
EXPLORING FRAMEWORKS FOR RAPID VISUALIZATION OF VIRAL PROTEINS 

COMMON FOR A GIVEN HOST 

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

By 

Rajesh Subramaniam 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

Major Department: 

Computer Science 

 

 

 

 

April 2019 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 

 

 

EXPLORING FRAMEWORKS FOR RAPID VISUALIZATION OF 

VIRAL PROTEINS COMMON FOR A GIVEN HOST 

  

  

  By   

  
Rajesh Subramaniam 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Anne Denton 

 

  Chair  

  
Dr. Changhui Yan 

 

  
Dr. Sangita Sinha 

 

  
 

 

    

    

  Approved:  

   

 May 14, 2019   Dr. Kendall Nygard   

 Date  Department Chair  

    



 

iii 

ABSTRACT 

Viruses are unique organisms that lack the protein machinery necessary for its 

propagation (like polymerase) yet possess other proteins that facilitate its propagation (like host 

cell anchoring proteins). This study explores seven different frameworks to assist rapid 

visualization of proteins that are common to viruses residing in a given host. The proposed 

frameworks rely only on protein sequence information. It was found that the sequence similarity-

based framework with an associated profile hidden Markov model was a better tool to assist 

visualization of proteins common to a given host than other proposed frameworks based only on 

amino acid composition or other amino acid properties. The lack of knowledge of profile hidden 

Markov models for many protein structures limit the utility of the proposed protein sequence 

similarity-based framework. The study concludes with an attempt to extrapolate the utility of the 

proposed framework to predict viruses that may pose potential human health risks. 
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1. INTRODUCTION 

Pattern identification is central to several fields of study like drug discovery, forecasting, 

cybersecurity, network analyses, etc. Rising drug development costs and higher benefits to risk 

ratio expectations for newer drugs have led more pharmaceutical companies to adopt artificial 

intelligence to accelerate the drug discovery process (Fleming, 2018). The urgency for a rapid 

drug discovery process is also accentuated by uncertainties caused by global warming (Kurane, 

2010) and evolution of drug-resistant microbes (Blair, 2018). While availability of newer modes 

of treatment like biosimilars, biologics, stem cells, gene therapy, etc. along with classical 

methods like vaccination and chemical synthesis (Mignani, Huber, Tomás, Rodrigues, & 

Majoral, 2016) expands drug development options, they also make accelerated drug development 

imperative besides other factors like patent expirations. The expectations for quicker drug 

discovery also stem from the fact that clinical trial data spanning decades are available (e.g. 

Project Data Sphere®) that can be mined to obtain crucial insights for drug development. 

Data mining is the interdisciplinary study of extracting knowledge (correlations, patterns, 

associations, classes and/or clusters) from large seemingly unrelated datasets often utilizing prior 

subject knowledge. The field lies at the intersection of computer science, statistics and database 

design and applies the principles to other areas of study like bioinformatics, climatology, finance, 

social networks, etc. It encompasses several forms of study like frequent pattern identification, 

association rule mining, clustering, and classification. Data mining studies can be carried out to 

obtain: 

• algorithms to efficiently prune large datasets by applying statistical principles and 

other subject matter knowledge (e.g. knowledge of amino acid sequence 

responsible for cellular localization can be used to classify protein datasets) 
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• graphs that summarize relevant information distilled out of large datasets (e.g. 

mining protein 3D structure motifs) 

• identification of frequent item sets, patterns and association rules 

In this dissertation, several frameworks are explored to graphically summarize the 

number of viral proteins that are common for a given host as a first step toward pattern 

identification of viral protein expressions for a given host. 

1.1. Problem Statement 

Drug development is a slow and costly enterprise. Rendering a protein that is crucial for a 

targeted pathology dysfunctional with a drug is one mode of treating the pathological condition. 

Viral infections are pathological conditions in which a virus recruits host organism’s protein 

machinery for its own propagation while utilizing their own proteins for entering other cells in 

the host. Identifying a viral protein that supports any aspect of a virus life cycle can provide a 

potential drug target to treat the viral infection. The said protein can be rendered dysfunctional 

with a drug disrupting the virus life cycle and be a treatment option for the viral infection. 

Identifying the targeted protein in several viruses can potentially increase the scope of viral 

infections that could be targeted with the same drug. In other words, identifying a viral protein or 

a set of proteins that are common amongst the viruses infecting a host can potentially accelerate 

drug development by expanding the scope of a drug developed for treating one viral infection to 

treat several viral infections. 

A simple framework that can accurately classify related proteins (either based on 

sequence, structure, function or all) can be highly beneficial to identify common protein 

expression sets across different viruses for a given host. The challenge for developing such a 

framework is that these protein sets potentially have very different specific amino acid sequences 
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(primary protein structure) as they are coded for by different gene sequences of the various 

viruses and the transcription/translation fate the transcribed messenger ribonucleic acids 

(mRNAs) could potentially undergo in the respective viruses. 

This study proposes seven different simple frameworks to facilitate the identification and 

visualization of protein sets common for different viruses infecting a host. The proposed 

frameworks were calculated using only the protein amino acid sequence and can be classified 

either as sequence similarity-based, amino acid-composition-based, amino acid behavior-based 

(e.g., the retention time of a polypeptide containing the amino acid under consideration) or 

specific sequence-based frameworks. Protein structure and function were not considered for 

developing a framework in this initial study. This thesis explores the utility of the proposed 

frameworks in identifying protein expression sets common for various viruses infecting a host. 

This study also proposes a potential utility of the frameworks by predicting viruses residing in 

other hosts that could pose a potential health risk for humans. 

Figure 1 summarizes the study method and objectives of the study. Briefly, the virus 

dataset was retrieved from National Institutes of Health (NIH) repository as a text file. The 

dataset was parsed to identify each virus, its host and the protein sequences expressed by the 

virus using Python. The retrieved information (virus, host and viral protein expression sequences 

reported) were saved in a MySQL database. Each protein sequence in the database was then 

parsed with various routines to generate the proposed protein identifiers (frameworks) that was 

used to identify protein expression sets common for various viruses residing in a given host. The 

identified common protein expression sets were charted using Matplotlib, a Python 2D plotting 

library. The methodologies used to generate the identifiers is summarized in Table 1. 
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Table 1. Methodology Used to Generate the Proposed Protein Identifiers. 

Proposed Identifier Methodology to Generate the Protein Identifier (all codes were 

written in Python) 

Pfam-based 

(Pfam_Keys) 

1. Query sequence in Pfam database to identify Pfam domains. 

2. Concatenate the identified Pfam domains in the order they appear 

in the sequence separated by an underscore (“_”). 

Amino acid-based 

(AA_Type_Keys) 

1. Count the various amino acid types (hydrophobic, neutral, 

hydrophilic and other) that appear in the protein sequence. 

2. Concatenate the counts returned for each of the amino acid type 

returned in the order hydrophobic, neutral, hydrophilic and other 

separated by an underscore (“_”). An alternative terminology for 

hydrophobic, neutral, hydrophilic and other is used in this study 

(see below) 

Hydrophobicity index 

(HI)-based (HI_Num) 

1. Count the various individual amino acids that appear in the 

protein sequence. 

2. Add the products of the HI reported for each amino acid with its 

respective count to obtain the cumulative HI_Num for the protein. 

Hydrophobicity index 

(HI)-based (HI_Key) 

The cumulative HI for the protein obtained above is concatenated 

with the protein sequence length separated by an underscore (“_”). 

Combo_Key A string concatenation of HI_Key and AA_Type_Key for the protein 

sequence 

MD5 Hash key -based 

(MD5_Key) 

A hash is generated for the protein sequence using the MD5 hash 

algorithm. 

SHA-512 Hash key -

based (SHA512_Key) 

A hash is generated for the protein sequence using the SHA512 hash 

algorithm. 

 

The Venn diagram obtained in Step 3 (Figure 1) represents the protein expression sets 

that are common for any two viruses i and j. Such common protein expression sets, in principle, 

could be envisioned for multiple viruses. A drug (say Drug D in Steps 3 and 4, Figure 1) that was 

developed to treat a viral infection caused by a virus (say Virus i) by rendering a protein member 

of the common protein expression set amongst multiple viruses dysfunctional (indicated by the 

yellow circle in Step 3 of Figure 1), in principle, could be used to treat several infections caused 

by other viruses provided the other viruses expresses protein expression sets that are supersets of 

the common protein expression set represented by the Venn diagram in Figure 1. This study thus 
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Figure 1. Schematic Summary of the Study.
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proposes a potential route to accelerate anti-viral drug development by increasing the scope of 

viral infections that could be treated with known drugs, which can potentially save the 

development costs for newer drugs that may require a longer time and higher costs from the 

bench to the market. 

1.2. Viruses 

Viruses are unique microscopic organisms that are considered by many to be the link 

between living and non-living worlds (Moreira & López-García, 2009). Unlike a living thing 

which possesses the abilities to propagate, derive energy through metabolism, and evolve during  

procreation, viruses rely on its host for their procreation and evolve depending on selective 

pressures exerted by the host for their optimal survival. On the other hand, they can remain 

dormant for ages outside a host without any need for metabolism. Viruses rely on the hosts they 

infest to propagate because they lack the protein machinery essential to make multiple copies of 

their genomes. In the process, viruses express its own proteins (e.g. express protein-based cell 

anchors to bind on to the next host cell) to make multiple copies of its genome. 

1.3. Justifications for the Study 

 As noted earlier, there is a growing expectation for accelerated drug discovery process 

fueled by a variety of factors. These include, but are not limited to 

i. economic threats like looming patent expirations and global economy (patent issued 

by one country can be enforced globally, thus initiating a global race to be the first in 

the market to reap economic benefits) 

ii. global threats like climate change and drug resistance 

iii. regulatory expectations of higher benefits to risk ratio 
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iv. scientific advances made in discovery of newer treatment modes (biosimilars, gene 

therapy, etc.) and  

v. technological advances (artificial intelligence and data mining in drug discovery 

process) 

This dissertation attempts to explore frameworks that can potentially be employed for 

quicker identification of viral protein expression patterns for a given host. As a first step, protein 

expression patterns identified using the Pfam database for viral protein expressions for a given 

host is compared with those identified using other frameworks proposed in the thesis. The Pfam 

database-based expression patterns are considered the standard against which other frameworks 

are compared because the Pfam database is manually curated and widely accepted amongst the 

scientific community (Sonnhammer, Eddy, & Durbin, 1997). The frameworks proposed here can 

be considered as part of initial studies toward various machine learning efforts that can be 

pursued to identify viral protein expression patterns for a given host. 

A second justification for the study is the following. As was noted earlier, living beings 

evolve from one generation to another. Studies have shown that viruses evolve to optimize their 

survival within a host (Ali, Amroun, de Lamballerie, & Nougairède, 2018). Thus, Chikungunya 

virus has very minimal mutation when cultured in mosquito cells but exhibit higher mutation 

rates when propagated in vertebrate cells (Ali et al., 2018). This behavior has been attributed to 

the virus responding to selective pressures for optimal survival in the given host. Identification of 

protein expression patterns amongst different hosts can thus be helpful to identify infection 

potential and treatment opportunities for a yet to be identified virus. For example, consider a 

virus V1 expressing protein sets A and B in two different hosts because of selective pressures the 

virus is subjected to in the two hosts. Let us say protein set C is the intersection of protein sets A 
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and B. In principle, another virus V2 with a different protein expression set X that is equal to 

protein set C or is a superset of protein set C can potentially be hosted by the same hosts. 

A third justification is discovery of newer viral species from arctic permafrost (Legendre, 

et al., 2015). As glaciers and permafrost melt due to global warming, the scientific community 

anticipates discovery of dormant viruses that can cause new infectious diseases for which a 

treatment modality may not exist. Identifying the viral protein expression pattern for a given host 

can potentially help identify existing drug treatments that may prove efficacious against the new 

virus. For example, an existing antiviral drug D that is used to treat a viral infection caused by 

virus V3 which expresses protein set P can be used, in principle, to treat an infection caused by 

virus V4 that expresses protein set S which is a superset of protein set P expressed by virus V3. 

1.4. Background Studies 

Protein structures (primary, secondary, tertiary and quaternary) and function are closely 

intertwined. Understanding of both protein structures and function are crucial for several studies 

including the development of new therapeutics that offer higher benefit to risks ratio. Strategies 

employed to develop such potential therapeutics include targeted drug delivery to achieve high 

local concentration (Srivivasarao & Low, 2017) and/or reversible or irreversible protein binding 

to inhibit protein function (Lin, Meng, Jiang, & Roux, 2013). Understanding of protein function 

often aid in the design of these potential therapeutics. However, the structure and function of 

many proteins are still unknown. 

Modeling studies are widely employed to understand both protein structure and function. 

Such studies have attempted to understand these fundamental protein attributes either using small 

molecule datasets or using datasets of several protein sequences. Modeling studies that employ 

small molecule datasets attempt to understand protein morphology at potential interaction sites of 
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the small molecules for a given protein. Some of the techniques employed for studying protein 

morphologies using large datasets of small molecules include molecular docking studies 

(Pagadala, Syed, & Tuszynski, 2017), Quantitative Structure Activity Relationship studies 

(Damale, Harke, Khan, Shinde, & Sangshetti, 2014), Comparative Molecular Field Analysis, and 

others (Damale et al, 2014). On the other hand, modeling studies that employ protein datasets 

attempt to classify proteins into families of known structure or function. Techniques employed to 

classify and/or cluster related protein structures include supervised and unsupervised machine 

learning methodologies (Cheng, Tegge, & Baldi, 2008). For example, SVM-Prot is a webserver 

that employs machine learning algorithms to predict protein functional families independent of 

the protein sequence (Li et al., 2016). The technique relies on classifying proteins into functional 

families based on sequence-derived structural and physicochemical properties like amino acid 

composition, hydrophobicity, polarity, polarizability, etc. (Li et al., 2016, Han et al, 2004). 

The present work, however, attempts to explore frameworks that can be utilized to 

visualize viral proteins common for a given host. This work is thus the next step of modeling 

studies on protein datasets as applied to viruses. The major challenge associated with such a 

study is to identify a protein classifier or clustering technique applicable to all viral proteins so 

that viral protein expression patterns can be appropriately identified. 

Comparative protein expressions between species has been studied. In one such study, 

employing two-dimensional gel electrophoresis and microarray techniques (Enard et al., 2002), 

the authors compared protein expressions of chimpanzees with the protein expressions in humans 

from multiple cell types (blood leukocytes, liver and brain). The study revealed that despite 

having a high genomic similarity (98.7%) between humans and chimpanzees, the species had the 

greatest differences in their respective protein expressions in their brain cells.  



 

10 

Research laboratories have investigated comparative protein expressions between cancer 

cell lines to understand mechanisms of differential resistance expressed by the cell lines to 

oncolytic viruses. The goal of the study was to identify cancer types susceptible for oncolytic 

viruses-based cancer therapeutics (Tarasova et al., 2018). Using a shotgun LC-MS/MS based 

label-free quantitation of identified proteins, the authors were able to identify differences in 

interferon signaling pathways of the tumor cells that helped explain the sensitivity of one tumor 

cell line to oncolytic viruses as opposed to the other. 

The relevance of comparative protein expression studies that identify differences or 

similarities in protein expressions across species and/or cell types cannot be overstated as the two 

studies briefly mentioned above show. In addition to comparative protein expression studies, 

other experimental comparative “omic” studies have also been studied extensively to 

differentiate, characterize and understand the molecular mechanism of several cancer 

progressions (Cao et al., 2019), telomere biology (Schrumpfová, Fojtová, & Fajkus, 2019), etc. 

Computationally, protein clusters from microbial genomes have been studied (Zaslavsky, 

Ciufo, Fedorov, & Tatusova, 2016). The goal of the study was to develop an adequate sampling 

strategy to construct meaningful groups of similar proteins that are useful for analysis and 

functional annotation. As part of the sampling strategy, the authors created protein clusters at 

three levels: 

i. tight clusters (species-level clades) in groups of closely related genomes taking 

sequence similarity and genome context considerations. 

ii. conservative clustering of the clusters obtained in (i) into clustroids that are seed 

global clusters and 

iii. clusters that were built around seed global clusters. 
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The authors acknowledged that non-conservative or unique proteins and/or rapidly 

evolving proteins from rare genomes did not group well under the clustering strategies delineated 

above ((i)-(iii)) and noted that processing of these proteins required significant computational 

resources and produced questionable clusters. 

Similarly studies to classify bacterial proteins on their subcellular localizability prediction 

have been carried out to facilitate genome annotation, vaccine development and to identify drug 

targets (Gardy & Brinkman, 2006). Several methods have been proposed and rely on supervised 

learning algorithms that uses prior knowledge of sequence motifs, signal peptides, etc. to predict 

subcellular localization of protein sequences. The earliest proposed method was PSORT I that 

relies on several aspects of protein structure like amino acid composition, sequence motifs, 

signal peptides and trans-membrane -helical structures to predict protein sub-cellular 

localization. PSORT I evolved over the years to PSORTb. PSORTb is based on a Support Vector 

Machine algorithm that incorporates frequent subsequence identification and motif- and profile-

matching modules, in addition to the protein classification tools employed in PSORT I like 

signal peptides, amino acid composition, etc. 

The goal of this study is to explore frameworks that could be used to visualize viral 

protein expressions for a given host that are common to more than one virus. The study can 

potentially help facilitate expand the number of anti-viral targets and vaccine development 

studies provided the surface glycoproteins like hemagglutinin have very similar structure. 
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2. STUDY DESCRIPTION 

The protein primary sequence along with the folding kinetics and energetics that a protein 

experiences during its biosynthesis is the basis for a protein’s final structure and its cellular 

function. As stated before, this study explores different frameworks that can potentially be used 

to quickly visualize protein similarities for different viruses that propagate in a given host. 

Identification of such a framework can help extract knowledge from large protein datasets 

rapidly. Potential benefits of such a framework identification include accelerated identification of 

frequent protein sets for viruses residing in a given host, capturing relationship between proteins 

in a dataset as association rules, clustering and classification studies besides implications toward 

understanding of protein networks and potential cell signaling. 

2.1. Virus Dataset 

The viral genome dataset was downloaded from National Institutes of Health (NIH) (viral 

dataset). The curated dataset was semi-structured and presented information on a virus’s name, 

host’s name when known, genome type (DNA, RNA, etc.), protein expressions and their 

associated genes, protein function when known, and the literature citation that reported the 

virus’s characterization besides other information. The downloaded dataset was available as a 

single file that contained the information for all the viruses (viral.1.genomic.gbff). 

The database included viruses that contained a single genome (the genetic information for 

the virus coded by a single genome sequence) or segmented genome (the genetic information for 

the virus were coded by multiple genome sequences that are not linked together). The segmented 

viral genomes were listed separately with the same name for the virus that was appended to a 

counter indicating the genome segment which encodes for the proteins listed under that entry. 

For example, the Candiru virus hosted by humans contains three separate genome sequences 
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identified by a large (L), medium (M) and small (S) segments. Each of these segments were 

listed separately in the dataset file obtained from NIH (Candiru virus segment L, complete 

genome, Candiru virus segment M, complete genome, and Candiru virus segment S, complete 

genome, respectively). Similarly, other viruses like Wallal virus isolate 927 hosted by Anopheles 

annulipes had 10 genome segements and were listed by count one through 10 (e.g. Wallal virus 

isolate 927 segment 1, complete sequence, Wallal virus isolate 927 segment 2, complete 

sequence, and so on). 

The NIH database used for this study identified 1493 hosts which included the same hosts 

identified under different names (e.g. Human, Human being and Homo sapiens all referring to 

the human hosts) and a group of viruses for which no hosts were explicitly identified that was 

caught by the code. The latter group of viruses was grouped as “host_unknown” host in this 

study. The situation of providing different names to the same host was not anticipated and was 

not handled in the code. For example, the host information for human viruses were listed as 

human, Homo sapiens, Homo sapiens; Child and Homo sapiens; Bovine. Thus, viruses hosted by 

humans that were listed under different names for the host appear under different host names in 

the database. However, except for human viruses, the viruses listed for other hosts were not 

collated in the charts as viruses for the same host. 

As a first step of the study, the dataset was parsed to collect information pertaining to 

each virus in separate text files that were organized under folders named after the host for the 

given virus. During this step, all the proteins pertaining to the same virus, but those that were 

listed separately in the NIH dataset (e.g. the viruses with segmented genomes) were collated into 

a single text file. The protein sequences expressed by each virus was simultaneously parsed to 

generate the different unique identifiers that were used in this study as the folder organization 
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reported above was being executed using Python code. The unique identifiers for the proteins 

that were being generated individually constitutes the frameworks that is being explored as part 

of this study to uniquely identify and visualize viral proteins of a given host. 

2.2. Exploration of Unique Protein Identifiers 

This study explores seven different protein identifiers on their feasibility to be used as a 

framework for rapid visualization of viral proteins for a given host. The motivation for the 

selection of these identifiers was based on the need for uniquely identifying every viral protein 

sequence in the NIH database such that the same protein sequence as determined by the identifier 

can be tracked on separate viruses. The unique identifiers proposed in this study were primarily 

based on the amino acid sequence for a given protein (primary structure). The identifiers 

proposed in this study, the bases for their selection and the rationale behind the selection of an 

identifier are summarized in Table 2. Briefly, the proposed protein identifiers and their methods 

of generation, respectively, are: 

1. Pfam_Keys: The Pfam database is a large collection of protein domain families built off 

the UniProt database and is represented by multiple sequence alignments and hidden 

Markov models (HMMs) (http://pfam.xfam.org/help). The manually curated sequence 

alignment of a small set of representative family members yields a seed called the Pfam-

A entry. The associated HMMs are searched against the UniProt database, and sequences 

that exceed the previously set threshold are included in the full sequence alignment. The 

Pfam-A entries have a proper HMM name assigned (e.g. RNA_helicase, Peptidase_C3, 

etc.). The Pfam keys used in this study were generated by submitting a protein sequence 

to a local install of the Pfam software (Pfam 27.0). Pfam 27.0 outputted Pfam-B entries 

as well when the software identified potential seeds and Pfam-A seeds were not known 



 

15 

for the submitted sequence. The HMM names for these seeds preceded with Pfam-B 

(e.g. Pfam-B_10762). The Pfam keys used for protein identification in this study were 

generated by concatenating the HMM names identified for a given sequence in the order 

they appeared in the sequence. 

Table 2. Proposed Protein Identifiers, Bases and Rationale for Identifier Selection. 

Proposed 

Identifier 

Bases Rationale 

Pfam-based 

(Pfam_Keys) 

Protein primary 

structure, multiple 

sequence alignment 

and profile hidden 

Markov models 

Pfam is a curated database built on multiple 

sequence alignment and homology modeling. 

Pfam analysis assigns a protein sequence to a 

protein family that is representative of its function 

based on the domains identified for the sequence.  

Amino acid-based 

(AA_Type_Keys) 

Primary protein 

structure, amino acid 

type 

Protein biosynthesis often involves point 

mutations in which one amino acid can be 

substituted by another of similar physicochemical 

properties. For example, a hydrophobic amino 

acid such as leucine can be substituted by another 

hydrophobic amino acid (e.g. isoleucine) 

Hydrophobicity 

index-based (HI-

based) 

Primary protein 

structure, amino acid 

type and the 

retention time of 

specific polypeptides 

containing the amino 

acid under 

consideration 

HI has been used to predict subcellular 

localization. Two key types were explored: one in 

which the protein sequence length was considered 

and the other, in which it was not considered as 

part of the key. The rationale for considering the 

length along with HI was to prune the dataset, if 

needed, to group similar proteins. 

Combination key-

based 

(Combo_Key) 

Primary protein 

structure, amino acid 

type 

This key was considered to prune the dataset to 

group similar proteins, if needed. 

MD5 Hash key -

based (MD5_Key) 

Primary protein 

structure 

The purpose of this key was to generate a unique 

identifier for a given protein so that repeated 

sequences in different viral genomes could be 

identified. MD5 hash algorithm generates a 32- 

digit hexadecimal sequence.  

SHA-512 Hash 

key -based 

(SHA512_Key) 

Primary protein 

structure 

The purpose of this key was to generate a unique 

identifier for a given protein so that repeated 

sequences in different viral genomes could be 

identified. SHA-512 hash algorithm generates a 

128-digit hexadecimal sequence. 
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2. AA_Type_Keys: These keys are generated from the protein sequence reported for the 

virus. The individual standard amino acids in the virus were classified either as Group A, 

Group B, Group C or Group D as shown in Table 3. Group D was included to account 

for non-standard amino acids that may be found. The number of each amino acid type 

were counted and the key was generated for each sequence by concatenating the counts 

for Groups A-D (in that order) with an underscore (“_”) character separating two counts. 

Thus, an AA_Type_Key “821_687_618_1” reported for virus Duvenhage virus isolate 

86132sa in humans implies that the protein is comprised, respectively, of 821 Group A, 

687 Group B, 618 Group C and 1 non-standard (Group D) amino acids in the sequence. 

The amino acids were grouped into Groups A-D based on the HI that was 

reported by Sereda, Mant, Sönnichsen, & Hodges (1994) and Monera, Sereda, Zhou, Kay 

& Hodges (1995) as shown in Table 3 (see below). Even though an initial glance may 

suggest the Groups A-D correspond with hydrophobic, neutral, hydrophilic and other 

amino acid types, the terminology of Groups A-D was chosen because of discrepancy 

with HI reported for proline that suggests proline to be highly hydrophilic contrary to 

accepted scientific consensus that considers proline to be a hydrophobic amino acid. 

3. HI_Num: These keys were generated by summing the products of hydrophobicity 

indices (HI) reported for the standard amino acids (Table 3) and their frequency of 

appearance in a specific protein sequence (equation 1). The HI for the standard amino 

acids were based on the retention times of a nine amino acid polypeptide containing the 

specific amino acid under consideration at position 5 of the polypeptide (Sereda et al., 

(1994) and Monera et al (1995)). The HI values used for each amino acid (Table 3) is the 

value reported for each amino acid individually and is not that for the amino acid within 
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a protein (Rose, Geselowitz, Lesser, Lee, & Zehfux, 1985). The HI for non-standard 

amino acid were not known and was taken as zero. 

Table 3. Amino Acid Classification Scheme 

Amino Acid 

Type 

Amino Acid Single-Letter Amino Acid 

Abbreviation 

Hydrophobicity 

Index 

Group A Alanine A 41 

Isoleucine I 99 

Leucine L 97 

Phenylalanine F 100 

Tryptophan W 97 

Tyrosine Y 63 

Valine V 76 

Group B Asparagine N -28 

Cysteine C 49 

Glutamine Q -10 

Glycine G 0 

Methionine M 74 

Serine S -5 

Threonine T 13 

Group C Arginine R -14 

Aspartic acid D -55 

Glutamic acid E -31 

Histidine H 8 

Lysine K -23 

Proline P -46 

Group D Selenocysteine U 0 

Ornithine O 0 

All others - 0 

 

HIprotein =  ∑ ∏ 𝑐𝑖𝐴𝐴𝑖𝑖𝑛  (1) 

𝑤ℎ𝑒𝑟𝑒 𝑐𝑖 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝐴𝐴𝑖  𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖 of a 

 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐ℎ𝑎𝑖𝑛 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑛 
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4. HI_Keys: These keys were generated by calculating the HI_Num key for each protein 

sequence as noted above and concatenating the calculated value with the sequence length. 

The two values were separated with an underscore (“_”). Thus, a HI_Key of 53674_2433 

is an identifier of a protein with 2433 amino acid residues and a calculated HI_Num of 

53674. 

5. Combo_Keys: These keys represent combination keys that were generated by 

concatenating the corresponding HI_Key and AA_Type_Key the reported above for the 

protein under consideration. Thus, a Combo_Key 53674_2433_949_818_666_0 

represents a protein with 2433 amino acid residues and a calculated HI_Num of 53674. 

The 2433 amino acid residues comprised of 949 Group A, 818 Group B and 666 Group 

C and 0 Group D amino acid residues. 

6. MD5_Keys: These keys represent the MD5 hash for the protein sequence. 

7. SHA512_Keys: These keys represent the SHA512 hash for the protein sequence. 

2.3. Identifier Selection Criteria 

Protein structure and function are closely intertwined (Hou, Jun, Zhang, & Kim, 2005). It 

has been observed that sequence-level homology of protein sequences is less conserved. On the 

other hand, protein evolution has remarkably conserved structure-level homology. It seems that 

Nature has strived to maintain protein structure that may have been initially developed for a 

certain function during protein evolution. Thus, the observed lack of protein sequence 

conservation during biosynthesis may be thought of as Nature’s experimentation to optimize 

protein structure for a given function. 

Thus, the Pfam-based (Pfam_Keys) protein identifiers are proposed to identify common 

viral proteins for a given host to account for the structural homology of proteins as each domain 
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represents a structural unit (http://pfam.xfam.org/help). On the other hand, the amino acid type-

based (AA_Type_Keys) protein identifiers are proposed to account for sequence variability that 

may result due to mutation effects on the viral genome because of evolution that may cause 

codon variability for an amino acid at any given location of a protein sequence (missense 

mutation). Thus, the Pfam_Keys and AA_Type_Keys are employed to assist potential grouping 

of proteins based on structure and sequence similarities. 

Protein hydrophobicity index (HI) has been used to predict protein cellular localization 

propensities (Feng & Zhang, 2001). The HI-based identifiers are proposed to capture such 

localization propensities of viral proteins. Two types of HI-based identifiers are proposed: one in 

which the protein sequence length is also a part of the identifier and the other in which the 

sequence length is not considered. The former identifier is called HI_Key and the latter HI_Num 

(numeric) in this study respectively. The sequence length modifier was considered as a potential 

protein identifier to assist grouping of proteins if the numeric HI_Num identifier presented a 

continuous protein space devoid of any clear demarcation. 

Although several methods have been proposed to calculate HI of amino acids 

(Wolfenden, Lewis, Jr., Yuan & Carter, Jr. 2015), the study uses the HI reported for amino acids 

based on retention time (vide supra). The reasoning for this approach is two-fold: 

i. With the large number of viral protein sequences that were available from NIH 

dataset, it was hoped that employing equation 1 on reported HI of individual amino 

acids would yield a wider range of cumulative calculated protein hydrophobicities, 

which could potentially be useful to better group proteins of similar hydrophobicities. 

ii. It has been reported in the literature that the microenvironment of an amino acid can 

influence its hydrophobicity (Bandyopadhyay & Mehler, 2008). A simple approach to 
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calculate protein HI was selected since this study is only an initial exploration of 

potential protein identifiers that could be used as frameworks for rapid visualization 

of viral proteins common for a given host. 

The next protein identifier proposed in this study is called the Combo_Key. A protein 

Combo_Key is simply a combination of two protein identifiers proposed in this study, namely 

the HI_Key and AA_Type_Key identifiers. The goal of the Combo_Key identifier, like others, 

was to help group similar viral proteins. 

Finally, two protein identifiers based on hash algorithms are proposed in this study. The 

goal of these identifiers was to uniquely identify specific protein sequences that may be 

expressed by two different viruses. Two hash algorithms were considered: The MD5 and 

SHA512 hash algorithms. The justification for the two hash-based protein identifiers is to 

identify any potential collisions (two sequences generating the same hash key). Thus, the MD5 

hash algorithm which generates a 32- digit hexadecimal sequence has a higher risk of running 

into collisions than the SHA512 hash algorithm since the latter generates a longer (128 digit) 

hash key. 

2.4. Database Schema Description 

The information gathered for the viruses were stored in a MySQL 8.1 database. The table 

names and their purpose in this study are summarized in Table 4. The information for the hosts, 

viruses, proteins and the seven proposed keys were all stored in separate tables with the same 

name as the record they stored. Thus, the hosts table stored information about the hosts, the 

viruses table stored data for viruses, proteins table for the proteins and so on. Apart from these10 

tables, other cross tables were also created storing information of relationship between these 
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tables. A total of 28 tables were constructed to store the data collected from the original NIH 

dataset (viral.1.genomic.gbff viral dataset) and the relationship between the data. 

Table 4. Table Names and Purpose 

Table Name Purpose 

Hosts Store basic information about the hosts like host name, number of viruses 

hosted, etc. The primary key (PK) for the table is named host_no. 

Viruses Store basic information about the viruses like virus name and genome type 

among other information. The PK for the table is named virus_no. 

Proteins Store basic information about the proteins like the sequence, chain length, 

etc. The primary key (PK) for the table is protein_no. This table is a cross-

reference to other tables that stores the information about the seven 

proposed protein identifiers in this study. The PKs for proposed identifiers 

are the foreign keys (FK) in this table. 

AA_Type_Keys Stores the information pertaining to amino acid type-based protein identifier 

proposed in this study. The PK for the table is AA_Type_key_no and the 

table stores information about the calculated AA_Type_key, the host_no(s), 

virus_no(s) and protein_no(s) associated with a given AA_Type_key. 

Combo_Keys Stores the information pertaining to combination key-based protein 

identifier proposed in this study. The PK for the table is Combo_key_no 

and the table stores information like AA_Type_Keys table for a given 

Combo_key. 

HI_Keys Stores the information pertaining to hydrophobicity index-based protein 

identifier proposed in this study. The PK for the table is HI_key_no and the 

table stores information like AA_Type_Keys table for a given HI_key. 

HI_Num Stores the information pertaining to hydrophobicity index-based protein 

identifier proposed in this study. The PK for the table is HI_no and the table 

stores information like AA_Type_Keys table for a given HI_no. 

MD5_Keys Stores the information pertaining to MD5 hash-based protein identifier 

proposed in this study. The PK for the table is MD5_key_no and the table 

stores information like AA_Type_Keys table for a given MD5_key_no. 

Pfam_Keys Stores the information pertaining to Pfam-based protein identifiers proposed 

in this study. The PK for the table is pfam_key_no and the table stores 

information about the identified Pfam domains, number of domains, the 

host_no(s), virus_no(s) and protein_no(s) associated with a given 

pfam_key_no. 

SHA512_Keys Stores the information pertaining to SHA512 hash-based protein identifier 

proposed in this study. The PK for the table is SHA512_key_no and the 

table stores information like AA_Type_Keys table for a given 

SHA512_key_no. 
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3. RESULTS AND DISCUSSION 

The viral genome dataset from NIH was downloaded as a single zip file, that was 

extracted and parsed to collect individual virus information into separate text files that were 

stored in folders named after the host reported for the virus in the data file. The protein 

sequences reported for each virus simultaneously parsed to generate the identifiers proposed in 

this study and recorded in the same text file for the virus. 

The test files that were generated as described above were then read and the information 

saved into a MySQL 8.1 database. There was a total of 4840 distinct viruses reported for 1493 

hosts. Some of these hosts were duplicates as they were reported under different names as was 

noted earlier (e.g. human and Homo sapiens). 

3.1. Viral Proteins Identified and Proposed Identifier Performance 

The 4840 viruses had a total of 202777 proteins distributed amongst them, of which 

179273 protein sequences were unique. The number of unique identifiers calculated using each 

of the proposed identifiers are summarized in Table 5. 

Table 5. Summary of Protein Identifiers for All Hosts and All Viruses 

Protein Identifier Number of Unique 

Identifiers Identified 

Number of Proteins the Unique 

Identifier Accounts for 

Pfam_Keys 9454 80024 

AA_Type_Keys 121249 202386 

HI_Keys 161922 202619 

HI_Num 23243 199170 

Combo_Keys 178768 202670 

MD5_Keys 179273 202742 

SHA512_Keys 179273 202742 

 

The proteins generated a total of 179273 hash-based identifiers (MD5_Keys and 

SHA512_Keys) of which 12651 protein sequences appeared more than once in different viruses. 
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Similarly, both hash-based identifiers reported that only the sequence 'MHKPLTQEHADPDKPE 

EALAWAFWGLPHPSGGHSLSNPVMAKYWSKHFTELGIVHVDSLRRLADENGNIHVSKL

PQQTKKFQAPARGPRSHYNPAAQWVPSDTPEPPKFRVQDPRTLTQQEQQAQLDIYKQM

GLIPTAPLPQHQAAVE' specifically of the 202777 proteins appeared the highest number of 

times amongst all the viruses. The specific sequence appeared in 30 different viruses. In general, 

the two hash-based identifiers provided identical counts for the number of viruses expressing 

above a certain count of the sequence identified by these identifiers. This along with the fact that 

the number of hash-based keys and number of unique protein sequences are equal indicate that 

there were no hash collisions during the generation the hash-based protein identifiers employed 

in this study. Furthermore, the hash-based protein identifiers provided the highest number of 

unique identifiers for all the viral proteins that were reported in the NIH data file suggesting that 

the hash-based protein identifiers were appropriate choice to uniquely identify every protein 

sequence in the study. 

A surprising observation in this study is that the Combo_Keys proposed in this study 

were also remarkably selective in providing unique identifiers (178768 unique identifiers for the 

179273 reported unique protein sequences). As was noted earlier, the Combo_Keys were 

generated by concatenating the HI_Num calculated for the protein sequence using individual 

amino acid HI (equation 1), the sequence length and the amino acid composition of the sequence 

(number of Group A-D amino acid type residues). The individual measures (protein HI, 

sequence length, number of Group A-D amino acid type residues) were separated using an 

underscore (“_”). 

The number of unique identifiers reported by Pfam_Keys, AA_Type_Keys, HI_Keys and 

HI_Num identifiers are 9454, 121249, 161922 and 23243, respectively (Table 5). As can be seen 
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from Table 5, the Pfam_Keys were available only for a total of 80024 proteins of a total of 

179273 unique protein sequences reported in the NIH data file unlike the other identifiers that 

accounted for more than the number of reported unique sequences (Table 5). This discrepancy is 

because of the poor reporting of protein sequences in the NIH data file (vide infra) besides the 

fact that protein structure is not yet known for all proteins nor can they be predicted accurately. 

For example, the sequence MTTTHDTNTKKLKYQFHTIHSQRIMTTVTQKPFTASPYI 

FSTTLRTTQTDGNNAINSHSHTQAGYNNSSERFLYLICTYIT appears twice for the virus 

Acidianus bottle-shaped virus, complete genome (Virus number 40) which is hosted by 

Acidianus convivator (Host number 18). This was an unanticipated data entry. The code 

expected identical protein sequences to appear and was written to query the database for every 

sequence encountered. The fact that the same sequence appeared multiple times for the same 

virus in the same file might have resulted in a situation where the database commit was not 

completed for the prior entries and was not included in subsequent query results. This seems very 

much likely to be the cause for the observed discrepancy where the number of proteins 

accounted for by the unique identifiers exceeds the number of unique protein sequences in the 

entire dataset. The reasoning is based on the following observation. The database connection was 

opened in code once when reading of a virus file started. The connection was left open for all 

queries while the file was open and was closed only after the entire file was read. It seems that all 

database entries must have remained in memory and not committed to disk which caused 

subsequent queries to not retrieve the memory data since the queries are executed for data 

committed in disk and not to uncommitted data that is still in memory. It is most likely that the 

uncommitted data in memory is written to disk when the database connection is closed in code. 

This seems to be a logical reason because the code did identify duplicate protein identifiers and 
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sequences when they appeared in separate virus files. Opening and closing of database 

connections are expensive operations and were kept to a minimum due to performance 

considerations. 

On the other hand, the number of proteins accounted for by the proposed Pfam_Key 

unique identifier (80024) is significantly less than the number of unique protein sequences in the 

NIH dataset (179273) (Table 5). This suggests that the Pfam entries for all the viral proteins are 

not yet completely known, which can be a drawback for employing the Pfam_Keys as unique 

identifiers for the viral proteins. 

3.2. Proposed Identifier Performance on Human Viruses 

As a first step in the study, the proposed identifiers listed in Table 1 were calculated for 

human viruses. The downloaded NIH data file contained 115 viruses hosted by humans. The 

number of unique identifiers calculated using each of the proposed identifiers for these viruses 

are summarized in Table 6. A total of 1656 distinct protein sequences were reported for the 

viruses hosted by humans. 

Table 6. Summary of Protein Identifiers for Viruses Hosted by Human Beings 

Protein Identifier Number of Unique 

Identifiers Identified 

Number of Proteins the Unique 

Identifier Accounts for 

Pfam_Keys 434 1332 

AA_Type_Keys 1643 1683 

HI_Keys 1656 1683 

HI_Num 1564 1683 

Combo_Keys 1656 1683 

MD5_Keys 1656 1683 

SHA512_Keys 1656 1683 

 

It can be seen from Table 6 that Pfam_Keys accounted for only 1332 proteins of a total of 

1656 distinct protein sequences suggesting that Pfam_Keys were not available for all the viral 
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proteins expressed by the viruses that are hosted by human beings. It is also evident that the 

number of unique identifiers based on amino acid type (AA_Type_Key) and HI (HI_Num) are 

less than the number of unique protein sequences reported (1643 and 1564, respectively. Table 

6), which suggests that some of these keys appeared in more than one virus. The other keys 

(HI_Key, Combo_Key, MD5_Key and SHA512_Key) were more specific to the individual 

sequences as the count for these unique identifiers equal the number of unique viral protein 

sequences in human beings (Table 6). 

However, as was noted earlier for the viral proteins listed for all viruses (vide supra), a 

total of 1683 proteins were reported for these viruses indicating that some of the protein 

sequences were duplicated within the same virus file that caused the sequence (and the proposed 

identifiers associated with these sequences) to be not captured by the queries before new entries 

were to be saved to the database (vide supra). There were 27 protein sequences on the files 

pertaining to the viruses that were hosted by human beings with duplicate entries (Table 7). 

Table 7. List of File Names for Viruses Hosted by Human Beings with Duplicate Entries in the 

NIH Data 

Virus Name Number of Pairs of Duplicate Entries 

Human herpesvirus 1, complete genome 3 

Human herpesvirus 2, complete genome 3 

Human herpesvirus 3, complete genome 3 

Human herpesvirus 6A, complete genome 2 

Human herpesvirus 6B, complete genome 6 

Human herpesvirus 7, complete genome 2 

Bufavirus-3 genes for NS1, putative VP1, 

hypothetical protein, VP2, complete cds, 

strain: BTN-63 

4 

Candiru virus segment L, complete genome 1 

Candiru virus segment M, complete genome 1 

Candiru virus segment S, complete genome 2 
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The situation of the Candiru virus files reported in Table 7 is unique because the 

sequences were not duplicated in these files, but the files themselves were duplicated as the virus 

was reported to be hosted by Homo sapiens and Human being. 

3.3. Exploring the Identifiers as Visualization Aid of Common Proteins 

The goal of the current study is to explore unique identifiers that could be used to 

facilitate rapid visualization of proteins that are common to the viruses hosted by a species. The 

proposed identifiers were initially explored for viruses hosted by human beings. As Table 6 

shows, only the Pfam_Keys seemed to be a reliable identifier as the other proposed identifiers 

turned out to be very specific a given protein sequence. The AA_Type_Key and HI_Num 

identifiers were less specific compared to HI_Key, Combo_Key, MD5_Key and SHA512_Key 

identifiers, but still was not generic enough like the Pfam_Key (Table 6). 

The Pfam_Key covered only about 80% (1332/1656 = 0.8043, Table 5) of the proteins 

expressed by viruses in humans with only about 434 unique identifiers. The other keys offered 

100% coverage of all the reported proteins and was relatively easy to calculate knowing only the 

protein sequence. However, these identifiers were unique to at least 94% of the proteins 

(HI_Num identifier, 1564/1656 = 0.9444, Table 5) and could not be employed to identify 

common proteins amongst viruses that were hosted by a species. However, these identifiers 

because of their relative uniqueness were useful to identify duplicate virus entries in the NIH 

database under different names (vide infra). 

The relatively lower coverage for Pfam_Key while disappointing is not unexpected since 

these identifiers are based on protein structure unlike protein sequence. Solving protein structure 

and assigning the solved structure to a protein family is an incredibly slow process, and software 
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that could predict protein structure are still evolving and are less reliable or are 

computationallyexpensive (Lee, Freddolino, & Zhang, 2017). 

 Figure 2 shows a plot of the Pfam_Key identifiers calculated for viruses hosted by 

humans against itself. The diagonal elements thus represent the intersection of the set of proteins 

represented by their respective Pfam_Key identifiers expressed by a virus with itself, which 

means that the diagonal elements are always the complete set of Pfam_Key identifiers for the 

proteins expressed by the virus. The off-diagonal data points, similarly, represent the intersection 

of Pfam_Key identifiers for proteins expressed by one virus against those expressed by other 

proteins. Thus, the off-diagonal data points are either equal to the set of Pfam_Keys on the 

diagonal data point or a subset of it. 

Table 8. Genome Types for Viruses Hosted by Human Beings 

 

 There are 114 unique viruses reported as being hosted by human beings in the NIH 

dataset. These viruses predominantly had their genetic information encoded by DNA (Table 8). 

The color coding in Figure 2 represents instances when the intersection of the set of Pfam_Keys 

of proteins expressed by a virus of one genome type yielded a non-null set with the set of 

Pfam_Keys of proteins expressed by a second virus of a different genome type (red color). It can 

be seen that, at least amongst viruses hosted by humans, the Pfam_Keys are very rarely common 

Genome Type Virus Count 

Double-stranded DNA 44 

Single-stranded DNA 26 

Single-stranded RNA – positive strand 25 

Single-stranded RNA – negative strand 18 

Unknown DNA type 2 
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between viruses of different genome types. Figure 2 shows only four instances where two viruses 

of different genome types have common Pfam_Key identifier between the viruses. 

Despite Figure 2 appearing to be really “crowded” and unable to convey any specific 

information, it is evident “clusters” of viruses exist that expresses the same Pfam_Key set 

between viruses. These clusters are primarily centered between virus numbers 3-10 (Astrovirus 

type, Figure 3), 20-23 (Gyrovirus type), 26-32 (Adenovirus type, Figure 4), 34-36 (Bocavirus 

type), 39-42 (Cosavirus type), 47-55 (Herpesvirus type, Figure 4), 56-73 (Papillomavirus type, 

Figure 5), and 94-100 (Torque teno mini virus type). Figures 3-5 show the prominent clusters 

among those listed above. Figure 4 also shows that the adenovirus type and herpesvirus type 

have common Pfam_Key protein identifier types. 

3.4. Potential Utility of the Proposed Identifiers 

The performance of Pfam_Key identifier was encouraging for viruses hosted by human 

beings. However, the Pfam_Key identifier covered less than 50% (80024/179273 = 0.4464) of all 

the viral proteins reported in the NIH data file (Table 5). The low coverage of proteins by the 

Pfam_Key identifier is because the Pfam_Key identifier is based on protein structural similarity 

and the structure for many of the proteins seems to be unknown in the Pfam database that was 

used in this study (Pfam 27.0). 

On the other hand, the other proposed identifiers were based on protein sequence and 

accounted for all the proteins reported in the NIH data file. The MD5_Keys and SHA512_Keys 

were useful to generate unique and specific identifiers for a protein based on its sequence alone. 

The HI_Keys and Combo_Keys were less specific than MD5_Keys and SHA512_Keys but were 

not very useful as they generated nearly unique and specific identifier for every viral protein 

reported (161922/179273 = 0.9032 for HI_Keys, Table 5 and (178768/179273 = 0.9972 for 
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Figure 2. Pfam_Key Similarities for Viruses Hosted by Human Beings. 
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Figure 3. Pfam_Key Similarities for Astroviruses Hosted by Human Beings. 
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Figure 4. Pfam_Key Similarities for Adenoviruses and Herpesviruses Hosted by Human Beings. 
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Figure 5. Pfam_Key Similarities for Papillomaviruses Hosted by Human Beings 
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Combo_Keys, Table 5). The AA_Type_Keys and HI_Num identifier provided less specific 

protein identifiers based on the protein sequence for the proteins. Since these identifiers were not 

useful in identifying common protein sequences between viruses hosted by human beings, the 

utility of these keys was not further explored when all hosts and their hosted viruses were 

considered. 

The proposed identifiers could not be employed to identify common proteins in viruses 

for various hosts other than humans due to lack of knowledge of protein structures. The 

Pfam_Key based protein identifier was useful for human hosts because the structure for a 

majority the viral proteins hosted by humans were known. The host information for many viruses 

from the NIH data file could not be captured in code because of inconsistent data entry, and these 

viruses were collected together under “host_unknown”. 

One of the potential benefits that was mentioned of this study is that a drug that can treat 

a viral infection caused by a virus expressing a protein set P can be used to treat another infection 

caused by a different virus as long as the latter virus expresses a protein set that is a superset of 

the protein set P expressed by the former virus. The Pfam_Key identifier set for viruses hosted 

by all the other hosts except humans were then inspected to check if any of these viruses could 

be a superset of any of the studied human virus’ Pfam_Key protein identifier set. This analysis 

revealed that a total of 380 viruses that were reported to be hosted by hosts including 

“host_unknown” other than human beings has protein expression sets that could be considered a 

superset of the Pfam_Key identifier set calculated for the viruses hosted by humans in this study. 

The 380 viruses that can be a potential human health risk are listed in Appendix. It must 

be noted that the 380 viruses are only potential human health risks and not necessarily real 

human health risks. This distinction needs to be understood because one of the key 
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characteristics of viruses as they propagate in a host is that they express proteins to optimize their 

own survival as they respond to selective pressures the virus experience in the given host. 

Another factor that needs to be considered as well in evaluating the potential health risk 

is that the virus capable of posing human health risk may get cleared out by human immune 

system as soon as the virus makes an entry into a human body because of its surface 

characteristics (e.g. surface-bound glycoproteins on the virus may trigger a spontaneous immune 

response and offer instance immunity). 

Finally, the risk analyses posed by the viruses listed in Appendix only considers protein 

expression sets that are accounted for by the Pfam_Key identifiers. The other proteins that are 

still unaccounted may make human environment inhabitable for the virus (e.g. these proteins 

may not be able to fold to their native state in a human cell). 

3.5. Conclusions 

Seven protein identifiers were proposed in this study to uniquely identify, potentially 

classify and assist in rapid visualization of common proteins between viruses. The initial goal of 

the study was to identify common proteins for viruses that propagate in a given host. Of the 

seven proposed identifiers, one of the identifiers relied on protein structure (Pfam_Key 

identifier), while the remaining six relied on protein sequence (AA_Type_Key, HI_Key, 

HI_Num, Combo_Key, MD5_Key and SHA512_Key). The reason for exploring six different 

identifiers that relied on protein sequence alone is the goal of the study, which is to explore 

frameworks to assist rapid visualization of common proteins expressed by viruses that propagate 

in a given host. Elucidation and/or prediction of protein structure and its subsequent 

classification into a protein family is a slow process. Hence, an ideal unique identifier should 

rely on protein sequence alone since the protein sequence can be quickly predicted from the open 
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reading frame for the protein in the genome. However, this study found that identifiers relying on 

protein sequence alone are not efficient in generating unique identifiers that are useful to identify 

common viral proteins for a given host. On the other hand, identifiers that relied on protein 

structure were much better in providing unique identifiers that can be used in developing rapid 

visualization frameworks of common viral proteins. However, lack of structure information for 

many proteins remains a drawback of this approach. 
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APPENDIX. LIST OF VIRUSES RESIDING IN OTHER HOSTS WITH POTENTIAL 

FOR HUMAN HEALTH RISK 

A1. AGERATUM_CONYZOIDES_SYMTOMLESS_ALPHASATELLITE 

A2. BHENDI_YELLOW_VEIN_MOSAIC_VIRUS-ASSOCIATED_ALPHASATELLITE 

A3. MESTA_YELLOW_VEIN_MOSAIC_VIRUS-ASSOCIATED_ALPHASATELLITE 

A4. CROTON_YELLOW_VEIN_MOSAIC_ALPHASATELLITE 

A5. ACARTIA_TONSA_COPEPOD_CIRCOVIRUS_ISOLATE_154_D11 

A6. ACHETA_DOMESTICUS_VOLVOVIRUS_ISOLATE_ADVVV-JAPAN 

A7. AGERATUM_YELLOW_VEIN_SINGAPORE_ALPHASATELLITE- [SINGAPORE; 

 1998] 

A8. ANGUILLA_ANGUILLA_CIRCOVIRUS_ISOLATE_BA1 

A9. GOOSE_CIRCOVIRUS 

A10. MILK_VETCH_DWARF_C10_ALPHASATELLITE_GENE_FOR_REPLICATION_ 

 INITIATIONPROTEIN, 

A11. BARBEL_CIRCOVIRUS 

A12. CLEOME_LEAF_CRUMPLE_VIRUS_ASSOCIATED_DNA_1 

A13. RAVEN_CIRCOVIRUS 

A14. CYCLOVIRUS_ZM36A_DNA 

A15. CYANORAMPHUS_NEST_ASSOCIATED_CIRCULAR_K_DNA_VIRUS 

A16. CYANORAMPHUS_NEST_ASSOCIATED_CIRCULAR_X_DNA_VIRUS 

A17. DRAGONFLY_CYCLOVIRUS_3_ISOLATE_FL2-5E-2010 

A18. DRAGONFLY-ASSOCIATED_ALPHASATELLITE_ISOLATE_PR_NZ48_2009 

A19. DRAGONFLY_CYCLOVIRUS_5_ISOLATE_PR-6E-2010 

A20. STARLING_CIRCOVIRUS 

A21. FELINE_CYCLOVIRUS 

A22. GOSSYPIUM_DAVIDSONII_SYMPTOMLESS_ALPHASATELLITE_DNA-ALPHA

 -B 

A23. GOSSYPIUM_MUSTILINUM_SYMPTOMLESS_ALPHASATELLITE_DNA- 

 ALPHA-B 

A24. FABA_BEAN_NECROTIC_STUNT_ALPHASATELLITE_1_ISOLATE_ 

 PESHTATUEK_12B 

A25. FABA_BEAN_NECROTIC_STUNT_ALPHASATELLITE_2_ISOLATE_ 

 PESHTATUEK_12B 

A26. DRAGONFLY_CYCLICUSVIRUS_ISOLATE_FL1-NZ37-2010 

A27. DRAGONFLY_CYCLOVIRUS_2_ISOLATE_FL1-NZ38-2010 

A28. DUCK_CIRCOVIRUS 
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A29. BLACK_MEDIC_LEAFROLL_ALPHASATELLITE_1_ISOLATE_LERIK-XALIFA_ 

 47 

A30. DRAGONFLY_LARVAE_ASSOCIATED_CIRCULAR_VIRUS-1_ISOLATED 

 FLACV-1_NZ-PG11-LD, 

A31. DRAGONFLY_LARVAE_ASSOCIATED_CIRCULAR_VIRUS-2_ISOLATED 

 FLACV-2_NZ-PG8-LS, 

A32. DRAGONFLY_LARVAE_ASSOCIATED_CIRCULAR_VIRUS-6_ISOLATED 

 FLACV-6_NZ-PG9-LD, 

A33. DRAGONFLY_LARVAE_ASSOCIATED_CIRCULAR_VIRUS-7_ISOLATED 

 FLACV-7_NZ-PG5-LH, 

A34. BAT_CIRCOVIRUS_ISOLATE_XOR7 

A35. DRAGONFLY_CYCLOVIRUS_4_ISOLATE_BG-NZ46-2007 

A36. PO-CIRCO-LIKE_VIRUS_41 

A37. PO-CIRCO-LIKE_VIRUS_51 

A38. PORCINE_CIRCOVIRUS_TYPE_1-2A 

A39. DRAGONFLY_CYCLOVIRUS_ISOLATE_DFCYV-A1_TO-6NZ21-TT- 2010_ 

 REPLICATIONASSOCIATED PROTEIN AND CAPSID PROTEINGENES, 

A40. SUBTERRANEAN_CLOVER_STUNT_C2_ALPHASATELLITE 

A41. SUBTERRANEAN_CLOVER_STUNT_C6_ALPHASATELLITE 

A42. VERNONIA_YELLOW_VEIN_FUJIAN_VIRUS_ALPHASATELLITE 

A43. CYCLOVIRUS_BAT-USA-2009 

A44. BAT_CIRCOVIRUS_POA-2012-II 

A45. CYCLOVIRUS_NGCHICKEN15-NGA-2009 

A46. FINCH_CIRCOVIRUS 

A47. CYCLOVIRUS_PKGOAT11-PAK-2009 

A48. CYCLOVIRUS_PKGOAT21-PAK-2009 

A49. GULL_CIRCOVIRUS 

A50. BEAK_AND_FEATHER_DISEASE_VIRUS 

A51. CANARYPOX_VIRUS 

A52. CIRCOVIRIDAE_10_LDMD-2013 

A53. CIRCOVIRIDAE_11_LDMD-2013 

A54. CIRCOVIRIDAE_13_LDMD-2013 

A55. CIRCOVIRIDAE_14_LDMD-2013 

A56. CIRCOVIRIDAE_15_LDMD-2013 

A57. CIRCOVIRIDAE_21_LDMD-2013 

A58. CIRCOVIRIDAE_2_LDMD-2013 

A59. CIRCOVIRIDAE_5_LDMD-2013 

A60. CIRCOVIRIDAE_8_LDMD-2013 
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A61. CIRCOVIRUS-LIKE_GENOME_BBC-A 

A62. CIRCOVIRUS-LIKE_GENOME_RW-A 

A63. CIRCOVIRUS-LIKE_GENOME_RW-B 

A64. CIRCOVIRUS-LIKE_GENOME_RW-C 

A65. CIRCOVIRUS-LIKE_GENOME_RW-D 

A66. CIRCOVIRUS-LIKE_GENOME_RW-E 

A67. COCONUT_FOLIAR_DECAY_ALPHASATELLITE 

A68. COLUMBID_CIRCOVIRUS 

A69. MCMURDO_ICE_SHELF_POND-ASSOCIATED_CIRCULAR_DNA_VIRUS-3_ 

 ISOLATEALG49-39, 

A70. MCMURDO_ICE_SHELF_POND-ASSOCIATED_CIRCULAR_DNA_VIRUS-6_

 ISOLATEALG49-69, 

A71. MILK_VETCH_DWARF_C1_ALPHASATELLITE_GENE_FOR_VIRAL 

 REPLICATION-ASSOCIATED PROTEIN, 

A72. MILK_VETCH_DWARF_C2_ALPHASATELLITE_GENE_FOR_VIRAL

 REPLICATION-ASSOCIATED PROTEIN, 

A73. MILK_VETCH_DWARF_C3_ALPHASATELLITE_GENE_FOR_VIRUS

 REPLICATION-ASSOCIATED PROTEIN, 

A74. MULARD_DUCK_CIRCOVIRUS 

A75. MUSCOVY_DUCK_CIRCOVIRUS 

A76. OKRA_YELLOW_CRINKLE_CAMEROON_ALPHASATELLITE_ 

 [CM%3ALYS1SP2%3A09] 

A77. PORCINE_CIRCOVIRUS_1 

A78. PORCINE_CIRCOVIRUS_2 

A79. SILURUS_GLANIS_CIRCOVIRUS_ISOLATE_H5 

A80. CARDAMOM_BUSHY_DWARF_VIRUS_SATELLITE_CLONE_FR-X7 

A81. MINK_CIRCOVIRUS_STRAIN_MICV-DL13 

A82. CYGNUS_OLOR_CIRCOVIRUS_ISOLATE_H51 

A83. FLORIDA_WOODS_COCKROACH-ASSOCIATED_CYCLOVIRUS_ISOLATE_ 

 GS140 

A84. CANARY_CIRCOVIRUS 

A85. BHENDI_YELLOW_VEIN_DELHI_VIRUS_[2004%3ANEW_DELHI]DNA-A 

A86. BHENDI_YELLOW_VEIN_BHUBHANESWAR_VIRUS_DNA-A 

A87. BHENDI_YELLOW_VEIN_INDIA_VIRUS_[INDIA%3ADHARWAD_OYDWR2%

 3A2006]_DNA-A 

A88. COTTON_LEAF_CURL_ALLAHABAD_VIRUS_[INDIA%3AKARNAL%3AOY77

 %3A2005]_DNA-A 

A89. OKRA_ENATION_LEAF_CURL_VIRUS_[INDIA%3AMUNTHAL_EL37%3A2006]

 DNA-A 
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A90. OKRA_LEAF_CURL_INDIA_VIRUS_[INDIA%3ASONIPAT_EL14A%3A2006]

 DNA-A 

A91. TOMATO_LEAF_CURL_CAMEROON_VIRUS_-_[CAMEROON%3ABUEA%3A

 OKRA%3A2008] 

A92. AGERATUM_ENATION_VIRUS 

A93. AGERATUM_LEAF_CURL_VIRUS_-_[G52] 

A94. AGERATUM_YELLOW_VEIN_CHINA_VIRUS 

A95. AGERATUM_YELLOW_VEIN_TAIWAN_VIRUS 

A96. PAPAYA_LEAF_CURL_CHINA_VIRUS_-_[G8] 

A97. HOLLYHOCK_YELLOW_VEIN_MOSAIC_VIRUS 

A98. ALLAMANDA_LEAF_MOTTLE_DISTORTION_VIRUS_ISOLATE_AL-K1 

A99. ALLAMANDA_LEAF_CURL_VIRUS_DNA-A 

A100. ASYSTASIA_BEGOMOVIRUS_1 

A101. PEPPER_LEAF_CURL_YUNNAN_VIRUS-[YN323] 

A102. PEPPER_LEAF_CURL_LAHORE_VIRUS-[PAKISTAN%3ALAHORE1%3A2004] 

A103. TOMATO_YELLOW_LEAF_CURL_VIRUS 

A104. PAPAYA_LEAF_CRUMPLE_VIRUS-PANIPAT_8_[INDIA%3APANIPAT%3A 

 PAPAYA%3A2008]DNA-A, 

A105. PAPAYA_LEAF_CURL_GUANDONG_VIRUS_-_[GD2]DNA_A 

A106. CLERODENDRUM_GOLDEN_MOSAIC_CHINA_VIRUS_DNA_A 

A107. COCCINIA_MOSAIC_TAMIL_NADU_VIRUS_ISOLATE_TN_TDV_COC_1 

A108. CORCHORUS_YELLOW_VEIN_MOSAIC_VIRUS_ISOLATE_CEA8 

A109. CRASSOCEPHALUM_YELLOW_VEIN_VIRUS_-_JINGHONG 

A110. CROTON_YELLOW_VEIN_MOSAIC_VIRUS 

A111. CROTON_YELLOW_VEIN_VIRUS 

A112. SQUASH_LEAF_CURL_PHILIPPINES_VIRUS 

A113. CATHARANTHUS_YELLOW_MOSAIC_VIRUS 

A114. ECLIPTA_YELLOW_VEIN_VIRUS_CLONE_ECYVV-[PK_FAI_06] 

A115. EMILIA_YELLOW_VEIN_VIRUS-[FZ1] 

A116. EUPHORBIA_LEAF_CURL_VIRUS_DNA_A 

A117. GOSSYPIUM_DARWINII_SYMPTOMLESS_VIRUS_DNA-A 

A118. GOSSYPIUM_PUNCTATUM_MILD_LEAF_CURL_VIRUS_DNA_A 

A119. COTTON_LEAF_CURL_BUREWALA_VIRUS_-[INDIA%3AVEHARI  %3A2004] 

A120. COTTON_LEAF_CURL_VIRUS_DNA-A 

A121. HEMIDESMUS_YELLOW_MOSAIC_VIRUS_CLONE_H1 

A122. KENAF_LEAF_CURL_VIRUS_DNA_A 

A123. MESTA_YELLOW_VEIN_MOSAIC_BAHRAICH_VIRUS-[INDIA%3A 

 BAHRAICH%3A2007]_DNAA, 
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A124. MESTA_YELLOW_VEIN_MOSAIC_VIRUS_DNA-A 

A125. JATROPHA_LEAF_CRUMPLE_INDIA_VIRUS_[J._CURCAS%3A_JODHPUR]

 ISOLATESKJ2, 

A126. JATROPHA_LEAF_CRUMPLE_VIRUS_ISOLATE_SKJ1 

A127. JATROPHA_MOSAIC_NIGERIAN_VIRUS_ISOLATE_2 

A128. JATROPHA_YELLOW_MOSAIC_INDIA_VIRUS_DNA-A 

A129. HONEYSUCKLE_YELLOW_VEIN_VIRUS-[UK1] 

A130. LUDWIGIA_YELLOW_VEIN_VIRUS_DNA-A 

A131. LOOFA_YELLOW_MOSAIC_VIRUS_DNA_A 

A132. TOBACCO_LEAF_CURL_KOCHI_VIRUS 

A133. TOMATO_LEAF_CURL_CHINA_VIRUS_-_[G32] 

A134. TOMATO_LEAF_CURL_NEW_DELHI_VIRUS_DNA_A 

A135. TOMATO_LEAF_CURL_GUANGDONG_VIRUS_DNA-A 

A136. TOMATO_LEAF_CURL_MADAGASCAR_VIRUS-MENABE [MADAGASCAR 

 %3AMORONDOVA%3A2001], 

A137. TOMATO_LEAF_CURL_MAYOTTE_VIRUS 

A138. TOMATO_YELLOW_LEAF_CURL_GUANGDONG_VIRUS_DNA-A 

A139. MALVASTRUM_LEAF_CURL_GUANGDONG_VIRUS 

A140. MALVASTRUM_LEAF_CURL_VIRUS_-_[G87] 

A141. MALVASTRUM_YELLOW_VEIN_BAOSHAN_VIRUS_DNA-A 

A142. MALVASTRUM_YELLOW_VEIN_CHANGA_MANGA_VIRUS 

A143. MALVASTRUM_YELLOW_VEIN_YUNNAN_VIRUS 

A144. MALVASTRUM_LEAF_CURL_PHILIPPINES_VIRUS_ISOLATE_MC1 

A145. CASSAVA_MOSAIC_MADAGASCAR_VIRUS_DNA_A 

A146. EAST_AFRICAN_CASSAVA_MOSAIC_KENYA_VIRUS_DNA_A 

A147. MIRABILIS_LEAF_CURL_INDIA_VIRUS 

A148. TOBACCO_LEAF_CURL_PUSA_VIRUS_DNA-A 

A149. AGERATUM_YELLOW_VEIN_CHINA_VIRUS_-_OX1 

A150. TOMATO_LEAF_CURL_CHINA_VIRUS_-_OX2 

A151. FRENCH_BEAN_LEAF_CURL_VIRUS-KANPUR_ISOLATE_FBLCV-KANPUR

 _SEGMENTDNA-A, 

A152. POUZOLZIA_GOLDEN_MOSAIC_VIRUS_ISOLATE_TY01 

A153. SENECIO_YELLOW_MOSAIC_VIRUS 

A154. SIDA_YELLOW_MOSAIC_CHINA_VIRUS_-_[HAINAN_8] 

A155. SIEGESBECKIA_YELLOW_VEIN_VIRUS-[GD13] 

A156. TOMATO_LEAF_CURL_LIWA_VIRUS_ISOLATE_LW1 

A157. TYLCAXV-SIC1-[IT%3ASIC2-2%3A04] 

A158. TOMATO_LEAF_CURL_PALAMPUR_VIRUS 
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A159. TOMATO_LEAF_CURL_SEYCHELLES_VIRUS 

A160. TOMATO_YELLOW_LEAF_CURL_AXARQUIA_VIRUS_ISOLATE_  HOMRA 

A161. TOMATO_YELLOW_LEAF_CURL_YUNNAN_VIRUS_ISOLATE_YN2013_

 CLONE_10SEGMENT DNA-A, 

A162. TOMATO_LEAF_CURL_KERALA_VIRUS 

A163. TOMATO_YELLOW_LEAF_CURL_SAUDI_VIRUS_ISOLATE_HAIL1 

A164. TOMATO_LEAF_CURL_OMAN_VIRUS 

A165. STACHYTARPHETA_LEAF_CURL_VIRUS 

A166. MIMOSA_YELLOW_LEAF_CURL_VIRUS_DNA-A 

A167. VERNONIA_YELLOW_VEIN_VIRUS_DNA-A 

A168. SIDA_YELLOW_VEIN_VIETNAM_VIRUS_DNA-A 

A169. BITTER_GOURD_YELLOW_VEIN_VIRUS_ISOLATE_BD12C8 

A170. EAST_AFRICAN_CASSAVA_MOSAIC_ZANZIBAR_VIRUS_DNA-A 

A171. LINDERNIA_ANAGALLIS_YELLOW_VEIN_VIRUS_DNA-A 

A172. ERECTITES_YELLOW_MOSAIC_VIRUS_DNA-A 

A173. CLERODENDRUM_GOLDEN_MOSAIC_VIRUS_DNA-A 

A174. HOLLYHOCK_LEAF_CRUMPLE_VIRUS 

A175. AGERATUM_LEAF_CURL_CAMEROON_VIRUS 

A176. AGERATUM_YELLOW_VEIN_VIRUS 

A177. BHENDI_YELLOW_VEIN_MOSAIC_VIRUS 

A178. CHILLI_LEAF_CURL_VIRUS 

A179. CLERODENDRON_YELLOW_MOSAIC_VIRUS 

A180. COTTON_LEAF_CURL_ALABAD_VIRUS 

A181. COTTON_LEAF_CURL_GEZIRA_VIRUS 

A182. COTTON_LEAF_CURL_KOKHRAN_VIRUS 

A183. COTTON_LEAF_CURL_MULTAN_VIRUS 

A184. EAST_AFRICAN_CASSAVA_MOSAIC_CAMEROON_VIRUS_DNA_A 

A185. EAST_AFRICAN_CASSAVA_MOSAIC_VIRUS_DNA_A 

A186. EUPATORIUM_YELLOW_VEIN_VIRUS 

A187. HONEYSUCKLE_YELLOW_VEIN_MOSAIC_VIRUS-[KAGOSHIMA] 

A188. HONEYSUCKLE_YELLOW_VEIN_MOSAIC_VIRUS 

A189. INDIAN_CASSAVA_MOSAIC_VIRUS_DNA_A 

A190. MALVASTRUM_YELLOW_MOSAIC_VIRUS_DNA-A 

A191. MALVASTRUM_YELLOW_VEIN_VIRUS 

A192. OKRA_LEAF_CURL_CAMEROON_VIRUS 

A193. OKRA_YELLOW_VEIN_MOSAIC_VIRUS 

A194. PAPAYA_LEAF_CURL_VIRUS 
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A195. PEDILANTHUS_LEAF_CURL_VIRUS-PEDILANTHUS_[PAKISTAN%3A 

 MULTAN%3A2004] 

A196. PEPPER_LEAF_CURL_VIRUS_DNA-A 

A197. PEPPER_YELLOW_LEAF_CURL_INDONESIA_VIRUS_DNA-A 

A198. PEPPER_YELLOW_VEIN_MALI_VIRUS 

A199. PUMPKIN_YELLOW_MOSAIC_MALAYSIA_VIRUS_DNA_A 

A200. SIDA_LEAF_CURL_VIRUS 

A201. SOUTH_AFRICAN_CASSAVA_MOSAIC_VIRUS_DNA_A 

A202. SOYBEAN_CRINKLE_LEAF_VIRUS 

A203. SQUASH_LEAF_CURL_CHINA_VIRUS_-_[B]_DNA-A 

A204. SQUASH_LEAF_CURL_YUNNAN_VIRUS 

A205. SRI_LANKAN_CASSAVA_MOSAIC_VIRUS_DNA_A 

A206. TOBACCO_LEAF_CURL_JAPAN_VIRUS 

A207. TOBACCO_LEAF_CURL_THAILAND_VIRUS 

A208. TOBACCO_LEAF_CURL_YUNNAN_VIRUS_-_[Y136] 

A209. TOBACCO_LEAF_CURL_ZIMBABWE_VIRUS 

A210. TOMATO_CURLY_STUNT_VIRUS 

A211. TOMATO_LEAF_CURL_BANGALORE_VIRUS 

A212. TOMATO_LEAF_CURL_BANGLADESH_VIRUS 

A213. TOMATO_LEAF_CURL_HAINAN_VIRUS 

A214. TOMATO_LEAF_CURL_IRAN_VIRUS 

A215. TOMATO_LEAF_CURL_JAVA_VIRUS 

A216. TOMATO_LEAF_CURL_KARNATAKA_VIRUS 

A217. TOMATO_LEAF_CURL_LAOS_VIRUS 

A218. TOMATO_LEAF_CURL_MALAYSIA_VIRUS 

A219. TOMATO_LEAF_CURL_MALI_VIRUS 

A220. TOMATO_LEAF_CURL_PHILIPPINES_VIRUS 

A221. TOMATO_LEAF_CURL_PUNE_VIRUS 

A222. TOMATO_LEAF_CURL_SUDAN_VIRUS_-_[GEZIRA] 

A223. TOMATO_LEAF_CURL_TAIWAN_VIRUS 

A224. TOMATO_LEAF_CURL_VIETNAM_VIRUS_DNA_A 

A225. TOMATO_LEAF_CURL_VIRUS 

A226. TOMATO_YELLOW_LEAF_CURL_KANCHANABURI_VIRUS_DNA_A 

A227. TOMATO_YELLOW_LEAF_CURL_MALAGA_VIRUS 

A228. TOMATO_YELLOW_LEAF_CURL_SARDINIA_VIRUS 

A229. TOMATO_YELLOW_LEAF_CURL_THAILAND_VIRUS_DNA_A 

A230. TOMATO_LEAF_CURL_GHANA_VIRUS 
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A231. TOMATO_LEAF_CURL_GUJARAT_VIRUS_-_[VARANASI] 

A232. TOMATO_LEAF_CURL_PAKISTAN_VIRUS 

A233. SPILANTHES_YELLOW_VEIN_VIRUS_DNA-A 

A234. PEPPER_YELLOW_LEAF_CURL_CHINA_VIRUS_ISOLATE_YN65-1 

A235. RADISH_LEAF_CURL_VIRUS 

A236. RAMIE_MOSAIC_VIRUS_DNA-A 

A237. ROSE_LEAF_CURL_VIRUS_ISOLATE_AS24 

A238. AGERATUM_YELLOW_VEIN_HUALIAN_VIRUS-[TAIWAN%3AHSINCHU 

 %3ATOM%3A2003]_DNA_A 

A239. TOBACCO_CURLY_SHOOT_VIRUS 

A240. TOMATO_LEAF_CURL_ARUSHA_VIRUS_DNA-A 

A241. TOMATO_LEAF_CURL_BARKA_VIRUS_ISOLATE_TOM-55 

A242. TOMATO_LEAF_CURL_CEBU_VIRUS_DNA-A 

A243. TOMATO_LEAF_CURL_COTABATO_VIRUS_DNA-A 

A244. TOMATO_LEAF_CURL_GUANGXI_VIRUS 

A245. TOMATO_LEAF_CURL_HANOI_VIRUS 

A246. TOMATO_LEAF_CURL_HSINCHU_VIRUS_-_[TAIWAN%3 AHSINCHU 

 %3A2005]_DNA_A 

A247. TOMATO_LEAF_CURL_JOYDEBPUR_VIRUS_DNA-A 

A248. TOMATO_LEAF_CURL_MINDANAO_VIRUS_DNA-A 

A249. TOMATO_LEAF_CURL_NIGERIA_VIRUS-[NIGERIA%3A2006] 

A250. TOMATO_LEAF_CURL_PATNA_VIRUS_DNA-A 

A251. TOMATO_LEAF_CURL_RANCHI_VIRUS_DNA-A 

A252. TOMATO_LEAF_CURL_SULAWESI_VIRUS_DNA-A 

A253. TOMATO_LEAF_CURL_TOGO_VIRUS-[TOGO%3A2006] 

A254. TOMATO_YELLOW_LEAF_CURL_CHINA_VIRUS 

A255. TOMATO_YELLOW_LEAF_CURL_INDONESIA_VIRUS-[LEMBANG] 

A256. TOMATO_LEAF_CURL_GANDHINAGAR_VIRUS_ISOLATE_PTOGNAX15 

A257. TOMATO_LEAF_CURL_KUMASI_VIRUS 

A258. TOMATO_YELLOW_LEAF_CURL_VIETNAM_VIRUS_DNA-A 

A259. TOMATO_LEAF_CURL_SRI_LANKA_VIRUS 

A260. WATERMELON_CHLOROTIC_STUNT_VIRUS_DNA_A 

A261. AGERATUM_YELLOW_VEIN_SRI_LANKA_VIRUS 

A262. COTTON_LEAF_CURL_BANGALORE_VIRUS 

A263. COTTON_LEAF_CURL_RAJASTHAN_VIRUS 

A264. OKRA_YELLOW_CRINKLE_VIRUS 

A265. PEPPER_LEAF_CURL_BANGLADESH_VIRUS 
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A266. VELVET_BEAN_SEVERE_MOSAIC_VIRUS_DNA_A 

A267. MUNGBEAN_YELLOW_MOSAIC_INDIA_VIRUS_DNA_A 

A268. MUNGBEAN_YELLOW_MOSAIC_VIRUS_DNA_A 

A269. SOYBEAN_CHLOROTIC_BLOTCH_VIRUS_DNA_A 

A270. TOMATO_MOTTLE_WRINKLE_VIRUS_ISOLATE_AR%3APICHANAL%3A400 

A271. OKRA_LEAF_CURL_VIRUS-[CAMEROON] 

A272. TURNIP_CURLY_TOP_VIRUS 

A273. CAPRARIA_YELLOW_SPOT_YUCATAN_VIRUS 

A274. DOLICHOS_YELLOW_MOSAIC_VIRUS_ISOLATE_DA 

A275. SWEET_POTATO_GOLDEN_VEIN_ASSOCIATED_VIRUS 

A276. SWEET_POTATO_LEAF_CURL_BENGAL_VIRUS_-_[INDIA%3AWEST_

 BENGAL%3A2008]SEGMENTA, 

A277. SWEET_POTATO_LEAF_CURL_CANARY_VIRUS 

A278. SWEET_POTATO_LEAF_CURL_CHINA_VIRUS_[CHINA%3ASICHUAN14%3A

 2012] 

A279. SWEET_POTATO_LEAF_CURL_LANZAROTE_VIRUS 

A280. SWEET_POTATO_LEAF_CURL_SAO_PAULO_VIRUS_ISOLATESPLCSPV-

 [BR%3AALVM%3A09], 

A281. SWEET_POTATO_LEAF_CURL_SHANGHAI_VIRUS_ISOLATE_CHINA%3A

 JILIN1%3A2012 

A282. SWEET_POTATO_LEAF_CURL_SOUTH_CAROLINA_VIRUS 

A283. SWEET_POTATO_LEAF_CURL_SPAIN_VIRUS 

A284. SWEET_POTATO_LEAF_CURL_VIRUS_ISOLATE_CHINA%3ASHANDO

 NG11%3A2012 

A285. IPOMOEA_YELLOW_VEIN_VIRUS 

A286. SWEET_POTATO_LEAF_CURL_UGANDA_VIRUS-[UGANDA%3AKAMPALA

 %3A2008] 

A287. JATROPHA_LEAF_CURL_VIRUS_DNA_A 

A288. KUDZU_MOSAIC_VIRUS_DNA-A 

A289. ALTERNANTHERA_YELLOW_VEIN_VIRUS_DNA-A 

A290. HORSEGRAM_YELLOW_MOSAIC_VIRUS 

A291. SIEGESBECKIA_YELLOW_VEIN_GUANGXI_VIRUS 

A292. SOLANUM_MOSAIC_BOLIVIA_VIRUS 

A293. TOMATO_YELLOW_MOTTLE_VIRUS 

A294. BEET_CURLY_TOP_VIRUS_-_CALIFORNIA_[LOGAN] 

A295. CHAYOTE_YELLOW_MOSAIC_VIRUS 

A296. SIDA_YELLOW_VEIN_MADURAI_VIRUS 

A297. SWEET_POTATO_LEAF_CURL_CHINA_HENAN_VIRUS 
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A298. SWEET_POTATO_LEAF_CURL_GEORGIA_VIRUS 

A299. SWEET_POTATO_LEAF_CURL_VIRUS 

A300. TOMATO_PSEUDO-CURLY_TOP_VIRUS 

A301. SIDA_MICRANTHA_MOSAIC_VIRUS 

A302. SOYBEAN_MILD_MOTTLE_VIRUS 

A303. SWEET_POTATO_LEAF_CURL_GUANGXI_VIRUS_ISOLATE_CHINA%

 3AGUANGXI5%3A2011 

A304. SWEET_POTATO_LEAF_CURL_HENAN_VIRUS_ISOLATE_CHINA%3A

 HENAN10(2)%3A2012 

A305. BEAN_GOLDEN_YELLOW_MOSAIC_VIRUS_DNA_A 

A306. SIDA_MOTTLE_VIRUS 

A307. SIDA_YELLOW_MOSAIC_VIRUS 

A308. TOMATO_LEAF_DEFORMATION_VIRUS_ISOLATE_EA-LE3-5K 

A309. LAUSANNEVIRUS 

A310. MELBOURNEVIRUS_ISOLATE_1 

A311. MARSEILLEVIRUS_MARSEILLEVIRUS_STRAIN_T19 

A312. ACANTHAMOEBA_POLYPHAGA_MIMIVIRUS 

A313. ACANTHAMOEBA_POLYPHAGA_MOUMOUVIRUS 

A314. AEROMONAS_PHAGE_44RR2.8T 

A315. AEROMONAS_PHAGE_PHIAS4 

A316. ALTEROMONAS_PHAGE_VB_AMAP_AD45-P1 

A317. ANOMALA_CUPREA_ENTOMOPOXVIRUS_DNA 

A318. UNVERIFIED%3A_ANOPHELES_MINIMUS_IRODOVIRUS_ISOLATE_AMIV 

A319. CAFETERIA_ROENBERGENSIS_VIRUS_BV-PW1 

A320. CAMPYLOBACTER_PHAGE_CP21 

A321. CRONOBACTER_PHAGE_VB_CSAM_GAP32 

A322. DICKEYA_PHAGE_VB_DSOM_LIMESTONE1 

A323. EDWARDSIELLA_PHAGE_PEI21 

A324. ENTEROBACTERIA_PHAGE_EPS7 

A325. ENTEROBACTERIA_PHAGE_T5 

A326. ENTEROBACTERIA_PHAGE_VB_ECOM-VR7 

A327. ESCHERICHIA_PHAGE_BV_ECOS_AKFV33 

A328. ESCHERICHIA_PHAGE_PHAXI 

A329. ESCHERICHIA_PHAGE_VB_ECOS_FFH1 

A330. KLEBSIELLA_PHAGE_JD001 

A331. ENTEROBACTERIA_PHAGE_VB_KLEM-RAK2 

A332. MICROMONAS_SP._RCC1109_VIRUS_MPV1 
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A333. MYCOBACTERIUM_PHAGE_LLIJ 

A334. MYXOCOCCUS_PHAGE_MX8 

A335. OSTREOCOCCUS_LUCIMARINUS_VIRUS_OLV1 

A336. RHODOCOCCUS_PHAGE_REQ2 

A337. SALMONELLA_PHAGE_C341 

A338. SALMONELLA_PHAGE_EPSILON34 

A339. SALMONELLA_PHAGE_PVP-SE1 

A340. SERRATIA_PHAGE_PS2 

A341. SPODOPTERA_FRUGIPERDA_ASCOVIRUS_1A 

A342. VIBRIO_PHAGE_ICP1 

A343. VIBRIO_PHAGE_PVP-1 

A344. YERSINIA_PHAGE_PHIR201 

A345. MEGAVIRUS_LBA_ISOLATE_LBA111 

A346. ARMADILLIDIUM_VULGARE_IRIDESCENT_VIRUS 

A347. ENTEROBACTERIA_PHAGE_HK106 

A348. ESCHERICHIA_PHAGE_121Q 

A349. HELIOTHIS_VIRESCENS_ASCOVIRUS_3E 

A350. INVERTEBRATE_IRIDESCENT_VIRUS_30 

A351. INVERTEBRATE_IRIDESCENT_VIRUS_6 

A352. LYMANTRIA_DISPAR_MNPV 

A353. MEGAVIRUS_CHILIENSIS 

A354. MYCOBACTERIUM_PHAGE_AVANI 

A355. MYCOBACTERIUM_PHAGE_BOBI 

A356. MYCOBACTERIUM_PHAGE_JABBAWOKKIE 

A357. MYCOBACTERIUM_PHAGE_SG4 

A358. PECTOBACTERIUM_PHAGE_MY1 

A359. SHEWANELLA_SP._PHAGE_1-4 

A360. SULFITOBACTER_PHAGE_PCB2047-A 

A361. SYNECHOCOCCUS_PHAGE_S-CAM8_STRAIN_S-CAM8_06008BI06 

A362. MYCOBACTERIUM_PHAGE_WIVSMALL 

A363. PARAMECIUM_BURSARIA_CHLORELLA_VIRUS_FR483 

A364. MYCOBACTERIUM_PHAGE_OMEGA 

A365. MYCOBACTERIUM_PHAGE_PMC 

A366. MYCOBACTERIUM_PHAGE_TWEETY 

A367. MYCOBACTERIUM_PHAGE_ARDMORE 

A368. MYCOBACTERIUM_PHAGE_BOOMER 

A369. MYCOBACTERIUM_PHAGE_DEADP 
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A370. MYCOBACTERIUM_PHAGE_FRUITLOOP 

A371. MYCOBACTERIUM_PHAGE_GUMBIE 

A372. MYCOBACTERIUM_PHAGE_HAMULUS 

A373. MYCOBACTERIUM_PHAGE_REDNO2 

A374. MYCOBACTERIUM_PHAGE_THIBAULT 

A375. MYCOBACTERIUM_PHAGE_WANDA 

A376. MYCOBACTERIUM_PHAGE_WEE 

A377. PITHOVIRUS_SIBERICUM_ISOLATE_P1084-T 

A378. CLOSTRIDIUM_PHAGE_C-ST 

A379. ACIDIANUS_ROD-SHAPED_VIRUS_1 

A380. SALMONELLA_PHAGE_SSU5 

 

 


