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ABSTRACT 

Remote sensing is becoming a significant tool utilized to study vegetation health and 

abundance. Vegetation indices (VIs) generated by active and passive remote optical sensors can 

be implemented in natural resource and agricultural decision-making processes. One such use of 

vegetation indices is to predict yield and protein contents for various crops. However, the 

application of VIs is limited due to land use differences and the time period when remote sensing 

information is most accurate. A literature search was conducted on VIs paying attention to how 

those are used with sensors mounted on small unmanned aerial vehicles (sUAV). The search 

found that there was a limited amount of literature being catered towards management decisions 

compared to scientific studies and systematic reviews. This makes it difficult for decision makers 

to review and stay updated on remote sensing practices and to incorporate remote sensing into 

field based management and policy making.  
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PREFACE 

Chapter 1 entitled, “Active and Passive Remote Sensing Application in Natural Resource 

Decision Making”, describes the background and importance of remote sensing in the 

environmental decision-making process. Here I discuss the importance of precision agriculture 

and the application of remote sensing vegetation indices and how they can aid land management 

decision making.  

Chapter 2 entitled, “Comparisons of Sensors to Predict Spring Wheat Grain Yield and 

Protein Content” is a manuscript I am a co-author on that was submitted to the Agronomy 

Journal detailing the methodology and results from a field study conducted on 16 sites across the 

Red River Valley of North Dakota and Minnesota for the 2019 and 2020 growing seasons. Dr. 

Amitava Chatterjee prepared the document while I was responsible for all the data collection, 

image processing, and grower communication. Additionally, I contributed to the statistical 

analysis, writing the methodology, and formatting of the figures and tables represented in the 

document.  
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1. ACTIVE AND PASSIVE REMOTE SENSING APPLICATION IN NATURAL 

RESOURCE DECISION MAKING 

1.1. Literature Review 

1.1.1. Importance of precision agriculture 

Global farmland (50 million km2) occupies nearly half of terrestrial land (104 million 

km2) (Ritchie and Roser, 2013). A growing population with limited amount of agricultural land, 

encourages farmers to maximize yield and reduce the environmental impact. An approach to 

managing resources is through precision agriculture (PA).  Precision agriculture is associated 

with all aspects of agricultural production for the purpose of improving environmental 

sustainability and crop performance (Radoglou-Grammatikis et al., 2020; Pierce and Nowak, 

1999; Shoshany et al., 2013). One aspect of PA is the application of remote sensing technologies 

and principles to manage spatiotemporal variability of crop health. 

Data collection via remote sensing can be achieved by either active or passive optical 

sensors. Active optical sensors are devices that are designed to produce their own 

electromagnetic radiation (ER) source and process the reflected optical signature on site instantly 

(Lamb et al., 2014).  Ambient illumination has no impact on active sensors allowing data 

collection to take place at any time. Passive optical sensors rely on sunlight for an ER source. 

The reliance on sunlight can introduce more variability and noise in what the passive sensor 

gathers impacting the quality of data collected. Cloud cover and intermittent ER conditions are 

just two of the conditions that can introduce variability and noise (Hatfield et al., 2008). These 

conditions apply to passive sensors designed to be installed on the bottom of small unmanned 

aircraft vehicles (sUAV).  
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The application of remote optical sensors can allow farmers to adjust land management 

practices to increase yield while maintaining sustainability (Weng et al., 2019; Searcy, 1997). 

Since the 1980s, remote sensing has been used to predict grain yield by collecting satellite data 

from the National Oceanic and Atmospheric Administration’s Advanced Very High-Resolution 

Radiometer (NOAA-AVHRR) (Bayarjargal et al., 2006; Tucker et al., 1985). In 2003, using the 

NOAA-AVHRR methodology, red normalized difference vegetation indices (RNDVI) values 

were used to estimate wheat yields at two different spatial resolutions in North Dakota by 

inputting the data into an agrometeorological model (Dorainswamy et al., 2003). Measurements 

were made in late June and early July when the crops were at approximately middle and final 

vegetative phases of crop development. The model indicated an r2 value of 0.7 with a root square 

mean error (RMSE) of 1.11. The higher RMSE is due to the error associated with the satellite’s 

inability to adjust to atmospheric conditions when collecting field data (Dorainswamy et al., 

2003). It is vital to reduce the impact of atmospheric conditions to increase the image quality 

collected by remote sensors. Currently, remote optical sensors have the ability to obtain 

multispectral banded data and analyze a wider range of VIs with better resolution. Improved 

resolution can extract more information stored in the image pixels (Nguy-Robertson et al., 2016).  

1.1.2. Applying vegetation indices 

 Analyzed optical sensor data in combination with recorded crop growth stages, can 

increase crop yield predictability (Becker and Schmidhalter, 2017; Inman et al., 2007). The 

optical sensor can do this by capturing electromagnetic radiation that is absorbed and reflected 

depending on the amount of leaf chlorophyll then creating a unique optical reflectance signature 

(Carlson and Ripley, 1997). Optical signatures can then be transformed to vegetation indices 

(VIs) like RNDVI. RNDVI is derived as follows: 
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RNDVI = NIR – Red / NIR + Red 

Where Red is the red wavelength of the ER spectrum centered on 668 nm and NIR is the Near-

infrared portion of the spectrum (700-1100nm). This wavelength separates the landscape into 

water, soil, and vegetation. Live plant leaves only reflect green light while absorbing the blue 

and red wavelengths. The human eye views a leaf to be green because the pigments of the leaf 

absorb all other visible wavelengths except for the wavelengths in the green region of the light 

spectrum. The visible reflection of the green light is a leaf pigment function, while the NIR 

radiation is reflected by the internal mesophyll structure of the leaf (Khamala, 2017).  After 

passing through the palisade tissue of the leaf and entering the internal leaf cavities, the NIR 

radiation is either transmitted or reflected. The RNDVI is higher with actively growing 

vegetation and lower for less actively growing vegetation and non-vegetative factors like soil and 

water (Khamala, 2017). 

 The interaction of ER wavelength and leaf function can be detected by the optical 

sensors and used to generate various VIs via different software. Past field studies and theoretical 

analyses have portrayed that VIs are related to photosynthetically active radiation and light-

dependent physiological processes (Gamon et al., 1995; Glen et al., 2008). Photosynthetic 

activity can indirectly measure the nitrogen status of crops. Additionally, practical studies have 

used time-series VIs to measure evapotranspiration (ET) and primary production of vegetation 

(Glen et al., 2008).  

Leaves without stressors like disease and poor water, sunlight, and nutrient availability, 

absorb blue and red light energy and reflect green light. Therefore, by analyzing a plant’s 

wavelength absorbance and reflectance, remote optical sensors can provide information about 

crop productivity and health (Khamala, 2017). Generally, a higher RNDVI value indicates 
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increased chlorophyll content that translates into a more biologically fit crop with an increase in 

plant size. Chlorophyll has the properties of reflecting green ER, while absorbing the red and 

blue ER (Blankenship, 2008). Remote optical sensors can detect this biological process to 

monitor the health status of the crop.  

Another VI is the red edge (RE) normalized difference vegetation index (RENDVI). 

RENDVI is derived as follows: 

RENDVI = NIR – RE / NIR + RE 

Where RE is the red edge wavelength of the ER spectrum centered at 717 nm. Similar to 

RNDVI, the higher RENDVI value can indicate a healthier crop. However, RENDVI uses a 

narrower band (± 5 nm), hence, the optical signature detects reflectance from further inside the 

vegetative canopy and data can be collected later in the growing season when the canopy is full 

(Jorge et al., 2019; Maccioni et al., 2001).  

The various VIs that have been developed in remote sensing can successfully monitor 

crop and soil nutrients, along with, estimating yields with high levels of accuracy (Martin et al., 

2012). Two VIs, RNDVI and RENDVI, have been shown to predict spring wheat (Triticum 

aestivum L.) yield (Gopp & Savenkov, 2019; Kouadio et al., 2014; Prey et al., 2018). The 

estimation of spring wheat yield is vital when establishing agricultural policies, creating regional 

and national food management plans, and promoting economic sustainability (Tuvdendorj et al., 

2019).  

Remote optical sensors and VI generation have been widely used for managing crop 

health and estimation of crop productivity. Numerous factors can contribute to the quality of VIs 

that impact the yield predictability (Gao et al., 2012). These include rainfall, air temperature, soil 

characteristics, leaf area, disease, ambient light conditions, growing degree days (GDD), and the 
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growth stage of the crop. One can take the optical sensor VIs and GDD to determine the crop 

growth stage that is best used for predicting in-season yield estimations (Raun et al., 2001). In 

general, the quantitative and qualitative predictability of remote sensor data has a higher level of 

accuracy of yield prediction with the increase in the GDD throughout the growing season. 

Significant relationships between RNDVI and GDD were found using active remote 

sensing crop sensors for spring wheat yield estimations in North Dakota for the 2012 and 2013 

growing seasons (Bu, 2014). The data reported r2 values ranging from 0.88 to 0.96. Using a 

regression model, a study done in Mongolia using passive remote sensing from satellites, 

collected VIs from the years 2000 to 2017 determined that RNDVI (r2 value of 0.55) was one of 

the most accurate VIs for predicting yield in spring wheat (Tuvdendorj et al., 2019). 

Additionally, the results portrayed that the ideal growth stage for yield estimations took place 

around the flowering stage for spring wheat.  

Some of these studies used satellite technology for VI collection, but research has shown 

that sUAV provide more information in terms of spatial variability (Fernández-Guisuraga et al., 

2018) and provided a higher resolution (Iizuka et al., 2018) when collecting vegetation and 

landscape data. By mounting a passive remote sensor on an aircraft like a sUAV, you alleviate 

the problems associated with using satellite acquired data. A major satellite problem is the 

inability to account for the current atmospheric conditions for the desired field area (Mkhabela et 

al., 2011). Fog and excessive cloud cover can reduce the image quality captured by the sensor 

that can decrease the accuracy of VI generation. Therefore, by attaching a passive optical sensor 

to a sUAV, one can initiate a pre-set flight plan at the ideal time frame when the atmospheric 

conditions are optimal (Mulla, 2013). The VIs produced with sensor readings from a sUAV can 

increase accuracy and precision, giving the producer the best available advice to improve yield.  
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 Exposed soil and low canopy cover create a low biochemical signal making it difficult for 

remote sensors to record VIs. A study conducted in Yellowstone National Park (Mirik et al., 

2005) looked at the potential of a hyperspectral 1-m remote sensor’s ability to reduce the time 

spent and spatial errors with traditional forage nutrient analysis. After analyzing data from a 

wide range of vegetative communities, they found there were no strong linear relationships (r2 

<0.3) between a variety of VIs and nitrogen, phosphorous, and neutral detergent fibers on a dry 

matter basis (g*g-1 x 100). The primary reason why this study exhibited a lack of relationship is 

due to the presence of excessive non-photosynthetic vegetation like bark, stems, and litter along 

with bare ground. However, a similar remote sensing study conducted by the same researchers 

(Mirik et al., 2005) in the same location, found significant results when analyzing RNDVI from 

the hyperspectral data and regressed against ground-collected biomass. Results indicated a strong 

relationship when collecting VIs from sedge, willow, and total biomass (r2>0.66). However, 

weak relationships were found between grass, forb, and litter biomass (r2<0.51). Similarly, the 

weak relationships were because of the presence of branch and twig materials that interfere with 

the spectral signal from the vegetation to the sensor. Therefore, VIs can be a useful tool to make 

land management decisions if the canopy cover for crops and other vegetation exceed that of the 

exposed soil and non-photosynthetic material.  

1.1.3. How decision makers can utilize remote sensing information 

 The National Research Council (2007) states that with a growing population and 

heightened concerns for human health and global food security, the application of remote sensing 

technology can be utilized to aid in the decision-making process in a more efficient manner 

(National Research Council, & Geographical Sciences Committee, 2007). As discussed before, 

the understanding that leaf reflectance changes with the physical and chemical characteristics of 
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the plant, along with the ability to detect emitted wavelengths and generate VIs, remote optical 

sensors can be a tool for nutrient status and yield predictions. Individuals such as, environmental 

consultants, land management specialists, and producers can identify and utilize these results for 

implementation into their environmental decision-making process (Hatfield et al., 2008).  

Both active and passive sensors have been known to provide similar VI readings. 

Previous studies found a close relationship between RNDVI collected by active and passive 

optical sensors (Erdle, et al., 2011; Fitzgerald, 2010; Gozdowski et al., 2020). Active optical 

sensors have been found to measure green cover with roughly the same amount of accuracy as 

passive optical sensors (Fitzgerald, 2010). Additionally, researchers found no difference in the 

performance of passive aerial sensors and ground-based active sensors (Krienke et al., 2017).  

Moreover, (Schut et al., 2018) found that spatial variability in sUAV derived VI values at the 

plot scale was significantly related to differences in yields and fertilizer responses.  

Since passive optical sensors can be mounted to a sUAV they can collect data over a 

greater surface area compared to handheld active sensors. Passive sensors are also less labor 

intensive because they can be flown automatically with the desired resolution and perimeter to 

cover. Active sensors require walking over larger areas while collecting a smaller amount of 

data. Not only is that method inefficient for large scale management, active sensor operation can 

increase disturbance to the land. Although passive sensors have the ability to cover a larger area 

more efficiently, the quality of data is dependent on the ambient light conditions. Ideally, if the 

technology for active optical sensors advances to be able to detect wavelengths from a greater 

distance, then those sensors can be mounted on sUAVs and be deployed at any time of day. 

Eliminating the ambient light factor can allow for more frequent data collection.  



 

8 

 

The use of scientific evidence is widely shared among public and private institutions, but- 

it has yet to be utilized widely in environmental policy and decision making (Sutherland et al., 

2004; Matzek et al., 2014; Cook et al., 2012; Dicks et al., 2014). When investigating if this lack 

of utilization in decision making applies to VIs from sUAV and active sensors, I proposed to 

survey the literature for applications in decision making. Out of all the research publications I 

reviewed it was estimated that 1 out of every 8 articles (approximately 50 total articles reviewed) 

about remote sensing had applicable information related to sUAVs and active sensors. This is 

less compared to the amount of satellite based remote sensing research (Lobell et al., 2003; Wu 

et al., 2015). I think if there is a greater push for sUAV based remote sensing information 

published in scientific journals with a focus on decision making, then we could see more sUAVs 

being utilized by decision makers. This is being accomplished to a certain extent by some 

universities in the United States which have extension publications related to sUAV applications 

(Adamchuk et al., 2020; Buckland et al., 2020; Purdue Extension, 2020). Still the lack of 

scientific journals publishing and requiring more focus on decision making is needed for the full 

utilization of VIs and sUAVs.  

My review of scientific literature found that communicating the use of VIs with sUAVs- 

is a practical and efficient method should be more abundant than what it is. I believe this issue 

stems from a communication barrier between researchers and other environmental professionals 

specializing in PA. Not in the transfer of information, but in the writing objectives and style 

(Dicks et al., 2014). Most scientific publications are written to be circulated within academia and 

utilized by fellow researchers, making it difficult for decision makers to review and incorporate 

sUAV based remote sensing results into the decision-making process. The burden for decision 

makers and those that advise them of staying updated on research literature when it is not written 
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to incorporate new knowledge into decision making needs to be continually addressed. Whether 

it is field based management or policy making, an increase in research and extension literature 

catered toward decision makers on the uses of sUAV remote sensing and applications of optical 

sensors can result in more environmentally and economically sustainable practices to manage our 

natural resources. 

1.2. Future Considerations 

Active and passive optical sensors manufactured for the agriculture industry will be 

utilized more frequently in the coming years. The positive relationships between the active and 

passive VI data collection and the effectiveness of yield predictability supports the increased 

implementation of remote sensing in agriculture production. As the technology improves, I 

foresee a future where sUAV can further minimize abiotic limitations or develop an active aerial 

sensor to eliminate ambient light dependence. The implementation of sUAV remote sensing can 

be a practical solution to aid in increasing crop yields while improving ecosystem health. 
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2. COMPARISONS OF SENSORS TO PREDICT SPRING WHEAT GRAIN YIELD AND 

PROTEIN CONTENT1 

2.1. Abstract 

Mapping of canopy vegetation indices can provide a spatial variability in grain yield 

before harvest. Canopy reflectance data from a hand-held active sensor (RapidScan CS-45) and a 

small unmanned aerial vehicle (sUAV)-based passive light optical sensor (Micasense RedEdge) 

were compared based on vegetation indices (VIs), red normalized vegetation (RNDVI) and red 

edge normalized vegetation (RENDVI). Potential of VIs to predict spring wheat (Triticum 

aestivum L.) grain yield and protein content were examined for data from 16 site-years in the 

Red River Valley of Minnesota and North Dakota. At each site, reflectance data were collected 

three times during June and July. Linear regression between two sensors showed a significant 

(p<0.05) relationship based on RNDVI (0.69) and RENDVI (0.55) values (n=48). At Feeks 

growth stages>12 RENDVI from both sensors could predict the grain yield; but only the 

RENDVI from sUAV-based passive sensor could predict the protein content at Feekes stages 

between five and eight. Use of sUAV based passive sensor has potential to predict grain yield 

and protein content but selecting the growth stage for collecting reflectance data is critical for the 

accurate prediction. 

 

 

1The material in this chapter was co-authored by Donald Veverka and Dr. Amitava Chatterjee. 

Donald Veverka had primary responsibility for collecting data in the field and for processing all 

raw imagery into generated VIs with supporting figures. Donald Veverka was the primary 

developer of the materials and methods that are advanced here. Donald Veverka also drafted and 

revised all versions of this chapter to fit the format as directed by the NDSU graduate school. Dr. 

Amitava Chatterjee served as proofreader and checked the math in the statistical analysis 

conducted by Donald Veverka. 
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2.2. Introduction 

Predicting the spatial variability in crop yield and quality before harvest is critical for 

precision farming (Marino & Alvino, 2020). Growers are interested in methods for estimating 

wheat grain yield and protein content at earlier growth stages (Goodwin et al., 2018). Remote 

sensing-based indices like red normalized vegetation index (RNDVI) and red edge normalized 

vegetation index (RENDVI) are sensitive to biomass and nitrogen (N) variability in crop 

canopies (Naser et al., 2020). Since the mid-1990s, orthomosaic images of canopy reflectance 

have been extensively used in making decisions for crop and nutrient management (Roberts et 

al., 2012; Sripada et al., 2006). Canopy reflectance data can be collected using active and passive 

sensors. Passive sensors depend on the sunlight whereas active sensors use an internal light 

source. Passive sensors require calibration and data processing techniques to rectify for sun 

angle, illumination, camera optics, rectification of imagery and require specialized software to 

analyze the imagery (Krienke et al., 2017). On-the-go active optical crop canopy sensors, such as 

GreenSeeker  (Trimble Navigation Limited, Sunnyvale, California, USA), Crop Circle, 

RapidScan (Holland Scientific Inc., Lincoln, Nebraska, USA) were extensively used to 

overcome the limitation of passive sensing devices and to minimize the effect of ambient light 

conditions on reflectance readings (Li et al., 2014; Tubana et al., 2011). However, currently 

available active sensors require close proximity to the target due to the light source intensity. 

Integration of sensor technologies, small unmanned aerial vehicle (sUAV), and image processing 

software have demonstrated their versatility and cost-benefits across a wide range of applications 

(Bendig et al., 2015; Kyratzis et al., 2017; Maimaitijiang et al., 2020). This study aims at 

comparing active (handheld) and passive (VIs derived by UAV imagery) sensors based on 
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RNDVI and RENDVI indices across spring wheat growers’ fields in the Red River Valley 

(RRV) of Minnesota and North Dakota.  

One important limitation to the widespread use of remote sensing tools is the lack of 

algorithms that would be reliable in a variety of soil and weather conditions (Bean et al., 2018; 

Samborski, et al., 2009). Bean et al. (2018) reported that active optical reflectance has been 

successful in generating fertilizer N demand to optimize N use efficiency in some fields, but 

locally derived algorithms have not been validated outside the region within which they were 

developed. Major challenges in developing algorithms are the selection of growth stages for 

monitoring canopy reflectance, and VIs suitable for the prediction at large spatial scale (Zhou et 

al., 2017). Several researchers (Bendig et al., 2015; Sharma et at., 2015) reported that visible 

band VIs work for early growing stages only. Within the red wavelength, green leaves have a 

reflectance of 20% or less in the 500-700 nm range; but the red edge and infrared wavelengths 

reflect as high as 60% in the 700 to 1300 nm range (Sharma et al., 2015). Further, (Aparicio et 

at., 2000) found that the best correlation between vegetation indices like RNDVI and yield was 

achieved at anthesis; but in the irrigated environment, the significant relationship between IS and 

yield was restricted to later stages of durum winter wheat (Triticum turgidum L.). Kryatzis et al. 

(2017) found both positive and negative correlations between yield and canopy reflectance 

during grain filling of durum wheat, indicating that environmental conditions at grain filling 

could affect the relationship.  

Before wide application of precision tools, we should validate the relationship between 

active and passive sensors across large spatial scale. Spring wheat occupies a significant 

agricultural land in the RRV of North Dakota and Minnesota. It is critical to identify ideal 

growth stages to develop algorithms for spring wheat grain yield and protein content prediction 
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using active and passive sensors. Main objectives of this study were to (i) determine the 

relationships of VIs determined by active and passive sensors, (ii) determine changes in VIs over 

growing seasons, (iii) develop algorithms to predict grain yield and protein content using VIs 

from active and passive sensors, and (iv) identify growth stage(s) suitable for yield and protein 

prediction. 

2.3. Materials and Methods 

Canopy reflectance data were collected from sixteen spring wheat growers’ fields located 

across the Red River Valley of Minnesota and North Dakota during 2019 and 2020 growing 

seasons (eight sites each year). Location, spring wheat cultivar, previous crop and fertilizer N 

application rate of these fields are presented in Table 1. More detailed site and crop management 

information are presented in Appendix Table 1. All fields are conventionally tilled. After 

growers planted their field, a representative plot area, 30 m long and 15 m wide, was established 

for making reflectance measurements. Canopy reflectance data was collected using a handheld 

active light optical sensor (RapidSCAN CS-45, Holland Scientific Inc., Lincoln, NE) and a 

passive light optical sensor, MicaSense RedEdge (Micasense Inc., Seattle, WA) attached to a 

sUAV, DJI Matrice 100 (DJI, Shen Zhen, China). For both years, three observations of canopy 

reflectance were collected using both sensors (on the same day) during June and July (Appendix 

Table 2). 
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Table 1. Geographic location, spring wheat cultivar, previous crop, grain yield and protein 

concentration of sixteen growers’ fields (NA: not available) 
Site Location Cultivar Previous 

Crop 

Fertilizer-N Grain 

Yield 

Protein 

    kg N ha-1 Mg ha-1 g kg-1 

2019       

Argyle, MN 48°18’22.6”N 

96°56’12.4”W 

Westbred9590 Soybean 157 1.66 162 

Gentilly, MN 47°47’9.51”N 
96°56’45.0”W 

Westbred9590 Soybean 162 1.42 133 

Dorothy, MN 47°55’14.1”N 

96°29’43.3”W 

Linkert Soybean 151 2.95 149 

Mahnomen, MN 47°30’31.2”N 

95°53’56.2”W 

Trigger Soybean 168 2.83 106 

Ada, MN 47°23’44.5”N 

96°41’3.12”W 

Shelly Soybean 179 1.53 157 

Red lake Falls, 

MN 

47°49’53.2”N 

96°14’47.1”W 

Ingmar Soybean 134 1.66 158 

Thief River Falls, 

MN 

48°2’3.82”N 

96°14’38.9”W 

Valda Soybean 100 1.91 124 

Rustad, MN 46°43’13.4”N 

96°41’51.6”W 

Bollers Soybean 123 1.59 168 

2020  

Argyle, MN 46°36’25.2”N 

96°36’55.4”W 

Westbred9479 Soybean 184 4.72 147 

Gentilly, MN 47°46’44.0”N 

96°27’30.9”W 

Westbred9590 Soybean 175 4.86 122 

Ada_GM, MN 47°21’10.6”N 

96°25’10.5”W 

AgriPro Soybean 169 5.82 153 

Ada, MN 46°15’12.3”N 

96°27’30.2”W 

Valda Spring Wheat 142 2.87 157 

Fosston, MN 47°30’40.8”N 
95°48’39.6”W 

Rebel Sugarbeet 134 5.26 160 

Casselton, ND 46°52’38.2”N 

97°15’15.1”W 

NA NA NA 6.65 133 

Rustad-no tile, 

MN 

46°43’4.5”N 

96°42’7.92”W 

Prosper Sugarbeet 190 10.6 179 

Rustad-Tile, MN 46°36’25.2”N 

96°36’55.4”W 

Lang Sugarbeet 168 7.59 180 

 
Observation dates for three sets of readings were different across sites; because of time 

limitation, as passive sensor readings need to be collected around solar noon, and long travelling 

duration between sites. During 2019, 1st, 2nd, and 3rd set of readings were collected during Jun 

18, 19 and Jun 26, July 12 and July 16, and July 22nd and 23rd, respectively. Next year, 1st, 2nd, 

and 3rd readings were collected on June 5, 11, and 12, June 19, 22 and 22, and July 10, 15 and 

16, respectively. First set of readings corresponds to Feekes growth stages 5-9, and 2nd and 3rd 

readings were taken at stages>12.  
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The active sensor has an internal GPS and a polychromatic light source with spectral 

bands, 670 nm, 730 nm and 780 nm. Canopy reflectance data was collected by walking at a 

constant pace and held at a constant height and data was downloaded by RapidTALK software 

(Holland Scientific Inc., Lincoln, Nebraska, USA). The passive optical sensor measures five 

wavelengths, blue (475 nm), green (560 nm), red (668 97 nm), near infrared or NIR (840 nm) 

and red edge (717 nm). The sUAS was flown at a constant elevation of 91 m at a speed of 8 m s-

1, with 80% side and frontal image overlap. Before and after the flight for each observation day, 

calibrated reflectance panel image was taken to adjust light conditions during flight. The sUAV 

flight was maneuvered using DJI Ground Station Pro applications on an Ipad Mini (Apple, 

Cupertino, CA). Images were collected during solar noon, between 10.00 and 14.00 h, to ensure 

consistent light conditions. Raw pixel values of orthomosaic images were transformed to 

absolute spectral radiance values provided by Micasense. Spectral radiance values of the plot 

area were analyzed using Pix4D software (Pix4D, Lausanne, Switzerland).  

Vegetation indices RNDVI and RENDVI of active and passive sensors were calculated 

using the following equations.  

RNDVI= (NIR - Red)/(NIR + Red) 

RENDVI= (NIR - Red edge)/(NIR + Red edge) 

At maturity, grain yield was determined by hand harvesting four representative subplots of 9 m 

by 0.3 m. Grain moisture and protein content were determined using near infrared analyzer. 

2.4. Statistical Analysis  

Exploratory statistical analyses of soil properties applied fertilizer-N, grain yield and 

protein content were studied across eight sites during 2019-2020 growing seasons. Relationships 

between active and passive sensors were determined for vegetation indices, RNDVI and 
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RENDVI using linear regression curve fit at 95% significance level using SAS Enterprise Guide 

7.1 (SAS Institute Inc., Cary NC). Linear regression coefficients and significance of the model 

between vegetation indices of active and passive sensors and grain yield and protein content 

were determined for three observation dates of two growing seasons. 

2.5. Results and Discussion 

2.5.1. Site and growing season condition 

Monthly rainfall and average temperature data of all sites were collected from the nearest 

North Dakota Agriculture Weather Network stations (https://ndawn.ndsu.nodak.edu/) are 

presented in Appendix Table 2. Both growing seasons have early dry condition and extreme wet 

during late growing season. Most sites have a medium-textured soil except for the Casselton site 

in 2020 (Appendix Table 1). Soils are neutral to alkaline with organic matter content. Initial 

available phosphorus and potassium had a wide range from very low (16 g kg-1), and low (41-80 

g kg-1) to very high (>151 g kg-1). In most cases, soybean was previous crop and growers used a 

wide range of cultivars. Amount of fertilizer-N ranged between 100-190 kg N ha-1 with a mean 

value of 150 kg N ha-1. Wheat was planted in between April 21 to May 15 and harvested within 

Aug. 12 for both seasons (Appendix Table 1). In 2020, average grain yield and protein 

concentration of 5.96 Mg ha-1, 157 g kg-1, respectively, were higher than respective values (1.94 

Mg ha-1, 145 g kg-1, respectively) in 2019 growing season (Table 1). 

2.5.2. Relationship between active and passive sensors 

Considering readings collected at three observation dates from sixteen sites during 2019 

and 2020 (n=48), RNDVI and RENDVI readings of passive sensor had a significant relationship 

with active sensor (Fig. 1). Passive sensor can explain 69% and 55% of variability in RNDVI 

and RENDVI readings of active sensor with error values of 5% and 7%, respectively. According 
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to the slope value of linear fit, passive sensor underestimate RNDVI values and overestimate 

RENDVI values. Previous studies (Erdle et al., 2011; Fitzgerald, 2010; Gozdowski et al., 2020) 

also found a close relationship between RNDVI collected by active and passive sensors. (Schut 

et al., 2018)) found that spatial variability in sUAV derived VI values at the plot scale was 

significantly related to differences in yields and fertilizer responses. Fitzgerald (2010) found that 

active sensor appears to be able to measure green cover with about the same accuracy as passive 

sensors. Erdle et al. (2011) observed testing and comparing one bi-directional hyperspectral 

passive sensor and three active sensors, the shoot biomass and N status wheat could well be 

estimated across two growing seasons. Researchers also found no difference in the ability of 

aerial and ground-based active sensors (Krienke et al., 2017). Godzowski et al. (2020) reported 

that a linear model might be adequate to describe the relationship between ground and satellite-

based RNDVI; but it was difficult to obtain a perfect 1:1 relationship due to differences in 

wavelengths of Red and NIR reflectance, and dates of data acquisition. 
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Figure 1. Linear regression fit of vegetation indices, (a) RNDVI and (b) RENDVI data 

collected using handheld active and sUAV based passive sensors from sixteen spring wheat 

fields during 2019 and 2020 growing seasons 
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2.5.3. Prediction of grain yield 

Changes in RNDVI and RENDVI from active and passive sensors for three observations 

across sixteen sites during 2019 and 2020 are presented in Appendix Table 3. Both, RNDVI and 

RENDVI readings of both sensors dropped from 1st to 3rd observation date. The decrease in 

RNDVI at the end of the season was attributed to leaf senescence and physiological maturity 

which increased red band reflectance and decreased NIR band reflectance (Naser et al. 2020). 

Linear regression coefficient (r2) and p value of F statistics, for the relationships between grain 

yield and protein concentration with vegetation indices from active and passive sensors’ 

reflectance data, are presented in Table 2. Grain yield showed a significant linear relationship 

with the third set of RENDVI readings i.e., at Feekes stages>12 of both sensors for both years.  

For the rice grain yield prediction, Zhou et al. (2017) found that VIs composed of red 

edge band (720 mm) and near infrared band (800 mm) were effective. It is important to note that 

active sensor has higher r 2 value than passive sensor in 2019; but the opposite trend was 

observed in 2020. Better performance of RENDVI over RNDVI in yield prediction particularly 

at late growth stages was also observed by several researchers (Bendig et al., 2015; Guan et al., 

2019; Sharma et al., 2015). Bendig et al. (2015) concluded that visible band VIs work only for 

early growing stages only. Ability and accuracy of wheat grain yield prediction increased as the 

growing season progressed from Feekes 3 to 10 stages for a 22 site-years of N fertility trials 

(Bushong et al., 2016). Values of RNDVI were highly correlated to yield (r2= 0.601- 0.809) from 

the middle reproductive to early ripening stage (Guan et al., 2019). Naser et al. 174 (2020) 

reported RNDVI showed significant relationship with yield at the anthesis and mid-grain filling 

growth stages only, when the sensor is not saturated i.e., NDVI. In this study, RNDVI values are 
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Table 2. Regression coefficient among vegetation indices (RNDVI and RENDVI) measured by passive (Micasense) and active 

(RapidScan) sensors at three different growth stages during growing seasons (Flight 1-Tillering, Flight 2-Stem Extension, 

Flight 3-Heading) and wheat grain yield and protein at 16 sites in the Red River Valley of ND and MN during 2019 and 2020 

growing seasons (Bold values indicate significant relationship at 95% significance level) 

Year Sensor Indices Readings  Grain yield (Mg ha
-1

)                          Protein (g kg
-1

) 

      Model      r2 Pr>F    Model            r2 Pr>F 

2019 Micasense RNDVI 1st  0.01 0.79  0.08 0.49 

   2nd  0.03 0.66  0.09 0.45 

   3rd  0.43 0.07  0.39 0.09 

  RENDVI 1st  0.26 0.20  342x-19.1      0.60 0.02 

   2nd  0.01 0.77  0.05 0.60 

   3rd 11.2x-3.89 0.55 0.03  0.21 0.25 

 RapidScan RNDVI 1st  0.01 0.79  0.11 0.42 

   2nd  0.03 0.65  0.12 0.40 

   3rd  0.21 0.25  0.23 0.22 

  RENDVI 1st  0.01 0.98  0.21 0.25 

   2nd  0.01 0.82  0.21 0.25 

   3rd 22.1x-4.53 0.69 0.01  0.35 0.12 

2020 Micasense RNDVI 1st  0.18 0.29  0.43 0.07 

   2nd  0.04 0.63  0.41 0.08 

   3rd  0.46 0.06  0.02 0.72 

  RENDVI 1st  0.28 0.17  162x+99.9     0.51 0.04 

   2nd  0.12 0.40  169x+66.6     0.61 0.02 

   3rd -21.4x+15.9 0.63 0.01  0.08 0.50 
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Table 2. Regression coefficient among vegetation indices (RNDVI and RENDVI) measured by passive 

(Micasense) and active (RapidScan) sensors at three different growth stages during growing seasons (Flight 1-

Tillering, Flight 2-Stem Extension, Flight 3-Heading) and wheat grain yield and protein at 16 sites in the Red 

River Valley of ND and MN during 2019 and 2020 growing seasons (Bold values indicate significant relationship 

at 95% significance level) (continued) 

Year Sensor Indices Readings  Grain yield (Mg ha
-1

)                          Protein (g kg
-1

) 

      Model      r2 Pr>F    Model            r2 Pr>F 

 RapidScan RNDVI 1st  0.06 0.55  0.13 0.38 

   2nd  0.11 0.42  0.01 0.97 

   3rd  0.40 0.09  0.02 0.75 

  RENDVI 1st  0.11 0.42  0.25 0.20 

   2nd  0.01 0.86  0.25 0.21 

   3rd -37.2x+16.2 0.51 0.04  0.06 0.53 
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close to 0.8-0.9 since our 1st reading. Once leaves completely cover the row, RNDVI readings 

fall into narrow range, making it difficult to yield predictions (Sharma et al., 2015) 

2.5.4. Prediction of grain protein concentration 

For both seasons, RENDVI of sUAV based passive sensor was significantly correlated 

with protein during first observation. In 2020, second observation of RENDVI using passive 

sensor was also correlated to protein content (Table 2). This study was comprised of 12 cultivars 

with protein concentration ranging between 106 to 180 g kg-1 (Table 1). For both years, the 

highest r2 value was close to 0.6, indicating it can explain approximately 60% variation in 

protein content. Grain protein content is a product of the N assimilated by the crop prior to grain 

filling and of the prevailing growing season conditions (Masclaux-Daubresse et al., 2010). 

Several studies showed poor or no relationship between grain protein and VIs particularly with 

RNDVI (Aranguren et al., 2020; Dhillon et al., 2020; Wang et al., 2019). Magney et al. (2017) 

also found that RENDVI was the best predictor, explaining 81% of the variance in wheat N 

uptake. The red edge band is the transitional region between the visible red and NIR bands and is 

more sensitive to chlorophyll content and N concentrations in grain; therefore, it is more likely to 

reflect within-field spatial and temporal variations in N level during wheat development (Wang 

et al. 2019). This study showed that acquired high resolution orthomosaic imagery from sUAV 

based passive sensor gives researchers and growers enormous advantages for accurate and cost-

effective measurements of wheat grain yield and protein content. Similar to Raun et al. (2005), 

these results also indicate that yield prediction equations for spring wheat can be established with 

only 2 years of field data acquired from a small portion of the field area. However, it is critical to 

validate these findings for the other part of region.
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Table A1. Soil properties, fertilizer management, and date of planting and harvesting of sixteen spring wheat fields 

Site Texture BD pH OM Olsen-P Available K Fertilizer management Planting 

Date 

Harvesting 

Date 

  Mg m-3  g kg-1 g kg-1 g kg-1    

2019          

Argyle, MN Sandy clay 

loam 

1.23 8.2 52 21 361 157 kg N ha-1 with N serve Apr. 25 Jul. 30 

Gentilly, MN Sandy clay 

loam 

1.39 7.1 51 18 242 Fall urea 145 kg N ha-1 

and starter (12-40-0-10-1) 

at the rate112 kg ha-1 

May 9 Jul. 30 

Dorothy, MN Sandy 

loam 

1.40 8.2 38 10 80 Fall anhydrous NH3 at 

151 kg N ha-1 

May 15 Aug. 5 

Mahnomen, MN Sandy clay 

loam 

1.31 7.1 57 19 159 Spring anhydrous NH3 at 

159 kg N ha-1 and 84 kg 
ha-1 of 11-52-0 

May 10 Aug. 2 

Ada, MN Sandy clay 

loam 

1.65 7.8 37 24 189 179 kg N ha-1, 66 kg P2O5 

ha-1 

May 14 Aug. 2 

Red lake Falls, MN Sandy 

loam 

1.37 8.0 29 11 97 Fall 134 kg N ha-1 May 10 Aug. 1 

Thief River Falls, MN Sandy 

loam 

1.24 8.3 42 11 103 Spring 100 kg N ha-1 May 9 Aug. 1 

Rustad, MN Sandy clay 

loam 

1.17 7.8 57 20 278 Fall 123 kg N ha-1 May 7 Jul. 31 

2020          

Argyle, MN Silty clay 1.05 8.3 53 3 279 364 kg N ha-1 urea (167 kg 

N ha-1) and 90 kg N ha-1 
11-52-0 ha-1 (10 kg N ha-1 

May 11 Aug.12 

Gentilly, MN Loam 1.25 8.3 20 6 67 336 kg urea ha-1 (155 kg N 

ha-1) 168 kg MESZ N 

(12-40-0-10-1) ha-1 (20 kg 

N ha-1) 

May 12 Aug. 4 
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Table A1. Soil properties, fertilizer management, and date of planting and harvesting of sixteen spring 

wheat fields (continued) 

 

Site Texture BD pH OM Olsen-P Available K Fertilizer management Planting 

Date 

Harvesting 

Date 

  Mg m-3  g kg-1 g kg-1 g kg-1    

 

Ada_GM, MN Sandy 

loam 

1.03 8.5 16 3 59 Spring 344 kg ha-1 urea 

and 56 kg ha-1 of 11-52-0 
and 112 kg ha-1 of MOP 

May 4 Aug. 4 

Ada, MN Sandy clay 

loam 

0.99 8.6 31 7 95 Spring 291 kg ha-1 of urea 

and 90 kg ha-1 of 9-42-12 

May 11 Aug. 12 

Fosston, MN Sandy clay 

loam 

1.06 8.4 23 10 97 Spring 157 kg ha-1 of 

Anhydrous NH3 and 44 kg 

ha-1 of 11-52-0 

May 5 Aug. 12 

Casselton, ND Clay loam 1.11 7.7 51 4 289 N/A N/A Jul. 30 

Rustad-no tile, MN Sandy clay 1.14 8.3 30 8 181 190 kg N ha-1, 56 kg P2O5 

ha-1, 11 kg K2O ha-1 and 

16 kg S ha-1  

Apr. 21 Jul. 28 

Rustad-Tile, MN Sandy clay 

loam 

1.25 8.5 35 5 80 168 kg N, 45 kg P2O5 and 

11 kg K2O ha-1  

Apr. 25 Jul. 28 
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Table A2. Monthly rainfall (mm) and average air temperature (c) for the field sites used to collect active and passive remote 

sensing data, located across Minnesota and North Dakota during 2019 and 2020 growing seasons. 

  Total Rainfall (mm)   Avg. Air Temp. (C) 

Site April May June July August  April May June July August 

     2019       

 

Ada 26(-10) 63(-20) 68(45) 103(10) 

 

94(24) 

 

5(-1) 11(-2) 18(0) 21(0) 18(-2) 

Rustad 15(-26) 56(-24) 81(-24) 136(55) 70(2.6)  6(-1) 11(-3) 20(0) 22(0) 20(-3) 

Mahnomen 30(-11) 50(-25) 66(-57) 94(6) 105(26)  5(-1) 10(-3) 19(1) 21(0) 18(-2) 

Dorothy 37(11) 42(-26) 64(-25) 106(26) 111(38)  5(0) 11(-2) 19(1) 21(0) 18(-1) 

Red Lake Falls 37(11) 42(-26) 64(-25) 106(26) 111(38)  5(0) 11(-2) 19(1) 21(0) 18(-1) 

Gentilly 37(11) 42(-26) 64(-25) 106(26) 111(38)  5(0) 11(-2) 19(1) 21(0) 18(-1) 

Thief River Falls 18(-14) 45(-31) 43(-71) 95(10) 59(-38)  4(-2) 10(-3) 18(0) 20(0) 17(-2) 

Argyle 13(-12) 47(-23) 83(-11) 102(32) 119(42)  4(-2) 10(-2) 18(0) 20(0) 18(-2) 

            

     2020       

    Rustad (Tile) 40(-18) 80(-47) 85(-20) 154(73) 134(66)  4(-3) 12(-2) 21(2) 22(0) 20(-1) 

Rustad (No Tile) 40(-18) 80(-47) 85(-20) 154(73) 134(66)  4(-3) 12(-2) 21(2) 22(0) 20(-1) 

Casselton 39(5) 38(-34) 67(-32) 133(63) 122(57)  4(-3) 13(-1) 22(2) 23(2) 21(0) 

Fosston 28(-12) 21(-54) 74(-48) 101(13) 163(84)  3(-3) 11(-2) 20(2) 22(1) 20(0) 

Ada  22(-14) 34(-49) 57(-57) 103(10) 158(89)  3(-3) 12(-1) 21(2) 22(1) 20(-1) 

Ada GM 22(-14) 34(-49) 57(-57) 103(10) 158(89)  3(-3) 12(-1) 21(2) 22(1) 20(-1) 

Gentilly 12(-14) 33(-36) 100(12) 106(26) 78(5)  3(-3) 12(-1) 21(3) 22(2) 20(0) 

Argyle 8.4(-17) 24(-45) 102(8) 112(42) 80(2)  2(-3) 11(-1) 19(1) 21(0) 19(0) 
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Table A3. Vegetation indices collected from passive (Micasense) and active sensors 

(RapidScan) at three different dates for sixteen wheat fields across Minnesota and North 

Dakota during 2019 and 2020 growing seasons 

 
Site Date DAP GDD Rain Stage Active sensor            Passive sensor 

      RNDVI RENDVI RNDVI RENDVI 

     2019     

Rustad 18-Jun 54 711 67.6 8.2 0.82 0.37 0.88 0.48 

 12-Jul 78 1208 241.7 >12 0.87 0.42 0.92 0.61 

 22-Jul 88 1434 277.5 >12 0.75 0.29 0.88 0.54 

TRF 19-Jun 41 583 42.4 6.6 0.71 0.32 0.83 0.42 

 16-Jul 68 1131 149.7 >12 0.75 0.33 0.91 0.60 

 23-Jul 75 1268 154.6 >12 0.69 0.28 0.87 0.54 

RLF 19-Jun 40 576 42.4 6.5 0.76 0.34 0.87 0.47 

 16-Jul 67 1123 149.7 >12 0.75 0.33 0.87 0.55 

 22-Jul 73 1241 154.6 >12 0.69 0.28 0.83 0.49 

Ada 18-Jun 35 525 93.8 5.9 0.78 0.32 0.86 0.53 

 12-Jul 59 1001 206.1 11.8 0.83 0.38 0.93 0.61 

 22-Jul 69 1221 219.3 >12 0.72 0.29 0.86 0.51 

Mahnomen 19-Jun 40 596 70.1 6.7 0.78 0.32 0.87 0.40 

 12-Jul 63 1059 174.3 >12 0.77 0.35 0.93 0.62 

 22-Jul 73 1276 185.8 >12 0.79 0.34 0.91 0.59 

Dorothy 26-Jun 42 631 123.8 7.2 0.86 0.39 0.91 0.49 

 16-Jul 62 1050 210.4 >12 0.80 0.36 0.90 0.58 

 23-Jul 69 1187 213.7 >12 0.74 0.31 0.88 0.54 

Gentilly 26-Jun 48 754 98.3 8.7 0.85 0.38 0.91 0.50 

 16-Jul 68 1178 190.1 >12 0.81 0.34 0.90 0.58 

 23-Jul 75 1319 199.3 >12 0.75 0.28 0.86 0.46 

Argyle 26-Jun 62 802 139.3 9.3 0.83 0.38 0.90 0.54 

 16-Jul 82 1221 225.9 >12 0.74 0.34 0.90 0.61 

 23-Jul 89 1358 229.2 >12 0.65 0.27 0.83 0.50 

     2020     

Rus_Tile 5-Jun 41 557 35.3 6.3 0.54 0.23 0.70 0.33 

 19-Jun 55 854 97.8 10 0.76 0.33 0.89 0.54 

 10-Jul 76 1324 178.6 >12 0.67 0.26 0.80 0.43 

Rus_NT 5-Jun 45 601 36.1 6.8 0.82 0.34 0.89 0.46 

 19-Jun 59 898 98.6 10.5 0.79 0.36 0.91 0.60 

 10-Jul 80 1368 179.4 >12 0.53 0.20 0.65 0.31 

Casselton 5-Jun 38 523 38.9 5.8 0.69 0.27 0.73 0.31 
 

19-Jun 52 828 88.5 9.7 0.81 0.34 0.90 0.50 
 

10-Jul 73 1312 144.3 >12 0.72 0.30 0.80 0.45 
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Table A3. Vegetation indices collected from passive (Micasense) and active sensors 

(RapidScan) at three different dates for sixteen wheat fields across Minnesota and 

North Dakota during 2019 and 2020 growing seasons (continued) 
 

Site Date DAP GDD Rain Stage Active sensor            Passive sensor 

      RNDVI RENDVI RNDVI RENDVI 

Ada  11-Jun 31 508 51.6 5.6 0.71 0.30 0.74 0.35 
 

24-Jun 44 768 60.2 8.9 0.82 0.36 0.91 0.56 
 

15-Jul 65 1257 99.1 >12 0.73 0.32 0.84 0.53 

Ada GM 11-Jun 38 554 70.4 6.2 0.83 0.33 0.86 0.42 
 

24-Jun 51 814 79 9.5       0.87 0.39 0.92 0.58 
 

15-Jul 72 1304 117.9 >12       0.68        0.27       0.83       0.48 

Fosston 11-Jun 37 524 70.6 5.8       0.81        0.30       0.84       0.36 
 

24-Jun 50 772 86.6 9       0.86        0.38       0.92       0.56 
 

15-Jul 71 1244 116.6 >12       0.72        0.27       0.83       0.48 

Gentilly 12-Jun 31 508 30.7 5.6       0.50        0.18       0.46       0.19 
 

22-Jun 41 711 54.1 8.2       0.76        0.28       0.68       0.31 
 

16-Jul 65 1258 164.4 >12       0.57        0.23       0.72       0.41 

Argyle 12-Jun 31 474 63.8 5.2       0.58        0.20       0.66       0.24 
 

22-Jun 41 660 73.9 7.6       0.83        0.34       0.88       0.47 
 

16-Jul 65 1163 172.1 >12       0.77        0.33       0.92       0.60 

 

 




