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ABSTRACT

In many hypothesis testing problems such as one-sample and two-sample test problems, the

test statistics are degenerate U-statistics. One of the challenges in practice is the computation of

U-statistics for a large sample size. Besides, for degenerate U-statistics, the limiting distribution

is a mixture of weighted chi-squares, involving the eigenvalues of the kernel of the U-statistics.

As a result, it’s not straightforward to construct the rejection region based on this asymptotic

distribution. In this research, we aim to reduce the computation complexity of degenerate U-

statistics and propose an easy-to-calibrate test statistic by using the divide-and-conquer method.

Specifically, we randomly partition the full n data points into kn even disjoint groups, and compute

U-statistics on each group and combine them by averaging to get a statistic Tn. We proved that

the statistic Tn has the standard normal distribution as the limiting distribution. In this way, the

running time is reduced from O(nm) to O( nm

km−1
n

), wherem is the order of the one sample U-statistics.

Besides, for a given significance level α, it’s easy to construct the rejection region. We apply our

method to the goodness of fit test and two-sample test. The simulation and real data analysis show

that the proposed test can achieve high power and fast running time for both one and two-sample

tests.
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1. INTRODUCTION

The U-statistic is one of the most commonly used non-linear and non-parametric statistics,

introduced by Hoeffding (1948). The class arises as a generalization of the notion of an unbi-

ased sample means, sample variance, Kendall’s rank correlation coefficient, Gini’s mean difference.

Usually, U-statistics produce minimum-variance unbiased estimators.

U-statistics have been widely investigated in theoretical and applied statistics. For example,

Bickel and Freedman(1981) studied the bootstrap of non-degenerate U-statistics and proved the

bootstrap consistency. Arcones and Gine(1992) proved the bootstrap CLT for U statistics under

minimal integrability conditions; Peng and Tan(2018) proved the Wilks theorems for jackknife

empirical likelihood for vector U-statistics; Cheng et al. (2018) investigated the two-sample U-

statistics via jackknife empirical likelihood. Huang, W et al. (2006) and Dewan et al. (2001)

proposed a central limit theorem for degenerate and non-degenerate U-statistics when the sequence

is negatively related to random variables.

U-statistics have full application in many estimations and machine learning problems. For

instance, the MeanNN approach estimation for differential entropy introduced by Faivishevsky and

Goldberger (2008) is a U statistic. Using U-statistics, Liu et al. (2016) proposed a new test

statistic for goodness-of-fit tests; Clemencon(2011) defined a measure by U-statistics to quantify

the clustering quality of a partition.

U-statistics applied in statistical inference and estimation, including the simultaneous testing

of different hypotheses, the estimation of high dimensional graphical models. For high dimensional

hypothesis testing, the new methods based on U-statistics have been proposed and studied in Chen,

Zhang, and Zhong (2010) and Zhong and Chen (2011). Further, the degenerate of order-1 U-

statistics aroused in the context of testing for independence in paired circular data, for instance, the

tests studied in Fisher and Lee (1982). Other degenerate U-statistics proposed for testing goodness-

of-fit, for example, Watson’s U2 for two-sample, goodness-of-fit on a circle Persson (1979), the

Cramer-von Mises type statistics for one-sample goodness-of-fit in Anderson and Darling (1952).

U-statistic can be degenerate or non-degenerate. Even though most of the literature on

U-statistics focuses on the non-degenerate case, degenerate U-statistics are very useful in many
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hypothesis testing problems. For example, the energy test statistic or maximum mean discrepancy

(MMD)(Gretton et al. 2012) for two sample problems are degenerate U-statistics under the null

hypothesis; in the goodness of fit test, the kernelized stein discrepancy(KSD) test is also a degen-

erate U-statistics(Liu et al. 2016) and Atta-Asiamah and Yuan (2019). Many other examples of

degenerate U-statistics could be found in testing for independence and model misspecification, in

the field of physical and social science such as geophysics Stephens (1979), econometrics Bierens

and Ploberger (1997) and ecology (Fisher and Lee, 1982).

The asymptotic behavior of U-statistics are well studied. A non-degenerate U-statistic has

the normal distribution as the limiting distribution. In the degenerate case, the limiting distribution

is a mixture of independent chi-square distributions, weighted by the eigenvalues of the kernel of

the U statistic. Concentration inequalities are also available in the literature.

In the application of (non-degenerate or degenerate) U-statistics, one challenge is the cal-

culation when the sample size is large. For U-statistics of order m, the computational complexity

is O(nm). Another challenge in using degenerate U-statistics for hypothesis testing is: under the

null hypothesis H0, the limiting distribution of a degenerate U-statistic is a quadratic form of in-

dependent standard Gaussian random variables, weighted by the eigenvalues of the kernel of the

U-statistics. To solve these challenges, Atta-Asiamah, E and Yuan, M (2019) proposed a divide-

and-conquer method to deal with the eigenvalues challenges and computational cost. In practice, it

is hard to get the closed-form expression of the eigenvalues. Other techniques like bootstrapping or

permutation test should be employed, which may increase the computation burden for large sample

size.
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2. METHODOLOGY

2.1. Divide and conquer for degenerate U-statistics

Let (X1, X2, . . . , Xn) be i.i.d. data from some distribution. For some symmetric function

h : Rm → R, the U-statistics of order m is defined as

Un =
1(
n
m

) ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim),

which is an unbiased estimator of θ = Eh(X1, . . . , Xm). For c = 0, 1, . . . ,m, let hc(x1, . . . , xc) =

Eh(x1, . . . , xc, Xc+1, . . . , Xm) and σ2c = V ar(hc(X1, . . . , Xc)). A U-statistics is said to be k-degenerate

of order m if σ21 = · · · = σ2k = 0 and σ2k+1 6= 0. When k = 0, the U-statistics is non-degenerate. For

convenience and simplicity, in this research we consider 1-degenerate U-statistics of order 2, that is,

m = 2 and k = 1. In the following, we provide several examples of U-statistics.

Example 2.1.1. Suppose X ∼ F with variance θ = V ar(X), defined as

θ =

∫
(x− µ)2dF (x).

An unbiased estimator of θ is the sample variance, which is a U-statistics. Specifically, define kernel

h as

h(x1, x2) =
x1

2 + x2
2 − 2x1x2
2

=
1

2
(x1 − x2)2

and the corresponding U-statistic is given as

Un(X1, . . . , Xn) =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj)

=
1

n− 1

(
n∑
i=1

x1
2 − nx̄

)
= S2

is the sample variance.
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Example 2.1.2. Let X1 and X2 be independent samples from a distribution F. Suppose θF =

EF |X1 − X2| is measure of the concentration, called Gini’s difference. Define the kernel h as

h(x1, x2) = |x1 − x2|, the estimator of θ is a U-statistics of order 2:

Un = U(X1, . . . , Xn) =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj |.

Example 2.1.3. We consider a kernel, h(x1, x2) = x1x2. Then h1(x1) = E(x1X2) = x1E(X2) =

x1µ and σ21 = V ar(h1(X1)) = V ar(X1µ) = µ2V ar(X1) = µ2σ2. Suppose that µ = E(X1) = 0,

then σ21 = 0. But assuming σ2 > 0, then σ22 = V ar(X1X2) = V ar(X1)V ar(X2) = σ2σ2 = σ4 > 0.

Therefore it is degenerate of order 1.

In this thesis, we are mainly interested in testing the following hypothesis

H0 : θ = 0, v.s. H1 : θ 6= 0. (2.1)

In many cases, the U-statistics Un serve as a test statistic and frequently the Un is degenerate under

H0, see (Liu et al (2016)), (Gretton, et al(2012)) and Atta-Asiamah, E and Yuan, M (2019) for

example. The classical asymptotic distribution of degenerate Un is given in Lemma 2.1.1 as follows.

Lemma 2.1.1. Let Un be the 1-degenerate U-statistics of order 2 and EUn = θ. Then we have

n(Un − θ)→
∞∑
j=1

λj(Z
2
j − 1),

where Zj, j = 1, 2, . . . follow independent standard normal distribution, and λj, j = 1, 2, . . . are

eigenvalues of the function h(x1, x2)− θ.

In practice, there are two challenges in using Lemma 2.1.1 to construct the rejection region:

it is computationally hard to compute Un for large sample size and it is pretty challenging to

calculate the eigenvalues λi. We address these two issues simultaneously by the divide-and-conquer

method as follows.
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Firstly, we partition the i.i.d. sample (X1, X2, . . . , Xn) into kn disjoint blocks, each block

with mn = n
kn

samples. Then construct U-statistics Ui for i-th block(1 ≤ i ≤ kn) and combine them

to get the following quantity Tn

Tn =

∑kn
i=1mnUi
sn

,

where s2n =
∑kn

i=1 V ar(mnUi) = knσ
2
mn . Note that σ2mn converges to σ2, the variance of G =∑∞

j=1 λj(Z
2
j − 1), as mn goes to infinity. Under H0, we derive the limiting distribution of Tn as in

the following Theorem 2.1.1.

Theorem 2.1.1. Suppose h(x1, x2) is a bounded symmetric function. If kn →∞ andmn = n
kn
→∞

as n goes to infinity, then under H0 we have

Tn =

∑kn
i=1mnUi
sn

→ N(0, 1).

Note that Tn involves unknown variance σ2mn . We propose to estimate it by σ̂2mn =

1
kn

∑kn
i=1

(
mnUi

)2. By the proof of Theorem 2.1.1, {(mnUi)
2} is uniformly integrable, which implies

that σ̂2mn converges to σ2 in probability. Then the test statistic for (2.1) is defined as

T̂n =

∑kn
i=1mnUi√
knσ̂mn

. (2.2)

For given type I error α, we reject H0 if |T̂n| > Zα
2
, where Zα

2
is the (1 − α

2 )100% quantile of the

standard normal distribution.

We point out two advantages of the test statistic T̂n. Firstly, the running time of T̂n is

O(n
2

kn
), which is significantly faster than O(n2), the running time of Un. For example, if we take

kn = n
logn , then the running time of T̂n is O(n log n), almost linear. Besides, the limiting distribution

of T̂n is standard normal distribution, which doesn’t require computing the eigenvalues of the kernel

function h.

To study the power of the proposed test, we consider the following hypothesis.

H0 : θ = 0, v.s. Ha : θ =
c√
n
, (2.3)

where c 6= 0 is some constant. Under Ha, we have
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Theorem 2.1.2. If kn = o(n) and the U-statistic is non-degenerate under Ha, Tn converges in

distribution to N( cσ , 1) under Ha.

By Theorem 2.1.2, the proposed test statistic T̂n can achieve high power as n tends to

infinity. Moreover, the optimal test rate of our test statistic is
√
n, the same as the rate for the non-

degenerate case (see Theorem 2.2.2). In many cases, under Ha, the U-statistic is non-degenerate,

see (Liu et al (2016)), (Gretton, et al(2012)) for example. If under Ha, the U-statistic is still 1-

degenerate, the optimal test rate would be
√
kn
n , which is faster than

√
n(see the Remark below the

proof of Theorem 2.1.2).

2.2. Divide and conquer for non-degenerate U-statistics

The divide-and-conquer method for non-degenerate U-statistics was studied in Lin, N. and

Xi, R.(2010) and Atta-Asiamah, E and Yuan, M (2019). For completeness and to compare with

the degenerate case, we adjust their results to hypothesis testing problem. Consider the following

hypothesis

H0 : θ = θ0, v.s. H1 : θ 6= θ0. (2.4)

Following a similar procedure as in the degenerate case, we define the test statistic for (2.4) as

Tn =

√
kn(Tn − θ0)√

1
kn

∑kn
i=1(Ui − U)2

. (2.5)

where Tn = 1
kn

∑kn
i=1 Ui and U = 1

kn

∑kn
i=1 Ui. Under H0, the limiting distribution of Tn is also

standard normal distribution (Lin, N. and Xi, R.(2010)).

Theorem 2.2.1. If kn = o(n), then under H0, Tn converges in distribution to N(0, 1).

Given type I error α, we reject H0 if |Tn| > Zα
2
, where Zα

2
is the (1− α

2 )100% quantile of the

standard normal distribution. To study the power of the proposed test, we consider the following

hypothesis test,

H0 : θ = θ0, v.s. Ha : θ = θ0 +
c√
n
, (2.6)

where c 6= 0 is some constant. Under Ha, we can easily derive the asymptotic distribution.

6



Theorem 2.2.2. If kn = o(n) and the U-statistic is non-degenerate under Ha, then Tn converges in

distribution to N( cσ , 1) under Ha, where 1
kn

∑kn
i=1(
√
mnUi−

√
mnU)2 converges to σ2 in probability.

By Theorem 2.2.2, the optimal rate of the test statistic Tn is
√
n, equal to the optimal test

rate of degenerate case. The computation complexity of the test is O( nm

km−1
n

), much smaller than

that of the full sample O(nm). In terms of computation time and optimal test rate, there is no

difference between the non-degenerate and the degenerate case of the divide-and-conquer method.

2.3. Divide and conquer for two-sample U-statistics

In two sample testing problems, the test statistic are usually degenerate U-statistics under

the null hypothesis. For instances, the maximum mean discrepancy for comparing two distributions

is a degenerate two-sample U-statistic (Gretton et al.(2012)). We propose the divide and conquer

methods for two sample U-statistics in this subsection.

Let G and H be independent continuous distributions and θ = θ(G,H) is a parameter

defined as follows: for a measurable function h(x1, x2, x3, . . . , xk1 ; y1, y2, y3, . . . , yk2),

θ =

∫ +∞

−∞
h(x1, x2, x3, . . . , xk1 ; y1, y2, y3, . . . , yk2)

k1∏
i=1

dG(xi)

k2∏
j=1

dH(xj)

Suppose h(x1, x2, x3, . . . , xk1 ; y1, y2, y3, . . . , yk2) is symmetric with respect to x1, x2, x3, . . . , xk1 and

y1, y2, y3, . . . , yk2 , respectively. Suppose X1, X2, X3, . . . , Xn1 and Y1, Y2, Y3, . . . , Yn2 be the two in-

dependent samples from the distributions G and H respectively. Then an unbiased estimator of θ

is a U-statistic of two-sample Un1,n2 with degree (k1, k2) given as

Un1,n2 =
1(

n1

k1

)(
n2

k2

) ∑
(n1,k1)

∑
(n2,k2)

h(Xi1 , . . . , Xik1
;Y1, . . . , Yk2),

where the summation
∑

(n1,k1)
is taken all possible values of x1, x2, x3, . . . , xk1 which satisfying

1 ≤ i1 < · · · < ik1 ≤ n1 and
∑

(n2,k2)
is similarly defined. Some examples of two sample U-statistic

is given below.
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Example 2.3.1. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent samples from continuous distri-

butions F and G, respectively. Let θ be a parameter defined as

θ(F,G) =

∫
FdG = P (X ≤ Y ).

Therefore, an unbiased estimator of θ is

U =
1

n1n2

n1∑
i=1

n2∑
j=1

I(Xi ≤ Yj).

This is the Wilcoxon 2-sample U-statistics.

In this thesis, we are specially interested in the two sample U statistics in two sample test

problems. Let X1, . . . , Xm and Y1, . . . , Yn be two independently and identically distributed random

variables from distribution p and q respectively. The two sample test problem is to test the following

hypotheses

H0 : p = q, H1 : p 6= q. (2.7)

Under H0, the two samples are from the same distribution, while under H1, they are from different

distributions.

Many test procedures are available in the literature. Among them, the Maximum Mean

Discrepancy(MMD) test statistic is one of the most popular and has good performance. Let K(x, y)

be a positive definite symmetric kernel function for RKHS. The MaximumMean Discrepancy(MMD)

test statistic is defined as (Gretton, et al (2012)).

Tmn =
1(
m
2

) ∑
1≤i<j≤m

K(Xi, Xj) +
1(
n
2

) ∑
1≤i<j≤n

K(Yi, Yj)−
2

mn

m∑
i=1

n∑
j=1

K(Xi, Yj).

Under H0, the limiting distribution of Tmn is given by the following result.

Proposition 2.3.1 (Gretton, et al (2012)). Let m
m+n → ρx and n

m+n → ρy with 0 < ρx < 1,

0 < ρy < 1. Then under H0, we have

(m+ n)Tmn →
∞∑
l=1

λl
[
(ρ
− 1

2
x al − ρ

− 1
2

y bl)
2 − (ρxρy)

−1],
8



where al, bl are independent standard normal random variables, λl are the eigenvalues of the centered

kernel K̃(x, y) of K(x, y).

The computational cost of MMD is O(m+ n)2. To alleviate the intensive computation for

large sample sizes m and n, a linear time test statistic was proposed if m = n Gretton, et al (2012),

but it performs poorly based on our simulation. The limiting distribution contains the eigenvalues

of the kernel for the RKHS, which is usually very difficult to estimate in the application. We need

to either estimate them or use other techniques such as bootstrap to get the critical value. However,

all these procedures will definitely increase the computation burden.

In this research, we propose a test statistic by using the divide-and-conquer method to

overcome these issues simultaneously. Specifically, we divide randomly and evenly X1, . . . , Xm and

Y1, . . . , Yn into k groups respectively. Based on the i-th group samples, calculate the MMD test

statistic, denoted as T(i), and then average them as

T̂mn =
1

k

k∑
i=1

T(i).

Let m1 = m
k and n1 = n

k . Then the divide-and-conquer test statistic for (2.7) is defined as

Tk =

√
k(m1 + n1)T̂mn

sk
,

where s2k = 1
k

∑k
i=1(m1 + n1)

2T 2
(i).

The asymptotic distribution of Tk under the null hypothesis is given in the following theorem.

Theorem 2.3.1. Suppose the kernel function K(x, y) is bounded, m = cn for some constant c > 0,

k →∞ and k = o(m) as m goes to infinity. Then under H0, Tk converges to N(0, 1) in distribution.

According to Theorem 2.3.1, the limiting distribution is the standard normal distribution.

It’s easy to calibrate the test statistic, without calculating the eigenvalues of the kernel function.

Given significance level α, reject H0 if |Tk| > Zα
2
, where Zα

2
is the 100(1 − α

2 )% quantile of the

standard normal distribution. The computation complexity of Tk is at most O
(
max{m2,n2}

k

)
, which

can be almost linear if k = n
logn . However, larger k will decrease the power based on our simulation.

There is a trade-off between running time and power.The power of our test statistic is evaluated by

simulation study
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3. PROOF OF THE MAIN THEOREM

In this section, we provide the proof of the main results.

3.1. Proof of main theorem in one sample case

Proof of Theorem 2.1.1: Let c1, c2, c3 be universal constants. For 1-degenerate U-statistics

of order 2, we have the following tail probability Arcones and Gine (1993) and Atta-Asiamah and

Yuan (2019).

P
(
|Ui(h)| ≥ c1||h||∞

log c2
δ

mn

)
≤ δ,

which implies that for t > 0

P
(
|Ui(h)| ≥ t) ≤ c2 exp

(
− mnt

c1||h||∞
)
.

Hence, we have

P
(
|mnUi(h)|2 ≥ t) ≤ c2 exp

(
−

√
t

c1||h||∞
)
.

Direct computation yields

∫ +∞

t
P
(
|mnUi(h)|2 ≥ x)dx ≤

∫ +∞

t
c2 exp

(
−

√
x

c1||h||∞
)
dx ≤ c3

∫ +∞

t

1

x2
dx =

c3
t
→ 0,

as t→∞. Here, in the second inequality we used the fact that h is bounded. Then one has

E(|mnUi|21[|mnUi| > t]) =

∫ +∞

0
P(|mnUi|21[|mnUi| > t] > x)dx

≤
∫ t2

0
P(|mnUi|2 > t2)dx+

∫ +∞

t2
P(|mnUi|2 > x)dx

≤ c2t
2 exp

(
− t

c1||h||∞
)

+
c3
t2
.

Next we can verify the Lindeberg condition. For any ε > 0, let t = εsn, it follows that

1

s2n

kn∑
i=1

E(|mnUi|21[|mnUi| > t]) ≤ 1

σ2mn

(
c2ε

2s2n exp
(
− εsn
c1||h||∞

)
+

c3
ε2s2n

)
→ 0,
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if mn →∞ and kn →∞. Hence, by the central limit theorem, the desired result follows.

Proof of Theorem 2.1.2: Under Ha, we have

1√
kn

∑kn
i=1mnUi√

V ar(mnUi)
=

1√
kn

∑kn
i=1mn(Ui − c√

n
)√

mnV ar(
√
mnUi)

+

√
knmn

c√
n√

V ar(
√
mnUi)

. (3.1)

For the first term in the right-hand side of (3.1), if Ui is non-degenerate Ha, it converges to N(0, 1)

in distribution by a similar proof of Theorem 2 in Lin and Xi (2010) and the second term converges

to c
σ in probability. Then the limiting distribution of Tn is N( cσ , 1) under Ha.

Remark If Ui is still degenerate under Ha, the first term converges to N(0, 1) in distribution

by a similar proof of Theorem 2.1.1, while the second term is Op
(√

n
kn
c
)
. In this case, the optimal

test rate is
√
kn
n .

Proof of Theorem 2.2.1: The proof follows directly from that of Theorem 2 in Lin and Xi

(2010).

Proof of Theorem 2.2.2: The proof is similar to that of Theorem 2.1.2.

3.2. Proof of main theorem in two-sample test

Suppose m = cn for some constant c ≥ 0. In this case, m1 = cn1. We center the kernel to

get K̃(Xi, Xj) as follows

K̃(Xi, Xj) = K(Xi, Xj)− ExK(Xi, x)− ExK(x,Xj) + Ex,yK(x, y).

Note that T(i) is a sum of three U-statistics, that is,

T(i) =
1(
mi
2

) ∑
1≤i<j≤mi

K̃(Xi, Xj) +
1(
ni
2

) ∑
1≤i<j≤ni

K̃(Yi, Yj)−
2

mini

mi∑
i=1

ni∑
j=1

K̃(Xi, Yj)

= Ui1 + Ui2 + Ui3,

where Ui1 and Ui2 are degenerate one-sample U-statistics, and Ui3 is a two-sample U-statistic.

By Arcones and Gine (1993), if the kernel K is bounded, for some generic positive constants

c1 and c2, we get for t > 0,

P
(
|Ui1| > t

)
≤ c1 exp{−c3m1t}, (3.2)
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P
(
|Ui2| > t

)
≤ c1 exp{−c3n1t}. (3.3)

Next we show a similar concentration inequality holds for Ui3. Let Zi = Xi for i = 1, 2, . . . ,m

and Zi = Yi for i = m+ 1, . . . ,m+ n. Then we have

m+n∑
i,j=1

K̃(Zi, Zj) =

m∑
i,j=1

K̃(Zi, Zj) +

m+n∑
i,j=m+1

K̃(Zi, Zj) +

m∑
i=1

m+n∑
j=m+1

K̃(Zi, Zj)

+
m∑
j=1

m+n∑
i=m+1

K̃(Zi, Zj)

=

m∑
i,j=1

K̃(Xi, Xj) +

m+n∑
i,j=m+1

K̃(Yi, Yj) +

m∑
i=1

n∑
j=1

K̃(Xi, Yj)

+
m∑
j=1

n∑
i=1

K̃(Yi, Xj)

=
m∑

i,j=1

K̃(Xi, Xj) +
n∑

i,j=1

K̃(Yi, Yj) + 2
m∑
i=1

n∑
j=1

K̃(Xi, Yj).

Then it follows that

Ui3 =
1

mn

m+n∑
i,j=1

K̃(Zi, Zj)−
1

mn

m∑
i,j=1

K̃(Xi, Xj)−
1

mn

m+n∑
i,j=m+1

K̃(Yi, Yj)

=
2

mn

m+n∑
i<j

K̃(Zi, Zj)−
2

mn

m∑
i<j

K̃(Xi, Xj)−
2

mn

n∑
i<j

K̃(Yi, Yj)

= U
(1)
i3 + U

(2)
i3 + U

(3)
i3 .

Under Null hypothesis, H0, X1, . . . , Xn and Y1, . . . , Yn are from the same distribution. Hence each

term in Ui3 is a degenerate U-statistics. If m = cn for some constant c > 0, by Arcones and Gine
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(1993), for bounded K and some generic positive constants c1 and c3, we get for t > 0,

P
(
|Ui3| > t

)
≤ P

(
|U (1)
i3 | >

t

3

)
+ P

(
|U (2)
i3 | >

t

3

)
+ P

(
|U (3)
i3 | >

t

3

)
≤ c1 exp{−c3(n1 +m1)t}+ c1 exp{−c3m1t}+ c1 exp{−c3n1t}

≤ c1 exp{−c3n1t} (3.4)

By (3.2), (3.3) and (3.4), we have

P
(
|(m1 + n1)Ui1|2 > t

)
≤ c1 exp{−c3

√
t},

P
(
|(m1 + n1)Ui2|2 > t

)
≤ c1 exp{−c3

√
t},

P
(
|(m1 + n1)Ui3|2 > t

)
≤ c1 exp{−c3

√
t}.

Note that for any x > 0,

P(|(m1 + n1)T(i)|2 ≥ x) ≤ P
(

3
(
|(m1 + n1)Ui1|2 + |(m1 + n1)Ui1|2 + |(m1 + n1)Ui1|2

)
≥ x

)
≤ P

(
|(m1 + n1)Ui1|2 ≥

x

9

)
+ P

(
|(m1 + n1)Ui2|2 ≥

x

9

)
+P
(
|(m1 + n1)Ui3|2 ≥

x

9

)
.

Hence it’s easy to get

∫ ∞
t

P(|(m1 + n1)T(i)|2 ≥ x)dx ≤
∫ ∞
t

P(|(m1 + n1)Ui1|2 ≥ c1x)dx

+

∫ ∞
t

P(|(m1 + n1)Ui2|2 ≥ c1x)dx+

∫ ∞
t

P(|(m1 + n1)Ui3|2 ≥ c1x)dx

≤ c1

∫ ∞
t

exp{−c3
√
x}dx ≤ c1

∫ ∞
t

1

x2
dx =

c1
t
.
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Then it follows that

E(|(m1 + n1)T(i)|21[|(m1 + n1)T(i)| > t]) ≤
∫ t2

0
P (|(m1 + n1)T(i)|2 ≥ t2)dx

+

∫ ∞
t2

P (|(m1 + n1)T(i)|2 ≥ x)dx

≤ c1t
2 exp{−c2t}+

c1
t2
.

Let s2n =
∑k

i=1 V ar((m1 + n1)T(i)) = kσ2m1
. For any ε > 0, it follows that

1

s2n

k∑
i=1

E
(
|(m1 + n1)T(i)|21[|(m1 + n1)T(i)| > εsn]

)
≤ 1

σ2m1

(
c1ε

2s2n exp
(
− c2εsn

)
+

c2
ε2s2n

)
→ 0,

if k,m1 →∞. By the Lindeberg Central Limit Theorem, the proof is complete.
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4. THE SIMULATION AND REAL DATA

In this section, we apply the proposed divide and conquer methods for U-statistic to the

goodness of fit test and two-sample test.

4.1. The simulation of goodness-of-fit test

Throughout this simulation, we run the experiments 500 times to get the size and power of

the test. For the degenerate case, we consider the U-statistics for goodness-of-fit test proposed in Liu

et al (2016) and Atta-Asiamah, E and Yuan, M (2019). Specifically, given X1, X2, . . . , Xn ∼ q(x)

(unknown), we consider the following hypothesis test

H0 : q(x) = p(x), v.s. H1 : q(x) = p1(x).

Liu et al.(2016) proposed the Kernel Stein Discrepancy(KSD) test statistics in terms of U-statistics:

Ŝ(p, q) =
2

n(n− 1)

∑
1≤i<j≤n

up(Xi, Xj),

where

up(x, y) = ∇Tx log p(x)∇y log p(y)k(x, y) +∇Tx log p(x)∇yk(x, y)

+∇Ty log p(y)∇xk(x, y) +
d∑
i=1

∂2k(x, y)

∂xi∂yi
,

and k(x, y) is a symmetric kernel, which is usually taken to be the Gaussian kernel, k(x, y) =

e−
(x−y)2

2 . Under H0, the degenerate U-statistics Ŝ(p, q) has the limiting distribution in Lemma

2.1.1, which is not convenient to use in practice. They proposed to use bootstrap to get the

rejection region. However, in the big data region, bootstrapping is quiet time-consuming. Instead,

we use (2.2) as the test statistic and evaluate its size and power.

4.1.1. Degenerate U-statistics of 1-dimension with one sample case

Firstly, we consider the univariate case. Let p(x) = N(0, 1) under H0 and

p1(x) = Laplace(0, 1√
2
), N(0, 1.1), N(0, 1.15) under H1. Here, 1√

2
in the Laplace distribution is the
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same variance as the standard normal distribution as proposed in Atta-Asiamah, E and Yuan, M

(2019). In this case,

∂k(x, y)

∂x
= −e−

(x−y)2
2 (x− y)

∂k(x, y)

∂y
= e−

(x−y)2
2 (x− y)

∂2k(x, y)

∂x∂y
= e−

(x−y)2
2 − e−

(x−y)2
2 (x− y)2

∂ log p(x)

∂x
= −x

∂ log p(y)

∂y
= −y.

Then the kernel of Ŝ(p, q) is

up(x, y) = e−
(x−y)2

2

(
(xy + 1)− 2(x− y)2

)
,

which is bounded and symmetric.

Table 4.1. Simulated size and power for goodness of fit with n ∈ {2400, 4800} and kn ∈
{30, 50, 80, 100} and N(0, 1), N(0, 1.1), N(0, 1.15) and L(0, 1√

2
)

(n, kn) α N(0, 1) N(0, 1.1) N(0, 1.15) L(0, 1√
2
)

(2400, 30) 0.05 0.058 0.370 0.890 1.000
(2400, 50) 0.05 0.060 0.360 0.726 1.000
(2400, 80) 0.05 0.056 0.162 0.620 1.000
(2400, 100) 0.05 0.052 0.112 0.446 1.000
(4800, 30) 0.05 0.068 0.850 1.000 1.000
(4800, 50) 0.05 0.058 0.710 1.000 1.000
(4800, 80) 0.05 0.054 0.544 0.982 1.000
(4800, 100) 0.05 0.052 0.450 0.974 1.000

Table 4.1 summarizes the simulated size and power for various n and kn. For fixed (n, kn),

the power increases and can approach 1 as σ increases. When n is fixed, the power get larger when

mn increases. For instance, when n = 2400, the power of 2nd row has larger power than the 5th

row. Moreso, for fixed kn, the powers of n = 4800 are larger than the powers of n = 2400 which
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implies that large n has larger power. When p1(x) is the Laplace distribution Laplace(0, 1√
2
), all

the powers are 1. This indicates that when σ is far lower than 1, the power approaches 1. Likewise,

when the σ is far larger than 1, the power approaches to 1.

Table 4.2. Simulated size and power for goodness of fit with n ∈ {2400, 4800} and kn ∈
{30, 50, 80, 100}, and N(0, 1), N(0, 0.95), N(0, 0.90) and N(0, 0.85)

(n, kn) α N(0, 1) N(0, 0.95) N(0, 0.90) N(0, 0.85)

(2400,30) 0.05 0.045 0.084 0.57 0.990
(2400,50) 0.05 0.054 0.070 0.342 0.978
(2400,80) 0.05 0.046 0.064 0.266 0.912
(2400,100) 0.05 0.050 0.078 0.242 0.848
(4800,30) 0.05 0.044 0.138 0.964 1.000
(4800,50) 0.05 0.050 0.110 0.912 1.000
(4800,80) 0.05 0.052 0.088 0.758 1.000
(4800,100) 0.05 0.050 0.072 0.676 1.000

In reference to Table 4.2, it summarizes the simulated size and power for various n and kn

where the σ = 0.95, 0.90 and 0.85. The size of the distribution is close to nominal level α = 0.05

justifying that the limiting distribution is valid. For fixed (n, kn), the power increases as σ increases.

When n = 4800 and σ = 0.85, the power approaches 1. This implies that for any number 0 < σ ≤

0.85, the power will be 1 for the same n and kn. For fixed kn and σ, the power gets large when n

is large. For example, the powers of n = 4800 are larger than that of n = 2400.

Figure 4.1. Plot of the simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, µ = 0, and σ ∈ {1, 0.99, 0.98, . . . , 0.87, 0.86, 0.85}
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Figure 4.1 represents the simulated size and power of goodness of fit test of sample size n

of 2400 and 4800. The null and alternative hypothesis are N(0, 1), and N(0, σ), respectively where

σ varies. The graph on the left and right hand sides are n = 2400 and n = 4800 respectively.

Both plots show upward sloping with starting point almost 0.05, which therefore implies that the

σ decreases but positive as the power increases. The curves of n = 4800 is steeper than curves of

n = 2400 which implies n = 4800 has higher powers than that of n = 2400. The graphs also show

that the alternative hypothesis has high powers. The plot shift outward as kn increase, indicating

that the power of the test decrease as kn increases.

Table 4.3. Simulated size and power for goodness of fit with n ∈ {2400, 4800} and kn ∈
{30, 50, 80, 100} and N(0, 1), N(0.05, 1), N(0.10, 1) and N(0.15, 1)

(n, kn) α N(0, 1) N(0.05, 1) N(0.10, 1) N(0.15, 1)

(2400,30) 0.05 0.045 0.062 0.230 0.792
(2400,50) 0.05 0.054 0.070 0.170 0.608
(2400,80) 0.05 0.046 0.062 0.120 0.506
(2400,100) 0.05 0.050 0.068 0.136 0.394
(4800,30) 0.05 0.044 0.120 0.692 1.000
(4800,50) 0.05 0.050 0.096 0.530 0.996
(4800,80) 0.05 0.052 0.092 0.418 0.936
(4800,100) 0.05 0.050 0.056 0.324 0.922

Table 4.3 represents the simulated size and power of sample of n = 2400 and n = 4800 and

the blocks of kn = 30, 50, and 100 where the σ = 0.95, 0.90 and 0.85. The size of the distribution is

close to α = 0.05 justifying that the limiting distribution is valid. The power increases as σ increases

for fixed n and kn which implies the power depends on the σ. For fixed kn and σ, the power is large

when n is large. For example, the powers of n = 4800 are larger than that of n = 2400.
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Figure 4.2. Plot of the simulated size and power for goodness of fit with n ∈ (2400, 4800) and
kn ∈ (30, 50, 80, 100), σ = 0.05 and µ ∈ {0.00, 0.01, 0.02, . . . , 0.14, 0.15}

Figure 4.2 represents the plot of simulated size and power of goodness of fit test with n =

2400 and 4800. The curves of n = 4800 is steeper than curves of n = 2400 which indicating higher

powers of n = 4800. The graph confirms that the power increases as the µ gets larger.

Figure 4.3 represents the plot of the simulated size and power of goodness of fit with the

µ from -0.05 to -0.15 with an increment of 0.01. Figure 4.3 has similar characteristics, and same

pattern to Figure 4.2 since with all other variables held constant under standard normal distribution,

the negative of the µ gives the equal values of that positive of the µ.

Table 4.4. Simulated size and power for goodness of fit with n ∈ {2400, 4800} and kn ∈
{30, 50, 80, 100} and N(0, 1), N(−0.05, 1), N(−0.10, 1) and N(−0.15, 1)

(n, kn) α N(0, 1) N(−0.05, 1) N(−0.10, 1) N(−0.15, 1)

(2400,30) 0.05 0.045 0.074 0.254 0.780
(2400,50) 0.05 0.054 0.068 0.190 0.638
(2400,80) 0.05 0.046 0.084 0.130 0.510
(2400,100) 0.05 0.050 0.062 0.103 0.420
(4800,30) 0.05 0.044 0.088 0.696 1.000
(4800,50) 0.05 0.050 0.084 0.546 0.982
(4800,80) 0.05 0.052 0.078 0.364 0.946
(4800,100) 0.05 0.050 0.082 0.342 0.920
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In Table 4.4, the mean of the distribution varies, and a fixed variance. In Table 4.5, Table

4.6, Table 4.7 and Table 4.8 have fixed mean and change of variance. They summarize the simulated

sizes and powers for various n and kn. As explained in previous tables, Table 4.5, Table 4.6, Table 4.7

and Table 4.8 have similar characteristics. From our findings, for fixed (n, kn), the power increases

as σ increases. Similarly, the power increases as µ increases in Table 4.4. For fixed n, when mn

becomes larger, the power gets larger. For instance, the second row has a larger power than the

fifth row. For fixed kn, large n has larger power. For example, the powers of the n = 4800 are larger

than n = 2400 in the Tables we have discussed. It confirms that the proposed method gives high

power.

Figure 4.3. Plot of the simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, σ = 0.05 and µ ∈ {0.00,−0.01,−0.02, . . . ,−0.13,−0.14,−0.15}

Table 4.5. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80, 100},
and N(0, 1), N(0.05, 1.05), N(0.05, 1.1) and N(0.05, 1.15)

(n, kn) α N(0, 1) N(0.05, 1.05) N(0.05, 1.1) N(0.05, 1.15)

(2400,30) 0.05 0.045 0.086 0.456 0.908
(2400,50) 0.05 0.054 0.072 0.300 0.752
(2400,80) 0.05 0.046 0.076 0.206 0.624
(2400,100) 0.05 0.050 0.070 0.182 0.568
(4800,30) 0.05 0.044 0.270 0.926 1.000
(4800,50) 0.05 0.050 0.212 0.820 0.998
(4800,80) 0.05 0.052 0.150 0.676 0.994
(4800,100) 0.05 0.050 0.126 0.616 0.982
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Table 4.6. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80, 100},
and N(0, 1), N(0.05, 0.95), N(0.05, 0.90) and N(0.05, 0.85)

(n, kn) α N(0, 1) N(0.05, 0.95) N(0.05, 0.90) N(0.05, 0.85)

(2400,30) 0.05 0.045 0.120 0.696 0.998
(2400,50) 0.05 0.054 0.082 0.518 0.986
(2400,80) 0.05 0.046 0.084 0.356 0.918
(2400,100) 0.05 0.050 0.084 0.308 0.862
(4800,30) 0.05 0.044 0.348 0.994 1.000
(4800,50) 0.05 0.050 0.274 0.958 1.000
(4800,80) 0.05 0.052 0.172 0.866 1.000
(4800,100) 0.05 0.050 0.150 0.844 1.000

Figure 4.4. Plot of the simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, µ = 0.05, and σ ∈ {1, 0.99, 0.98, . . . , 0.87, 0.86, 0.85}
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Table 4.7. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80, 100},
and N(0, 1), N(0.1, 1.05), N(0.1, 1.1) and N(0.1, 1.15)

(n, kn) α N(0, 1) N(0.1, 1.05) N(0.1, 1.1) N(0.1, 1.15)

(2400,30) 0.05 0.045 0.326 0.716 0.982
(2400,50) 0.05 0.054 0.230 0.552 0.930
(2400,80) 0.05 0.046 0.166 0.424 0.804
(2400,100) 0.05 0.050 0.150 0.324 0.692
(4800,30) 0.05 0.044 0.852 0.996 1.000
(4800,50) 0.05 0.050 0.722 0.966 1.000
(4800,80) 0.05 0.052 0.524 0.934 1.000
(4800,100) 0.05 0.050 0.498 0.868 0.998

Table 4.8. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80, 100},
and N(0, 1), N(0.1, 0.95), N(0.1, 0.90) and N(0.1, 0.85)

(n, kn) α N(0, 1) N(0.1, 0.95) N(0.1, 0.90) N(0.1, 0.85)

(2400,30) 0.05 0.045 0.402 0.920 1.000
(2400,50) 0.05 0.054 0.294 0.802 0.996
(2400,80) 0.05 0.046 0.208 0.614 0.982
(2400,100) 0.05 0.050 0.184 0.564 0.966
(4800,30) 0.05 0.044 0.922 1.000 1.000
(4800,50) 0.05 0.050 0.812 0.998 1.000
(4800,80) 0.05 0.052 0.690 0.988 1.000
(4800,100) 0.05 0.050 0.610 0.984 1.000

Table 4.9. Simulated size and power for goodness of fit of t-distribution with n ∈ {2400, 4800},
kn ∈ {30, 50, 80, 100}, and N(0, 1), v = 1, v = 2 and v = 3

(n, kn) α N(0,1) v = 1 v = 2 v = 3

(2400,30) 0.05 0.045 0.996 1.000 1.000
(2400,50) 0.05 0.054 0.994 1.000 1.000
(2400,80) 0.05 0.046 0.988 0.998 0.990
(2400,100) 0.05 0.050 0.988 0.970 0.952
(4800,30) 0.05 0.044 0.996 1.000 1.000
(4800,50) 0.05 0.050 0.996 1.000 1.000
(4800,80) 0.05 0.052 0.994 1.000 1.000
(4800,100) 0.05 0.050 0.992 1.000 1.000

Table 4.9 provides the simulated size and power of various n and kn with the t-distribution.

Our size of the model is close to the nominal α = 0.05, which indicates that the limiting distribution

is valid. The power of both samples for fixed n and kn are large, with a small degree of freedom and
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approach to 1. The n = 4800 is performed better than the n = 2400 which concluded that larger n

has higher power.

Similarly, from Table 4.10, with the degree of freedom v = 5, 10 and 20 and fixed n and

kn, the power decreases. This shows that power reduces as the degree of freedom increases. For

instance, the power of column v = 5 is larger than v = 10 and v = 20. The power of n = 4800

still performs better than n = 2400 with fixed kn. The results in both Table 4.9 and Table 4.10 is

consistent with the fact that the t-distribution approaches a standard normal distribution as the

degree of freedom increases. In case of column v = 20, powers are closer to size α = 0.05.

Figure 4.5. Plot of the simulated size and power for goodness of fit of t-distribution with n ∈
{2400, 4800}, kn ∈ {30, 50, 80, 100}, and N(0, 1), v ∈ {1, 2, 3, . . . , 17, 19, 20)}

Figure 4.5 represents the simulated size and power of t-distribution with the degree of

freedom, v from 1 to 20. The left and right of the plot are a sample of n = 2400 and n = 4800,

respectively. Both plots show sharp downward sloping until they get to v = 8 on sample size n

=2400 and v = 13 on sample size n = 4200 and afterward they become constant. The curves of

n = 4800 have the same pattern showing that the powers approach 1 with a small degree of freedom

and a larger n and decreases for a high degree of freedom. At point v = 20, the curves are equal

as the size of the test confirming that t-distribution gets to a standard normal distribution with a

larger degree of freedom.
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Table 4.10. Simulated size and power for goodness of fit of t-distribution with n ∈ {2400, 4800},
kn ∈ {30, 50, 80, 100}, and N(0, 1), v = 5, v = 10 and v = 20

(n, kn) α N(0,1) v = 5 v = 10 v = 20

(2400,30) 0.05 0.045 0.820 0.084 0.074
(2400,50) 0.05 0.054 0.584 0.064 0.064
(2400,80) 0.05 0.046 0.410 0.068 0.068
(2400,100) 0.05 0.050 0.334 0.063 0.066
(4800,30) 0.05 0.044 0.998 0.312 0.066
(4800,50) 0.05 0.050 0.992 0.240 0.064
(4800,80) 0.05 0.052 0.946 0.140 0.052
(4800,100) 0.05 0.050 0.912 0.130 0.052

4.1.2. Degenerate U-statistics of d-dimension with one sample case

In this section, we consider multivariate distributions of null hypothesis p(x) = N(0, Id) and

alternative hypothesis q(x) = N(0, σId) ,∏d
i=1 L(xi, 0,

1√
2
) where σ varies from each simulation. The kernel in this case is k(x, y) = e−

||x−y||2
2 .

Let x = (x1, . . . , xd) and y = (y1, . . . , yd). Direct computation yields the following:

∂ log p(x)

∂xi
= −xi,

∂k(x, y)

∂xi
= −e−

||x−y||2
2 (xi − yi),

∂k(x, y)

∂yi
= e−

||x−y||2
2 (xi − yi),

∂2k(x, y)

∂xi∂yi
= e−

||x−y||2
2

(
1− (xi − yi)2

)
,

up(x, y) = e−
||x−y||2

2

( d∑
i=1

(1 + xiyi)− 2

d∑
i=1

(xi − yi)2
)
.

Clearly, the up(x, y) is also bounded and symmetric.

We evaluate the performance of our method with n = 2400 and n = 4800 and the trend

of the powers. The two samples are randomly divided into k = 30, 50, 80 groups, respectively, and

calculate the size and power using the divide-and-conquer test statistic Tk. The size and power
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of the test detect the location difference from various dimensions. The µ = 0 and σ varies from

locations and different dimensions of d From Table 4.11 to Table 4.17, the limiting distribution is

valid indicating that the sizes are close to nominal value α = 0.05.

The power decreases as the dimension,d, increases for fixed n, kn and σ, which is the variation

of crime locations. Moreover, for fixed n, d and σ, the power of the simulation declines as the kn

increases from 30 to 80. It implies the trade-off between computational cost and power of the test

statistic. Increasing kn reduces the running time, but in effects, it reduces the power; therefore, kn

should be carefully chosen. An Increase of σ far from 1, resulting in bigger power, for instance, in

Table 4.17. Similarly, when the value of σ is close to 1, then the power also gets closer to the size.

For all other variables hold constant, the power of n = 4800 is larger than n = 2400 as kn increases.

Therefore, the sample n needs to be increased in order to raise power.

Table 4.11. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0, 1.3Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400, 30) 0.05 (0.056) 0.906 (0.048) 0.810 (0.044) 0.340
(2400, 50) 0.05 (0.046) 0.782 (0.050) 0.628 (0.042) 0.120
(2400, 80) 0.05 (0.058) 0.570 (0.030) 0.430 (0.052) 0.106
(4800, 30) 0.05 (0.054) 1.000 (0.060) 1.000 (0.050) 0.800
(4800, 50) 0.05 (0.056) 1.000 (0.060) 0.992 (0.054) 0.590
(4800, 80) 0.05 (0.052) 0.986 (0.040) 0.952 (0.040) 0.396

Table 4.12. Simulated size and power for goodness of fit with, n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id),q(x) =

∏d
i=1 L(xi, 0,

1√
2
), and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400, 30) 0.05 (0.056) 1.000 (0.048) 1.000 (0.044) 1.000
(2400, 50) 0.05 (0.046) 1.000 (0.050) 1.000 (0.042) 1.000
(2400, 80) 0.05 (0.058) 1.000 (0.030) 1.000 (0.052) 1.000
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Table 4.12 reports the power of the Multivariate Laplace distribution as an alternative

hypothesis. The powers of the test are all 1. The high values of the power irrespective of the dimen-

sion show the optimism of the power. This behavior explains the characteristics of the Multivariate

Laplace distribution. It has heavy tails compare to normal distribution since Laplace distribution

expressed in terms of absolute difference from the mean.

Table 4.13. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0, 1.2Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.404 (0.040)0.352 (0.050)0.366
(2400,50) 0.05 (0.044)0.256 (0.054)0.238 (0.048)0.242
(2400,80) 0.05 (0.042)0.174 (0.048)0.164 (0.052)0.156
(4800,30) 0.05 (0.058)0.916 (0.050)0.818 (0.042)0.342
(4800,50) 0.05 (0.058)0.786 (0.054)0.656 (0.048)0.226
(4800,80) 0.05 (0.056)0.618 (0.054)0.486 (0.044)0.158

Table 4.14. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0, 1.4Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)1.000 (0.040)0.992 (0.050)0.520
(2400,50) 0.05 (0.044)0.998 (0.054)0.926 (0.048)0.316
(2400,80) 0.05 (0.042)0.930 (0.048)0.763 (0.052)0.202
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)0.978
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)0.902
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)0.664
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Figure 4.6. Plot of the simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, σ = 1.4, and d ∈ {2, 3, 4, . . . , 12, 13}

The Figure 4.6 represents the plot of sample size of n = 2400 and 4800, sigma = 1.4

and dimension,d, from 2 to 13. The curves are downward sloping, which implies the power of the

simulation decreases as the d increases. The curves of n = 4800 is steeper than curves of n = 2400

which indicates that higher powers when n = 4800. The graph confirms that in order to increase

power, the sample size should increase.

Table 4.15. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0, 0.9Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.106 (0.040)0.108 (0.050)0.070
(2400,50) 0.05 (0.044)0.072 (0.054)0.076 (0.048)0.064
(2400,80) 0.05 (0.042)0.068 (0.048)0.074 (0.052)0.064
(4800,30) 0.05 (0.058)0.238 (0.050)0.252 (0.042)0.138
(4800,50) 0.05 (0.058)0.142 (0.054)0.144 (0.048)0.108
(4800,80) 0.05 (0.056)0.132 (0.054)0.104 (0.044)0.084
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Figure 4.7. The plot of simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, σ = 0.9) and d ∈ {2, 3, 4, . . . , 12, 13}

Figure 4.7 shows the plot of simulated size and power of goodness of fit test with σ = 0.9. The

curves show negative sloping, which implies the power of the simulation decreases as the dimension

increases. Initially, the curves of n = 4800 are linear, and after d = 4, they start declining. The

plot of the (2400, 30) and (4800, 30) are higher than that of (2400, 80) and (4800, 80) because the

power decreases as the dimension increases.

Table 4.16. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0, 0.85Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.310 (0.040)0.290 (0.050)0.184
(2400,50) 0.05 (0.044)0.228 (0.054)0.206 (0.048)0.130
(2400,80) 0.05 (0.042)0.156 (0.048)0.160 (0.052)0.094
(4800,30) 0.05 (0.058)0.840 (0.050)0.830 (0.042)0.546
(4800,50) 0.05 (0.058)0.696 (0.054)0.648 (0.048)0.332
(4800,80) 0.05 (0.056)0.496 (0.054)0.506 (0.044)0.224
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Table 4.17. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0, 0.70Id), d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)1.000 (0.040)1.000 (0.050)1.000
(2400,50) 0.05 (0.044)1.000 (0.054)1.000 (0.048)0.998
(2400,80) 0.05 (0.042)0.998 (0.048)0.998 (0.052)0.972
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)1.000
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)1.000
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)1.000

From Table 4.18 to Table 4.28, the validity of limiting distribution confirms since sizes are

close nominal values, α = 0.05. The power of the test decreases as the dimension,d, increases for

fixed n, kn, µ and σ. Furthermore, for fixed n, d, µ and σ, the power declines as the kn increases

from 30 to 80. It implies the trade-off between the power of the test statistic and computational

cost. Though increasing kn reduces the running time but in effects, it reduces the power. The

powers of n = 4800 are larger than n = 2400 as kn increases. Therefore, the sample size n needs to

be increased in order to raise power.

Table 4.18. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.1, 1.2Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.858 (0.040)0.766 (0.050)0.286
(2400,50) 0.05 (0.044)0.686 (0.054)0.554 (0.048)0.214
(2400,80) 0.05 (0.042)0.542 (0.048)0.328 (0.052)0.136
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)0.784
(4800,50) 0.05 (0.058)0.996 (0.054)0.994 (0.048)0.556
(4800,80) 0.05 (0.056)0.970 (0.054)0.900 (0.044)0.362
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Figure 4.8. Plot of simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, µ = 0.1, σ = 1.2 and d ∈ {2, 3, 4, . . . , 12, 13}

The Figure 4.8 shows the plot of simulated size and power of goodness of fit test with n

= (2400, 4800), µ = 0.1 and σ = 1.2. The plot of n = 2400 declines faster than n = 4800 with

different dimension, d and it is as a result of smaller sample size. The curves are downward sloping

since power decreases as the dimension increases. The curves of n = 4800 are steeper than curves

of n = 2400, which indicates that a large sample size increases power. The plot of the (2400, 30)

and (4800, 30) are higher than that of (2400, 80) and (4800, 80) because the power decreases with

increasing dimensions.

Table 4.19. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.15, 1.2Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.998 (0.040)0.984 (0.050)0.608
(2400,50) 0.05 (0.044)0.972 (0.054)0.906 (0.048)0.380
(2400,80) 0.05 (0.042)0.870 (0.048)0.740 (0.052)0.250
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)0.988
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)0.940
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)0.756
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Table 4.20. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
p(x) = N(0, Id), q(x) = N(0.1, 1.3Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.998 (0.040)0.968 (0.050)0.500
(2400,50) 0.05 (0.044)0.930 (0.054)0.860 (0.048)0.278
(2400,80) 0.05 (0.042)0.874 (0.048)0.710 (0.052)0.170
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)0.966
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)0.856
(4800,80) 0.05 (0.056)1.000 (0.054)0.996 (0.044)0.668

Table 4.21. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.15, 1.3Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)1.000 (0.040)1.000 (0.050)0.758
(2400,50) 0.05 (0.044)1.000 (0.054)0.988 (0.048)0.544
(2400,80) 0.05 (0.042)0.976 (0.048)0.910 (0.052)0.316
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)1.000
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)0.980
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)0.902

Table 4.22. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) ∈ (N(0, Id), q(x) = N(0.1, 1.4Id)) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)1.000 (0.040)1.000 (0.050)0.660
(2400,50) 0.05 (0.044)0.998 (0.054)0.984 (0.048)0.468
(2400,80) 0.05 (0.042)0.990 (0.048)0.904 (0.052)0.296
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)1.000
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)0.970
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)0.874
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Table 4.23. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.1, 0.9Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.616 (0.040)0.590 (0.050)0.286
(2400,50) 0.05 (0.044)0.450 (0.054)0.410 (0.048)0.184
(2400,80) 0.05 (0.042)0.342 (0.048)0.332 (0.052)0.126
(4800,30) 0.05 (0.058)0.996 (0.050)0.990 (0.042)0.800
(4800,50) 0.05 (0.058)0.960 (0.054)0.944 (0.048)0.618
(4800,80) 0.05 (0.056)0.884 (0.054)0.834 (0.044)0.426

Figure 4.9. Plot of simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, µ = 0.1, σ = 0.9 and d ∈ {2, 3, 4, . . . , 12, 13}

The Figure 4.6 represents the plot of simulated size and power of goodness of fit test with

n = 2400 and 4800, the dimension, d and the parameters of µ = 0.1 and σ = 0.9. Similar to

Figure 4.8, the plot of n = 2400 declines faster than 4800, and this is a result of the smaller sample

with lower power. The curves are downward sloping indicates the power decreases as the dimension

increases. The plot of the (2400, 30) and (4800, 30) are higher than that of (2400, 80) and (4800,

80) because the power decreases with increasing dimensions.
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Table 4.24. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.15, 0.9Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.982 (0.040)0.970 (0.050)0.744
(2400,50) 0.05 (0.044)0.934 (0.054)0.926 (0.048)0.0.544
(2400,80) 0.05 (0.042)0.818 (0.048)0.790 (0.052)0.398
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)0.998
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)0.990
(4800,80) 0.05 (0.056)1.000 (0.054)0.998 (0.044)0.932

Table 4.25. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.1, 0.85Id), and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)0.884 (0.040)0.880 (0.050)0.574
(2400,50) 0.05 (0.044)766 (0.054)0.726 (0.048)0.382
(2400,80) 0.05 (0.042)0.576 (0.048)0.570 (0.052)0.200
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)0.994
(4800,50) 0.05 (0.058)0.1.000 (0.054)0.996 (0.048)0.916
(4800,80) 0.05 (0.056)0.982 (0.054)0.980 (0.044)0.774

Figure 4.10. Plot of simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈
{30, 50, 80, 100}, µ = 0.1, σ = 0.85 and d ∈ {2, 3, 4, . . . , 12, 13}
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The Figure 4.10 is similar to Figure 4.8 which represents the plot of simulated size and

power of goodness of fit test with n = 2400 and 4800, dimension, d, µ = 0.1 and σ = 0.85. The

curves are downward sloping, which implies the power decreases as the dimension increases. The

curves of n = 4800 is steeper than curves of n = 2400 which indicates higher powers of n = 4800.

The plot of the (2400, 30) and (4800, 30) are higher than that of (2400, 80) and (4800, 80) because

the power decreases with increasing dimensions.

Table 4.26. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.15, 0.85Id), and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)1.000 (0.040)1.000 (0.050)0.946
(2400,50) 0.05 (0.044)1.000 (0.054)0.994 (0.048)0.768
(2400,80) 0.05 (0.042)0.926 (0.048)0.924 (0.052)0.590
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)1.000
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)1.000
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)0.996

Table 4.27. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = N(0, Id), q(x) = N(0.1, 0.70Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)1.000 (0.040)1.000 (0.050)1.000
(2400,50) 0.05 (0.044)1.000 (0.054)1.000 (0.048)0.998
(2400,80) 0.05 (0.042)0.998 (0.048)0.998 (0.052)0.998
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)1.000
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)1.000
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)1.000
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Table 4.28. Simulated size and power for goodness of fit with n ∈ {2400, 4800}, kn ∈ {30, 50, 80},
and p(x) = (N(0, Id), q(x) = N(0.15, 0.70Id) and d ∈ {2, 5, 10}

(n, kn) α d = 2 d = 5 d = 10

(2400,30) 0.05 (0.054)1.000 (0.040)1.000 (0.050)1.000
(2400,50) 0.05 (0.044)1.000 (0.054)1.000 (0.048)1.000
(2400,80) 0.05 (0.042)1.000 (0.048)1.000 (0.052)1.000
(4800,30) 0.05 (0.058)1.000 (0.050)1.000 (0.042)1.000
(4800,50) 0.05 (0.058)1.000 (0.054)1.000 (0.048)1.000
(4800,80) 0.05 (0.056)1.000 (0.054)1.000 (0.044)1.000

This section analyses the performance of the power of our method from t-distribution with

sample sizes, n = 2400 and n = 4800, dimensions, d = (2, 5, 10) and degree of freedom, v =. From

Table 4.29 to Table 4.31, the simulated sizes are close to nominal value α = 0.05. If all the variables

are held constant, the power of d = 2 is higher than d = 5. It concludes that power declines as

the d increases. Comparing Table 4.29 and Table 4.30, Table 4.29 are stronger power than Table

4.30 due to change of degree of freedom. For fixed n and kn, the power decreases as the degree of

freedom increases.

Moreso, the power of the test decreases as the groups,kn, increases from 30 to 80 for fixed

n and v. In order to increase power, the sample size should be increased (see Table 4.29). It

implies the trade-off between computational cost and power of the test statistic. Though increasing

k reduces the running time, but in effects, it reduces power.

Table 4.29. Simulated size and power for goodness of fit of t- distribution with n ∈ {2400, 4800},
kn ∈ {30, 50, 80}, p(x) = (N(0, Id), q(x) =

∏d
i=1 t(xi, v), and d = 2

(n, kn) α N(0,1) v = 1 v = 2 v = 3

(2400,30) 0.05 0.054 1.000 1.000 0.998
(2400,50) 0.05 0.044 1.000 1.000 0.936
(2400,80) 0.05 0.042 1.000 1.000 0.792
(4800,30) 0.05 0.058 1.000 1.000 1.000
(4800,50) 0.05 0.058 1.000 1.000 1.000
(4800,80) 0.05 0.056 1.000 1.000 1.000
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Table 4.30. Simulated size and power for goodness of fit of t-distribution with n ∈ {2400, 4800},
kn ∈ {30, 50, 80}, and p(x) = (N(0, Id), q(x) =

∏d
i=1 t(xi, v) and d = 5

(n, kn) α N(0,1) v = 1 v = 2 v = 3

(2400,30) 0.05 0.040 1.000 0.996 0.898
(2400,50) 0.05 0.054 1.000 0.974 0.744
(2400,80) 0.05 0.048 1.000 0.900 0.564
(4800,30) 0.05 0.050 1.000 1.000 1.000
(4800,50) 0.05 0.054 1.000 1.000 0.998
(4800,80) 0.05 0.054 1.000 1.000 0.968

Figure 4.11. Plot of simulated size and power for goodness of fit of t-distribution with n ∈
{2400, 4800}, kn ∈ {30, 50, 80, 100}, q(x) =

∏d
i=1 t(xi, v), V ∈ {1, 2, 3, . . . , 17, 19, 20}, and d = 5

In Figure 4.11, the left side plot is linear until it reaches v = 3, and afterward, it starts to

decline and approaches to standard normal. The right side plot also linear at the initial stage and

start falling until it gets close to standard normal. The curves of n = 4800 are partly linear from

v = 1 to v = 5 indicating that power is approximate to 1. There is not much difference in the

powers of the degree of freedom v = 1, 2, 3, and 5. The plots exhibit higher power when the degree

of freedom is small.
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Table 4.31. Simulated size and power for goodness of fit of t-distribution with n ∈ {2400, 4800},
kn ∈ {30, 50, 80}, p(x) = (N(0, Id), q(x) =

∏d
i=1 t(xi, v), and d = 10

(n, kn) α N(0,1) v = 1 v = 2 v = 3

(2400,30) 0.05 0.050 1.000 1.000 1.000
(2400,50) 0.05 0.048 1.000 1.000 1.000
(2400,80) 0.05 0.052 1.000 1.000 0.983
(4800,30) 0.05 0.042 1.000 1.000 1.000
(4800,50) 0.05 0.048 1.000 1.000 1.000
(4800,80) 0.05 0.044 1.000 1.000 1.000

From Table 4.32 to Table 4.34, the simulated sizes are close to nominal level α = 0.05.

Comparatively, the power of n = 2400 is smaller than n = 4800. In order to increase the simulated

powers, the sample size should increase. The power of d = 2 is higher than d = 5, which concludes

that the power declines as the d increases. For example, comparing Table 4.32 and Table 4.33, the

power of Table 4.32 are stronger than Table 4.33.

For fixed n and kn, the power decreases as the degree of freedom and dimensions increase.

Further, the power of the test decreases as the block, kn, increases from 30 to 80 for fixed n and v.

From all Tables, the powers reduce approximately to the size when the degree of freedom is v = 20.

It indicates that the t-distribution approximates to a standard normal distribution as the degree of

freedom increases.

Table 4.32. Simulated size and power for goodness of fit of t-distribution with n ∈ {2400, 4800},
kn ∈ {30, 50, 80}, and p(x) = N(0, Id), q(x) =

∏d
i=1 t(xi, v), d = 2

(n, kn) α N(0,1) v = 5 v = 10 v = 20

(2400,30) 0.05 0.054 0.594 0.092 0.074
(2400,50) 0.05 0.044 0.384 0.076 0.067
(2400,80) 0.05 0.042 0.286 0.066 0.064
(4800,30) 0.05 0.058 0.988 0.264 0.078
(4800,50) 0.05 0.058 0.928 0.146 0.074
(4800,80) 0.05 0.056 0.770 0.114 0.064
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Figure 4.12. Plot of simulated size and power for goodness of fit of t-distribution with n ∈
{2400, 4800}, kn ∈ {30, 50, 80, 100}, q(x) =

∏d
i=1 t(xi, v), V ∈ {1, 2, 3, . . . , 17, 19, 20}, and d = 2

Figure 4.12, the left and right of the plot are sample size of n = 2400 and n = 4800

respectively with degree of freedom, v, and dimension,d = 2. Between the degree of freedom v = 3

to 10 and v = 7 to 14, the gap between the graphs is wider for n = 2400 and n = 4800 respectively

and after that, it gets tighter. It implies for a large degree of freedom and fixed sample size, t-

distribution approaches a standard normal distribution. At point v = 20, the power is equally as

the size confirming that t-distribution gets to standard normal with a large degree of freedom.

Table 4.33. Simulated size and power for goodness of fit of t-distribution with n ∈ {2400, 4800},
kn ∈ {30, 50, 80}, and p(x) = N(0, Id), q(x) =

∏d
i=1 t(xi, v), d = 5

(n, kn) α N(0,1) v = 5 v = 10 v = 20

(2400,30) 0.05 0.040 0.404 0.102 0.064
(2400,50) 0.05 0.054 0.266 0.066 0.054
(2400,80) 0.05 0.048 0.192 0.082 0.064
(4800,30) 0.05 0.050 0.912 0.210 0.064
(4800,50) 0.05 0.054 0.762 0.134 0.068
(4800,80) 0.05 0.054 0.608 0.120 0.066
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Table 4.34. Simulated size and power for goodness of fit of t-distribution with n ∈ {2400, 4800},
kn ∈ {30, 50and80}, and p(x) = N(0, Id), q(x) =

∏d
i=1 t(xi, v) and d = 10

(n, kn) α N(0,1) v = 5 v = 10 v = 20

(2400,30) 0.05 0.050 0.904 0.242 0.076
(2400,50) 0.05 0.048 0.726 0.140 0.058
(2400,80) 0.05 0.052 0.502 0.084 0.052
(4800,30) 0.05 0.042 1.000 0.666 0.142
(4800,50) 0.05 0.048 1.000 0.488 0.094
(4800,80) 0.05 0.044 0.984 0.322 0.082

Table 4.35. Running time for goodness of fit with d = 10

(n, kn) (4800, 30) (4800, 50) (4800, 80) (4800,1) (10000, 1)
Time 1.58 1.12 1.00 38.34 169.17

In Table 4.35, we recorded the running time(in seconds) of the divide-and-conquer method

and the full sample when d = 10. For n = 4800 and groups given as kn= 1, 30, 50 and 80, when

kn = 1 implies full sample. The full sample U-statistic takes 38.34 seconds, while the divide-and-

conquer method only requires less than 2 seconds for all the groups. As the kn increases, the running

time in seconds decreases, thus larger kn saves more time. For n = 10, 000 the running time for full

sample is 169.17 sec. while 38.34 sec. for full sample of n = 4800. The computation becomes costly

and time-consuming as a result of an increase in sample size. Then, our method proved to be more

efficient, especially when the running simulation of the large sample where it demands much time.

4.1.3. Non-degenerate (Gini’s Difference) U-statistics of 1-dimension with one sample

For non-degenerate U-statistics, we consider the Gini difference as an example. For inde-

pendent X1 and X2 from the same distribution, the Gini difference is defined as

θ = E[|X1 −X2|].
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Given i.i.d. data X1, X2, . . . , Xn, the corresponding U-statistics is

Un =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj |.

Suppose we want to test the following hypothesis

H0 : θ = θ0, v.s. H1 : θ = θ1,

and use (2.5) to construct the test statistic.

For any independent variables X,Y ∼ N(µ, σ2), the Gini difference is θ = 2σ√
π
. In Table

4.36, under H0, we generate the data from N(1, 1), while under H1, the data are generated from

N(1, 1.02), N(1, 1.03), N(1, 1.04) respectively. Two different sample sizes 2400 and 4800 with same

blocks kn=10, 30, 50 and 80 were simulated. For fixed n, the larger mn has larger power. It also

shows that the power increases as mn increases. Moreover, for the fixed n and mn, the power

increases as the standard deviation increases too. Comparatively, the power of the sample size 4800

is higher than that 2400 which implies the high power depends on the sample size.

Table 4.36. Simulated size and power for Gini difference with n ∈ {2400, 4800}, kn ∈ {10, 30, 50, 80},
and N(1, 1), N(1, 1.02), N(1, 1.03) and N(1, 1.04)

(n, kn) α N(1, 1) N(1, 1.02) N(1, 1.03) N(1, 1.04)

(2400, 10) 0.05 0.051 0.294 0.560 0.750
(2400, 30) 0.05 0.050 0.274 0.562 0.758
(2400, 50) 0.05 0.056 0.264 0.494 0.754
(2400, 80) 0.05 0.054 0.270 0.524 0.728
(4800, 10) 0.05 0.050 0.640 0.810 0.970
(4800, 30) 0.05 0.054 0.474 0.786 0.974
(4800, 50) 0.05 0.050 0.530 0.800 0.952
(4800, 80) 0.05 0.050 0.414 0.772 0.958
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Table 4.37. Simulated size and power for Gini difference with n ∈ {2400, 4800}, kn ∈ {10, 30, 50, 80},
and N(1, 1), N(1, 0.98), N(1, 0.95) and N(1, 0.90)

(n, kn) α N(1,1) N(1,0.98) N(1,0.95) N(1,0.90)
(2400,10) 0.05 0.045 0.350 0.958 1.000
(2400,30) 0.05 0.046 0.314 0.942 0.996
(2400,50) 0.05 0.052 0.278 0.944 0.982
(2400,80) 0.05 0.054 0.288 0.942 0.966
(4800,10) 0.05 0.056 0.506 0.996 1.000
(4800,30) 0.05 0.054 0.486 1.000 1.000
(4800,50) 0.05 0.050 0.510 1.000 1.000
(4800,80) 0.05 0.050 0.538 0.998 1.000

In the Table 4.37, it follows the same pattern as Table 4.36. The power of the hypothesis

increases as the mn increases. The large sample size, n, performs better than the small size.

Therefore, the bottom table has higher powers. The power approximates to 1 as the standard

deviation is getting far from 1. When the σ ≤ 0.90, the power approaches 1, and therefore it is

insignificant to simulate the power with the same n.

Figure 4.13. Plot of simulated size and power for Gini difference with n ∈ {2400, 4800}, kn ∈
{10, 30, 50, 80}, and σ ∈ {1.00, 0.99, 0.98, . . . , 0.87, 0.86, 0.85}

Figure 4.14 shows the visual representation of the simulated size and power of Gini difference

with a sample size of n = (2400, 4800). The left plot is the plot of the powers with n = 2400, and

the right plot is n = 4800. The plots show upward sloping with all starting point of almost 0.05.

The curves of n = 4800 are steeper than curves of n = 2400, which implies they have high powers.

41



The graph visualization confirms that the power increases as the σ get far larger. For any σ ≤ 0.90,

the powers are 1 which implies the graphs are linear after σ = 1.04.

Table 4.38. Simulated size and power for Gini difference with n ∈ {2400, 4800}, kn ∈ {10, 30, 50, 80},
and N(1, 1), N(1, 1.01), N(1, 1.02) and N(1, 1.03)

(n, kn) α N(1,1) N(1,1.01) N(1,1.02) N(1,1.03)
(2400,10) 0.05 0.045 0.128 0.284 0.556
(2400,30) 0.05 0.046 0.106 0.258 0.530
(2400,50) 0.05 0.052 0.096 0.228 0.500
(2400,80) 0.05 0.054 0.110 0.280 0.492
(4800,10) 0.05 0.056 0.204 0.486 0.772
(4800,30) 0.05 0.054 0.162 0.496 0.806
(4800,50) 0.05 0.050 0.142 0.434 0.808
(4800,80) 0.05 0.050 0.144 0.460 0.798

From Table 4.38, the tests exhibit increasing higher powers but decreasing rate as the kn

increases. The powers are rising significantly as the σ increases. As usual, the power of a large

sample size higher than which implies that one needs to increase the sample size in order to increase

power.

Figure 4.14. Plot of simulated size and power for Gini difference with n ∈ {2400, 4800}, kn ∈
{10, 30, 50, 80}, and σ ∈ {1.00, 1.01, 1.03, . . . , 1.12, 1.13, 1.15}

The Figure 4.13 represents the simulated size and power of Gini difference with sample size

n = (2400, 4800) and σ ∈ {1.00, 1.01, 1.03, . . . , 1.12, 1.13, 1.15}. Both plots show upward sloping
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with a starting point of almost 0.05. The curves of n = 4800 are steeper than curves of n = 2400,

which implies they have high powers. The graph confirms that the power increases as the σ gets

larger and larger until approaches 1.

Table 4.39. Simulated size and power for Gini difference with n ∈ {2400, 4800}, kn ∈ {10, 30, 50, 80},
and N(1, 1), N(1, 1.05), N(1, 1.10) and N(1, 1.15)

(n, kn) α N(1,1) N(1,1.05) N(1,1.10) N(1,1.15)
(2400,10) 0.05 0.045 0.904 1.000 1.000
(2400,30) 0.05 0.046 0.904 1.000 1.000
(2400,50) 0.05 0.052 0.902 1.000 1.000
(2400,80) 0.05 0.054 0.884 1.000 1.000
(4800,10) 0.05 0.056 0.992 1.000 1.000
(4800,30) 0.05 0.054 0.992 1.000 1.000
(4800,50) 0.05 0.050 0.998 1.000 1.000
(4800,80) 0.05 0.050 1.000 1.000 1.000

In Table 4.39, it follows the same pattern as Table 4.37. The power of the hypothesis

increases as the mn and σ increase. The larger sample size n is performed better than the small

size. Then, the bottom table has higher powers. The power of the hypothesis approximate to 1 as

the standard deviation is getting far larger than 1. When the σ = 1.10, the power approaches 1

and therefore it is irrelevant to simulate the power of σ > 1.10 with the same n and kn. It supports

that the divide-and-conquer method has high power.

Table 4.40. Running time for Gini difference with n = 4800 and kn ∈ (1, 30, 50, 80)

(n, kn) (4800, 30) (4800, 50) (4800, 80) (4800,1)
Time 0.44 0.32 0.25 11.36

In Table 4.40, we record the running time for a fixed sample size of n and different groups.

With the n of 4800 and groups,kn= 30, 50, 80 and 1, the time recorded in seconds are 0.44, 0.32,

0.25 and 11.36 respectively. We realized that time decreases as the group increases. It justifies that

the divide-and-conquer method significantly reduces the running time. Moreover, our method is

more time-efficient than the old method in terms of running time and strong power.
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4.1.4. The real data for one sample: goodness-of-fit test

We use the crime data from the city of Chicago in 2016, 2017, 2018, and 2019 to evaluate

the performance of the proposed method. The sample size of the data is n = 20000 locations of

crime events expressed as latitude and longitude coordinates were selected. It is publicly available

at https://data.cityofchicago.org/browse?category=

Public%20Safety. We test whether the location follows the bivariate normal distribution

p(x) = N(µ1, σ
2
1)N(µ2, σ

2
2). We randomly selected 5000 dataset of the locations to estimate the

mean values and variances, which yields µ̂1 = 41.844, µ̂2 = −87.673, σ̂1 = 0.085, σ̂2 = 0.058. Then

the rest 15,000 location is used to do the test. Let x = (x1, x2), y = (y1, y2). The direct computation

yields the following kernel for U-statistics

∇x log p(x) =
(
− x1 − µ1

σ21
,−x2 − µ2

σ22

)
,

up(x, y) = exp
{
− (x1 − y1)2 + (x2 − y2)2

2

}{(x1 − µ1)(y1 − µ1)
σ41

+
(x2 − µ2)(y2 − µ2)

σ42

−(x1 − µ1)(x1 − y1)
σ21

− (x2 − µ2)(x2 − y2)
σ22

+
(y1 − µ1)(x1 − y1)

σ21

+
(y2 − µ2)(x2 − y2)

σ22
+ 2− (x1 − y1)2 − (x2 − y2)2

}
,

which is symmetric and bounded.

We verify if our data follow the bivariate distribution, 5000 samples randomly selected

from the data of 20,000 observations of the location of crimes. A visual representation is made

by plotting the data using the geographical of Latitude and Longitude. By the scatter plots of

the crime location of 5000 data in Figure 4.15, 4.16, 4.17 and 4.18, they show that plots have two

clusters or concentration. Therefore, they have two peaks, but for the bivariate distribution case,

it should have one cluster and peak. Further, it is, therefore, that the data does not follow the

bivariate normal distribution. Our method correctly rejects the null hypothesis using visualization

that it is the bivariate normal distribution.
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Figure 4.15. Location of crimes at Chicago in 2017 of 5000 observations

Figure 4.16. Location of crimes at Chicago in 2016 of 5000 observations
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Figure 4.17. Location of crimes at Chicago in 2018 of 5000 observations

Figure 4.18. Location of crimes at Chicago in 2019 of 5000 observations
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We prove that our proposed method is more efficient and fastest in running time. Then,

15,000 samples randomly selected from 20,000 from data of the location of crimes at the city of

Chicago, IL, from 2016 to 2019 for validation to support our claim. We divide the 15000 data

into kn = 30, 50, 80 groups and calculate the test statistics (2.2) respectively. The groups of our

proposed test is kn = 30, 50 and 80 and kn = 1 is the full sample size. From Table 4.41, 4.42, 4.43

and 4.44, the proposed divide-and-conquer method running time is less than 12 seconds for group

30 and less than 5 seconds for group 80, while it takes approximately 6 minutes to calculate the

test statistic for the full sample. It indicates that the running time reduces as the kn increases.

This result further confirms that our method saves time and can have high power. We also find out

whether our data does follow the bivariate normal distribution. From Table 4.41, 4.42, 4.43 and

4.44, all the p-values of corresponding (n, kn) are less than the nominal level, α = 0.05, therefore we

reject the null hypothesis and conclude that the locations of crimes does not follows the bivariate

distribution under the null hypothesis.

Table 4.41. The p-values and running time of crimes at Chicago, IL for 2016

(n, kn) (15,000, 30) (15,000, 50) (15,000, 80) (15,000,1)
p-value 0.0000 0.0000 0.0000 0.0000
Time 11.3100 6.7200 4.2900 334.2200

Table 4.42. The p-values and running time of crimes at Chicago, IL for 2017

(n, kn) (15,000, 30) (15,000, 50) (15,000, 80) (15,000,1)
p-value 0.0000 0.0024 0.0078 0.0000
Time 10.4700 6.3500 4.0300 316.7200

Table 4.43. The p-values and running time of crimes at Chicago, IL for 2018

(n, kn) (15,000, 30) (15,000, 50) (15,000, 80) (15,000,1)
p-value 0.0000 0.0000 0.0000 0.0000
Time 11.5700 7.2200 4.4400 341.8600
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Table 4.44. The p-values and running time of crimes at Chicago, IL for 2019

(n, kn) (15,000, 30) (15,000, 50) (15,000, 80) (15,000,1)
p-value 0.0000 0.0000 0.0000 0.0000
Time 11.1200 6.6100 4.2500 341.3100

4.2. The numerical experiment of two-sample test

Base on the proposed method, the divide-and-conquer method, we perform the simulation

of equal and unequal sample sizes. We run a simulation and real data to evaluate the performance

of samples of our method. The simulation study applied to evaluate the efficiency of the powers of

the test with different dimensions with both equal and unequal samples.

4.2.1. Simulation

Generate i.i.d. data X1, . . . , Xm from distribution p and i.i.d. data Y1, . . . , Yn from distri-

bution q. Consider the following hypotheses

H0 : p = q, H1 : p 6= q.

In this simulation, we use the standard Gaussian kernel function K(x, y) = e (x−y)
2

2 , where p =

N(0, Id) and q = N(µ, Id) or q = N(0, σ2Id) are null and alternative hypothesis respectively, where

d is the dimension of the normal distribution, the mean µ and variance σ2 will be varied to assess

the power. Example of the distribution includes the following, the Null hypothesis is p = N(0, I2)

and Alternative hypothesis can either be q = N(0.20, I2) or q = N(0, 1.2∗I2) where d = 2, µ = 0.20

and σ2 = 1.20. Let α = 0.05, and we repeat the experiment 500 times to calculate the empirical

size and power.

We run the simulation for equal sample sizes m = n and unequal sample sizes m 6= n. The

simulation results for m = n and m 6= n are presented in two separate sections. For the same

sample size case, we also compare the power of our method with the linear-time approximation

method proposed in (Gretton et al. (2012)), while for the unequal sample size case, the linear-time

approximation method is not available.

4.2.1.1. Simulation result for equal sample size

In this section, we empirically evaluate the performance of our method when the sample

sizes are equal(m = n) and compare it with the linear time test statistic. Two sample sizes are
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taken, m = n = 2, 000 and m = n = 4, 000. We evenly and randomly divide the two samples into

k = 10, 20, 40 groups, respectively, and calculate the divide-and-conquer test statistic Tk.

Firstly, we assess the power of our test to detect the location difference for various dimen-

sions, that is, q = N(µ, Id), where µ = 0.00, 0.10, 0.20 and d = 2, 5, 10. When µ = 0.00, p = q, it

yields the empirical size. The results are summarized in Table 4.45-4.47. All the simulated sizes of

our method are close to the nominal level α = 0.05. For fixed (n,m, k), the power increases as µ

get further away from 0.00. Especially, when n = 4, 000, µ = 0.20 and d = 2, all the powers are

greater than 0.90 (see Table 4.45). For fixed µ, n, and d, it is clear that the powers decline as k

increases from 10 to 40. It shows the trade-off between computational cost and power of the test

statistic. Increasing k reduces the running time but results in loss of power. The power increases for

fixed µ, d and k, as the sample size doubles. Due to the curse of dimensionality, as the dimension

d increases, the power drops significantly. In order to achieve high power, we need a large sample

size.

In this setting, the liner time test statistic performs poorly. The sizes vary a lot from

0.02 to 0.06. Besides, it has no power to detect the location difference between q and p. When

n = 4000, d = 2, µ = 0.60, the power of linear method is 0.964, but our test has power 1 in this

case.

Table 4.45. Simulated size and power for goodness of fit with n = m ∈ {2000, 4000}, kn ∈
{10, 20, 40}, µ ∈ {0.00, 0.10, 0.20} and d = 2.

µ (n, kn) = (2, 000, 10) (2, 000, 20) (2, 000, 40) Linear
0.00 0.060 0.053 0.052 0.030
0.10 0.080 0.072 0.064 0.050
0.20 0.674 0.600 0.374 0.042
µ (n, kn) = (4, 000, 10) (4, 000, 20) (4, 000, 40) Linear
0.00 0.064 0.050 0.052 0.060
0.10 0.254 0.210 0.124 0.066
0.20 0.998 0.990 0.930 0.038
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Figure 4.19. The plot of the simulated size and power for goodness of fit with n = m ∈ {2000, 4000},
kn ∈ {10, 20, 40}, µ ∈ {0.00, 0.10, 0.20} and d = 2.

From Figure 4.19, the left and right sides of the plot are sample sizes of 2,000 and 4,000,

respectively. For varied mean and fixed variance, it observed that except for the linear time test

statistic plot, all plot of our proposed method has positively sloped. In this case, the power increases

as a result of the changes in the mean. The plots (2,000, 10) are higher than that of (2,000, 20) and

(2,000, 40), which indicates that the plot moves outward. It is due to the significant increase in the

group.

It observed that our proposed method reduces the steepness of the graph as the group

increases. The linear time test statistic plot is approximate to linear in that there is no significant

difference from the size when the mean varies. Besides, the plots of the n = 4000 are steeper than

that of n = 2000. It is as a result of the doubling of sample size.

Table 4.46. Simulated size and power for goodness of fit with n = m ∈ {2000, 4000}, kn ∈
{10, 20, 40}, µ ∈ {0.00, 0.10, 0.20} and d = 5

µ (n, kn) = (2, 000, 10) (2, 000, 20) (2, 000, 40) Linear
0.00 0.044 0.060 0.040 0.056
0.10 0.094 0.067 0.044 0.056
0.20 0.528 0.406 0.270 0.054
µ (n, kn) = (4, 000, 10) (4, 000, 20) (4, 000, 40) Linear
0.00 0.046 0.038 0.052 0.054
0.10 0.194 0.154 0.110 0.042
0.20 0.986 0.926 0.708 0.050
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Table 4.47. Simulated size and power for goodness of fit with n = m ∈ {2000, 4000}, kn ∈
{10, 20, 40}, µ ∈ {0.00, 0.10, 0.20} and d = 10

µ (n, kn) = (2, 000, 10) (2, 000, 20) (2, 000, 40) Linear
0.00 0.036 0.058 0.056 0.028
0.10 0.052 0.050 0.058 0.020
0.20 0.088 0.064 0.064 0.020
µ (n, kn) = (4, 000, 10) (4, 000, 20) (4, 000, 40) Linear
0.00 0.030 0.048 0.048 0.020
0.10 0.066 0.054 0.070 0.010
0.20 0.296 0.166 0.120 0.008

Secondly, we assess the power of our test to detect the scale difference for various dimensions,

that is, q = N(0, σ2Id), where σ2 = 1.00, 1.20, 1.30, 1.40 and d = 2, 5, 10. When σ2 = 1.00, and null

hypothesis p = q, it yields the empirical size. The results are summarized in Table 4.48-4.50. All

the simulated sizes of our method are close to the nominal level of α = 0.05. The power pattern is

similar to the previous case. In this setting, the liner time test statistic still performs poorly. It has

no power to detect the scale difference between q and p.

Table 4.48. Simulated size and power for goodness of fit with n = m ∈ {2000, 4000}, kn ∈
{10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 2

σ2 (n, kn) = (2, 000, 10) (2, 000, 20) (2, 000, 40) Linear
1.00 0.040 0.058 0.058 0.040
1.20 0.154 0.090 0.102 0.062
1.30 0.500 0.360 0.286 0.078
1.40 0.852 0.774 0.522 0.066
σ2 (n, kn) = (4, 000, 10) (4, 000, 20) (4, 000, 40) Linear
1.00 0.042 0.050 0.032 0.052
1.20 0.430 0.396 0.248 0.042
1.30 0.950 0.878 0.724 0.054
1.40 0.998 0.998 0.992 0.084
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Figure 4.20. The plot of the simulated size and power for goodness of fit with n = m ∈ {2000, 4000},
kn ∈ {10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40}, and d = 2

In Figure 4.20 shows the plot with dimension, d = 2, sample sizes of n = 2,000 and 4,000

respectively where mean is fixed and variance differs. The left and right sides of the plot are

sample sizes of 2,000 and 4,000, respectively. The plots have a similar pattern to the previous

plot. It showed that our proposed method has steep graphs, and the steepness reduces as the group

increases. The linear time test statistic plot is approximate to linear, which implies that it is no

significant difference from the size when the variance varies.

Also, the plots of the n = 2000 are more gentle than that of n = 4000. It is as a result of

the doubling of sample size. It can also observe that except for the linear time test statistic plot,

all plot of our proposed method has positively sloped. In that case, the power increases as a result

of the change of variance. The plots (2,000, 10) are higher than that of (2,000, 20) and (2,000, 40).

It indicates that the plot moves outward as a result of a significant increase in the group.
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Table 4.49. Simulated size and power for goodness of fit with n = m ∈ {2000, 4000}, kn ∈
{10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 5

σ2 (n, kn) = (2, 000, 10) (2, 000, 20) (2, 000, 40) Linear
1.00 0.022 0.030 0.044 0.042
1.20 0.252 0.168 0.112 0.040
1.30 0.628 0.500 0.312 0.048
1.40 0.950 0.856 0.688 0.068
σ2 (n, kn) = (4, 000, 10) (4, 000, 20) (4, 000, 40) Linear
1.00 0.040 0.048 0.032 0.042
1.20 0.682 0.522 0.326 0.058
1.30 0.992 0.966 0.832 0.046
1.40 1.000 1.000 0.990 0.106

Table 4.50. Simulated size and power for goodness of fit with n = m ∈ {2000, 4000}, kn ∈
{10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 10

σ2 (n, kn) = (2, 000, 10) (2, 000, 20) (2, 000, 40) Linear
1.00 0.042 0.048 0.044 0.008
1.20 0.082 0.052 0.062 0.028
1.30 0.258 0.150 0.114 0.012
1.40 0.436 0.318 0.182 0.018
σ2 (n, kn) = (4, 000, 10) (4, 000, 20) (4, 000, 40) Linear
1.00 0.040 0.044 0.060 0.012
1.20 0.222 0.164 0.100 0.024
1.30 0.590 0.442 0.276 0.028
1.40 0.924 0.800 0.548 0.032

Figure 4.21. The plot of the simulated size and power for goodness of fit with n = m ∈ {2000, 4000},
kn ∈ {10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 10.
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Figure 4.21 indicates that the left and right sides of the plot are sample sizes of 2,000 and

4,000 respectively with dimension, d = 10 and fixed mean, and variance varies. It has similar in

pattern to that of Figure 4.20. It observed that all plot of our proposed method has positively

sloped apart from the linear time test statistic plot. Therefore, power increases as a result of the

increase in variance. The plots (2,000, 10) are higher than that of (2,000, 20) and (2,000, 40), which

indicates that the plot moves outward. It is due to the significant increase in the group.

Also, the plots of the n = 4000 are steeper than that of n = 2000. It is as a result of the

doubling of sample size. Comparing the 4.21 and 4.20, the entire graphs in 4.20 is steeper than

graphs in 4.21 and it is due curse of dimensionality, that is changes of the dimension.

4.2.1.2. Simulation result for unequal sample size

In this subsection, we empirically evaluate the performance of our method under the same

setup as in subsection 5.2.1.1 except that the sample sizes are unequal, that is, n = 4, 000, m =

2, 000 and n = 4, 000, m = 3, 000. The linear time test statistic is not available. The simulated

results are presented in Table 4.51-4.56. All the simulated sizes are close to the nominal level of

α = 0.05. Overall, the powers for unequal sample size are smaller than the equal sample size

cases(m = n = 4000), due to less sample size m ≤ 3, 000. The powers have a similar trend as in the

equal sample sizes(m = n) case.

Table 4.51. Simulated size and power for goodness of fit with n=4,000, m ∈ {2000, 3, 000}, kn ∈
{10, 20, 40}, µ ∈ {0.00, 0.10, 0.20} and d = 2.

µ (n,m, kn) = (4, 000, 2, 000, 10) (4, 000, 2, 000, 20) (4, 000, 2, 000, 40)

0.00 0.050 0.060 0.048
0.10 0.090 0.112 0.086
0.20 0.904 0.848 0.648
µ (n,m, kn) = (4, 000, 3, 000, 10) (4, 000, 3, 000, 20) (4, 000, 3, 000, 40)

0.00 0.048 0.050 0.044
0.10 0.166 0.136 0.098
0.20 0.960 0.956 0.850
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Figure 4.22. The plot of the simulated size and power for goodness of fit with n=4,000, m ∈
{2000, 3, 000}, kn ∈ {10, 20, 40}, µ ∈ {0.00, 0.10, 0.20}, and d = 2

In Figure 4.22, the dimension, d = 2 and the left and right sides of the plot are unequal

sample sizes of (4,000 and 2,000) and (4,000 and 3000) respectively. The mean is varied from 0.00

to 0.20, and fixed variance. It observed that the plots have positively sloped. In this case, the power

increases as a result of the changes in mean. The plots with dimension, d = 10 is higher than that

of d = 20 and 40, which implies that the plot moves outward as the group increases.

Likewise, it observed that the steepness of the plot reduces as the group increases. In

addition, the plots of the n = 4,000 and m = 3,000 is steeper than that of n = 4,000 and m = 2,000

and it is as a result of the increase of sample size.

Table 4.52. Simulated size and power for goodness of fit with n=4,000, m ∈ {2000, 3, 000}, kn ∈
{10, 20, 40}, µ ∈ {0.00, 0.10, 0.20} and d = 5.

µ (n,m, kn) = (4, 000, 2, 000, 10) (4, 000, 2, 000, 20) (4, 000, 2, 000, 40)

0.00 0.036 0.030 0.056
0.10 0.078 0.064 0.064
0.20 0.784 0.600 0.366
µ (n,m, kn) = (4, 000, 3, 000, 10) (4, 000, 3, 000, 20) (4, 000, 3, 000, 40)

0.00 0.048 0.028 0.058
0.10 0.146 0.116 0.072
0.20 0.928 0.818 0.606
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Table 4.53. Simulated size and power for goodness of fit with n = 4, 000, m ∈ {2000, 3, 000},
kn ∈ {10, 20, 40}, µ ∈ {0.00, 0.10, 0.20} and d = 10.

µ (n,m, kn) = (4, 000, 2, 000, 10) (4, 000, 2, 000, 20) (4, 000, 2, 000, 40)

0.00 0.048 0.044 0.044
0.10 0.064 0.058 0.052
0.20 0.116 0.088 0.072
µ (n,m, kn) = (4, 000, 3, 000, 10) (4, 000, 3, 000, 20) (4, 000, 3, 000, 40)

0.00 0.046 0.044 0.046
0.10 0.074 0.060 0.053
0.20 0.178 0.122 0.090

Figure 4.23. The plot of the simulated size and power for goodness of fit with n = 4, 000, m ∈
{2000, 3, 000}, kn ∈ {10, 20, 40}, µ ∈ {0.00, 0.10, 0.20}, d = 10

In Figure 4.23, the dimension, d = 10 and the left and right side of the plot are unequal

sample sizes of (4,000 and 2,000) and (4,000 and 3000) respectively. Figure 4.23 has also has the

same pattern as 4.22. The mean is varied from 0.00 to 0.20, and fixed variance. It showed that the

plots have positively sloped. In this case, the power increases as the mean vary. The plots with

dimension, d = 10 is higher than that of d = 20 and 40, which implies that the plot moves outward

as the dimension increases. In addition, it is also showed that the steepness of the plot reduces as

the group increases. The plots of the n = 4,000 and m = 3,000 is steeper than that of n = 4,000

and m = 2,000 and it is as a result of the increase of sample size.
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Table 4.54. Simulated size and power for goodness of fit with n=4,000, m ∈ {2000, 3, 000}, kn ∈
{10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 2

σ2 (n,m, kn) = (4, 000, 2, 000, 10) (4, 000, 2, 000, 20) (4, 000, 2, 000, 40)

1.00 0.052 0.070 0.042
1.20 0.238 0.192 0.132
1.30 0.700 0.578 0.414
1.40 0.968 0.952 0.792
σ2 (n,m, kn) = (4, 000, 3, 000, 10) (4, 000, 3, 000, 20) (4, 000, 3, 000, 40)

1.00 0.056 0.052 0.044
1.20 0.364 0.312 0.208
1.30 0.888 0.800 0.624
1.40 0.998 0.992 0.950

Figure 4.24. The plot of the simulated size and power for goodness of fit with n=4,000, m ∈
{2000, 3, 000}, kn ∈ {10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 2

In Figure 4.24 indicated the dimension, d = 2 and unequal sample sizes of (4,000 and 2,000)

and (4,000 and 3000) respectively. The fixed mean and variance vary from 1.00 to 1.40. The plot

is not different from previous plots. They followed upward sloping from left to right. In this case,

the power increases as a result of the change of variance. The plots of the group, kn = 10 is higher

than that of kn = 20 and 40. It implies the power of the test decrease as the group increases.

Comparatively, an increase of dimension and group reduces the steepness of the plot. Also,

the plots of the n = 4,000 and 3,000 are steeper than that of n = 4,000 and 2,000. It is a result of

the increase in sample size.
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Table 4.55. Simulated size and power for goodness of fit with n = 4, 000, m ∈ {2000, 3, 000},
kn ∈ {10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 5

σ2 (n,m, kn) = (4, 000, 2, 000, 10) (4, 000, 2, 000, 20) (4, 000, 2, 000, 40)

1.00 0.044 0.042 0.056
1.20 0.360 0.300 0.190
1.30 0.894 0.786 0.580
1.40 0.998 0.984 0.928
σ2 (n,m, kn) = (4, 000, 3, 000, 10) (4, 000, 3, 000, 20) (4, 000, 3, 000, 40)

1.00 0.048 0.062 0.058
1.20 0.552 0.424 0.224
1.30 0.968 0.908 0.768
1.40 1.000 1.000 0.984

Figure 4.25. The plot of the simulated size and power for goodness of fit with n = 4, 000, m ∈
{2000, 3, 000}, kn ∈ {10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 5

In Figure 4.25 has the similar characteristics as Figure 4.24. The only change is the dimension

of the test, where d = 5. With unequal sample sizes of (4,000 and 2,000) and (4,000 and 3000),

fixed mean and variance varies from 1.00 to 1.40, the plot still follows upward sloping from left to

right. Therefore, power increases as a result of an increase in variance. The plots of the group,

kn = 10 is higher than that of kn = 20 and 40. This implies the power of the test decrease as the

group increases. The plots of the n = 4,000 and 3,000 are steeper than that of n = 4,000 and 2,000.

It is a result of the increase in sample size.
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Table 4.56. Simulated size and power for goodness of fit with n = 4, 000, m ∈ {2000, 3, 000},
kn ∈ {10, 20, 40}, σ2 ∈ {1.00, 1.20, 1.30, 1.40} and d = 10

σ2 (n,m, kn) = (4, 000, 2, 000, 10) (4, 000, 2, 000, 20) (4, 000, 2, 000, 40)

1.00 0.042 0.038 0.038
1.20 0.146 0.106 0.094
1.30 0.392 0.288 0.186
1.40 0.716 0.606 0.434
σ2 (n,m, kn) = (4, 000, 3, 000, 10) (4, 000, 3, 000, 20) (4, 000, 3, 000, 40)

1.00 0.042 0.046 0.048
1.20 0.204 0.110 0.092
1.30 0.516 0.370 0.230
1.40 0.890 0.692 0.438

4.2.2. Running time comparison

We compare the running time of our divide-and-conquer test statistic, the full sample MMD

test statistic, and the linear time test statistic with the dimension of d = 10 and equal sample size

of n = 4000. The running time reported in Table 4.57. The full sample MMD test statistic (that

is kn = 1) takes significantly more time than the proposed divide-and-conquer test statistic. The

linear time test statistic has the least running time. For our proposed test statistic, it takes less

time to calculate for a large kn.

Table 4.57. Running time in seconds with n = 4000, kn ∈ {1, 10, 20, 40} and d = 10

(n, kn) (4, 000, 1) (4, 000, 10) (4, 000, 20) (4, 000, 40) Linear
Time 39.4060 2.4657 1.2659 0.6778 0.0464

Based on our simulation, our test statistic can achieve high power and at the same time.

It significantly reduces the running time of the full sample MMD test statistic. Besides, our test

statistic overwhelmingly outperforms the linear time test statistic in terms of power. Also, our

proposed test statistic is more effective than the full sample MMD test statistic in terms of running

time.

4.2.3. The real data for two samples: Maximum Mean Discrepancy (MMD) test

We apply our method to the City of Chicago Crime data, where the latitude and longitude

of each crime event recorded yearly. We would like to test whether the crime events from two years

follow the same distribution. Firstly, we extract the crime data for 2001 and 2009 with an equal
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sample size of 200,000, which plotted in Figure 4.26 and Figure 4.27, respectively. Graphically, the

scatter plots look almost the same, which implies it follows the same distribution.

We want to justify this conclusion if it follows the same distribution theoretically. We

therefore formally perform our divide-and-conquer method hypothesis test with a significant level

of α = 0.05. The test statistic(TS) value, p-value, running time(in hours) and number of groups kn

are recorded in Table 4.58. All the p-values for different kn are greater than 0.05. It implies that

we fail to reject the null hypothesis that the data follows the same distribution. It takes 65.2876

hours to calculate the test statistic for kn = 500. It reduced to 3.1782 hours when kn = 8000. By

the running time change pattern, it is almost impossible to calculate the full sample test statistic.

Figure 4.26. Location of crimes at Chicago in 2001 of 200,000 observations
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Figure 4.27. Location of crimes at Chicago in 2009 of 200,000 observations

Table 4.58. Chicago crime data analysis for year 2001 and 2009

kn 500 1000 2, 000 4, 000 8, 000

Time(h) 65.2876 27.8643 13.0803 7.8563 3.1782
TS -1.1194 -0.7252 0.6858 0.4170 0.0694
p-value 0.2630 0.4683 0.4928 0.6767 0.9447

We again consider the crime events for 2002 and 2010, with an equal sample size of 400,000.

In Figure 4.28 and Figure 4.29 below, the scatter plot indicates that there is a clear difference in

the lower right corner. Figure 4.29 has a heavy tail at the lower right corner. It concludes that the

two data are not of the same distribution.

In order to justify that the two data do not have the same distribution base on the plotting,

we use our test statistics to test hypothetically. Table 4.59 reported the test statistic(TS) value,

p-value, and time in hours. Our test statistic successfully detects the difference since all the p-

values in Table 4.59 are significantly less than 0.05. Therefore, the null hypothesis rejected that the

two data follow the same distribution. The running time of kn = 500 is 148.8818 hours while the

running of kn = 4, 000 is 18.6494 hours. Moreover, the running time decreased as the kn increases.
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The TS value has a relationship with the change of kn. The TS values decrease as the kn reduces.

Comparatively, the running time for each kn in Table 4.59 is longer than that in Table 4.58, due to

larger sample sizes.

Table 4.59. Chicago crime data analysis of year 2002 and 2010

kn 500 1, 000 2, 000 4, 000 8, 000

Time(h) 148.8818 78.2395 36.8120 18.6494 9.3309
TS 8.8532 6.3389 5.7188 4.7147 2.9334
p-value 0.0000 0.0000 0.0000 0.0000 0.0036

Figure 4.28. Location of crimes at Chicago in 2002 of 200,000 observations
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Figure 4.29. Location of crimes at Chicago in 2010 of 200,000 observations
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5. DISCUSSION

U-statistics is a class of widely used unbiased nonparametric estimators. They play an

essential role in many estimations or statistical inference problems. In many hypothesis testing

problems, the test statistics are degenerate U-statistics under the null hypothesis, which motivates

us to study the degenerate U-statistics in a big data context. Specifically, we propose a divide and

conquer method to solve the computation challenge of degenerate U statistics, and at the same time,

the proposed test has the standard normal distribution as the limiting distribution. We apply the

methods to the goodness of fit test(KSD) and two-sample test(MMD) and evaluate the performance

of the method by extensive simulation.

In the simulation studies, the power of the tests assessed under various block sizes, sample

sizes, and multiple distributions(uniquely determined by mean and standard deviation) for both

degenerate and non-degenerate test statistics. In the goodness of fit test, for one-dimensional data,

for fixed kn, mean, and standard deviation, the power of the test increases as the sample size

increases. The power gets smaller for large kn for fixed n, mean, and standard deviation. Moreover,

for fixed n and kn, the power is high for either a large discrepancy in the mean or standard deviation.

For multivariate data, the power also depends on the dimension. For a higher dimension, power

reduces when all other factors are constant.

In applying the method of MMD for a two-sample test, it confirms that with both equal

and unequal sample sizes, the power of the hypothesis testing increases as either mean or variance

increases for fixed n, m, kn, and dimension. Likewise, as kn increases, the power decreases. It

constitutes the trade-off between time and power. Furthermore, power significantly affected by the

dimension of data.

The kn controls the balance between running time and test power. For fixed n, larger kn saves

more computation time but sacrifices some power by the simulation. In practice, we recommend

choosing moderately large kn to save time and achieve adequate power. Besides, one byproduct of

our method is that we avoid calculating the eigenvalues of the kernel function of the degenerate

U-statistics involved in the limiting distribution of degenerate U-statistics.
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In summary, under the null hypothesis, our test statistic converges in law to the standard

normal distribution. The running time reduced to almost linear. Moreover, the simulation and real

data analysis show that our test can achieve high power.
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