRI, the direction or distance in between a sample point replicates a spatial 

linking that can be used to describe variation in the surface as assumed by kriging. A fitted 

mathematical function is used by kriging tool to a stated number of points, or all points inside a 

stated area, to determine the output value for each of the location (ESRI 2018).  

“Kriging involves a multistep process and this process includes exploratory statistical 

analysis of data, variogram modeling of data, creating an output surface, and if need be, exploring 

the variance output surface” (ESRI 2018). Though it was often used in soil science and geology 

before over the years, its application has spread to various fields including transportation field 

(ESRI 2018).  

Kriging uses kriging weights (λα), which are derived from a covariance function 

(variogram). The variogram is a fitted function used to express the relationship between the known 

and unknown data points. The variogram approach to developing kriging weights is similar to 

inverse distance weighting except that in the case of kriging weights, the weights are modeled by 

the best-fitted variogram (Shamo et al. 2015). One of the major advantages of kriging is that it has 

the ability to provide estimation/prediction errors. This estimation/prediction error helps in 

comparing kriging to other methods and it also serves as a basis for stochastic simulation of 

functions that could represent the relationship between the measured and unmeasured AADT data 

points. Clark (1979) identified another benefit of kriging which is, its ability to compensate for 
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data clustering by assigning to individual data points within a cluster less weight than isolated data 

points. This is unlike other predictors like Sichel t estimator, which requires the probability 

distribution of the samples to be lognormal (Clark 1979).  

The difference between kriging and other linear estimation methods is that it is aimed at 

minimizing the error variance (Shamo et al. 2015). Laslett et al. (1987) compared kriging with 

other techniques of interpolation and showed that kriging was the only methodology that 

performed reliably in all circumstances. Kriging has been successfully used in spatial prediction 

of soil properties (Burgess and Webster 1980), mineral resources, petroleum property evaluation, 

aquifer interpolation (Doctor 1979), and soil salinity through interpolation of electrical 

conductivity measurements (Oliver and Webster 1986), meteorology, and forestry. 

2.5.2.1. Kriging Methods Used for AADT Estimation 

Kriging methods used for AADT estimation is broadly categorized into three. These are: 

i. linear kriging methods: This comprises of universal, simple, and ordinary kriging methods 

ii. non-linear kriging methods: This comprises of disjunctive, indicator and probability 

kriging methods and  

iii. bayesian kriging method: This is empirical bayesian kriging method. 

I. Linear Kriging Methods: 

a. Ordinary Kriging (OK): Ordinary kriging estimator allows one to account for such local 

variation of the local mean by limiting the province of stationarity of the mean to the local 

neighborhood 𝑍(𝑦𝛼) centered on the location 𝑦 being estimated (Shamo et. al 2015). The 

assumption here is that the mean is unknown but fixed. Ordinary kriging assumes a linear 

model form and the equation is given as:  
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𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)𝑍(𝑦𝛼)

𝑛(𝑦)

𝛼=1

+  [1 −  ∑ 𝜆𝛼(𝑦)

𝑛(𝑦)

𝛼=1

] µ(𝑦) 

where 𝑍 is continuous attribute  (AADT); 𝑍(𝑦) is the true value at unsampled location y; 𝑍𝑥(𝑦) 

is an estimate of value 𝑍(𝑦); 𝑍(𝑦𝛼) is 𝑍 datum value at the location 𝑦𝛼; m is the stationary mean 

of the random function (RF) 𝑍(𝑦); µ(𝑦𝛼) is the expected value of random variable (RV) 𝑍(𝑦); 

and 𝜆𝛼 is the kriging weights.  

The sill, range, and nugget obtained from the variogram used in combination with this 

estimator is then used to compute the kriging weight (λα) for which the sum is 1 (Shamo et. al 

2015). The mean is obtained by requiring the kriging weights sum to 1 

∑ 𝜆𝛼(𝑦)

𝑛(𝑦)

𝛼=1

= 1 

Hence, the estimator in OK becomes (Shamo et. al 2015)  

𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)𝑍(𝑦𝛼)

𝑛(𝑦)

𝛼=1

 

b. Simple kriging (SK): Simple kriging estimator considers the mean µ(y) to be known and 

constant throughout the study range (Shamo et. al 2015). The simple kriging estimator also 

assumes a linear model form and is given by the equation:  

𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)[𝑍(𝑦𝛼) −  µ] +  µ

𝑛(𝑦)

𝛼=1

 

where  𝜆𝛼 is weights associated with locations 𝑦𝛼, 𝑍𝑥(𝑦) is an estimate of value 𝑍(𝑦); 𝑍(𝑦𝛼) is 

𝑍 datum value at location 𝑦𝛼 and µ is the unknown constant. 

(Eq. 2.1) 
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c. Universal kriging (UK): Universal kriging estimator is applied when the regionalized variable 

exhibits some form of the trend (Isaak’s and Srivastava 1989). The mean varies, and it is 

unknown. It also assumes a linear model and the equation is given by:  

𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)𝑍(𝑦𝛼)

𝑛(𝑦)

𝛼=1

 

where  𝜆𝛼 is weights associated with locations 𝑦𝛼, 𝑍𝑥(𝑦) is an estimate of value 𝑍(𝑦); 𝑍(𝑦𝛼) is 

𝑍 datum value at location 𝑦𝛼  

II. Nonlinear Kriging Methods: 

a. Indicator Kriging (IK): Indicator kriging uses the model (ESRI, 2018):  

I(s) = µ + ε(s) 

where µ is an unknown constant, ε(s) is the error(s) and I(s) is a binary variable. The creation of 

binary data may be with the use of a threshold for continuous data, or 0 or 1 for the observed or 

count data (ESRI, 2018). Using binary variables, indicator kriging proceeds the same way as 

ordinary kriging (ESRI, 2018). Probability means is used by indicator kriging to calculate the 

forecasted values of the unknown points. 

b. Probability kriging (PK): According to ESRI (2018), probability kriging assumes the model: 

I(s) = I(Z(s) > ct) = µ1 + ε1(s) 

Z(s) = µ2 + ε2(s) 

where: µ1, µ2 equals unknown constants, I(s) equals a binary variable created via threshold 

indicator, I(Z(s) > ct). 

There are now two types of random errors, ε1(s) and ε2(s), so there is autocorrelation for 

each of them and cross-correlation between them (ESRI, 2018). Probability kriging strives to do 

(Eq. 2.5) 
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the same thing as indicator kriging, but it uses cokriging in an attempt to do a better job. (ESRI, 

2018). 

c. Disjunctive kriging (DK): ESRI (2018) on their website showed disjunctive kriging to assume 

the model: 

f(Z(s)) = µ1 + ε(s) 

where f(Z(s)) is a random function of Z(s) and µ1 is an unknown constant. DK requires 

the bivariate normality assumption and approximations to the functions fi(Z(si)); these assumptions 

are difficult to verify, and the solutions are mathematically and computationally complicated 

(ESRI, 2018). 

III. Bayesian Kriging Method: 

a. Empirical Bayesian kriging (EBK): EBK is a geostatistical interpolation method that 

programs the most difficult aspects of building a valid kriging model by automatically 

calculating parameters through a process of sub-setting and simulations. Other kriging methods 

in geostatistical analysis require the user to manually regulate parameters to receive accurate 

results, but EBK automatically calculates these parameters (ESRI, 2018). It accounts for the 

error introduced by estimating by taking into account the underlying semivariogram making it 

different from other kriging methods and thereby producing a better and more accurate result. 

Other kriging methods calculate the semivariogram from known data locations and use this 

same single semivariogram to make predictions at unknown locations; this process implicitly 

assumes that the estimated semivariogram is the true semivariogram for the interpolation region. 

By not taking the uncertainty of semivariogram estimation into account, other kriging methods 

underestimate the standard errors of prediction (ESRI, 2018). 

(Eq. 2.9) 
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2.5.3. Travel Demand Modeling 

Travel demand modeling utilizes mathematical models to simulate “real world” 

transportation system and human travel behaviors (Wang 2012). According to the Virginia 

Department of Transportation (VDOT), the strength of modern travel demand forecasting is the 

ability to ask critical “what if” questions about proposed plans and policies. Traditionally, the 

“four-step process” has been used for travel demand analysis and, as its name implies, is composed 

of four steps: trip generation, trip distribution, mode choice, and trip assignment (Wang 2012). 

Trip generation calculates the number of trips made in each traffic zone and it is the unit 

of geography that is frequently used in travel demand modeling. Trip distribution involves the 

determination of the distribution of trips among the origin and destination zones. Mode Choice 

divides the trips between the origin and destination zones according to different modes of travel 

and finally, trip assignment help allocate the trips to routes by each travel mode (Wang 2012). 

2.5.4. Florida Turnpike State Model 

According to the Florida Department of Transportation (FDOT), Turnpike State Model 

(TSM) is a statewide transportation planning model developed by Florida Turnpike Enterprise. 

TSM provides estimated AADT values generally for all Florida’s major roadways as well as a total 

number of trips by Traffic Analysis Zones (TAZ). It uses the AADT allocator process which was 

developed in order to better estimate traffic volumes (AADT) for all streets and roads in Florida. 

The underlying principle of the Allocator process is to use the results of the TSM statewide 

transportation model and apply it to all roads and streets in Florida. This process is shown in the 

picture obtained from the FDOT website 
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Figure 2.4. TSM Process as Obtained from FDOT Website 

2.5.5. Geographically Weighted Regression 

Geographically weighted regression (GWR) is a useful exploratory analytical tool that 

generates a set of location-specific parameter estimates which can be mapped and analyzed to 

provide information on spatial nonstationarity in relationships between predictors and the outcome 

variable (Matthews and Yang 2012). GWR models allow model parameters to be estimated locally 
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instead of globally, as in the case of ordinary linear regression (OLR) analysis. (Fang and Nokil 

2004). According to Matthews and Yang (2012), GWR is designed to answer the question, “Do 

relationships vary across space?” It is important to note that the GWR approach does not assume 

that relationships vary across space but is a means to identify whether or not they do. If the 

relationships do not vary across space, the global model is an appropriate specification for the data. 

GWR can also be used to identify interesting locations (areas of variation) for investigation 

(Akaike 1974).  

2.5.6. Artificial Neural Network 

An artificial neural network is a computational model composed of simple processing 

elements called neurons or nodes, which are interconnected by links with weights that perform 

parallel distributed processing in order to solve the desired problem (Duddu et al 2013).  Neural 

networks have the ability to learn from the environment and to adapt to it in an interactive manner 

similar to their biological counterparts (Duddu et al 2013). According to Hecht-Nielson (1990) 

and Lawrence (1993), Neural networks are good at recognizing patterns, generalizing, and 

predicting trends. They are fast and due to their adaptive nature; they can adapt to changes in the 

data and learn the characteristics of input signals. Artificial neural networks, also called as neural 

networks, is a computational model that mimic at least partially the structure and functions of 

brains and nervous systems of living beings (Cichocki and Unbehauen 1993). 

Sharma et al. (1999) carried out a comprehensive comparison between the traditional factor 

approach and the neural network approach for estimating AADT from 48-h sample counts. They 

used data from 63 automatic traffic recorders (ATR) sites located on interstate highways and other 

major roadways in Minnesota. They pointed out that the advantage of the neural network approach 
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would lie in the fact that the classification of ATR sites and sample site assignments to ATR groups 

would not be required. Origin-Destination centrality-based method 

2.5.7. Support Vector Regression with Data-Dependent Parameters 

Support vector regression with data-dependent parameters (SVR-DP) has been getting 

growing attention because of its remarkable characteristics, including a strong theoretical 

foundation, good generalization performance, the absence of local minima, and sparse 

representation of solution (Vapnik, 1995). Castro-Neto et al (2009) noted that the implementation 

of many SVR algorithms requires the computation of adequate SVR parameters, which are crucial 

to the quality of SVR models developed and the most accurate technique is the use of resampling 

methods such as cross-validation.  

Castro-Neto et al (2009) proposed an SVR methodology that uses data-dependent 

parameters in order to predict AADT. The methodology uses SVR to predict AADT data in order 

to enhance prediction accuracy and provides an efficient way of computing SVR parameters. This 

is achieved by incorporating the equations for computing SVR parameters into the conventional 

SVR algorithm in order to obtain data-dependent parameters and reduce computational time. The 

use of data-dependent parameters guarantees that the value of the parameters will give smaller 

support vectors and a less complex model (Cherkassky & Ma, 2004). 

2.5.8. Origin-Destination Centrality-Based Method 

This approach is based on the use of centrality. There are various mathematical forms of 

centrality, all of which seek to quantify the topological importance of each element in a network 

(i.e. the hierarchy of connectivity for each link and node) (Lowry 2014). The most popular 

mathematical forms include betweenness centrality, degree centrality, and closeness centrality 

(Brandes, 2008). Wang et al. (2011) used centrality to analyze street networks, land use intensity, 
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and air transport networks. Over the years, a developed specialized form of centrality called “space 

syntax” has been shown to exhibit high correlation with pedestrian volumes in small-scale urban 

environments, like pedestrian plazas (Hillier et al., 1993; Raford and Ragland, 2004). 

Large-scale studies have focused on the theoretical implications that space syntax reveals 

about urban form, spatial cognition, and human movement, with little or no emphasis on the 

implications for estimating AADT (Lowry 2014). One disadvantage that was discovered in efforts 

to estimate AADT using space syntax is that the formulation for space syntax does not provide an 

easy means to incorporate information about origins and destinations (Lowry 2014). 

2.6. Limitations and Future Work 

The papers that were reviewed were restricted to a selected sample of databases. This might 

have impacted the research due to the sample size and the selection process.  The categories 

developed in the analysis process were neither mutually exclusive nor definitive. Due to the 

constraints of scope of work and time, more details cannot be included in this thesis.  

2.7. Summary 

Annual Average Daily Traffic (AADT) data in the transportation industry today is an 

important tool which is used in various fields such as highway planning, pavement design, traffic 

safety, transport operations, and policy. To address the methods used in AADT estimation and 

prediction as well as the factor that affects the accuracy of these methods, systematic review on 

estimating methods was performed. 

The findings from the analysis identified different methods for AADT estimating out of 

which ordinary linear regression occurred most and five other methods occurred least. 

Geographical location, road type, the day of the week and seasonality amongst others were 

identified as factors that influence the accuracy of AADT estimation and prediction. 
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3. EXPLORATORY DATA ANALYSIS 

3.1. Introduction 

This chapter discussed the processes and results of the exploratory data analysis of 

WSDOT AADT data. Exploratory data analysis provided the vital information from the data and 

was used to answer part of questions 3 and 4 of the research questions. Graphical methods, tables, 

and statistical methods were employed in the presentation of the outcomes of this analysis. 

The trend of the data, identification of the key locations and attributes for the research was 

performed using ArcGIS. Histogram, normal probability plot and run sequence plot were carried 

out to analyze the trend and characteristics of the data.  

3.2. Data Acquisition 

The data used for this research analysis was obtained from the Washington State 

Department of Transportation website (WSDOT 2018). The data consist of AADT data from the 

year 2009 to the year 2016 encompassing all the recorded camera locations in the state. The AADT 

dataset was downloaded in the form of shapefiles and KML files. The data counts were taken at 

permanent stations across the state in line with the Highway Performance Monitoring System 

(HPMS) requirements for continuous data counts (Shamo et al. 2015).  

The data consists of different parameters which include the record number for the location, 

the direction of travel of the vehicles (both ways bound, northbound, southbound, eastbound and 

westbound), the location of the camera and the data count for each location. Each class of 

permanent count station consists of highway links (the homogeneous section that has the same 

features such as AADT and seasonal variation in traffic volume) with similar traffic patterns and 

characteristics.  
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Also, the shapefile for state and county boundaries of Washington State were obtained from 

the U.S. Census Bureau with the road network shapefile obtained from the Washington State 

Department of Transport website.  

3.3. Data Analysis 

 Data analysis is the process of systematically applying statistical techniques to describe 

facts, detect patterns, develop explanations, and test hypotheses (Levine and Roos, 2002). It helps 

in structuring the findings from different sources of data collection. According to Tukey (1977), it 

provides insight into a large dataset to make meaningful critical decisions in order to avoid human 

bias from research conclusions with the aid of proper statistical treatments and helps to verify 

whether the hypothesis is valid, reproducible, and unquestionable. Data analysis consists of several 

phases including data cleaning, quality analysis, exploratory analysis, and knowledge 

representation (Tukey, 1977). Several methods are employed in data analysis such as classical 

analysis, exploratory data analysis, and Bayesian analysis. The methodology used in the present 

work is the classical approach, which involves data collection, model development (normality, 

linearity, etc.), analysis, estimation, testing, and conclusions. 

 Exploratory data analysis (EDA) is used to understand the data. It gives insight into the 

dataset, discover the underlying structure, extract important variables, test underlying assumptions, 

and detect outliers and anomalies (Shamo et al. 2015). Examples of tools EDA uses to interpret 

data includes a histogram, scatterplot, run sequence plot, probability plot and descriptive statistics 

amongst others. Histogram, Run Sequence Plot and Probability Plot were employed to analyze the 

AADT dataset for this research. 



 

41 

 

Run Sequence Plot: According to Chambers (1983), run sequence plots are an easy way 

to graphically summarize a univariate data set. A common assumption of univariate datasets is that 

they behave like: 

1. random drawings 

2. from a fixed distribution 

3. with a common location; and 

4. with a common scale. 

With run sequence plots, shifts in location and scale are typically quite evident. Also, 

outliers can easily be detected. Run sequence plots are formed by: 

• Vertical axis: Response variable Yi 

• Horizontal axis: Index i (i = 1, 2, 3, ...) 

For univariate data, the default model by Chambers (1983) is: 

Y = constant + error         (Eq. 3.1) 

where the error is assumed to be random, from a fixed distribution, and with constant location and 

scale. The validity of this model depends on the validity of these assumptions. The run sequence 

plot is useful for checking for constant location and scale. Even for more complex models, the 

assumptions on the error term are still often the same. That is, a run sequence plot of the residuals 

(even from very complex models) is still vital for checking for outliers and for detecting shifts in 

location and scale (Chambers, 1983). 

Histogram: The purpose of a histogram is to graphically summarize the distribution of a 

univariate dataset (Chambers 1983). The histogram graphically shows the following: 

1. center (i.e., the location) of the data; 

2. spread (i.e., the scale) of the data; 
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3. skewness of the data; 

4. presence of outliers; and 

5.  the presence of multiple modes in the data. 

These features provide strong indications of the proper distributional model for the data. 

The most common form of the histogram is obtained by splitting the range of the data into equal-

sized bins (called classes). Then for each bin, the number of points from the dataset that fall into 

each bin is counted. That is 

• Vertical axis: Frequency (i.e., counts for each bin) 

• Horizontal axis: Response variable 

The classes can either be defined arbitrarily by the user or via some systematic rule. A 

number of theoretically derived rules have been proposed by Scott (Scott 1992). 

Normal Probability Plot: The normal probability plot (Chambers et al., 1983) is a 

graphical technique for assessing whether a data set is approximately normally distributed. The 

data are plotted against a theoretical normal distribution in such a way that the points should form 

an approximately straight line. Departures from this straight line indicate departures from 

normality. 

The normal probability plot is formed by: 

• Vertical axis: Ordered response values 

• Horizontal axis: Normal order statistic medians  

The observations are plotted as a function of the corresponding normal order statistic 

medians which are defined as (Filliben 1975): 

Ni = G(Ui)         (Eq. 3.2) 
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where Ui is the uniform order statistic medians (defined below) and G is the percent point function 

of the normal distribution. The percent point function is the inverse of the cumulative distribution 

function (the probability that x is less than or equal to some value). That is, given a probability, 

we want the corresponding x of the cumulative distribution function. Probability plots are used to 

assess the assumption of a fixed distribution. In particular, most statistical models are of the form 

(Filliben 1975): 

The complete data parameters and characteristics acquired from the WSDOT is shown in 

Figure 3.1 and Table 3.1 below. The year 2010 raw data downloaded as shown in Figure 3.1 and 

Table 3.1 showed its data parameters and characteristics after it was imported into the ArcGIS and 

extracted.  

 

Figure 3.1. The Year 2010 Camera Locations using ArcGIS 
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Table 3.1. Extracted Data Parameters and Characteristics of The Year 2010 Data 

FID OBJECTID SRID ARM Year_2010 Direction_ Location LOC_ERROR 

0 1 2 0.01 6500 West Bound 

After Milepost 0.00 B: BOTHWAYS 

INTERSECTION SR 529-MAPLE ST,  BEGIN 

ROUTE NO ERROR 

1 2 2 0.12 9000 West Bound 

After Milepost 0.11 B: LEFT EXIT TO 

WALNUT ST NO ERROR 

2 3 290 0 8400 South Bound 

At Milepost 0.07 A: DECREASING 

UNDERCROSSING SR 90,  BEGIN ROUTE NO ERROR 

3 4 515 7.75 11000 South Bound 

After Milepost 7.70 A: BOTHWAYS 

INTERSECTION SR 900 E BND NO ERROR 

4 5 515 7.85 12000 South Bound 

Before Milepost 7.82 A: BOTHWAYS 

INTERSECTION SR 900 CO2NDST 
(COUPLET),  END ROUTE NO ERROR 

5 6 522 0 16000 West Bound 

At Milepost 0.00 A: DECREASING 

MISCELLANEOUS FEATURE S1 RAMP 
AHEAD,  BEGIN ROUTE NO ERROR 

6 7 536 0.01 4600 West Bound 

After Milepost 0.00 A: BOTHWAYS 

INTERSECTION SR 20,  BEGIN ROUTE NO ERROR 

7 8 543 0 4400 South Bound 
At Milepost 0.00 A: BEGIN DECREASING 
BRIDGE SR 5,  BEGIN ROUTE NO ERROR 

8 9 2 14.44 26000 Bothways 

Before Milepost 14.37 A: LEFT OFF RAMP SR 

522,  LEFT ON RAMP SR 522 NO ERROR 

9 10 2 13.96 26000 Bothways 

After Milepost 13.87 A: BOTHWAYS 

INTERSECTION 179TH AVE SE NO ERROR 

10 11 2 13.93 22000 Bothways 

Before Milepost 13.86 A: LEFT WYE 
CONNECTION 179TH AVE SE,  RIGHT 

MISCELLANEOUS FEATURE SGN ENT 

MONROE NO ERROR 

11 12 2 13.04 21000 Bothways 

After Milepost 12.95 A: RIGHT 

INTERSECTION FRYELANDS BLVD SE,  

LEFT INTERSECTION ROOSEVELT RD NO ERROR 

12 13 2 13.02 23000 Bothways 

Before Milepost 12.95 A: RIGHT 

INTERSECTION FRYELANDS BLVD SE,  

LEFT INTERSECTION ROOSEVELT RD NO ERROR 

13 14 2 10.17 24000 Bothways 
After Milepost 10.08 A: LEFT 
INTERSECTION WESTWICK RD NO ERROR 

14 15 2 10.15 25000 Bothways 

Before Milepost 10.08 A: LEFT 

INTERSECTION WESTWICK RD NO ERROR 

15 16 2 8.94 25000 Bothways 
After Milepost 8.80 A: LEFT OFF RAMP 
CAMPBELL RD NO ERROR 

16 17 2 8.64 17000 Bothways 

At Milepost 8.51 A: BOTHWAYS 

UNDERCROSSING CAMPBELL RD NO ERROR 

17 18 2 8.02 21000 Bothways 

Before Milepost 7.90 A: LEFT ON RAMP 

CAMPBELL RD NO ERROR 

18 19 2 5.49 21000 Bothways After Milepost 5.35 A: RIGHT ON RAMP SR 9 NO ERROR 

19 20 2 5.17 16000 Bothways 

At Milepost 5.04 A: BOTHWAYS 

UNDERCROSSING SR 9 NO ERROR 

20 21 2 4.87 24000 Bothways Before Milepost 4.75 A: LEFT ON RAMP SR 9 NO ERROR 

21 22 2 4 24000 Bothways 

After Milepost 3.86 A: RIGHT ON RAMP 

BICKFORD AVE (OLD SR 2) NO ERROR 

22 23 2 3.97 26000 Bothways 
Before Milepost 3.85 A: RIGHT WYE 
CONNECTION ON RAMP NO ERROR 

23 24 2 3.68 26000 Bothways 

After Milepost 3.54 A: RIGHT OFF RAMP 

BICKFORD AVE (OLD SR 2) NO ERROR 

24 25 2 3.66 31000 Bothways 

Before Milepost 3.54 A: RIGHT OFF RAMP 

BICKFORD AVE (OLD SR 2) NO ERROR 
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Table 3.1. Extracted Data Parameters and Characteristics of The Year 2010 Data (Continued) 

FID OBJECTID SRID ARM Year_2010 Direction_ Location LOC_ERROR 

25 26 2 2.89 31000 Bothways 

After Milepost 2.75 A: LEFT CENTER OFF 

RAMP SR 204-HEWITT AVE NO ERROR 

26 27 2 17.07 19000 Bothways 

After Milepost 16.98 A: RIGHT 

INTERSECTION SOFIE RD, LEFT 
INTERSECTION CALHOUN RD NO ERROR 

27 28 2 15.33 19000 Bothways 

After Milepost 15.24 A: LEFT WYE 

CONNECTION OLD OWEN RD NO ERROR 

28 29 2 15.28 21000 Bothways 
Before Milepost 15.21 A: RIGHT WYE 
CONNECTION MAIN ST NO ERROR 

29 30 2 15.01 28000 Bothways 

After Milepost 14.92 A: RIGHT 

INTERSECTION SR 203-LEWIS ST,  LEFT 
INTERSECTION CHAIN LAKE RD NO ERROR 

30 31 2 14.99 31000 Bothways 

Before Milepost 14.92 A: RIGHT 

INTERSECTION SR 203-LEWIS ST,  LEFT 

INTERSECTION CHAIN LAKE RD NO ERROR 

31 32 2 14.47 37000 Bothways 

After Milepost 14.38 A: CENTER 

INTERSECTION U-TURN ACCESS,  LEFT 

WYE CONNECTION OFF RAMP NO ERROR 

32 33 2 1 73000 Bothways 
Before Milepost 0.88 A: LEFT CENTER ON 
RAMP EBEY ISLAND NO ERROR 

33 34 2 2.21 72000 Bothways 

Before Milepost 2.09 A: RIGHT CENTER OFF 

RAMP SR 204-HEWITT AVE NO ERROR 

34 35 2 2.17 72000 Bothways 
After Milepost 2.03 A: LEFT CENTER OFF 
RAMP EBEY ISLAND NO ERROR 

35 36 2 2.15 71000 Bothways 

Before Milepost 2.03 A: LEFT CENTER OFF 

RAMP EBEY ISLAND NO ERROR 

36 37 2 2.58 28000 Bothways 

At Milepost 2.45 A: END DECREASING 

BRIDGE EBEY SLOUGH NO ERROR 

37 38 2 0.39 73000 Bothways At Milepost 0.26 A: PTR LOCATION R052 NO ERROR 

38 39 2 0.2 21000 Bothways 
After Milepost 0.06 A: RIGHT WYE 
CONNECTION HEWITT AVE (OLD SR 2) 

NO ERROR 
 

39 40 2 0.14 23000 Bothways 

After Milepost 0.00 A: BEGIN DECREASING 

BRIDGE W-W RAMP,  INCREASING 

UNDERCROSSING SR 5 SB,  DECREASING 
UNDERCROSSING SR 5 SB NO ERROR 

40 41 2 21.64 19000 Bothways 

Before Milepost 21.57 A: RIGHT 

INTERSECTION FERN BLUFF RD,  LEFT 
INTERSECTION OLD OWEN RD NO ERROR 

41 42 2 21.66 21000 Bothways 

After Milepost 21.57 A: RIGHT 

INTERSECTION FERN BLUFF RD,  LEFT 

INTERSECTION OLD OWEN RD NO ERROR 

42 43 2 22.37 19000 Bothways 

Before Milepost 22.30 A: LEFT 

INTERSECTION 4TH ST NO ERROR 

43 44 2 22.39 17000 Bothways 

After Milepost 22.30 A: LEFT INTERSECTION 

4TH ST NO ERROR 

44 45 2 22.46 17000 Bothways 

After Milepost 22.37 A: RIGHT 
INTERSECTION JW MANN RD,  LEFT 

INTERSECTION 5TH ST NO ERROR 

45 46 2 23.18 16000 Bothways 
Before Milepost 23.11 A: RIGHT EXIT TO 
CEMETERY RD NO ERROR 

46 47 2 23.32 14000 Bothways 

After Milepost 23.23 A: LEFT INTERSECTION 

SULTAN BASIN RD NO ERROR 

47 48 2 25.27 13000 Bothways 

Before Milepost 25.20 A: RIGHT 

ENTRANCE/EXIT ROADSIDE PARK NO ERROR 

48 49 2 25.78 13000 Bothways 
Before Milepost 25.71 A: BOTHWAYS 
INTERSECTION 363RD AVE SE NO ERROR 

49 50 2 26.28 12000 Bothways 

After Milepost 26.19 A: LEFT INTERSECTION 

KELLOGG LAKE RD NO ERROR 

50 51 2 27.99 12000 Bothways 
Before Milepost 27.92 A: BOTHWAYS 
INTERSECTION 1ST ST NO ERROR 
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Table 3.1. Extracted Data Parameters and Characteristics of The Year 2010 Data (Continued) 

FID 
OBJE
CTID SRID ARM Year_2010 Direction_ Location 

LOC_ERRO
R 

51 52 2 28.01 11000 Bothways 

After Milepost 27.92 A: BOTHWAYS 

INTERSECTION 1ST ST NO ERROR 

52 53 2 29.55 9700 Bothways 

Before Milepost 29.48 A: RIGHT 
INTERSECTION GUNN RD,  LEFT 

INTERSECTION PICKLE FARM RD NO ERROR 

53 54 2 29.57 7900 Bothways 

After Milepost 29.48 A: RIGHT 

INTERSECTION GUNN RD,  LEFT 
INTERSECTION PICKLE FARM RD NO ERROR 

54 55 2 31.29 6500 Bothways 

Before Milepost 31.22 A: RIGHT 

ENTRANCE/EXIT BUSINESS,  LEFT 

INTERSECTION FIR RD NO ERROR 

55 56 2 31.31 6400 Bothways 

After Milepost 31.22 A: RIGHT 

ENTRANCE/EXIT BUSINESS,  LEFT 

INTERSECTION FIR RD NO ERROR 

56 57 2 35.69 6100 Bothways 

Before Milepost 35.62 A: LEFT 

INTERSECTION INDEX-GALENA RD NO ERROR 

57 58 2 35.72 5200 Bothways 

After Milepost 35.63 A: LEFT WYE 

CONNECTION INDEX-GALENA RD NO ERROR 

58 59 2 41.12 5100 Bothways 

After Milepost 41.03 A: RIGHT 

INTERSECTION 634TH PL NE NO ERROR 

59 60 2 41.69 6100 Bothways 
Before Milepost 41.62 A: RIGHT 
INTERSECTION NE 191ST ST NO ERROR 

60 61 2 43.39 5900 Bothways 

Before Milepost 43.32 A: LEFT 

INTERSECTION FS RD #6028 NO ERROR 

61 62 2 48.77 5800 Bothways 

Before Milepost 48.70 A: RIGHT WYE 

CONNECTION 5TH ST NO ERROR 

62 63 2 48.81 5500 Bothways 

After Milepost 48.72 A: RIGHT WYE 

CONNECTION 5TH ST NO ERROR 

63 64 2 50.2 4800 Bothways At Milepost 50.12 A: PTR LOCATION R038 NO ERROR 

64 65 2 52.17 4900 Bothways 

After Milepost 52.08 A: LEFT INTERSECTION 

FS RD #6066 NO ERROR 

65 66 2 56.77 4900 Bothways 

Before Milepost 56.70 A: LEFT 
INTERSECTION DECEPTION FALLS 

PARKING NO ERROR 

66 67 2 60.4 4900 Bothways 

At Milepost 60.32 A: BEGIN INCREASING 
BRIDGE TUNNEL CREEK,  BEGIN 

DECREASING BRIDGE TUNNEL CREEK NO ERROR 

67 68 2 66.37 4200 Bothways 
Before Milepost 66.24 A: LEFT 
INTERSECTION YODELIN PL NO ERROR 

68 69 2 66.39 4200 Bothways 

After Milepost 66.24 A: LEFT INTERSECTION 

YODELIN PL NO ERROR 

69 70 2 72.78 4000 Bothways 
At Milepost 72.68 A: END BOTHWAYS 
BRIDGE NASON CREEK NO ERROR 

70 71 2 76.12 4200 Bothways 

Before Milepost 76.03 A: LEFT 

INTERSECTION MERRITT LAKE TR NO ERROR 

71 72 2 78.39 4200 Bothways 
After Milepost 78.28 A: RIGHT 
INTERSECTION WHITE PINE RD NO ERROR 

72 73 2 80.28 4200 Bothways At Milepost 80.20 A: PTR LOCATION R058 NO ERROR 

73 74 2 84.81 4300 Bothways 
Before Milepost 84.74 A: LEFT WYE 
CONNECTION SR 207 NO ERROR 

74 75 2 84.85 5100 Bothways 

After Milepost 84.76 A: LEFT WYE 

CONNECTION SR 207 NO ERROR 

75 76 2 86.27 5100 Bothways 
After Milepost 86.18 A: RIGHT 
INTERSECTION WINTON RD NO ERROR 

76 77 2 90.51 5100 Bothways 

Before Milepost 90.44 A: LEFT 

ENTRANCE/EXIT TUMWATER 
CAMPGROUND NO ERROR 

77 78 2 110.22 16000 Bothways 

After Milepost 110.13 A: RIGHT 

INTERSECTION GOODWIN RD,  CENTER 

INTERSECTION MEDIAN XROAD,  LEFT 
INTERSECTION HAY CANYON RD NO ERROR 
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Table 3.1. Extracted Data Parameters and Characteristics of The Year 2010 Data (Continued) 

FID OBJECTID SRID ARM Year_2010 Direction_ Location LOC_ERROR 

78 79 2 111.14 16000 Bothways 
Before Milepost 111.07 A: RIGHT 
WYE CONNECTION APLETS WAY NO ERROR 

79 80 2 111.18 16000 Bothways 

After Milepost 111.09 A: RIGHT 

INTERSECTION APLETS WAY,  
CENTER INTERSECTION MEDIAN 

XROAD,  LEFT INTERSECTION 

NAHAHUM CANYON RD NO ERROR 

80 81 2 112.03 16000 Bothways 

Before Milepost 111.96 A: RIGHT 
WYE CONNECTION COTLETS 

WAY NO ERROR 

81 82 2 112.09 21000 Bothways 

After Milepost 112.00 A: LEFT WYE 
CONNECTION NAHAHUM 

CANYON RD NO ERROR 

82 83 2 112.68 21000 Bothways 

After Milepost 112.59 A: RIGHT 

INTERSECTION OLD MONITOR 
RD,  CENTER INTERSECTION 

MEDIAN XROAD NO ERROR 

83 84 2 113.18 21000 Bothways 
At Milepost 113.10 A: PTR 
LOCATION P01 NO ERROR 

84 85 2 113.28 21000 Bothways 

Before Milepost 113.21 A: RIGHT 

INTERSECTION OLD MONITOR 
RD,  CENTER INTERSECTION 

MEDIAN XROAD,  LEFT 

INTERSECTION RED APPLE RD NO ERROR 

85 86 2 115.17 21000 Bothways 

Before Milepost 115.10 A: RIGHT 

WYE CONNECTION MAIN ST NO ERROR 

86 87 2 106.43 15000 Bothways 
Before Milepost 106.36 A: LEFT 
INTERSECTION FRONTAGE RD NO ERROR 

87 88 5 95.43 59000 Bothways 

After Milepost 95.35 A: LEFT OFF 

RAMP MAYTOWN RD (OLD SR 

121) NO ERROR 

88 89 5 100.8 69000 Bothways 

Before Milepost 100.74 A: LEFT ON 

RAMP TUMWATER BLVD NO ERROR 

89 90 3 2.32 19000 Bothways 
After Milepost 2.31 A: RIGHT 
INTERSECTION MILL ST NO ERROR 

90 91 3 2.24 15000 Bothways 

Before Milepost 2.25 A: BOTHWAYS 

INTERSECTION HARVARD AVE NO ERROR 

91 92 3 1.52 14000 Bothways 

After Milepost 1.51 A: RIGHT WYE 

CONNECTION ARCADIA RD NO ERROR 

92 93 3 1.48 13000 Bothways 

Before Milepost 1.49 A: RIGHT 

INTERSECTION ARCADIA RD,  

LEFT INTERSECTION ARCADIA 

AVE NO ERROR 

93 94 3 0.12 13000 Bothways 

After Milepost 0.11 A: RIGHT ON 

RAMP SR 101 NO ERROR 

94 95 18 14.23 33000 Bothways 
After Milepost 13.69 A: RIGHT ON 
RAMP SE 256TH ST NO ERROR 

95 96 18 19.08 26000 Bothways 

After Milepost 18.57 A: RIGHT ON 

RAMP 244TH AVE SE NO ERROR 

96 97 3 0 7200 Bothways 

At Milepost 0.00 A: BOTHWAYS 
UNDERCROSSING SR 101,  BEGIN 

ROUTE NO ERROR 

97 98 002CONEWPRT 0.47 5400 South Bound 
Before Milepost 334.86 A: LEFT WYE 
CONNECTION SR 2 NO ERROR 

98 99 002CONEWPRT 0.08 5700 South Bound 

After Milepost 334.45 A: RIGHT 

INTERSECTION SR 20,  RIGHT 
INTERSECTION WASHINGTON 

AVE NO ERROR 

99 100 002CONEWPRT 0.06 7900 Bothways 

Before Milepost 334.45 A: RIGHT 
INTERSECTION SR 20,  RIGHT 

INTERSECTION WASHINGTON 

AVE NO ERROR 
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Table 3.1 above shows the examples of the data acquired from the WSDOT database and 

compiled in an excel file. The parameters include the FID number, which is the serial number for 

each location, the direction of travel of the vehicles (Bothways bound, Northbound, Southbound, 

Eastbound, and Westbound), the location of the camera and the data count for each location. The 

OBJECTID, SRID and ARM columns are given to be able to use the data for analysis in ArcGIS. 

3.3.1. Data Trend Analysis Using Directions 

This section offers an insight into the trend of the AADT dataset collected at the different 

collection points. The year 2009 is considered as the benchmark for this analysis because the data 

downloaded starts in 2009 and there will not be any available dataset to compare it to. Data from 

previous years (2008 and less) could not be used because it does not have the location properties 

that were needed to analyze it in ArcGIS software. 

Table 3.2. Data Trend Bothways bound 

Years Total AADT 

Percentage Increase in 

AADT data from the 

previous year (%) 

2009 137732340 0 

2010 139156080 0.010337 

2011 135926060 -0.02321 

2012 135216339 -0.00522 

2013 137054410 0.013594 

2014 137636640 0.004248 

2015 140523570 0.020975 

2016 142659550 0.0152 
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Table 3.2 above provides the summary of the AADT data acquired for each year from 2009 

to 2016 and the percentage increase in AADT data for each year for the Bothways bound collection 

points in Washington State. There is a total increase of 4,927,210 from the year 2009 to the year 

2016. Figure 3.2 below represents the trend of AADT count dataset taken at the Bothways bound 

collection points in Washington State. Table 3.2 also showed a percentage decrease in the years 

2011 and 2012 with a decrement of 2.32% and 0.52% respectively from the preceding year. The 

highest percentage increase in AADT count can be noticed in the year 2015 and 2016 with an 

increment of 2.10% and 1.52% respectively. 

 

Figure 3.2. The Trend of Bothways AADT Dataset in Washington State 2009 -2016 

The data suggest that AADT rose steadily from the year 2009 to 2010 and then suffered a 

gradual decrease from 2010 to 2012. The year 2013 to 2016 then saw a steady and gradual increase 

in AADT count. This showed a positive trend in the relationship between the AADT count dataset 

and the year with an estimated average of 138,238,124 counts from the year 2009 to the year 2016. 
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The positive trend in Figure 3.2 provided a value of R2 of 0.3297, with a linear equation (Eq. 3.3) 

provided below:   

Y = 574973x + 1E + 0              (Eq. 3.3) 

Table 3.3. Data Trend Northbound 

 

Table 3.3 above provides the summary of the AADT data acquired for each year from 2009 

to 2016 and the percentage increase in AADT data for each year for the Northbound collection 

points in Washington State. There is a total decrease of 405,550 from the year 2009 to the year 

2016.  

Years Total AADT 

Percentage Increase in 

AADT data from the 

previous year (%) 

2009 5423270 0 

2010 5797110 0.068933 

2011 5960920 0.028257 

2012 6116670 0.026129 

2013 6290720 0.028455 

2014 6341650 0.008096 

2015 5849650 -0.07758 

2016 5017720 -0.14222 
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Figure 3.3. The Trend of Northbound AADT Dataset in Washington State 2009 - 2016 

Figure 3.3 above represents the trend of AADT dataset count taken at the Northbound 

collection points in Washington State. The data suggest that AADT rose steadily from the year 

2009 to 2014 and then suffered a gradual decrease from 2014 to 2016. This showed a positive 

trend in the relationship between the AADT count dataset and the year with an estimated average 

of 5,849,714 counts from the year 2009 to the year 2016. 

Table 3.3 above showed a percentage decrease in the years 2015 and 2016 by a decrement 

of 7.76%, and 14.22% respectively from the preceding year. The highest percentage increase in 

AADT count can be noticed in the year 2010 and 2013 with an increment of 6.89% and 2.85% 

respectively. Figure 3.3 positive trend provided a value of R2 of 0.0068 and a linear equation (Eq. 

3.4)  provided below:    

       Y = -14999x + 6E + 06           (Eq. 3.4) 
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Table 3.4. Data Trend Southbound 

Table 3.4 above provides the summary of the AADT data acquired for each year from 2009 

to 2016 and the percentage increase in AADT for each year for the Southbound collection points 

in Washington State. There is a total decrease of 317,590 from the year 2009 to the year 2016. 

Table 3.4 also showed a percentage decrease in the years 2011, 2015 and 2016 with a decrement 

of 1.03%, 6.35%, and 15.41% respectively from the preceding year. The highest percentage 

increase in AADT count can be noticed in the year 2010 and 2014 with an increment of 9.79% and 

2.83% respectively. 

Years Total AADT 

Percentage Increase in 

AADT data from the 

previous year (%) 

2009 5433170 0 

2010 5965010 0.097888 

2011 5903290 -0.01035 

2012 5999670 0.016326 

2013 6280060 0.046734 

2014 6457500 0.028255 

2015 6047770 -0.06345 

2016 5115580 -0.15414 
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Figure 3.4. The Trend of Southbound AADT Dataset in Washington State 2009 - 2016 

Figure 3.4 above represents the trend of AADT count dataset taken at the Southbound 

collection points in Washington State. The data suggest that AADT rose steadily from the year 

2009 to 2014 and then suffered a gradual decrease from 2014 to 2016. This showed a positive 

trend in the relationship between the AADT count dataset and the year with an estimated average 

of 5,900,256 counts from the year 2009 to the year 2016. The positive trend in Figure 3.4 resulted 

in a linear equation (Eq. 3.5) provided below:   

Y = 1591.5x + 6E + 06            (Eq. 3.5) 
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Table 3.5. Data Trend Eastbound 

 

Table 3.5 above provides the summary of the AADT data acquired for each year from 2009 

to 2016 and the percentage increase in AADT data for each year for the Eastbound collection 

points in Washington State. There is a total increase of 97,020 from the year 2009 to the year 2016.  

Table 3.5 above showed a percentage decrease in the years 2010 and 2015 with a decrement 

of 0.44% and 7.46% respectively from the preceding year. The highest percentage increase in 

AADT can be noticed in the year 2012 and 2013 with an increment of 7.86% and 7.86% 

respectively. 

Years Total AADT 

Percentage Increase 

in AADT data from 

the previous year 

(%) 

2009 2805210 0 

2010 2792940 -0.00437 

2011 2574980 -0.07804 

2012 2777390 0.078606 

2013 2995760 0.078624 

2014 3084530 0.029632 

2015 2854300 -0.07464 

2016 2902230 0.016792 
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Figure 3.5. The Trend of Eastbound AADT Dataset in Washington State 2009 - 2016 

Figure 3.5 above represents the trend of AADT count dataset taken at the Eastbound 

collection points in Washington State. The data suggest that AADT declined from the year 2009 

to 2011. A steady increase is observed between the year 2011 and 2014 and there was a decrease 

from 2014 to 2015. There was a steady increase in 2016. This showed a positive trend in the 

relationship between the AADT count dataset and the year with an estimated average of 2,848,418 

counts from the year 2009 to the year 2016. 

Figure 3.5 positive trend provided a value of R2 of 0.2692 and a linear equation (Eq. 3.6) 

provided below:   

Y = 32535x + 3E + 06   `        (Eq. 3.6) 
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Table 3.6. Data Trend Westbound 

Table 3.6 above provides the summary of the AADT data acquired for each year from 2009 

to 2016 and the percentage increase in AADT data for each year for the Westbound collection 

points in Washington State. There is a total increase of 225,897 from the year 2009 to the year 

2016.  Table 3.6 showed a percentage decrease in the years 2011 and 2015 with a decrement of 

6.79%, and 6.06% respectively from the preceding year. The highest percentage increase in AADT 

count can be noticed in the year 2012 and 2013 with an increment of 7.04% and 8.63% 

respectively. 

Years Total AADT 

Percentage Increase in 

AADT data from the 

previous year (%) 

2009 2844593 0 

2010 2910633 0.023216 

2011 2712873 -0.06794 

2012 2903733 0.070353 

2013 3154383 0.08632 

2014 3249953 0.030298 

2015 3053130 -0.06056 

2016 3070490 0.005686 
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Figure 3.6. The Trend of Westbound AADT in Washington State 2009 -2016 

Figure 3.6 above represents the trend of AADT dataset count taken at the Westbound 

collection points in Washington State. The data suggest that AADT increased from the year 2009 

to 2010 and then suffer a steep decrease in the year 2011. A steady increase is observed between 

the year 2011 and 2014 and there was a decrease from 2014 to 2015. There was a steady increase 

in 2016. This showed a positive trend in the relationship between the AADT count dataset and the 

year with an estimated average of 2,987,474 counts from the year 2009 to the year 2016. 

Figure 3.6 positive trend provided a value of R2 of 0.4744, and a linear equation (Eq. 3.7) 

provided below:   

  Y = 49472x + 3E + 06         (Eq. 3.7) 
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3.3.2. Descriptive Analysis Using Yearly Bases 

The AADT spatial data used for this section of work consist of data from the year 2009 to 

2016 that is made available on the website of the Washington State Department of Transport. The 

data used is the original data as it was downloaded so that an insight into the raw data about the 

characteristics and behavioral pattern of the original dataset could be known.  Data from previous 

years (2008 and less) could not be used because it does not have the location properties that were 

needed to analyze it in ArcGIS software.  

Table 3.7. The Year 2009 Dataset Analysis 

Variable N 
 

Mode 
Mean 

SE 

Mean 
St Dev Min Q1 

Media

n 
Q3 Max 

Year_2009 7540 12000 20456 389 33739 3 3400 8400 21000 

23900

0 

Table 3.7 above showed the descriptive data analysis for the year 2009 AADT count 

dataset. A total number of  154,238,583 counts was recorded with a standard deviation of 33,739. 

The median for the dataset is 8,400 and a mean of 20,456. The maximum count in the dataset was 

239,000 and the minimum was 3 with 12,000 as the mode. The first and third quartile for the data 

is 3,400 and 21,000 respectively. With the median being 8,400 compared with a mean of 20,456 

shows an indication of the data being right-skewed. Figure 3.7 below showed the histogram for 

the 2009 data. 
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Figure 3.7. Histogram of the Year 2009 AADT 

Figure 3.7 above showed that for the year 2009 count dataset, data counts ranging between 

0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The higher the data 

observed increases, the lower the frequency becomes which indicated that the data is positive or 

right-skewed. 
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Figure 3.8. Normal Probability Plot for the Year 2009 AADT 

Figure 3.8 above showed the distribution of the data count for the year 2009 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset.  
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Figure 3.9. Run Sequence Plot for the Year 2009 AADT 

The run sequence plot in Figure 3.9 above indicated several significant shifts in different 

locations in the dataset. This indicated the randomness of the dataset for which the univariate 

model  

Yi = C + Ei
 

is valid.   

The camera locations for the year 2009 is shown in Figure 3.10 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. This reflected the trend 

with much of the locations on the Westbound side of the state. With the passage of every year, the 

graphic images exhibit more clusters of the camera points overlaying at various locations.  

(Eq. 3.8) 
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Figure 3.10. 2009 Camera Locations using ArcGIS 

Table 3.8. The Year 2010 Dataset Analysis 

Variable N Mode Mean 
SE 

Mean 
St Dev Min Q1 

Media

n 
Q3 Max 

Year_2010 7789 11000 20108 389 33556 3 3200 8200 20000 237000 

Table 3.8 above showed the descriptive data analysis for the year 2010 AADT count 

dataset. A total number of  156,621,773 counts were recorded with a standard deviation of 33,556. 

The median for the dataset is 8,200 and a mean of 20,108. The maximum count in the dataset was 

237,000 and the minimum was 3 with 11,000 as the mode. The first and third quartile for the data 

is 3,200 and 20,000 respectively. With the median being 8,200 compared with a mean of 20,108, 

a plot of the data indicated the data to be right-skewed (Figure 3.11). 



 

63 

 

 

Figure 3.11. Histogram of the Year 2010 AADT 

Figure 3.11 above indicated that for the year 2010 count dataset, data counts ranging 

between 0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The higher 

the data observed increases, the lower the frequency becomes which indicated that the data is 

positive or right skewed.  
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Figure 3.12. Normal Probability Plot for the Year 2010 

Figure 3.12 above showed the distribution of the data count for the year 2010 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset.  
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Figure 3.13. Run Sequence Plot for the Year 2010 AADT 

The run sequence plot shown in Figure 3.13 above indicated several significant shifts in 

different locations in the dataset. This indicated the randomness of the dataset for which the 

univariate model  

Yi = C + Ei 

is valid.  

The camera locations for the year 2010 is shown in Figure 3.14 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. Figure 3.14 reflects the 

trend with much of the locations on the Westbound side of the state. With the passage of every 

year, the graphic images exhibit more clusters of the camera points overlaying at various locations. 

(Eq. 3.9) 
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Figure 3.14. 2010 Camera Locations using ArcGIS 

Table 3.9. The Year 2011 Dataset Analysis 

Variable N Mode Mean SE 

Mea

n 

St Dev Min Q1 Media

n 

Q3 Max 

Year_2011 7645 11000 20023 383 33494 3 3100 8000 20000 229000 

Table 3.9 above showed the descriptive data analysis for the year 2011 AADT count 

dataset. A total number of  153,078,123 counts were recorded with a standard deviation of 33,494. 

The median for the dataset is 8,000 compared and a mean of 20,023. The maximum count in the 

dataset was 229,000 and the minimum was 3 with 11,000 as the mode. The first and third quartile 
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for the data is 3,100 and 20,000 respectively. With the median being 8,000 compared with a mean 

of 20,023, a plot of the data indicated the data to be right-skewed (Figure 3.15).  

 

Figure 3.15. Histogram of the Year 2011 AADT 

Figure 3.15 above indicated that for the year 2011 count dataset. Data counts ranging 

between 0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The 

higher the data observed increases, the lower the frequency becomes which indicated that the 

data been positive or right skewed.
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Figure 3.16. Normal Probability Plot for the Year 2011 AADT 

Figure 3.16 above showed the distribution of the data count for the year 2011 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset. 

 

 



 

69 

 

 

Figure 3.17. Run Sequence Plot for the Year 2011 AADT 

The run sequence plot in Figure 3.17 above indicated several significant shifts in different 

locations in the dataset. This indicated the randomness of the dataset for which the univariate 

model  

Yi = C + Ei 

is valid. 

The camera locations for the year 2011 is shown in Figure 3.18 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. Figure 3.18 reflects the 

trend with much of the locations on the Westbound area of the state. With the passage of every 

year, the graphic images exhibit more clusters of the camera points overlaying at various locations. 

(Eq. 3.10) 
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Figure 3.18. 2011 Camera Locations using ArcGIS 

Table 3.10. The Year 2012 Dataset Analysis 

Variable N Mode Mean SE 

Mea

n 

St 

Dev 

Min Q1 Median Q3 Max 

Year_2012 7693 11000 19890 378 33187 3 3100 8000 20000 228000 

Table 3.10 showed descriptive data analysis for the year 2012 AADT count dataset. A total 

number of  153,013,802 counts were recorded with a standard deviation of 33,187. The median 

for the dataset is 8,000 compared with a mean of 19,890. The maximum count in the dataset was 

228,000 and the minimum was 3 with 11,000 as the mode. The first and third quartile for the data 
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is 3,100 and 20,000 respectively. With the median being 8,000 compared with a mean of 19,890, 

a plot of the data indicated the data to be right-skewed (Figure 3.19).  

 

Figure 3.19. Histogram of the Year 2012 AADT 

Figure 3.19 above indicated that for the year 2012 count dataset, data counts ranging 

between 0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The higher 

the data observed increases, the lower the frequency becomes which indicated that the data is 

positive or right skewed. 
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Figure 3.20. Normal Probability Plot for the Year 2012 AADT 

Figure 3.20 above showed the distribution of the data count for the year 2012 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset. 
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Figure 3.21. Run Sequence Plot for the Year 2012 AADT 

The run sequence plot in figure 3.27 above indicated several significant shifts in different 

locations in the dataset. This indicated the randomness of the dataset for which the univariate 

model  

Yi = C + Ei 

is valid.  

The camera locations for the year 2012 is shown in figure 3.28 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. Figure 3.28 reflects the 

trend with much of the locations on the Westbound side of the state. With the passage of every 

year, the graphic images exhibit more clusters of the camera points overlaying at various locations. 

(Eq. 3.11) 
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Figure 3.22. 2012 Camera Locations using ArcGIS 

Table 3.11. The Year 2013 Dataset Analysis 

Variable N Mode Mean SE 

Mea

n 

St 

Dev 

Min Q1 Media

n 

Q3 Max 

Year_2013 7788 11000 20022 380 33534 3 3100 8000 20000 229000 

Table 3.11 showed descriptive data analysis for the year 2013 AADT count dataset. A total 

number of  155,775,333 counts were recorded with a standard deviation of 33,534. The median 

for the dataset is 8,000 compared with a mean of 20,022. The maximum count in the dataset was 

229,000 and the minimum was 3 with 11,000 as the mode. The first and third quartile for the data 
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is 3,100 and 20,000 respectively. With the median being 8,000 compared with a mean of 20,022, 

a plot of the data indicated the data to be right-skewed (Figure 3.23).  

 

Figure 3.23. Histogram of the Year 2013 AADT 

Figure 3.23 above indicated that for the year 2013 count dataset, data counts ranging 

between 0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The 

higher the data observed increases, the lower the frequency becomes which indicated that the 

data is positive or right skewed.
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Figure 3.24. Normal Probability Plot for the Year 2013 AADT 

Figure 3.24 above showed the distribution of the data count for the year 2013 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset. 
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Figure 3.25. Run Sequence Plot for the Year 2013 AADT 

The Run sequence plot from Figure 3.25 above indicated several significant shifts in 

different locations in the dataset. This indicated the randomness of the dataset for which the 

univariate model  

Yi = C + Ei 

is valid.  

The camera locations for the year 2013 is shown in Figure 3.26 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. Figure 3.326 reflects the 

trend with much of the locations on the Westbound side of the state. With the passage of every 

year, the graphic images exhibit more clusters of the camera points overlaying at various locations. 

(Eq. 3.12) 
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Figure 3.26. 2013 Camera Locations using ArcGIS 

Table 3.12. The Year 2014 Dataset Analysis 

Variable N Mode Mean SE 

Mean 

St 

Dev 

Min Q1 Media

n 

Q3 Max 

Year_2014 7692 11000 20381 388 34071 3 3200 8100 20000 232000 

Table 3.12 showed descriptive data analysis for the year 2014 AADT count dataset. A total 

number of  3,084,530 counts were recorded with a standard deviation of 34,071. The median for 

the dataset is 8,100 compared with a mean of 20,381. The maximum count in the dataset was 

232,000 and the minimum was 3 with 11,000 as the mode. The first and third quartile for the data 



 

79 

 

is 3,200 and 20,000 respectively. With the median being 8,100 compared with a mean of 20, a plot 

of the data indicated the data to be right-skewed (Figure 3.27).  

 

Figure 3.27. Histogram of the Year 2014 AADT 

Figure 3.27 above indicated that for the year 2014 count dataset, data counts ranging 

between 0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The higher 

the data observed increases, the lower the frequency becomes which indicated that the data is 

positive or right skewed. 
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Figure 3.28. Normal Probability Plot for the Year 2014 AADT 

Figure 3.28 above showed the distribution of the data count for the year 2014 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset. 
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Figure 3.29. Run Sequence Plot for the Year 2014 AADT 

The Run sequence plot from Figure 3.29 above indicated several significant shifts in 

different locations in the dataset. This indicated the randomness of the dataset for which the 

univariate model  

Yi = C + Ei 

is valid.  

The camera locations for the year 2014 is shown in Figure 3.30 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. Figure 3.30 reflects the 

trend with much of the locations on the Westbound side of the state. With the passage of every 

year, the graphic images exhibit more clusters of the camera points overlaying at various locations. 

(Eq. 3.13) 
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Figure 3.30. 2014 Camera Locations using ArcGIS 

Table 3.13. The Year 2015 Dataset Analysis 

Variable N Mode Mean SE 

Mea

n 

St 

Dev 

Min Q1 Media

n 

Q3 Max 

Year_2015 7333 11000 21591 416 35652 20 3300 8500 22000 242000 

Table 3.13 showed descriptive data analysis for the year 2015 AADT count dataset. A total 

number of  158,328,420 counts were recorded with a standard deviation of 35,652. The median 

for the dataset is 8,500 compared with a mean of 21,591. The maximum count in the dataset was 

242,000 and the minimum was 20 with 11,000 as the mode. The first and third quartile for the data 
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is 3,300 and 22,000 respectively. With the median being 8,500 compared with a mean of 21,591, 

a plot of the data indicated the data to be right-skewed (Figure 3.31).  

 

Figure 3.31. Histogram of the Year 2015 AADT 

Figure 3.31 above indicated that for the year 2015 count dataset, data counts ranging 

between 0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The 

higher the data observed increases, the lower the frequency becomes which indicated that the 

data is positive or right skewed.
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Figure 3.32. Normal Probability Plot for the Year 2015 AADT 

Figure 3.32 above showed the distribution of the data count for the year 2015 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset. 
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Figure 3.33. Run Sequence Plot for the Year 2015 AADT 

The Run sequence plot from Figure 3.33 above indicated several significant shifts in 

different locations in the dataset. This indicated the randomness of the dataset for which the 

univariate model  

Yi = C + Ei 

is valid.  

The camera locations for the year 2015 is shown in Figure 3.34 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. Figure 3.34 reflects the 

trend with much of the locations on the Westbound side of the state. With the passage of every 

year, the graphic images exhibit more clusters of the camera points overlaying at various locations. 

(Eq. 3.14) 
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Figure 3.34. 2015 Camera Locations using ArcGIS 

Table 3.14. The Year 2016 Dataset Analysis 

Variable N Mode Mean SE 

Mean 

St Dev Min Q1 Media

n 

Q3 Max 

Year_2016 7101 11000 22358 436 36717 20 3400 8600 23000 245000 

Table 3.14 showed descriptive data analysis for the year 2016 AADT count dataset. A total 

number of  158,765,570 counts was recorded with a standard deviation of 35,652. The median for 

the dataset is 8,500 compared with a mean of 21,591. The maximum count in the dataset was 

242,000 and the minimum was 20 with 11,000 as the mode. The first and third quartile for the data 
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is 3,300 and 22,000 respectively. With the median being 8,500 compared with a mean of 21,591 a 

plot of the data indicated the data to be right-skewed (Figure 3.35).  

 

Figure 3.35. Histogram of the Year 2016 AADT 

Figure 3.35 above indicated that for the year 2016 count dataset, data counts ranging 

between 0 and 35,000 occurred more in frequency than the rest of counts in the dataset. The higher 

the data observed increases, the lower the frequency becomes which indicated that the data is 

positive or right skewed. 
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Figure 3.36. Normal Probability Plot for the Year 2016 AADT 

Figure 3.36 above showed the distribution of the data count for the year 2016 count dataset. 

The normal probability plot showed a non-linear pattern indicating that the data does not follow a 

normal distribution pattern thereby we can reasonably conclude that the dataset is not normally 

distributed and normal probability plot does not provide an adequate fit for this dataset. 
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Figure 3.37. Run Sequence Plot for the Year 2016 

The Run sequence plot from Figure 3.37 above indicated several significant shifts in 

different locations in the dataset. This indicated the randomness of the dataset for which the 

univariate model  

Yi = C + Ei 

is valid.  

The camera locations for the year 2016 is shown in Figure 3.38 below using ArcGIS. The 

camera location points portrayed in altered color for each count division. Figure 3.38 reflects the 

trend with much of the locations on the Westbound side of the state. With the passage of every 

year, the graphic images exhibit more clusters of the camera points overlaying at various locations.  

(Eq. 3.15) 
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Figure 3.38. 2016 Camera Locations using ArcGIS 

3.3.3. Trend Analysis Using Percentage Increment 

The traffic recorder data collection sites used for this project has 5 directions. Using the 

year 2009 has the benchmark year, the percentage increment for these locations for each year as 

analyzed below. The year 2009 was considered as the benchmark for this analysis because the data 

downloaded only starts from 2009 and there will not be any available dataset to compare it to. Data 

from previous years (2008 and less) could not be used because it does not have the location 

properties that were needed to analyze it in ArcGIS software. 
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Table 3.15. The Year 2010 Percentage Increment 

Locations 
Bothway North South East West Mean Median 

St. 

Dev 

% 

Increase 

in AADT 

data from 

previous 

year (%) 

1.03 6.89 9.79 -0.44 2.32 3.92 2.32 4.28 

Exploratory data analysis for the locations using percentage increase in AADT from the 

prior year showed that the average of the percentage increment for the year 2010 is 3.92 with a 

standard deviation of 4.28. The median for the dataset is 2.32 compared with a mean of 3.92. The 

highest percentage of the dataset was 9.79 and the lowest is -0.44. With the median being 2.32 

compared with a mean of 3.92 showed an indication of the data being right-skewed. Figure 3. 

below showed the clustered bar chart for this analysis. 

 

Figure 3.39. The Year 2010 Percentage Increment Clustered Bar Chart 
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Table 3.16. The Year 2011 Percentage Increment 

Locations 
Bothway North South East West Mean Median 

St. 

Dev 

% 

Increase 

in AADT 

data from 

previous 

year (%) 

-2.32 2.83 -1.03 -7.8 -6.79 -3.02 -2.32 4.35 

Exploratory data analysis for the locations using percentage increase in AADT from the 

prior year showed that the average of the percentage increment for the year 2011 is -3.02 with a 

standard deviation of 4.35. The median for the dataset is -2.32 compared with a mean of -3.02. 

The highest percentage of the dataset was 2.83 and the lowest is -7.80. With the median being -

2.32 compared with a mean of –3.02 showed an indication of the data being left-skewed. Figure 

3. below showed the clustered bar chart for this analysis. 

 

Figure 3.40. The Year 2011 Percentage Increment Clustered Bar Chart 
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Table 3.17. The Year 2012 Percentage Increment 

Locations 
Bothway North South East West Mean Median 

St. 

Dev 

% 

Increase 

in AADT 

data from 

previous 

year (%) 

-0.52 2.61 1.63 7.86 7.04 3.72 2.61 3.60 

Exploratory data analysis for the locations using percentage increase in AADT from the 

prior year showed that the average of the percentage increment for the year 2012 is 3.72 with a 

standard deviation of 3.60. The median for the dataset is 2.61 compared with a mean of 3.72. The 

highest percentage of the dataset was 7.86 and the lowest is -0.52. With the median being 2.61 

compared with a mean of 3.72 showed an indication of the data being right-skewed. Figure 3.41 

below showed the clustered bar chart for this analysis. 

 

Figure 3.41. The Year 2012 Percentage Increment Clustered Bar Chart 
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Table 3.18. The Year 2013 Percentage Increment 

Locations 
Bothway North South East West Mean Median 

St. 

Dev 

% 

Increase 

in AADT 

data from 

previous 

year (%) 

1.36 2.85 4.67 7.86 8.63 5.07 4.67 3.15 

Exploratory data analysis for the locations using percentage increase in AADT from the 

prior year showed that the average of the percentage increment for the year 2013 is 5.07 with a 

standard deviation of 3.15. The median for the dataset is 4.67 compared with a mean of 5.07. The 

highest percentage of the dataset was 8.63 and the lowest is 1.36. With the median being 4.67 

compared with a mean of 5.07 showed an indication of the data being right-skewed. Figure 3. 

below showed the clustered bar chart for this analysis. 

 

Figure 3.42. The Year 2013 Percentage Increment Clustered Bar Chart 

1.36

2.85

4.67

7.86

8.63

0

1

2

3

4

5

6

7

8

9

10

Bothways North South East West

%
 In

cr
ea

se

Locations

Year 2013 Percentage Increment



 

95 

 

Table 3.19. The Year 2014 percentage increment 

Locations 
Bothway North South East West Mean Median 

St. 

Dev 

% 

Increase 

in AADT 

data from 

previous 

year (%) 

0.42 0.81 2.83 2.96 3.03 2.01 2.83 1.28 

Exploratory data analysis for the locations using percentage increase in AADT from the 

prior year showed that the average of the percentage increment for the year 2014 is 2.01 with a 

standard deviation of 1.28. The median for the dataset is 2.83 compared with a mean of 2.01. The 

highest percentage of the dataset was 3.03 and the lowest is 0.42. With the median being 2.83 

compared with a mean of 2.01 showed an indication of the data being left-skewed. Figure 3. below 

showed the clustered bar chart for this analysis. 

 

Figure 3.43. The Year 2014 Percentage Increment Clustered Bar Chart 
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Table 3.20. The Year 2015 Percentage Increment 

Location

s 
Bothway North South East West Mean Median 

St. 

Dev 

% 

Increase 

in AADT 

data 

from 

previous 

year (%) 

2.1 -7.76 -6.35 -7.46 -6.06 -5.11 -6.35 4.09 

Exploratory data analysis for the locations using percentage increase in AADT from the 

prior year showed that the average of the percentage increment for the year 2015 is -5.11 with a 

standard deviation of 4.09. The median for the dataset is -6.35 compared with a mean of -5.11. 

The highest percentage of the dataset was 2.10 and the lowest is -7.76. With the median being -

6.35 compared with a mean of -5.11 showed an indication of the data being right-skewed. Figure 

3. below showed the clustered bar chart for this analysis. 

 

Figure 3.44. The Year 2015 Percentage Increment Clustered Bar Chart 
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Table 3.21. The Year 2016 Percentage Increment 

Locations 
Bothway North South East West Mean Median 

St. 

Dev 

% 

Increase 

in AADT 

data from 

previous 

year (%) 

1.52 -14.22 -15.41 1.68 0.57 -5.17 0.57 8.82 

Exploratory data analysis for the locations using percentage increase in AADT from the 

prior year showed that the average of the percentage increment for the year 2016 is -5.17 with a 

standard deviation of 8.82. The median for the dataset is 0.57 compared with a mean of -5.17. The 

highest percentage of the dataset was 1.68 and the lowest is -15.41. With the median being 0.57 

compared with a mean of -5.17 showed an indication of the data being left-skewed. Figure 3. below 

showed the clustered bar chart for this analysis. 

 

 
 
Figure 3.45. The Year 2015 Percentage Increment Clustered Bar Chart 
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3.4. Summary 

This chapter discussed in detail the processes and results of the exploratory data analysis 

of WSDOT AADT data. Exploratory data analysis provided the vital information from the data 

and was used to answer part of questions 3 and 4 of the research questions. The result of the 

analysis showed that the data is positively trended. The direction bound analysis showed the 

bothways bound collection points has had the highest data count with an increase of 4,927,10 data 

counts from the year 2009 to the year 2016. The Northbound and Southbound direction data 

collection points saw a significant decrease of 405,550 and 317,590 respectively in the data count. 

Eastbound and Westbound direction data collection points have a considerable increase in 97,020 

and 225,897 respectively.   

The histogram indicated that the dataset is right-skewed. The normal probability plot shows 

a non-linear pattern thereby we can reasonably conclude that the data does not follow the normal 

distribution rule indicating its randomness.  The run sequence plots indicated several significant 

shifts in different locations in the dataset, this also indicated the randomness of the dataset. 

Furthermore, the descriptive analysis showed that the mode for the data for the year 2009 

is 12,000 and 11,000 for the years 2010 to 2016. This indicated that the most common data count 

collected from the year 2010 to 2016 is about the same.  
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4. RESEARCH METHODOLOGY 

4.1. Introduction 

This chapter discussed the research methods, processes, tools, and tests used to address the 

research questions. The spatial analyst tool used was performed in the ArcGIS. The spatial analyst 

tool helped create statistical model from a specified point and then interpolates to develop an 

incessant surface through spatial estimation. This helps to understand the nature and behavioral 

patterns of the AADT data in a certain area of interest. A hypothesis was postulated and tested 

using one-way ANOVA to see if all the kriging methods have the same mean prediction error or 

not. 

4.2. Research Approach 

The overall framework used to answer questions 3 and 4 of the research questions and 

objectives is depicted in Figure 4.1. The research approach consists of data exploration, structural 

analysis, cross-validation, hypothesis testing and discussion of results.  

Data exploration involves the examination of the data and statistical analysis. According to 

Engineering Statistics Handbook (ESH 2003), exploratory data analysis (EDA) is an 

approach/philosophy for data analysis that employs a variety of techniques (mostly graphical) to: 

maximize insight into a data set, uncover underlying structure, extract important variables, detect 

outliers and anomalies, test underlying assumptions, develop parsimonious models, and determine 

optimal factor settings. It is a philosophy as to how we dissect a data set; what we look for; how 

we look; and how we interpret (ESH 2012). EDA refers to the critical process of performing initial 

investigations on data so as to discover patterns, to spot anomalies, to test hypothesis and to check 

assumptions with the help of summary statistics and graphical representations (Prasad 2018). This 

aspect of the research was covered in Chapters 2 and 3 of this research.   
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The rest of the sections are organized as follows: Section 4.2.1 presents the structural 

analysis of the data. This involves selecting kriging methods and variogram fittings. Section 4.2.2 

presents the crossvalidation process. This involves comparing the predicted values to the observed 

values. The hypothesis testing and the discussion of results come under Chapter 5 of this thesis. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.1.  Research Method Process 
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µ3 = Bayesian – 1 (EBK) 

• HA = There is difference in mean prediction error 
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4.2.1. Structural Analysis (Selecting Kriging Method and Variogram Fitting) 

The structural analysis involves spatial interpolation process which uses the known values 

at given locations to estimate a continuous surface or data point (Annaka 2016). This process 

focuses on geographically raw data correlated by statistical methods (Negreiros et al. 2010). The 

structural analysis involves the selection of a kriging method and then combining it with a 

variogram at the same time. In this thesis, structural analysis was conducted by applying the 

geostatistical procedure of kriging to predict AADT values at unmeasured locations. 

4.2.1.1. Kriging 

According to Goovaerts (1997), kriging could be described as the best linear unbiased 

estimator (BLUE). It is unbiased because the mean error is 0. In kriging, a semivariogram is used 

to measure the dissimilarity between data points separated by the vector [h] (Goovaerts 1997). 

Since kriging is a probabilistic approach, it provides a set of possible values with corresponding 

probabilities of occurrence instead of a single estimated value for the unknown AADT. This 

stochastic approach reflects our imperfect knowledge of the unsampled value and its distribution 

(Goovaerts 1997). 

Kriging is the generic name adopted by geostatisticians for a family of generalized least-

square regression algorithms in recognition of the pioneering work of Danie Krige (Goovaerts 

1997). Krige (1951, 1966) developed the kriging method empirically for estimating the quantity 

of gold in ore bodies in South Africa. According to Shamo et al (2015), kriging uses kriging 

weights (λα), which are derived from a covariance function (variogram). Spatial characterization 

of a dataset is dependent on fitting the right variogram to the model (Shamo et al. 2015).  

One benefit of kriging is its ability to provide estimation errors. The prediction errors in 

part help in comparing kriging to other methods and it also serves as a basis for stochastic 
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simulation of functions that could represent the relationship between the measured and 

unmeasured AADT data points (Shamo et al. 2015). This makes kriging the only method that uses 

spatial statistical theory to optimize interpolation (Clarke 1990). 

• Kriging Methods: Three classifications of kriging methods are 

i. linear kriging method: this comprises of universal, simple and ordinary kriging methods 

ii. non-linear kriging methods: this include indicator kriging, probability kriging, and 

disjunctive kriging methods and  

iii. bayesian kriging method: this include empirical bayesian kriging method. 

The following kriging estimators were used for the analysis of the AADT data and the 

prediction error results compared to see which of these methods provided a more accurate result 

in predicting AADT data for an unknown location.  

i. Linear Kriging Methods: 

a. Ordinary Kriging (OK): Ordinary kriging estimator allows one to account for such local 

variation of the local mean by limiting the province of stationarity of the mean to the local 

neighborhood 𝑍(𝑦𝛼) centered on the location 𝑦 being estimated (Shamo et. al 2015). The 

assumption here is that the mean is unknown but fixed. Ordinary kriging assumes a linear 

model form and the equation is given as:  

𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)𝑍(𝑦𝛼)

𝑛(𝑦)

𝛼=1

+  [1 −  ∑ 𝜆𝛼(𝑦)

𝑛(𝑦)

𝛼=1

] µ(𝑦) 

where 𝑍 is continuous attribute  (AADT); 𝑍(𝑦) is the true value at unsampled location y; 𝑍𝑥(𝑦) 

is an estimate of value 𝑍(𝑦); 𝑍(𝑦𝛼) is 𝑍 datum value at location 𝑦𝛼; m is the stationary mean of 

the random function (RF) 𝑍(𝑦); µ(𝑦𝛼) is the expected value of random variable (RV) 𝑍(𝑦); and 

𝜆𝛼 is the kriging weights.  

(Eq. 4.1) 
 
Eq. 4.5 

 
Eq. 4.5 
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The sill, range, and nugget obtained from the variogram used in combination with this 

estimator is then used to compute the kriging weight (λα) for which the sum is 1 (Shamo et. al 

2015). The mean is obtained by requiring the kriging weights sum to 1 

∑ 𝜆𝛼(𝑦)

𝑛(𝑦)

𝛼=1

= 1 

Hence, the estimator in OK becomes (Shamo et. al 2015)  

𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)𝑍(𝑦𝛼)

𝑛(𝑦)

𝛼=1

 

b. Simple kriging (SK): Simple kriging estimator considers the mean µ(y) to be known and 

constant throughout the study range (Shamo et. al 2015). The simple kriging estimator also 

assumes a linear model form and is given by the equation:  

𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)[𝑍(𝑦𝛼) −  µ] +  µ

𝑛(𝑦)

𝛼=1

 

where  𝜆𝛼 is weights associated with locations 𝑦𝛼, 𝑍𝑥(𝑦) is an estimate of value 𝑍(𝑦); 𝑍(𝑦𝛼) is 

𝑍 datum value at location 𝑦𝛼 and µ is the unknown constant. 

c. Universal kriging (UK): Universal kriging estimator is applied when the regionalized variable 

exhibits some form of the trend (Isaak’s and Srivastava 1989). The mean varies, and it is 

unknown. It also assumes a linear model and the equation is given by:  

𝑍𝑥(𝑦) = ∑ 𝜆𝛼(𝑦)𝑍(𝑦𝛼)

𝑛(𝑦)

𝛼=1

 

where  𝜆𝛼 is weights associated with locations 𝑦𝛼, 𝑍𝑥(𝑦) is an estimate of value 𝑍(𝑦); 𝑍(𝑦𝛼) is 

𝑍 datum value at location 𝑦𝛼  

 

(Eq. 4.2) 
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ii. Nonlinear Kriging Methods: 

d. Indicator Kriging (IK): Indicator Kriging uses the model (ESRI, 2018):  

I(s) = µ + ε(s) 

where µ is an unknown constant, ε(s) is the error(s) and I(s) is a binary variable. The creation of 

binary data may be with the use of a threshold for continuous data, or 0 or 1 for the observed or 

count data (ESRI, 2018). Using binary variables, indicator kriging proceeds the same way as 

ordinary kriging (ESRI, 2018). Probability means is used by indicator kriging to calculate the 

forecasted values of the unknown points.   

e. Probability kriging (PK): According to ESRI (2018), probability kriging assumes the model: 

I(s) = I(Z(s) > ct) = µ1 + ε1(s) 

Z(s) = µ2 + ε2(s) 

where: µ1, µ2 equals unknown constants, I(s) equals a binary variable created via threshold 

indicator, I(Z(s) > ct). 

There are now two types of random errors, ε1(s) and ε2(s), so there is autocorrelation for 

each of them and cross-correlation between them (ESRI, 2018). Probability kriging strives to do 

the same thing as indicator kriging, but it uses cokriging in an attempt to do a better job. (ESRI, 

2018). 

f. Disjunctive kriging (DK): ESRI (2018) on their website showed disjunctive kriging to assume 

the model: 

f(Z(s)) = µ1 + ε(s) 

where f(Z(s)) is a random function of Z(s) and µ1 is an unknown constant. DK requires 

the bivariate normality assumption and approximations to the functions fi(Z(si)); these assumptions 

(Eq. 4.6) 
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http://pro.arcgis.com/en/pro-app/help/analysis/geostatistical-analyst/bivariate-normal-distributions.htm
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are difficult to verify, and the solutions are mathematically and computationally complicated 

(ESRI, 2018). 

iii. Bayesian Kriging Method: 

b. Empirical Bayesian kriging (EBK): EBK is a geostatistical interpolation method that 

programs the most difficult aspects of building a valid kriging model by automatically 

calculating parameters through a process of sub-setting and simulations. Other kriging methods 

in geostatistical analysis require the user to manually regulate parameters to receive accurate 

results, but EBK automatically calculates these parameters (ESRI, 2018). It accounts for the 

error introduced by estimating by taking into account the underlying semivariogram making it 

different from other kriging methods and thereby producing a better and more accurate result. 

All kriging estimators are but variants of the basic linear regression estimator 𝑍𝑥(𝑦) 

(Shamoet.al 2015). 𝑍𝑥(𝑦) is defined as 

𝑍𝑥(𝑦) −  µ(𝑦) = ∑ 𝜆𝛼
(𝑦)[𝑍(𝑦𝛼

) −  µ(𝑦𝛼
)]

𝑛(𝑦)

𝛼=1

 

where 𝑍 is continuous attria bute (AADT); 𝑍(𝑦) is the true value at unsampled location y; 𝑍 
𝑥(𝑦) 

is an estimate of value 𝑍(𝑦); 𝑍(𝑦𝛼
) is 𝑍 datum value at location 𝑦𝛼; m is the stationary mean of 

the random function (RF) 𝑍(𝑦); µ(𝑦𝛼
) is the expected value of random variable (RV) 𝑍(𝑦); and  

𝜆𝑎 𝛼 = kriging weights. 

Shamo et al. 2015, identified the following assumptions that the estimators are modeled 

under: 

1. the unknown sample data, 𝑍(𝑦) and the n sample values, belong to the regionalized variables 

𝑍(𝑦) and 𝑍(𝑦1), . . ., 𝑍(𝑦𝑛) 

(Eq. 4.10) 
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2. for any two points 𝑦1 and 𝑦2 in the area over which 𝑍(𝑦) is being estimated, the covariance 

Cov [𝑍(𝑦1), 𝑍(𝑦2)] of the associated regionalized variables 𝑍(𝑦1) and 𝑍(𝑦2) are known; and 

3. the non-negative matrix of covariances between the measured variables (AADT) at the sample 

points is positive definite. 

Other kriging methods calculate the semivariogram from known data locations and use this 

same single semivariogram to make predictions at unknown locations; this process implicitly 

assumes that the estimated semivariogram is the true semivariogram for the interpolation region. 

By not taking the uncertainty of semivariogram estimation into account, other kriging methods 

underestimate the standard errors of prediction (ESRI, 2018). 

4.2.1.2. Variogram Modeling 

The variogram is the simplest way to relate uncertainty to distance from an observation 

(Chiles and Delfiner 1999). The variogram is a fitted function used to express the relationship 

between the known and unknown data points (Shamo et al. 2015). The variogram approach to 

developing kriging weights is similar to inverse distance weighting except that in the case of 

kriging weights, the weights are modeled by the best-fitted variogram (Shamo et al. 2015). 

The spherical and exponential variogram models were used in the AADT data analysis.  

a) Spherical Model: The main characteristics of this model is a gradual decrease in the spatial 

autocorrelation (i.e. semivariance increment). This gradual decrease continues to a point or 

distance at which the autocorrelation is beyond zero (ESRI 2018). It is one of the most 

frequently used models.  The equation of the spherical model with semivariance 𝑦(ℎ) and 

range a, as given by Longley et al (2001) and Shamo et al (2015) is 

 𝑦(ℎ) = (𝑆𝑝ℎ
ℎ

𝑎
) (1.5

ℎ

𝑎
− 0.5 (

ℎ

𝑎
)

3

,

𝑖𝑓 ℎ ≤ 𝑎

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

) (Eq. 4.11) 

 
Eq. 4.1 
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Where 𝑎 is the range and ℎ is the distance. 

b) Exponential Model: When there is an exponential decrease in spatial autocorrelation with the 

distance increasing, then this model is more useful (ESRI, 2018). The autocorrelation tends to 

disappear completely only at an immeasurable distance. This model is also of frequent use in 

the industry. Previous knowledge of the process of spatial autocorrelation and the spatial 

autocorrelation of the data itself determines which model will be of use (ESRI, 2018). An 

exponential model with a practical range a was defined by Shamo et al. (2015) as 

𝑦(ℎ) = 1 − exp (
−3ℎ

𝑎2 ) 

Where 𝑎 is the range and ℎ is the distance. 

For the basic variograms, practically a sill is reached at a distance of the range (range of 

influence). In the model, the sill and range of each fitted variogram were determined. The nugget 

of the fitted variogram was obtained from the point where the variogram cuts the vertical axis 

(ESRI, 2018). A high nugget is an indication of the variogram modeling the relationship between 

known and unknown datasets with high variance (ESRI, 2018). A relatively high range value is an 

indication of the AADT dataset being representative (Shamo et al. 2015). 

 

 

 

 

 

Figure 4.2. Characteristics of the Semi-Variogram Model 
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• Sill: The point or value at which the model touches the range is known as the Sill. (this is the 

value on the y-axis). Partial sill is gotten when you subtract the nugget effect from the sill 

(ESRI, 2018). 

• Range: This is the distance that the model first starts to level or plane out (ESRI, 2018). Range 

is said to be spatially autocorrelated if points or locations are nearer to each other and vice-

versa. (ESRI, 2018). 

• Nugget Effect: This effect happens when there is either measurement error or spatial variation 

scale or in some circumstances both (ESRI, 2018). For example, if the semivariogram model 

crosses the y-axis at 1.5, then the nugget will be 1.5 as well. This calls for a proper knowledge 

of how the spatial variation scales operate (ESRI, 2018). 

4.2.2. Crossvalidation 

It’s a model validation technique for assessing how the results of statistical analysis 

(model) will generalize to an independent data set (Georgios 2018). It is mainly used in settings 

where the goal is a prediction, and one wants to estimate how accurately a predictive model will 

perform in practice (Georgios 2018). The principle of cross-validation is to estimate 𝑍(𝑦) at each 

sample point 𝑦𝛼  from neighboring data 𝑍(𝑦𝛽) , where β ≠  α and 𝑍(𝑦𝛼)  is assumed to be 

unknown. By this, at every sample point 𝑦𝛼, a kriging estimate 𝑍(𝛼) and the associated kriging 

variance σ2 are estimated. With the true value 𝑍𝛼 = 𝑍(𝑦𝛼) being known, the kriging error is 𝐸𝛼 =

 
 𝑍 ∗

(𝛼) – 𝑍𝛼 and the standardized error is 𝑒𝛼 = 
σ

 . If 𝑦(ℎ) is the theoretical variogram, 𝐸𝛼 is a 

random variable with a mean of zero and a variance of σ2 while 𝑒𝛼 is a zero-mean unit variance 

random variable. The number of validation points is α and the variance at the location 𝑦 where the 

AADT prediction is performed is σ2 (Shamo et. al 2015).   
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Cross-validation is used to compare the performance of different interpolation models 

(Davis 1986; Journel 1987; Isaak and Srivastava 1989). Crossvalidation removes one data location 

then predicts the unknown data using the data at the rest of the locations (ESRI, 2018). In statistics, 

this step is synonymous to selecting a function of observation, a test statistic, and deriving its 

probability distribution under the assumed model (Shamo et. al 2015).  

The cross-validation tool has the following properties and they are defined on the ESRI 

(2018) website:  

• Count: This is the total number of samples used. 

• Mean Error (ME): This is the averaged difference between the measured and the predicted 

values and it is shown below as    

 ME =
1

n
∑{Ẑ(s𝑖) − 𝑍(s𝑖)}

𝑛

𝑖=1

 

where Ẑ(s𝑖) is the predicted value, 𝑍(s𝑖) is the observed (known) value and n is the number of 

values in the dataset 

• Root Mean Square Error (RMSE): This indicates how closely the model predicts the 

measured values and it is shown below as    

RMSE = √
1

n
∑{Ẑ(s𝑖) − 𝑍(s𝑖)}2

𝑛

𝑖=1

 

where Ẑ(s𝑖) is the predicted value, 𝑍(s𝑖) is the observed (known) value and n is the number of 

values in the dataset.  

• Average Standard Error (ASE): This is the average of the prediction standard errors and it 

is shown below as    

(Eq. 4.13) 
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ASE = √
1

n
∑ 𝜎2(s𝑖)

𝑛

𝑖=1

 

where n is the number of values in the dataset and 𝜎2 is the kriging variance for location s𝑖. 

• Mean Standardized Error (MSE): This is the average of the standardized errors. This value 

should be close to 0and it is shown below as:   

 MSE =
1

n
∑

{Ẑ(s𝑖) − 𝑍(s𝑖)}

𝜎(s𝑖)

𝑛

𝑖=1

 

where Ẑ(s𝑖) is the predicted value, 𝑍(s𝑖) is the observed (known) value, n is the number of 

values in the dataset and 𝜎 is the variance for location s𝑖. 

The mean standardized error should ideally be zero if the interpolation method is unbiased. 

The calculated mean error, however, is a weak diagnostic for kriging because it is insensitive to 

inaccuracies in the variogram (Johnston et al., 2001; Webster and Oliver, 2001). The value of ME 

also depends on the scale of the data and is standardized by dividing by the kriging variance to 

form the MSE. An accurate model would have an MSE close to zero (ESRI, 2018). 

MSE = 0 implies accurate variogram. The model performs good both in the training and the 

test set. 

MSE > 0 implies overestimating. The model performs poorly both in the training and the 

test set. 

MSE < 0 implies underestimating. The model performs poorly both in the training and the 

test set. 

• Root Mean Square Standardized Error (RMSSE): This should be close to one if the 

prediction standard errors are valid. If the root-mean-squared standardized error is greater than 

(Eq. 4.15) 
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one, it is underestimating the variability in the predictions. If the RMSSE is less than one, it is 

overestimating the variability in the predictions and it is shown below as: 

RMSSE = √
1

n
∑ [

{Ẑ(s𝑖) − 𝑍(s𝑖)}

𝜎(s𝑖)
]

𝑛

𝑖=1

2 

where Ẑ(s𝑖) is the predicted value, 𝑍(s𝑖) is the observed (known) value, n is the number of 

values in the dataset and 𝜎2 is the kriging variance for location s𝑖. 

If the model for the variogram is accurate, then the RMSE should equal the kriging variance, 

so the RMSE should equal 1. If the RMSE is greater than 1, then the variability in the predictions 

is being underestimated, and vice versa. Likewise, if the ASE is greater than the RMSE, then the 

variability is overestimated, and vice versa (Johnston et al., 2001; Webster and Oliver, 2001).  

RMSE = 1 implies accurate variogram. The model performs good both in the training and 

the test set. 

RMSE > 1 implies overestimating. The model performs poorly both in the training and the 

test set. 

RMSE < 1 implies underestimating. The model performs poorly both in the training and the 

test set. 

4.2.3. Operationalization of the Kriging Methods 

The itemized steps below showed the step by step process of kriging carried out for the 

AADT data analysis. Through the process of iteration in steps 2 and 3 (Figure 4.1), a different 

kriging method is picked and a new variogram is modeled to fit the dataset. The corresponding 

cross-validated results were then obtained for each kriging method. The different types of 

(Eq. 4.17) 
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variograms were varied for each kriging method and for each case, the best variogram was selected 

as the best fit for kriging variant on the AADT dataset. 

The steps iterated below showed how kriging and semivariogram were performed using 

ArcGIS: 

i. The first thing I did was to select kriging or co-kriging; 

ii. The next I carried out was the data input. Here, the data input includes the source of the 

data and its field. This is useful for data modeling as well as data interpolation; 

iii. The next step that ensued is the Semivariogram or covariance modeling this involved 

various parameters that is used produce the result. This step also produces the nugget and 

partial sill values. Figure 4.3 below gives an overview of the settings of this step. The semi-

variogram was modeled using the exponential model and this gave the best suitable 

semivariogram for the data. 

 

Figure 4.3. The Framework of Semi-Variogram/Covariance Modeling in Geostatistical Analysis 
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iv. Cross-validation is the last step of the whole process. Here, the tool detailed the mean 

prediction error statistical values and produced maps that showed areas with a high and 

low concentration of the dataset. 

The steps listed above were then repeated for the rest of the kriging methods and different 

semivariograms, and the results produced were then compared using the mean prediction errors. 
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5. DISCUSSIONS OF RESULTS 

5.1. Exploratory Spatial Data Analysis Result 

The outputs of chapter 3 above (exploratory spatial data analysis) were the trend analysis, 

histogram, normality probability plot and run sequence plot. The result of the trend analysis of 

2009, 2010, 2011, 2012, 2013, 2014, 2015 and 2016 AADT dataset showed that the values were 

positively trended.  Table 5.1 is a summary of the mean, median, mode, and standard deviation of 

the counts of the years obtained from the analysis result. 

Table 5.1. Overview of the Analysis Result 

Years Mean Median Mode St. Dev. 

2009 20456 8400 12000 33739 

2010 20108 8200 11000 33556 

2011 20023 8000 11000 33494 

2012 19890 8000 11000 33187 

2013 20022 8000 11000 33534 

2014 20381 8100 11000 34071 

2015 21591 8500 11000 35652 

2016 22358 8600 11000 36717 

It could be seen from the table above that there was a steady decrease in the mean of counts 

from the year 2009 to the year 2012. The years 2013 to 2016 saw a steady increase. This is the 

same for the standard deviation of the counts from the year 2009 through 2016. The median 

decreased from 2009 to the year 2011 and remained steady till the year 2013 after which it started 

increasing again to the year 2016. The mode decreased in the year 2010 and remained steady until 

the year 2016. 

Trade, interstate travel, recreational travel, employment dynamics, and other trends could 

also account for this observation (Shamo et al. 2015). The high variation in AADT was accounted 

for at some of these locations relative to other locations by selecting a lag size that represents the 
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largest distance amongst the data points. For instance, the lag of 1,318 used in modeling the 2009 

AADT was selected after using the spatial analyst tool to conduct a neighborhood analysis on the 

data points (Shamo et al. 2015). 

Another observation in the dataset from the neighborhood analysis was that the dataset was 

highly clustered. The process of kriging could help with this by assigning to individual data points 

within a cluster less weight than isolated data points. Invariably, clusters are treated as single 

points. This observation is consistent with the design of the HPMS coverage system, which allows 

for the design of new coverages in areas where the randomness in data values are not sufficient.  

Histogram plots for the years (2009 - 2016) are lognormally skewed. The implication of 

the skewness was that the standard deviation of the dataset was directly proportional to the mean 

AADT. The distribution of the 2009, 2010, 2011, 2012, 2013, 2014, 2015 and 2016 datasets was 

skewed to the right (i.e., the mean AADT for each year was higher than the median). The 

covariance is extremely sensitive to outliers (Goovaerts 1997); thereby, reducing the effect of the 

outliers was prerequisite to achieving good results. 

5.2. Kriging Analysis Result 

The results of the kriging analysis methods are presented in this section. Comparison and 

inferences are then made to determine which of the methods has the least prediction error. The two 

crossvalidation tools used for the comparison and inference is Mean Standardization Error (MSE) 

and Root Mean Square Standardization Error (RMSSE).  

 For mean standardization error, the expected target value for the parameters is zero and 

for root mean square standardization error, the expected target value for the parameters is one. If 

the values of the parameters are close to the target value, then the model is said to be a good fit 
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and thus acceptable but if the values of the parameters are not close to the target value, then the 

model is not a good fit and thus unacceptable. This implied the following: if 

MSE = 0 implies accurate variogram. The model is good both in the training and the test set. 

MSE > 0 implies overestimating. The model performs poorly both in the training and the test set. 

MSE < 0 implies underestimating. The model performs poorly both in the training and the test 

set.  

RMSE = 1 implies accurate variogram. The model is good both in the training and the test set. 

RMSE > 1 implies overestimating. The model performs poorly both in the training and the test 

set. 

RMSE < 1 implies underestimating. The model performs poorly both in the training and the test 

set. 

Table 5.2. Mean Standardization Error Comparison for Each Year with The Spherical Model 

   Mean Standardization 

Error  
   

   Target Value = 0    

Year Model Type OK SK UK IK PK DK 

2009 Spherical -0.00454 0.060108 642.1786613 0.004737 0.001501 -0.00391 

2010 Spherical -0.09962 0.070763 407.7731339 0.014347 0.009071 0.006719 

2011 Spherical -0.13825 0.070536 373.24492 0.011732 0.004674 0.001568 

2012 Spherical -0.12774 0.056056 350.3135346 0.012842 0.009034 0.001325 

2013 Spherical -0.09564 0.053188 368.2149195 0.011705 0.007902 0.001187 

2014 Spherical -0.13446 0.062147 326.0557414 0.012763 0.010853 -0.0023 

2015 Spherical -0.08945 0.066944 459.6733769 0.011618 0.00872 0.004813 

2016 Spherical -0.06974 0.076026 660.4848762 0.012719 0.009641 0.008423 

Table 5.2 above details the result of crossvalidation of six of the kriging methods combined 

with the spherical variogram model. The MSE is the result of the crossvalidation process that was 

explained in section 4.2.2 of this thesis and the target value is zero. EBK result is not available for 
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the spherical model because the spherical model does not provide the best visual fit to the empirical 

semivariances that are used by EBK.  

In 2009 and 2014, PK and IK performed best with the spherical variogram. However, in 

2010, 2011, 2012, 2013, 2015 and 2016, DK and PK performed best with the spherical variogram. 

UK has a much higher value compared to the target value thereby not useful in predicting AADT 

data with the spherical variogram. 

Table 5.3. Mean Standardization Error Comparison for Each Year with The Exponential Model 

Year Model Type OK SK UK IK PK DK EBK 

2009 Exponential 
-

0.00856 
0.054546 607.7919537 0.004449 0.001928 0.000374 

-

0.02178 

2010 Exponential 
-

0.11578 
0.071099 427.2266964 0.010287 0.000437 0.012796 

-

0.04701 

2011 Exponential 
-

0.15611 
0.069292 396.2223987 0.00714 0.004467 0.007499 

-

0.03166 

2012 Exponential 
-

0.14716 
0.056249 370.8658539 0.008107 0.002365 0.008112 

-

0.03669 

2013 Exponential 
-

0.11059 
0.050431 385.4671188 0.007604 0.02273 0.007252 

-

0.04517 

2014 Exponential -0.1609 0.06027 341.1584731 0.009048 0.003544 0.002588 
-

0.04042 

2015 Exponential 
-

0.10871 
0.061838 480.5954159 0.007325 0.004324 0.009874 

-

0.03995 

2016 Exponential -0.0466 0.071879 584.5150702 0.008478 0.003536 0.012575 
-

0.06084 

Table 5.3 above detailed the result of crossvalidation of the seven kriging methods 

combined with the exponential variogram model. The MSE is the result of the crossvalidation 

process that was explained in section 4.2.2 of this thesis and the expected target value was zero. 

EBK result is available for the exponential model because the exponential model provides a good 

visual fit to the empirical semivariances that are used by EBK. 

In 2009, 2011, 2012, 2014 and 2015, IK, PK, and DK performed best with the exponential 

variogram. However, in 2010, PK performed best with exponential variogram while 2013, IK and 
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DK performed best with the variogram. IK and PK performed best with the exponential variogram 

in the year 2016. UK has a much higher value compared to the target value thereby not useful in 

predicting AADT data with the exponential variogram.  

Tables 5.2 and 5.3 above showed the result of MSE analysis using spherical and 

exponential variogram models. EBK result is not available for the spherical model because the 

spherical model does not provide the best visual fit to the empirical semivariances that are used by 

EBK but the reverse is the case for exponential variogram model has it provides a good visual fit 

to the empirical semivariances used by EBK. It could be also be inferred that for the MSE using 

spherical and empirical variogram model, PK was the best result (close to the value of the target 

than the rest of the other kriging methods). 

Table 5.4. RMS Standardization Error Comparison for Each Year with The Spherical Model 

   RMS Standardization Error   

   Target Value = 1   

Year Model Type OK SK UK IK PK DK 

2009 Spherical 0.770336 0.852929 7958.774023 0.92883 0.921033 0.985541 

2010 Spherical 2.328016 0.830771 4901.444753 0.96163 0.970394 0.972508 

2011 Spherical 2.810405 0.826858 4541.525599 0.945223 0.958353 0.98232 

2012 Spherical 2.509416 0.86472 4874.466448 0.953585 0.942296 0.999779 

2013 Spherical 2.095222 0.875256 5055.033503 0.942304 0.912715 1.004857 

2014 Spherical 2.509447 0.842022 4690.140775 0.928743 0.936509 0.991524 

2015 Spherical 1.903676 0.819352 5152.625629 0.929471 0.914442 0.959248 

2016 Spherical 2.42213 0.791428 7433.361886 0.944403 0.942348 0.934756 

Table 5.4 above details the result of crossvalidation of six of the kriging methods combined 

with the spherical variogram model. The RMSSE is the result of the crossvalidation process that 

was explained in section 4.2.2 of this thesis and the target value is one. EBK result is not available 
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for the spherical model because the spherical model does not provide the best visual fit to the 

empirical semivariances that are used by EBK.  

In 2009, 2013, 2014, 2015 and 2016, DK performed best with the spherical variogram. 

However, in 2010 and 2011, DK, PK, and IK performed best with the spherical variogram while 

in 2012, DK and IK performed best with the spherical variogram. UK has a much higher value 

compared to the target value thereby not useful in predicting AADT data with the spherical 

variogram. 

Table 5.5. RMS Standardization Error Comparison for Each Year with The Exponential Model 

Year 
Model 

Type OK SK UK IK PK DK EBK 

2009 Exponential 0.787557 0.876301 8117.896995 0.928706 0.931336 0.986774 1.000634 

2010 Exponential 2.757813 0.8347 4984.325289 0.947488 0.943208 0.959106 1.075819 

2011 Exponential 3.34005 0.83692 4606.534037 0.930796 0.914211 0.976196 1.050659 

2012 Exponential 3.049334 0.868773 4933.969393 0.937222 0.953616 0.98479 1.063563 

2013 Exponential 2.438474 0.888659 5056.237844 0.927001 1.047878 0.997855 1.076976 

2014 Exponential 3.114778 0.85313 4665.230689 0.917721 0.913586 0.991598 1.065393 

2015 Exponential 2.38087 0.838719 5231.782127 0.914719 0.902662 0.957626 1.05913 

2016 Exponential 1.368427 0.80937 7806.24998 0.930543 0.931682 0.938483 1.097949 

Table 5.5 above details the result of crossvalidation of the seven kriging methods combined 

with the exponential variogram model. The RMSSE is the result of the process that was explained 

in section 4.2.2 of this thesis and the target value is one. EBK result is available for the exponential 

model because the exponential model provides a good visual fit to the empirical semivariances 

that are used by EBK. 
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From 2009 to 2016, it could be seen that DK and EBK performed best with the exponential 

variogram. However, PK and IK also seem to perform better with exponential variogram for the 

years. UK has a much higher value compared to the target value thereby not useful in predicting 

AADT data with the exponential variogram. 

Tables 5.4 and 5.5 above showed the result of RMSSE analysis using spherical and 

exponential variogram models. It indicated that EBK result is not available for the spherical model 

because the spherical model does not provide the best visual fit to the empirical semivariances that 

are used by EBK, but the reverse is the case for exponential variogram model has it provides a 

good visual fit to the empirical semivariances used by EBK. It could be also be inferred that for 

the RMSSE using spherical variogram model and, DK came out with the best result close to the 

value of the target than the rest of the other kriging methods while for RMSSE using empirical 

variogram model, EBK is a better method to use than the rest of the other methods. 

In general, the result of this crossvalidation showed the same kriging methods with 

variograms cannot work for all the years which confirms the randomness characteristics of that 

data as seen in the exploratory data analysis section of this thesis. This also confirms that the 

process of kriging analysis will have to be performed on a year to year basis in order to discover 

which kriging method will best fit the data. 

5.3. Probability Map Result 

Probability maps represent the output variance of prediction raster which contains the 

kriging variance at each output raster cell (ESRI, 2018). Probability maps are used to define areas 

with the high and low certainty of exceeding a threshold value (Konstantin 2001). The probability 

maps were produced using the steps that were iterated in section 4.2.3 of this thesis.  
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The following are the probability maps produced after performing the different kriging 

interpretations for the Year 2009 AADT shown in Figure 5.1 to  

Figure 5.13 below. The maps showed estimated or predicted data counts collected for 

different raster cells with range values between 3 and 239,000. Figure 5.1 to  

Figure 5.13 show the probability of AADT in Washington State that interpolated from the 

sample database.  

This might be useful in order to see what value or range of count is estimated for a particular 

area of interest. The probability limits in each of the kriging maps differ, but the appearance SK, 

OK, UK, DK, and EBK are alike in counts division and color variation while IK and PK are alike 

in counts division and color variation. 

The legend below applied to all the maps in terms of the range and color variation 
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Figure 5.1. SK (Spherical) Map of Washington State AADT Data for the Year 2009 AADT 

 

Figure 5.2. SK (Exponential) Map of Washington State AADT Data for the Year 2009 AADT 
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Figure 5.3. OK (Spherical) Map of Washington State AADT Data for the Year 2009 AADT 

 

Figure 5.4. OK (Exponential) Map of Washington State AADT Data for the Year 2009 AADT 
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Figure 5.5. UK (Spherical) Map of Washington State AADT Data for the Year 2009 AADT 

 

Figure 5.6. UK (Exponential) Map of Washington State AADT Data for the Year 2009 AADT 
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Figure 5.7. IK (Spherical) Map of Washington State AADT Data for the Year 2009 AADT 

 

Figure 5.8. IK (Exponential) Map of Washington State AADT Data for the Year 2009 AADT 
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Figure 5.9. PK (Spherical) Map of Washington State AADT Data for the Year 2009 AADT 

 

Figure 5.10. PK (Exponential) Map of Washington State AADT Data for the Year 2009 AADT 
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Figure 5.11. DK (Exponential) Map of Washington State AADT Data for the Year 2009 AADT 

 

Figure 5.12. DK (Exponential) Map of Washington State AADT Data for the Year 2009 AADT 
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Figure 5.13. EBK (Exponential) Map of Washington State AADT Data for the Year 2009 

AADT 

5.4. Hypothesis Testing  

A hypothesis as defined by Merriam Webster dictionary (2019) could be defined as an 

assumption or concession made for the sake of an argument. It is a tentative assumption made in 

order to draw out and test its logical or empirical consequences. This could be an interpretation of 

a practical situation or condition taken as the ground for action. This thesis made the following 

tentative assumption in order to test its empirical consequences.  

Null hypothesis: mean prediction error is the same for all kriging methods.  

Statistically,  

H0: µ1 = µ2 = µ3          

Where  µ1 = linear kriging methods (Ordinary, Simple and Universal) 

 µ2 = Non – linear kriging methods (Indicator, Probability and Disjunctive) and  
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µ3 = Bayesian Method (Empirical Bayesian) 

HA = There is a difference in the mean prediction error        

The hypothesis was tested with one-way ANOVA using the RMS Standardization error result for 

the years 2009 to 2016 AADT data set from section 5.2 of this thesis. 

Table 5.6 to Table 5.11 below showed the result of the hypothesis test using one – way 

ANOVA test. The result of the test showed that p-value (0.000) is less than the significance level 

(0.05), thereby the null hypothesis is rejected, and the alternative hypothesis accepted. This implies 

that the prediction error of the kriging methods is not all equal. Also, the standard error of the 

estimate (square root of the mean-squared error) was 0.366140. This value indicates that the model 

might not meet the model assumption and thereby rejects the null hypothesis. In addition, the 

confidence interval for the difference between the means of OK is (2.143, 2.666). This range does 

not include zero, which indicates that the difference is statistically significant. This implies that 

the prediction errors of the kriging methods are not all equal. 

Table 5.6. Hypothesis Testing 

 

 

 

 

 

One-way ANOVA: RMS versus Model 

Table 5.7. Method of Hypothesis Testing 

Null hypothesis All means are equal 

Alternative hypothesis Not all means are equal 

Significance level α = 0.05 

Equal variances were assumed for the analysis. 

 
In Reality 

Decision H0 is True H0 is False 

Accept H0 OK Type II Error 

β = probability of Type II Error 

Reject H0 Type I Error 

α = probability of Type I Error 

OK 
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Table 5.8. Factor Information for the Hypothesis 

Factor Levels Values 

Model 6 DK, EBK, IK, OK, PK, SK 

Table 5.9. Analysis of Variance for the Hypothesis 

Source DF Adj SS Adj MS F-Value P-Value 

Model 5 14.263 2.8527 21.25 0.000 

Error 42 5.639 0.1343   

Total 47 19.902    

Table 5.10. Model Summary for the Hypothesis 

S R-sq R-sq(adj) R-sq(pred) 

0.366410 71.67% 68.29% 62.99% 

Table 5.11. Means and Standard Deviation for the Hypothesis 

Model N Mean StDev 95% CI 

DK 8 0.97405 0.02040 (0.71262, 1.23549) 

EBK 8 1.0613 0.0283 (0.7998, 1.3227) 

IK 8 0.92927 0.01035 (0.66784, 1.19071) 

OK 8 2.405 0.895 (2.143, 2.666) 

PK 8 0.9423 0.0458 (0.6808, 1.2037) 

SK 8 0.85082 0.02598 (0.58939, 1.11225) 

Pooled StDev = 0.366410 

Figure 5.14 showed that there is a significant difference between the sample mean of the 

methods. OK has the highest mean (2.4) and SK has the lowest mean (0.8) since there is the 

difference in the sample mean, this thereby conform to the fact that the null hypothesis should be 

rejected, and the alternative hypothesis accepted. 
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Figure 5.14. Interval Plot of RMS vs Model 

5.5. Summary 

This chapter discussed the results of the process carried out in order to answer questions 3 

and 4 of the research questions and objectives. The exploratory data analysis result showed that 

the data is positively trended. It was also observed in the dataset from the neighborhood analysis 

that the dataset was highly clustered mostly towards the western part of the state. This was taken 

care of by first declustering the data before further analysis. 

The crossvalidation result showed that the dataset is random and one kriging method and 

variogram model cannot be used to model for all the years. Each year had a different method of 

kriging analysis that best fit to model it. PK worked best in MSE with either spherical or empirical 

variogram model. DK worked best in RMSSE with spherical model and EBK performed best with 

an empirical model in RMSSE.  
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The result of the hypothesis also suggested that there is a significant difference between 

the mean prediction error of the kriging methods thereby the null hypothesis was rejected, and the 

alternative hypothesis accepted. 
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

With the help of this research, the following questions was addressed (1) what are the 

methods of AADT estimation and prediction; (2) what are the factors that influence the accuracy 

of AADT estimation and prediction methods; (3) which of the kriging methods is best used for 

AADT estimation and prediction and (4) what differences can be inferred between these kriging 

methods.  

A systematic literature review was conducted to address research questions 1, 2 and 3.  

Florida turnpike state model, geographically weighted regression, artificial neural network, kriging 

interpolation, travel demand modeling, ordinary linear regression, origin-destination centrality-

based method and support vector regression with data-dependent parameters were the identified 

methods of AADT estimation and prediction with ordinary linear regression discovered as the 

most used method over the years. Also, geographical location, road type, day of the week, 

seasonality, missing hourly volume, equipment theft, equipment damage/vandalism, and human 

error were identified as the factors that influence AADT estimation and prediction. 

To address research question 4, the research compared linear, non-linear and bayesian 

methods of kriging using Washington state AADT data count. AADT data from WSDOT was 

analyzed to study the nature and characteristics of the data. The exploratory spatial data analysis 

revealed that the data was positively trended. Though some years suffered a decrease at some 

point, it had little or no effect on the overall positive trend of the data.  

The result of the crossvalidation showed that the choice of a kriging method and variogram 

model cannot be known prior to interpolation. It also showed that probability kriging worked better 

than other kriging methods when used in mean standardization error (MSE) with either spherical 
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or empirical variogram model while disjunctive kriging worked better than other kriging methods 

when used in root mean square standardization error (RMSSE) with the spherical model. Empirical 

bayesian kriging (EBK) performed better than other kriging methods when used with an empirical 

model in RMSSE. The result of the hypothesis also suggested that there is a significant difference 

between the mean prediction error of the kriging methods thereby the null hypothesis was rejected, 

and the alternative hypothesis accepted. This, therefore, can be concluded that the same kriging 

method cannot be used for the same data type from year to year due to the changing dynamics of 

AADT attribute. 

With EBK having the least error from the result, it may be concluded that EBK will always 

work better when dealing with empirical variogram model of AADT data.  

6.2. Recommendation 

The following proposal can put forward for the consideration of future research work: 

1. The changing dynamic attribute of AADT makes its analysis more rigorous as the user has to 

find the best kriging method same data from year to year. In the future, a method that can take 

care of this changing dynamic attribute should be investigated. 

2. The study uses spherical and exponential variograms with different kriging methods. In the 

future, other variogram models can be used and the researcher can make a comparison between 

the different variogram models and kriging fittings. 

3. The research used a precise data transformation and variogram model to perform the empirical 

bayesian kriging tool. In the future, the other options under model type can be used to test the 

empirical bayesian kriging and examine the predicted map. 

4. The AADT data analysis used does not include simulation, this can be researched into the 

nearest future. 
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