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ABSTRACT 

 

These days, due to dependency on the fast-moving world's modern technology, the 

increasing use of smart devices and the internet affect network traffic. Many intrusion detection 

studies concentrate on feature selection or reduction because some of the features are not 

correlated with the target variable, and some are redundant, which results in a tedious detection 

process and decrease the performance of an intrusion detection system (IDS). Our purpose is not 

to use all the features available but to take only the essential features; therefore, the process can 

be effective and efficient. In this paper, we have applied feature reduction algorithms on the 

NSL-KDD dataset for choosing a different kind of combination of features based on importance, 

similarity, correlation as an input to five classification algorithms to evaluate and determine the 

best performing model to deploy on a Software Defined Network (SDN) to reduce the dimension 

of the selected features. 
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1. INTRODUCTION 

As network usage has increased in the modern era, the number of vital applications 

running on it has also increased; therefore, network security is a critical issue [1]. Due to the 

increment of network traffic, different attacks on it also increased at a constant rate on the 

military, government, and commercial networks [14]. Intrusion detection is a method of 

analyzing and monitoring various operations of the network to detect evidence of security 

threats. A lot of attacks over the internet risks computer users and many organizations under 

threat and the potential security breach. The concept of intrusion detection in a system can be 

expressed as the identification of an attempt to invade a system and affect aspects such as 

integrity, availability, confidentiality, or the quality of the services in the system. Several 

information security techniques are available in today's scenario to protect information systems 

against unauthorized access to the intruder, duplication of data, alteration, destruction, and virus 

attacks. The intrusion detection system is one way of dealing with suspicious activity within a 

network. If any malicious activity is found, the system sends an alarm to the management station 

[2]. Intrusion detection systems classify these as misuse detection and anomaly detection. 

Anomaly detection is based on behavior analysis of user or network traffic in which any action 

that significantly deviates from normal behavior comes under intrusion. Intrusion Detection 

aimed to research in the field of computer systems and network security. These systems are 

known to generate alerts or detect the area where intrusions have been identified. The following 

evaluation criteria are used for the detection of attack and non-attack behavior. 

True-positive (TP): Detection of attack when there is an actual attack; 

True-negative (TN): Detection of normal when it is normal; 

False-positive (FP): Detection of attacks when it  is normal, called a false alarm. 

False-negative (FN): Detection of normal when there is actually an attack. 



 

2 

Data mining techniques are used frequently on network devices to process the traffic and 

further interpret the data. Before applying machine learning techniques, we need to preprocess 

the data and select the most important variables to reduce the complexity of the deployment on 

the software-defined network (SDN). Based on the dataset's quality and properties, different 

preprocessing techniques and feature selection algorithms are applied to reduce the curse of 

dimensionality. The statistical feature selection process and various machine learning algorithms 

are proven effective to select the most significant variables. But, conducting several experiments 

does not necessarily produce an effective feature list all the time. In this research, we tried to 

conduct experiments with the five most prominent feature selection processes that create a list of 

common features that produce the best accuracy with less complicated machine learning models. 

We have used the Univariate Feature Selection method, Information gain, Information gain 

Ratio, Pearson correlation, and wrapper method with random forest classifiers to extract 

individual important feature lists from each algorithm. Based on the output list of different 

experiments, we have documented a final feature list using the most common features and then 

compared various machine learning algorithms and their prediction accuracy to select the best 

deployment model. We have used five algorithms, such as Logistic Regression, Decision Tree, 

Random Forest, Support Vector Machine, and Gaussian Naïve Bayes’, which are already proven 

effective in classifying network intrusion. Our unique feature selection process produced a final 

feature list, which has not only reduced the dimension significantly but also improved the 

accurate measurements. We have conducted experiments using the NSL KDD dataset that is one 

of the most standard network intrusion based publicly available datasets and significantly 

increased the prediction accuracy by reducing the feature size. Machine learning models with 

lower complexity is one of the prerequisites for software-defined network deployment on smaller 
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computation powered devices. Hence, this experiment will significantly improve the ongoing 

research on the intelligent intrusion detection system. 
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2. RELATED WORK 

Most of the research papers on the Intrusion Detection carried out for the prediction 

model Intrusion detection predictive modeling part evaluated using standard datasets like KDD-

99. This section manifests the state of the art accomplishments that used the NSL-KDD dataset, 

which is an updated and revised version of the KDD-99 dataset with more samples. This dataset 

allows us to model the intrusion detection system more accurately compared to previous 

versions. 

Previous studies have used Artificial Neural Networks (ANN) and some soft computing 

techniques in intrusion detection. Li, Zhang & Gu [12] and proposed an anomaly-based network 

intrusion detection system trained by the Backpropagation learning algorithm. The operation of 

the system is divided into three phases, such as  Raw Data Collection and Preprocessing, 

Training, and Detection. During data preprocessing, they split a dataset into two groups, a single 

line of binary bits and a single bit of attack. They used a training dataset to build a model for 

both of the groups. The resulting proposed module has 95% accuracy in detection. Some 

researchers have worked on experiments [13], where the intrusion detection system and 

classification of attacks used ANNs. They segmented the approaches into three phases. First, the 

preprocessing of data and fine-tuning of the IDS policy, which minimizes the number of false-

positives approaches. After that, it includes a comparison between the knowledge-based 

prediction and classification of data. The proposed Machine Learning Process (MLP) 

architecture is trained using a Backpropagation algorithm with two hidden layers and an 

activation layer that outputs classes output neurons. The final results showed that the process was 

able to classify records with a 93.43% detection rate. Researcher Deshmukh [15], developed an 

intrusion detection system using various preprocessing methods such as Feature Selection and 

Discretization. In feature selection,  they split the dataset for reducing the dimensionality and 
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removed irrelevant data, which increased learning accuracy, and improved result 

comprehensibility. The final preprocessing task includes Discretization, then different machine 

learning techniques implemented. They achieved 88.20%, 93.40%, and 94.60% for Naive Bayes, 

Hidden Naive Bayes, and Naïve Bayes Tree algorithms, respectively. MahbodTavallaee, 

Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani [16] conducted a statistical analysis on the NSL-

KDD data set; where they found some potential issues which profoundly affect the performance 

of systems. Consequently, the evaluation results of different research works will be consistent 

and comparable. Shilpa et al. [17] for intrusion detection analysis used Principal Component 

Analysis (PCA) for dimension reduction techniques, feature selection, and others on the NSL 

KDD dataset. Reducing numbers of feature improve accuracy as well as reducing testing time. 

Generally, usually Data mining and machine learning processing are used on network intrusion 

detection systems to avoid system by discovering user behavior patterns from the network traffic 

data. For the dataset, Tang et al. [18] used Gated Recurrent Unit Recurrent Neural Network 

(GRU-RNN) used intrusion detection using for NSL-KDD SDNs to achieve high detection 

accuracy. They used an approach based on six traffic flow raw features that produce an output of 

accuracy of 89%. 
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3. DATASET 

The NSL KDD Dataset is a very popular publicly available dataset. The majority of the 

experiments in the intrusion detection are performed on this dataset. NSL-KDD is a data set 

suggested to resolve some of the inherent problems of the KDD'99  [3] data set [19]. Our model 

is based on supervised learning methods; NSL-KDD is the common dataset that provides labels 

for both training and test sets. Though this recent version of the KDD data set still suffers from 

some of the drawbacks mentioned by McHugh [20] and does not represent a perfect pattern of 

existing real networks. Because of the scarcity of public data sets for network-based IDSs, we 

believe it still can be applied as a useful benchmark data set to help researchers compare 

different intrusion detection methods. To execute our experiments, we created three smaller 

subsets of the KDD training set randomly, each of which included fifty thousand records of 

information. Each of the learners trained over the designed train sets. The attack types are 

grouped into four categories: DoS, Probe, U2R, and R2L. 

I. DOS (Denial of Service): The attacker makes some computing or memory resource too 

busy or too full to handle legitimate requests, thus denying authorized users access to a 

machine, e.g., SYN flood. 

II. R2L (Remote-to-Local): An attacker sends packets to a machine over a network, then 

exploits machine vulnerability to gain local access as a user illegally., e.g., guessing the 

password. 

III. U2R (User-to-Root): Unauthorized access to local superuser (root) privileges, e.g., 

various ‘buffer overflow’ attacks. 

IV. Probing: Where an attacker scans a network to gather information or find known 

vulnerabilities., e.g., port scanning. 

The following are the advantages of the NSL-KDD over the original KDD-99 data set: 
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First, NSL-KDD does not include redundant records in the training dataset, so the 

classifiers will not be biased towards more frequent records. Second, the number of selected 

records from every difficulty level group is inversely proportional to the percentage of records in 

the original KDD-99 data set. As a consequence, the classification rates of distinct machine 

learning methods differ in the broader range, which makes it more efficient to have an accurate 

evaluation of different learning techniques. Third, the records count in both train, and test sets 

are reasonable, which makes it affordable to run the experiments on the complete set without 

splitting the small portion randomly. Consequently, the evaluation results of different research 

works will be consistent and comparable. 

Table 1. Features list according to the datatype 

Type Features 

Nominal Protocol_type(2), Service(3), Flag(4) 

Binary Land(7), logged_in(12), root_shell(14), su_attempted(15), is_host_login(21), 

is_guest_login(22) 

Numeric 

 

Duration(1), src_bytes(5), dst_bytes(6), wrong_fragment(8), urgent(9), hot(10), 

num_failed_logins(11), num_compromised(13), num_root(16), 

num_file_creations(17), num_shells(18), num_access_files(19), 

num_outbound_cmds(20), count(23), srv_count(24), serror_rate(25), 

srv_serror_rate(26), rerror_rate(27), srv_rerror_rate(28), same_srv_rate(29), 

diff_srv_rate(30), srv_diff_host_rate(31), dst_host_count(32), 

dst_host_srv_count(33), dst_host_same_srv_rate(34), 

dst_host_diff_srv_rate(35), dst_host_same_src_port_rate(36), 

dst_host_srv_diff_host_rate(37), dst_host_serror_rate(38), 

dst_host_srv_serror_rate(39), dst_host_rerror_rate(40), 

dst_host_srv_rerror_rate(41) 
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4. METHODOLOGY 

4.1. Preprocessing the Data 

Data preprocessing is an integral portion of Machine Learning as the quality of data and 

the useful information that can be derived from it that directly affects the ability of our model to 

learn. Therefore, we must preprocess our data before filling it into our model. There are many 

causes for missing data, such as data is not continuously collected, a mistake in data entry, 

technical problems with data, and much more. The cause for the existence of noisy data could be 

a technological problem of the device that gathers data, a human mistake during data entry, and 

so on. We can get rid of all of these using preprocessing and get a more accurate result after 

applying machine learning algorithms. The preprocessing techniques are described below. 

I. Removing unique identifier: Removed the ‘id’ column from both the test and training 

dataset. The Id is a unique identifier that does not contribute as a predictor to the target 

variable. So, removing the feature is logical, and it reduces the complexity of the 

prediction. 

II. Creating a Binary Target variable: The dataset has a target variable named ‘Class’ There 

are forty categories of attacks detected in the class feature. These attacks are categorized 

into five classes as per the dataset description.  
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Table 2. Attack categories 

Name Type Name Type 

normal Normal multihop R2L 

back DoS phf R2L 

land DoS spy R2L 

neptune DoS warezclient R2L 

pod DoS warezmaster R2L 

smurf DoS sendmail R2L 

teardrop DoS named R2L 

mailbomb DoS snmpgetattack R2L 

apache2 DoS snmpguess R2L 

processtable DoS xlock R2L 

udpstorm DoS xsnoop R2L 

ipsweep DoS worm R2L 

ipsweep Probe buffer_overflow U2R 

nmap Probe loadmodule U2R 

portsweep Probe perl U2R 

satan Probe rootkit U2R 

mscan Probe httptunnel U2R 

saint Probe ps U2R 

ftp_write R2L sqlattack U2R 

guess_passwd R2L xterm U2R 

imap R2L 

So, we have classified the target variable as binary for this project. We have created two 

categories out of five as normal and attack. 

III. Categorical to binomial: Both training and test dataset contains three categorical 

variables. The variables are Protocol_type, Service, and Flag. So, to perform different 

machine learning algorithms, we needed to convert categorical variables to the binomial 

variable. For this conversion, we have applied label encoding for each of these variables. 

Protocol_type has three different categories as TCP, UDP, and ICMP. Service has 

seventy types of different unique categories for the training dataset and sixty-four types 

of categories in the testing dataset, which is six less common categories than the training 

set service feature. The flag has eleven types of unique categories. 
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IV. One Hot Encoding: Categorical data are variables that contain label values instead of 

numeric values. The number of possible values there are often limited to a static set. 

Categorical variables are often called nominal. Some algorithms can process categorical 

data directly.  Many machine learning algorithms cannot operate directly on label data. 

They require all input variables and output variables to be numeric. In general, this is 

mostly a constraint of the efficient implementation of machine learning algorithms rather 

than hard limitations on the algorithms themselves. That means categorical data have to 

be converted to a numerical form. If the categorical variable works as an output variable, 

there is also a need to convert predictions by the model return into a categorical form in 

order to present them or use them in some applications. For categorical variables where 

no similar ordinal relationship exists, the integer encoding is not enough. Using this 

encoding and allowing the model to simulate a natural ordering between categories may 

result in poor performance or unexpected results. In this situation, a one-hot encoding 

could be applied to the integer representation. After that, the integer encoded variable is 

removed, and a new binary variable is added for each unique integer value. 

After the One Hot Encoding, three categorical variables are converted to eighty-four 

different features which have a binary datatype. So, the total dataset now has one twenty-three 

numerical variables.  

4.2. Feature Engineering 

Most of the time, the raw dataset is described in the form of a table. Each column is 

representing a feature. But all of these features may not produce the best results from the 

algorithm. Modifying, deleting, and combining these features results in a new set that is more 

adaptable during training the algorithm. Features can be reengineered by decomposing or 

splitting features from external data sources or aggregating or combining features to create new 



 

11 

features. Feature engineering in machine learning is more than selecting the appropriate features 

and transforming them. Feature engineering prepares the dataset not only to be compatible with 

the algorithm but also improves the performance of the machine learning models. Feature 

engineering plays a vital part in improving model performance. Without this integration, the 

accuracy of your machine learning algorithm reduces significantly [4]. 

Feature engineering increases the accuracy of the prediction of machine learning 

algorithms by generating features from raw data that help facilitate the machine learning process. 

It creates a massive difference between a good model and the wrong model. We have applied 

different feature engineering techniques to fit our model. 

4.2.1. Feature Selection 

Feature selection is the procedure of reducing the number of input variables when 

building a predictive model. It is expected to decrease the number of input variables to both 

reduce to improve the performance of the model and, in some cases, the computational cost of 

modeling. Statistical analysis based feature selection methods includes evaluating the 

relationship between every input variable and the target variable by using statistics and selecting 

those input variables that have the most substantial relationship with the target variable. These 

methods can be fast and more effective, although the choice of statistical measures depends on 

the data type of both the input and output variables. As a result, it can be challenging for a 

machine learning practitioner to select an appropriate statistical measure for a dataset when 

performing filter-based feature selection. Feature selection reduces the resources needed and 

computation time to generate models as well as to preventing overfitting, which would reduce 

the performance of the model. The flexibility of useful features allows fewer complex models, 

which would be faster to run and more comfortable to understand, to produce comparable results 

to the complex ones. Complex predictive modeling algorithms measures feature importance and 
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selection internally while designing the models. These models can also report on the variable 

significance determined during the model development process. However, this is 

computationally intensive, and primarily removing the most unwanted features, a great deal of 

unnecessary processing can be avoided. 

4.2.1.1. Information Gain 

Information Gain measures the reduction in entropy or surprise by splitting a dataset 

according to a given value of a random variable. A more substantial information gain suggests a 

lower entropy group or groups of samples and hence less surprise. Smaller probability events 

have more information; higher probability events have fewer information. Entropy quantifies 

how much information present in a random variable, or more specifically, its probability 

distribution. A skewed distribution has low entropy, whereas a distribution where events have 

equal probability has a larger entropy. In information theory, we like to describe the ‘surprise’ of 

an event. Low probability events are more surprising. Therefore, they have a more substantial 

amount of information, whereas probability distributions where the events are equally likely are 

more striking and have larger entropy.  

We have extracted information gain of every feature according to the target variable, and 

the sorted important features are displayed below. 
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Table 3. Important features by information gain 

Name Weight 

class 0.9643499506777505 

src_bytes 0.720243597504445 

service 0.5961580677480169 

diff_srv_rate 0.5075074637191463 

flag 0.4891714417132885 

dst_bytes 0.4665466718041005 

same_srv_rate 0.4584921736440497 

dst_host_diff_srv_rate 0.4517666766223085 

count 0.4179322433168089 

dst_host_srv_count 0.4164297818599758 

dst_host_same_srv_rate 0.4003816026081011 

dst_host_serror_rate 0.39861221193213625 

serror_rate 0.38308470834223973 

dst_host_srv_serror_rate 0.3739118503984138 

srv_serror_rate 0.3577146951373304 

logged_in 0.3063437104229992 

dst_host_srv_diff_host_rate 0.26138566084423087 

diffic 0.2611776913591404 

dst_host_same_src_port_rate 0.23577516634750872 

dst_host_count 0.20887837303757406 

srv_count 0.16542196966898626 

srv_diff_host_rate 0.14567111082989914 

dst_host_rerror_rate 0.0979058726228661 

dst_host_srv_rerror_rate 0.08379909993515533 

protocol_type 0.083173295825267 

rerror_rate 0.07701524738821891 

duration 0.06468873987822987 

srv_rerror_rate 0.05471163143758706 

hot 0.023707597563017102 

is_guest_login 0.01133031057303991 

wrong_fragment 0.00879660387340317 

num_compromised 0.007406119583362708 

num_root 0.0035494015162177636 

num_file_creations 0.0022864892356732405 

num_access_files 0.001822761708264082 

root_shell 0.00181007238939292 

num_failed_logins 0.001801377412163691 

num_shells 0.00043021534875419074 

su_attempted 0.00039943025245894187 

urgent 0.00011576362285248157 

num_outbound_cmds 0.0 

is_host_login 4.971478738189327e-06 

land 6.131248614200512e-05 
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4.2.1.2. Information Gain Ratio 

The information gain ratio is used because it resolves the drawback of information gain. 

Although information gain is usually a good procedure for deciding the relevance of an attribute, 

it is not perfect. A significant problem occurs when information gain is applied to characteristics 

that can take on a large number of distinct values. For instance, some data that describes the 

customers of a certain business. When information gain is used to choose which of the attributes 

are the most relevant, the credit card number may have high information gain. This attribute has 

a high information gain due to the fact that it uniquely identifies each customer, but we may not 

want to set high weights to such attributes. The Weight by Information Gain operator uses 

information gain for generating attribute weights. 

The information gain ratio is occasionally used over of information gain. Information 

gain ratio biases against considering attributes with a large number of distinct values. However, 

attributes with shallow information values then appear to receive an unfair advantage. In the case 

of predictive models with a binomial target variable, a common approach for attribute relevance 

analysis is the use of the weight of evidence and information value calculation. In the case of a 

multinomial target variable, which is much more complicated, information gain calculation can 

be used. The following formula calculates information gain: 

𝐼𝑛𝑓𝑜(𝐷) = − ∑(𝑝𝑖 𝑙𝑜𝑔2 sin 𝑝𝑖)

𝑛

𝑖=1

 

We have extracted the information gain ratio of every feature according to the target variable, 

and the sorted essential features are displayed below. 
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Table 4. Important features by information gain ratio 

Name Weight 

class 0.6931471805599453 

src_bytes 0.5176905111839255 

service 0.4285013791281741 

diff_srv_rate 0.3647818588499164 

flag 0.3516024503301014 

dst_bytes 0.3353404124025321 

same_srv_rate 0.3295510693465795 

dst_host_diff_srv_rate 0.3247169743220421 

count 0.30039775075069414 

dst_host_srv_count 0.29931782440033566 

dst_host_same_srv_rate 0.28778285185873936 

dst_host_serror_rate 0.2865110644152992 

serror_rate 0.27535033865707526 

dst_host_srv_serror_rate 0.26875715055459093 

srv_serror_rate 0.2571150983157525 

logged_in 0.22019110283848675 

dst_host_srv_diff_host_rate 0.18787654183592095 

diffic 0.1877270593144238 

dst_host_same_src_port_rate 0.16946845041571312 

dst_host_count 0.15013580417481054 

srv_count 0.11890058354661155 

srv_diff_host_rate 0.10470423075131237 

dst_host_rerror_rate 0.07037194280054263 

dst_host_srv_rerror_rate 0.06023239780609878 

protocol_type 0.05978258769925213 

rerror_rate 0.05535635849802535 

duration 0.046496417228058924 

srv_rerror_rate 0.03932515685633176 

hot 0.017040343494709603 

is_guest_login 0.008143903385956122 

wrong_fragment 0.0063227474311237895 

num_compromised 0.005323307067615634 

num_root 0.002551208357414707 

num_file_creations 0.0016434631079451116 

num_access_files 0.0013101490159541395 

root_shell 0.001301028296247989 

num_failed_logins 0.001294778595143906 

num_shells 0.0003092264958514307 

su_attempted 0.000287099048563938 

num_outbound_cmds 0.0 

is_host_login 3.5733568173750636e-06 

urgent 8.320758323802315e-05 

land 4.406966254582512e-05 
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4.2.2. Pearson Correlation Coefficient 

Correlation is a technique for investigation of the relationship between two quantitative, 

continuous variables; for example, in our dataset, ‘serrorrate’ and ‘dst_Host_Serror_rate’ has a 

correlation of more than 90%, which means both of these features are predicting the target 

variable in the same manner. So, we need to remove one of these variables and keep another, and 

that will not affect our result; moreover, it speeds up the process of elimination of one variable. 

Studying the relationship between two continuous variables is to use a scatter plot of the 

variables to investigate the linearity; the correlation coefficient is only useful when the 

relationship is not linear. For correlation, it does not matter on which axis the variables are 

plotted. However, generally, the independent variable is plotted on the x-axis (horizontally), and 

the dependent (or response) variable is plotted on the y-axis (vertically). 

The nearer the scatter of points is to a straight line, the higher the strength of the 

association between the variables. So, after setting a threshold to 80%, we have found twenty 

features that needed to be removed. The list of the twenty features is given below. 
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Table 5. Highly correlated features list 

Drop Feature Correlated Feature Value 

num_root num_compromised 0.998833 

is_guest_login hot 0.860288 

srv_serror_rate serror_rate 0.993289 

srv_rerror_rate rerror_rate 0.989008 

dst_host_same_srv_rate dst_host_srv_count 0.896663 

dst_host_serror_rate serror_rate 0.979373 

dst_host_serror_rate srv_serror_rate 0.977596 

dst_host_srv_serror_rate serror_rate 0.981139 

dst_host_srv_serror_rate srv_serror_rate 0.986252 

dst_host_srv_serror_rate dst_host_serror_rate 0.985052 

dst_host_rerror_rate rerror_rate 0.926749 

dst_host_rerror_rate srv_rerror_rate 0.917822 

dst_host_srv_rerror_rate rerror_rate 0.964449 

dst_host_srv_rerror_rate srv_rerror_rate 0.970208 

dst_host_srv_rerror_rate dst_host_rerror_rate 0.924688 

service_ftp is_guest_login 0.820069 

flag_REJ rerror_rate 0.835068 

flag_REJ srv_rerror_rate 0.841012 

flag_REJ dst_host_rerror_rate 0.812842 

flag_REJ dst_host_srv_rerror_rate 0.829071 

4.2.3. Analysis of Variance (ANOVA) 

Analysis of variance (ANOVA) can determine whether the means of three or more 

groups are different. ANOVA uses F-tests to test the equality of means statistically. To use the F-

test to determine whether group means are equal, it is just a matter of including the correct 

variances in the ratio. In one-way ANOVA, the F-statistic is this ratio: 

F = variation between sample means/variation within the samples 

For Recursive Feature Elimination (RFE), we used the Decision Tree classifier to find out the 

most important features. We listed out the thirteen most important according to RFE ranking are 

given below. 
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Table 6. Important features according to RFE ranking 

Rank Feature Name 

1 flag_SF 

2 dst_host_same_srv_rate 

3 count 

4 logged_in 

5 dst_host_srv_count 

6 service_private 

7 dst_host_serror_rate 

8 dst_host_srv_serror_rate 

9 same_srv_rate 

4.2.4. Wrapper Model 

In wrapper methods, the feature selection procedure is based on a specific machine 

learning algorithm that we are trying to fit on a dataset. It follows a greedy search approach by 

evaluating all the possible combinations of features against the evaluation criterion. The 

evaluation criterion is simply the performance measure, which depends on the type of problem. 

For example, for the regression evaluation, the criterion can be p-values, R-squared, Adjusted R-

squared. Similarly, for classification, the evaluation criterion can be accuracy, precision, recall, 

f1-score, etc. Finally, it selects the combination of features that gives the optimal results for the 

specified machine learning algorithm. 

Some conventional techniques of wrapper methods are forward feature selection, 

backward feature elimination, recursive feature elimination. 

4.2.4.1. Forward Selection 

Forward selection is an iterative method which starts with an empty feature in the model. 

In each iteration, it keeps adding the feature which best improves the model until the addition of 

a new variable does not enhance the performance of the model. We have selected the top fifty 

features from the forward selection. We have selected the Random Forest classifier as the 

sequential feature selector, and cross-validation set to 4. The resulting list is given below. 
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Table 7. Selected features from forward selection 

Selected Feature 

duration 

src_bytes 

dst_bytes 

urgent 

logged_in 

root_shell 

su_attempted 

is_guest_login 

rows 

same_srv_rate 

dst_host_count 

dst_host_srv_count 

dst_host_same_srv_rate 

dst_host_diff_srv_rate 

dst_host_same_src_port_rate 

dst_host_srv_diff_host_rate 

dst_host_serror_rate 

dst_host_srv_serror_rate 

dst_host_rerror_rate 

dst_host_srv_rerror_rate 

diffic 

Protocol_type_tcp 

Protocol_type_udp 

service_Z39_50 

service_aol 
 

Selected Feature 

service_auth 

service_ctf 

service_eco_i 

service_ecr_i 

service_ftp_data 

service_http 

service_iso_tsap 

service_kshell 

service_login 

service_mtp 

service_netbios_ns 

service_private 

service_rje 

service_sql_net 

service_time 

service_urh_i 

service_vmnet 

service_whois 

flag_RSTOS0 

flag_RSTR 

flag_S0 

flag_S1 

flag_S2 

flag_SF 

flag_SH 
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4.2.4.2. Backward Elimination 

The backward elimination starts with all the features and removes the least significant 

feature at each iteration, which improves the performance of the model. It repeats until no 

improvement is observed on the removal of features. As the forward feature selection in the 

Backward Elimination, we also have selected the Random Forest classifier as the sequential 

feature selector, and the cross-validation set is to 4. The resulting list is given below. Scoring 

was set to the Receiver Operator Curve (ROC). 

Table 8. Selected features from backward elimination 

Selected Feature 

duration  

src_bytes 

wrong_fragment 

num_failed_logins 

logged_in 

root_shell 

count 

dst_host_count 

dst_host_srv_count 

dst_host_same_srv_rate 

dst_host_diff_srv_rate 

dst_host_same_src_port_rate 

dst_host_srv_diff_host_rate 

dst_host_serror_rate 

dst_host_rerror_rate 

diffic 

Protocol_type_icmp 

Protocol_type_tcp 

service_IRC 

service_echo 

service_eco_i 

service_efs 

service_ftp 

service_ftp_data 
 

Selected Feature 

service_gopher 

service_http 

service_http_2784 

service_http_8001 

service_ldap 

service_login 

service_netbios_ns 

service_nnsp 

service_ntp_u 

service_pm_dump 

service_red_i 

service_remote_job 

service_supdup 

service_telnet 

service_tftp_u 

service_uucp 

service_uucp_path 

service_vmnet 

service_whois 

flag_REJ 

flag_RSTO 

flag_RSTR 

flag_S3 

flag_SF 
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4.3. Feature Finalization 

After performing different feature selection algorithms and statistical analysis, we found 

some list that indicates the potential features and features with zero importance. We found out 

that information gain and information gain ratio provide similar features lists. Pearson 

Correlation Coefficient with an 80% threshold provides a list of 15 features that needed to be 

removed from the final selected feature list. From the recursive feature elimination technique, we 

have found the top 13 feature list, which is very much significant for predicting the target 

variable. After that, we have applied for feature selection. We tried both of the forward selection 

method and the backward selection method.  We found 50 features from the backward selection 

method. So, we combined all of the selected feature lists and found 16 common features 

suggested by most of the feature selection methods. The final features are provided below,  

Table 9. Finalized selected feature list 

Feature 

dst_host_srv_count 

dst_host_same_srv_rate 

dst_host_serror_rate 

src_bytes 

dst_host_diff_srv_rate 

count 

logged_in 

dst_host_srv_diff_host_rate 

diffic 

dst_host_same_src_port_rate 

dst_host_count 

duration 

root_shell 

service_http 

flag_SF 

dst_host_rerror_rate 

So, right now, after all the operations, we got the dimension of the training dataset 

(125993,16) and testing (22544,16) 
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5. ALGORITHMS APPLIED 

After Exploratory Data Analysis (EDA)and feature engineering, we have successfully 

reduced the dataset dimension from 123 features to 16 features. Now, we need to apply different 

machine learning algorithms to predict the target variable. Since we are trying to optimize the 

complexity to deploy the model on to the software-defined network, tree-based methods are our 

primary choice. But we would also perform some other complex machine-learning algorithms to 

evaluate the performance before deployment.  

5.1. Decision Tree 

The decision tree is one of the most efficient and widely used algorithms for the 

classification and prediction of heterogeneous datasets. A Decision tree algorithm resembles a 

tree structure, where each internal node denotes a test on an attribute, each branch illustrates an 

outcome of the trial, and each leaf node holds a class label. A decision tree is a type of divide-

and-conquer strategy for object classification. Formally, a decision tree can be defined to be 

either: 

1. A leaf node that contains a class name and which does not have any branches. 

2. A non-leaf node that includes an attribute test with a branch to another decision tree for 

each possible value of the attribute (or decision node). 

The essential components of a decision tree model are nodes and branches, and the most 

significant steps in constructing a model are splitting, stopping, and pruning. 

I. Nodes: There are three types of nodes.  

a. A root node: also known as decision node, it represents a selection that will result 

in the subdivision of all records into two or more mutually exclusive subsets.  

b. Internal nodes: known as chance nodes, an internal node represent one of the 

possible choices available at that point in the tree structure. 
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The top edge of the node is related to its parent node. The bottom edge is connected 

to its child nodes or leaf nodes. Leaf nodes also called end nodes, represent the final 

result of a combination of decisions or events. 

II. Branches: Branches illustrate the chance outcomes or occurrences that arise from root 

nodes and internal nodes. In a decision tree model constructed using a hierarchy of 

branches, all the paths from the root node through internal nodes to a leaf node illustrate a 

classification decision rule. These decision tree pathways can also be described as ‘if-

then’ rules. 

III. Splitting: Only input variables involved in the target variable are used to split parent 

nodes into clean child nodes of the target variable. Both separated input variables and 

continuous input variables can be used. When constructing the model, one must first 

identify the most important input variables and then split records at the root node and 

following internal nodes into two or more categories. Characteristics that are related to 

‘purity’ of the resultant child nodes are used to choose between different potential input 

variables; these features include entropy, Gini index, classification error, information 

gain, gain ratio, and towing criteria [5]. This splitting process continues until 

predetermined stopping criteria are met. In most cases, not all main input variables will 

be used to build the decision tree model. In some cases, a specific input variable is used 

multiple times at different levels of the decision tree. 

IV. Stopping: Robustness and complexity are competing characteristics of models that need 

to be in collaboration with what is constructing a statistical model. The more complicated 

a model is, the less dependable it will be when used to predict future records. An ultimate 

situation is to build a very complicated decision tree model that is wide enough to make 
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the records in every leaf node pure. To stop this from happening, stopping rules must be 

applied when building a decision tree to prevent the model from becoming overly 

complicated. Standard parameters used in stopping rules include:  

a. (a) the minimum number of records in a leaf;  

b. (b) the minimum amount of records in a node before splitting. 

c.  (c) the depth of any leaf from the root node. Stopping parameters need to be 

selected based on the goal of the analysis and the characteristics of the dataset 

used. Per standard, Berry and Linoff [6] recommend avoiding overfitting and 

underfitting by fixing the target part of records in a leaf node to be among 0. 25 

and 1. 00% of the full training data set. 

V. Pruning: In some circumstance, stopping rules do not work well. An alternative process 

to construct a decision tree model is to grow a large tree first, and then prune it to 

optimum size by removing nodes that provide less excessive information. [7] A standard 

method of selecting the best possible sub-tree from several candidates is to consider the 

proportion of records with error prediction. Other ways of choosing the best alternative 

are to use a validation dataset, or, for small samples, cross-validation. We have two types 

of pruning, forward pruning (pre-pruning) and backward pruning (post-pruning). Pre-

pruning uses multiple-comparison adjustment methods or Chi-square tests [8] or to 

prevent the generation of non-significant branches. Post-pruning is used after building a 

full decision tree to remove branches in a method that enhances the accuracy of the 

classification when it is applied to the validation dataset. 

We have performed the Decision Tree classifier on our training dataset and evaluate the 

model on the testing dataset. It produced 99.51% accuracy on the test dataset. The F-Score was 
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99.57%, which means the model is very reliable. From the decision tree, we found out some 

interesting rules.  

If  (src_bytes > 0.500): 

if (dst_host_rerror_rate > 0.995): 

  (dst_host_same_src_post_rate <= 0.100): 

   “Attack” 

There are more interesting rules for attack types inside the tree. The tree graph is 

provided, followed by the annotation of the tree 

 
Fig 1. Annotation of the tree 
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Fig 2. Decision tree 

5.2. Random Forest 

Random forest is a supervised classification algorithm that is used for classifications as 

well as for regression. As the name suggests, this algorithm generates the forest with a number of 

trees.  The more decision trees are in the forest, and the more robust the forest looks like. In the 

same manner, in the random forest classifier, the higher the number of trees in the forest 

generates, the more accurate the results are. It is an improvement in the decision tree algorithm. 

Here we are creating more decision trees as all the calculation of nodes selection will be the 

same for the same dataset. 

As a random forest constructed from decision trees, all decision trees predict every 

sample of the testing dataset, and the ultimate classification outcome is returned depending on 

the votes of these trees. 

The original dataset is formalized as 𝑆 = {(𝑥1,𝑦1), 𝑖 = 1,2 … , 𝑀 }, where 𝑥 is a sample, 

and y is a feature of variable 𝑆. There are N numbers of samples in the original training dataset 

and M feature variables in each sample. The main process of the construction steps of the 

random forest algorithm is as follows. 

Step1. Sampling k training subsets. In this step, from the original training dataset S 

training subsets k are sampled. N records are selected from S by random sampling and 
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replacement method in each sampling occasion. After the current step, k training subsets are 

constructed as a collection of training subsets STrain 

𝑆𝑡𝑟𝑎𝑖𝑛 = {𝑆1, 𝑆2, … , 𝑆𝑘}. 

Step 2. Constructing every decision tree model. In a random forest model, from each 

training subset Si, each decision tree is constructed by a C4.5 or CART algorithm. In the growth 

method of each tree, m feature variables of a dataset Si are randomly selected from M variables. 

In each tree node’s splitting procedure, the gain ratio of each feature variable is calculated, and 

the best one is elected as the splitting node. This splitting procedure is repeated until a leaf node 

is produced. Finally, k decision trees are trained using k training subsets in the same process. In a 

random forest model, from each training subset Si, each decision tree is constructed by a C4.5 or 

CART algorithm. In the growth process of each tree, m feature variables of a dataset Si are 

randomly selected from M variables. In each tree node’s splitting procedure, the gain ratio of 

each feature variable is calculated, and the best one is picked as the splitting node. This splitting 

procedure is repeated until a leaf node is produced. Finally, k decision trees are trained using k 

training subsets in the same process [9]. 

Step 3. Collecting k trees into a random forest model. The k trained trees accumulated 

into a random forest model, which is defined as 

𝐻(𝑋, Θ𝑗) = ∑(𝑥, Θ𝑗), (j = 1,2, … , m),

𝑘

𝑖=1

 

Where hi (x, Θj) is a meta decision tree classifier, X is the input feature vectors of the training 

dataset, and Θj is an independent and identically distributed random vector that determines the 

growth process of the tree. 
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As per the theory, Random Forest consists of multiple decision trees, and the voting 

system selects the optimal result with the highest accuracy from them. So, theoretically, we 

expected that random forest would provide us a better result than the decision tree. From our 

experiment, we achieved 99.62% accuracy using Random Forest Classifier. 

5.3. Naive Bayes 

The naive Bayes algorithms greatly simplify learning by assuming that features are 

independent given classes.  It is a classification technique founded on Bayes’ Theorem with an 

assumption of independence among predictors. In standard terms, a Naive Bayes classifier 

assumes that the presence of a specific feature in a class is unconnected to the presence of any 

other feature. The Naive Bayes model is easy to construct and particularly useful for massive 

data sets. With simplicity, Naive Bayes is known to outperform even highly sophisticated 

classification methods. Bayes networks are one of the most broadly used graphical models to 

represent and handle uncertain information [10]. Naive Bayes is simple Bayes networks that are 

composed of the directed acyclic graph with only one root node (called parent),  representing the 

unobserved node and different children, corresponding to observed nodes, with the potential 

assumption of independence among child nodes in the context of their parent. The classification 

is specified by considering the parent node to be a hidden variable stating to which class each 

object in the testing set should belong, and child nodes represent different attributes identifying 

this object. Hence, in the presence of a training set, only the conditional probabilities are 

computed since the structure is unique. Once the network is quantified, it is possible to classify 

any new object giving its attribute values using Bayes’ rule. The Bayes’ theorem is expressed as, 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
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Using Bayes theorem, we get the probability of A occurrence, given that B has occurred. Here, A 

is the hypothesis, and B is the evidence. The assumption made here is that the features are 

independent. That is, the presence of one particular feature does not affect the other. Hence it is 

called naive. According to our dataset, Bayes theorem is rewritten as: 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
 

Where y is class variable and X is a dependent feature vector (of size n) where: 

𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 

Here 𝑥1, 𝑥2, … , 𝑥𝑛 are the different attacks in our dataset. By substituting for X and using 

the chain rule, we obtain, 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑥1|𝑦)𝑃(𝑥2|𝑦) … 𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃(𝑥1)𝑃(𝑥2) … 𝑃(𝑥𝑛)
 

In our case, there are only two outcomes in the class variable(y), Attack, or Not An Attack. 

There is a possibility where the classification could be multivariate. Therefore, we need to 

identify the class y with maximum probability. 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑃(𝑦) Π𝑖=1
𝑛  𝑃(𝑥𝑖|𝑦) 

Using the above function, we can get the class, given the predictors. 

5.4. Support Vector Machine 

Support Vector Machines (SVM) have obtained prominence in the field of machine 

learning and pattern classification. Support Vector Machine was introduced by Vladimir Vapnik 

and colleagues [11]. SVM has the potential to handle vast feature spaces because the training of 

SVM is carried out in a way so that the dimension of classified vectors does not have any distinct 

influence on the performance of SVM as it has on the performance of the conventional classifier. 

That is why it is noticed to be exceptionally efficient in classification problems in a large dataset. 
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SVM is a computational learning method based on statistical learning theory. The input vectors 

in SVM are non-linearly mapped into a high dimensional feature space. In this feature space, the 

optimal hyper-plane is determined to maximize the generalization ability of the classifier. Given 

data input 𝑥𝑖(𝑖 = 1, 2, … , 𝑀), 𝑀 is the total number of samples. The samples are assumed to have 

two classes, positive and negative class. Each of the classes associates with labels for positive 

class and negative class, respectively. In the case of linear data, it is possible to determine the 

hyperplane that separates the given data. We only obtain 56.92% of accuracy.  

5.5. Logistic Regression 

Logistic regression is a popular regression analysis to conduct when the dependent 

variable is dichotomous (binary).  Like all regression analyses, logistic regression is a predictive 

analysis.  Logistic regression describes data and explains the relationship between one dependent 

binary variable and one or more nominal, ordinal, interval, or ratio-level independent variables. 

In our case, It produced 82.77% accuracy on the test dataset. The F-Score was 84.17%, which 

means the model is somwhow reliable.  
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6. RESULT DISCUSSION 

After building the model, the most important goal to evaluate the model with the help of 

the confusion matrix.  A confusion matrix is a table that is used to construct the performance of a 

classification model on a set of test data for which the class value is known.  

Table 10. Confusion matrix 

 Predict Class 

Actual Class  Class = Yes Class = No 

Class = Yes True Positive False Negative 

Class = No False Positive True Negative 

True positive and true negatives are the conjectures correctly predicted. Minimizing false 

positives and false negatives are essential. 

True Positives (TP) – The correctly predicted positive values: the value of the actual class 

is yes, and the value of the predicted class is also yes. For example, if the actual class 

value indicates it is an ‘Attack’, the predicted also implies ‘Attack’. 

True Negatives (TN) – The correctly predicted negative values, the value of the actual 

class is no, and the predicted class is also no. For example, if the actual class says ‘Not an 

attack’, the predicted class also implies the same. 

False Positives (FP) – The actual class is no, and the predicted class is yes. For example, 

if the actual class says ‘Attack’ but the predicted class tells ‘Not an attack’. 

False Negatives (FN) – The actual class is yes, but the predicted class is no. For example, 

if the actual class value indicates that ‘Not an attack’ and predicted class tells an ‘Attack’. 

Accuracy: The ratio of correctly predicted observation of the total observations. The 

accuracy is an excellent measure, but only when there are symmetric data in the dataset 



 

32 

where the number of false-positive and false negatives are almost the same. Therefore, 

there are other parameters to evaluate the performance of a model. 

Accuracy = TP+TN/TP+FP+FN+TN 

 

Fig 3. Accuracy comparison 

Precision: Precision is the ratio of accurately predicted positive observations of the total 

predicted positive observations. It is the percentage of network requests that are labeled 

as ‘Attack’, with respect to the actual ‘Attack’. 

Precision = TP/TP+FP 
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Fig 4. Precision comparison 

Recall (Sensitivity): Recall is the ratio of correctly predicted positive observations to all 

observations in actual class – ‘Attack’. 

Recall = TP/TP+FN 

 

Fig 5. Recall comparison 

F1 score: The F1 Score is the average of Precision and Recall. Therefore, this score takes 

both false positives and false negatives into account. F1 is usually more necessary than 
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accuracy, especially if there are uneven class distribution. Accuracy works best if false 

positives and false negatives have a similar cost. If the cost of false positives and false 

negatives are very different, it is better to look at both Precision and Recall. 

 

Fig 6. F-Measure comparison 
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Fig 7. Individual evaluation metrics analysis 

Based on our analysis, it proves that tree-based algorithms are best suited for software-

defined networks because the complexity of the tree-based algorithms is relatively low. But the 

efficiency is better than other computationally expensive algorithms. One of the significant 

drawbacks of tree-based algorithms is that the tree size and leaf nodes and liability pruned to 

overfitting. In this case, to avoid this issue, we have performed cross-validation to find out the 

suitable training and test combination. Also, to evaluate and find out the best decision tree, the 

Random Forest classifier is the best approach to implement on SDN. Because of the ensemble 

approach, Random Forest always selects the output of the best Decision Tree. So, after carefully 

analyzing the result, we may conclude that the Random Forest classifier on SDN is the best 

approach as the algorithms. But combined with feature engineering is the best way for network 

intrusion detection systems. 
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7. CONCLUSION 

Since the increment of usage of the internet on mobile devices is growing significantly, 

we need to build robust models to deploy security protocols and features. Feature reduction and 

model selection is the key approach to these researches. In this paper, we have successfully 

reduced the NSL KDD dataset's feature size by increasing the prediction accuracy using a 

random forest classifier. Tree-based ensembled methods are proven effective before, but with 

significant dimension, reduction not only lowered the complexity but also increased the 

prediction accuracy, which is the key factor of this research. Our future research will be 

continued on the dynamic feature selection procedure using a bagging algorithm to automate the 

machine learning algorithm selection based on the final feature list. Also, finding out suitable 

parameter tuning for the support vector machine (SVM) algorithm using different algorithms will 

be another key topic for further enhancing this paper. Network intrusion detection systems 

always prefer lower false-positive rates, and SVM is always proven efficient to increase recall. 

Future research on deploying these models and experiments on smart devices will be conducted 

to establish the real-world measurement of this research very soon. 
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