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ABSTRACT

In the field of electromagnetism, there are materials known as metamaterials which exhibit

unique properties that can be exploited. Permittivity, defined as capacitance per meter, of a

metamaterial can vary over frequency, time, or even be negative. This can be useful for tuning

antennas, changing their operating frequency or direction of propagation, or even designing cloaking

systems. However, the theory behind metamaterials needs to be studied further. One of the

biggest issues to address is in determining the constitutive parameters of metamaterials which may

be varying. Previous research has shown the issue of branches, or mathematical discontinuities,

occurring in the derivation of permittivity from the scattering parameters of a metamaterial. This

thesis provides further understanding to the theory behind these branches and presents a new

method to compensate for them. This new method, called the phase tracking method, may be

considered a modern adaptation of the Nicolson-Ross-Weir method.
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1. INTRODUCTION

1.1. Context

In the field of applied electromagnetics, engineers study how electromagnetic waves interact

with and propagate through various materials. All materials have these three associated consti-

tutive parameters: permittivity (ε), permeability (µ), and conductivity (σ). Permittivity defines

how an electromagnetic wave is electrically influenced by a material; permeability defines how an

electromagnetic wave is magnetically influenced by a material; and conductance defines how an

electromagnetic wave is absorbed by a material.

Natural materials such as copper, water, and air have their own given values for these

constitutive parameters (C-parameters). However, human made materials such as ferrites and FR-

4, which is a common substrate made with fiberglass cloth and an epoxy resin, can have varied

C-parameters[1]. This variance can be seen across different manufacturers, different batches, when

deformation or aging occurs, or at different operating frequencies.

In the studies of human made materials, all possible variations of metamaterials are being

considered to optimize electronics. Metamaterials are generally considered as any material that

can have a changing or negative C-parameter. Examples are the split ring resonator[2, 3] and

magneto-responsive particles[4]. Metamaterials like the particles have been shown to be able to

tune antennas without changing their aperture[4, 5, 6]. Tuning can mean changing the phase,

operating frequency or even the beam angle of a signal from an antenna.

Several common methods to determine the permittivity of a given material are using a

dielectric probe, which requires contact with the material, or measuring the scattering parameters

(S-parameters) around the material. When it comes to metamaterials, using the S-parameters is

often the preferred method due to their composite nature.

1.2. Previous Work

When using the S-parameters to determine the C-parameters, there are plenty of publica-

tions on the mathematics of how this works[7, 8, 9, 10, 11, 12, 13, 14]. One of the most iconic

methods is the Nicolson-Ross-Weir method[7] developed in the 1970’s and is foundational to many

modern adaptations on that method. However, it was not optimized to handle synthetic materials

1



Figure 1.1. Diagram of system

with unusual electrical characteristics. Modern adaptations of the Nicolson-Ross-Weir method often

use estimations or approximations to account for mathematical discontinuities or anomalies, also

known as branches, which may be considered a consequence of signal resonance within a structure.

However, current literature on branches are vague and do not fully explain the reason branches

exist.

This thesis presents a full derivation of the Nicolson-Ross-Weir method from the boundary

conditions and provides a novel method of branch detection and compensation, all accounting for

the material possibly being in any metamaterial quadrant and varying with frequency and avoiding

estimations or predictions in relation to the branches.

1.3. Setup

This question is based on a book example in [15] Section 5.5.1. If we have a dielectric slab

surrounded by free space and transmit a signal normal to the surface of the slab, there will be two

signals scattered from the system: a reflection signal from the front of the material moving back to

the source, and a transmission signal from the back of the material moving away from the source.

Measuring these two signals as the S-parameters, how can we determine the value of the dielectric

material’s (DEM) electrical permitivity? This concept is illustrated in Fig. 1.1.

In most other systems, the reflection (Γsys) would simply be a single signal with power

PReflected = PTransmitted ∗ Γ12, where Γ12 is the reflection coefficient of a signal propagating in

an outside medium (medium 1) toward the source from the material of interest (medium 2), as

shown in Fig. 1.2. However, in the case where thickness, d, of the DEM is small (less than six

2



Figure 1.2. Diagram of coordinate system

wavelengths), there will be at least one more reflection off the back boundary toward the source

in the −z direction. By assigning the front boundary of the DEM as the origin of the coordinate

system (z = 0), the back boundary at z = d, we can measure Γsys just outside the boundary at

z = 0− and Tsys just outside the back boundary at z = d+.

1.4. Assumptions

The following lists major assumptions that uniquely identify this system:

I Normal incidence. The input signal is traveling in the +z direction and encounters the slab

with normal incidence (90◦ to surface of DEM).

II Dielectric. Electrical conductivity is negligible; therefore

σ = 0. (1.1)

III Lossless. The power reflected and the power transmitted through the material should add to

the power of the original signal transmitted; therefore,

1 + S11 = S21, (1.2)

α = 0. (1.3)

3



IV Electrically large. Assume the slab height (h) and width (w) go to infinity, which is physically

defined as greater than 6 wavelengths, or

h ≈ ∞ [m] > 6λ (1.4a)

w ≈ ∞ [m] > 6λ, (1.4b)

where λ is wavelength.

V Homogeneous. Assume the DEM is homogeneous, meaning the C-parameters are consistent

throughout the material.

The system reflection and transmission will also be defined to be their respective scattering

parameters, shown as

Γsys = S11 (1.5a)

Tsys = S21. (1.5b)

It should also be noted that the S-parameters will be treated in their Cartesian form (X + jY ),

not a decibel and phase form.
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2. DERIVING EQUATIONS FROM BOUNDARY

CONDITIONS

2.1. Signals

Since there are multiple internal reflections within the DEM, further denoted as ”local

reflections”, and the DEM also has a total reflection, the total reflection coefficient of the system

will be denoted as Γsys and the smaller reflection coefficients at the boundaries will be denoted as

Γxy where x is the medium the signal reflects into and y is the medium the signal reflected off of.

The same case also applies to transmissions Tsys and Txy.

Every time a signal encounters a boundary, a reflection signal and a transmission signal are

created. The value of the reflection and transmission coefficients depends on the C-parameters of

the two mediums which define the boundary. Figure 2.1, demonstrates the process of a driving

electromagnetic (EM) signal and how the local reflection and transmission signals are created.

An incident EM wave is introduced to the system and interacts with 3 mediums, each with

their own C-parameters. When the EM signal encounters the front boundary between mediums 1

and 2 at z = 0 it splits into two signals, a reflected signal and a transmitted signal. The reflected

signal is multiplied by the reflection coefficient Γ12, and the transmitted signal is multiplied by

the transmission coefficient T21. The reflected signal leaves the system and is called Γ0. The

transmitted signal propagates though medium 2 and is multiplied by the wave propagation, eγd,

where e is the natural number, γ is the propagation constant and d is the distance propagated,

which is the thickness of the material.

When the propagating signal encounters the back boundary of medium 2 with medium 3

at z = d, another set of reflected and transmitted signals are created. The transmitted signal is

multiplied by T32, then leaves the system though medium 3, and is called T1. The reflected signal

however stays in medium 2 and is multiplied by Γ23. This signal then propagates through medium

2 back to z = 0 and is again multiplied by eγd. This cycle continues with the evanescent signal

inside the material reflecting back and fourth, losing energy to the transmitted signals on both

sides of medium 2.
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Figure 2.1. Signals within the system
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2.2. Derivation of System Reflection

Figure 2.1, shows infinite reflections (Γn as n → ∞) emitted from the system. These

reflections add up to make
∞∑
n=0

Γn = Γsys. (2.1)

Looking at Fig. 2.1,

Γ0 = Γ12 (2.2a)

Γ1 = T21e
γdΓ23e

γdT32

= T21T32Γ23e
2γd (2.2b)

Γ2 = T21e
γdΓ23e

γdΓ21e
γdΓ23e

γdT32

= T21T32Γ21Γ23
2e4γd (2.2c)

. . .

Γn
n>0

= T21T32Γ21
n−1Γ23

ne2nγd (2.2d)

Since mediums 1 and 3 are the same the following two relations are true,

Γ23 = Γ21 (2.3a)

and,

T32 = T12. (2.3b)

Therefore, equations (2.2b)-(2.2d) can be rewritten as,

Γ1 = T12T21Γ21e
2γd (2.4a)

Γ2 = T12T21Γ21
3e4γd (2.4b)

Γn
n>0

= T12T21Γ21
2n−1e2nγd

= T12T21Γ21e
2γd(Γ21

2e2γd)n−1. (2.4c)
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Substituting Eqn. (2.2a) and Eqn. (2.4c) to Eqn. (2.1) gives the infinite series

Γsys =

∞∑
n=0

Γn

= Γ0 +
∞∑
n=1

Γn

= Γ12 +

∞∑
n=1

T12T21Γ21e
2γd(Γ21

2e2γd)n−1

= Γ12 +
∞∑
n=0

T12T21Γ21e
2γd(Γ21

2e2γd)n

= Γ12 + T12T21Γ21e
2γd

∞∑
n=0

(Γ21
2e2γd)n.

(2.5)

For the mathematical geometric series

S∞ =

∞∑
k=0

rk

where

−1 < r < 1,

it is known that

S∞ =
1

1− r
.

Therefore, the infinite geometric sum of Eqn. (2.5) can be rewritten as

∞∑
n=0

(Γ21
2e2γd)n =

1

1− Γ21
2e2γd

(2.6)

and the whole equation can be rewritten as

Γsys = Γ12 +
T12T21Γ21e

2γd

1− Γ21
2e2γd

. (2.7)

Now there are only four different reflection and transmission coefficients here: Γ12, Γ21, T12, and

T21. For simplicity, all of them can be rewritten in terms of Γ12.
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Balanis[15] chapter 5 shows that

Γij = −Γji (2.8a)

and

Γij + Tij = 1 (2.8b)

therefore

Tij = Γji + 1. (2.8c)

With these relations the following transformations are true:

Γ21 = −Γ12 (2.9a)

T12 = 1− Γ12 (2.9b)

T21 = 1 + Γ12. (2.9c)

Given Eqn. (2.9) as transformations, Eqn. (2.7) may be rewritten as,

Γsys = Γ12 +
(1− Γ12)(1 + Γ12)(−Γ12)e2γd

1− (−Γ12)2e2γd

= Γ12 +
(1− Γ12

2)(−Γ12)e2γd

1− Γ12
2e2γd

= Γ12 +
(Γ12

3 − Γ12)e2γd

1− Γ12
2e2γd

=
Γ12(1− Γ12

2e2γd) + (Γ12
3 − Γ12)e2γd

1− Γ12
2e2γd

=
Γ12 − Γ12

3e2γd + Γ12
3e2γd − Γ12e

2γd

1− Γ12
2e2γd

=
Γ12 − Γ12e

2γd

1− Γ12
2e2γd

,

(2.10)
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and rewritten in terms of S-parameters gives

Γsys = S11 =
Γ12(1− e2γd)

1− Γ12
2e2γd

. (2.11)

Now S11 is in terms of the local reflection, Γ12, and the wave propagation, e2γd. Later these two

will be rewritten to solve for ε and µ.

2.3. Derivation of System Transmission

The concepts here for transmissions are the same as they were for the reflections in sec-

tion 2.2. In Fig. 2.1, it is shown that there are infinitely many transmissions (Tn as n→∞). These

transmissions when added make
∞∑
n=0

Tn = Tsys. (2.12)

Looking at Fig. 2.1,

T1 = T21e
γdT32

= T21T32e
γd (2.13a)

T2 = T21e
γdΓ23e

γdΓ21e
γdT32

= T21T32Γ21Γ23e
3γd (2.13b)

. . .

Tn
n>0

= T21T32e
γd(Γ21Γ23e

2γd)n−1. (2.13c)

Applying Eqn. (2.3) as relations to Eqn. (2.13c) produces

Tn
n>0

= T12T21e
γd(Γ2

21e
2γd)n−1. (2.14)
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Applying Eqn. (2.14) to Eqn. (2.12),

Tsys =

∞∑
n=0

Tn

=
∞∑
n=1

T12T21e
γd(Γ21

2e2γd)n−1

= T12T21e
γd
∞∑
n=1

(Γ21
2e2γd)n−1

= T12T21e
γd
∞∑
n=0

(Γ21
2e2γd)n

(2.15)

Using the concept of the geometric series on Eqn. (2.15) gives

Tsys =
T12T21e

γd

1− Γ21
2e2γd

. (2.16)

Finally, applying Eqn. (2.9) gives

Tsys =
(1− Γ12)(1 + Γ12)eγd

1− Γ21
2e2γd

=
(1− Γ12

2)eγd

1− Γ21
2e2γd

,

(2.17)

and in terms of S-parameters is

Tsys = S21 =
eγd(1− Γ12

2)

1− Γ21
2e2γd

. (2.18)

2.4. Finding the C-parameters in this System

Now there are two major occurrences of the C-parameters in this system: the definition of

the intrinsic impedance Z and the definition of the definition of the phase constant β; which are,

according to Balanis[15],

Z =

√
jωµ

σ + jωε
(2.19a)

β = ω
√
µε

√√√√1

2

(
1 +

√
1 +

( σ
ωε

)2
)
. (2.19b)
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The goal is to solve for ε2; that is ε of medium 2, the DEM. Apply some of the assumptions

made will simplify the definitions of Z2 and β2. First, applying Eqn. (1.1) gives

Z2 =

√
µ2

ε2
(2.20a)

β2 = ω
√
µ2ε2. (2.20b)

Z2 is the intrinsic impedance of medium 2. Intrinsic impedance can be found in the definition

of the reflection coefficient

Γij =
Zj − Zi
Zj + Zi

(2.21)

and in this case

Γ12 =
Z2 − Z1

Z2 + Z1
. (2.22)

Solving Eqn. (2.22) for Z2 gives

Γ12(Z2 + Z1) = Z2 − Z1

Γ12Z2 + Γ12Z1 = Z2 − Z1

Z2 − Γ12Z2 = Z1 + Γ12Z1

Z2(1− Γ12) = Z1(1 + Γ12)

Z2 = Z1
1 + Γ12

1− Γ12

(2.23)

Since mediums 1 and 3 are free space, Z1 = Z3 = Z0, which is the intrinsic impedance of free space.

Applying the definition of Z2 in Eqn. (2.20a) to Eqn. (2.23) gives

Z2 =

√
µ2

ε2
= Z0

1 + Γ12

1− Γ12
(2.24)

The phase constant of medium 2, β2, can be found in the definition of the wave propagation

constant, (γ),

γ = α− iβ, (2.25)
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where α is the attenuation constant and β is the phase constant, which is the imaginary portion of

γ. Using equation2.25 for medium 2, we can simply solve for β2,

γ2 = α2 − iβ2

iβ2 = α2 − γ2

β2 =
α2 − γ2

i

β2 = i(γ2 − α2)

(2.26)

For medium 2, the attenuation constant is negligible, as shown in Eqn. (1.3), therefore Eqn. (2.20b)

is

β2 = ω
√
µ2ε2 = iγ2. (2.27)

2.5. Analysis

Now definitions for S11, S21, Z2, and β2 have been shown to be

Γsys = S11 =
Γ12(1− e2γ2d)

1− Γ12
2e2γ2d

(2.11)

Tsys = S21 =
eγ2d(1− Γ12

2)

1− Γ21
2e2γ2d

(2.18)

Z2 =

√
µ2

ε2
= Z0

1 + Γ12

1− Γ12
(2.24)

β2 = ω
√
µ2ε2 = iγ2. (2.27)

These equations will be used as building blocks to extract ε2 from the system in terms of S-

parameters and other known values. Note that there are four (4) equations listed above, with four

(4) unknowns: Γ12, γ2, µ2 and ε2.

2.5.1. Solving Intrinsic Impedance

The intrinsic impedance can be solved in terms of knowns by solving Eqn. (2.11) for eγ2d,

substituting into Eqn. (2.18), solving for Γ12, and finally substituting into Eqn. (2.24).

13



First, solving Eqn. (2.11) for eγ2d,

S11 =
Γ12(1− e2γ2d)

1− Γ12
2e2γ2d

S11(1− Γ12
2e2γ2d) = Γ12(1− e2γ2d)

S11 − S11Γ12
2e2γ2d = Γ12 − Γ12e

2γ2d

Γ12e
2γ2d − S11Γ12

2e2γ2d = Γ12 − S11

e2γ2d(Γ12 − S11Γ12
2) = Γ12 − S11

e2γ2d =
Γ12 − S11

Γ12 − S11Γ12
2

eγ2d = ±

√
Γ12 − S11

Γ12 − S11Γ12
2

(2.29)
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Now substituting Eqn. (2.29) in (2.18) and solving for Γ12,

S21 =
eγ2d(1− Γ12

2)

1− Γ21
2e2γ2d

S21 = ±

√
Γ12 − S11

Γ12 − S11Γ12
2

1− Γ12
2

1− Γ21
2( Γ12−S11

Γ12−S11Γ12
2 )

S21 = ±

√
Γ12 − S11

Γ12 − S11Γ12
2

1− Γ12
2

1− Γ12
2−S11Γ12

1−S11Γ12

S21 = ±

√
Γ12 − S11

Γ12 − S11Γ12
2

1− Γ12
2

1−S11Γ12−Γ12
2+S11Γ12

1−S11Γ12

S21 = ±

√
Γ12 − S11

Γ12 − S11Γ12
2

(1− Γ12
2)(1− S11Γ12)

1− S11Γ12 − Γ12
2 + S11Γ12

S21 = ±

√
Γ12 − S11

Γ12 − S11Γ12
2

(1− Γ12
2)(1− S11Γ12)

1− Γ12
2

S21 = ±

√
Γ12 − S11

Γ12 − S11Γ12
2 (1− S11Γ12)

S21
2 =

Γ12 − S11

Γ12 − S11Γ12
2 (1− S11Γ12)2

S21
2 =

Γ12 − S11

Γ12(1− S11Γ12)
(1− S11Γ12)2

S21
2 =

Γ12 − S11

Γ12
(1− S11Γ12)

S21
2Γ12 = (Γ12 − S11)(1− S11Γ12)

S21
2Γ12 = Γ12 − S11 − S11Γ12

2 + S11
2Γ12

0 = S11Γ12
2 + S21

2Γ12 − S11
2Γ12 − Γ12 + S11

0 = Γ12
2(S11) + Γ12(S21

2 − S11
2 − 1) + (S11)

0 = Γ12
2

(
1

2

)
+ Γ12

(
S21

2 − S11
2 − 1

2S11

)
+

(
1

2

)

Γ12 =
1 + S11

2 − S21
2

2S11
±

√(
S21

2 − S11
2 − 1

2S11

)2

− 1

Γ12 =
1 + S11

2 − S21
2

2S11
±

√(
1 + S11

2 − S21
2

2S11

)2

− 1

(2.30)
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A simplified form of this equation can be,

Γ12 = Y ±
√
Y 2 − 1 (2.31a)

Y =
1 + S11

2 − S21
2

2S11
, (2.31b)

using Y as an arbitrary variable. Now substituting Eqn. (2.31) into Eqn. (2.24) and simplifying

gives

Z2 = Z0
1 + Γ12

1− Γ12

Z2
2

Z0
2 =

(
1 + Y ±

√
Y 2 − 1

1− Y ∓
√
Y 2 − 1

)2

=
Y 2 ± 2Y

√
Y 2 − 1 + Y 2 − 1 + 2Y ± 2

√
Y 2 − 1 + 1

Y 2 ± 2Y
√
Y 2 − 1 + Y 2 − 1− 2Y ∓ 2

√
Y 2 − 1 + 1

=
2Y 2 + 2Y ± 2Y

√
Y 2 − 1± 2

√
Y 2 − 1

2Y 2 − 2Y ± 2Y
√
Y 2 − 1∓ 2

√
Y 2 − 1

=
Y 2 + Y ± Y

√
Y 2 − 1±

√
Y 2 − 1

Y 2 − Y ± Y
√
Y 2 − 1∓

√
Y 2 − 1

=
Y (Y + 1)±

√
Y 2 − 1(Y + 1)

Y (Y − 1)±
√
Y 2 − 1(Y − 1)

=
(Y + 1)(Y ±

√
Y 2 − 1)

(Y − 1)(Y ±
√
Y 2 − 1)

=
Y + 1

Y − 1

=
1+S11

2−S21
2

2S11
− 1

1+S11
2−S21

2

2S11
+ 1

=
1+S11

2−S21
2−2S11

2S11

1+S11
2−S21

2+2S11
2S11

=
1 + S11

2 − S21
2 − 2S11

1 + S11
2 − S21

2 + 2S11

=
1− 2S11 + S11

2 − S21
2

1 + 2S11 + S11
2 − S21

2

=
(1− S11)2 − S21

2

(1 + S11)2 − S21
2
.

(2.32)

16



Now Z2 is completely in terms of knowns as

Z2 =

√
µ2

ε2
= ±Z0

√
S21

2 − (1 + S11)2

S21
2 − (1− S11)2 . (2.33)

2.5.2. Solving Phase Constant

The method to solving the phase constant in terms of knowns will be similar to the last

section. First solve Eqn. (2.18) for Γ12, substitute into Eqn. (2.11), solve for eγ2d, solve for γ2, and

finally substitute into equation 2.27.

First, solve Eqn. (2.18) for Γ12 as

S21 =
eγ2d(1− Γ12

2)

1− Γ12
2e2γ2d

(1− Γ12
2e2γ2d)S21 = eγ2d(1− Γ12

2)

S21 − S21Γ12
2e2γ2d = eγ2d − eγ2dΓ12

2

eγ2dΓ12
2 − S21Γ12

2e2γ2d = eγ2d − S21

Γ12
2(eγ2d − S21e

2γ2d) = eγ2d − S21

Γ12
2 =

eγ2d − S21

eγ2d − S21e2γ2d

Γ12 = ±

√
eγ2d − S21

eγ2d − S21e2γ2d
.

(2.34)
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Now substitute this solution for Γ12 into Eqn. (2.11),

S11 =
Γ12(1− e2γ2d)

1− Γ12
2e2γ2d

Γ12 =

(
S11

1− e2γ2d

)(
1− Γ12

2e2γ2d
)

±

√
eγ2d − S21

eγ2d − S21e2γ2d
=

(
S11

1− e2γ2d

)(
1−

(
eγ2d − S21

eγ2d − S21e2γ2d

)
e2γ2d

)

±

√
eγ2d − S21

eγ2d − S21e2γ2d
=

(
S11

1− e2γ2d

)(
1− e2γ2d − S21e

γ2d

1− S21eγ2d

)

±

√
eγ2d − S21

eγ2d − S21e2γ2d
=

(
S11

1− e2γ2d

)
(1− S21e

γ2d)− e2γ2d + S21e
γ2d

1− S21eγ2d

±

√
eγ2d − S21

eγ2d − S21e2γ2d
=

(
S11

1− e2γ2d

)
1− e2γ2d

1− S21eγ2d

±

√
eγ2d − S21

eγ2d − S21e2γ2d
=

S11

1− S21eγ2d

eγ2d − S21

eγ2d − S21e2γ2d
=

S11
2

(1− S21eγ2d)2

eγ2d − S21

eγ2d(1− S21eγ2d)
=

S11
2

(1− S21eγ2d)2

eγ2d − S21

eγ2d
=

S11
2

1− S21eγ2d

S11
2eγ2d = (eγ2d − S21)(1− S21e

γ2d)

0 = S21e
2γ2d + S11

2eγ2d − S21
2eγ2d − eγ2d + S21

0 = e2γ2d(S21) + eγ2d(S11
2 − S21

2 − 1) + S21

0 = e2γ2d(
1

2
) + eγ2d(

S11
2 − S21

2 − 1

2S21
) +

1

2

eγ2d =
1 + S21

2 − S11
2

2S21
±

√(
1 + S21

2 − S11
2

2S21

)2

− 1.

(2.35)

A simplified form of this equation can be

eγ2d = X ±
√
X2 − 1 (2.36a)

X =
1 + S21

2 − S11
2

2S21
. (2.36b)
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Now solve Eqn. (2.36a) for β2,

eγ2d = X ±
√
X2 − 1

ln
[
eγ2d

]
= ln

[
X ±

√
X2 − 1

]
ln
∣∣∣eγ2d∣∣∣+ j

(
arg
[
eγ2d

]
+ 2πm

)
= ln

[
X ±

√
X2 − 1

]
Real [γ2d] + j (Imag [γ2d] + 2πm) = ln

[
X ±

√
X2 − 1

]
σ2d+ j (−β2d+ 2πm) = ln

[
X ±

√
X2 − 1

]
j (−β2d+ 2πm) = ln

[
X ±

√
X2 − 1

]
β2d+ 2πm = j ln

[
X ±

√
X2 − 1

]
β2d = j ln

[
X ±

√
X2 − 1

]
+ 2πm

β2 = ω
√
µ2ε2 =

j ln
[
X ±

√
X2 − 1

]
+ 2πm

d
,

(2.37)

where the logarithm branch m ∈ Z. Note that this means there are infinite solutions for the phase

constant as m varies. This will lead to the infamous branches later.

2.5.3. Combining Solutions

Now the intrinsic impedance and the phase constant are in terms of knowns in Eqn. (2.33)

and (2.37). Note that the values of permittivity and permeability used are their non-relative values,

near the order of 10−7. In order to find the relative values, the previous equations may be modified.

The relative intrinsic impedance, Zr can be defined as

Zr =
Z

Z0
, (2.38)

thus Zr is relative to freespace. The phase constant may also be broken down to solve for the

refractive index, n, in the definition

β =
ωn

c
(2.39a)

n =
√
µrεr. (2.39b)
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Note that this definition is valid as c = 1√
µ0ε0

. Thus Eqn. (2.33) and (2.37) may be rewritten as

Z2,r =

√
µ2,r

ε2,r
= ±

√
S21

2 − (1 + S11)2

S21
2 − (1− S11)2 (2.40)

n2 =
√
µ2,rε2,r =

j ln
[
eγ2d

]
+ 2πm

ωd/c
(2.41)

where

eγ2d = X ±
√
X2 − 1 (2.36a)

X =
1 + S21

2 − S11
2

2S21
. (2.36b)

Finally the relative C-parameters can easily be solved for by the relations

ε2,r = n2 /Z2,r (2.43a)

µ2,r = n2 ∗ Z2,r. (2.43b)

Now it is clearly seen that the C-parameters are solved exclusively in terms of the S-

parameters, the signal frequency, DEM depth, and the logarithm branch. The rest of this thesis

will tackle determining:

• The integer value used for the logarithm branch

• The sign branch in Eqn. (2.36a)

• The sign branch in Eqn. (2.40).

Though, next will be determining when branches occur.
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3. DETECTION OF BRANCHES1

Branches in this system are defined as discontinuities, unusual jumps, or deviations in a

function. In this case, the branches to be concerned about are those that occur in the function def-

inition of permittivity. However, since permittivity has been shown to be dependent on impedance

and the index of refraction, the problem of branches is likely to be found in those variables first.

In the mathematics of detecting branches, it is important not to make the simplification

that ln[ejγd] = jγd. This equation will be valid for low frequencies, but there is a problem when γ

has an imaginary component. For the lossless case, γ = jωn/c and Imag[n] = 0, thus it is purely

imaginary.

In the case of a logarithm of a complex number there is an imaginary argument statement;

or log(z) = log|z|+ j (Arg[z] + 2mπ), where z is any complex number, Arg[z] is the complex angle

of z modulated to the range (−π, π], and m is any integer. This concept is represented in Fig. 3.1.

The first logarithmic branch occurs when the argument of the exponential first reaches a value of

±π.

0 2 3 4
-

0

Im
[l
n

(e
j

)]

Figure 3.1. Natural Log of Complex Exponential. As θ increases, Im[ln(ejθ)], or Arg(ejθ), follows
linearly until θ = π, for the first argument branch.

1The work in this chapter is based on an article[16] published by the author of this thesis, Jacob Lewis, along with
Dr. Benjamin D. Braaten, Jerika Cleveland, Dipankar Mitra, Dr. Jeffrey Allen, and Dr. Monica Allen. This team of
people together derived the topic of investigation, while Jacob performed the research and wrote the majority of the
article. Revisions to both theoretical and written aspects of the article were done by the whole team.
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Figure 3.2. Derivation of εr from S-parameters from HFSS simulation using equations listed in
section 2.5.3. when εr = 12.8 and µr = 1.25. For a period, εr is 12.8 as expected, until 3.75 [GHz]
when a branch occurs.

For example, for the system in Fig. 2.1, the first branch is when |γd| = |ωndc | = π. Assuming

εr = 12.8, µr = 1.25, and d = 0.01 [m], the first branch would be expected when

∣∣∣∣ωndc
∣∣∣∣ = π

2πfd|n| = cπ

f =
c

2d|√εrµr|

f ≈ 3.75[GHz].

(3.1)

Simulations to verify this were run in both HFSS and MATLAB, which used only equations

previously listed. Figure 3.2 shows the derived permittivity from the S-parameters of a simulation

in HFSS. The simulation used Floquet ports for an infinite simulated length and width of a dielectric

substrate with an incident plane wave designed some distance off the boundaries of the substrate.

The S-parameters were deembeded to just off the boundaries of the substrate to mitigate the

substrate, as represented in Fig. 1.2. The substrate physical and electrical parameters were defined

according to the example described above for comparison. It is seen that there is a variation in the

permittivity at the expected frequency of 3.75 [GHz]. It has been discovered that, according the

equation used to find the first branch, branches occur when the relation

2fdn = cm (3.2)
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is true, for any value of the integer m.

It should be noted that this branch is due to a form of resonance, based on the electrical

and geometric properties of the DEM.

Another method discovered to predict branches if n is not known is to track eγd with

Eqn. (2.36a) for when the argument of this statement reaches a value of ±π. Though the argument

branch has been identified and detected, it, as well as the sign branches, still need to be properly

compensated.
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4. COMPENSATION OF BRANCHES IN DPS

METAMATERIALS1

Looking at the assumptions of section 1.4, a common conclusion for determining which sign

to use of Eqn. (2.36a) and (2.41) is that the criteria

Real[Zr] ≥ 0 (4.1a)

Imag[n] ≥ 0 (4.1b)

must be maintained, as negative real impedance implies a gain of power and negative imaginary

refractive index implies losses. These assumptions are useful and a good starting point, but they

tend to break down if Zr → 0 or n → 0. In the studies for this thesis, small variations have been

found on both of these values. If the variations are close to 0, the variables may change signs

between 0+ and 0−. This concept is discussed further in the next chapter. Thus further analysis

into these branches is needed to find alternative methods of sign branch selection for accurate

results. For the sake of analysis, Eqn. (2.36a) will be rewritten as

eγ2d = X +m1

√
X2 − 1 (4.2)

and Eqn. (2.41) will be rewritten as

n2 =
c

ωd

(
ln
[
eγ2d

]
+ 2πm2

)
. (4.3)

4.1. Sign Branch of Wave Propagation

If m1 is chosen by default to be positive, Eqn. (4.2) is plotted as a function of frequency.

It can be seen in Fig. 4.1 that the imaginary portion has sharp changes when reaching the value

zero. Interestingly, for this case of a DPS system, the two values of m1 give complex conjugates

1The work in this chapter is based on an article[17] published by the author of this thesis, Jacob Lewis, along with
Dr. Benjamin D. Braaten, Jerika Cleveland, Dipankar Mitra, Dr. Jeffrey Allen, and Dr. Monica Allen. This team of
people together derived the topic of investigation, while Jacob performed the research and wrote the majority of the
article. Revisions to both theoretical and written aspects of the article were done by the whole team.
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Figure 4.1. Imaginary part of wave propagation (solid) and real part of index of refraction (dashed)
plotted over frequency without any branch compensation. eγ2d was derived using Eqn. (4.2)
and (2.36b) and n2 using (4.3).

for eγ2d. It is appropriate to choose the positive branch at DC and oscillate between positive and

negative each time Imag[eγ2d]≈ 0. Thus the value of m2 will oscillate between +1 and -1, with

a duration of approximately 3.75 [GHz] on each value for this scenario. This will result in a sign

branch corrected, non-jagged sinusiod.

4.2. Argument Branch of Refractive Index

Analyzing m2 of (4.3), technically there can only be one branch that provides the correct

value of n2. If m2 is chosen by default to be 0, n2 can be plotted as a function of frequency, as seen

in Fig. 4.1. It can be seen that there are branch discontinuities at similar frequencies as the m1

branch changes shown in Fig. 4.1. If m2 is incremented by 1 at each of these branch frequencies,

the result is a continuous value of n2 = 4, which is the theoretically expected value from the known

values of the constitutive parameters. Using the values of Zr and n2, Fig. 4.2 shows εr with and

without the various branch compensations demonstrated in this thesis.

This method of branch compensation for C-parameter retrieval from the S-parameters is

referenced by the author as the phase tracking method, as it primarily tracks the phase, or argument,

over frequency. This method is effective and can be automated in MATLAB for ease and speed.
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Figure 4.2. εr with various branch compensations. * shows εr without any compensations, ◦ shows
just sign branch compensation, and 4 shows both sign and logarithmic branch compensation.
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5. COMPENSATION OF BRANCHES IN ALL

METAMATERIALS AND MATLAB CODING

The theory will now be expanded to include all quadrants of metamaterials (MTM) and

major challenges with automating this method in MATLAB will be identified and compensated.

This chapter will use simulated data with various values of C-parameters, with the intention of

using the S-parameters to derive the already known C-parameters. 20 simulations were performed

with thickness d = 1 [cm], frequency f = [1, 20] GHz, and varying ε and µ. The values of ε and µ

were determined using the MTM chart with constant radius 12 and various angles to produce the

value pairs shown in TABLE 5.1 and illustrated in the MTM chart in Fig. 5.1.

5.1. Simulation vs. Theory

Expanding the HFSS simulation to include all four quadrants of metamaterials, the simu-

lation shows that the current theory does not match the simulation values when ε < 0 (ENG &

DPS). Present simulation results vs. theoretical results deriving S-parameters.

The current theory as it is written only will deliver a positive εr. When we analyze the case

of DNG, it has been shown that n should be negative. However, when deriving n from εr and µr,

if both are to be negative, then their signs cancel and n remains positive. The solution to this is

to separate the square root function into

n =
√
εr
√
µr; (5.1)

Table 5.1. Sampled value pairs of ε and µ used for simulations. Every combination of ± was used
to test each quadrant of metamaterials. Value pairs were chosen by radius 12 and various angles
on the metamaterial chart ( ∠ ≈ 45± {0, 5, 25}).

±ε 11.9583 10.8854 8.4853 5.0505 1

±µ 1 5.0505 8.4853 10.8854 11.9583
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Figure 5.1. These value pair of ε and µ were chosen for simulation and analysis. There are 5
points in each quadrant, with a constant magnitude of 12 from the center and angles of about
45± {0, 5, 25}. Points are numbered 1 - 20 counter-clockwise for reference.

which, for ε−,r ∈ εr < 0 and µ−,r ∈ µr < 0, produces

n =
√
−ε−,r

√
−µ−,r

= j
√
ε−,rj

√
µ−,r

= −√ε−,r
√
µ−,r,

(5.2)

which is expected. The same also is necessary for the definition of Zr,

Zr =

√
µr
εr

=

√
µr√
εr
, (5.3)

which produces

Zr =

√−µ−,r√−ε−,r
=
j
√
µ−,r

j
√
ε−,r

=

√
µ−,r
√
ε−,r

. (5.4)

This fixes the path to the S-parameters from C-parameters; though, the same problem does not

exist in solving the C-parameters from S-parameters. This table illustrates the relationship between

(εr, µr) and (n,Zr) with the new definitions, which are shown in Table 5.2.
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Table 5.2. Metamaterial C-parameter characteristic chart. As the signs of ε and µ change, there is
corresponding signs for Z and n according to the equations listed above.

ε µ Z n

+ + + +
- + -j +j
- - + -
+ - +j +j
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Figure 5.2. Imaginary part of the wave propagation. Sign of this is sporadic due to the inconsistent
sign of imag(X2 − 1), which is very small and prone to error.

5.2. DPS Adjustments

For double positive systems (DPS), an issue is present in calculating the wave propagation.
√
X2 − 1 is easily sporadic, due to the fact that X has been found to be real and less than 1, thus

X2 − 1 will be negative. However, if there is any level of an imaginary component in X, due to

rounding errors, the sign will determine if the root has an angle of ±π. This is shown in Fig. 5.2.

[8] showed the equation for the wave propagation to be

eγd = X ± j
√

1−X2 (5.5)

which alleviates the issue of the unstable sign of the imaginary portion of the wave propagation.

Another solution is to eliminate the imaginary portion of X. It has been found that for

lossless MTM, X is almost purely real at all times. The imaginary portion can be neglected and
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Figure 5.3. Peaks shown of φn, the normalized phase, using the findpeaks() function of MATLAB
when comparing φn to 1.5 as a reference point for detecting sign branches.

assumed to be from calculation and rounding errors. This solution will be used for the remainder of

this paper as it applies to all quadrants of MTM with no noticeable loss of information. However,

it should be further investigated as to why X is real when it is based on the complex values of the

S-parameters.

The second issue to address in automating is the branch compensations, which were well

described in [17]. One assumption used for solving C-parameters is that imag(n) > 0. However, for

DPS, imag(n) ≈ 0, therefore choosing the proper sign branch of eγd requires tracking the phase. In

this case, sign branches occur when the phase γd = {0, π}, which calculated by taking the angle of

eγd in MATLAB. Due to sampling issues, sampling greater frequencies will allow for more precise

locations and compensations of sign branches. Since at this point the phase will be oscillating

between 0 and π, a recommended method is to normalize the phase by using

φn = |φ− π

2
| (5.6)

where φ is the phase γd and φn is the normalized phase. This method will allow all sign branches

to be at peaks in the curve above 1.5 [rad]. This concept is illustrated in Fig. 5.3 and the code is

shown in Listing 5.1. phi is φ, an array over frequency, findpeaks() is a MATLAB function in the

Signal Processing Toolbox, and m1 is the sign branch array. Notice that the code only looks for

peaks above 1.5 in phi, and assigns their location to the variable pks. The pks element(s) of m1 are
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Listing 5.1. MATLAB code for sign branches

1 phi = angle ( pro ) ;
2 phin = abs ( phi−pi /2) ;
3 [ ˜ , pks ] = f indpeaks (max( phin , 1 . 5 ) ) ;
4 m1( pks ) = −1;
5 m1 = cumprod(m1) ;

Listing 5.2. MATLAB code for log branches

1 phi = angle ( pro ) ;
2 [ ˜ , pks ] = f indpeaks (max( phi , 3 ) ) ;
3 va l = phi ( pks − 1) > 0 ;
4 m2( pks + va l ) = va l ∗2 − 1 ;
5 m2 = cumsum(m2) ;

then assigned to -1, to represent an inflection in the branch array. The array is then cumulatively

multiplied to carry the sign changes throughout. m1 was initialized as an array of ones. 1.5 was

chosen to be the lower limit of detecting peaks near π/2; however, this rounding could be a source

of error if φ rises above 1.5 and descends naturally, which would then be misread as a branch

occurrence. This can happen in MTM where the C-parameters are frequency dependant. Once

the sign branches are compensated for, the wave propagation must be recalculated with the proper

sign branches in order to move on to the log branches.

The log branches occur when φ reaches π. Similar to solving for the sign branches, these

peaks may be detected using the findpeaks() function of MATLAB. However, if the C-parameters

are not constant over frequency, then it’s possible to get a negative log branch. The code shown

in Listing 5.2 properly compensates for log branches. m2 was initialized as an array of zeros, and

cumsum() will progressively add the log branches across the array. val is used to determine whether

to increase or decrease the branch value. Looking at a peak, if φ−pks > 0, then the log branch is

positive because φ is increasing and the next value of φ needs to be added 2π to maintain continuity.

However, if φ−pks < 0, then the branch is negative because φ is decreasing and the current value

of φ needs to be subtracted 2π. There is still a potential source of error with this code; if φ rises

and falls between 3 and π, a similar error to the one previously described, this code will misread

the event as a log branch.
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Listing 5.3. MATLAB code for sign branch of (2.40) in ENG

1 zr = zr .∗(1 −2∗( (X>1) & ( imag( s11 )>0) ) ) ;

5.3. ENG and MNG Adjustments

For ENG systems, Zr has a similar instability as eγd did for DPS. Consequently, it has a

similar solution. Because of an imaginary component floating near zero in the root of Eqn. (2.40),

Zr can be unstable if it is expected to be primarily imaginary. The same two solutions can be

applied here. Either multiply the inside of the root by −1 and the outside by j or, since it has been

found that the imaginary component is negligible in comparison to the real component, removing

the imaginary component entirely attributing it to computer error. The theoretical validity of this

action may be disputed, but it will be performed for the remainder of this paper as it simplifies

calculations for all quadrants.

Equation (2.40) has a ±, which is usually decided by Eqn. (4.1a); however in this quadrant

Real[Zr] = 0, therefore the assumption is not helpful in determining the proper sign of Zr. Since

X > 1 for only ENG and MNG and Imag[S11] > 0 for ENG, which was discovered in testing

values, these together can be used as an assumption to determine that the current sample is ENG.

According to TABLE 5.2, for ENG Sign[Zr] = −j, therefore the ± of Eqn. (2.40) should be chosen

to be negative for ENG. This concept is practiced in Listing 5.3 and can be run as a final step of

the code.

Though, in ENG X can be quite large, depending on the situation. In the simulations used

for this paper, when f > 10 [GHz], X � 107 for some simulations. If X2 > 1016, this is a problem

for Eqn. (4.2) as MATLAB, by default uses double floating point precision, which only holds about

16 digits, as according to [18]. Since X2 � 1,
√
X2 − 1 = X and eγd = 0. This is incorrect

and causes n = ∞. (Note that there is not a gradual convergence to these values, but rather a

sudden occurrence; thus the statement ”eγd → 0” is not used.) To increase precision beyond double

floating-point in MATLAB, X was stored as a sym from the Symbolic Math Toolbox. This allowed

Eqn. (4.2) to be processed with 100 digits of precision and eliminated the issue of X being too

large. This concept is practiced in Listing 5.4. Note that pro is immediately stored as a double
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Listing 5.4. MATLAB code for symbolic math calculation of (4.2)

1 i f any(X > 1e7 )
2 X = sym ((1 + s21 .ˆ2 − s11 . ˆ 2 ) . / s21 /2) ;
3 pro = double ( . . .
4 real (X) + m1.∗ sqrt ( real (X) .ˆ2 − 1) ) ;
5 X = double (X) ;
6 else
7 pro = . . .
8 real (X) + m1.∗ sqrt ( real (X) .ˆ2 − 1) ;
9 end

Listing 5.5. MATLAB code for m1 selection in ENG and MNG

1 m1 = (m1 + 1) . ∗ ( real (X) < 1) − 1 ;

floating-point value, so as to keep that the default class. Also note the if statement to catch if X

is ever large enough to justify using the sym class.

Finally, for ENG it is found that the proper sign branch is m1 = −1. This can be imple-

mented with the code in Listing 5.5, which again uses X > 1 as the indication of ENG. This code

should be used at the end of Listing 5.1.

All adjustments mentioned in this section are also needed for MNG. The code listings shown

will also work in discerning ENG from MNG.

5.4. DNG Adjustments

The adjustments made for DPS are also needed for this quadrant, with one addition. The

methods to select m1 and m2 are mostly correct, but will be negative of what it should be in DNG.

When it comes to deciding if a sample is DPS or DNG, it is rather difficult to recognize as most of

the values from the equations in section 2.5.3 will be the same for both quadrants. However, the

wave propagation and S-parameters show a slight distinction.

In addition to the criteria that X < 1, which determines that the sample is either DPS

or DNG, the sign of phase of the wave propagation can be used to distinguish the two quadrants.

For DPS,
√
µε > 0 ⇒ φ > 0, where the phase φ = βd and β is the phase constant; and for DNG,

√
µε < 0⇒ φ < 0. Thus the sign of φ is the distinguishing factor between DPS and DNG. However,

as the equations are currently written, φ is by default positive, unless the signs of m1 and m2 are

changed; thus φ suffers the same need for correction as m1 and m2. However, interestingly it has

been found that φ ≈ −∠S21, after m2 branch corrections.
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Listing 5.6. MATLAB code for m1 and m2 sign correction in DNG

1 as21 = angle ( s21 ) ;
2 das21 = [ 0 ; d i f f ( as21 ) ] ;
3 [ ˜ , pks ] = f indpeaks (max(abs ( das21 ) ,6 ) ) ;
4 va l = sign ( das21 ( pks ) ) ;
5 m3 = m2∗0 ;
6 m3( pks ) = va l ;
7 m3 = cumsum(m3) ;
8 isDPS = 1−2∗( as21 − 2∗pi∗m3 > 0) . ∗ (X < 1) ;
9 m1 = m1.∗ isDPS ;

10 m2 = m2.∗ isDPS ;

Since ∠S21 modulates to be between ±π, it is discontinuous unless added −2πm2. This is

the same m2 from Eqn. (4.3). However, m2 may have the wrong sign, and the branches may be off

by a single frequency sample. To fix this, a third branch must be analyzed. This branch is the same

type as m2, thus it may have the same solution. In order to ensure accuracy, the first derivative was

analyzed instead. The code in Listing 5.6 creates m3 and uses it on ∠S21 to determine if a smaple

is DNG or DPS. diff(...) is providing the first derivative of ∠S21, however it returns an array one

element less than it’s input, thus 0 is concatenated as the first element. findpeaks(...) works just as

it did for Listing 5.2, but the input is a little different this time. Whenever there is a branch, das21

will spike to ±2π, as the uncompensated ∠S21 is jumping either π → −π or −π → π; thus checking

for spikes beyond ±6 should indicate a branch. Since findpeaks(...) only looks for positive peaks,

the absolute value was used. Since this results in a loss of information, knowing whether a spike

is positive or negative, it’s sign is stored in the val. m3 is then initialized as zeroes and computed

with these values just as m2 was. To check if a sample is DPS, X must not be greater than 1 and

the branch corrected ∠S21 must not be positive. If both these tests fail, then the sample is DNG

and m1 and m2 are flipped at those samples only.

Thus, with these adaptations of MATLAB code combined with the phase tracking method

of the previous chapter and further illustrated in this chapter, the C-parameters may be derived

from the S-parameters sampled over a range of frequencies for any dielectric MTM.
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6. RESULTS

Here are the results of a series of tests featuring both HFSS and MATLAB simulations and

highlighting the phase tracking method’s strengths and weaknesses.

The results of this developed phase tracking method are shown in Fig. 6.1 and 6.2. These

results use the 20 HFSS simulations from Table 5.1 and Fig. 5.1.

One of the advantages of using vector calculations is that MATLAB is optimized for array

and matrix calculations, thus it is more efficient than using for loops and nested if statements.

Performing results on a Intel I3-4170 (3.70GHz, Dual Core) with 12 GB of RAM and Windows 10

(ver. 1803) are shown in Table 6.1.

As for accuracy, the phase tracking method consistently stays below 3.2 [%] average error.

DPS and DNG clearly show the branch compensation may be off by a sample, causing spikes in

the results. Simulations which have ENG or MNG use the symbolic toolbox for increased accuracy,

but also seem to have the highest error. As n increased, particularly to the range where X > 1010,

as shown in Fig. 6.3. Here is the simulation with the greatest error in n, with growing error from

-1 [%] at 11.3 [GHz] to -14.6 [%] at 20 [GHz], and averaging 3.1 [%].

The MATLAB simulations read less error than that of the HFSS simulations. This is likely

due to two major causes: the first being that the math to produce the S-parameters is almost

the same math as to produce the C-parameters in MATLAB, whereas the algorithms of HFSS

are much more complicated; and the second being that there may be information loss in the data

Table 6.1. Average performance times and max error for various tests on a Intel I3-4170 (3.70GHz,
Dual Core) with 12 GB of RAM and Windows 10 (ver. 1803). Note that the only tests that will
use sym() are tests detecting ENG or MNG (X > 1). Error is calculated as the mean of absolute
value of percent difference per simulation with the max error per simulation set shown. *Mean over
whole set.

Tests Frequencies X > 1 Platform Time (mean) Error (max)

1 381 No HFSS 2.6 [ms] 1.7 [%]
1 381 Yes HFSS 690 [ms] 3.2 [%]
20 381 50 [%] HFSS 4.1 [s] *0.7 [%]
1 20,000 no MATLAB 800 [ms] 8.2x10−13[%]
1 20,000 Yes MATLAB 3.8 [s] 4.5x10−4 [%]
4 20,000 50 [%] MATLAB 6.8 [s] *2.3x10−4 [%]
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Figure 6.1. Results of deriving ε from HFSS simulations based on data from Table 5.1 and Fig. 5.1
using automated phase tracking for branch compensation. The solid line (—) is the phase tracking
results and dashed line (- - -) is the expected value. Each title denotes the quadrant (Q) and point
(P) of MTM based on Fig. 5.1.

transfer between HFSS and MATLAB for analysis. The latter, being that HFSS exports 6 digits

of precision, whereas MATLAB by default stores approximately 15 digits of precision. The former,

being that HFSS is designed to account for impurities and many other possibilities, thus may be

more unstable due to the added theory in the algorithms. However, which is to be considered the

more accurate platform? While HFSS is likely to have little errors due to the presence of multiple

algorithms, and possible user error as it is a very complex software, HFSS is less likely to have major

flaws in it’s results. Whereas the algorithms in MATLAB are quite controlled and simple, thus

reducing the possibility of minor errors, but is also unsupported by teams and communities, thus

more likely to experience major errors. This is why it is necessary to not only test with both, but
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Figure 6.2. Results of deriving µ from HFSS simulations based on data from Table 5.1 and Fig. 5.1
using automated phase tracking for branch compensation. The solid line (—) is the phase tracking
results and dashed line (- - -) is the expected value. Each title denotes the quadrant (Q) and point
(P) of MTM based on Fig. 5.1.

also to compare the two in order to verify the preliminary theory that building the phase tracking

method is founded on.

Comparing MATLAB’s theory to HFSS’s simulation in producing the S-parameters from

defined C-parameters, the results are very similar. The average difference between S11(HFSS) and

S11(MATLAB) is 1.2 [%], with one exception. Because of it’s simplicity, MATLAB can return exact

numbers for certain situations. For point 3 of all quadrants ε = µ, thus Zr = 1 ⇒ Z = Z0 and

there will be no reflection (S11 = 0). While MATLAB returns S11 = 0, HFSS returns S11 = 0+.

This method has also been tested against non-constant C-parameters. Figures 6.4 and 6.5

show the results of phase tracking with a sinusoidal value of ε and constant µ. This works with

varying ε and/or µ. However, this method is prone to misjudging branches if there is too much
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Figure 6.3. Error of Index of Refraction in ENG at point 3 of HFSS simulation. Error is likely due
to the sensitivity of X increasing with frequency.
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Figure 6.4. Results of deriving ε with phase tracking method using S-parameters from MATLAB
simulation given ε = 8 + 5sin(f/1e9) and µ = 3.
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Figure 6.5. Results of deriving µ with phase tracking method using S-parameters from MATLAB
simulation given ε = 8 + 5sin(f/1e9) and µ = 3.

variation. This is likely due to the code in Listings 5.1 and 5.2 finding peaks that aren’t actually

jump cuts or branches. Figure 6.6 shows an example of a MATLAB simulation that had too much

variance and produced erroneous results.

This method also works with ε crossing from positive to negative or visa versa in a single

simulation, as shown in Fig. 6.7 However it does not currently handle a second zero crossing well,

as shown in Fig. 6.8.

39



0 5 10 15 20

Frequency [GHz]

-15

-10

-5

0

5

10

15
DNG

Figure 6.6. Results of deriving ε with phase tracking method using S-parameters from MATLAB
simulation given ε = 8 + 5sin(f/1e9) and µ = 5 + 3cos(f/1e9). Code produces bad branch choices
after 12.24 [GHz].
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Figure 6.7. Results of deriving ε with phase tracking method using S-parameters from MATLAB
simulation given ε = 8(1 − f/1e10) + 4sin(f/2e9) and µ = 2. Note that ε is crossing ε = 0 once,
thus changing the metamaterial quadrant mid simulation.
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Figure 6.8. Results of deriving ε with phase tracking method using S-parameters from MATLAB
simulation given ε = 8(1 − f/1e10) + 1 + 4sin(f/2e9) and µ = 2. Note that ε is crossing ε = 0 3
times, thus changing the metamaterial quadrant mid simulation but showing errors.
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7. CONCLUSION

The goal was to solve the C-parameters from the S-parameters of a dielectric metamate-

rial, including a thorough analysis in branches and compensating them. This thesis started with

the mathematical derivation of the C-parameters from the S-parameters. Chapter 2 provided a

detailed derivation of the C-paramters in terms of the S-parameters; chapter 3 looked at detecting

branches; chapter 4 introduced the phase tracking method; chapter 5 expanded phase tracking for

all quadrants of metamaterial and looked at MATLAB code for this method; finally chapter 6 pro-

vided results confirming the accuracy and potential problems of the introduced method. With this

method, engineers may analyze metamaterial systems like the dielectric slab, or expand the theory

to account for differently designed systems. The greatest achievement of this thesis is definitely the

theoretical analysis and compensation of branches in this system, thus it is my hope that anyone

may benefit from this research for their applications or develop it further for greater accuracy and

applicability to various systems.

7.1. Future Work

One of the assumptions of this thesis is that the system is considered lossless, which is

not accurate to most, if any, systems in the natural world. Though this thesis focuses on branch

management, the theory of phase tracking could be expanded to account for lossy systems.

Another assumption is that the system is homogeneous. Most metamaterials made today

are structures which are not homogeneous. This phase tracking method could be expanded to

account for non-homogeneous systems; however, on a macroscopic scale there may be no difference

in the theory.

The theory from chapter 4 could be foundational to deciding if the branches have yet

occurred for an unknown system based exclusively on the results from a single frequency test. If a

simple test could be derived, it could save time in determining the C-parameters at any individual

frequency below that of the first branch.

It is possible to reduce the chance of error in branch decisions by analyzing the first or

second derivatives of φ instead of φ itself, as done in Listing 5.6.
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APPENDIX

A.1. SParam.m

1 %SParam .m

2 %[ s11 , s21 ] = SParam( e , u , f , d )

3 % This code i s to d e r i v e the S ca t t e r i n g Parameters from the Con s t i t u t i v e

4 % Parametres . Put in p e rm i t i v i t y ( e ) , p e rmeab i l i t y (u) , f requency ( f ) and DEM

5 % th i c kn e s s ( d ) and ge t r e f l e c t i o n ( s11 ) and transmiss ion ( s21 ) . Use r e l a t i v e

6 % va lue s f o r e and u . S−parameters w i l l be complex va l u e s in non−dB form .

7 %

8 % Inputs :

9 % e Pe rm i t t i v i t y

10 % u Permeab i l i t y

11 % f Frequency

12 % d Thickness

13 % Return :

14 % s11 Re f l e c t i on

15 % s21 Transmission

16

17 function [ s11 , s21 ] = SParam( e , u , f , d )

18 i f nargin < 4

19 d = 0 . 0 0 1 ;

20 i f nargin < 3

21 error ( ’ Not enough arguments ’ ) ;

22 end

23 end

24

25 w = 2∗pi∗ f ;

26 c = 299792458;

27

28 g12 = (1−sqrt (u) . / sqrt ( e ) ) ./(1+ sqrt (u) . / sqrt ( e ) ) ;

29 phi = exp(−1 j ∗w∗d .∗ sqrt ( e ) .∗ sqrt (u) /c ) ;

30

31 s11 = −(g12 .∗(1− phi . ˆ 2 ) ) ./(1 −( g12 .∗ phi ) . ˆ 2 ) ;
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32 s21 = ( phi .∗(1− g12 . ˆ 2 ) ) ./(1 −( g12 .∗ phi ) . ˆ 2 ) ;

33

34 end
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A.2. CParam.m

1 %CParam.m

2 % This code i s to d e r i v e the Con s t i t u t i v e Parameters from the Sca t t e r i n g

3 % Parametres and some other data .

4 %

5 % Inputs :

6 % f Frequency

7 % s11 Re f l e c t i on

8 % s21 Transmission

9 % d Thickness

10 % m1 Sign branch

11 % m2 Log branch

12 % Return :

13 % e Pe rm i t t i v i t y

14 % u Permeab i l i t y

15 % n Index o f r e f r a c t i o n

16 % zr Re l a t i v e I n t r i n s i c Impedance

17 % egd Wave propagat ion < e ˆ( j gamma d) >

18 % X Var iab l e used in c a l c u l a t i n g egd <egd = X +− s q r t (Xˆ2 − 1)>

19

20 function [ zr , n , pro , X, Yn, Yd] = CParam( f , s11 , s21 , d , m1, m2)

21 % Define cons tant and w

22 c = 299792458;

23 w = 2∗pi∗ f ;

24

25 % Solve S t u f f

26 X = (1 + s21 .ˆ2 − s11 . ˆ 2 ) . / s21 /2 ;

27 % I f t he r e w i l l be l o s s o f in format ion due to the l a r gn e s s o f Xˆ2

28 i f any(X > 1e7 )

29 X = sym ((1 + s21 .ˆ2 − s11 . ˆ 2 ) . / s21 /2) ; % Convert to symbol

30 % Use Symbolic Math

31 pro = double ( real (X) + m1.∗ sqrt ( real (X) .ˆ2 − 1) ) ;

32 X = double (X) ; % Convert back to doub le

33 else

34 pro = real (X) + m1.∗ sqrt ( real (X) .ˆ2 − 1) ;

35 end

48



36 n = (−1 j ∗ log ( pro ) + 2∗pi∗m2) ∗c . /w/d ;

37

38 % Two d i f f e r e n t c a l c u l a t i o n s f o r i f Zr i s p r imar i l y r e a l or imaginary

39 Yn = s21 .ˆ2 − (1 + s11 ) . ˆ 2 ;

40 Yd = ( s21 .ˆ2 − (1 − s11 ) . ˆ 2 ) ;

41 zr = sqrt ( real (Yn. /Yd) ) ;

42 end
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A.3. phase tracking.m

1 %phas e t r a c k i n g .m

2 % Written by Jacob Lewis May 2020.

3 % The purpose o f t h i s program i s to take the S−parameters accross a

4 % spectrum of f r e qu en c i e s to c a l c u l a t e the C−parameters o f a sub s t r a t e ,

5 % compensating f o r branches and account ing f o r every quadrant o f

6 % metamater ia l . Though a l l v a l u e s re turned are complex , an assumption o f

7 % the s u b s t r a t e i s t h a t i t i s l o s s l e s s and thus the va l u e s may not be

8 % accura te i f they i n d i c a t e a l e v e l o f l o s s or gain ( such as imaginary

9 % pe rm i t t i v i t y , p e rmeab i l i t y or nega t i v e impedance ) . A l l v a l u e s re turned

10 % w i l l be arrays o f type ”complex doub le ” . A l l arrays g iven and re turned

11 % shou ld be the same s i z e ( excep t f o r d which i s s c a l a r ) . The S−parameters

12 % shou ld be complex doub l e s and f and d shou ld be r e a l .

13 %

14 % Given :

15 % f Frequency

16 % s11 S11

17 % s21 S21

18 % d Subs t r a t e t h i c kn e s s ( sca la r , r e a l ) ∗OPTIONAL, De fau l t : 0 .01 ∗

19 % Return :

20 % e Pe rm i t t i v i t y

21 % u Permeab i l i t y

22 % n Index o f r e f r a c t i o n

23 % z Impedance

24 % pro Wave propagat ion < e ˆ( j gamma d) >

25 % X Used to compute egd <egd = X +− s q r t (Xˆ2 − 1)>

26 % m1 Sign branch

27 % m2 Log branch

28

29 function [ e , u , zr , n , pro , X, Yn, Yd, m1, m2] = phase t rack ing ( f , s11 , s21 , d)

30

31 i f nargin < 4

32 d = 0 . 0 1 ; % d = 1 [cm]

33 end

34

35 % Sta r t wi th t h e s e i n t i a l c ond i t i on s
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36 m1 = ones ( s ize ( f ) ) ; % Sign branch i s p o s i t i v e

37 m2 = m1∗0 ; % Log branch i s 0

38

39 % Ca l cu l a t e C−parameters

40 [ ˜ , ˜ , pro , X, ˜ ] = CParam( f , s11 , s21 , d , m1, m2) ;

41

42 % Find s i gn branches

43 phi = angle ( pro ) ; % Angle o f wave propagat ion

44 phin = abs ( phi−pi /2) ; % Normalize to p i /2 and take abs

45 % Local peaks above 1.5 o f phin are the s i gn branches

46 [ ˜ , pks ] = f indpeaks (max( phin , 1 . 5 ) ) ; % Signa l Process ing Toolbox

47 m1( pks ) = −1; % Assign the peaks to −1 as i n f l e c t i o n po in t s

48 m1 = cumprod(m1) ; % Carry changes throughout

49 m1 = (m1 + 1) . ∗ ( real (X) < 1) − 1 ; % m1 = −1 f o r ENG/MNG

50

51 % Reca l cu l a t e Sign Branch Corrected C−parameters

52 [ ˜ , ˜ , pro , ˜ , ˜ ] = CParam( f , s11 , s21 , d , m1, m2) ;

53

54 % Find l o g branches

55 phi = angle ( pro ) ; % Angle o f wave propagat ion

56 % Local peaks above 3 o f phi are the l o g branches

57 [ ˜ , pks ] = f indpeaks (max( phi , 3 ) ) ;

58 va l = phi ( pks − 1) > 0 ; % va l i s f o r determining the s i gn o f the branch

59 % +− branch count [ ’ j u s t a f t e r ’ , ’ at ’ ] branch l o c a t i o n

60 m2( pks + va l ) = 2∗ va l − 1 ;

61 m2 = cumsum(m2) ; % Carry changes throughout

62

63 % Check i f DNG

64 as21 = angle ( s21 ) ; % Angle o f S21

65 das21 = [ 0 ; d i f f ( as21 ) ] ; % Di f f o f ang l e o f S21

66 [ ˜ , pks ] = f indpeaks (max(abs ( das21 ) ,6 ) ) ;

67 va l = sign ( das21 ( pks ) ) ;

68 m3 = m2∗0 ; m3( pks ) = va l ; m3 = cumsum(m3) ;

69 isDPS = 1−2∗( as21 − 2∗pi∗m3 > 0) . ∗ (X < 1) ;

70 m1 = m1.∗ isDPS ; m2 = m2.∗ isDPS ;

71
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72 % Reca l cu l a t e Log Branch ( and DNG) Corrected C−parameters

73 [ zr , n , pro , X, Yn, Yd] = CParam( f , s11 , s21 , d , m1, m2) ;

74

75 % Correct s i gn o f zr f o r Q2

76 zr = zr .∗(1 −2∗( (X>1) & ( imag( s11 ) > 0) ) ) ;

77

78 u = n .∗ zr ;

79 e = n . / zr ;

80

81 end
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