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ABSTRACT 

Static Random Access Memory (SRAM) is a critical component in mobile video 

processing systems. Because of the large video data size, the memory is frequently accessed, 

which dominates the power consumption and limits battery life. In energy-efficient SRAM 

design, a substantial amount of research is presented to discuss the mechanisms of approximate 

storage, but the content and environment adaptations were never a part of the consideration in 

memory design. This dissertation focuses on optimization methods for the SRAM system, 

specifically addressing three areas of Intelligent Energy-Efficient Storage system design. First, 

the SRAM stability is discussed. The relationships among supply voltage, SRAM transistor 

sizes, and SRAM failure rate are derived in this section. The result of this study is applied to all 

of the later work. Second, intelligent voltage scaling techniques are detailed. This method utilizes 

the conventional voltage scaling technique by integrating self-correction and sizing techniques. 

Third, intelligent bit-truncation techniques are developed. Viewing environment and video 

content characteristics are considered in the memory design. The performance of all designed 

SRAMs are compared to published literature and are proven to have improvement. 
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1. INTRODUCTION 

1.1. Background 

The modern world is all about video streaming. According to the recent Cisco Visual 

Networking Index, 79% of total mobile data in 2019 used for Mobile video traffic [1]. Figure 1 

shows the predicted growth chart. With the continuous evolution of mobile networks, it is 

expected to increase 9-fold between 2016 and 2021 [1].  

 
Figure 1. Mobile Data Traffic by 2022 [1]. 

 

Video streaming is, therefore, becoming the most energy-consuming applications on 

mobile devices. During the mobile video steaming process, over 92% of the motion 

compensation energy [2] and 50% of the video decoding energy consumption [3] comes with 

frequent memory access, and energy consumption due to video streaming will only continue to 

increase with the emerging of Ultra-High-Definition (UHD) videos [4]. Accordingly, techniques 

for enhancing the energy efficiency of video memories are key to the advancement of mobile 

devices. The study of energy-efficient memory application-specific designs has recently become 
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a focus of research. Memories that are capable of providing high-quality output while saving 

power consumption are in demand.  

We conducted simulations to calculate important performance parameters, including 

power efficiency, video quality, and area overhead, in order to test the effectiveness of designed 

memories. With the variable-controlling approach, the improvement of our work against the 

state-of-the-art is shown in this dissertation. 

1.2. Research Challenges 

This research focuses on the design optimization of Static Random-Access Memory 

(SRAM), a CMOS semiconductor memory, to reduce the effect of failed SRAM cells on output 

result in approximate computing application. Traditional hardware-level optimization techniques 

usually come with significant implementation costs to solve the memory failure problem. Two of 

the most common examples of the costs are the silicon area overhead and performance penalty.  

Therefore, the first goal is to come up with a novel energy-efficient SRAM circuit design 

with simplified additional logic in order to minimize the area overhead. The second goal is to 

perform simulations to make sure the circuit speed meets the application requirement.  

1.3. Statement and Contributions 

In this dissertation, design methods of SRAM are investigated and optimized to adapt to 

different approximate computing applications. The main focus of this dissertation is on reducing 

the power consumption for approximate computing applications by proposing novel SRAM 

designs. Rule mining techniques have been used to perform statistical pattern analysis. The 

discovered data pattern combined with a Data-driven hardware design technique enables an 

intelligent memory with a better tradeoff between energy efficiency, cost, and accuracy.  

The principal contributions of this dissertation are: 
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• A complete flow is designed to analyze SRAM cell stability. The variables used 

for analyzing this process include SRAM cell schematics, transistor sizes, and 

operating voltages. The relation found between the parameters and stability 

becomes the foundation of this research, which is used for supporting the SRAM 

design under near-threshold voltage. 

• To correct memory faults under low operation voltage with high precision, a self-

recovery SRAM design is presented. By comparing the correlation percentages, 

found by a rule mining technique, the optimized rules can be used to predict the 

value of adjacent faulty data in memory. 

• A novel viewer-aware bit-truncation technique is presented, which enables better 

visual experience while maintaining similar power efficiency. Based on the 

developed models and viewer-aware bit-truncation technique, a content-adaptive 

video memory design with dynamic energy-quality trade-off is implemented. The 

designed methods are able to adapt to the environment in real-time with minimal 

quality loss. 

1.4. Organization 

This dissertation is organized into 10 chapters. Chapter 2 presents previous work and 

contains an in-depth discussion of fundamental terminology and concepts for low-power SRAM 

design, which will provide the foundation for the rest of the dissertation. Research on two lo low-

power design directions, SRAM cell design and peripheral circuit design are introduced and 

followed by Application-Specific memory designs. Techniques introduced are adapted, 

improved, and compared in this work. 
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Chapter 3 introduces a complete flow to simulate SRAM stability. Based on the physical 

characteristics for transistors, a method for measuring SRAM cell stability is implemented using 

a netlist (i.e. a textual description of a circuit made of components). Meaningful data is then 

extracted from the simulation output using a python script. Finally, by feeding the extracted data 

into a Matlab script, the failure rate of designed SRAM is acquired. The result of this study was 

applied to all of the SRAM designs in this dissertation.  

Chapters 4 and 5 present the self-recovery techniques. Recently, a new branch of low-

voltage embedded memory techniques have been developed to embrace the memory faults, 

instead of avoiding the faults (assistance techniques or more than 6T cells) or correcting the 

faults (e.g. ECC). Those techniques aim to mitigate the impact of memory faults by minimizing 

the magnitude of the error due to a faulty cell, based on the determined memory fault positions 

from run-time testing (e.g. BIST). By applying a data correlation enabled self-recovery method, 

self-recovery low-power video memory and an intelligent efficient deep learning synaptic 

memory are designed and tested for effectiveness. Self-recovery techniques use another bit from 

the same data or from adjacent data to correct a detected faulty bit.  

 In Chapters 6 and 7, novel bit-truncation techniques are discussed. These bit-truncation 

techniques are combined with viewer awareness and a Peak signal-to-noise ratio (PSNR) 

improvement mathematic model. Two low-power video memories are detailed: viewer-aware 

intelligent video memory and content-adaptive video memory.  

Chapter 8 introduces an MTJ based non-volatile SRAM utilizing spin torque transfer 

magnetization switching in 45 nm technology. The designed non-volatile SRAM is enabled by a 

sequence of peripheral signals to avoid data loss at power down. 
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In Chapter 9, machine intelligence is used to enhance visual inspection in welding quality 

control by developing a low-cost and reliable portable embedded device with advanced machine 

learning techniques. Our developed device significantly enhances the effectiveness of the visual 

inspection, which will further enable rapid and cost-effective decision making for welding 

quality control. 

Chapter 10 concludes the contributions of this dissertation and offers a direction for 

future research. 
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2. PREVIOUS WORK 

To achieve low-power memory design, two directions of approaches are studied. One is 

adopting more than 6T (6 transistors), a conventional SRAM cell design, to improve the read and 

write stabilities under low voltage operation such as column-decoupled 8T cells [9], asymmetric 

7T cell [10], bit-interleaving 12T cells [11], and read-disturb-free 9T [12]. And the other one is 

utilizing memory bit-line peripheral circuit schematic to reduce the power consumption such as 

boosted word-line (WL) voltage [5], adjustment of cell voltage [6], read-modify-write or write-

back schemes [7], and dual-rail supply schemes [8]. However, the improvements in the memory 

power efficiency of those general-purpose design techniques are often achieved with significant 

design complexity, increased silicon area, and power penalty for voltage regulators or boosting 

circuits to solve the memory failure issue. 

Many recent studies have explored the low-power mobile video memories with 

application-specific designs. For example, Sinangil et al. [13] present an SRAM that reduces 

read power consumption by lowering the bit-line switching for Most-Significant-Bits (MSBs). A 

hybrid 6T+8T SRAM design to achieve quality-power optimization is detailed in Chang et al. 

[14]. To reduce the conventional 6T bit-cell failure probability, a heterogeneous sizing scheme is 

shown in [15]. In [16], video memory is presented that uses the Lease-Significant-Bits (LSB) of 

video data to store error-correction-code (ECC).  

2.1. Previous Work on SRAM Cell Design 

In 2011, Joshi introduced a novel 8T-CDC column-decoupled SRAM design [9]. In 

comparison to standard 6T techniques, this design enables enhanced voltage scaling capabilities 

and 30%–40% power reduction. Monte-Carlo statistical simulation methodology is applied in 

this paper to study the read and write stability. Monte-Carlo simulation methodology is applied 
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in this dissertation to analyze the SRAM failure rate. In 2006, a read-static-noise-margin-free 

SRAM cell is designed to help improve the speed of conventional SRAMs by Takeda [10]. It 

consists of seven transistors, an additional transistor for loop-cutting is added to a 6T-cell. The 

area of the proposed SRAM is 23% smaller than that of a conventional SRAM at the same 

operation speed. In [11], a new bit-interleaving 12T subthreshold SRAM cell is presented by 

Chiu. With Data-Aware Power-Cutoff (DAPC) Write-assist designed SRAM cell has an 

improved Write-ability to mitigate device variations at low supply voltage. The measured results 

show that under the worst-case bit-line data patterns, Data can be successfully read and written at 

350 mV (100 mV lower than the threshold voltage).  

The solutions listed above are on the SRAM cell itself. Some other work focused on 

SRAM peripheral circuits that have focused on improving SRAM stability by optimizing control 

signal circuits will be discussed in the next section. 

2.2. Previous Work on SRAM Peripheral Circuits Design 

The variation tolerant assist circuits against process variation were proposed in 2008 by 

Nii [6]. This work lowers the WL voltage to improve the SRAM readability. But the downside is 

not only the slower speed but the stability of the writing operation. A read assists circuit and a 

write assist circuit is designed to improve the read and write ability at the same time with less 

than 10% area overhead. By introducing the read assist circuit, the static noise margin is 

increased by about 100 mV at 1.0V supply voltage. And compared with the case without assist 

circuits, the write margin was improved by about 35 mV. Similarly, in 2009, a 512Kb dual-

power-supply SRAM is designed by Hirabayashi [5]. This work focused on improving SRAM 

stability with minimized SRAM size by using two voltage supplies. The cell failure rate is 
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improved more than three orders of magnitude by using an adaptive WL-level programming 

scheme and dynamic-array-supply control scheme to increase Static Noise Margin.  

In 2009, Kushida proposed a self-write-back sense amplifier in order to improve cell 

stability [7]. A pair of capacitance separators are inserted between SRAM cells and a sense 

amplifier to immunize the disturbing effect. The proposed sense amplifier is able to improve the 

cell failure rate two orders of magnitude at 0.6 V. In 2013, he also presented an SRAM circuit 

technique to reduce active and standby power consumption at room temperature [8]. In the active 

mode, the cell supply voltage (VCS) is adaptively controlled by a bit-line power calculator. And a 

retention circuit regulates VCS in the standby mode. Compared with the conventional scheme, the 

power consumption in the active and standby modes at room temperature is reduced by 27% and 

85%, respectively.  

2.3. Previous Work on Application-Specific Memory Design 

Application-specific SRAM is customized for a particular use, rather than intended for 

general-purpose. As a result, for different applications, the best solution can be various. Some of 

the design thoughts are introduced as follows.  

Sinangil proposed a prediction-based reduced bit-line switching scheme to reduce 

switching activity on the bit-lines [13]. And a sense-amplifier is designed to reduce the energy 

consumption of the sensing network. Compared with an 8T SRAM, proposed techniques provide 

up to 1.9× lower energy consumption. A low-power two-port real-time video processing SRAM 

is proposed by Fujiwara [14]. This SRAM is designed for real-time image processing in which 

data have a statistical correlation. With propose design, 53% power reduction can be achieved on 

the bit-lines, and it saves 43% of the total read power. The idea of using correlated data to 

improve circuit design is applied to our recent researches. The speed and area overheads are 4% 
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and 11%, respectively. Kwon proposes a heterogeneous SRAM cell sizing architecture in 2012 

[15]. SRAM cell size is a key factor to SRAM failures, the failure rate is in an inverse ratio to 

SRAM size. In this work, SRAM cells with different sizes are applied to store data based on the 

significance of each data bit. The proposed SRAM design technique achieves 4.49 dB PSNR 

improvement compared to the SRAM with the same cell size at 900-mV supply voltage. SRAM 

size is an important factor in SRAM stability. The SRAM failure rates and SRAM sizes are 

mapped in this dissertation, which can be used to establish a mathematical model for optimizing 

SRAM cell design. 

Previous works have shown that the study of energy-efficient storage design has many 

areas of research. But for video SRAM design, no one has considered subjective perception with 

the video quality. Video applications have been shown to have a certain degree of resistance or 

tolerance to errors [38]. This error resistance allows a hardware redesign to enable power saving 

using approximate computing methods. Most of the memory designs detailed in this dissertation 

are specifically for video applications, but the design methods can also be applied for other types 

of applications.  
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3. SRAM STABILITY 

The relative strength of a transistor could be changed by the process parameter variations 

that break the balance in the symmetric circuit [17]. Reduce the supply voltage (voltage scaling) 

has the potential to achieve significant power savings. However, voltage scaling aggravates the 

effect of parameter variations, which could cause memory failures such as read access, read 

disturb, or write failures [18].  

3.1. SRAM Mechanism 

Among various SRAM bitcells, 6T and 8T are the two most widely used architectures. 6T 

achieves optimized silicon area cost, while 8T reduces memory failures due to the decoupled 

read and write paths. These two types of designs are used in applications with different focuses. 

Vdd

Gnd

WL

BL BLB

0 1

1

Q 10
QB

 
Figure 2. 6T SRAM circuit schematic. 

 

WL

WL

BL

BLB  
Figure 3. 6T SRAM layout. 
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The 6T SRAM cell schematic and layout are shown in Figures 2 and 3, respectively. The 

conventional circuit of the 6T SRAM cell consists of 6 transistors, the circuit is made of two 

back to back connected inverters along with two NMOS transistors on the sides to access the 

stored data. Thus, the SRAM bit cell not only stores the data bit (Q) but also the complement 

(QB). Note that because the adjacent two SRAM cells share the same WL contact in the layout, 

some of the contacts are not fully displayed.  

The reading operation is the state when data is fetched from the memory cell. In order to 

read data, both bit-line (BL) and bit-line-bar (BLB) are pre-charged to Vdd, and the word line 

(WL) is low. Then, when the WL is enabled to logic 1 (Vdd), the access transistors on the sides 

are turned on. As a result, BL and BLB are connected to Q and QB, respectively. Please note that 

the BL and BLB are floating, which means they are not connected to Vdd anymore but are still 

holding the charges. A sense amplifier is connected at the end of the bit-lines to produce the 

output by comparing the voltages in the bit-lines (not shown in the figures). 

The writing operation is the state when data is written into the cell. To write data into a 

cell, BL is pulled to the value of the given data, and BLB takes the complementary value. For 

example, if the input data is 0 then BL = 0 and BLB = 1 (Vdd); whereas, if data is 1 then BL = 1 

and BLB = 0. Q and QB will be updated according to the bit-lines. 

The 8T SRAM cell consists of 2 additional transistors connecting to QB, compared with 

6T SRAM cell, to create a separate reading path as shown in Figure 4. The layout of the 8T 

SRAM is shown in Figure 5. 
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Figure 4. 8T SRAM circuit schematic.  
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WBL  
Figure 5. 8T SRAM Layout.  

 

 Compared to the 6T SRAM cell, the 8T SRAM has a separate reading path. Two 

additional lines, read word-line (RWL) and read bit-line (RBL), are added into the circuit to 

enable the reading operation. During the reading operation, RBL is pre-charged to Vdd. Then, 

RWL is enabled to logic 1. If the value stored in QB is one, RBL will be discharged to Gnd, 

otherwise, RBL stays at logic 1. 

The writing operation for 8T is similar to 6T. To write data into a cell, write bit-line 

(WBL) is pulled to the value of the given data, and write bit-line-bar (WBLB) takes the 

complementary value. Then the write word-line (WWL) is enabled to Vdd. Q and QB will be 

updated according to the bit-lines.  
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3.2. SRAM Static Noise Margin 

Static Noise Margin (SNM) is a stability measurement of an SRAM cell based on the 

Voltage Transfer Characteristics (VTC) of the cross-coupled inverters of the SRAM [36]. Figure 

6 illustrates a pair of cross-coupled inverters and two equal static noise sources, the schematic of 

an SRAM cell for simulating the SNM. The SNM of the SRAM cell is defined as the maximum 

value of Vn that can be allowed before the SRAM cell changing state [36].  

+     -
Vn

 
Figure 6. Cross-coupled inverters and two noise sources, Vn. 

 

SRAM cell is reconstructed for testing to form the “butterfly curve”, used for measuring 

the Read Static Noise Margin (RSNM). The reconstructed 6T read circuit is shown in Figure 7. 

Because of the process variations, the SRAM cell is not symmetric. Thus, the SRAM cell circuit 

is divided into two portions and simulated separately. During the simulation, a DC voltage 

source is sweeping at node V1 from 0v to Vdd, and the voltage at node V2 is measured to obtain 

the VTC.  
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Figure 7. Circuit to measure RSNM for 6T SRAM. 

 

As for the writing operation, since a pair of complementary data are stored in the cross-

coupled inverters, different circuits are applied for VTCs to obtain the Write Static Noise Margin 

(WSNM). The circuit schematics are shown in Figure 8. The measurement of the circuit on the 

left of Figure 8 is similar to the RSNM. The difference is on the right. It represents the stored 

data is ‘1’ and the accessed bit-line is grounded to simulate the write ‘0’operation. A DC voltage 

source is sweeping at node V1 from 0v to Vdd, and the voltage at node V2 is measured. 

V1 V2 V2 V1 

 
Figure 8. Circuits to measure WSNM for 6T SRAM. 

 

Figure 9 shows examples of an RSNM and a WSNM of 6T. The RSNM can be 

determined by the size of the largest square inscribed in the area between two curves. Similarly, 
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the size of the smallest embedded square fits between the lower part of the curves represents the 

WSNM. 

 
Figure 9. Left: RSNM of 6T SRAM. Right: WSNM of 6T SRAM. 

 

As shown in Figure 10, the separated read path makes the circuit to measure 8T RSNM 

different from 6T. Data stored at V2 node only applied to the gate of the read transistor, which 

has much less current flow compared with the 6T read mechanism. That allows the reading 

operation for 8T SRAM has more tolerance to the noise. 
P

re
-c

h
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rg

ed
 1

V1 V2 

 
Figure 10. Circuit to measure Read Static Noise Margin for 8T SRAM. 

 

Because of the writing operation of 8T SRAM is similar to 6T SRAM, the circuit to 

measure WSNM of 8T SRAM is the same as 6T only with different names of the wires. 
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SRNM and WSNM for 8T SRAM are shown in figure 11. It is worth noting that the 

RSNM is significantly improved because of the separated reading path. Thus, 8T SRAM is much 

more stable than the conventional 6T SRAM. 

Figure 11. Left: RSNM of 8T SRAM. Right: WSNM of 8T SRAM. 

To determine SNM values a mathematical model is established that calculates the values 

for the diagonals of the squares [36]. The (x, y) coordinate system is rotated 45° to a (u, v) 

coordinate system, and by taking the subtraction of two VTCs, the diagonal length is obtained. 

To transfer VTCs into the (u, v) system, the coordinate system is rotated as follow; 

�⃗� = (
1/√2

1/√2

  −1/√2

 1/√2
) 𝑥  

(1) 

where 𝑥  and �⃗�  are the vectors (x, y) and (u, v) respectively. And the functions for u and v can be 

derived as follow; 

𝑢 =  
1

√2
𝑥 − 

1

√2
𝑦 

𝑣 =  
1

√2
𝑥 + 

1

√2
𝑦 

(2) 

Figure 12 shows an SNM butterfly curve with a rotated (u, v) coordinate system. Two 

VTCs are rotated and shown in the upper part of Figure 12. In the ideal situation, the largest 
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squares fit in the two wings have the same diagonal length. But in the real world, there is always 

offset, so the smaller diagonal length is considered the value of SNM. 

 
Figure 12. SNM estimation in a rotated coordinate system. 

 

3.3. SRAM Failures 

SRAM cell is a very busy circuit, surge currents flowing during reading and writing 

operations with magnetic field coupling, electric field coupling, and Gnd-Vdd upsets. Memory 

stability is being tested during operations. Memory failures can generally be divided into two 

categories: read failure and write failure. Read failure happens when the reading operation 

accidentally flips the states of a bitcell; write failure happens if a wrong date is stored to bitcell.  

The primary cause of memory failures is process variations, in particular, threshold 

voltage variations (𝜎𝑉𝑡ℎ), which can be expressed as: 

 
𝜎𝑉𝑡ℎ  =

𝐴𝑉𝑇

√𝑊𝐿
 

(3) 
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where AVT is a technology-dependent constant, W and L are the width and length of the 

transistor [19]. In the 45nm predictive technology 𝜎𝑉𝑡ℎ for an NMOS and PMOS transistor with 

W equal to the minimum LEFF (effective length) is 46.9mV and 41.8mV, respectively. Equation 

(3) clearly shows that 𝜎𝑉𝑡ℎ is inversely proportional to √𝑊𝐿, which means as the W and L 

increase, the deviation of the threshold voltage is reduced.  

 
Figure 13. Examples of common read failures. 

 

 
Figure 14. Example of write failure. 

 

After injecting the variations into the SRAM circuit netlist, each transistor will be 

assigned a random variation. This then resulted in an imbalanced SRAM cell which directly 
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leads to memory failure. Figure 13 shows the two most common read failures; a write failure is 

shown in figure 14. 

3.4. SRAM Failure Rate Simulation 

In semiconductor manufacturing, process corners represent the extremes of fabrication 

parameter variations. An automatic complete flow is designed for SRAM failure rate simulation 

using the Monte-Carlo method. The inputs of this program include SRAM type (6T or 8T), 

SRAM size, supply voltage, Monte-Carlo simulation sample numbers, technology name (i.e. 

45nm technology), and process corners. In this research, 1 million times of simulation are 

executed for each experiment. 

Based on the physical characteristics for transistors, the above-mentioned circuits of 

measuring SRAM cell stability is implemented using netlist (a textual description of a circuit 

made of components). Then the meaningful data is extracted from the simulation output using a 

python script. Finally, by feeding the extracted data to a Matlab script, the failure rate of 

designed SRAM is acquired. The result of this study is then applied to all of the SRAM designs 

in this dissertation. 

Figure 15 shows the read and write SNM curves for 6T respectively. While the voltage 

source is sweeping at node V1 the pre-charged Vdd on the bit-line has a negative effect on V2, 

and that leads to the V2 does not drop to 0 when the voltage source is 1. This phenomenon 

significantly lowered the RSNM.  

Five different process corner combinations are simulated to estimate the read and write 

failure rates, including “SS” (slow NMOS and slow PMOS), “SF” (slow NMOS and fast 

PMOS), “FS” (fast NMOS and slow PMOS), “FF” (fast NMOS and fast PMOS), and “TT” 

(typical NMOS typical PMOS). The simulation is performed on 6T bitcell and 8T bitcell with 
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3λ, λ is typically half of the minimum gate length. The designed program can automatically 

calculate the read and write failure rates using MATLAB. This program also automatically 

updates the voltage (Vdd) in the netlist after every 1 million trails, so we can get failure rates 

under different supply voltages.  

 
Figure 15. Read and write SNM curves for 6T. 

 

The speed of transistors is another aspect needs to be considered, and that is where the 

process corner comes in. The faster NMOS is, the stronger pull-down networks are; the faster the 

PMOS is, the stronger pull-up networks are. To apply this principle to the SRAM design, faster 

NMOS speeds up the pull-down process, and during the reading operation, failures like the first 

graph shown in Figure 13 will happen. On the other hand, faster PMOS slows down the pull-

down process, and during the writing operation, failures shown in Figure 14 will happen. The 

analyzed simulation result is shown below. 
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Figure 16. Minimal size 6T SRAM failure rates in different corner combinations. 

 

As shown in Figure 16, 6T SRAM has a significantly worse failure rate at FS corner than 

the other corners. And as expected, the majority of the fails come from the reading operation. 

These failures, in the reading operation, are because both the bit-lines are pre-charged to Vdd 

before the access transistors are turned on, and if the two inverters in the SRAM cell are not 

"robust" enough, the charges in the bit-lines could disturb the stored data in Q and QB. Since the 

8T SRAM has a separate reading path that significantly reduces the chance to flip the stored data 

during the reading operation, write failure dominates the overall total failures. 
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Figure 17. Minimal size 8T SRAM failure rates in different corner combinations. 
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Only the simulated result for the SF corner of 8T is shown in Figure 17 because no 

failure appeared at other corner combinations during the simulation. This result proves that the 

8T SRAM cell structure is more robust than the 6T SRAM cell structure. 

3.5. Conclusion 

At this point, a method to automatically analyze the SRAM failure rate has been 

described. These studies on SRAM stability laid a solid foundation for the memory design. In 

particular, the failure rate associated with SRAM size and type can be plugged into the 

simulation to determine which SRAM cell should be used in different applications.  
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4. DATA PATTERN ENABLED SELF-RECOVERY VIDEO SRAM [46] 1 

Introduced previous works have shown low-voltage memory designs that enable power 

consumption reduction at the price of huge area overhead and design complexity. This work 

details a self-recovery video storage system created by mining correlated data patterns within the 

mobile video data. Both vertical and horizontal patterns are investigated by applying the data 

mining technique. a novel Data Pattern enabled Self-Recovery (DPSR) SRAM is designed using 

the discovered optimal patterns. With the implemented SRAM, we are able to deliver good 

output video quality at near-threshold voltage (0.5 V) operation with negligible area overhead 

(3.97%).  

4.1. Near-Threshold Voltage Memory Failure Analysis 

Recent manufacturing technologies indicate the failure probability of an SRAM cell to be 

between 0.1% and 1%, based on the bit-cell area in [39, 40]. To achieve the 0.1% failure rate, the 

size of the SRAM cell will have 58% area overhead [40]. Both the SRAM cells with minimum-

size (failure rate 10-2) and upsize (failure rate 10-3) are analyzed in this work. In Table 1, the 

probabilities of multiple faults that occur within the same word-line are listed. It is clear that 

there are only very few bits will fail at the same time in a word-line. This result supports the idea 

of using other bits in the same word to recover the faulty bit.  

  

 

 

1 The material in this chapter was co-authored by Yifu Gong, Dongliang Chen, and Jonathon 

Edstrom. Yifu Gong and Dongliang Chen held primary responsibility for SRAM hardware 

design and verifiecation. The data association and correlation were investigated by Jonathon 

Edstrom. 
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Table 1. Fault Probability in a 32-bit SRAM Word 

Number of faults per word-line SRAM failure rate: 10-3 (0.001) SRAM failure rate: 10-2 (0.01) 

0 96.8523477% 72.7279953% 

1 3.0992274% 23.2812509% 

2 0.0479198% 3.6012385% 

3 0.0005023% 0.3611914% 

4 0.0000028% 0.0267011% 

5 0% 0.0015432% 

6 0% 0.0000756% 

7 0% 0.000004% 

 

4.2. Self-Recovery Data Pattern Investigation  

This section introduced the methodology for finding the hidden data-patterns in the video 

data to allow effective fault recovery. In particular, a new two-dimensional data pattern approach 

for self-correction techniques is proposed to explore both horizontal and vertical data 

characteristics.  

4.2.1. Horizontal Association Rule Mining 

YUV format is a typical format to store and process mobile video data. The YUV format 

includes one luma (Y) component and two chroma components. Brightness information of the 

image is stored in luma, and chroma contains the blue-difference (Cb) and red-difference (Cr) 

color information. An example of how YUV 4:2:0 video data stored in the memory is shown in 

Figure 18. 8-bits of luma data and 8-bits of subsampled chroma data are assigned to each pixel. 
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Figure 18. 2D data-pattern enabled self-correction. 

 

4.2.2. Vertical Correlation Rule Mining 

The MSBs of pixel data are strongly correlated with the adjacent pixels and have a very 

low probability of switching. The MSB vertical association probability in adjacent pixels reaches 

93%, while the LSB has a decline to 53%. 

To select the optimized data-pattern from the explored horizontal associations and vertical 

correlations, Weighted Confidence is defined as follows:  

 
Weighted Confidence = Confidence(Rule)×Support(Rule) 

                                    +Confidence(Complement Rule)×Support(Complement Rule)  
(4) 

 

Then this value is compared to the sum of the correlation values for 0 and 1, which we define the 

correlation value as follows: 

 
Correlation = Confidence(Bitprevious = 0 → Bitcurrent = 0)  

                    + Confidence(Bitprevious = 1 → Bitcurrent = 1) 
(5) 

 

By applying the weighted confidence and correlation calculation above, we obtain the optimized 

data patterns with the highest prediction probability to achieve self-recovery, as shown in Table 2 
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for Luma and Table 3 for Chroma. The result of our analysis shows that luma data has less 

association within the same pixel and the optimal data patterns are all from correlation. 

Table 2.  Optimal Luma Data Patterns 

Y bits Optimal Data Patterns Correct Prediction (%) 

Y1 Correlation (Y1previous) 91.5290 

Y2 Correlation (Y2previous) 82.6719 

Y3 Correlation (Y3previous) 76.2655 

Y4 Correlation (Y4previous) 67.6406 

Y5 Correlation (Y5previous) 59.2428 

Y6 Correlation (Y6previous) 51.7514 

Y7 Correlation (Y7previous) 44.4694 

Y8 Correlation (Y8previous) 38.4120 

 

Table 3.  Optimal Chroma Data Patterns 

Cb 
bits 

Optimal Data 
Patterns 

Correct 
Prediction (%) 

Cr 
bits 

Optimal Data 
Patterns 

Correct 
Prediction 

(%) 

Cb1 
Association 
(𝐶𝑏2 → 𝐶𝑏1) 

98.5965 Cr1 
Association 
(𝐶𝑟2 → 𝐶𝑟1) 

96.7237 

Cb2 
Association 
(𝐶𝑏1 → 𝐶𝑏2) 

99.7935 Cr2 
Association 
(𝐶𝑟1 → 𝐶𝑟2) 

97.7735 

Cb3 
Correlation 
(Cb3previous) 

88.4593 Cr3 
Association 
(𝐶𝑟1 → 𝐶𝑟2) 

93.8576 

Cb4 
Correlation 
(Cb4previous) 

84.3113 Cr4 
Correlation 
(Cr4previous) 

83.6360 

Cb5 
Correlation 
(Cb5previous) 

78.5307 Cr5 
Correlation 
(Cr5previous) 

78.3486 

Cb6 
Correlation 
(Cb6previous) 

69.3991 Cr6 
Correlation 
(Cr6previous) 

68.8025 

Cb7 
Correlation 
(Cb7previous) 

59.3976 Cr7 
Correlation 
(Cr7previous) 

59.7336 

Cb8 
Correlation 
(Cb8previous) 

51.1264 Cr8 
Correlation 
(Cr8previous) 

52.9571 
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4.3. DPSR Hardware Implementation 

Figure 19 shows the schematic of the proposed DPSR, where four 256 words × 32 bits 

blocks form a 32 kbits array. Both luma and chroma data are stored in different blocks of the 

SRAM in this design as shown in Figure 20.  
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Figure 19. Proposed DPSR.  
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Figure 20. Luma and Chroma data distribution. 
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To reduce the access time, a hierarchical readout bit-line scheme (local RBL and global 

RBL) is applied. Multiplexers (MUX) are connected at the global bit-lines (gbl) of conventional 

SRAM to implement the self-recovery logic of DPSR.  Figure 21 gives an idea of how each 

global bit-line (gbl) is connected to a multiplexer controlled by the received fault positions. 

When a fault is detected, the select signal (S) for according bit-line will be enabled to correct the 

faulty bit. 
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Figure 21. Self-Recovery MUX connection. 

 

Based on the optimal luma patterns and luma data storage of a word, luma data of 

adjacent pixels will be used to recover the data of the current pixel. For example, Y1 of pixel 1 

(Luma[31]) will use Y1 of pixel 2 (Luma[23]) for self-recovery. Chroma data self-recovery is 

realized for SRAM block 3 and block 4 by applying the optimal chroma patterns.  

4.4. Evaluation Methodology and Results 

A 32 kb SRAM is implemented using a high-performance 45-nm FreePDK CMOS 

process to evaluate the effectiveness of the proposed technique.  

4.4.1. Performance 

The performance of the proposed DPSR is simulated. Because of the inserted 

multiplexers, DPSR has an increased access time at 0.31 ns compare to the conventional SRAM 

at 0.27 ns but still will be fast enough to stream high-quality video format. 
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4.4.2. Layout 

As discussed in the introduction, a large portion of the area in a video chip is occupied by 

embedded SRAMs, thus the SRAM area is an important design concern. The layout of DPSR is 

shown in Figure. 22. The size of each added self-recovery logic (MUX) is 18.79 µm × 43.47 µm, 

which leads to a 7.94% overall area overhead.  
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Figure 22. Proposed DPSR. 

 

4.4.3. Video Output Quality Analysis 

The PSNR metric is adopted to measure the video quality, which is defined as: 

 
𝑃𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔10 (

2552

𝑀𝑆𝐸
) 

(6) 

where MSE is the mean square error between the original videos (Org) and the degraded videos 

(Deg), expressed as: 

 
𝑀𝑆𝐸 =

1

𝑚𝑛
∑ ∑ [𝑂𝑟𝑔(𝑖, 𝑗) − 𝐷𝑒𝑔(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0
 

(7) 

Researchers have shown that when the PSNR is higher than 30 dB, the video quality 

would be acceptable [39]. Table 4 compares PSNR values using conventional and proposed 

design as Pfail are 10-2 and 10-3. Ten videos from the 25 videos used for verification are measured 
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and presented in Table 4. It can be seen that the PSNR is over 35 dB even for the highest SRAM 

failure rate, which proves the DPSR has efficient recovery precision. 

Table 4. Video PSNR Metric Comparison 

 

The performance of DPSR is compared with the state-of-the-art in Table 5. By applying 

the data-pattern enabled self-recovery technique, the proposed DPSR achieves reliable operation 

at near-threshold voltage to enable energy saving with low area overhead (7.94%). The data-

shifting technique detailed in [41] has slightly better PSNR measurement but it is realized with 

large area cost (~14%). A squeezing technique is presented in [39] to compress zeros and store 

them in less memory space, thereby avoiding the presented memory failures at low voltage. But 

it was achieved with an extra clock cycle. Thus, DPSR delivers the best video quality for the 

minimum area overhead. 

  

Video Label 
conventional 

(Pfail = 0.001) 

DPSR 

(Pfail = 0.001) 
conventional 

(Pfail = 0.01) 

DPSR 

(Pfail = 0.01) 

Running 34.843802 47.751093 27.751663 37.896356 

Concert 34.843123 50.617823 24.745933 39.835772 

Music Video 34.842942 48.993861 24.765553 37.908828 

Festival 34.843240 45.838237 24.892104 35.958557 

Game 34.843259 49.286247 24.759353 39.699233 

Electric Guitar 34.843014 51.566521 24.752845 42.584377 

Snow 34.844445 50.725480 24.761392 40.861991 

Flute 34.842227 53.769387 24.755972 44.158630 

Vehicle 34.843032 50.015065 24.741031 42.251862 

Planet 34.843295 53.306924 24.760113 44.022668 
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Table 5.  Comparison with Prior Work 

 

4.5. Conclusion 

A data-pattern enabled self-recovery video SRAM is presented in this section. By 

using data-mining techniques, data association within a pixel and correlation with 

adjacent pixels are investigated. DPSR SRAM is designed to enable the found data-pattern 

with low area overhead (7.94%). The proposed design reduces 81.52% dynamic power 

consumption and 82.45% leakage power consumption as compared to nominal voltage 

operations. The simulation shows our design is able to deliver good video quality for minimized 

SRAM at near-threshold voltage. 

  

 TCASI’12 [15] DAC’15 [41] TC’16 [39] This Work 

fault-position awareness No Yes Yes Yes 

Low-power techniques 
bitcell  
sizing 

data- 
shifting 

data- 
squeezing 

data-pattern  
enabled self- 

recovery 
bitcell modified Yes No No No 

near-threshold operation 
No 

(0.9V) 
Yes 
(-) 

Yes 
(0.5 V) 

Yes 
(0.5V) 

additional logic needed No 
LUTs and 

shifter 

Rearrangement logic and 
tag  

array,  
comparator, Mux 

MUX 

performance overhead - - 
extra clock (for  
decompression) 

0.04 ns 

video quality acceptable good - good 
area overhead 11-65% 14% 6.3% 7.94% 
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5. NEURAL NETWORK SYNAPTIC STORAGE DESIGN [45] 2 

The neural network has broad application prospects such as image recognition, pattern 

discovery, and autonomous control. In this subsection, the effect of memory failures for 

Artificial Neural Network (ANN) is analyzed, and a neural network synaptic storage is design 

using obtained data.  

ANN consists of many intricately connected bionic pathways (synapses) that connect 

computational units in between an input and output layer. Each computational unit, or neuron, 

can pass a signal from the input layer, through multiple hidden layers, and eventually to the 

output layer. The signals at each edge (the connection between artificial neurons) are adjusted by 

the weights. The weights of neural networks access memory repeatedly throughout the training 

process. 

 In order to acquire the largest failure rate that the memory could endure for ~1% 

degradation, a wide range of bitcell failure rates are applied for testing on MNIST [20], a widely 

used digit recognition dataset. We found that to allow less than 1% accuracy degradation, a 

maximum memory failure rate of 10-5 is required.  

5.1. SRAM Bitcell Design 

As we know, the 8T SRAM cell is more reliable but bigger than 6T SRAM, and another 

fact is that the failure rate reduces as the SRAM size increases. The minimal 3λ-8T SRAM 

bitcell occupies a similar area to 9λ-6T SRAM bitcell. The layout of upsized 9λ-6T bitcell and 

 

 

2 The material in this chapter was co-authored by Yifu Gong, Dongliang Chen, and Jonathon 

Edstrom. Yifu Gong held the primary responsibilities of circuit design and hardware  

implementation. Dongliang was in charge of hardware simulation and verification. Jonathon 

Edstrom performed the software simulation. 
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3λ-8T bitcell are shown in Figure 23. Two bitcells are designed to have the same height (0.4465 

μm) and a similar width (about 1.75 μm). 

1.75 µm

(a)

1.7425 µm

0.4465 µm

(b)
 

Figure 23. Left: Upsized 9λ-6T bitcell; right: 3λ-8T bitcell. 

 

To decide the size and type of SRAM design, failure rate simulation is performed using 

the program mentioned in section 2.1. 6T SRAM with variant sizes and an 8T SRAM with 

minimal size (all in worst corner combination) are simulated, and the obtained failure rates are 

analyzed and shown in Figure 5. According to Figure 5, to achieve a maximum memory failure 

rate of 10-5 at 1.0V, 4λ-6T sizing is selected as baseline synaptic memory. Figure 24 also shows 

that with a similar layout area, the failure rate of 3λ-8T bitcell is significantly lower than 9λ-6T 

bitcell at the same voltage. 

 
Figure 24. 45nm upsized 6T and 8T SRAM bitcell failure rates in worst corner combination 

based on Vdd voltage scaling. 
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5.2. Implementation 

During the analysis of data characteristics, we find that the 8 MSBs have a significant 

impact on the test accuracy in all weight layers. And by introducing offline association rule 

mining techniques, we further analyze the data association/correlation relationship between the 

first 8 MSBs. 

w29=1

w30=0

w28=1 w27=1

w26=1

Association rules Conf. Supp.

w30 = 0   w29 = 1

w30 = 0   w28 = 1

w30 = 0   w27 = 1

w30 = 0   w26 = 1

99.95% 99.95%

99.95% 99.95%

99.89% 99.89%

86.45% 86.45%

Association rules: the percentage numbers 

indicate the probability of next bit

Data association
 

Figure 25.  Offline data-mining data relationships. 

 

Figure 25 shows that if the value of W30 is 0, W29-W26 bits have a much higher chance to 

be 1. Thus, if W30 is stored in reliable memory bitcells, when W29-W26 bits fail, SRAM may 

achieve self-recovery based on obtained data association/correlation rules. While the worst-case 

precision accuracy loss is at 1%, the supply voltage can be scaled down to 0.825V with the 

proposed self-recovery technique.  

Similar to the technique introduced in Chapter 4, the architecture of the proposed 

synaptic memory with 512 words × 128 bits is shown in Figure 26. To reduce the access time, a 

hierarchical bit-line schematic (local RBL and global RBL) is designed. 
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Figure 26. Data-driven efficient synaptic storage. 

 

As shown in Figure 27, two 8T bitcells are applied to store the sign bit (W31) and W30 in 

each 32-bit synaptic weight because of the importance of these bits. A multiplexer-based 

schematic is adapted in our design to implement a self-recovery synaptic memory. With the 

obtained data association/correlation relationship, the memory global bit-lines are connected to a 

self-recovery multiplexer (MUX) accordingly as shown in Figure 28. Pre-detected faulty bit 
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locations, identified either during post-fabrication testing or during power-on self-test (POST), 

generate select signals to control the MUX.  

. . .

31 15 0

MSB LSB

Self Recovery

31 30 . . .2829 0

LSBMSB
27 26

6T bitcells to minimize 

the area overhead

Two 8T bitcells to protect two 

bits: sign bit and W30

282930

6
4

 w
o

rd
li

n
es

 
Figure 27. 6T and 8T bit-cell arrangement. 
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Figure 28. Self-recovery MUX connections. 

 

To assess the performance of the proposed Data-driven storage design, a synaptic 

memory is implemented based on the schematic shown in Figure 26. As mentioned earlier, a 

large portion of the silicon area on a deep learning chip is occupied by SRAM, so reducing the 

area cost of embedded SRAM is a major design problem. Figure 29 shows the layout design. 

With careful design, the added self-recovery circuits (MUX) only introduces 3.17% area 

overhead. The parasitic parameters are extracted and included in the power and timing 

simulation.  
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Figure 29. Layout of the proposed memory in a 45 nm technology. 

 

5.3. Evaluation Methodology and Results 

As shown in Table 6, the read access time of proposed memory (with MUX) increases 

from 1.154 ns to 1.415 ns because of the reduced supply voltage. Based on the read access time, 

the maximum frequency of our proposed design is 706.7 MHz, which meets the requirement of 

neural network weight update speed.  

Table 6. Read and Write Delay Times 

 1.0V 0.825V 

Scheme Write (ns) Read (ns) Write (ns) Read (ns) 

All 6T 0.532 0.779 0.576 0.974 

Hybrid w/o MUX 0.532 0.941 0.576 1.121 

Hybrid w/ MUX 0.532 1.154 0.576 1.415 
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Figure 30. Bits probability and operation power consumptions. 

 

To get a more realistic power assumption, the data switching probability of each bit is 

considered and power consumptions of reading, writing, and leakage are calculated, and values 

can be seen in Figure 30. We model the read bit-line (RBL) power consumption of each word in 

the memory as: 
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𝑃𝐴𝑐𝑡𝑖𝑣𝑒 =
∑ ∑ [𝑃𝑏(𝑖) ∙ (𝑅(𝑖) +𝑊(𝑖))]𝑖=0,1
31
𝑏=0

2
 

𝑃𝐿𝑒𝑎𝑘 =∑ ∑ 𝐿(𝑗)
31

𝑗=0

255

𝑑=0
 

(8) 

where Ptotal is the power consumption of both the read and the writing operations; b is the bit 

number; i is the value stored in SRAM; P(i) is the probability of a particular bit to be 0 or 1, 

which is shown in Table V; R(i), W(i), and L(j) are the read, write, and leakage power 

consumption, respectively, based on the value i and j. The bit value probabilities are extracted 

based on a 2 hidden layer MNIST neural network with 100 hidden nodes per hidden layer.  

Based on Equation (8), the conventional SRAM consumes 154.5 μW active power and 

138.9 μW leakage power at 1V, while our proposed design at 0.825V consumes 106.1 μW active 

power and 75.83 μW leakage power, enabling 45.6% and 83.1% savings in active power and 

leakage power, respectively. 

Table 7. Comparison of Techniques. 

Memory Techniques 
Avg. 

Accuracy 
Average Loss 

Area 

Overhead 

Traditional 

@1V 
All 6T 96.121% 0% 0% 

Traditional  

@0.825V 
All 6T 9.8% 86.321% 0% 

DATE’16 [22] 

@0.825V 

2 MSBs 8T 92.993% 3.128% 1.606% 

3 MSBs 8T 93.120% 3.001% 2.409% 

4 MSBs 8T 94.369% 1.752% 3.212% 

5 MSBs 8T 94.436 % 1.685% 4.015% 

This Work 

@0.825V 

2 MSBs 8T + 

correction 
95.401% 0.72% 3.171% 

 

The proposed Data-driven memory is compared with traditional memory and the recently 

developed 8T-6T hybrid synaptic memory [22]. In order to make a valid comparison, all 

memories are simulated at the same voltages (1V and 0.825V). Classification accuracy for 

varying numbers of 8Ts in [22] and proposed Data-driven technique is evaluated based on 30 
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independent trials using the MNIST benchmark. The results are compared against the ideal, 

fault-free system, which is listed in Table 1. As shown in Table 7, the conventional 6T SRAM 

has a significant classification accuracy degradation (86.321% loss) at 0.825V. In terms of [22], 

the more 8T cells are inserted, the network is more accurate. With 5 MSBs stored in 8T, for 

instance, the average loss is reduced to 1.685% with 4.015% area overhead. It can be observed, 

our proposed Data-driven technique introduces a lower implementation cost (3.171% area 

overhead) with a better classification accuracy (95.401%) at 0.825 V. 

5.4. Conclusion 

In this section, a Data-driven self-correction design for neural network synaptic memory 

is presented. The proposed memory, as compared to traditional memory, enables 45.6% and 

83.1% in active power and leakage power savings, respectively; it also achieves less than 1% 

degradation in classification accuracy with only 3.17% area overhead. 
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6. VIEWING CONTEXT-AWARE SRAM DESIGN [44] 3 

In today's mobile video system, embedded memory is the critical component increasingly 

leading power consumption of mobile devices. This chapter presents a Viewing Context-Aware 

SRAM (VCAS) that enables power saving with different viewing surroundings. The brighter the 

surrounding is, the less sensitive human eyes are on detecting video quality changes. This is 

because the contrast resolution of human eyes is limited [23]–[26]. Thus, when eyes adapt to a 

brighter environment, they will lose contrast resolution. 

To improve memory power efficiency while considering the viewing context of the user, 

a VCAS is designed and simulated. The proposed VCAS is implemented as a reference 

framebuffer for H.264, a popular video codec standard in mobile multimedia communications. 

Within a frame, each pixel has 8-bit luma data and 4-bit Chroma data. And for each frame, the 

memory consecutively stores all the luma (Y) data and followed by the Chroma data – Cb (U) 

and Cr (V). The decoding process requires frequent write and reading operations in memory, 

which consumes significant power. Thus, reducing power consumption in mobile video memory 

is worthy of study. 

6.1. Enabling VCAS by Introducing Hardware Noise 

To decide which low-power memory design should be used (voltage-scaling or bit-

truncation), a simple experiment is performed. The output video quality of those two techniques 

is compared in Figure 31. using Akiyo, a common testing video used in video processing papers, 

as an example. As shown, the bit-truncation introduces some blur in the video with the PSNR 

 

 

3 Yifu Gong held the primary responsibilities of circuit design and hardware  implementation. 

This experiment is designed and tested by Yifu Gong and Peng Gao. Dongliang was in charge of 

hardware simulation and verification. Jonathon Edstrom performed the software simulation. 

Power saving is calculated by Dongliang Chen. 
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value at 31.67. As a comparison, the voltage scaling technique causes noise points in the video 

with the PSNR value at 32.61. Two output results achieve similar PSNR values, but the video 

quality loss with the bit-truncation approach is inconspicuous compared to the voltage scaling 

approach. Thus, the bit-truncation technique is employed as the approach to enable power-

quality tradeoff in different viewing contexts. 

 
Figure 31. Video output with bit-truncation and voltage scaling. (a) Original video PSNR = 

38.83. (b) Bit-truncation PSNR = 31.67. 

 

6.2. VCAS Design Using Bit-truncation Technique 

In order to determine the number of bits to truncate, user experience is evaluated in 

different viewing contexts. 50 people participated in our video tests. During the test, participants 

watch the original video followed by a random truncated video that has 1 to 7 bits LSBs 

truncated in three viewing contexts. The process repeats until 7 trials are completed.  

Table 8. VCAS Bit-truncation Implementation. 

context In dark In overcast In sunlight 

Luminance (lux) 0-1000 1000-10000 10000+ 

Video data bits1 xxxxxxxx xxxxx000 xxxx0000 
1x means original video data and 0 means truncated bit 

 

The decision is shown in Table 8. In this table, x means the original video data, and 0 

means using bit-truncation. As shown in overcast, when the VCAS stores data with 3 LSBs 

truncated, there is no significant degradation of video quality; in sunlight, 4 LSBs truncated can 

 
(a)                                              (b) 
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produce nearly the same perceived quality as the original video due to the strong interference 

effect of high-ambient luminance. It should be pointed out that the average scores of videos with 

4 LSBs truncated in overcast and 5 LSB truncated in sunlight are both below 3.0, indicating that 

even with ambient luminance interference, the significant degradation of video quality can be 

easily noticed. 

6.3. Hardware Design 

To store Luma and Chroma data separately, two SRAMs are used. VCAS is implemented 

storing Luma data. Chroma data is stored in conventional SRAM. The information on the 

ambient luminance level can be captured from the light sensor embedded in mobile phones and 

sent to the VCAS for adaption.  
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Figure 32. SRAM with VCAS control circuit. 

 

The proposed VCAS circuit is shown in Figure 10. The total size of the memory array is 

32 kbit and there are four blocks with 32 bits of 256 words. To reduce access time, a hierarchical 

bit-line scheme (local RBL and global RBL) is applied. The VCAS control unit consists of a 

Write Enable (WE) control circuit and Read Enable (RE) control circuit. Figure 32. Shows the 
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detailed control circuits for WE and RE. The memory disables the WE and RE signals of 0, 3 or 4 

LSBs using the control unit according to the context information bits detected by the mobile 

sensor. The two-bit control signal (BIT2 and BIT1) for the WE (or RE) control circuit will enable 

bit-truncation in the following ways: 

                            00: in dark, use 8-bit original video data 

{BIT2 BIT1} =          01: in overcast, set 3 LSB data WE (or RE) signal to 0s 

                       10: in sunlight, set 4 LSB data WE (or RE) to 0s 

Write Decoder

SRAM Cell SRAM Cell

 

1
2

5
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6
 µ

m
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VCAS circuit & Read Decoder

 
(a) Layout of VCAS SRAM (472.625 µm × 125.56 µm) 
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 (b) Layout of VCAS control circuit 

Figure 33.  Proposed layout. 

 

Figure 33 (a) shows the layout design of the VCAS and its control circuit. It is designed 

with the FreePDK45 library package. The layout passes the Layout Versus Schematic (LVS) and 

the Design Rule Check (DRC) to prove it is realizable. It can be seen that, since only several 

gates are added into the conventional SRAM memory, as shown in Figure 33 (b), the area 

overhead is negligible (<0.01%). 
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6.4. Simulation Results 

First, the performance is simulated to make ensure that the typical mobile videos are 

supported on VCAS. The simulation results in sunlight, overcast, and dark contexts are shown in 

Figure. 4. The data (0x97, 0xf3, 0xc6, 0x0e) is written to the address (0x0a, 0x1a, 0x25, 0x3b) 

and then read out from the same address. Figure 34 also shows the output data for dark 

condition, (0x97, 0xf3, 0xc6, 0x0e), with no truncation applied to original data; in overcast 

condition, the output is original data with 3 LSBs truncated, (0x90, 0xf0, 0xc0, 0x08); in dark 

conditions, the output is input data with 4 LSBs truncated, (0x90, 0xf0, 0xc0, 0x00). In terms of 

speed, the proposed technique (125 MHz) is fast enough to deliver the typical mobile video 

sequences (11MHz for CIF/QCIF and 72MHz for HD720 [27, 28]).  
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Figure 34. Timing diagram of VCAS in sunlight and in dark. 
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Multiple videos with varying texture/motion features, recommended by the Joint 

Collaborative Team on Video Coding (JCT-VC), are used to conduct comprehensive real-world 

tests. 15 participants were invited to watch videos under three different contexts on an iPhone 6 

device. Participants were asked to identify any quality degradation after watching both the 

original quality and truncated videos under a given luminance context. Approximately 86.7% of 

the data showed that the participants could not tell the difference between the two videos. For the 

videos that indicated with a difference, a slight difference in brightness or shading contrast are 

often to be the cause. 

Finally, the power efficiency of VCAS is calculated. Table 9 lists the VCAS power 

savings. In the overcast and sunlight, VCAS results in 44.9% and 57.2% power savings. 

Table 9. Power Savings of VCAS in Different Contexts. 

context In dark In overcast In sunlight 

Video data xxxxxxxx xxxxx000 xxxx0000 

Write power 3.50E-07 1.10E-07 6.96E-08 

Read power 1.11E-06 6.94E-07 5.55E-07 

Power savings 0% 44.9% 57.2% 

 

6.5. Conclusion 

Table 10 shows the comparison between the VCAS performance with the state-of-the-art. 

VCAS presents the negligible implementation cost with an adaptive power-quality tradeoff. Two 

designs, [27] and [29], give higher power savings than this design. However, these designs are 

implemented with considerable area overhead (52% and 14.4% respectively). And more notably, 

this design maximizes the power saving by investigating the relationship between the viewer 

experience and surroundings.  
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Table 10. Comparison with Prior Art on Low-Power Mobile Video SRAM. 

 

1 good: without any quality loss detected; acceptable: without significant quality loss 
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7. CONTENT-ADAPTIVE MEMORY FOR VIEWER-AWARE SYSTEM [48] 4 

With the success of the paper introduced above, we further looked into the contents of the 

video to adjust the energy-quality trade-off according to the viewer’s experience. In this work, 

we aim to find a better way to analyze videos in a quantitative way that hardware researchers 

will also find useful. 

7.1. Introduction on Influence of Video Content 

Recently developed video macroblock (MB) characterization by analyzing the pixel 

luminance values’ variance [31] is adapted for this work. The analysis of MB variance is 

typically conducted during the pre-processing stage of video encoding [32, 33]. Plain and 

textured MBs are defined in Equation (9): 

 

𝑉𝑀𝐵 =∑∑(𝑃(𝑖, 𝑗) − 𝜌𝑀𝐵)
2 ≫ 8

15

𝑖=0

15

𝑖=0

 

𝑀𝐵 = {
𝑃𝑙𝑎𝑖𝑛 𝑖𝑓(𝑉𝑀𝐵 ≤ 𝑇ℎ𝐿𝑜𝑤)

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑑 𝐸𝑙𝑠𝑒
 

(9) 

where 𝜌𝑀𝐵 and 𝑉𝑀𝐵 are the average luminance and variance of luminance values in a given MB, 

respectively.  

In our analysis, we use their defined calculation to determine whether a given MB is 

considered either plain or textured, which prevents introducing significant computational 

overhead. This calculation is based on the variance of pixel luminance values of a certain MB. 

Figure 35 shows two video samples with similar PSNR values, but with varying percentages of 

 

 

4 The material in this chapter was co-authored by Yifu Gong and Jonathon Edstrom. Yifu Gong 

held primary responsibility for SRAM hardware design, verifiecation, and power analysis. The 

software simulation was investigated by Jonathon Edstrom. Yifu Gong and Jonathon Edstrom 

designed experiment, collected and analyzed the data. 
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plain MBs. An important observation is that the banding distortion and plain MBs have a 

noticeable relationship; videos with larger amounts of plain MBs, especially where plain MBs 

are compact, tend to decrease the visual experience to the viewers. We, therefore, use this 

relationship to develop a content-adaptive model to predict the number of LSBs truncated for 

various videos.   

PSNR: 47.8 dB
Min. Plain MB %: 53.26%
Max. Plain MB %: 54.56%

Median Plain MB %:53.69%
Mean Plain MB %: 53.71%

PSNR: 48.1 dB
Min. Plain MB %: 18.37%
Max. Plain MB %: 20.22%

Median Plain MB %: 19.35%
Mean Plain MB %: 19.34%  

Figure 35. Plain MBs visualization and video output comparison of two videos with varying 

plain MB % (with 2 LSBs truncated). White: plain MBs. 

 

7.2. Methodology 

In order to determine the acceptable number of LSBs for different videos, subjective 

video testing is carried out and two models are developed using decision tree and logistic 

regression methods based on the data collected. The decision tree model is shown in Figure 36. 

By going through from the root node to the leaves, we can have the number of truncated LSBs. 

Unlike the decision tree model, the logistic regression model only has one threshold value, which 

is 28.504%. Accordingly, if the MB percentage is greater than 28.504%, 1 LSB is truncated; 

otherwise, 2 LSBs would be truncated. 
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Plain MB % 

  21.5571%

True False

Truncate 

1 Bit
Plain MB % 

  1.96405%

True False

Truncate 

2 Bits

Truncate 

3 Bits
 

Figure 36. Developed decision tree model for bit-truncation. 

 

A novel truncating methodology is applied for this work. For the bit-truncation technique, 

a crucial question is what value should be set for those truncated bits. In the previous researches, 

these truncated LSBs are set to 0s, however, the PSNR equation gives a different answer. Based 

on Equation 6, we know that to the smaller MSE, the higher PSNR. Assume that the true value 

of each bit in a pixel is evenly distributed, so Equation 10 can be derived from Equation 7: 

 
𝑀𝑆𝐸 ∝  (𝑂𝑟𝑔 − 𝐷𝑒𝑔)2  =  

1

2𝑛
∑ (𝑥 − 𝑥0)

2
2𝑛−1

𝑥=0
 

(10) 

where 𝑛 represents the number of the truncated bits. 𝑥 is the true decimal value for the truncated 

LSBs, and 𝑥0 is the given value for the truncated LSBs. By applying integration, we have: 

 

1

2𝑛
∑ (𝑥 − 𝑥0)

2
2𝑛−1

𝑥=0
 =  

1

2𝑛
∫ (𝑥 − 𝑥0)

2
2𝑛−1

0

 𝑑𝑥

=  
3(2𝑛 − 1)

2𝑛
[3𝑥0

2 − 3𝑥0(2
𝑛 − 1) + (2𝑛 − 1)2] 

 

(11) 

Now we assume Equation 11 is a function of 𝑥0. Since the coefficient of 𝑥0
2 is greater than 0, the 

smallest MSE can be obtained at where the derivative of Equation 11 is 0, expressed as: 

 𝑓′(𝑥0) =  
3(2𝑛 − 1)

2𝑛
[6𝑥0 − 3(2𝑛 − 1)] (12) 
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When 𝑥0 = (2𝑛 − 1)/2  the derivative of 𝑓(𝑥0) equals 0. However, 𝑥0 is the number of 

truncated LSBs, which has to be an integer. Thus, 𝑥0 = 2𝑛−1 − 1 or 𝑥0 = 2𝑛−1 are the best 

solutions to increase PSNR.  

2000 Videos

P
S

N
R

 (
d

B
)

3 bits 

truncated

 
Figure 37. Average PSNR values of 2,000 YouTube-8M videos using two different truncation 

techniques. 

 

To prove this proposition is true not only in mathematics justification but also in real 

video examples, 2,000 random videos are selected from YouTube-8M for the experiment. As 

illustrated in Figure 37, by setting the truncated bits to be 2𝑛−1 (10⋯0 with 𝑛 − 1 zeros), the 

PSNR values have significant increases, therefore providing a better viewing experience for the 

same videos. 

7.3. Hardware Design 

The proposed memory is implemented using a 45 nm CMOS technology [34]. The 

architecture of the proposed viewer-aware dynamic bit-truncation memory is shown in Figure 

38, which contains 4 blocks of 256×32 6T SRAM bit-cells.  
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Figure 38. Content-adaptive video memory structure. 

 

Figure 39 shows the truncation controller. Since the truncating signal has two bits (B<0>, 

B<1>), we are able to truncate 4 LSBs without additional area overhead.  Even though 4 LSB 

truncation did not appear in the test bench, it may happen to some extrema cases such as white 

noise screen. Then the models will be updated, and our designed memory can easily adapt to it. 

Two different bit-line conditioning circuits are applied to the memory to enable viewer-aware 

bit-truncation for LSBs. A pre-charge unit, write driver, and sense amplifier composed the 
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normal bit-line conditioning circuits, and 4 most significant bits (MSBs) in a byte are connected 

to it; extra components are added to the remaining bit-lines conditioning circuits to enable bit-

truncation, and they are applied to the 4 LSBs in a byte as shown in Figure 39.  

. . .

senseout<0>

data<0>

φ2    

BL<0>           BL<0> 

. . .

sense

wl_en

t2

t2  

t2  

t1  

out<4>

data<4>

φ2    

BL<4>           BL<4> 

 
Figure 39. Content-adaptive video memory bit-line conditioning circuits. 
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φ1 and φ2 are clock-based signals generated from peripheral circuits, which can be seen 

in Figure 40. φ1 enables reading and writing operations; φ2 controls the pre-charging circuit of 

the memory. At the end of the reading operation, the sense signal turns on for a very short time 

to reduce the power consumption during the reading operation. The timing diagram in Figure 40 

gives an idea of the relationship between these peripheral signals. 

read_en 

φ2 

φ1 

write_en
φ1 

φ1
wl_en

write

clk

clk

read

clk

read_en

read

write_en

write

read

sense

φ2

φ1

 
Figure 40. Peripheral circuits with timing diagram. 

 

As shown in Figure 41, three external signals control the truncation process. trunc_en 

controls whether the truncation function is on, and the number of bits to truncate is determined 

by the other two signals, B<0> and B<1>. t1 and t2 are generated from B<0> and B<1> signals 

through two different decoders. A normal 2-to-4 decoder is applied for enabling t1. The decoder 

for generating t2 is a special 2-to-4 truncation control decoder. The truth tables for the decoders 

are shown in Table 11. Whereas t1 and t2 are both 0s, normal operations are applied; when t1 is 1, 

the pre-charging, write, and reading operations are suspended; on top of t1 being 1, if t2 is 1, then 

the output is 0, otherwise, the output is 1; the data pattern 01 for t1 and t2 never appears.  
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Basic

2 to 4
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Decoder 
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Figure 41. 2 to 4 decoder and truncation control decoder. 

 

Table 11. Truncation Control Decoder Truth Table 

Inputs Outputs  

trunc_en B<0> B<1> t2<0> t2<1> t2<2> t2<3> 

0 x x 0 0 0 0 

1 0 0 1 0 0 0 

1 0 1 1 1 0 0 

1 1 0 1 1 1 0 

1 1 1 1 1 1 1 

 

Figure 42 shows the layout design for 512 words × 64 bits viewer-aware bit-truncation 

SRAM. As designed in the schematic, few gates are added to the bit-line conditioning circuit to 

enable the truncation function. After careful design, the truncation control decoders can also fit 

into the free space in the original layout without additional overhead. Compared to traditional 

SRAM, which is negligible, the proposed memory only consumes 0.32% more silicon area. 

Decoder & drivers

SRAM Sub Array

32x256

235.57 µm

1
1

1
.9

6
 µ

m

Bit-line conditioning & 

truncation circuit  
Figure 42. Physical layout design. 
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7.4. Simulation Results 

Figure 43 shows the timing diagram for the proposed memory. To test the functionality 

of the memory, the data: 0xe9, 0xce, 0x62, and 0x71, are written to the addresses: 0x55, 0xb9, 

0xce, and 0x15, respectively, and then read out from the same addresses. For example, during a 3 

bit-truncation operation, the values read out are 0xec, 0xcc, 0x64, and 0x74, where the last 3 

LSBs for these values are 𝟏𝟎𝟎(𝐵). The access delay of the reading operation is about 0.5 ns, 

which is fast enough to deliver the typical mobile video sequences (11MHz for CIF/QCIF and 

72MHz for HD720 [29]).  

Memory input patterns that cover all possibilities for data switching were tested. These 

input patterns are used to simulate normal operation and 1 to 4 LSB truncations, and Figure 44 

shows the power consumption for each scenario. Respectively, the average power consumption 

saving for 1 to 4 LSB truncations are 13.54%, 20.10%, 26.83%, and 33.31%, compared to 

normal operation. 
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DATA0
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55 b9 ce 15
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e9 ce 62 71

Write read

55 b9 ce 15

e9 ce 62 71
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1 bit truncation

e9 ce 62 71

Write read

55 b9 ce 15

e9 cf 63 71

55 b9 ce 15

2 bits truncation

e9 ce 62 71

Write read

55 b9 ce 15
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55 b9 ce 15
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e9 ce 62 71
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Write read

55 b9 ce 15
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0.0 25.0 50.0 75.0 100.0

Time(1e-9s)
 

Figure 43. Timing diagram. DATA7: MSB; DATA0: LSB. 
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Figure 44. Power savings. 

 

Finally, we conduct psychological experiments at the North Dakota State University 

Center for Visual and Cognitive Neuroscience to verify the effectiveness of our technique on the 

viewer's experience. The result of psychological experiments can be seen in Figure 45. 

For almost all videos, the developed decision tree model works well. There was only one 

video out of 20 videos, with tag wF6lvdXXwc4, which the vast majority of participants 

considered unacceptable. A frame from the mentioned video is shown in Figure 46 (top). Severe 

banding distortion, caused by bit-truncation, appears on the reporter’s face, which can draw 

attention to the fact that the video quality is changed. That leads viewers to a negative decision 

on the video. We further process the videos using the ordinal logistic regression model, and it 

turns out that the ordinal logistic regression model is more conservative that can avoid the worst 

case of video quality degradation, but some videos may lose opportunities for energy 

optimization. The same video frame with the number of bits being truncated decided by the 

ordinal logistic regression model is shown in Figure 46 (bottom). 
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Figure 45. Video quality testing results using the decision tree model. 
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Figure 46. Output quality of the video (tag wF6lvdXXwc4): (top) with 3 LSBs truncated using 

decision tree model and (bottom) with 2 LSBs truncated using the developed ordinal logistic 

regression model.  

 

7.5. Conclusion 

In this paper, we have presented an energy-quality tradeoff of video context-aware 

memory technique with viewer perspectives. We develop two models to allow hardware 

adjustment based on the influence of video content to improve the viewer's experience. A novel 

viewer-aware bit-truncation technique is also implemented to perform energy-quality adaption to 

the video storage. The designed SRAM can enable up to 33.31% of power saving while 

providing quality output. 
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8. MTJ BASED NON-VOLATILE SRAM [50] 

8.1. Introduction  

Power consumption and performance are the two main concerns for battery-powered 

portable devices. There is leakage power even the SRAM is not executing any operation. 

Intuitively, powering off the device enables the most power-saving, but SRAM is a volatile 

device which means it loses data after powering down. As a result, accessing the external off-

chip memory is necessary when powering down the system. Because SRAM read/writing 

operations require a long store/restore time, up to 50% of total energy is consumed for accessing 

the external off-chip memory [13]. And reloading data from off-chip memory will produce 

unavoidable delays and degrade the performance of portable devices. Therefore, a Non-Volatile 

SRAM is designed to combine high performance and low-power consumption. 

There are many researchers focusing on Non-Volatile SRAM design, such as CMOS 

Technology Compatible Non-Volatile SRAM, Phase Change Memory (PCM) Based Non-

Volatile SRAM, and Domain Wall Memory [13] [42] [43]. And one of the most popular ones is 

Spin Torque Transfer (STT) - RAM with Magnetic Tunnel Junction (MTJ). Each MTJ is made 

up of 3 layers, two are the ferromagnetic layers (pined-layer and free layer) separated by a 

tunneling oxide layer. The magnetization of the pined layers is fixed, the other one can be 

changed by the direction of current flows. When the current flows from the pined-layer to the 

free layer, the magnetizations of two ferromagnetic layers are parallel, and the MTJ has low 

resistance; otherwise, magnetizations of two ferromagnetic layers are antiparallel, and that makes 

the MTJ has high resistance. This feature of MTJ enables the store/restore operations. 

This section presents an MTJ based non-volatile SRAM utilizing spin torque transfer 

magnetization switching in 45 nm technology. The designed non-volatile SRAM circuit is 
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programed by the peripheral signals to avoid data loss at power down. Data and peripheral 

signals are store and restore operations are applied before and after power down.  

8.2. Methodology 

VDD

VSS

WLWL

BL BLB RBL

RWL

CTRL1 CTRL1

CTRL2

Q QB

 

Figure 47. 6T SRAM circuit schematic. 

 

To store data from the SRAM cell (Q/QB), we need to find a way to transfer the voltage 

levels to MTJ resistance. Two MTJs with two control PMOS transistors are connected to Q and 

QB as shown in Figure 47. The signal values for corresponding operations are listed in Table 12.  

Table 12. Control Signals in Different STT-RAM Operation Phases 

 VDD VSS CTRL1 CTRL2 

Normal Operation (NO) 1 0 1 0 

Reset                    (RES)                  1 0 0 1.5 

Store                    (STO)                      1 0 0 0 

Power Down          (PD)       1 1 1 1 

Restore           (RESTO)                  1 0 0 1 
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8.2.1. Normal Operation 

During normal operation, the CTRL1 is ‘1’, as a result, MTJs are isolated from SRAM. 

Since MTJs have no effects on normal SRAM operation, the normal operation is the same as 8T 

SRAM. 

8.2.2.  Reset 

MTJs must be reset to high resistance before storing data. The most effective way of 

doing that is to apply a control voltage higher than VDD to CTRL2, so no matter what the values 

in SRAM cells are, the current will flow from the free layer to the pined-layer through MTJ. In 

this work, a 1.5×VDD is applied to CTRL2 during reset operation. 

8.2.3. Store 

A pair of MTJs are used in an STT-RAM cell to store Q and QB. At this point, both 

CTRL1 and CTRL2 are ‘0’s. Assume Q stores the value ‘1’, which is higher than CTRL2, the 

current flows from the pined-layer to the free layer through the connected MTJ. And the value 

stored in QB is ‘0’, the same as CTRL2, so there is no current flow. After store operation, one 

MTJ is at high resistance while the other one stays at low resistance. 

8.2.4. Power Down 

Instead of putting all the input signals to ‘0’, the power down operation in this design is 

rising the VSS to ‘1’ to minimize the leakage power through transistors. That is because, during 

the restore operation, there is a possibility the MTJs get reset and cause an incorrect result.  

8.2.5. Restore  

The state of SRAM cell is restored during power on. The control signals CTRL1 and 

CTRL2 are ‘0’ and ‘1’ respectively. High voltage passes through the MTJ with a low resistance 

to either Q or QB and forces the other one to be ‘0’.  
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8.3. Implementation 

A 64×64 bits STT-RAM with a peripheral circuit based on 45nm technology is 

implemented to verify the effectiveness of the proposed design. The circuit schematic can be 

seen in Figure 48. All the components are Non-Volatile, which means that input and output 

signals can be restored. STT-RAM array is divided into 8 subarrays in order to store 8 different 

bits. Storage components are asserted between signals and circuits. 

clk signal is for pre-charging the bit-line; cwddr and crddr signals are the selecting 

signals for the writing column address and the reading column address respectively; waddr and 

raddr signals are the selecting signals for the writing row address and the reading row address 

respectively; din is the data inputs, and gbl is data outputs. Note that CTRL1, CTRL2, and 

STTEN are not listed here because those are global control signals. 
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Figure 48. STT-RAM structure with the peripheral circuit. 
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8.4. Result 

In this section, the simulation results are shown including circuit functions, performance, 

and power consumption. Figure 49 shows the simulation result for a cycle of single STT-RAM 

cell operation. The values of q and qb are recovered to their previous values after the restore 

operation. 

NO               RES     STO       PD   RESTO          NO

 

Figure 49. Simulation of a store/restore cycle. 

 

Since performing store/restore operations dissipates a certain amount of energy, we 

compared it with the SRAM holding (no operation executed, just hold the stored value) energy to 

obtain the minimum time required for power-down operation to enable energy saving. Energy 
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dissipations of STT-RAM and CMOS based SRAM during holding operation can be seen in 

Figure 50. The result shows that after 108 seconds of power down, the STT-RAM achieves 

energy saving. 

STT-RAM

108

(s)

(J
)

 

Figure 50. Energy dissipations of STT-RAM during store/restore process and CMOS based 

SRAM during normal holding operation 
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9. MACHINE INTELLIGENCE EMBEDDED DEVICE FOR WELDING QUALITY 

CONTROL [51]5 

9.1. Introduction  

Welding is commonly used for connecting metal components in these critical metallic 

infrastructures, such as agricultural facilities, wind turbines, railways, bridges, and pipelines. 

However, welding processes vulnerably lead to forming cracks, pores, and other defects on the 

surface. These defects not only could result in severer cracks and corrosion, but also may 

ultimately lead to malfunction and failure of metal components. Inspection of welds is thus 

critical to ensure the welding quality during fabrication, construction process, and later in-service 

stage. The visual inspection is the crucial and most cost-effective step to determine if the welding 

quality is passed or rejected. However, fast and accurately determining welding quality is a 

challenging task in the conventional visual inspection process, which is highly dependent on the 

experience and expertise of inspectors, and it is fairly subjective and sometimes even misleading. 

To meet the gap, we bring machine intelligence to welding visual inspection. Specifically, we 

developed a low-cost portable embedded device to support advanced machine learning 

algorithms for real-time welding image processing. 

Figure 51 shows the typical welding quality control, includes two steps: i) visual 

inspection and ii) detail inspection if required. Visual inspection is the first step and it is also the 

critical and most cost-effective method for welding quality control. It is usually performed by 

certified welding inspectors who have certified training in welding quality control and defect 

assessment. During the visual inspection process, over twenty different categories of welding 
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imperfections on the suffice, such as cracks, porosity, inclusions, lack of penetration, lack of 

fusion, undercut, insufficient weld throat, and misalignment, will be considered to determine if a 

weldment is passed or rejected. If rejected, the defect information is provided for a redo. If 

passed by visual inspection, a detail inspection is needed for hidden defect study. In the detail 

inspection process, nondestructive examination/testing (NDE/NDT) methods such as ultrasonic 

testing (UT), radiographic testing (RT) and magnetic particle inspection (MT), and phased array 

ultrasonic technology (PA-UT), are applied to extract hidden defect information. However, this 

process requires extensive skills in operating expensive equipment and complicated data 

interpretation, thereby resulting in much higher cost and longer inspection time. Accordingly, an 

effective first-step visual inspection process will significantly enhance the cost-effectiveness and 

enable rapid decision making for welding quality control. 

 

Figure 51. Flowchart of welding quality control (visual inspection and detail inspection) and 

application of the proposed device to visual inspection. 

 

However, fast and accurately determining welding quality is a very challenging task in 

today’s visual inspection process. First, the threshold acceptance criteria are complex, which is 
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dependent on precise defect information (e.g. shape, size, and location) collection. For over 

twenty different weld defects, they have their own characterization from appearance to texture 

and therefore each category of defects has specific threshold acceptance criteria. Second, the 

current relied hand tools for visual inspectors are unable to provide an accurate and rapid 

measurement. Different from detail inspection with advanced equipment (e.g. UT, RT, PUT) 

available, visual inspectors still rely on hand tools for defect measurement, which is difficult to 

collect accurate information fast, sometimes even fairly subjective and misleading. Third, with 

the shortage of welding visual inspectors, today’s workforce is aging. Last, but not least, for 

many welding locations such as tall buildings or bridges, it is not easily accessible for visual 

inspectors.  

In this section, we bring machine intelligence to enhance visual inspection in welding 

quality control by developing a low-cost and reliable portable embedded device with advanced 

machine learning techniques. Our developed device significantly enhances the effectiveness of 

the visual inspection, which will further enable rapid and cost-effective decision making for 

welding quality control.  

9.2. Proposed Technique 

We developed a low-cost portable embedded device for fast image processing with 

advanced machine learning techniques, thereby providing real-time defect information aiding 

visual welding inspection.  

Figure 52 shows an overview of our technology. It mainly consists of three parts: (i) 

designing machine learning algorithms for accurate defect information extraction and decision 

making, (ii) implementing the developed machine learning algorithms on an embedded device, 
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and (iii) developing a portable device with custom system design and optimization. The 

implementation details for each part will be provided in the next section.   

 
 

Figure 52. Proposed technique. 

 

9.3. Image Processing and Decision Making 

We have developed new image processing and machine learning algorithms for defect 

information extraction and classification with high reliability. Specifically, instead of using one 

picture as in our preliminary study, two pictures are captured as input images in our new 

algorithms. These two pictures have the same camera position but the different angles of light. 

First, we convert two pictures into grayscale. As shown in Figure 53, the light comes from one 

side of the weld bead, then the other side. 
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Figure 53. Two input pictures 

 

 

Figure 54. First composited picture in grayscale and binary. 

 

Figure 54 shows the first composited picture in grayscale and binary. The first picture is 

composited using the absolute values of the subtraction of pixels on the same position from two 

input pictures, which means the closer the brightness of input pixels is, the darker the composite 

pixel is. By converting the obtained composite picture to binary (black and white), we can 

extract a clear boundary for the weld bead. The second picture is composited simply by taking 

the brighter pixel on the same position from two input pictures. The defects maintain darker 

color for different angles of lights. Hence, the second composite picture has a clear vision on 

defects. By using the boundary information extracted from the first binary image, noises located 

outside of the boundary in the second binary image are eliminated, which significantly enhance 

the reliability of extracted defect data. Obtained defect information can be seen in Figure 55. 
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Figure 55. Second composited picture in grayscale and binary. 

 

Based on the extracted defect and welding size information, we have developed a new 

machine-learning algorithm based on Support Vector Machine (SVM) to classify the types of 

defects. First, we train an SVM model based on various classified training welding images. 

During this process, the pictures need to be divided into many cells, and the SVM algorithm is 

applied to obtain and record features for each cell. Then, we label the features based on the 

defect type of training image. All the features with labels are stored as a lookup table. The 

features for input images to be classified need to be compared with the training feature lookup 

table. The defect type label corresponding to the closest training features in the lookup table 

decides the defect type in the input image.   

 

Figure 56. Shifted defect binary images 

 



 

72 

During this process, a major challenge is that if the defect is not at the center of the 

image. To solve this, in this project, we develop a displacement algorithm to shift the defect to 

the center of the image. A Binary Large OBject (BLOB) is a single entity binary data, a chunk of 

white data in this case. Use the central point of the largest BLOB as the central point of the 

shifted image (see Figure 56). After shifting, the SVM classifier can classify the defect type 

correctly.  At this point, the algorithm development is finished. Figure 57 shows the complete 

training and test process. 

. . .

Features

. . .

Pre-process output

. . .
Training Pictures

Training

SVM Data File
data label

0000011110101100101···                              crack

0000010100100110100···                              crack
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0000011011101011001···                             

Compare the SVM Data to SVM Data File, find 

the closest data set. The corresponding label 
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Two input pictures

Two Input pictures in grayscale

Two composite pictures

Binary images

Output before shifting

Output

Pre-processing

 

Figure 57. Developed image processing and machine learning algorithms. 
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9.4. Device Prototype 

  

Figure 58. Our developed device prototype.  

 

(a) enclosure 3d model (b) enclosure

(c) screen and battery
(d) core device and 

pin connection  

Figure 59. Optimized device with an enclosure. 

 

Figure 58 shows the developed device prototype, based on Raspberry PI with a quad-core 

Cortex A53 processor, which consists of a Raspberry Pi processing board with a quad-core 

processor, camera, display, and battery. The developed SVM based image processing and 
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machine learning algorithms can achieve high reliability. The algorithm is implemented in C++ 

and can be completed within 1 second. In order to enhance the reliability of the developed 

device, we have optimized the device and developed an enclosure using 3D printing technology 

to fit different welding shapes with light interference. As shown in Figure 59, the wings on the 

sides of the box are used for weldment with different shapes.  

Different welding samples are tested for device reliability. As shown in Figure 60, the 

device works well for different defects with high reliability and generates the results within 1 

second.   

 

Figure 60. Testing results using different welding samples.  
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9.5. Conclusion  

In this paper, we have developed a low-cost and reliable portable embedded device with 

advanced machine learning techniques, thereby bringing machine intelligence to enhance visual 

inspection in welding quality control. This technology has great potential to benefit welding 

quality control due to the concept of low cost and speed, which will ultimately improve the 

quality and thus structural safety of civil metallic infrastructure.  
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10. CONCLUSION AND FUTURE WORK  

This chapter summarizes the contributions presented within this dissertation and shows 

the improvement of the state-of-the-art technologies. A direction for future work will also be 

introduced. 

10.1. Conclusion  

In Chapter 3, a method to automatically analyze the SRAM failure rate was described. 

This study on SRAM stability laid a solid foundation for memory design. In particular, the 

failure rate associated with SRAM size and type can be plugged into the simulation to determine 

the parameters of the SRAM cell in different applications.  

In Chapter 4, a data-pattern enabled self-recovery SRAM for big video data was 

presented. An efficient SRAM circuit was designed to enable bit-cell self-recovery at near-

threshold voltage by applying the data patterns discovered using the association rule data-mining 

technique. The proposed design, with a low area overhead of 7.94%, reduces 81.52% of the 

dynamic power consumption and 82.45% of the leakage power consumption compared with 

nominal voltage operations. Compared to recent research such as bit cell sizing [15], data-

shifting [41], and data-squeezing techniques [39], the designed SRAM provides the best video 

quality with the least area overhead.  

In Chapter 5, a neural network synaptic storage was presented using a Data-driven self-

correction technique. Based on the data characteristics obtained using the data-mining technique 

from Chapter 4, the proposed memory achieves 45.6% and 83.2% in active and leakage power 

savings, respectively, as compared with the conventional memory design. With the low area cost 

of 3.17% and less than 1% degradation, the presented memory provides better classification and 
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less area overhead at similar power efficiency, as compared with recent research on low-power 

synaptic memory [22], 

In Chapters 6 and 7, novel bit-truncation techniques were discussed. These bit-truncation 

techniques were combined with viewer awareness and a PSNR improvement mathematic model. 

Two low-power video memories were detailed: viewer-aware intelligent video memory and 

content-adaptive video memory. Viewer-aware bit-truncation techniques, which minimize the 

negative impact on viewer experience, were also implemented. As compared to our previous 

efficient video memory designs [28, 29], the new design achieves better video quality with 

similar power savings. 

10.2. Future Work  

In the current bit-line conditioning circuits (Figure 39), even though the bit-lines are not 

pre-charged before reading and writing operations, there is still leakage current while the SRAM 

cells are accessed. How to improve the truncation bit-line circuit to minimize the leakage power 

should be included in the future work.  

The current study of video memory bit-truncation techniques can only truncate fixed 

numbers of bits for a video. But the reality is that while playing video, the surrounding 

environment might not stay the same. Therefore, a feedback mechanism can be very useful. One 

important observation made during the process of video testing was that if we can detect where 

the viewer’s focus lies in different videos, then we can further improve the quality in these 

sensitive areas of videos in the future.  

As mentioned in [35], macroblocks in the region of interest (ROI), i.e., human faces, can 

be detected and extracted during the video compression process. If we were able to truncate 

fewer MSBs (keep more detail) in ROIs, then we can achieve better quality with similar power 
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savings. In order to do that, the current circuit design needs to be changed, and video tests will be 

carried out with new processing techniques applied to the videos. An expected output result can 

be seen in Figure 61. Both images have 4 LSBs truncated, but the second image applies 2 bits 

truncation for the detected face area. As we can see in the first image, the forehead and cheek 

area have some obvious quality degradation, which significantly reduces the accept rate during 

the test. By detecting the human face, we can truncate fewer LSBs (keep more detail) for that 

area to improve the viewer’s experience. 

 

Figure 61. Top: 4 bits truncated; bottom: 4 bits truncated with 2 bits truncated in the detected 

face area. 
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APPENDIX A. SRAM SNM SIMULATION TOP BATCH 

:: SRAM SNM SIMULATION 

:: YIFU GONG - 2017 

:: Top batch to simulate SRAM failure rate 

:: Department: NDSU ECE Graduate Research 

:: Parameters: Voltage(mV), Iteration, SRAM(6T or 8T) 

::    Process corners(ss or ff)×2, lambda, technology node 

 

@echo off 

 

start /wait readwrite.bat 500 1000000 6T ss ff 4 45 

start /wait readwrite.bat 500 1000000 6T ss ss 4 45 

start /wait readwrite.bat 500 1000000 6T ff ff 4 45 

start /wait readwrite.bat 500 1000000 6T ff ss 4 45 

 

start /wait readwrite.bat 500 1000000 8T ss ff 4 45 

start /wait readwrite.bat 500 1000000 8T ss ss 4 45 

start /wait readwrite.bat 500 1000000 8T ff ff 4 45 

start /wait readwrite.bat 500 1000000 8T ff ss 4 45  
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APPENDIX B. SRAM SNM SIMULATION SECOND BATCH 

:: SRAM SNM SIMULATION 

:: YIFU GONG - 2017 

:: Second batch to simulate SRAM failure rate 

:: Department: NDSU ECE Graduate Research 

:: Perform simulations with given parameters 

:: Self-update 

 

@echo off 

setlocal enableextensions disabledelayedexpansion 

 

set a=%1 

set mont=%2 

set t=%3 

set Nsf=%4 

set Psf=%5 

set lambda=%6 

set nm=%7 

 

shift 

shift 

shift 

shift 

shift 

shift 

shift 

 

set textFile1=snm_read_%t%.sp 

set textFile2=snm_write_%t%.sp 

set outpot1=snm_read_%t%.lis 

set outpot2=snm_write_%t%.lis 

set MatlabFile1=read_data 

set MatlabFile2=write_data 

set Matlabplot=failureplot 

 

copy NUL %nm%_failure_%t%_%Nsf%_%Psf%_%lambda%lambda.csv 

set loopcount=10 

 

:loop 

START /b /WAIT python replace.py %1 %textFile1% %a% %mont% %Nsf% %Psf% 

%lambda% %nm% 

C:\synopsys\Hspice_L-2016.03-1\WIN64\hspice %textFile1% > %outpot1% -mp 

START /b /WAIT python convert_file_read.py %2 %outpot1%  

START /b /WAIT matlab -nodisplay -nosplash -nodesktop -nojvm -r 

v=%a%;mont=%mont%;file='%nm%_failure_%t%_%Nsf%_%Psf%_%lambda%lambda.csv';%Mat

labFile1% 

 

START /b /WAIT python replace.py  %3 %textFile2% %a% %mont% %Nsf% %Psf% 

%lambda% %nm% 

C:\synopsys\Hspice_L-2016.03-1\WIN64\hspice %textFile2% > %outpot2% -mp 

START /b /WAIT python convert_file_write.py %4 %outpot2% 

START /b /WAIT matlab -nodisplay -nosplash -nodesktop -nojvm -r 

v=%a%;mont=%mont%;file='%nm%_failure_%t%_%Nsf%_%Psf%_%lambda%lambda.csv';%Mat

labFile2% 
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set /a a=a+50 

set /a loopcount=loopcount-1 

if %loopcount%==0 goto exitloop 

goto loop 

:exitloop 

 

matlab -nodisplay -nosplash -nodesktop -r %Matlabplot% 

 

exit 
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APPENDIX C. SNM_WRITE_6T NETLIST 

.TEMP 80.0000 

.GLOBAL VDD 

.GlOBAL GND 

 

.include 45nm_NMOS_tt.pm 

.include 45nm_PMOS_tt.pm 

.param mont = 50000 

+ Vdd = 1.0v 

+ GND = 0 

.param m = 4 

+ L = 45n 

+ LP = 'L' 

+ LN = 'L' 

+ LA = 'L' 

+ WP = 90n 

+ WN = 90n 

+ WA = 90n 

+ BITCAP = 1E-12 

*.PARAM  dxvth=agauss(0,0.1,1) 

.PARAM dxvthn1 = agauss(0,'0.024*sqrt(45*67.5e-18/(WN*LN))',1) 

+    dxvthn2 = agauss(0,'0.024*sqrt(45*67.5e-18/(WN*LN))',1) 

+    dxvthp1=agauss(0,'-0.0292*sqrt(45*67.5e-18/(WP*LP))',1) 

+    dxvthp2=agauss(0,'-0.0292*sqrt(45*67.5e-18/(WP*LP))',1) 

+    dxvtha1 = agauss(0,'0.024*sqrt(45*67.5e-18/(WA*LA))',1) 

+    dxvtha2 = agauss(0,'0.024*sqrt(45*67.5e-18/(WA*LA))',1) 

 

*sources 

**supply 

VVDD VDD 0 dc = VDD 

Vvss GND 0 dc = 0 

 

**access control 

Vwwl WWL 0 dc = VDD 

* one inverter                       

MPL QBD P VDD VDD PMOS W='WP' L='LP' delvto='dxvthp1'   

MNL QBD P GND GND NMOS W='WN' L='LN' delvto='dxvthn1' 

 

* one inverter                        

MPR QD P VDD VDD PMOS W='WP' L='LP' delvto='dxvthp2'   

MNR QD P GND GND NMOS W='WN' L='LN' delvto='dxvthn2'  

 

* access transistors                  

Mr WBLB WWL QBD  VDD NMOS W = 'WA' L='LA' delvto='dxvtha1'   

Ml WBL  WWL  QD  GND NMOS W = 'WA' L='LA' delvto='dxvtha2'  

 

VBLB WBLB 0 dc = VDD 

VBL  WBL 0 dc = 0 

 

Vin P 0 

.DC Vin LIN 30 0v VDD SWEEP MONTE=mont 

 

.PRINT DC V(QD) V(QBD) 

.OPTIONS brief=1 NOMOD NOWARN INGOLD=2 

.end 
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APPENDIX D. SNM_READ_6T NETLIST 

.TEMP 80.0000 

.GLOBAL VDD 

.GlOBAL GND 

 

.include 45nm_NMOS_tt.pm 

.include 45nm_PMOS_tt.pm 

.param mont = 50000 

+ Vdd = 1.0v 

+ GND = 0 

.param m = 4 

+ L = 45n 

+ LP = 'L' 

+ LN = 'L' 

+ LA = 'L' 

+ WP = 50n 

+ WN = 100n 

+ WA = 75n 

+ BITCAP = 1E-12 

*.PARAM  dxvth=0.1 

.PARAM dxvthn1 = agauss(0,'0.024*sqrt(100*67.5e-18/(WN*LN))',1) 

+      dxvthn2 = agauss(0,'0.024*sqrt(100*67.5e-18/(WN*LN))',1) 

+      dxvthp1=agauss(0,'-0.0292*sqrt(50*67.5e-18/(WP*LP))',1) 

+      dxvthp2=agauss(0,'-0.0292*sqrt(50*67.5e-18/(WP*LP))',1) 

+      dxvtha1 = agauss(0,'0.024*sqrt(75*67.5e-18/(WA*LA))',1) 

+      dxvtha2 = agauss(0,'0.024*sqrt(75*67.5e-18/(WA*LA))',1) 

 

*sources 

**supply 

VVDD VDD 0 dc = VDD 

Vvss GND 0 dc = 0 

 

**access control 

Vwwl WWL 0 dc = VDD 

* one inverter 

MPL QBD P VDD VDD PMOS W='WP' L='LP' delvto='dxvthp1'   

MNL QBD P GND GND NMOS W='WN' L='LN' delvto='dxvthn1' 

 

* one inverter 

MPR QD P VDD VDD PMOS W='WP' L='LP' delvto='dxvthp2'   

MNR QD P GND GND NMOS W='WN' L='LN' delvto='dxvthn2'  

 

* access transistors 

Mr WBLB WWL QBD  GND NMOS W = 'WA' L = 'LA' delvto='dxvtha1'   

Ml WBL  WWL  QD  GND NMOS W = 'WA' L = 'LA' delvto='dxvtha2'  

 

.IC V(WBLB) = VDD 

.IC V(WBL) = VDD 

Vin P 0 

.DC Vin LIN 30 0v VDD SWEEP MONTE=mont 

.PRINT DC V(QD) V(QBD) 

.OPTIONS NOMOD NOWARN POST INGOLD=2 

.end 
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APPENDIX E. SNM_WRITE_8T NETLIST 

.TEMP 80.0000 

.GLOBAL VDD 

.GlOBAL GND 

 

.include 45nm_NMOS_tt.pm 

.include 45nm_PMOS_tt.pm 

.param mont = 50000 

+ Vdd = 1.0v 

+ GND = 0 

 

.param m = 4 

+ L = 45n 

+ LP = 'L' 

+ LN = 'L' 

+ LA = 'L' 

+ L7 = 'L' 

+ L8 = 'L' 

+ WP = 90n 

+ WN = 90n 

+ WA = 90n 

+ W7 = 180n 

+ W8 = 180n 

+ UL = '-VDD/sqrt(2)' 

+ UH = 'VDD/sqrt(2)' 

+ BITCAP = 1E-12 

 

*.PARAM  dxvth=agauss(0,0.1,1) 

.PARAM dxvthn1 = agauss(0,'0.024*sqrt(45*67.5e-18/(WN*LN))',1) 

+      dxvthn2 = agauss(0,'0.024*sqrt(45*67.5e-18/(WN*LN))',1) 

+      dxvthp1=agauss(0,'-0.0292*sqrt(45*67.5e-18/(WP*LP))',1) 

+      dxvthp2=agauss(0,'-0.0292*sqrt(45*67.5e-18/(WP*LP))',1) 

+      dxvtha1 = agauss(0,'0.024*sqrt(45*67.5e-18/(WA*LA))',1) 

+      dxvtha2 = agauss(0,'0.024*sqrt(45*67.5e-18/(WA*LA))',1) 

+      dxvthn7 = agauss(0,'0.024*sqrt(45*67.5e-18/(W7*L7))',1) 

+      dxvthn8 = agauss(0,'0.024*sqrt(45*67.5e-18/(W8*L8))',1) 

 

*sources 

**supply 

VVDD VDD 0 dc = VDD 

Vvss GND 0 dc = 0 

 

**access control 

Vwwl WWL 0 dc = VDD 

Vrwl RWL 0 dc = 0 

 

* one inverter 

MPL QBD P VDD VDD PMOS W='WP' L='LP' delvto='dxvthp1'  

MNL QBD P GND GND NMOS W='WN' L='LN' delvto='dxvthn1' 

 

* one inverter                        

MPR QD P VDD VDD PMOS W='WP' L='LP'  delvto='dxvthp2'  

MNR QD P GND GND NMOS W='WN' L='LN'  delvto='dxvthn2'  

 

* access transistors                  



 

90 

Mr WBLB WWL QBD  GND NMOS W = 'WA' L='LA' delvto='dxvtha1'  

Ml WBL  WWL  QD  GND NMOS W = 'WA' L='LA' delvto='dxvtha2' 

 

* read transistors                    

M7 QD net GND  GND NMOS W = 'W7' L = 'L7' delvto='dxvthn7'  

M8 RWL  net  RBL  GND NMOS W = 'W8' L = 'L8' delvto='dxvthn8' 

 

.IC V(WBLB) = VDD 

.IC V(WBL) = 0 

.IC V(RBL) = 0 

 

Vin P 0 

.dc Vin LIN 30 0v VDD SWEEP MONTE=mont 

 

.PRINT DC V(QD) V(QBD) 

 

.OPTIONS brief=1 NOMOD NOWARN POST INGOLD=2 

 

.end 
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APPENDIX F. SNM_READ_8T NETLIST 

.TEMP 80.0000 

.GLOBAL VDD 

.GlOBAL GND 

 

.include 45nm_NMOS_tt.pm 

.include 45nm_PMOS_tt.pm 

.param mont = 50000 

+ Vdd = 1.0v 

+ GND = 0 

 

.param m = 4 

+ L = 45n 

+ LP = 'L' 

+ LN = 'L' 

+ LA = 'L' 

+ L7 = 'L' 

+ L8 = 'L' 

+ WP = 90n 

+ WN = 90n 

+ WA = 90n 

+ W7 = 180n 

+ W8 = 180n 

+ UL = '-VDD/sqrt(2)' 

+ UH = 'VDD/sqrt(2)' 

+ BITCAP = 1E-12 

 

*.PARAM  dxvth=agauss(0,0.1,1) 

.PARAM dxvthn1 = agauss(0,'0.024*sqrt(45*67.5e-18/(WN*LN))',1) 

+      dxvthn2 = agauss(0,'0.024*sqrt(45*67.5e-18/(WN*LN))',1) 

+      dxvthp1=agauss(0,'-0.0292*sqrt(45*67.5e-18/(WP*LP))',1) 

+      dxvthp2=agauss(0,'-0.0292*sqrt(45*67.5e-18/(WP*LP))',1) 

+      dxvtha1 = agauss(0,'0.024*sqrt(45*67.5e-18/(WA*LA))',1) 

+      dxvtha2 = agauss(0,'0.024*sqrt(45*67.5e-18/(WA*LA))',1) 

+      dxvthn7 = agauss(0,'0.024*sqrt(45*67.5e-18/(W7*L7))',1) 

+      dxvthn8 = agauss(0,'0.024*sqrt(45*67.5e-18/(W8*L8))',1) 

 

*sources 

**supply 

VVDD VDD 0 dc = VDD 

Vvss GND 0 dc = 0 

 

**access control 

Vwwl WWL 0 dc = 0 

Vrwl RWL 0 dc = VDD 

* one inverter 

MPL QBD P VDD VDD PMOS W='WP' L='LP' delvto='dxvthp1'  

MNL QBD P GND GND NMOS W='WN' L='LN' delvto='dxvthn1' 

 

* one inverter 

MPR QD P VDD VDD PMOS W='WP' L='LP' delvto='dxvthp2'  

MNR QD P GND GND NMOS W='WN' L='LN' delvto='dxvthn2'  

 

* access transistors 

Mr WBLB WWL QBD  GND NMOS W = 'WA' L = 'LA' delvto='dxvtha1'  
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Ml WBL  WWL  QD  GND NMOS W = 'WA' L = 'LA' delvto='dxvtha2' 

 

* read transistors 

M7 Q net GND  GND NMOS W = 'WA' L = 'L7' delvto='dxvthn7'  

M8 RWL  net  RBL  GND NMOS W = 'WA' L = 'L8' delvto='dxvthn8' 

 

 

.IC V(RBL) = VDD 

*.IC V(WBLB) = 0 

*.IC V(WBL) = 0 

 

*.IC V(Q)  = 0 

*.IC V(QB) = VDD 

 

Vin P 0 

.DC Vin LIN 30 0v VDD SWEEP MONTE=mont 

 

.PRINT DC V(QD) V(QBD) 

 

.OPTIONS NOMOD NOWARN POST INGOLD=2 

 

.end 
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APPENDIX G. PYTHON UPDATE NETLIST 

# SRAM SNM SIMULATION 

# YIFU GONG - 2017 

# Python script to update netlist after each simulation 

# Department: NDSU ECE Graduate Research 

 

import sys 

# main 

file = str(sys.argv[1]) 

param_1 = int(sys.argv[2])/1000.00 

param_2 = int(sys.argv[3]) 

param_3 = str(sys.argv[4]) 

param_4 = str(sys.argv[5]) 

param_5 = str(sys.argv[6]) 

param_6 = str(sys.argv[7]) 

 

with open(file, "r") as f: 

    lines = f.readlines() 

lines[4] = ".include "+param_6+"nm_NMOS_" + param_3 + ".pm\n" 

lines[5] = ".include "+param_6+"nm_PMOS_" + param_4 + ".pm\n" 

lines[6] = ".param mont = " + str(param_2) + "\n" 

lines[7] = "+ Vdd = " + str(round(param_1, 2)) + "v" + "\n" 

lines[10] = ".param m = " + param_5 + "\n" 

lines[11] = "+ L = " + param_6 + "n\n" 

with open(file, "w") as f: 

    for line in lines: 

        f.write(line) 
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APPENDIX H. PYTHON EXTRACT DATA 

# SRAM SNM SIMULATION 

# YIFU GONG - 2017 

# Two separate python script to extract meaningful data 

# Department: NDSU ECE Graduate Research 

 

import sys 

# main 

file = str(sys.argv[1]) 

i=0 

output = open("formatted_data_write.csv",'w') 

with open(file) as f: 

    data = f.readlines() 

    for line in data: 

        values = line.split() 

        if "   *** monte carlo  index = " in line: 

            i+=1 

        if "a" not in line and "b" not in line and "c" not in line and "d" 

not in line and "f" not in line and "g" not in line and "h" not in line and 

"i" not in line and "j" not in line and "k" not in line and "l" not in line 

and "m" not in line and "n" not in line and "o" not in line and "p" not in 

line and "q" not in line and "r" not in line and "s" not in line and "t" not 

in line and "u" not in line and "v" not in line and "w" not in line and "x" 

not in line and "y" not in line and "z" not in line: 

            if len(values) == 3: 

                u = values[0] 

                qd = values[1] 

                qbd = values[2] 

                output.write('{},{},{},{}\n'.format(i,u[:],qd[:],qbd[:])) 
 

import sys 

# main 

file = str(sys.argv[1]) 

i=0 

output = open("formatted_data_read.csv",'w') 

with open(file) as f: 

    data = f.readlines() 

    for line in data: 

        values = line.split() 

        if "   *** monte carlo  index = " in line: 

            i+=1 

        if "a" not in line and "b" not in line and "c" not in line and "d" 

not in line and "f" not in line and "g" not in line and "h" not in line and 

"i" not in line and "j" not in line and "k" not in line and "l" not in line 

and "m" not in line and "n" not in line and "o" not in line and "p" not in 

line and "q" not in line and "r" not in line and "s" not in line and "t" not 

in line and "u" not in line and "v" not in line and "w" not in line and "x" 

not in line and "y" not in line and "z" not in line: 

            if len(values) == 3: 

                u = values[0] 

                qd = values[1] 

                qbd = values[2] 

                output.write('{},{},{},{}\n'.format(i,u[:],qd[:],qbd[:])) 
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APPENDIX I. BUTTERFLY ROTATE COORDINATES 

% SRAM SNM SIMULATION 

% YIFU GONG - 2017 

% Matlab script to rotate butterfly curves 

% Department: NDSU ECE Graduate Research 

 

clear all 

warning('off','all') 

data = csvread('formatted_data_read.csv'); 

dpt=30; 

x = NaN * ones(dpt,1); 

y1 = NaN * ones(dpt,1); 

y2 = NaN * ones(dpt,1); 

pass = 0; 

fail = 0; 

total = 0; 

plot(0,0);hold on 

axis equal 

 

for i=1:50000 

    j = (i-1)*dpt+1; 

    k = 1; 

    while k<=dpt && data(j,1)==i 

        x(k) = data(j,2); 

        y1(k) = data(j,3); 

        y2(k) = data(j,4); 

        j = j+1; 

        k = k+1; 

    end 

    [xi,yi] = curveintersect(y1,x,x,y2); 

    [m,n] = size(xi); 

    if m==3 

        if  abs(xi(2)/yi(2)-1)<0.5 && abs(yi(2)/xi(2)-1)<0.5 && 

abs((yi(1)+yi(3))/yi(2)-2)<1 

            pass = pass + 1; 

            total = total + 1; 

            figure(1) 

            plot(y1,x,'LineWidth',1);hold on 

            plot(x,y1,'LineWidth',1);hold off 

        end 

        u1 = round(x/sqrt(2) - y1/sqrt(2), 4); 

        v1 = x/sqrt(2) + y1/sqrt(2); 

         

        uv1(1,:) = min(u1):1/10000:max(u1); 

        uv1(2,:) = interp1(u1,v1,uv1(1,:)); 

         

        u2 = round(-x/sqrt(2) + y1/sqrt(2), 4); 

        v2 = x/sqrt(2) + y1/sqrt(2); 

         

        uv2(1,:) = min(u2):1/10000:max(u2); 

        uv2(2,:) = interp1(u2,v2,uv2(1,:)); 

         

        figure(2) 

        plot(uv1(1,:),uv1(2,:),'color',[0,0,0]+0.3,'LineWidth',4);hold on 

        plot(uv2(1,:),uv2(2,:),'color',[0,0,0]+0.7,'LineWidth',4); 
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        u = max(min(uv1(1,:)),min(uv2(1,:))):1/10000: 

min(max(uv1(1,:)),max(uv2(1,:))); 

        a = (uv1(1,1) - uv2(1,1)) * 10000; 

        [b,c] = size(uv1); 

        if a > 0 

            uv1 = uv1(:,a+1:c); 

            uv2 = uv2(:,1:c-a); 

        else 

            uv2 = uv2(:,1:c+a); 

            uv1 = uv1(:,-a+1:c); 

        end 

         

        plot(u,uv1(2,:)-uv2(2,:),'color','red','LineWidth',4); 

        break 

    end 

end 

 

print(gcf,'SNM.png','-dpng','-r300'); 
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APPENDIX J. MATLAB SCRIPT CALCULATE WRITE FAILURE RATE 

% SRAM SNM SIMULATION 

% YIFU GONG - 2017 

% Matlab script to calculate write failure rate 

% Department: NDSU ECE Graduate Research 

 

warning('off','all') 

data = csvread('formatted_data_write.csv'); 

dpt=30; 

x = NaN * ones(dpt,1); 

y1 = NaN * ones(dpt,1); 

y2 = NaN * ones(dpt,1); 

pass = 0; 

fail = 0; 

total = 0; 

plot(0,0);hold on 

axis equal 

xlim([0 1]) 

ylim([0 1]) 

 

for i=1:mont 

    j = (i-1)*dpt+1; 

    k = 1; 

    while k<=dpt && data(j,1)==i 

        x(k) = data(j,2); 

        y1(k) = data(j,3); 

        y2(k) = data(j,4); 

        j = j+1; 

        k = k+1; 

    end 

    [xi,yi] = curveintersect(y1,x,x,y2); 

    [m,n] = size(xi); 

    if m==1 

        pass = pass + 1; 

        total = total + 1;      

    else 

        fail = fail + 1; 

        total = total + 1; 

    end 

end 

passPercentage = pass/total; 

failPercentage = fail/total; 

fileID = fopen(file,'a'); 

fprintf(fileID,',%i,%d\n',v/1000,failPercentage); 

fclose(fileID); 

clc 

clear all 

exit 
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APPENDIX K. MATLAB SCRIPT CALCULATE READ FAILURE RATE 

% SRAM SNM SIMULATION 

% YIFU GONG - 2017 

% Matlab script to calculate read failure rate 

% Department: NDSU ECE Graduate Research 

 

warning('off','all') 

data = csvread('formatted_data_read.csv'); 

dpt=30; 

x = NaN * ones(dpt,1); 

y1 = NaN * ones(dpt,1); 

y2 = NaN * ones(dpt,1); 

pass = 0; 

fail = 0; 

total = 0; 

plot(0,0);hold on 

axis equal 

xlim([0 1]) 

ylim([0 1]) 

 

for i=1:mont 

    j = (i-1)*dpt+1; 

    k = 1; 

    while k<=dpt && data(j,1)==i 

        x(k) = data(j,2); 

        y1(k) = data(j,3); 

        y2(k) = data(j,4); 

        j = j+1; 

        k = k+1; 

    end 

    [xi,yi] = curveintersect(y1,x,x,y2); 

    [m,n] = size(xi); 

    if m==3 

        if  abs(xi(2)/yi(2)-1)<0.5 && abs(yi(2)/xi(2)-1)<0.5 && 

abs((yi(1)+yi(3))/yi(2)-2)<1 

            pass = pass + 1; 

            total = total + 1;    

        else 

            fail = fail + 1; 

            total = total + 1; 

        end 

    else 

        fail = fail + 1; 

        total = total + 1; 

    end 

end 

passPercentage = pass/total; 

failPercentage = fail/total; 

fileID = fopen(file,'a'); 

fprintf(fileID,'%i,%d',v/1000,failPercentage); 

fclose(fileID); 

clc 

clear all 

exit 
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APPENDIX L. MATLAB SCRIPT COMPARE PSNR 

% COMPARE PSNR 

% YIFU GONG - 2018 

% Matlab script to compare PSNR at 0s and 10 situation 

% Department: NDSU ECE Graduate Research 

 

function [p_sure,p_random] = check_psnr 

files = dir(fullfile('tmp\video*.yuv')); 

for j = 1:5 

    for i = 1:5 

        temp = Fixed_trunc_sure(strcat(files(j).folder, '\',files(j).name), 

strcat(files(j).folder, '\','trunc_',files(j).name), 320, 240, 

(1:50),'3',i,100/100); 

        p_sure(i,j) = temp; 

    end 

end 

 

for j = 1:5 

    for i = 1:5 

        temp = Fixed_trunc_random(strcat(files(j).folder, '\',files(j).name), 

strcat(files(j).folder, '\','trunc_',files(j).name), 320, 240, 

(1:50),'3',i,100/100); 

        p_random(i,j) = temp; 

    end 

end 

 

figure(1) 

plot(p_sure) 

hold on 

t = 0:4;! 

Le = 20*log10(255)-10*log10((4.^(t+1 )-1)/3); 

plot(t+1,Le,'b','LineWidth',5) 

 

figure(2) 

plot(p_random) 

hold on 

t = 0:4; 

Le = 20*log10(255)-10*log10((4.^(t+1 )-1)/6); 

plot(t+1,Le,'b','LineWidth',5) 

 



Note 

Some of the data in this dissertation was obtained by Yifu Gong prior to his inclusion on the 

approved NDSU IRB protocol for this research project. Mr. Gong had no knowledge of this error 

and bears no responsibility for it. The NDSU Graduate School has therefore elected to publish 

Mr. Gong’s dissertation in fulfillment of his requirements for graduation. 

 


