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ABSTRACT 

The research of this dissertation is formulated in two fields, i.e., the theoretical and 

computational studies of circumferential wrinkling on soft nanofibers and the swelling 

mechanics study of a bi-layered spherical hydrogel containing a hard core. 

Continuous polymer nanofibers have been massively produced by means of the low-cost, 

top-down electrospinning technique. As a unique surface instability phenomenon, surface 

wrinkling in circumferential direction is commonly observed on soft nanofibers in 

electrospinning. In this study, a theoretical continuum mechanics model is developed to explore 

the mechanisms of circumferential wrinkling on soft nanofibers under uniaxial stretching. The 

model is able to examine the effects of elastic properties, surface energy, and fiber radius on the 

critical axial stretch to trigger circumferential wrinkling and to discover the threshold fiber radius 

to initiate spontaneous wrinkling. In addition, nonlinear finite element method (FEM) is further 

adopted to predict the critical mismatch strain to evoke circumferential wrinkling in core-shell 

polymer nanofibers containing a hard core, as a powerful computational tool to simulate 

controllable wrinkling on soft nanofibers via co-electrospinning polymer nanofibers incorporated 

with nanoparticles as the core. The studies provide rational understanding of surface wrinkling in 

polymer nanofibers and technical approaches to actively tune surface morphologies of polymer 

nanofibers for particular applications, e.g. high-grade filtration, oil-water separation, polymer 

nanocomposites, wound dressing, tissue scaffolding, drug delivery, and renewable energy 

harvesting, conversion, and storage, etc. 

Furthermore, hydrogels are made of cross-linked polymer chains that can swell 

significantly when imbibing water and exhibit inhomogeneous deformation, stress, and, water 

concentration fields when the swelling is constrained. In this study, a continuum mechanics field 
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theory is adopted to study the swelling behavior of a bi-layered spherical hydrogel containing a 

hard core. The problem is reduced into a two-point boundary value problem of a 2nd-order 

nonlinear ordinary differential equation (ODE) and solved numerically. Effects of material 

properties on the deformation, stress, and water concentration fields of the hydrogel are 

examined. The study offers a rational route to design and regulate hydrogels with tailorable 

swelling behavior for practical applications in drug delivery, leakage blocking, etc.  
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

Polymeric materials have found their way in a wide range of structural and 

multifunctional applications such as structural plastics, fiber-reinforced polymer matrix 

composites (PMCs), biomedical implants and devices, sensors, etc. as they can be produced in 

various materials and structures with high specific strength and stiffness, sound 

manufacturability, excellent corrosion resistance, and highly tailorable mechanical and 

multifunctional properties. Among those, polymer nanofibers and polymeric hydrogels have 

been under intensive investigations in recent years due to their unique properties and promising 

applications in broad sectors for better and healthier life, cleaner water, air and environment, and 

more efficient energy utilization. The study of their unique mechanical performance forms the 

main research topics of this dissertation work. 

1.1.1. Continuous Polymer Nanofibers 

Continuous polymer nanofibers have been broadly produced by means of the 

electrospinning technique in a low-cost and well scalable way (Reneker & Chun, 1996; Dzenis, 

2004; Li & Xia, 2004a). Electrospinning is a top-down nanomanufacturing technique based on 

the principle of electrohydrodynamic jetting of polymer solutions or melts, which has been used 

extensively to fabricate various types of continuous nanofibers (e.g., monolithic, composite, 

core-shell, multi-layered, porous, surface-decorated, etc.) of synthetic and natural polymers or 

polymer-derived carbon, silicon, metals, metal oxides, ceramics, etc. (Reneker et al., 2007; 

Reneker & Yarin, 2008). Electrospun nanofibers are a unique type of one-dimensional (1D) 

submicron materials, which are normally collected as nonwoven nanofiber mats in the 
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electrospinning process. These nanofibrous materials carry superior structural properties such as 

a high surface area to volume ratio (over 100 m2/g), improved tensile strength, and tailorable 

surface morphology and microstructures (Gibson et al., 2001). To date, electrospun nanofibers 

have been finding a variety of promising applications in nanocomposites (Kim & Reneker, 1999; 

Huang et al., 2003; Dzenis, 2008; Lai et al., 2008; Wu, 2009; Chen et al., 2011; Sinha-Ray et al., 

2012; Wu et al., 2013; Wu & Yarin, 2013; Mohammadzadehmoghadam et al., 2015), fine 

gas/liquid filtration (Gopal et al., 2006; Maze et al., 2007; Barhate & Ramakrishna, 2007; Zhou 

& Wu, 2015; Zhou et al., 2016), wound dressing (Gibson et al., 2001; Smith, Kataphinan, et al., 

2004; Smith, Reneker, et al., 2004), drug delivery (Kenawy et al., 2002; Chew et al., 2006; Liang 

et al., 2007; Barnes et al., 2007; Xie et al., 2008), tissue engineering (Li et al., 2002; Matthews et 

al., 2002; Burger et al., 2006; Pham et al., 2006), and energy harvesting, conversion and storage 

(Kim et al., 2007; Ji & Zhang, 2009; Schulz et al., 2010; Dong et al., 2011; Zhang et al., 2011; 

Joshi et al., 2012; Zhou et al., 2012; Zhou & Wu, 2013; Zhou & Wu, 2014; Zhou et al., 2014), 

among others. This has triggered rapidly expanding research on the electrospinning process and 

electrospinability of various polymer solutions (Kirichenko et al., 1986; Saville, 1997; Spivak & 

Dzenis, 1998; Spivak et al., 2000; Feng, 2002, 2003; Reneker et al., 2007; Wu et al., 2020), 

mechanical characterization of nanofibers and nanofiber membranes (e.g., modulus, tensile 

strength, plasticity, etc.) (Cuenot et al., 2000; Tan & Lim, 2004, 2006; Tan, Goh, et al., 2005; 

Tan, Ng, & Lim, 2005; Inai et al., 2005; Ji et al., 2006; Zussman et al., 2006; Yuya et al., 2007; 

Arinstein et al., 2007; Naraghi et al., 2007a, 2007b), and modeling of the mechanical behaviors 

of nanofibers and fiber networks (Wu & Dzenis, 2005, 2006, 2007a, 2007b, 2007c; Wu et al., 

2008; Wu, 2010; Wu et al., 2010; Wu et al., 2012), etc. 
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1.1.2. Polymeric Hydrogels 

Hydrogels are flexible long-chained polymers that are cross-linked into a three-

dimensional network, which can imbibe a large quantity of water from the environment and 

swell without dissolving (Flory, 1953; Tanaka, 1981; Shibayama & Tanaka, 1993; Kopeček, 

2002; Zhao et al., 2008a; Hong et al., 2008b; Hong et al., 2009; Ahmed, 2015). Due to their 

hydrophilicity, softness, smartness, and ability to store a large amount of water, hydrogels have 

been extensively used in diverse technologies, including tissue engineering (Lee & Mooney, 

2001; Nowak et al., 2002; Drury & Mooney, 2003; Luo & Shoichet, 2004; Wong et al., 2008), 

drug delivery (Fischel-Ghodsian et al., 1988; Jeong et al., 1997; Langer, 1998; Qiu & Park, 

2001; Duncan, 2003; Peppas et al., 2006), medical devices (Wichterle & Lim, 1960; 

Jagur‐Grodzinski, 2006; Peppas et al., 2006; Discher et al., 2009), and stimuli-sensitive actuators 

(Beebe et al., 2000; Dong et al., 2006; Sidorenko et al., 2007; Li et al., 2007; Cho et al., 2008). 

These applications have resulted in the intensive investigations on various types of hydrogels 

with broad tailorable functionalities and modeling of their mechanical behaviors (Raschip et al., 

2007; Hong et al., 2008b; Hennink & van Nostrum, 2012; Popadyuk et al., 2014; Zholobko et al., 

2014a; Zholobko et al., 2014b; Ahmed, 2015; Walker et al., 2019). 

1.2. Problem Statements 

1.2.1 Circumferential Wrinkling of Polymer Nanofibers 

Circumferential wrinkling has been commonly observed on soft electrospun polymer 

nanofibers. Two different scenarios could be responsible for such circumferential wrinkling. 

First, even by excluding the solvent evaporation from a drying polymer solution jet during an 

electrospinning process, the combined effect of surface energy and nonlinear elasticity of the soft 
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nanofibers can trigger the circumferential wrinkling. The second scenario is relevant to the core-

shell nanostructure as the electrospun jet starts drying inhomogeneously to form a glassy shell 

surrounding a soft core, which would create a mismatched strain between the core and shell 

layers, and as a result, cause the circumferential wrinkling.  

Regarding the first scenario, no theoretical model is available yet in the literature for 

exploring the rational mechanisms of circumferential winkling on electrospun nanofibers 

including the effect of surface energy and the threshold fiber diameter to trigger spontaneous 

circumferential wrinkling, a special surface instability phenomenon induced purely by surface 

energy without mechanical loadings. For the second scenario, Wang et al. (2009) conducted the 

nonlinear finite element analysis (FEA) to extract the surface wrinkle mode chart in terms of the 

surface morphology (i.e., the wavenumber n ) against the stiffness and aspect ratios (
f sE E and 

a t ) of the electrospun fibers. However, the corresponding critical mismatch strain was not 

predicted explicitly in their study. Further justification still needs to be researched in this 

dissertation on how to apply these theoretical predictions for the design and optimization of the 

surface winkle modes of electrospun fibers for practical applications. Specifically, based on 

nonlinear FEA, the present study proposes an innovative technique to actively alter and optimize 

the circumferential wrinkling via co-electrospinning polymer solution containing nanoparticles 

as the core. 

1.2.2. Inhomogeneous Swelling of Hydrogels 

Since mechanical loads or geometric constraints are ubiquitous in hydrogels in any 

practical applications, the swelling hydrogel would reach to an inhomogeneous and anisotropic 

equilibrium state after imbibing sufficient water from environment (Kim et al., 2006; Zhao et al., 
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2008a; Hong et al., 2009). Yet, only a few theoretical analyses have been made for determining 

the deformation, stress, and water concentration fields of monolithic hydrogels in 

inhomogeneous and anisotropic equilibrium states (Zhao et al., 2008a). 

In the view of applications, understanding of the responses (e.g., displacements, stresses, 

and water concentration) of hydrogels to external stimuli of either mechanical, chemical, 

electrical, electromagnetic loads or their combinations is crucial to design hydrogel-based 

functional materials and reliable soft devices/machines and predict relevant multifunctional 

performances (Peppas et al., 2000). Since the last decade, the promising biomedical applications 

of soft materials have triggered intensive research of swelling mechanics of hydrogels. It is 

important to mention that swelling can induce various forms of instability like cavitation, 

debonding, surface wrinkling and creasing, etc. (Southern & Thomas, 1965; Sidorenko et al., 

2007; Hong et al., 2008a; Trujillo et al., 2008; Zhang et al. 2008; Hong et al., 2009). Yet, no 

research has been made on exploring the swelling mechanics of a bi-hydrogel that is made of two 

hydrogels with different gel stiffness and water absorption. In practice, bi-hydrogel structures are 

expected to provide extensive opportunities to design and optimize the swelling performance of 

hydrogels, which forms the second research topic of this dissertation. 

1.3. Research Objectives 

 This dissertation work is formulated on the basis of continuum mechanics. The 

outstanding problems addressed above are studied theoretically by formulating novel analytical 

and finite element models with the assumption that the polymers and hydrogels are treated as 

hyperelastic solids under proper constraints and external loads. 
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For the first problem to explore the critical conditions to trigger circumferential wrinkling 

on soft polymer nanofibers under uniaxial stretching, an analytical continuum mechanics model 

is developed with the assumption that the axisymmetric circumferential wrinkling is triggered by 

superimposing a periodic linear displacement disturbance onto a deformed configuration of the 

soft fiber. The unique surface energy is taken into account in this model, which shows the 

obvious size effect in the critical axial stretch to evoke the surface wrinkling. Effects of nonlinear 

elasticity, surface energy, and axial stretch of the soft nanofibers on circumferential wrinkling 

behaviors are examined in detail. The present modeling work results in a novel governing 

equation that is capable of explaining the effects of fiber material and geometric parameters to 

trigger the unique spontaneous circumferential wrinkling on soft polymer nanofibers, which is 

first discovered in this dissertation research. 

On the second problem that is treated as an extension of the above one, as a viable 

experimental approach, hard cores [e.g., carbon nanotubes (CNTs), silica particles, etc.] are 

proposed to incorporate into the polymer nanofibers via coaxial electrospinning, which can 

rationally alter the surface wrinkle modes of the resulting core-shell nanofibers. The core-shell 

structured nanofiber is an approach to the inhomogeneity of the mechanical properties in the 

fiber cross-section. A finite element model is developed to explore the dependencies of surface 

wrinkle modes of the electrospun core-shell polymer fibers upon the thickness and stiffness of 

the glassy shell and inner soft sol-gel layers. 

For the third problem, the displacement, stress, and water concentration fields of a bi-

layered spherical hydrogel bonded onto a hard core are considered by formulating and solving 

the relevant swelling mechanics problem, which is an extension of the problem considered by 

Zhao et al. (2008). Experimentally, it is convenient to coat a 2nd gel layer onto the 1st one to form 
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a bi-layered hydrogel or a composite hydrogel layer. To do so, the 2nd layer can be used to 

regulate the swelling behavior of the entire hydrogel system. In practice, it is favorable to apply a 

relatively stiff surface gel layer to protect the inner hydrogel layer such that generation of 

compressive radial stress to stabilize the core-shell structure and suppression of the wear and tear 

of the inner softer hydrogel layer. The present problem is reduced into a two-point boundary 

value problem of a 2nd-order ordinary differential equation (ODE) with the inner continuity 

conditions between the two neighboring layers and solved numerically. Effects of the outer layer 

stiffness on the displacement, stress, and water concentration fields are examined and compared 

in a numerical manner. 

The present dissertation consists of six chapters, and the supplementary detailed formula 

derivations and data are provided in the Appendix. The six chapters are planned as below. 

Chapter 1: Introduction, motivation, and research background of the current dissertation 

are provided in this chapter. The research objectives with corresponding hypotheses are further 

explained in this chapter. 

Chapter 2: Research background of electrospun polymer nanofibers and polymeric 

hydrogels are provided along with some of the existing analytical and finite element models on 

surface wrinkling in electrospun nanofibers and inhomogeneous and anisotropic equilibrium 

state in swollen hydrogels. These models are explained to show the backgrounds of the 

objectives of the present dissertation. 

Chapter 3: In this chapter, the first objective is fulfilled, which includes the development 

of an analytical continuum mechanics model to explore the wrinkling phenomena and the effects 

of varying fiber material and geometrical parameters on the wrinkling behaviors of the soft 

electrospun polymer nanofibers. This model is further examined numerically to demonstrate the 
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correlation of critical axial stretch to the corresponding circumferential wrinkle mode. Besides, 

the threshold fiber radius to trigger the spontaneous circumferential wrinkling is first discovered 

in the limiting case of zero axial stretch. A research paper based on the results of this theoretical 

study has been published in the Physical Review E (2020). 

Chapter 4: In this chapter, based on the 2nd objective of this dissertation, a finite element 

model is developed to numerically analyze the surface wrinkle modes of electrospun core-shell 

polymer nanofibers in response to the thickness and stiffness of the glassy shell and inner soft 

sol-gel layers. The study provides a rational basis of surface wrinkling in electrospun polymer 

fibers and the viable technical strategies to regulate the electrospinning process for producing 

ultrathin polymer fibers with tunable surface morphologies for broad applications (e.g., oil-water 

separation, tissue scaffolding, etc.). A research paper based on the results of this theoretical study 

has been published in the Journal of Physics Communications (2019). 

Chapter 5: In this chapter, an analytical model is developed to study the swelling 

behavior of a bi-layered spherical hydrogel containing a hard core after imbibing sufficient water 

from the environment, which covers the 3rd objective. The problem is reduced into a two-point 

boundary value problem of a 2nd-order nonlinear ODE and solved numerically. Effects of 

material properties on the deformation, stress, and water concentration fields of the hydrogel are 

examined. The study offers a rational route to design and regulate hydrogels with tailorable 

swelling behaviors for practical applications such as drug delivery, leakage blocking, etc. A 

research paper based on the results of this theoretical study has been published in the Journal of 

Applied Physics (2020). 
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Chapter 6: This is the final chapter to summarize the significant achievements gained in 

this dissertation research. In addition, suggestions and recommendations for future investigations 

in the related researched topics are made. 
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CHAPTER 2. RESEARCH BACKGROUND 

2.1. Circumferential Wrinkling in Electrospun Polymer Nanofibers 

2.1.1. Electrospun Polymer Nanofibers and Applications 

Electrospinning provides a viable technique for producing low-cost, ultrathin continuous 

fibers of polymers and polymer-derived carbon, silicon, metals, metal oxides, ceramics, etc. with 

the diameters ranging from a few nanometers to micrometers (Reneker & Chun, 1996; Dzenis, 

2004; Li & Xia, 2004a; Reneker et al., 2007; Reneker & Yarin, 2008). The unique continuity, 

large specific surface area (~1-100 m2/g) (Wang et al., 2009), improved tensile strength, and 

tunable surface morphologies and microstructures are the superior structural advantages of 

electrospun fibers that are resulted mainly from their size effects in mechanical, physical, and 

chemical properties (Gibson et al., 2001). As a result, these unique one-dimensional (1D) 

electrospun continuous nanofibers of natural and synthetic polymers and polymer-derived 

carbon, silicon, metals, metal oxides, ceramics, etc. have been considered as a new class of 

nanostructured materials for broad structural and multifunctional applications under intensive 

investigations. So far, electrospun nanofibrous materials have been considered as the key 

constituents in protective clothing and wound dressing (Gibson et al., 2001; Smith et al., 2004a; 

Smith et al., 2004b), high-grade gas and liquid filtration (Gopal et al., 2006; Maze et al., 2007; 

Barhate & Ramakrishna, 2007; Zhou & Wu, 2015; Zhou et al., 2016), nanofiber-reinforced 

polymer matrix composites (PMCs) (Kim & Reneker, 1999; Huang et al., 2003; Dzenis, 2008; 

Lai et al., 2008; Wu, 2009; Chen et al., 2011; Sinha-Ray et al., 2012; Wu et al., 2013; Wu & 

Yarin, 2013; Mohammadzadehmoghadam et al., 2015), biodegradable scaffolds for cell growth 

(Li et al., 2002; Matthews et al., 2002; Burger et al., 2006; Pham et al., 2006), drug delivery 

(Kenawy et al., 2002; Chew et al., 2006; Liang et al., 2007; Barnes et al., 2007; Xie et al., 2008), 
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and energy harvesting, conversion and storage (Kim et al., 2007; Ji & Zhang, 2009; Schulz et al., 

2010; Dong et al., 2011; Zhang et al., 2011; Joshi et al., 2012; Zhou et al., 2012; Zhou & Wu, 

2013; Zhou & Wu, 2014; Zhou et al., 2014), among others. This has triggered rapidly expanding 

research on the electrospinning process and electrospinability of various polymer solutions 

(Kirichenko et al., 1986; Saville, 1997; Spivak & Dzenis, 1998; Spivak et al., 2000; Feng, 2002, 

2003; Reneker et al., 2007; Wu et al., 2020), mechanical characterization of nanofibers and 

nanofiber membranes (e.g., elastic modulus, tensile strength, plasticity, etc.) (Cuenot et al., 2000; 

Tan & Lim, 2004, 2006; Tan et al., 2005a; Tan et al., 2005b; Inai et al., 2005; Ji et al., 2006; 

Zussman et al., 2006; Yuya et al., 2007; Arinstein et al., 2007; Naraghi et al., 2007a, 2007b), and 

modeling of the mechanical behaviors of nanofibers and fiber networks (Wu & Dzenis, 2005, 

2006, 2007a, 2007b, 2007c; Wu et al., 2008; Wu, 2010; Wu et al., 2010; Wu et al., 2012), etc. 

2.1.2. Electrospinning Process and Surface Wrinkling in Electrospun Nanofibers 

In a typical electrospinning process as illustrated in Figure 2-1, a polymer solution is fed 

into a capillary tube to form a droplet at the capillary tip. Under the action of a high-voltage 

direct current (DC) electrostatic field, the droplet deforms into a Taylor cone (Figure 2-2) 

(Taylor, 1969; Yarin et al., 2001b; Reneker et al. 2007; Reneker & Yarin, 2008). Once the 

electrostatic force overcomes the surface tension of the Taylor cone, the droplet is ejaculated and 

elongated into an electrospinning jet. After a variety of jet instabilities (Reneker et al., 2000; 

Yarin et al., 2001a, 2001b; Shin et al., 2001; Hohman et al., 2001; Reneker et al. 2007; Reneker 

& Yarin, 2008), solvent evaporation (Koombhongse et al., 2001; Wu et al., 2011), and polymer 

solidification, the drying jet is finally collected as a nonwoven nanofiber mat on the collector. 

The entire process of electrospinning is a multi-physics process involving electrohydrodynamics, 
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heat and mass transfer, phase separation, polymer solidification, etc. The fast solvent evaporation 

from the tiny jet may unavoidably induce the radial gradient in the material properties, 

microstructures (e.g., polymer chain orientation), and residual stresses and strains in the resulting 

fiber cross-section, though, experimental pieces of evidence are still lacking at this time. In the 

electrospinning process, the production of continuous nanofibers with controllable surface 

morphology is a desirable technological strategy to realize many promising applications of 

nanofibers such as high-grade gas and liquid filtration and tissue scaffolding. Typically, a dilute 

polymer solution made from a soft polymer dissolved in a highly volatile organic solvent will 

lead to the fast drying due to rapid solvent evaporation out of the thin electrospun jet, which may 

result in two competing fiber surface morphologies, i.e., the porous fiber surface due to 

thermodynamic phase separation of the binary polymer-solvent system (Bognitzki et al., 2001; 

Dayal et al., 2007) as well as the circumferentially wrinkled fiber surface due to nonuniform 

residual strains across the fiber section and mechanical destabilization of the glassy surface layer 

after radially uneven drying induced strain mismatch (see Figure 2-3) (Koombhongse et al., 

2001; Pai et al., 2009). The latter are different from their counterparts of longitudinal surface 

winkles that were observed in electrospun thermoplastic nanofibers under uniaxial tension 

(Figure 2-4) (Naraghi et al., 2007a, 2007b) and quantitatively interpolated by continuum 

mechanics models and molecular dynamics simulations (Wu et al., 2008; Wu, 2010; Tang et al., 

2015). To date, substantial experimental and modeling approaches have been made to control 

and understand the surface wrinkling in electrospun nanofibers. 
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Figure 2-1. Schematic electrospinning process (Courtecy of Dr. Wu’s group at NDSU). 

 

Figure 2-2. Formation of continuous nanofibers: (a) Taylor cone (a deformed droplet in a biased 

DC electrostatic field), (b) an electrostatically stretched droplet, (c) a thin jet ejaculated in a 

stable electrospinning process (Courtecy of Dr. Wu’s group at NDSU). 

Steady state jet

Collector

Solution bath

Polymer solution

Capillary tube

Jet instability

5~20 kV
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Figure 2-3. SEM micrographs of circumferential wrinkles on electrospun PS fibers prepared 

from 10 wt. % PS/THF solution (Courtecy of Dr. Wu’s group at NDSU). 

 

Figure 2-4. Longitudianl wrinkling (rippling) (a), (b) Scanning electron microscope (SEM) 

images of surface morphology of as-electrospun PAN nanofibers after tensile breakage. The 

fiber breakage was induced by extrusion of a 45° conic region. (c) SEM image of the fiber 

breakage due to the formation of voids. (d) SEM image of ripples formed on PAN nanofiber 

surfaces subjected to axial stretching (Naraghi et al., 2007a, 2007b, Wu et al., 2008). 

(a) (b) (c)

(d)
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Model-based simulation of solvent evaporation from a polymer jet in electrospinning has 

confirmed the drastically uneven radial distribution of solvent in the jet with the diameter of a 

few micrometers (Wu et al., 2011). Thus, the surface layer of an electrospun jet starts drying 

(solidification) instantaneously after the jet leaves the nozzle while the core of the jet is nearly 

intact up to seconds in the case of a typical electrospinning process. Such theoretical prediction 

provides the rational basis of ribbon-like structures observed in electrospun fibers by 

Koombhongse et al. (2001). They further proposed a kinematic mechanism responsible for the 

formation of shaped fibers in electrospinning such that the atmospheric pressure serves as the 

driving force to collapse the fast-drying glassy skin (shell) initially solidified on the jet surface. 

Such a mechanism is applicable to interpolate the wrinkled surface morphologies in electrospun 

fibers (Pai et al., 2009). Therefore, in principle, the surface wrinkling of electrospun fibers can be 

tuned via adjusting the process and material parameters of electrospinning such as the initial jet 

diameter (i.e., the nozzle outlet diameter), the solvent concentration, etc. For instance, the surface 

wettability (against water) of electrospun polystyrene (PS) nanofiber membranes can be tuned 

via controlling the diameter and drying-induced surface wrinkle modes of the ultrathin PS fibers, 

which was made possible through adjusting the tetrahydrofuran (THF) concentration of the 

PS/THF solution used in electrospinning. The PS nanofiber membranes have demonstrated 

promising applications for effective water filtration and oil-water separation (Yu, 2013; Zhou & 

Wu, 2015; Zhou et al., 2016). 

Theoretically, Wu et al. (2008) and Wu (2010) first formulated a nonlinear elasticity 

model to explore the physical mechanisms governing the longitudinal wrinkling in soft 

nanofibers under axial stretching that was first discovered in single-nanofiber tension tests 

(Naraghi et al., 2007a, 2007b). The main contribution of these works is that surface energy as a 
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unique physical parameter for nanostructured materials was first introduced in wrinkling analysis 

of soft nanofibers and discovery of spontaneous wrinkling of soft nanofibers when the fiber 

radius is below a certain value. Such a threshold fiber radius is a function with respect to the 

surface energy and elastic properties of the nanofibers and is independent of the electrospinning 

process and process parameters. Due to the unique spontaneous wrinkling at small fiber radii, 

electrospinning is unable to fabricate continuous nanofibers below a certain fiber radius due to 

jet beading instability. In parallel, Mora et al. (2010) and Taffetani and Ciarletta (2015a) 

conducted the experimental study to show the Rayleigh-Plateau instability in slender gel 

cylinders and formulated the first-principle models to address their observations by means of 

linear perturbations within the framework of small deformations. The critical condition (Mora et 

al., 2010) to trigger such a longitudinal surface instability (beading) was determined as 
06 R =

, where  ,  , and 
0R  are the surface tension, shear modulus, and initial radius of the gel 

cylinder, respectively. This critical condition is similar to one to evoke the spontaneous 

longitudinal rippling in soft nanofibers under axial stretching (Wu et al., 2008; Wu, 2010) though 

the latter was based on a hyperelastic solid model for rubbery polymeric materials. Furthermore, 

Taffetani and Ciarletta (2015b) and Ciarletta et al. (2016) formulated a systematic nonlinear 

elastic framework to investigate the effect of capillary energy on the beading instability in soft 

cylindrical gels, a phenomenon similar to the longitudinal rippling in soft nanofibers under axial 

stretching (Wu et al., 2008). Sophisticated linear and nonlinear instability analyses were 

conducted in these studies while the effect of axial stretching as a common physical condition in 

practice was excluded in these studies and thus it is difficult to apply these theoretical results to 

guide the practical applications in materials science and other engineering fields such as 

nanofiber fabrication, single-fiber tensile test, etc. 
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In the above, longitudinal wrinkling on soft nanofibers has been explored at different 

extent of accuracy in the last decade. Yet, the continuum mechanics modeling of circumferential 

wrinkling on soft nanofibers has not been reported in the literature though such wrinkling 

phenomenon has been commonly observed in experiments. 

In addition, within the framework of continuum mechanics, initiation of surface 

wrinkling in electrospun fibers can be modeled simply as classic circumferential buckling of 

elastic cylindrical shells containing an elastic core under external pressure (Wang et al., 2009), in 

which the effect of surface energy is ignored. The critical buckling pressure 
cp  can be expressed 

as (Herrmann & Forrestal, 1965) 
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In Eq. (2.1), 21 (1 ) [(1 )(1 2 )]( )( )f s s s fE E a t   = + − + − , 2 3

0 [4(1 )]( )f fp E t a= − , n  is the 

wavenumber of the circumferential surface wrinkles, fE  and sE  are respectively the moduli of 

the surface layer (film) and core (substrate), f  and 
s  are respectively the Poisson’s ratios of 

the film and substrate, t  is the film thickness, and a  is the radius of the substrate. With the 

assumption of incompressibility (i.e., f  = s  = 0.5), Wang et al. (2009) derived an expression 

of the critical wave number critn  in minimizing the critical buckling pressure cp  in Eq. (2.1) as 

 1/3

crit ( )(3 )f sn a t E E= . (2.2) 

where 2(1 )f f fE E = −  and 2(1 )s s sE E = − . In addition, Wang et al. (2009) conducted the 

nonlinear FEA to extract the surface wrinkle mode chart in terms of the surface morphology (i.e., 

the wavenumber n ) against the stiffness ( f sE E ) and aspect ratio ( a t ) of the electrospun 

fibers. Yet, the corresponding critical mismatch strain was not predicted explicitly in their study. 
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Moreover, by using finite element method, Pai et al. (2009) conducted systematic 

simulations of nanofiber wrinkling to identify the correlations of critical strain to the 

corresponding circumferential wrinkle mode of the core-shell nanofibers at varying fiber 

geometries and elastic properties as observed in experiments. The simulation results can be 

utilized for active wrinkling control for desired surface morphologies in fiber fabrication and 

applications. Further justification is still needed on how to apply these theoretical predictions for 

the design and optimization of the surface wrinkle modes of electrospun fibers for various 

practical applications. Yet, how to actively control the surface wrinkling in nanofiber fabrication 

process has not been explored yet, and related intelligent mode-based numerical validation is still 

desired. 

2.2. Inhomogeneous Swelling of Polymeric Hydrogels 

2.2.1. Polymeric Hydrogels and Applications 

Hydrogel, which is a three-dimensional (3D) network of cross-linked long polymer 

chains with hydrophilic branches or groups, is capable of large and reversible deformations. 

When a hydrogel is in contact with water, it is able to imbibe a large quantity of water from the 

environment and swell without dissolving (Tanaka, 1981; Shibayama & Tanaka, 1993; Kopeček, 

2002; Ahmed, 2015; Zhao et al., 2008a; Hong et al., 2008b; Hong et al., 2009). The strong 

chemical cross-links prevent the long polymers from dissolving in the water and allow large 

elastic deformations of hydrogels, while the weak physical interconnection between the long 

polymer chains and water molecules arises viscous migration in hydrogels (Tanaka, 1981; 

Shibayama & Tanaka, 1993; Kopeček, 2002; Hong et al., 2008b; Hong et al., 2009; Ahmed, 

2015). 
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Various hydrogels with broad tailorable functionalities have been under intensive 

investigations for decades including targeted molecular design and reversible synthesis from 

renewable natural polysaccharides and chitosan (Hennink & van Nostrum, 2002; Raschip et al., 

2007; Popadyuk et al., 2014; Zholobko et al., 2014a; Zholobko et al., 2014b; Ahmed, 2015; 

Walker et al., 2019). Due to its hydrophilicity (comparable to biological tissues), softness 

(mechanical flexibility by tailorable network design), smartness, and ability to store a large 

amount of water, hydrogels have been extensively used for scaffolds for tissue engineering (Lee 

& Mooney, 2001; Nowak et al., 2002; Drury & Mooney, 2003; Luo & Shoichet, 2004; Wong et 

al., 2008; Jahani et al., 2018, 2020), vehicles for drug delivery (Fischel-Ghodsian et al., 1988; 

Jeong et al., 1997; Langer, 1998; Qiu & Park, 2001; Duncan, 2003; Peppas et al., 2006), sensors 

and actuators for optics and microfluidics (Beebe et al., 2000; Dong et al., 2006; Li et al., 2007; 

Sidorenko et al., 2007; Cho et al., 2008), model extracellular metrics for biological studies 

(Wichterle & Lim, 1960; Jagur‐Grodzinski, 2006; Peppas, 2006; Discher, 2009; Ramzanpour et 

al., 2019, 2020a, 2020b; Hosseini Farid et al., 2019), and so on. Recent technological 

breakthroughs in hydrogels include synthesis of highly stretchable and tough hydrogels (Sun et 

al., 2012), which are able to contain ~90% water, to be stretched beyond 20 times their initial 

length, and have fracture energies of ~9,000 J/m2, and hydrogel-based tough adhesives for 

diverse wet surfaces for use as tissue adhesives, wound dressings, and tissue repair (Li et al., 

2017), among others. 

2.2.2. Inhomogeneous and Anisotropic Equilibrium State in Swollen Hydrogels 

According to the work by Hong et al. (2008b), two modes of large deformations can be 

considered for a gel (Figure 2-5). In the first mode, the gel changes its shape but not volume due 
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to the fast process of short-range rearrangement of molecules. But in the second mode, the gel 

changes both its shape and volume as a result of the slow process of long-range movement of 

water molecules. In the case of a sudden change in the environment (i.e., mechanical load), the 

hydrogel adjusts accordingly depending on the time limit. When it has a short-time limit, the 

hydrogel reaches the mechanical equilibrium but the water molecules inside the hydrogel do not 

have enough time to redistribute. At the long-time limit, the hydrogel reaches the equilibrium 

with both the mechanical load and the chemical potential of the water. 

 

Figure 2-5. Schematic of two modes large of deformation in a gel (Hong et al., 2008b). 

In this dissertation, the long-time limit of the hydrogel is assumed and considered in this 

study, in which the hydrogel achieves the state of equilibrium as the polymer network is in 

contact with the water molecules for a sufficiently long time. When a polymer network 

equilibrates with the environment in the absence of mechanical load or geometric constraint, 
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which rarely happens in practice, the hydrogel swells homogeneously and isotropically. As the 

mechanical load and/or geometric constraint are ubiquitous in the applications of hydrogels, 

inhomogeneous and/or anisotropic state of equilibrium occurs more commonly when the 

hydrogel is swelling (Hu et al., 1995; Kim et al., 2006; Klein et al., 2007; Zhao et al., 2008a; 

Ladet et al., 2008; Hong et al., 2009). Swelling in hydrogels can lead to a form of instability like 

debonding, wrinkling, creasing, cavitation, etc. (Southern & Thomas, 1965; Sidorenko et al., 

2007; Hong et al., 2008a; Trujillo et al., 2008; Zhang et al., 2008; Hong et al., 2009). 

In the view of applications, understanding of the responses (e.g., displacements, stresses, 

and water concentration) of hydrogels to external stimuli of either mechanical, chemical, 

electrical, electromagnetic loads or their combinations is crucial to design hydrogel-based 

functional materials and reliable soft devices/machines and predict relevant multifunctional 

performances (Peppas, 2000). Since the last decade, broad applications and research of soft 

materials have triggered the intensive research of swelling mechanics of hydrogels. Among 

others, Suo and his colleagues have formulated a set of rigorous field theories based on the work 

of Gibbs (1906) and Biot (1941) to delineate the nonlinear deformation and stress fields in 

hydrogel within the framework of continuum mechanics (Zhao et al., 2008b; Hong et al., 2008b; 

Hong et al., 2009; Hong et al., 2010), in which the Flory-Rehner free-energy function (Flory & 

Rehner Jr, 1943) is added as the contribution due to polymer network swelling and the mixture 

of water molecules and polymer chains after imbibing water. Suo’s field theories of gels have 

been successfully used to solve various hydrogel swelling problems and can be conveniently 

implemented via designing user’s subroutines into commercial finite element software packages 

as in nearly all the cases, the resulting problems are highly nonlinear. Only in a few simple cases, 

explicit semi-analytic solutions can be obtained. One example demonstrated by Zhao et al. 
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(2008a) was to consider a spherical shell of hydrogel bonded onto a hard core of another material 

as such core-shell structures have been fabricated in experimental studies (Pelton, 2000; Nayak 

& Lyon, 2005; Ballauff & Lu, 2007) and considered for potential applications of drug delivery 

(Ichikawa & Fukumori, 2000; Vodná et al., 2007), medical devices (Guo et al., 2005), controlled 

self-assembly (Nakahama & Fujimoto, 2002; Wei et al., 2006), etc. In their study, Zhao et al. 

(2008a) determined the nonlinear displacement, stress, and water concentration fields of the 

swollen spherical shell of hydrogel bonded onto a hard core after imbibing sufficient water. This 

problem was reduced into a two-point boundary value problem of a nonlinear 2nd-order ordinary 

differential equation (ODE) and solved numerically. Due to the geometrical constraint of the 

hard core, the resulting hydrogel is in an inhomogeneous and anisotropic equilibrium state. 

In practice, composite hydrogels made of several hydrogels with tailorable material 

properties are desirable in achieving their optimal performances. Yet, no research has been 

reported yet in the literature on the swelling mechanics of composite hydrogels. 



 

23 

CHAPTER 3. CIRCUMFERENTIAL WRINKLING OF POLYMER NANOFIBERS 

3.1. Introduction 

In the practice of electrospinning, circumferential wrinkling is commonly observed in 

soft electrospun nanofibers. Yet, no theoretical model is available in the literature to explore the 

rational mechanisms of such surface instability in electrospun nanofibers such as the effects of 

surface energy and the threshold fiber diameter to trigger spontaneous circumferential wrinkling. 

This chapter is aimed to explore the critical condition to trigger circumferential wrinkling in 

polymer nanofibers under axial stretching. The content of the chapter is planned in the following. 

Section 3.2 is to formulate the nonlinear elasticity model to take into account the nonlinear 

elasticity, surface energy, and axial stretch of the soft nanofibers. As the first approach to 

understanding the surface instability, the soft nanofibers are treated as incompressible, isotropic, 

hyperelastic neo-Hookean solid, and the wrinkling condition is obtained via mathematical 

perturbation on the basis of the first principle of the nanofiber system. Section 3.3 is to conduct 

detailed numerical scaling analysis to demonstrate the correlation of critical axial stretch to the 

corresponding circumferential wrinkle mode. The threshold fiber radius to trigger the 

spontaneous circumferential wrinkling is determined in the limiting case of zero axial stretch. In 

consequence, concluding remarks of the present study are made in Section 3.4. 

3.2. Model Formulation and Solutions 

Consider a soft polymer nanofiber at its undisturbed stretch-free state as a thin, perfectly 

circular cylinder with the initial radius 0R . As mentioned above, the fast solvent evaporation in a 

thin polymer-solution jet during electrospinning may unavoidably induce the radial gradients of 

the material properties, microstructures, and residual stresses and strains in the nanofiber cross-
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section. However, it is reasonable to consider these gradients as the secondary effects and 

assume the soft polymeric material of the fiber as an incompressible, isotropic, hyperelastic neo-

Hookean solid. For the convenience of the discussion hereafter, three configurations are 

introduced to define the motion of a material point inside the fiber as shown in Figure 3-1: 

1) Undisturbed stretch-free configuration (with surface tension ignored) ( R ,  , Z ), 

2) Pre-stretched configuration (with surface tension) ( r ,  , z ), 

3) Current configuration (with circumferential wrinkles) ( r ,  , z ). 

In the following, the critical condition to trigger circumferential wrinkling is to be 

determined via linear perturbation of the elastic solution to the pre-stretched state of the soft 

polymer nanofiber in the current configuration. 

 

Figure 3-1. Coordinate systems of the undisturbed stretch-free configuration ( R ,  , Z ), pre-

stretched configuration ( r ,  , z ) without wrinkles, and current configuration ( r ,  , z ) with 

circumferential wrinkles. 
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3.2.1. Thin Soft Polymer Nanofibers under Axial Pre-stretching 

In the pre-stretched configuration, the soft polymer nanofiber is assumed under action of 

uniform axial stretching, and the solution to an axisymmetric deformation of the nanofiber can 

be expressed as (Wu & Dzenis, 2007a; Wu et al., 2008) 

 
1 0(0 )r R R R=   ,       (0 2 ) =    ,       

3 ( )z Z Z= −   + , (3.1) 

where 
1  and 

3  are the transverse and longitudinal stretches, respectively. The above 

deformation has the deformation gradient 
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F . (3.2) 

Material incompressibility of the polymer fiber gives the geometrical constraint of 
1  and 

3 : 

 2

1 3 1  = . (3.3) 

With the above deformations, the corresponding left Cauchy-Green tensor B  is 
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B FF . (3.4) 

The three principal scalar invariants of B  are 

 
2 2 1 2

1 1 3 3 32 2I    −= + = + ,          
2

2 3 32I   −= + ,          3 1I = . (3.5) 

In the present case, the soft nanofiber is treated as an incompressible, isotropic, 

hyperelastic neo-Hookean solid. Its constitutive relationship can be expressed in terms of Cauchy 

stress tensor T  versus the left Cauchy-Green tensor B  as 
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 p = − +T I B , (3.6) 

where p  is the unknown hydrostatic pressure to be determined, and   is the shear modulus. The 

stress tensor (3.6) can be further expressed in terms of stress components: 

 2 1

1 3rrT T p p  −= = − + = − + , (3.7) 

 2

3zzT p = − + , (3.8) 

 0r rz zT T T = = = . (3.9) 

In terms of cylindrical coordinates, equilibrium equations of the axisymmetric fiber under 

uniform axial tension are 

 0rrrr
T TT

r r

−
+ =


, (3.10) 

 0
T




=


, (3.11) 

 0zzT

z


=


. (3.12) 

In the above, two traction boundary conditions (BCs) are triggered at the fiber surface and along 

the fiber axis. In addition, surface tension produces a uniform radial compressive stress at the 

fiber surface as 

 
0

rrT
r


= − , (3.13) 

where   (N/m) is the surface tension (surface energy) of the amorphous polymeric material and 

is assumed to be independent of the axial stretch and fiber radius, and 0r  is the fiber radius after 

deformation in the current configuration. Moreover, the force equilibrium along the fiber axis 

can be cast as 

 
0

0
0

2 2
r

zzP rT dr r  = + , (3.14) 
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where P  is the resultant of external axial tensile forces. By solving Eqs. (3.10) to (3.12) under 

traction conditions (3.13) and (3.14), the axial stress of the soft polymer nanofiber can be 

determined as 

 2 0
32

0 3 0

1

2

lP

r r




   
= = − + , (3.15) 

where 
0 2l  =  is the intrinsic length of the polymeric material. Eq. (3.15) can be further 

arranged as a function of the undisturbed radius of a stretch-free fiber (with surface tension 

ignored) by applying the deformation relation 1/2

0 1 0 0 3r R R  −= =  as 

 0
32 2 1/2

0 3 0 3

1 1

2

lP

R R




    
= = − + . (3.16) 

It can be concluded from the above derivations that under uniaxial tensile stress and 

surface tension, a soft nanofiber is in the triaxial stress state, and its three principal stress 

components at a material point are independent of the radial position of the fiber. Similar 

derivations have been considered in our previous studies of longitudinal wrinkling and wave 

propagation in soft polymer nanofibers (Wu et al., 2008; Wu, 2010). 

3.2.2. Circumferential Wrinkling of Soft Polymer Nanofibers under Axial Stretching 

Now let us consider the circumferential wrinkling deformation of a soft polymer 

nanofiber under uniform axial stretching as a small disturbance superimposed onto the elastic 

solution to the pre-stretched nanofiber as determined in Section 3.2.1. After wrinkling initiation 

on the nanofiber, a simple approach is to assume the coordinates of a material point in the current 

configuration as 

  1[ ( )]r f R= +  ,                  ( )g = +  ,                  3z Z= , (3.17) 
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where ( )f   and ( )g   are two small unknown disturbance functions satisfying BCs (3.13) and 

(3.14). It needs to be mentioned that choice of Eq. (3.17) belongs to one of the simplest possible 

incremental solutions of the present surface instability problem to avoid lengthy mathematical 

derivations based on a more general assumption of the possible displacement solutions as 

commonly used in nonlinear analysis of elastic instability (Taffetani & Ciarletta, 2015b; Ciarletta 

et al., 2016) while it can lead to practical, physically meaningful solutions. Thus, the 

corresponding deformation gradient matrix F  and the left Cauchy-Green tensor B  are 
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 
 

B FF , (3.19) 

where f  and g
 are derivatives of ( )f   and ( )g   with respect to  . 

The scalar invariants of B  above are 

 2 2 2 2 2

1 1 1 3( ) ( ) (1 )I f f f g   = + + + + + + , (3.20) 

 

2 2
2 2 2 2 2 2 2

2 1 1 3 1
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1 1 3

1 1
( ) ( ) (1 ) ( )

2 2

1 1
( ) (1 ) ( ) (1 )

2 2

I f f f g f f

f g f g f

   

  

  

  

   = + + + + + + − + +   

− + + − + + −

, (3.21) 

 4 2 2

3 1 3( ) (1 )I f g = + + . (3.22) 

Material incompressibility of the polymer nanofiber in this state is 

 det( ) 1=F , (3.23) 

which results in 
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 2

1 3( ) (1 ) 1f g + + = . (3.24) 

The strain energy density for an incompressible, isotropic, hyperelastic neo-Hookean 

solid is 

 
1( 3)

2
e I


= − , (3.25) 

where 
1I  is the first principal invariant of B , and   is the shear modulus of the neo-Hookean 

solid as given in (3.6). Hence, the potential energy functional   of the soft polymer nanofiber 

under uniaxial axial stretching and surface tension has the form 

 ( )
1/2

2 2 ( )erd drdz r r d dz Pd z Z   = + + − −   , (3.26) 

which can be expressed in terms of the coordinates defined in the configuration of undisturbed 

stretch-free fiber as 

 2

0 0 3

1

1
( 1)

2
R Z ed R Z d PZ

f




 
 = + − −

+  , (3.27) 

where the higher-order terms in the 2nd integral of the surface energy have been ignored. By 

substituting (3.20) to (3.25) into (3.27), applying the functional variation on Eq. (3.27), evoking 

the material incompressibility (3.3), and finally ignoring the higher-order terms, a standard 2nd-

order linear ordinary differential equation (ODE) of constant coefficients can be obtained as 

 1/2 1/2 2 3/2

0 3 0 3 3 3

0

(4 2 ) 2 0R f R f
R


    − − + = . (3.28) 

Eq. (3.28) indicates that the condition to trigger circumferential wrinkling on a soft 

polymer nanofiber under uniform axial stretching is governed by the material elasticity, surface 

energy, initial fiber radius and axial stretch of the nanofiber. Furthermore, Eq. (3.28) can be 

recast as 
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 0Af Bf C + + = , (3.29) 

where coefficients A , B , and C  can be related to the material elasticity, surface energy, applied 

pre-stretch, and fiber geometry (radius) such that 

 1/2

0 3A R = , (3.30) 

 1/2 2

0 3 3

0

(4 2 )B R
R


 = − − , (3.31) 

 3/2

32C = . (3.32) 

Surface wrinkling on a soft polymer nanofiber can be determined by seeking periodic solutions 

to the homogeneous Eq. (3.29) as 

 0Af Bf + = . (3.33) 

Consider a periodic solution to (3.33) along the circumference with respect to   as  

 
0( ) exp( )f A ik =  , (3.34) 

where 
0A  is the complex amplitude of surface disturbance, and k  is the wavenumber of the 

wrinkles. Consequently, substituting (3.34) into (3.33) leads to the wavenumber k  as  

 k B A= , (3.35) 

which must be a positive number to ensure a physically meaningful circumferential wrinkle 

mode on the fiber surface. Therefore, the condition of surface wrinkling on soft rubbery polymer 

nanofibers is 

 0B A  , (3.36) 

which can be expressed in terms of material properties   and  , geometry 0R  and longitudinal 

stretch 3  as 
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 0

3/2

3 2

R 

 
 . (3.37) 

Eq. (3.37) elucidates the scaling properties among initial fiber radius, material properties, and 

axial stretch for circumferential wrinkling of soft polymer nanofibers under axial stretching. 

3.3. Numerical Examples and Discussions 

3.3.1. Axial Stress of Pre-stretched Soft Polymer Nanofibers 

In the cases of the intrinsic length taking 
0l  = 50, 200, 500, and 1,000 nm and the initial 

fiber radius taking 
0R  = 50, 100, 200, 500, and 1,000 nm, respectively, Eq. (3.16) predicts the 

dimensionless axial tensile stress    as shown in Figures 3-2 to 3-5. In common sense, the 

axial stress increases with increasing axial stretch. In addition, Figures 3-2 to 3-5 also indicate 

that 
0l  has an increasing influence on the stress variation with increasing amplitude of 

0l , which 

demonstrates the strong size effect in soft rubbery nanofibers. In the particular case of 
0l  = 

1,000, as shown in Figure 3-5, the soft nanofiber with a diameter of 50 nm exhibits longitudinal 

elastic instability. 
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Figure 3-2. Variation of the dimensionless axial stress of pre-stretched soft nanofibers with 

respect to the axial stretch 
3  at intrinsic length 

0l  = 50 nm and five initial fiber radii (
0R  = 50, 

100, 200, 500, and 1,000 nm). 

 

Figure 3-3. Variation of the dimensionless axial stress of pre-stretched soft nanofibers with 

respect to the axial stretch 3  at intrinsic length 0l  = 200 nm and five initial fiber radii ( 0R  = 50, 

100, 200, 500, and 1,000 nm). 
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Figure 3-4. Variation of the dimensionless axial stress of pre-stretched soft nanofibers with 

respect to the axial stretch 
3  at intrinsic length 

0l  = 500 nm and five initial fiber radii (
0R  = 50, 

100, 200, 500, and 1,000 nm). 

 

Figure 3-5. Variation of the dimensionless axial stress of pre-stretched soft nanofibers with 

respect to the axial stretch 3  at intrinsic length 0l  = 1,000 nm and five initial fiber radii ( 0R  = 

50, 100, 200, 500, and 1,000 nm). 
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3.3.2. Critical Condition of Circumferential Wrinkling in Soft Polymer Nanofibers 

Eq. (3.36) indicates that the critical condition of surface wrinkling is B  = 0, which results 

in the critical axial stretch as 

 2/30
3

0

(4 )
R

l
 = . (3.38) 

Yet, it needs to be mentioned that this critical stretch 
3  only corresponds to k  = 0, i.e., a 

mathematical critical condition for surface instability (wrinkling). For those physically 

meaningful wave numbers k  > 0, k  = 1 corresponds to a circular cross-sectional configuration; 

k  = 2 corresponds to an elliptic cross-sectional configuration. Thus, it is reasonable to assume 

that the critical stretch 
3  is the one that triggers the first physically meaningful wrinkle mode 

with k  = 2, i.e., 

 2k B A= = . (3.39) 

Plugging (3.30) and (3.31) into (3.39) results in  

 2/30
3

0

(8 )
R

l
 = , (3.40) 

which is 22/3 ≈ 1.5874 times the one predicted by Eq. (3.38). 

Figure 3-8 illustrates the critical axial stretch 3  based on (3.40) with increasing initial 

fiber radius 0R  at four intrinsic lengths of 0l  = 50, 200, 500, and 1,000 nm, respectively. Given 

the value of 0R , the critical axial stretch 3  decreases rapidly with increasing 0l , i.e., the size 

effect is significant in the critical axial stretch 3  to trigger circumferential wrinkling. More 

noticeably, at small nanofiber sizes a large intrinsic length 0l  may evoke spontaneous wrinkling, 



 

35 

i.e., surface circumferential wrinkling may be directly evoked by surface energy without axial 

stretching and even under axial compression (
3  < 1). 

 

Figure 3-6. Variation of the critical axial stretch 
3  with respect to varying fiber radius R  at four 

different intrinsic lengths (
0l  = 50, 200, 500, and 1,000 nm, respectively) based on Eq. (3.40). 

3.3.3. Critical Radii for Circumferential Wrinkling in Soft Polymer Nanofibers 

Eq. (3.40) can further determine the critical fiber radius CR  to trigger circumferential 

wrinkling ( k  = 2) at the stretch-free condition, i.e. 3  = 1, such that 

 
4

CR



= . (3.41) 

Eq. (3.41) indicates that circumferential wrinkling of soft polymer nanofibers may happen 

without applying any axial tensile stretch, i.e., spontaneous circumferential wrinkling, if the 

initial fiber radius is smaller than the critical fiber radius CR  as also shown in Figure 3-6. This 

critical fiber radius CR  depends only on the surface energy and elastic properties of the soft 
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nanofiber, and is irrelevant to the material and process parameters adopted in an electrospinning 

process. In addition, by comparison with 
CR  to trigger spontaneous longitudinal wrinkling in 

soft nanofibers by Wu et al. (2008) and Wu (2010), i.e., (6 )CR  =  after converting into the 

current neo-Hookean material model, it is found that 
CR  to trigger spontaneous circumferential 

wrinkling is 1.5 times that to trigger spontaneous longitudinal wrinkling. This demonstrates that 

spontaneous circumferential wrinkling occurs earlier than spontaneous longitudinal wrinkling in 

electrospun nanofibers as the electrospinning jet is shrinking from a larger size to a smaller one 

and wrinkling satisfying the critical condition at a large fiber radius first occurs. Thus, 

spontaneous circumferential wrinkles can be observed more often in electrospun soft nanofibers, 

which has been broadly validated in electrospinning experiments with one sample as shown in 

Figure 2-3. 

3.3.4. Wavenumber (Wrinkle Mode) for Circumferential Wrinkling in Soft Polymer 

Nanofibers 

Substitution of Eqs. (3.30) and (3.31) into (3.35) leads to the wavenumber k  (wrinkle 

mode) of a compliant nanofiber as 

 3/20
3

0

4
l

k
R

= − + . (3.42) 

Figure 3-6 shows the numerical scaling analysis of the dependencies of the wavenumber k  upon 

the axial stretch 3  at five initial fiber radii 0R  and four intrinsic lengths 0l  as adopted in Section 

3.3.1, respectively. Herein, wavenumbers k  = 1 and 2 correspond to the circular and elliptical 

nanofiber cross-sections, respectively. The physically meaningful wrinkle modes can be 

considered for those with wavenumbers k  ≥ 2. 
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Figures 3-7 to 3-10 show variations of the wavenumber k  (wrinkle mode) of soft 

nanofibers with respect to varying axial stretch 
3  at five different initial fiber radii 

0R  and four 

intrinsic lengths 
0l , respectively. Given the values of 

0R  and 
0l , k  increases in a slightly 

nonlinear feature with increasing 
3 . In addition, at a fixed value of 

3 , k  increases with either 

increasing 
0l  or decreasing 

0R , i.e., the smaller soft nanofiber radii, the more do the 

circumferential surface wrinkles appear. Figures 3-7 to 3-10 also indicate that axial stretching 

can be utilized to tune the circumferential wrinkling in soft nanofibers and then rationally modify 

the surface morphology and specific surface area of the soft nanofibers for promising 

applications of gas/liquid filtration, water-oil separation, biological tissue scaffolding, etc. In 

principle, surface morphology can be actively altered to optimize the surface wetting 

performance of nanofiber mats (Zhou & Wu, 2015) according to Wenzel and Cassie and Baxter 

models for patterned superhydrophobic surfaces (Wenzel, 1936, 1949; Cassie & Baxter, 1944). 
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Figure 3-7. Variation of the wavenumber k  (wrinkle mode) of soft nanofibers with respect to 

varying axial stretch 
3  at intrinsic length 

0l  = 50 nm and five different initial fiber radii (
0R  = 

50, 100, 200, 500, and 1,000 nm). 

 

Figure 3-8. Variation of the wavenumber k  (wrinkle mode) of soft nanofibers with respect to 

varying axial stretch 3  at intrinsic length 0l  = 200 nm and five different initial fiber radii ( 0R  = 

50, 100, 200, 500, and 1,000 nm). 
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Figure 3-9. Variation of the wavenumber k  (wrinkle mode) of soft nanofibers with respect to 

varying axial stretch 
3  at intrinsic length 

0l  = 500 nm and five different initial fiber radii (
0R  = 

50, 100, 200, 500, and 1,000 nm). 

 

Figure 3-10. Variation of the wavenumber k  (wrinkle mode) of soft nanofibers with respect to 

varying axial stretch 3  at intrinsic length 0l  = 1,000 nm and five different initial fiber radii ( 0R  

= 50, 100, 200, 500, and 1,000 nm). 
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Nevertheless, substantial experimental data are still desired for surface energy, 

mechanical properties, and drying induced residual strains across the electrospun polymer 

nanofibers. Thus, quantitative model validation is still pending at this stage though the present 

model is able to qualitatively predict the existence of circumferential wrinkling and to indicate 

the crucial role of surface energy in dominating the surface wrinkling phenomenon in 

electrospun polymer nanofibers. Additional model refinements and validation are expected once 

sufficient experimental data of soft polymer nanofibers are available. 

3.3.5. Special Case of Infinitesimal Deformation in Soft Polymer Nanofibers 

In the special case of simple uniaxial tension with zero deformation, 
3  = 1 (i.e., 

infinitesimal deformation), by considering the constitutive Eqs. (3.7) and (3.8), the tangential 

modulus 
TE of the material can be determined as 

 3TE = , (3.43) 

and by considering the axial tensile stress (3.16) 

 0

0 02

l

R R

 

 
= = , (3.44) 

the critical radius for an infinitesimal deformation can be determined as 

 CR



= . (3.45) 

Eq. (3.45) indicates that infinitesimal deformation of soft polymer nanofibers may happen for 

fibers smaller than CR , which can also be rewritten as 

 
3( 1)

C

T

R
E




=

−
, (3.46) 
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for 
3  ≠ 1. For 

3  > 1 (i.e., axial stretch), the right side value gets smaller than 
CR  and small 

elastic deformations start to appear on the polymer fiber. For 
3  < 1 (i.e., axial compression), the 

right side value gets larger than 
CR  and prevents any deformation on the polymer fiber. 

3.4. Concluding Remarks 

In this study, the mechanism of circumferential surface wrinkling of soft polymer 

nanofibers under axial stretching has been explored via forming a simple 1D continuum 

mechanics model. During the process, the possible radial gradients of the mechanical properties 

in the fiber cross-section were ignored, and the material of the soft polymer nanofibers was 

treated as homogeneous, isotropic, hyperelastic neo-Hookean solid. The governing ODE for 

circumferential wrinkling has been determined. The critical axial stretch to trigger 

circumferential wrinkling and the critical initial fiber radius to evoke spontaneous 

circumferential wrinkling have been extracted in explicit expressions. Detailed numerical scaling 

analysis has been performed to illustrate the dependencies of critical axial stretch and critical 

fiber radius upon the material properties and geometries of the soft nanofibers. The present study 

provides the rational basis of circumferential wrinkling phenomenon commonly observed in soft 

polymer nanofibers produced by electrospinning. The present modeling study also demonstrated 

a potential technique to actively tune the surface morphology of soft polymer nanofibers via 

axial stretching to induce circumferential wrinkling. The present theorical study can be helpful 

for the applications where the surface morphology of the polymer nanofiber has an important 

role in that particular application, e.g., high-grade gas/liquid filtration, polymer nanocomposites, 

wound dressing, tissue scaffolding, drug delivery, and renewable energy harvesting, conversion, 

and storage, etc. 
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CHAPTER 4. TUNABLE WRINKLE MODES OF CORE-SHELL POLYMER FIBERS 

IN ELECTROSPINNING 

4.1. Introduction 

As it has been mentioned before, wrinkled surfaces are commonly observed on ultrathin 

polymer fibers produced in electrospinning process. Yet, the corresponding critical mismatch 

strain, which leads to the circumferential wrinkling in electrospun nanofibers with glassy shell 

and sol-gel core, has not been predicted yet for the design and optimization of the surface winkle 

modes of electrospun fibers for various practical applications. As a viable experimental 

approach, this chapter proposes to incorporate hard cores (e.g., carbon nanotubes (CNTs), silica 

particles, etc.) into polymer nanofibers via coaxial electrospinning, i.e., co-electrospinning 

(Figure 4-1), to intelligently alter the surface wrinkle modes of the resulting core-shell 

nanofibers. In this chapter, a continuum mechanics model and related FEA is formulated to 

explore the dependencies of surface wrinkle modes of the core-shell polymer fibers upon the 

thickness and stiffness of the glassy shell and inner soft sol-gel layers. Detailed discussions on 

the wrinkling mechanisms are made and conclusions of the present study are drawn in 

consequence. 
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Figure 4-1. Nanotube formation using coaxial electrospinning: (a) Schematic coaxial 

electrospinning process; (b) SEM image of a uniaxially aligned array of TiO2 hollow fibers (Li 

& Xia, 2004a). 

4.2. Problem Statement and Solution 

Beyond control of the solvent evaporation in electrospinning, herein we formulate a 

continuum mechanics model to explore the potential of actively altering the surface wrinkle 

modes of electrospun fibers via introducing a second phase of an artificial hard core. This 

approach can be realized by means of co-electrospinning, in which hard micro/nanoparticles 

(e.g., CNTs, silica micro/nanoparticles, etc.) can be conveniently enwrapped into the electrospun 

fibers as the hard core via feeding these particles into the inner jet in co-electrospinning process. 

Therefore, in the jet whipping stage, the fast drying-induced glassy shell, the inner sol-gel layer 

and the hard core of enwrapped hard particles can be modeled as a tri-layered cylinder, as 

illustrated in Figure 4-2, to study the surface wrinkling initiation and regulation. The fast drying 

(solvent evaporation) of the surface skin (shell) and solvent diffusion in the jet results in the 

radial solvent-concentration gradient across the jet, leading to the excessive circumferential 

(b)(a)
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compressive strain in the initially dried shell and finally triggering surface wrinkling when the 

critical buckling conditions are reached. 

 

Figure 4-2. Schematic cross-section of a tri-layered electrospun fiber and surface winkling. (a) 

Initial reference state, (b) boundary conditions, and (c) surface wrinkling due to circumferential 

strain mismatch. 

To explore the dependencies of the circumferential wrinkle modes upon the geometries 

and stiffness of the glassy shell and inner soft sol-gel layer on a hard core in co-electrospinning, 

nonlinear FEA is utilized for the wrinkling analysis for the present study. During the 

computational process, the glassy shell and inner soft sol-gel layer of the fiber are modeled as 

two incompressible hyperelastic neo-Hookean solids with different shear modulus  . The strain 

energy density W  of a hyperelastic neo-Hookean solid is given as 

a

b
c

(a) Reference state

Soft

Stiff

Fixed

edge

Tempered 

layer

(c) Patterned state

(b) Boundary 

conditions
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 ( )2 2 2

1 2 3 3
2

W


  = + + − . (4.1) 

where   = f  for the glassy shell (film),   = 
s  for the inner sol-gel layer (substrate), and 

1 , 

2  and 
3  are the three principal stretches of the fiber along the radial r , circumferential  , and 

axial z  directions, respectively (Zhao & Zhao, 2017; Cowin & Doty, 2007). Without loss of 

generality, it is assumed that the fiber is in the plane-strain state as any existing axial strain along 

the fiber axis ( z -axis) can be converted into the strains in the fiber cross-section according to 

material incompressibility of the neo-Hookean solids, which implies 
1  = 1  , 

2  =  , and 
3  = 

1 with   as a function with respect to r  and  . In reality of electrospinning, axial strain always 

exists and varies with jet elongation while surface wrinkling happens at the late whipping stage 

as the shell starts to solidify. By comparison with drying-induced circumferential strain 

mismatch, the axial strain does not dominate the surface wrinkling process in electrospun fibers. 

Hereafter, the computational nonlinear buckling (wrinkling) analysis is implemented by using a 

commercial FEA software package (ANSYS®) as follows. For a typical simulation, given the 

fiber aspect ratios a c  and f st t  ( ft c b= −  and st b a= − ), as shown in Figure 4-2(a), and the 

stiffness ratio f s   of the glassy shell to the inner soft layer, the hard core of radius a  is 

modeled as a rigid body in FEA via applying fixed displacement boundary conditions (BCs) at 

the core surface; the initial “seeded” compressive strains in the glassy shell is made through 

applying an artificial thermal volumetric strain in the shell. Varying aspect ratios a c  and f st t  

as well as stiffness ratio f s   are employed in the computational simulations to examine the 

effects of the hard core of varying radius as well as the polymer-solvent system of varying 

solvent fraction and evaporation rate in co-electrospinning. Numerical results gained from the 
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computational simulation include the minimum critical compressive strain (
c ) in the glassy 

shell and the corresponding wave number n  of the surface wrinkle modes. In a realistic co-

electrospinning process, the aspect ratios a c  and f st t  and stiffness ratio f s   are governed 

by the process parameters, polymer-solvent system, and the jet drying rate, which further 

determine the residual compressive strain 
r  (i.e., the circumferential strain mismatch) in the 

glassy shell. Once 
r  in the shell is equal or larger than the critical wrinkling strain 

c  to evoke 

circumferential surface wrinkling, the predicted wrinkle mode with the wavenumber n  is 

expected to be observable in electrospinning, as illustrated in Figure 4-2(c). 

During the computational simulation, a variety of combinations of the aspect ratios ( a c  

and f st t ), as shown in Figure 4-3, and stiffness ratio ( f s  ) are employed to examine the 

parameter effects of varying drying rates and polymer-solvent systems in the sense of physics. 

Three values of a c  (i.e., 0.25, 0.5, and 0.75) are considered to represent three types of hard 

core, i.e., small-, medium- and large-sized hard cores; for each a c , four values of f st t  (i.e., 

0.1, 0.25, 0.5, and 1.0) are utilized to stand for four different types of polymer-solvent systems 

(with different drying rates). Furthermore, for each combination of a c  and f st t , three values 

of f s   (i.e., 10, 100, and 1,000) are employed in the computational simulations. As 

aforementioned, the values of f st t  and f s   are employed to phenomenologically represent 

the relevant geometrical and elastic properties of the polymer-solvent system in co-

electrospinning as the exact dependency is not available yet from the literature. Figures 4-4 to 4-

6 show the critical surface wrinkle mode charts in terms of the wavenumber n  (the lowest) and 

surface topology against the aspect ratio f st t  and stiffness ratio f s   for a c  = 0.25, 0.5, and 
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0.75, respectively, in which the color contours of wrinkled fiber cross-sections represent the in-

plane characteristic deformations in the fiber cross-section after wrinkling (i.e., eigen-

deformation). It can be observed from Figure 4-4 that given the size of a hard core ( a c ), the 

wavenumber n  (i.e., the number of surface wrinkles) decreases from n  = 10 to 3 with increasing 

either stiffness ratio f s   from 10 to 1,000 or fiber aspect ratio f st t  from 0.1 to 1. This 

observation has a clear physical picture in co-electrospinning as a high stiffness ratio f s   

and/or a high fiber aspect ratio f st t  are directly correlated to a high gradient of solvent 

concentration across the fiber, i.e., a fast solvent evaporation (drying), which generally leads to a 

shaped electrospun fiber with fewer surface wrinkles (i.e., a lower value of the wavenumber n ) 

as evidenced in electrospinning experiments (Koombhongse et al., 2001; Pai et al., 2009; Wang 

et al., 2009). In addition, within the framework of continuum mechanics (Herrmann & Forrestal, 

1965; Wang et al., 2009), it has been shown that once buckled, a stiffer and thicker surface layer 

attached onto a compliant substrate under in-layer compression generally generates surface 

wrinkles with a smaller wavenumber n , i.e., a large wavelength. As a conclusion, the reduction 

of the solvent evaporation rate (drying rate) in electrospinning or more even drying across the jet 

(i.e., the lower f s   and f st t  ratios) generally produces micro/nanofibers with more 

wrinkled surfaces (i.e., a higher wavenumber n ). 
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Figure 4-3. Schematic cross-section geometries of electrospun core-shell fibers of varying aspect 

ratios a c  and f st t  used in computational wrinkling analysis. 

 

Figure 4-4. Critical surface wrinkle mode charts in terms of the wavenumber n  and surface 

topology against the aspect ratio f st t  and stiffness ratio f s   for a c  = 0.25. 
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Figure 4-5. Critical surface wrinkle mode charts in terms of the wavenumber n  and surface 

topology against the aspect ratio f st t  and stiffness ratio f s   for a c  = 0. 5. 

 

Figure 4-6. Critical surface wrinkle mode charts in terms of the wavenumber n  and surface 

topology against the aspect ratio f st t  and stiffness ratio f s   for a c  = 0.75. 
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Furthermore, comparison of Figures 4-4 to 4-6 shows that adoption of a hard core in co-

electrospinning can significantly alter the surface wrinkling of the resulting electrospun fibers. 

At fixed f st t  and f s  , i.e., the similar process parameters and polymer-solvent systems 

used in co-electrospinning, a large-sized hard core can trigger a larger wavenumber n , and the 

n - a c  correlation is roughly linear. This observation can be understood such that more surface 

wrinkles (with larger bending curvature and flexural energy) are needed to store the strain energy 

released from the compressed glassy shell upon surface wrinkling in the electrospun fibers with a 

large-sized hard core (i.e., with relatively thinner polymer layers). Thus, the surface wrinkle 

modes of electrospun fibers can be actively tuned via adjusting the size of the hard core in co-

electrospinning. 

Figures 4-7 to 4-15 further show the variation of the critical wrinkling compressive strain 

c  in the glassy shell with respect to the wavenumber n , i.e., the characteristic wrinkling 
c - n  

diagram, at varying aspect ratios f st t  and a c  and stiffness ratio f s   of the electrospun 

fibers with hard cores as shown in Figure 4-3. Figures 4-7 to 4-15 are extracted from the 

computational simulations for the surface wrinkle mode charts as shown in Figures 4-4 to 4-6. At 

fixed values of a c  (i.e., fixed size of the hard core) and f s  , Figures 4-7 to 4-15 indicate 

that c  in the glassy shell decrease rapidly with decreasing f st t , i.e., the thinner the glassy shell 

is (fast drying), the easier the surface wrinkling happens, which is correlated to the experimental 

observations (Koombhongse et al., 2001; Pai et al., 2009; Wang et al., 2009). In principle, the 

wrinkling of a thin elastic layer on a compliant substrate depends upon the flexural stiffness of 

the layer in term of ~ 3

ft  ; the cubic relation with respect to the layer thickness is roughly 

followed in Figures 4-7 to 4-15. In addition, for relatively thick glassy shells (e.g., f st t  = 0.25, 
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0.5, and 1.0) of the electrospun fibers with a small-sized hard core ( a c  = 0.25), 
c  increases 

nearly linearly with increasing wavenumber n ; however, 
c  becomes insensitive to n  for f st t  

= 0.1. In the case of the electrospun fibers with a large-sized core ( a c  = 0.75), except for the 

case of f st t  = 1.0, 
c  becomes insensitive to n  for f st t  = 0.1, 0.25 and 0.5. These 

observations show that fast drying (i.e., the thinner glassy shell or lower f st t ) and large-sized 

hard core (i.e., larger a c ) typically result in a smaller 
c , which is also insensitive to n , i.e., 

surface wrinkles corresponding to multiple values of n  can coexist similar to multiple standing 

surface waves of varying wavelength/wavenumber. In addition, in the case of the electrospun 

fibers with a large-sized hard core (i.e., the large value of a c ), the characteristic wrinkling 
c -

n  diagram behaves concave, implying that in the solvent evaporation process, the wavenumber 

n  has the behavior of bifurcation with respect to 
c . This bifurcation behavior can be 

understood such that with fast solvent evaporation from the jet, the compressive residual strain 

r  in the glassy shell grows and then exceeds the minimum 
c , which may potentially trigger the 

surface wrinkling of two types of wrinkle mode. In addition, c  of electrospun fibers with a 

small-sized hard core (i.e., a small value of a c ) behaves more sensitive to f s   than that of 

electrospun fibers with a large-sized hard core. As a conclusion, the c - n  curves of electrospun 

fibers at varying a c , f st t  and f s   provide a complete scenario of the dependencies of 

surface wrinkle modes upon the process and material parameters adopted in co-electrospinning, 

which can be considered as the guidelines for surface wrinkling control and optimization. 

Furthermore, in the present computational study, the actual inhomogeneous fiber cross-section is 

modeled as two-layered coaxial structure with varying thickness ratio and stiffness ratio to 
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approach the stiffness gradient in the realistic fiber cross-section. In such a simplification 

scheme, the stiffness of the two-layered coaxial structure of the fiber is understood as a rational 

phenomenological approach to the effective stiffness of the inhomogeneous portion of the fiber 

cross-section, which would not result in noticeable errors in modeling. 

 

Figure 4-7. Variation of the critical wrinkling strain 
c  with respect to the wavenumber n  of the 

surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.25 and f s   = 10. 
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Figure 4-8. Variation of the critical wrinkling strain 
c  with respect to the wavenumber n  of the 

surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.25 and f s   = 100. 

 

Figure 4-9. Variation of the critical wrinkling strain c  with respect to the wavenumber n  of the 

surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.25 and f s   = 1,000. 



 

54 

 

Figure 4-10. Variation of the critical wrinkling strain 
c  with respect to the wavenumber n  of 

the surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.5 and f s   = 10. 

 

Figure 4-11. Variation of the critical wrinkling strain c  with respect to the wavenumber n  of 

the surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.5 and f s   = 100. 
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Figure 4-12. Variation of the critical wrinkling strain 
c  with respect to the wavenumber n  of 

the surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.5 and f s   = 1,000. 

 

Figure 4-13. Variation of the critical wrinkling strain c  with respect to the wavenumber n  of 

the surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.75 and f s   = 10. 
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Figure 4-14. Variation of the critical wrinkling strain 
c  with respect to the wavenumber n  of 

the surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.75 and f s   = 100. 

 

Figure 4-15. Variation of the critical wrinkling strain c  with respect to the wavenumber n  of 

the surface wrinkle modes at varying aspect ratios f st t  for a c  = 0.75 and f s   = 1,000. 
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Consequently, it needs to be mentioned that the typical diameters of electrospun fibers 

are in the range of a few nanometers to micrometers. Within such small scales, surface 

tension/energy of compliant electrospun fibers may influence their mechanical behavior (Wu et 

al., 2008; Wu, 2010; Wu & Dzenis, 2006, 2007a, 2007b, 2007c; Wu et al., 2010) and related 

critical wrinkling strain 
c  and surface wrinkle modes (the wavenumber n ). As surface effects 

(e.g., surface tension/energy, etc.) are excluded in the present study due to the limitation of the 

commercial FEA software ANSYS®, the present computational scaling analysis indicates that the 

wrinkled surface topologies (i.e., the wavenumber n ) only depends upon the aspect ratios ( a c

and f st t ) and stiffness ratio ( f s  ) while explicitly independent of the fiber radius c , i.e., the 

surface wrinkling phenomenon within the present continuum mechanics framework is size-

independent. Therefore, all the numerical results gained above and conclusions drawn in this 

study are applicable to surface wrinkling analysis of all types of compliant fibers and cylinders 

with hard cores. 

4.3. Concluding Remarks 

Wrinkle modes of ultrathin polymer fibers produced in the electrospinning process can be 

intelligently regulated via incorporating hard cores of different size into the fibers. The 

dependencies of surface wrinkle modes of these core-shell polymer fibers enwrapped with hard 

cores upon the thickness and stiffness ratios of the glassy shell and inner soft sol-gel layers have 

been obtained via detailed computational buckling analysis, which provides a rational basis of 

producing ultrathin polymer micro/nanofibers with controllable surface morphologies. Such 

electrospun nanofibers carry greatly enhanced specific surface areas suitable for various 
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advanced applications such as oil-water separation, high-graded gas and liquid filtration, drug 

delivery, catalyst carriers, tissue scaffolding, etc. 
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CHAPTER 5. INHOMOGENEOUS SWELLING BEHAVIOR OF A BI-LAYERED 

SPHERICAL HYDROGEL CONTAINING A HARD CORE 

5.1. Introduction 

Hydrogels swell significantly when imbibing water and exhibit inhomogeneous 

deformation, stress, and water concentration fields when the swelling is constrained. This chapter 

studies the displacement, stress, and water concentration fields of a bi-layered spherical hydrogel 

bonded onto a hard core, which is an extension of the problem considered by Zhao et al. (2008a). 

Experimentally, it is convenient to coat a 2nd gel layer onto the 1st one to form a bi-layered 

hydrogel or a composite hydrogel layer. To do so, the 2nd layer can be used to regulate the 

swelling behavior of the entire hydrogel system. In practice, it is favorable to apply a relatively 

stiff surface gel layer to protect the inner hydrogel layer such as the generation of compressive 

radial stress to stabilize the core-shell structure and suppression of the wear and tear of the inner 

softer hydrogel layer. The present problem is reduced into a two-point boundary value problem 

of a 2nd-order ODE with inner continuity conditions between two neighboring layers and solved 

numerically. Effects of the outer layer stiffness on the displacement, stress, and water 

concentration fields are examined and compared. Consequently, conclusions and 

recommendations of the present study are made. 

5.2. Model Development 

Figure 5-1 illustrates two concentric spherical hydrogels, designated as Layers I and II, 

which are bonded perfectly together onto a hard core. In the reference state, the hydrogels are 

treated as dry and stress-free as shown in Figure 5-1(a), with the configurations such that Layer I 

has the inner radius of A  and outer radius of B , while Layer II carries the inner radius of B  and 
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outer radius of C . In the equilibrium state of the hydrogels after imbibing water, the hydrogels 

were swollen into the current configuration with an inner radius of 
0A  for the hard core and 

radii b  and c  corresponding to the initial radii B  and C , respectively, as shown in Figure 5-

1(b). Herein, the initial stretch 
0  is due to the preparation method of the hard core inside the 

inner gel. In the special case of 
0  = 1, it means that the hard core has no deformation after the 

hydrogel system imbibes water. 

 

Figure 5-1. Two concentric spherical hydrogels layers bonded onto a hard core. Layers I and II 

carry different material properties. (a) Dry polymer networks, (b) Swollen hydrogels after 

imbibing water. 

By submerging the hydrogel system into pure water, the hydrogel layers start to swell 

inhomogeneously and anisotropically till the water molecules inside the hydrogel polymer 

networks reach thermodynamic equilibrium with those out of the hydrogel in pure water. In this 

study, the hard core is assumed to be rigid and bonded perfectly to Layer I as shown in Figure 5-

1(a), thus only the radial stretch of the network exists at the core-hydrogel interface. 

Correspondingly, the circumferential stretch of the network near the core-hydrogel interface is 

Core

Gels
Dry polymers

(a)                                                                            (b)
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dominated by the rigidity of the hard core instead of the swelling of the inner hydrogel. On the 

other hand, the hydrogel polymer networks out of the core-hydrogel interface can expand in all 

three directions. Thus, it is expected that a lower volume fraction of water appears near the core-

hydrogel interface (Zhao et al., 2008a). 

As shown in Figure 5-1, the radius of an arbitrary mass point in the initial dry hydrogels 

is denoted as R , which is ranging from A  to B  for Layer I and ranging from B  to C  for Layer 

II. In the equilibrium state of the hydrogels after imbibing water, the spherical symmetry of the 

problem expects that the swollen networks will sustain its spherical symmetry (Zhao et al., 

2008a), and the radius of an arbitrary mass point in the swollen hydrogels can be denoted as 

( )r R , which varies from 
0 A  to b  for Layer I and from b  to c  for Layer II. Therefore, the 

radial stretch of the hydrogels is 

 r

dr

dR
 = , (5.1) 

and the circumferential stretch is 

 
r

R
 = , (5.2) 

which lead to the deformation gradient as 
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F , (5.3) 

and the corresponding left Cauchy-Green tensor and its three principal scalar invariants as 
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 2 2

1 2rI  = + ,             2 2 4

2 2 rI    = + ,             2 4

3 rI  = . (5.5) 

Imbibing water molecules causes the volume change of the hydrogels. Assume that the 

individual water molecules and the individual long polymers of the hydrogels are 

incompressible. Thus, the molecular incompressibility condition of the hydrogels follows (Hong 

et al. 2008b; Zhao et al., 2008a) 

 det( ) 1 vC= +F , (5.6) 

which can be recast as 

 2 1rvC  = − . (5.7) 

In above, v  is the volume per water molecules and C  is the water concentration in a hydrogel, 

that is the number of water molecules in an element of the hydrogel in the equilibrium state 

divided by the volume of the dry hydrogel polymer in the reference configuration (Hong et al. 

2008b; Zhao et al., 2008a). 

Once the swollen hydrogel reaches the equilibrium state after imbibing water, it develops 

a stress field according to the work by Gibbs (1906) who derived the state equations from a free-

energy density, ( , )W CF , which is a function with respect to the deformation gradient F  and 

water concentration C  (Hong et al., 2009; Zhao et al., 2008a). Correspondingly, the Cauchy 

stress components, rs  and s , and chemical potential   in the current configuration of the 

hydrogels can be expressed as. 

 
( , )

r

r

W C
s




=



F
, (5.8) 
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( , )W C

s



=



F
, (5.9) 

 
( , )W C

C



=



F
, (5.10) 

where ( )rs R  is the nominal radial stress, ( )s R  is the nominal circumferential stress, and   is 

the chemical potential of the solvent molecules. The stress equilibrium equation in the spherical 

coordinate system can be expressed as 

 2 0rr
s sds

dR R

−
+ = . (5.11) 

The condition of molecular incompressibility can be added to the free-energy density of 

the hydrogel as a constraint in terms of ( , ) (1 det( ))W C vC+ + −F F , where   is a Lagrange 

multiplier (Zhao et al., 2008b; Nayak & Lyon, 2005). Thus, the formal expressions for nominal 

stresses (5.8) and (5.9) and chemical potential (5.10) are 

 
( , ) det( )

r

r r

W C
s

 

 
= −

 

F F
, (5.12) 

 
( , ) det( )W C

s
  

 
= −

 

F F
, (5.13) 

 
( , )W C

v
C




= +


F
. (5.14) 

Due to the geometrical constraint of the inner hard core, the hydrogels are 

inhomogeneous and anisotropic at their equilibrium state after imbibing water. This equilibrium 

state can be determined via solving (5.11) as a mixed boundary value problem once the free-

energy function is available (Hong et al., 2008b). Among others, one commonly used free-

energy density function for a swollen elastomer developed by Flory and Rehner (1943) with the 

notation by Hong et al. (2008b) can be adopted for such purpose, 
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W C NkT I vC

v vC vC

  
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F F , (5.15) 

where N  is the number of polymer chains in the hydrogel divided by the volume of the dry 

polymer networks, kT  is the temperature in the unit of energy, and   is a dimensionless 

parameter from the enthalpy of mixing (Flory & Rehner, 1943; Hong et al., 2008b). 

In this study, the solvent is considered as pure water, and its chemical potential   is set 

to be zero. Substitution of (5.15) into (5.12) and (5.14) with 0 =  leads to the state equations 

(Hong et al., 2008b): 
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. (5.17) 

According to Zhao et al. (2008a), in the absence of external mechanical constraints, the 

polymer network swells freely and ends up with a homogeneous and isotropic expansion to reach 

its equilibrium state. The equilibrium water concentration 
freevC  in a free-swelling hydrogel can 

be determined by solving a nonlinear algebraic equation numerically after setting 

1/3

free free( 1)r vC  = = = +  and rs  = 0 in (5.16) as 

2/3
1/3 free free

free 1/3 2

free free free free

( 1)1 1
( 1) log 0

( 1) 1 1 (1 )

vC vC
vC

vC vN vC vC vC

 +
+ − + + + = 

+ + + + 
. (5.18) 

For a constrained hydrogel network, the governing equation of swollen hydrogels can be 

derived by substituting (5.16) and (5.17) into (5.11) and considering (5.1), (5.2), and (5.7) to 

form a nonlinear 2nd-order ODE: 
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In this study, a hard core and two layers of concentric hydrogels are assumed to be 

bonded together perfectly. In this case, Eq. (5.19) can be solved numerically with the BCs: ( )r A  

= 
0 A  and ( )rs C  = 0 as well as the interface continuity conditions, i.e., ( )r R  and ( )rs R  as 

continuous functions across at the hydrogel-hydrogel interface at R  = B  such that 0( )r R−  = 

0( )r R+  and 0( )rs R−  = 0( )rs R+ . 

5.3. Numerical Examples and Discussions 

5.3.1. The Equilibrium State of Two Bonded Swollen Hydrogels Containing a Hard Core 

In the numerical analysis of the equilibrium state of the two bonded spherical swollen 

hydrogels layers as shown in Figure 5-1, the initial stretch of the hard core is assumed as 
0  = 

1.077, the dimensionless parameters vN  and   are considered in the range of 10-5 – 10-1 and 0 – 

1.2, respectively (Hong et al., 2009; Zhao et al., 2008a). 

Figures 5-2 to 5-5 show the displacement, water concentration, stretch, and stress fields 

of the hydrogel system in equilibrium state after imbibing sufficient water, in which the two 

hydrogel layers are assumed to carry different stiffness. Herein the lines in green represent the 

results of the case where both the hydrogel layers in the system carry identical properties (i.e., 

vN  = 10-3 and   = 0.2), i.e., the case of a single hydrogel layer that has been considered and 
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validated by Zhao et al. (2008a). Thus, the present swelling mechanics model of hydrogels can 

cover those available in the literature in the limiting case of a single hydrogel layer. 

In addition, if taking the lines in green as the reference, two other cases (lines in red and 

blue) are further considered, of which one layer (the inner or outer) is set to be softer with vN  = 

10-4 and   = 0.1, in an alternative. Figure 5-3 shows that in either case, the softer hydrogel layer 

tends to imbibe more water and results in a higher water concentration compared to that of the 

reference case. Though the softer layer is constrained by the hard core and the outer layer, it can 

still swell significantly and pushes out the outer hydrogel layer. Figure 5-4 stands for the 

variations of radial and circumferential stretches with respect to the dimensionless radius R A . It 

can be observed that the stretches of the inner layer for both the cases (lines in red and blue) are 

close to those of the reference case, while the stretches of the outer layer show a large deviation 

as the one with a softer outer hydrogel is experiencing larger stretches in the outer layer 

compared to the reference case and the case of the system with a softer inner hydrogel. Figure 5-

5 shows the variations of radial and circumferential stresses with respect to the dimensionless 

radius R A . Lines in blue show that when the outer layer is softer, the entire system would 

experience tensile radial stress; lines in red show that when the inner layer is softer, the radial 

stress at the interface between two hydrogel layers is compressive. In Figure 5-5, all the 

dimensionless stresses are measured on the basis of the shear modulus of the dry polymer 

network NkT  (Hong et al., 2009; Zhao et al., 2008a). 
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Figure 5-2. Variation of the dimensionless radial deformation with respect to the dimensionless 

dry hydrogel radius in an equilibrium state of two spherical hydrogel layers (with one layer 

softer than the reference hydrogel) bonded onto a hard core. 

 

Figure 5-3. Variation of the water concentration with respect to the dimensionless dry hydrogel 

radius in an equilibrium state of two spherical hydrogel layers (with one layer softer than the 

reference hydrogel) bonded onto a hard core. 
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Figure 5-4. Variation of the principle stretches with respect to the dimensionless dry hydrogel 

radius in an equilibrium state of two spherical hydrogel layers (with one layer softer than the 

reference hydrogel) bonded onto a hard core. 

 

Figure 5-5. Variation of the principle nominal stresses with respect to the dimensionless dry 

hydrogel radius in an equilibrium state of two spherical hydrogel layers (with one layer softer 

than the reference hydrogel) bonded onto a hard core. 
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Figures 5-6 to 5-9 show the displacement, water concentration, stretch, and stress fields 

of the hydrogel system in the equilibrium state after imbibing sufficient water when one hydrogel 

layer is stiffer than the reference one. Similar to Figures 5-2 to 5-5, lines in green are the results 

of the reference case for the purpose of comparison, while lines in red and blue show the results 

of two cases, of which one of the hydrogel layers (either the inner or outer) is set to be stiffer 

with vN  = 10-2 and   = 0.4, alternatively. Figure 5-7 shows that the stiffer hydrogel layer tends 

to imbibe much less water than that of the reference case. Though the stiffer hydrogel layer is 

swollen while it constrains the swelling of the softer hydrogel layer. Figure 5-8 represents the 

variations of radial and circumferential stretches with respect to the dimensionless radius R A . It 

can be found that the stretches in the inner hydrogel layer in both the cases (lines in red and blue) 

are close to each other. However, stretches in the outer hydrogel layer exhibit a noticeable 

difference such that the stiffer outer hydrogel layer experiences lower stretches than either the 

reference case or the case with a stiffer inner hydrogel. Figure 5-9 shows the variations of radial 

and circumferential stresses with respect to the dimensionless radius R A . Herein lines in blue 

show that in the case of the system with a stiffer outer hydrogel layer, the radial stress at the 

interface is compressive. In contrast, in the case of the system with a stiffer inner hydrogel layer, 

lines in red show that the entire system experiences tensile radial stress. 
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Figure 5-6. Variation of the dimensionless radial deformation with respect to the dimensionless 

dry hydrogel radius in an equilibrium state of two spherical hydrogel layers (with one layer 

stiffer than the reference hydrogel) bonded onto a hard core. 

 

Figure 5-7. Variation of the water concentration with respect to the dimensionless dry hydrogel 

radius in an equilibrium state of two spherical hydrogel layers (with one layer stiffer than the 

reference hydrogel) bonded onto a hard core. 
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Figure 5-8. Variation of the principle stretches with respect to the dimensionless dry hydrogel 

radius in an equilibrium state of two spherical hydrogel layers (with one layer stiffer than the 

reference hydrogel) bonded onto a hard core. 

 

Figure 5-9. Variation of the principle nominal stresses with respect to the dimensionless dry 

hydrogel radius in an equilibrium state of two spherical hydrogel layers (with one layer stiffer 

than the reference hydrogel) bonded onto a hard core. 
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5.3.2. The Equilibrium State of a Soft Hydrogel Enclosed by an Extremely Stiff Gel 

In this case study, the outer layer of the bi-layered hydrogel system is assumed extremely 

stiff with parameters vN  and   to take very large values that can be physically realized via 

increasing the network density and hydrophobic behavior of the polymer networks. Herein, the 

inner soft hydrogel is treated to be bonded perfectly onto a hard core with 
0  = 1.077. 

Figures 5-10 to 5-13 show the displacement, water concentration, stretch, and stress 

fields in the equilibrium state of a soft hydrogel enclosed by an extremely stiff hydrogel bonded 

perfectly onto a hard core as aforementioned. Herein, lines in blue show the results of the 

reference case for the purpose of comparison ( vN  = 10-4 and   = 0.1); lines in red indicate the 

results of the system with an inner soft hydrogel layer with vN  = 10-4 and   = 0.1 and the outer 

stiff hydrogel layer with vN  = 10-1 and   = 1.2. Figure 5-11 shows that the outer stiff hydrogel 

layer does not imbibe noticeable water and the water concentration is nearly zero, i.e., the outer 

hydrogel layer does not swell. From Figure 5-12, it can be noticed that the radial stretch 
r  of the 

stiff outer hydrogel layer is below 1, i.e., in radial compression. As 
free  of the outer stiff 

hydrogel layer is close to 1, increasing the outer layer thickness (radius) will not noticeably alter 

the deformation of the outer layer. Figure 5-13 shows the variations of stresses ( rs  and s ) with 

respect to the dimensionless dry hydrogel radius R A . It can be found that in this case, the inner 

hydrogel layer is under high tensile radial stress rs  at the core-gel interface that may induce the 

debonding of the hydrogel layer from the hard core (Crassous et al., 2006; Ballauff & Lu, 2007). 

With increasing the radius from the core-hydrogel interface, the tensile radial stress rs  

diminishes till it becomes compressive. At the gel-gel interface, the radial stress rs  reaches its 
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compressive peak value, and with further increasing the radius away from the gel-gel interface, 

rs  tends to vanish at the outer rim. 

 

Figure 5-10. Variation of the dimensionless radial deformation with respect to the dimensionless 

dry hydrogel radius in an equilibrium state of one soft spherical hydrogel layer enclosed by an 

extremely stiff hydrogel layer. 
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Figure 5-11. Variation of the water concentration with respect to the dimensionless dry hydrogel 

radius in an equilibrium state of one soft spherical hydrogel layer enclosed by an extremely stiff 

hydrogel layer. 

 

Figure 5-12. Variation of the principle stretches with respect to the dimensionless dry hydrogel 

radius in an equilibrium state of one soft spherical hydrogel layer enclosed by an extremely stiff 

hydrogel layer. 
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Figure 5-13. Variation of the principle nominal stresses with respect to the dimensionless dry 

hydrogel radius in an equilibrium state of one soft spherical hydrogel layer enclosed by an 

extremely stiff hydrogel layer. 

As one application of the present case study, a polymer hydrogel can be used to block the 

leakage of water or an aqueous solution in pipe joints, cavities, or porous structures. In this case, 

after imbibing water, the hydrogel will swell and seal the cavities to block leakage. The present 

study gives a detailed rational justification on how to design and optimize the material properties 

and structural geometries of a bi-layered hydrogel system to reach the targeted water 

concentration and sealing stresses. 

5.4. Concluding Remarks 

In summary, a swelling mechanics model was successfully formulated for determining 

the displacement, stretch, stress, and water concentration fields of a spherical bi-layered hydrogel 

bonded on a hard core. The problem was reduced to solve a two-point boundary value problem 
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of a 2nd-order nonlinear ODE. In the limiting case of a single hydrogel layer, the present model 

has been validated by literature results. The effects of material properties on the displacement, 

stretch, stress, and water concentration fields of the hydrogel layers were examined in detail. The 

scaling results provide the rational basis for the design and optimization of hydrogel systems for 

controlled swelling in broad applications such as drug delivery, tissue engineering, leakage 

blocking, etc. 
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CHAPTER 6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS 

6.1. Conclusions 

The research work of this dissertation was focused on the fundamental understanding of 

the circumferential wrinkling on electrospun soft nanofibers and the swelling mechanics of 

composite hydrogels as electrospun nanofibers and hydrogels have been finding broad 

applications in various engineering sectors. The outcomes of the present theoretical and 

computational studies can be employed for quality control and intelligent fabrication of 

continuous nanofibers by electrospinning and active control of the swelling behaviors of 

hydrogels in biomedical applications, etc. The research results of the dissertation can be 

summarized below. 

For the first objective as covered in Chapter 3, a 1D continuum mechanics model has 

been successfully formulated, which is capable of understanding the mechanism of 

circumferential surface wrinkling of soft polymer nanofibers under axial stretching. During the 

modeling process, the material of the soft polymer nanofibers was treated as homogeneous, 

isotropic, hyperelastic neo-Hookean solid. The resulting ODE that governs the circumferential 

wrinkling has been determined. The critical axial stretch to trigger circumferential wrinkling has 

been gained in explicit expression. In addition, this study first discovered the unique spontaneous 

circumferential wrinkling in electrospun soft nanofibers that is evoked purely by surface energy 

at zero axial stretch, and the related critical fiber radius was determined. Such critical fiber radius 

is technically important to electrospinning practice as it determines the theoretical minimum 

fiber radius that can be realized in electrospinning, i.e., below this minimum fiber radius, 

continuous nanofibers cannot be fabricated by electrospinning due to the jet beading instability. 

Furthermore, detailed numerical scaling analysis has been performed to illustrate the 
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dependencies of critical axial stretch and critical fiber radius upon the material properties and 

geometries of the soft nanofibers. This study provides the rational basis of circumferential 

wrinkling phenomenon commonly observed in soft polymer nanofibers produced by 

electrospinning. The study also demonstrated a potential technique to actively tune the surface 

morphology of soft polymer nanofibers via axial stretching to induce circumferential wrinkling.  

In Chapter 4, which covers the second objective of this thesis work, a feasible technique 

of incorporating hard cores into the soft ultrathin fibers via co-electrospinning was proposed and 

numerically verified for actively regulating the circumferential wrinkle modes of ultrathin 

polymer fibers. The dependencies of surface wrinkle modes of these core-shell polymer fibers 

enwrapped with hard cores upon the thickness and stiffness of the glassy shell and inner soft sol-

gel layers have been obtained via detailed FEA-based nonlinear buckling analysis, which provide 

a theoretical background for producing ultrathin polymer micro/nanofibers with controlled 

surface morphologies. Such electrospun nanofibers carry greatly enhanced specific surface areas 

suitable for use in oil-water separation, fine filtration, drug delivery, catalyst carriers, tissue 

scaffolding, etc. 

Chapter 5 covers the third objective. A swelling mechanics model was formulated 

successfully for determining the displacement, stretch, stress, and water concentration fields of a 

bi-layered spherical hydrogel bonded on a hard core. This problem was reduced to solve a two-

point boundary value problem of a 2nd-order nonlinear ODE. In the limiting case of a single 

hydrogel layer, the present model was validated by the literature results. The effects of material 

properties on the physical quantity fields of the hydrogel layers were examined in detail, which 

provides the theoretical supports of broad opportunities to design and optimize hydrogel systems 
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for controlled swelling in extensive applications such as drug delivery, tissue engineering, 

leakage blocking, etc. 

6.2. Suggestions for Future Works 

As an extension of the present thesis studies, several research topics can be further 

considered to refine and advance the understanding of these topics.  

• Significant solvent evaporation (drying) is the unique feature in the electrospinning 

process, which unavoidably induces inhomogeneous microstructure and related physical 

and mechanical properties across the resulting nanofibers. Thus, with available 

nanotechnology to measure the gradient of the mechanical properties across the 

nanofibers, an improved continuum mechanics model taking into account such gradient 

can be established to refine the prediction of the circumferential wrinkling on electrospun 

nanofibers. 

• It is desirable to combine the effects of both residual strain and mismatch strain to predict 

the final wrinkle mode in electrospun nanofibers, as both of these strains may occur in the 

process of nanofiber formation. Both analytical and computational (finite element 

method-FEM) models can be formulated and implemented for such effects. 

• It is technologically very important to formulate a temporal continuum mechanics model 

of electrospinning jet to simulate the time-dependent wrinkling process during drying, 

which can comprehensively take into account the effects of material properties of 

polymers, solvents, drying process, etc. on the fiber formation and wrinkling evolution. 

• Co-electrospinning core-shell nanofibers containing hard cores of different sizes can be 

made to evaluate the computational results predicted in the present thesis work. 
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• Swelling of soft hydrogels may lead to various structural instabilities. It is scientifically 

interesting and technologically important to predict the critical conditions of composite 

hydrogels made of multiple monolithic hydrogels. More importantly, it is useful to 

formulate the temporal field theories of composite hydrogels to address their time-

dependent deformation, stress, and water concentration fields and structural instabilities 

during constrained swelling.  
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APPENDIX A. SUPPLEMENTAL MATERIALS OF CHAPTER 3 

 Eqs. (3.17) to (3.35) in Chapter 3 were derived by developing a MATLAB™ code as 

follow: 

• Current configuration (circumferentially wrinkled): 

% The parameters are defined as:  
% R = initial radius, T = initial angle (Theta), Z = initial length, 
% f(T) = disturbance function along R direction, 
% g(T) = disturbance function along Z direction, 
% L1 = stretch in R direction (lambda_1), L3 = stretch in Z direction       

% (lambda_3), 
% mu = shear modulus, G = surface tension (gamma), 
% P = axial pulling load applied on the fiber. 
syms R T Z f(T) g(T) L1 L3 c1 G P 
r = R*(L1+f)        %current radius 
t = T+g             %current angle 
z = Z*L3            %current length 

  
1[ ( )]r f R= +  ,                  ( )g = +  ,                  

3z Z= . (A.1) 

• Deformation gradient matrix ( F ) and the left Cauchy-Green tensor (B ): 

drR = diff(r,R) 
drT = 1/R*diff(r,T) 
drZ = diff(r,Z) 
dtR = r*diff(t,R) 
dtT = r/R*diff(t,T) 
dtZ = r*diff(t,Z) 
dzR = diff(z,R) 
dzT = 1/R*diff(z,T)  
dzZ = diff(z,Z) 
% 
F = [drR drT drZ;dtR dtT dtZ;dzR dzT dzZ] 
B = simplify(F*transpose(F)) 
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• The three scalar invariants of B : 

I1 = simplify(trace(B)) 
I2 = simplify(1/2*((trace(B))^2-trace(B^2))) 
I3 = simplify(det(B)) 

 2 2 2 2 2

1 1 1 3tr( ) ( ) ( ) (1 )I f f f g   = = + + + + + +B , (A.4) 
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   = − = + + + + + +   

 − + + − + + − + + − 

B B

, (A.5) 

 4 2 2

3 1 3det( ) ( ) (1 )I f g = = + +B . (A.6) 

• Incompressibility condition: 

eqn1 = simplify(det(F)) == 1 

% 

syms ff ggT                                      % new symbolic variables 
eqn12 = subs(eqn1,[f diff(g(T), T)],[ff ggT]);   % replacing variables 
assume(L1 ~= 0 & L3 ~= 0);   % required assumption for non-trivial solution 
h = simplify(solve(eqn12, ggT)) 

% applying the incompressibility condition L1^2*L3 = 1 
h1 = simplify(subs(h, L1^2*L3, 1))   

dgT = subs(h1, ff, f) 

 2

1 3det( ) ( ) (1 ) 1f g = + + =F , (A.7) 

 3

2

1

1
( )

g
f




 = −

+
. (A.8) 

• Strain energy density: 

e = simplify(mu/2*(I1-3)) 
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• Total potential energy: 

 ( )edV dA Pd z Z = + − −   , (A.10) 
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• Total potential energy density: 
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% Total potential enegry density: 
L = (1/2)*Z*R^2*e+G*Z*R/(L1+f)     % PI = integral(L, dT) 
LL = subs(L,diff(g(T), T),dgT)     % substituting g(T) as a function of f(T) 

into L 
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• Solving for the maximum potential energy: 

% required assumption for non-trivial solution 
assume(L1 ~= 0 & L3 ~= 0 & R ~= 0 & Z ~= 0);      
% Using functional derivative with respect to f(T) instead of taking the 

derivative of PI with respect to Theta to solve for the maximum potential 

energy: 
eqn2 = functionalDerivative(LL,f) == 0 

 
2 2 4 2
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fR f f f


     
 + + − + +  =+ , (A.17) 

% Removing higher order terms from the solution to form the final 2nd order 
ODE: 
for n = 2:16 
    FF(1,n-1) = f^n; 
end 
FF(1,n) = (diff(f(T),T))^2; 
FF(1,n+1) = (diff(f(T),T))^4; 
FF(1,n+2) = f*diff(f(T),T,T); 
SS = zeros(1,n+2); 
eqn3 = simplify(simplify(subs(eqn2,FF,SS))) 
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    + + +− =− , (A.18) 
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% substituting L1 = L3^(-1/2) 
eqn5 = simplify(subs(eqn3,L1,L3^(-1/2))) 

 
1/2 1/2 2 3/2

3 3 3 30 0(4
2 2

) 0R f R f   
 

  +−− = . (A.19) 

Now a 2nd-order ODE is obtained in the form of 0Af Bf C + + =  with considering 

0( ) exp( )f A ik =   as a periodic solution to (A.19), where 
0A  is the complex amplitude of 

surface disturbance, and k  is the wavenumber of the wrinkles. In order to determine 

wavenumber k , we need to determine A  and B  as follow: 

% Now we have a 2nd order ODE in the form of: A*diff(f(T),T,T)+B*f(T)+C=0 
% In order to obtain the A and B coefficients from the final ODE we need to 
% define a new pair of symbolic variables to use instead of diff(f(T),T,T) 
% and f(T), which are symbolic functions: 
syms X Y                    % new symbolic variables 
eqn6 = simplify(subs(eqn5,[diff(f(T),T,T) f],[Y X]))  % replacing variables 

C = equationsToMatrix(eqn6,[Y X])       % forming the matrix of coefficients 

[A, B] 

 
1/2

3 0
2

A R


= , (A.20) 

 
1/2 2

3 0 34
2

B R


 = − + . (A.21) 

• Wavenumber k : 

% Determining wave number (k = sqrt(B/A)): 
k = simplify(sqrt(C(2)/C(1))) 

 
3/2

3

0

2
4

B
k

A R




= = − + . (A.22) 

% In order to make all the parameter dimensionless we should replace 2*G/mu 

with L0, respectively. L0 is dimensionless that make the solution scalable 

for different problems.  
syms L0     % L0: Intrinsic Length Scale 
CC = simplify(subs(C,[mu/2 G],[1 L0])) 
kk = simplify(sqrt(CC(2)/CC(1))) 

 
3/20
3

0

4
l

R
k − += . (A.23) 
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• MATLAB™ codes for plotting Figures 3-4 to 3-8: 

clear R_0 L0_0 L3_0 k j i SS 
L3_0 = linspace(0,10,500); 
R_0 = [50 100 200 500 1000]; 
L0_0 = [50 200 500 1000]; 

  
for k = 1:4 
    for j = 1:500 
        for i = 1:5 
            SS(i,j,k) = L3_0(j)-

1/(L3_0(j))^2+L0_0(k)/(2*R_0(i))/sqrt(L3_0(j)); 
        end 
    end 
end 

 
figure('units','normalized','outerposition',[0 0 1 1]) 
subplot(2,2,1) 
plot(L3_0,SS(:,:,1),'LineWidth',2) 
hold on 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelOrientation','horizontal',... 
    'LabelVerticalAlignment','bottom','LineWidth',1); 
yline(0,'--k','LineWidth',1); 
ylim([-5 15]); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
ylabel('$$\bf Axial$$ $$\bf stress$$ $$\bf 

\frac{\sigma}{\mu}$$','FontSize',16,'Interpreter','latex') 
text(1.3,13.65,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.3,12.15,'$$\bf l_{0}=50$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(5,2.5,'$$\bf R_{0}$$ \bf 

increases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.31 0.33],[0.80 

0.735],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

  
subplot(2,2,2) 
plot(L3_0,SS(:,:,2),'LineWidth',2) 
hold on 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelOrientation','horizontal',... 
    'LabelVerticalAlignment','bottom','LineWidth',1); 
yline(0,'--k','LineWidth',1); 
ylim([-5 15]); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
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xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
ylabel('$$\bf Axial$$ $$\bf stress$$ $$\bf 

\frac{\sigma}{\mu}$$','FontSize',16,'Interpreter','latex') 
text(1.3,13.65,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.3,12.15,'$$\bf l_{0}=200$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(5,2.5,'$$\bf R_{0}$$ \bf 

increases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.745 0.77],[0.81 

0.735],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

  
subplot(2,2,3) 
plot(L3_0,SS(:,:,3),'LineWidth',2) 
hold on 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelOrientation','horizontal',... 
    'LabelVerticalAlignment','bottom','LineWidth',1); 
yline(0,'--k','LineWidth',1); 
ylim([-5 15]); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
ylabel('$$\bf Axial$$ $$\bf stress$$ $$\bf 

\frac{\sigma}{\mu}$$','FontSize',16,'Interpreter','latex') 
text(1.3,13.65,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.3,12.15,'$$\bf l_{0}=500$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(5,2.5,'$$\bf R_{0}$$ \bf 

increases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.30 0.33],[0.36 

0.26],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

  
subplot(2,2,4) 
plot(L3_0,SS(:,:,4),'LineWidth',2) 
hold on 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelOrientation','horizontal',... 
    'LabelVerticalAlignment','bottom','LineWidth',1); 
yline(0,'--k','LineWidth',1); 
ylim([-5 15]); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
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ylabel('$$\bf Axial$$ $$\bf stress$$ $$\bf 

\frac{\sigma}{\mu}$$','FontSize',16,'Interpreter','latex') 
text(1.3,13.65,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.3,12.15,'$$\bf l_{0}=1,000$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(5,2.5,'$$\bf R_{0}$$ \bf 

increases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.73 0.77],[0.38 

0.26],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

• MATLAB™ codes for plotting Figures 3-8: 

clear R0 AAA BBB Lambda_3 L3_0 
CC(2); 
R0 = linspace(50,1000,100); 
L0_0 = [50 200 500 1000]; 
for i = 1:4 
    for j = 1:length(R0) 
        BBB(i,j) = vpa(subs(CC(2),[L0 R],[L0_0(i) R0(j)])); 
        AAA(i,j) = vpa(subs(CC(1),R,R0(j))); 
        Lambda_3(i,j) = vpasolve(BBB(i,j)/AAA(i,j) == 2^2, L3, [0.2 Inf]); 
    end 
end 
figure 
plot(R0,Lambda_3,'LineWidth',2) 
xlim([0 1000]) 
ylim([0 30]) 
yline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelVerticalAlignment','middle','LineWidth',1); 

  

ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
xlabel('$$\bf Fiber$$ $$\bf radius$$ $$\bf R_{0}$$ $$\bf 

(nm)$$','FontSize',16,'Interpreter','latex') 
ylabel('$$\bf Critical$$ $$\bf axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
text(30,28,'$$\bf l_{0}=50,$$ $$\bf 200,$$ $$\bf 500,$$ $$\bf and$$ $$\bf 

1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(200,18,'$$\bf l_{0}$$ \bf 

decreases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.5 0.38],[0.15 

0.57],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

• MATLAB™ codes for plotting Figures 3-9 to 3-12: 

clear R_0 L0_0 L3_0 k1 i 
L0_0 = [50 200 500 1000];                % [nm] 
L3_0 = linspace(0,20,100); 
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k1 = zeros(1,length(L3_0)); 
j = 0; 
for R_0 = [50 100 200 500 1000];      % [nm]    
    j = j+1; 
for i = 1:length(L3_0) 
    k1(j,i) = vpa(subs(kk,[R L3 L0],[R_0 L3_0(i) L0_0(1)])); 
end 
end 

  
k2 = zeros(1,length(L3_0)); 
j = 0; 
for R_0 = [50 100 200 500 1000];      % [nm]    
    j = j+1; 
for i = 1:length(L3_0) 
    k2(j,i) = vpa(subs(kk,[R L3 L0],[R_0 L3_0(i) L0_0(2)])); 
end 
end 

  
k3 = zeros(1,length(L3_0)); 
j = 0; 
for R_0 = [50 100 200 500 1000];      % [nm]    
    j = j+1; 
for i = 1:length(L3_0) 
    k3(j,i) = vpa(subs(kk,[R L3 L0],[R_0 L3_0(i) L0_0(3)])); 
end 
end 

  
k4 = zeros(1,length(L3_0)); 
j = 0; 
for R_0 = [50 100 200 500 1000];      % [nm]    
    j = j+1; 
for i = 1:length(L3_0) 
    k4(j,i) = vpa(subs(kk,[R L3 L0],[R_0 L3_0(i) L0_0(4)])); 
end 
end 

 
figure('units','normalized','outerposition',[0 0 1 1]) 

  
subplot(2,2,1) 
plot(L3_0,k1,'LineWidth',2) 
hold on  
ylim([0 10]) 
yticks([0 2 4 6 8 10]) 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelHorizontalAlignment','center',... 
    'LabelVerticalAlignment','middle','LineWidth',1); 
yline(2,'--k','$$\bf Elliptic$$ $$\bf wrinkle$$ $$\bf (k = 2)$$',... 
    

'Interpreter','latex','LabelHorizontalAlignment','center','LabelVerticalAlig

nment','middle','LineWidth',1); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
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xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
ylabel('$$\bf Wavenumber$$ $$\bf k$$','FontSize',16,'Interpreter','latex') 
text(1.5,9.3,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.5,8.5,'$$\bf l_{0}=50$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(4,6,'$$\bf R_{0}$$ \bf decreases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.45 0.25],[0.59 

0.77],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

  
subplot(2,2,2) 
plot(L3_0,k2,'LineWidth',2) 
hold on 
ylim([0 20]) 
yticks([0 5 10 15 20]) 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelHorizontalAlignment','center',... 
    'LabelVerticalAlignment','middle','LineWidth',1); 
yline(2,'--k','$$\bf Elliptic$$ $$\bf wrinkle$$ $$\bf (k = 2)$$',... 
    'Interpreter','latex','LabelVerticalAlignment','middle','LineWidth',1); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
ylabel('$$\bf Wavenumber$$ $$\bf k$$','FontSize',16,'Interpreter','latex') 
text(1.5,18.6,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.5,17,'$$\bf l_{0}=200$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(4,12,'$$\bf R_{0}$$ \bf decreases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.75 0.68],[0.6 

0.77],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

  
subplot(2,2,3) 
plot(L3_0,k3,'LineWidth',2) 
hold on  
ylim([0 30]) 
yticks([0 5 10 15 20 25 30]) 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelHorizontalAlignment','center',... 
    'LabelVerticalAlignment','middle','LineWidth',1); 
yline(2,'--k','$$\bf Elliptic$$ $$\bf wrinkle$$ $$\bf (k = 2)$$',... 
    'Interpreter','latex','LabelVerticalAlignment','middle','LineWidth',1); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
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ylabel('$$\bf Wavenumber$$ $$\bf k$$','FontSize',16,'Interpreter','latex') 
text(1.5,27.9,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.5,25.5,'$$\bf l_{0}=500$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(4,18,'$$\bf R_{0}$$ \bf decreases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.3 0.24],[0.13 

0.297],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 

  
subplot(2,2,4) 
plot(L3_0,k4,'LineWidth',2) 
hold on  
ylim([0 50]) 
yticks([0 10 20 30 40 50]) 
xline(1,'--k','$$\bf Stretch-free$$ $$\bf state$$ $$\bf (\lambda_{3} = 

1)$$',... 
    'Interpreter','latex','LabelHorizontalAlignment','center',... 
    'LabelVerticalAlignment','middle','LineWidth',1); 
yline(2,'--k','$$\bf Elliptic$$ $$\bf wrinkle$$ $$\bf (k = 2)$$',... 
    'Interpreter','latex','LabelVerticalAlignment','middle','LineWidth',1); 
ax = gca; % current axes 
ax.FontSize = 14; 
ax.TickLabelInterpreter = 'latex' 
xlabel('$$\bf Axial$$ $$\bf stretch$$ $$\bf 

\lambda_{3}$$','FontSize',16,'Interpreter','latex') 
ylabel('$$\bf Wavenumber$$ $$\bf k$$','FontSize',16,'Interpreter','latex') 
text(1.5,46.5,'$$\bf R_{0}$$ $$\bf =50,$$ $$\bf 100,$$ $$\bf 200,$$ $$\bf 

500,$$ $$\bf and$$ $$\bf 1,000$$ $$\bf nm$$',... 
    'FontSize',12,'Interpreter','latex') 
text(1.5,42.5,'$$\bf l_{0}=1,000$$ $$\bf 

nm$$','FontSize',12,'Interpreter','latex') 
text(4,30,'$$\bf R_{0}$$ \bf decreases','FontSize',12,'Interpreter','latex') 
annotation('arrow',[0.75 0.68],[0.13 

0.297],'LineWidth',1.5,'HeadStyle','vback1',... 
    'HeadLength',12,'HeadWidth',12) 
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APPENDIX B. SUPPLEMENTAL MATERIALS OF CHAPTER 4 

In Chapter 4, in addition to the three a c  aspect ratios of 0.25, 0.5, and 0.75, the case 

with a c  ratio of zero is also considered, i.e., the fiber is produced via regular electrospinning 

process without a hard core. 

 

Figure B-1. Schematic cross-section geometries of the electrospun core-shell fibers of varying 

aspect ratios a c  and f st t  used in computational wrinkling analysis. 

As the additional information, for the cases with a c  = 0, below show the critical surface 

wrinkle mode charts and the variation of the critical wrinkling strain c  with respect to the 

wavenumber n  of the surface wrinkle modes. 

/a c
/

f s
t t

0.1 0.25 0.5 1

0.75

0.25

0.5

0
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Figure B-2. Critical surface wrinkle mode charts in terms of the wavenumber n  and surface 

topology against the aspect ratio f st t  and stiffness ratio f s   for a c  = 0. 

 

Figure B-3. Variation of the critical wrinkling strain c  with respect to the wavenumber n  of the 

surface wrinkle modes at varying aspect ratios f st t  for a c  = 0 and f s   = 10. 
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Figure B-4. Variation of the critical wrinkling strain 
c  with respect to the wavenumber n  of the 

surface wrinkle modes at varying aspect ratios f st t  for a c  = 0 and f s   = 100. 

 

Figure B-5. Variation of the critical wrinkling strain c  with respect to the wavenumber n  of the 

surface wrinkle modes at varying aspect ratios f st t  for a c  = 0 and f s   = 1,000. 
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APPENDIX C. SUPPLEMENTAL MATERIALS OF CHAPTER 5 

 Eqs. (5.1) to (5.19) were derived by developing a MATLAB™ code as follow: 

Radial and circumferential stretches of the hydrogels: 

 r

dr

dR
 = , (C.1) 

 
r

R
 = . (C.2) 

• Deformation gradient matrix ( F ), left Cauchy-Green tensor (B ) and three principal 

scalar invariants: 

syms R T r(R) L_r L_t v C N kT X S_r S_t 

  
F = [L_r 0 0;0 L_t 0;0 0 L_t] 
B = simplify(F*transpose(F)) 

I1 = simplify(trace(B)) 
I2 = simplify(1/2*((trace(B))^2-trace(B^2))) 
I3 = simplify(det(B)) 

 

0 0

0 0

0 0

r

r r r

R R R

r r r

R R R

r r r

R R R






  




  

   
   

  
     = =

    
       

    

F , (C.3) 

 

2

2

2

0 0

0 0

0 0

r

T











 
 

= =  
 
 

B FF , (C.4) 

 2 2

1 tr( ) 2rI  = = +B , (C.5) 

 
2 2 2 2 4

2

1
tr( ) tr( ) 2

2
rI     = − = + B B , (C.6) 

 2 4

3 det(B) rI  = = . (C.7) 
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• The molecular incompressibility condition: 

eqn1 = simplify(det(F)) == 1+v*C 

syms dF vC                  % new symbolic variables 
eqn12 = subs(eqn1,[det(F) v*C],[dF vC]);          % replacing variables 
h = simplify(solve(eqn12, vC)) 
vC = subs(h, dF, det(F)) 

 2det( ) 1r vC = = +F , (C.8) 

 2 1rvC  = − . (C.9) 

• The Flory and Rehner (1943) free-energy density function for a swollen elastomer: 

W_s = 0.5*N*kT*(I1-3-2*log(det(F))) 
W_m = -(kT/v)*(v*C*log(1+1/(v*C))+X/(1+v*C)) 
% W = W_s+W_m 

 ( )1

1
( ) 3 2log det( )

2
sW NkT I= − −  F F , (C.10) 

 
1

( ) log 1
1

m

kT
W C C

C C




  

  
= − + +  +  

, (C.11) 

 ( , ) ( ) ( )s mW C W W C= +F F , (C.12a) 

 ( )1

1 1
( , ) 3 2log det( ) log 1

2 1

kT
W C NkT I vC

v vC vC

  
= − − − + +      +  

F F , (C.12b) 

• Nominal stresses and chemical potential: 

 
( , ) det( )

r

r r

W C
s

 

 
= −

 

F F
, (C.13) 

 
( , ) det( )W C

s
  

 
= −

 

F F
, (C.14) 

 
( , )W F C

C
 


= +


, (C.15) 

• Equations of state for gel model: 

S_r = simplify(diff(W_s,L_r)+(1/v)*diff(W_m,C)*diff(det(F),L_r)) 
S_t = simplify((diff(W_s,L_t)+(1/v)*diff(W_m,C)*diff(det(F),L_t))/2) 
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2

1

2

1
log

1 1 (1 )

r
r r

s vC

NkT vN vC vC vC

 
 −  

= − + + + 
+ + + 

, (C.16) 

 1

2

1
log

1 1 (1 )

rs vC

NkT vN vC vC vC

 
 

  
  −  

= − + + + 
+ + + 

. (C.17) 

• Nonlinear 2nd-order ODE governing equation: 

S_r = simplify(subs(S_r,[v*C],[vC])) 
S_t = simplify(subs(S_t,[v*C],[vC])) 
SS_r = simplify(subs(S_r,[L_r L_t L_t],[diff(r(R),R) r/R r/R])) 
SS_t = simplify(subs(S_t,[L_r L_t L_t],[diff(r(R),R) r/R r/R])) 
%% 
assume(v ~= 0 & kT ~= 0); 
eqn21 = diff(SS_r,R)+2*(SS_r-SS_t)/R == 0 
eqn22 = diff(SS_t,T) == 0 

    

2
2 2 2 2 2

2 2 2 2 2

2
2 2 2 2

2 2 2 2

1
log 1

2 1
log 1 0

d r d dR d r R dR R dR R dR

dR dR dr vN dR R r dr r dr r dr

dr dR r R r r dr R dR R dR R dR

R dR dr R r vN R R dR r dr r dr r dr





        − + − + + +     
         

        
− − + + − − + + =       

         

. (C.18) 

Now solving (C.19) for 
2

2

d r

dR
, determines ( , , )r f R r r =  that will be used in the shooting 

method to calculate r  and r . By having r  and r , rs  and s  can be easily calculated. 

syms r1 r2 dr2 
SS_r12 = simplify(subs(SS_r, [r diff(r(R),R)], [r1 r2])) 
SS_t12 = simplify(subs(SS_t, [r diff(r(R),R)], [r1 r2])) 
eqn31 = simplify(subs(eqn21, [r diff(r(R),R) diff(r(R),R,R)], [r1 r2 dr2])) 
%% 
h = simplify(solve(eqn31, dr2)) 
dr2 = h 

5 3 2 3 2 5 3 3 2 4 2 2 3 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

4 3 6 4 3 4 3 2 5 2 4 3 3 2 5 4

1 2 1 2 1 2 1 2 1 2 1 2

2

2

1

2 ( )(2 2 )

2 2

r r Rr R R r r R r r Nr r v NR r r v NRr r v NR r r v

R r r R R r r NR r r v NR r r v NR r r v NR r r v

d r

dR r

 

 

− + − +

+
=

− + −

+ − − − +
. (C.19) 
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• Shooting Method: 

For ( , , )y f x y y =  with A x B   and 
0( )y A A= , in order to calculate y  and y , it is 

assumed that ( )y A Y = . Since the hydrogel swells freely on the outer edge, the radial nominal 

stress on the outer radius is 

 [ ( , ), ( , )] 0r k ks y B Y y B Y = , (C.20) 

where 
kY  for k  ≥ 1 is calculated as 

 1 1
1

1 1
1 1

[ ( , ), ( , )]

( , ) ( , )
( , ) ( , )

r k k
k k

r k r k
k k

s y B Y y B Y
Y Y

s B Y s B Y
z B Y z B Y

y y

− −
−

− −
− −


= −

 
 + 

 

, (C.21) 

where 
y

z
Y


=


 and 
y

z
Y


 =


. And 

kY  for k  = 0 is calculated as 

 
0

( ) ( )
( )

y B y A
Y y A Y

B A

−
=  =

−
. (C.22) 

For the initial values for z  and z , consider the following conditions 

 0( )
( ) 0

A

Ay
z A

Y Y


= = =
 

, (C.23) 

 ( ) 1
A

y Y
z A

Y Y

 
 = = =

 
. (C.24) 

 With the initial conditions 0( , )y A Y A= , ( , ) ky A Y Y = , ( , ) 0z A Y = , and ( , ) 1z A Y = , the 

shooting method is capable of determining ( , )y B Y , ( , )y B Y , ( , )z B Y , and ( , )z B Y : 
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. (C.25) 

where 
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f x y y
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=


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( , , )
y

f x y y
f

y



=


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• MATLAB™ codes for plotting Figures 5-2 to 5-5: 

close all 
clear all 
clc 

  
A = 1; 
B = 2; 
C = 3; 
L_0 = 1.077; 
vN10 = [1E-4 1E-3 1E-3]; 
vN20 = [1E-3 1E-3 1E-4]; 
X10 = [0.1 0.2 0.2]; 
X20 = [0.2 0.2 0.1]; 

  
str1 = [-4,-3,-3]; 
str2 = [-3,-3,-4]; 
str3 = ["Inner gel is softer than outer gel" "Inner and outer gels are same" 

"Outer gel is softer than inner gel"]; 

  
Y0 = [10 10 10]; 
dy_0 = [0.1 0.1 0.1]; 
ddy_0 = [1E-2 1E-2 1E-2]; 

  

figure('units','normalized','outerposition',[0 0 1 1]) 

  
for k = 1:3 
    vN1 = vN10(k); 
    vN2 = vN20(k); 
    X1 = X10(k); 
    X2 = X20(k); 

     
    Y(1) = Y0(k); 

     
    S_r_C = inf; 
    J = 0; 
    j = 0; 
    dy0 = dy_0(k); 
    while abs(S_r_C) > 1E-6 
        J = J+1; 
        j = j+1; 
        if abs(imag(S_r_C)) > 0 || j > 50 && abs(S_r_C) > 1E3 || j > 400 && 

abs(S_r_C) > 1E0 
            dy0 = dy0+ddy_0(k); 
            Y(1) = Y0(k); 
            j = 1; 
        end 
        if J > 1E4 
            break 
        end 
        % initial values 
        y1(1) = L_0; 
        dy1(1) = Y(j); 
        z1(1) = 0; 
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        dz1(1) = 1; 
        u0 = [y1(1); dy1(1); z1(1); dz1(1)]; 
        [R1,u1] = ode45(@(R1,u1) odefun(R1,u1,vN1,X1),[A B],u0); 
        y1 = u1(:,1); 
        dy1 = u1(:,2); 
        z1 = u1(:,3); 
        dz1 = u1(:,4); 
        n1 = length(R1); 
        clear S_r1 S_t1 
        for i = 1:n1 
            S_r1(i,1) = fun_Sr(R1(i),y1(i),dy1(i),vN1,X1); 
            S_t1(i,1) = fun_St(R1(i),y1(i),dy1(i),vN1,X1); 
        end 
        y2(1) = y1(n1); 
        z2(1) = z1(n1); 
        dz2(1) = dz1(n1); 
        syms dy 
        eqn = @(dy) S_r1(n1)-fun_Sr(B,y2(1),dy,vN2,X2); 

         
        dy2(1) = fsolve(eqn,dy0); 
        u0 = [y2(1); dy2(1); z2(1); dz2(1)]; 
        [R2,u2] = ode45(@(R2,u2) odefun(R2,u2,vN2,X2),[B C],double(u0)); 
        y2 = u2(:,1); 
        dy2 = u2(:,2); 
        z2 = u2(:,3); 
        dz2 = u2(:,4); 
        n2 = length(R2); 
        clear S_r2 S_t2 
        for i = 1:n2 
            S_r2(i,1) = fun_Sr(R2(i),y2(i),dy2(i),vN2,X2); 
            S_t2(i,1) = fun_St(R2(i),y2(i),dy2(i),vN2,X2); 
        end 
        S_r_C = S_r2(n2); 
        [dSr_y2, dSr_dy2] = fun_dSr(R2(n2),y2(n2),dy2(n2),vN2,X2); 
        Y(j+1) = real(Y(j)-S_r_C/(dSr_y2*z2(n2)+dSr_dy2*dz2(n2))); 
        [dSr_y2B, dSr_dy2B] = fun_dSr(R2(1),y2(1),dy2(1),vN2,X2); 
        ddy0 = (S_r1(n1)-S_r2(1))/(dSr_y2B*z2(1)+dSr_dy2B*dz2(1)); 
        [S_r_C dy0 j] 
    end 
    %% 
    r1 = y1; 
    r2 = y2; 
    L_r1 = dy1; 
    L_r2 = dy2; 
    L_t1 = r1./R1; 
    L_t2 = r2./R2; 
    vC1 = ((L_t1.^2).*L_r1)-1; 
    vC2 = ((L_t2.^2).*L_r2)-1; 
    %% 
    syms L1 L2 
    eqn1 = @(L1) L1-1/L1+(L1^2/vN1)*(log((L1^3-1)/L1^3)+1/L1^3+X1/L1^6); 
    L1_free = double(bisection(eqn1,1,100)); 
    vC1_free = L1_free^3-1; 
    eqn2 = @(L2) L2-1/L2+(L2^2/vN2)*(log((L2^3-1)/L2^3)+1/L2^3+X2/L2^6); 
    L2_free = double(bisection(eqn2,1,100)); 
    vC2_free = L2_free^3-1; 
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    %% 
    color = [1 0 0;0 0.7 0;0 0 1];        % red green blue 

     
    subplot(2,2,1); hold on; box on; 
    P_r1(k) = plot([R1;R2], [r1;r2],'Color',color(k,:),'LineWidth',1.5); 
    legendInfo{k} = str3(k); 
    xline(B,':k','LineWidth',0.75); 
    xlim([A,C]); ylim([0 15]); yticks(0:3:15); 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('r(R)','FontSize',16,'Interpreter','latex'); 
    

legend([P_r1],legendInfo,'location','northwest','FontSize',14,'Interpreter',

'latex'); 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 

     
    subplot(2,2,2); hold on; box on; 
    plot(R1, vC1,'Color',color(k,:),'LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); 
    plot(R2, vC2,'Color',color(k,:),'LineWidth',1.5); 
    xlim([A,C]); ylim([0 150]); yticks(0:30:150); 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('vC','FontSize',16,'Interpreter','latex'); 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 

     
    subplot(2,2,3); hold on; box on; 
    plot(R1, L_r1,'Color',color(k,:),'LineWidth',1.5); 
    plot(R1, L_t1,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); 
    plot(R2, L_r2,'Color',color(k,:),'LineWidth',1.5); 
    plot(R2, L_t2,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xlim([A,C]); ylim([0 12]); yticks(0:2:12) 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('$$\lambda$$','FontSize',16,'Interpreter','latex'); 
    P_Lr = plot(nan,nan,'k-','LineWidth',1.5); 
    P_Lt = plot(nan,nan,'k--','LineWidth',1.5); 
    legend([P_Lr P_Lt],'$$\bf \lambda_{r}$$','$$\bf 

\lambda_{\theta}$$','FontSize',14,'Interpreter','latex') 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 

     
    subplot(2,2,4); hold on; box on; 
    plot(R1, S_r1,'Color',color(k,:),'LineWidth',1.5); 
    plot(R1, S_t1,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); yline(0,'-.k','LineWidth',0.75); 
    plot(R2, S_r2,'Color',color(k,:),'LineWidth',1.5); 
    plot(R2, S_t2,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xlim([A,C]); ylim([-20 10]); yticks([-20 -15 -10 -5 0 5 10]) 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('s/NkT','FontSize',16,'Interpreter','latex'); 
    P_Sr = plot(nan,nan,'k-','LineWidth',1.5); 
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    P_St = plot(nan,nan,'k--','LineWidth',1.5); 
    legend([P_Sr  P_St],'$$\bf s_{r}$$','$$\bf 

s_{\theta}$$','Location','southeast','FontSize',14,'Interpreter','latex' ) 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 
end 
%% 
subplot(2,2,2); 
txt = {{'$$\bf vN_{I} = 10^{-4}$$'; '$$\bf \chi_{I} = 0.1$$'},... 
    {'$$\bf vN_{I} = 10^{-3}$$'; '$$\bf \chi_{I} = 0.2$$'},... 
    {'$$\bf vN_{II} = 10^{-3}$$'; '$$\bf \chi_{II} = 0.2$$'},... 
    {'$$\bf vN_{II} = 10^{-4}$$'; '$$\bf \chi_{II} = 0.1$$'}}; 
text([1.4 1.8 1.8 2.5 2.5], [100 70 30.5 35 125], [txt(1) txt(2) txt(2) 

txt(3) txt(4)], 'HorizontalAlignment', 'center', 'BackgroundColor', 'w', 

'EdgeColor', 'k', 'FontSize', 10, 'Interpreter','latex'); 
%% 
function du = odefun(R,u,vN,X) 
du = zeros(4,1); 
du(1) = u(2); 
du(2) = fun_d2y(R, u(1), u(2), vN, X); 
du(3) = u(4); 
du(4) = fun_d2z(R, u(1), u(2), u(3), u(4), vN, X); 
end 
function d2y = fun_d2y(R,y,dy,vN,X) 
d2y = (2.0*dy*(y - R*dy)*(2.0*R^5*X + R^3*dy*y^2 + dy^3*vN*y^5 - 

1.0*R^2*dy^2*vN*y^3 - 2.0*R^3*X*dy*y^2 - 1.0*R^3*dy*vN*y^2 + 

R*dy^2*vN*y^4))/(R^4*dy*y^3 + 2.0*R^6*X*y + R^2*dy^2*vN*y^5 - 

1.0*R^4*dy^3*vN*y^3 + R^2*dy^4*vN*y^5 - 2.0*R^4*X*dy*y^3 - 

1.0*R^4*dy*vN*y^3); 
end 
function d2z = fun_d2z(R,y,dy,z,dz,vN,X) 
F_y = (2.0*dy^2*(4.0*R^10*X^2 - 8.0*R^8*X^2*dy*y^2 - 6.0*R^8*X*dy^3*vN*y^2 - 

4.0*R^8*X*dy*vN*y^2 + 4.0*R^8*X*dy*y^2 + 8.0*R^7*X*dy^2*vN*y^3 + 

4.0*R^6*X^2*dy^2*y^4 + 12.0*R^6*X*dy^4*vN*y^4 + 8.0*R^6*X*dy^2*vN*y^4 - 

4.0*R^6*X*dy^2*y^4 - 6.0*R^6*X*dy*vN*y^4 + R^6*dy^4*vN^2*y^4 - 

1.0*R^6*dy^4*vN*y^4 + R^6*dy^2*vN^2*y^4 - 2.0*R^6*dy^2*vN*y^4 + R^6*dy^2*y^4 

- 16.0*R^5*X*dy^3*vN*y^5 - 6.0*R^4*X*dy^5*vN*y^6 - 4.0*R^4*X*dy^3*vN*y^6 + 

12.0*R^4*X*dy^2*vN*y^6 - 2.0*R^4*dy^5*vN^2*y^6 + 3.0*R^4*dy^5*vN*y^6 + 

R^4*dy^4*vN^2*y^6 - 2.0*R^4*dy^3*vN^2*y^6 + 2.0*R^4*dy^3*vN*y^6 + 

R^4*dy^2*vN^2*y^6 - 1.0*R^4*dy^2*vN*y^6 + 8.0*R^3*X*dy^4*vN*y^7 - 

4.0*R^3*dy^4*vN*y^7 - 6.0*R^2*X*dy^3*vN*y^8 + R^2*dy^6*vN^2*y^8 - 

2.0*R^2*dy^5*vN^2*y^8 + R^2*dy^4*vN^2*y^8 - 2.0*R^2*dy^3*vN^2*y^8 + 

3.0*R^2*dy^3*vN*y^8 + dy^6*vN^2*y^10 + dy^4*vN^2*y^10))/(R^2*y^2*(2.0*R^4*X 

+ R^2*dy*y^2 + dy^2*vN*y^4 + dy^4*vN*y^4 - 1.0*R^2*dy^3*vN*y^2 - 

2.0*R^2*X*dy*y^2 - 1.0*R^2*dy*vN*y^2)^2); 
F_dy = -(2.0*(8.0*R^10*X^2*dy - 4.0*R^9*X^2*y - 16.0*R^8*X^2*dy^2*y^2 + 

2.0*R^8*X*dy^4*vN*y^2 - 8.0*R^8*X*dy^2*vN*y^2 + 8.0*R^8*X*dy^2*y^2 + 

8.0*R^7*X^2*dy*y^3 - 12.0*R^7*X*dy^3*vN*y^3 + 4.0*R^7*X*dy*vN*y^3 - 

4.0*R^7*X*dy*y^3 + 8.0*R^6*X^2*dy^3*y^4 - 4.0*R^6*X*dy^5*vN*y^4 + 

16.0*R^6*X*dy^3*vN*y^4 - 8.0*R^6*X*dy^3*y^4 + 6.0*R^6*X*dy^2*vN*y^4 + 

2.0*R^6*dy^3*vN^2*y^4 - 4.0*R^6*dy^3*vN*y^4 + 2.0*R^6*dy^3*y^4 - 

4.0*R^5*X^2*dy^2*y^5 + 24.0*R^5*X*dy^4*vN*y^5 - 8.0*R^5*X*dy^2*vN*y^5 + 

4.0*R^5*X*dy^2*y^5 + R^5*dy^6*vN^2*y^5 + 4.0*R^5*dy^4*vN^2*y^5 - 

4.0*R^5*dy^4*vN*y^5 - 1.0*R^5*dy^2*vN^2*y^5 + 2.0*R^5*dy^2*vN*y^5 - 

1.0*R^5*dy^2*y^5 + 2.0*R^4*X*dy^6*vN*y^6 - 8.0*R^4*X*dy^4*vN*y^6 - 
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12.0*R^4*X*dy^3*vN*y^6 - 1.0*R^4*dy^6*vN*y^6 - 4.0*R^4*dy^4*vN^2*y^6 + 

4.0*R^4*dy^4*vN*y^6 - 2.0*R^4*dy^3*vN^2*y^6 + 2.0*R^4*dy^3*vN*y^6 - 

12.0*R^3*X*dy^5*vN*y^7 + 4.0*R^3*X*dy^3*vN*y^7 - 2.0*R^3*dy^7*vN^2*y^7 - 

8.0*R^3*dy^5*vN^2*y^7 + 6.0*R^3*dy^5*vN*y^7 + 2.0*R^3*dy^3*vN^2*y^7 - 

2.0*R^3*dy^3*vN*y^7 + 6.0*R^2*X*dy^4*vN*y^8 + 2.0*R^2*dy^5*vN^2*y^8 + 

4.0*R^2*dy^4*vN^2*y^8 - 3.0*R^2*dy^4*vN*y^8 + R*dy^8*vN^2*y^9 + 

4.0*R*dy^6*vN^2*y^9 - 1.0*R*dy^4*vN^2*y^9 - 

2.0*dy^5*vN^2*y^10))/(R^2*y*(2.0*R^4*X + R^2*dy*y^2 + dy^2*vN*y^4 + 

dy^4*vN*y^4 - 1.0*R^2*dy^3*vN*y^2 - 2.0*R^2*X*dy*y^2 - 

1.0*R^2*dy*vN*y^2)^2); 
d2z = F_y*z+F_dy*dz; 
end 
function S_r = fun_Sr(R,y,dy,vN,X) 
S_r = (R^4*X + R^2*dy*y^2 + dy^2*y^4*log((- R^2 + dy*y^2)/(dy*y^2)) + 

R^2*dy^3*vN*y^2 - 1.0*R^2*dy*vN*y^2)/(R^2*dy^2*vN*y^2); 
end 
function S_t = fun_St(R,y,dy,vN,X) 
S_t = (R^4*X + dy*vN*y^4 + R^2*dy*y^2 + dy^2*y^4*log((- R^2 + 

dy*y^2)/(dy*y^2)) - 1.0*R^2*dy*vN*y^2)/(R*dy*vN*y^3); 
end 
function [dSr_y, dSr_dy] = fun_dSr(R,y,dy,vN,X) 
dSr_y = (1.0*(2*R^6*X - 2.0*dy^3*y^6*log((dy*y^2)/(- R^2 + dy*y^2)) + 

2*R^2*dy^2*y^4 + 2.0*R^2*dy^2*y^4*log((dy*y^2)/(- R^2 + dy*y^2)) - 

2.0*R^4*X*dy*y^2))/(R^2*dy^2*vN*y^3*(- R^2 + dy*y^2)); 
dSr_dy = (1.0*(2.0*R^4*X + R^2*dy*y^2 + dy^2*vN*y^4 + dy^4*vN*y^4 - 

1.0*R^2*dy^3*vN*y^2 - 2.0*R^2*X*dy*y^2 - 1.0*R^2*dy*vN*y^2))/(dy^3*vN*y^2*(- 

R^2 + dy*y^2)); 
end 
%% 
function p = bisection(f,a,b) 
if f(a)*f(b)>0 
    disp('Wrong choice bro') 
else 
    p = (a + b)/2; 
    err = abs(f(p)); 
    while err > 1e-7 
        if f(a)*f(p)<0 
            b = p; 
        else 
            a = p; 
        end 
        p = (a + b)/2; 
        err = abs(f(p)); 
    end 
end 
end 

• MATLAB™ Codes for plotting Figures 5-6 to 5-9: 

A = 1; 
B = 2; 
C = 3; 
L_0 = 1.077; 
vN10 = [1E-2 1E-3 1E-3]; 
vN20 = [1E-3 1E-3 1E-2]; 
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X10 = [0.4 0.2 0.2]; 
X20 = [0.2 0.2 0.4]; 

  
str1 = [-2,-3,-3]; 
str2 = [-3,-3,-2]; 
str3 = ["Inner gel is stiffer than outer gel" "Inner and outer gels are 

same" "Outer gel is stiffer than inner gel"]; 

  
Y0 = [10 10 10]; 
dy_0 = [0.1 0.1 0.1]; 
ddy_0 = [1E-2 1E-2 1E-2]; 

  
figure('units','normalized','outerposition',[0 0 1 1]) 

  
for k = 1:3 
    vN1 = vN10(k); 
    vN2 = vN20(k); 
    X1 = X10(k); 
    X2 = X20(k); 

     
    Y(1) = Y0(k); 

     
    S_r_C = inf; 
    J = 0; 
    j = 0; 
    dy0 = dy_0(k); 
    while abs(S_r_C) > 1E-6 
        J = J+1; 
        j = j+1; 
        if abs(imag(S_r_C)) > 0 || j > 50 && abs(S_r_C) > 1E3 || j > 400 && 

abs(S_r_C) > 1E0 
            dy0 = dy0+ddy_0(k); 
            Y(1) = Y0(k); 
            j = 1; 
        end 
        if J > 1E4 
            break 
        end 
        % initial values 
        y1(1) = L_0; 
        dy1(1) = Y(j); 
        z1(1) = 0; 
        dz1(1) = 1; 
        u0 = [y1(1); dy1(1); z1(1); dz1(1)]; 
        [R1,u1] = ode45(@(R1,u1) odefun(R1,u1,vN1,X1),[A B],u0); 
        y1 = u1(:,1); 
        dy1 = u1(:,2); 
        z1 = u1(:,3); 
        dz1 = u1(:,4); 
        n1 = length(R1); 
        clear S_r1 S_t1 
        for i = 1:n1 
            S_r1(i,1) = fun_Sr(R1(i),y1(i),dy1(i),vN1,X1); 
            S_t1(i,1) = fun_St(R1(i),y1(i),dy1(i),vN1,X1); 
        end 
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        y2(1) = y1(n1); 
        z2(1) = z1(n1); 
        dz2(1) = dz1(n1); 
        syms dy 
        eqn = @(dy) S_r1(n1)-fun_Sr(B,y2(1),dy,vN2,X2); 

         
        dy2(1) = fsolve(eqn,dy0); 
        u0 = [y2(1); dy2(1); z2(1); dz2(1)]; 
        [R2,u2] = ode45(@(R2,u2) odefun(R2,u2,vN2,X2),[B C],double(u0)); 
        y2 = u2(:,1); 
        dy2 = u2(:,2); 
        z2 = u2(:,3); 
        dz2 = u2(:,4); 
        n2 = length(R2); 
        clear S_r2 S_t2 
        for i = 1:n2 
            S_r2(i,1) = fun_Sr(R2(i),y2(i),dy2(i),vN2,X2); 
            S_t2(i,1) = fun_St(R2(i),y2(i),dy2(i),vN2,X2); 
        end 
        S_r_C = S_r2(n2); 
        [dSr_y2, dSr_dy2] = fun_dSr(R2(n2),y2(n2),dy2(n2),vN2,X2); 
        Y(j+1) = real(Y(j)-S_r_C/(dSr_y2*z2(n2)+dSr_dy2*dz2(n2))); 
        [dSr_y2B, dSr_dy2B] = fun_dSr(R2(1),y2(1),dy2(1),vN2,X2); 
        ddy0 = (S_r1(n1)-S_r2(1))/(dSr_y2B*z2(1)+dSr_dy2B*dz2(1)); 
        [S_r_C dy0 j] 
    end 
    %% 
    r1 = y1; 
    r2 = y2; 
    L_r1 = dy1; 
    L_r2 = dy2; 
    L_t1 = r1./R1; 
    L_t2 = r2./R2; 
    vC1 = ((L_t1.^2).*L_r1)-1; 
    vC2 = ((L_t2.^2).*L_r2)-1; 
    %% 
    syms L1 L2 
    eqn1 = @(L1) L1-1/L1+(L1^2/vN1)*(log((L1^3-1)/L1^3)+1/L1^3+X1/L1^6); 
    L1_free = double(bisection(eqn1,1,100)); 
    vC1_free = L1_free^3-1; 
    eqn2 = @(L2) L2-1/L2+(L2^2/vN2)*(log((L2^3-1)/L2^3)+1/L2^3+X2/L2^6); 
    L2_free = double(bisection(eqn2,1,100)); 
    vC2_free = L2_free^3-1; 
    %% 
    color = [1 0 0;0 0.7 0;0 0 1];        % red green blue 

     
    subplot(2,2,1); hold on; box on; 
    P_r1(k) = plot([R1;R2], [r1;r2],'Color',color(k,:),'LineWidth',1.5); 
    legendInfo{k} = str3(k); 
    xline(B,':k','LineWidth',0.75); 
    xlim([A,C]); ylim([0 10]); yticks(0:2:10); 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('r(R)','FontSize',16,'Interpreter','latex'); 
    

legend([P_r1],legendInfo,'location','northwest','FontSize',14,'Interpreter',
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'latex'); 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 

     
    subplot(2,2,2); hold on; box on; 
    plot(R1, vC1,'Color',color(k,:),'LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); 
    plot(R2, vC2,'Color',color(k,:),'LineWidth',1.5); 
    xlim([A,C]); ylim([0 35]); yticks(0:5:35); 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('vC','FontSize',16,'Interpreter','latex'); 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 

     

    subplot(2,2,3); hold on; box on; 
    plot(R1, L_r1,'Color',color(k,:),'LineWidth',1.5); 
    plot(R1, L_t1,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); 
    plot(R2, L_r2,'Color',color(k,:),'LineWidth',1.5); 
    plot(R2, L_t2,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xlim([A,C]); ylim([0 10]); yticks(0:2:10) 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('$$\lambda$$','FontSize',16,'Interpreter','latex'); 
    P_Lr = plot(nan,nan,'k-','LineWidth',1.5); 
    P_Lt = plot(nan,nan,'k--','LineWidth',1.5); 
    legend([P_Lr P_Lt],'$$\bf \lambda_{r}$$','$$\bf 

\lambda_{\theta}$$','FontSize',14,'Interpreter','latex') 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 

     
    subplot(2,2,4); hold on; box on; 
    plot(R1, S_r1,'Color',color(k,:),'LineWidth',1.5); 
    plot(R1, S_t1,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); yline(0,'-.k','LineWidth',0.75); 
    plot(R2, S_r2,'Color',color(k,:),'LineWidth',1.5); 
    plot(R2, S_t2,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xlim([A,C]); ylim([-15 10]); yticks([-15 -10 -5 0 5 10]) 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('s/NkT','FontSize',16,'Interpreter','latex'); 
    P_Sr = plot(nan,nan,'k-','LineWidth',1.5); 
    P_St = plot(nan,nan,'k--','LineWidth',1.5); 
    legend([P_Sr  P_St],'$$\bf s_{r}$$','$$\bf 

s_{\theta}$$','Location','southeast','FontSize',14,'Interpreter','latex' ) 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex' 
end 
%% 
subplot(2,2,2); 
txt = {{'$$\bf vN_{I} = 10^{-2}$$'; '$$\bf \chi_{I} = 0.4$$'},... 
    {'$$\bf vN_{I} = 10^{-3}$$'; '$$\bf \chi_{I} = 0.2$$'},... 
    {'$$\bf vN_{II} = 10^{-3}$$'; '$$\bf \chi_{II} = 0.2$$'},... 
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    {'$$\bf vN_{II} = 10^{-2}$$'; '$$\bf \chi_{II} = 0.4$$'}}; 
text([1.4 1.8 1.8 2.5 2.5], [14 21.5 30.5 29 7.5], [txt(1) txt(2) txt(2) 

txt(3) txt(4)], 'HorizontalAlignment', 'center', 'BackgroundColor', 'w', 

'EdgeColor', 'k', 'FontSize', 10, 'Interpreter','latex'); 
%% 
function du = odefun(R,u,vN,X) 
du = zeros(4,1); 
du(1) = u(2); 
du(2) = fun_d2y(R, u(1), u(2), vN, X); 
du(3) = u(4); 
du(4) = fun_d2z(R, u(1), u(2), u(3), u(4), vN, X); 
end 
function d2y = fun_d2y(R,y,dy,vN,X) 
d2y = (2.0*dy*(y - R*dy)*(2.0*R^5*X + R^3*dy*y^2 + dy^3*vN*y^5 - 

1.0*R^2*dy^2*vN*y^3 - 2.0*R^3*X*dy*y^2 - 1.0*R^3*dy*vN*y^2 + 

R*dy^2*vN*y^4))/(R^4*dy*y^3 + 2.0*R^6*X*y + R^2*dy^2*vN*y^5 - 

1.0*R^4*dy^3*vN*y^3 + R^2*dy^4*vN*y^5 - 2.0*R^4*X*dy*y^3 - 

1.0*R^4*dy*vN*y^3); 
end 
function d2z = fun_d2z(R,y,dy,z,dz,vN,X) 
F_y = (2.0*dy^2*(4.0*R^10*X^2 - 8.0*R^8*X^2*dy*y^2 - 6.0*R^8*X*dy^3*vN*y^2 - 

4.0*R^8*X*dy*vN*y^2 + 4.0*R^8*X*dy*y^2 + 8.0*R^7*X*dy^2*vN*y^3 + 

4.0*R^6*X^2*dy^2*y^4 + 12.0*R^6*X*dy^4*vN*y^4 + 8.0*R^6*X*dy^2*vN*y^4 - 

4.0*R^6*X*dy^2*y^4 - 6.0*R^6*X*dy*vN*y^4 + R^6*dy^4*vN^2*y^4 - 

1.0*R^6*dy^4*vN*y^4 + R^6*dy^2*vN^2*y^4 - 2.0*R^6*dy^2*vN*y^4 + R^6*dy^2*y^4 

- 16.0*R^5*X*dy^3*vN*y^5 - 6.0*R^4*X*dy^5*vN*y^6 - 4.0*R^4*X*dy^3*vN*y^6 + 

12.0*R^4*X*dy^2*vN*y^6 - 2.0*R^4*dy^5*vN^2*y^6 + 3.0*R^4*dy^5*vN*y^6 + 

R^4*dy^4*vN^2*y^6 - 2.0*R^4*dy^3*vN^2*y^6 + 2.0*R^4*dy^3*vN*y^6 + 

R^4*dy^2*vN^2*y^6 - 1.0*R^4*dy^2*vN*y^6 + 8.0*R^3*X*dy^4*vN*y^7 - 

4.0*R^3*dy^4*vN*y^7 - 6.0*R^2*X*dy^3*vN*y^8 + R^2*dy^6*vN^2*y^8 - 

2.0*R^2*dy^5*vN^2*y^8 + R^2*dy^4*vN^2*y^8 - 2.0*R^2*dy^3*vN^2*y^8 + 

3.0*R^2*dy^3*vN*y^8 + dy^6*vN^2*y^10 + dy^4*vN^2*y^10))/(R^2*y^2*(2.0*R^4*X 

+ R^2*dy*y^2 + dy^2*vN*y^4 + dy^4*vN*y^4 - 1.0*R^2*dy^3*vN*y^2 - 

2.0*R^2*X*dy*y^2 - 1.0*R^2*dy*vN*y^2)^2); 
F_dy = -(2.0*(8.0*R^10*X^2*dy - 4.0*R^9*X^2*y - 16.0*R^8*X^2*dy^2*y^2 + 

2.0*R^8*X*dy^4*vN*y^2 - 8.0*R^8*X*dy^2*vN*y^2 + 8.0*R^8*X*dy^2*y^2 + 

8.0*R^7*X^2*dy*y^3 - 12.0*R^7*X*dy^3*vN*y^3 + 4.0*R^7*X*dy*vN*y^3 - 

4.0*R^7*X*dy*y^3 + 8.0*R^6*X^2*dy^3*y^4 - 4.0*R^6*X*dy^5*vN*y^4 + 

16.0*R^6*X*dy^3*vN*y^4 - 8.0*R^6*X*dy^3*y^4 + 6.0*R^6*X*dy^2*vN*y^4 + 

2.0*R^6*dy^3*vN^2*y^4 - 4.0*R^6*dy^3*vN*y^4 + 2.0*R^6*dy^3*y^4 - 

4.0*R^5*X^2*dy^2*y^5 + 24.0*R^5*X*dy^4*vN*y^5 - 8.0*R^5*X*dy^2*vN*y^5 + 

4.0*R^5*X*dy^2*y^5 + R^5*dy^6*vN^2*y^5 + 4.0*R^5*dy^4*vN^2*y^5 - 

4.0*R^5*dy^4*vN*y^5 - 1.0*R^5*dy^2*vN^2*y^5 + 2.0*R^5*dy^2*vN*y^5 - 

1.0*R^5*dy^2*y^5 + 2.0*R^4*X*dy^6*vN*y^6 - 8.0*R^4*X*dy^4*vN*y^6 - 

12.0*R^4*X*dy^3*vN*y^6 - 1.0*R^4*dy^6*vN*y^6 - 4.0*R^4*dy^4*vN^2*y^6 + 

4.0*R^4*dy^4*vN*y^6 - 2.0*R^4*dy^3*vN^2*y^6 + 2.0*R^4*dy^3*vN*y^6 - 

12.0*R^3*X*dy^5*vN*y^7 + 4.0*R^3*X*dy^3*vN*y^7 - 2.0*R^3*dy^7*vN^2*y^7 - 

8.0*R^3*dy^5*vN^2*y^7 + 6.0*R^3*dy^5*vN*y^7 + 2.0*R^3*dy^3*vN^2*y^7 - 

2.0*R^3*dy^3*vN*y^7 + 6.0*R^2*X*dy^4*vN*y^8 + 2.0*R^2*dy^5*vN^2*y^8 + 

4.0*R^2*dy^4*vN^2*y^8 - 3.0*R^2*dy^4*vN*y^8 + R*dy^8*vN^2*y^9 + 

4.0*R*dy^6*vN^2*y^9 - 1.0*R*dy^4*vN^2*y^9 - 

2.0*dy^5*vN^2*y^10))/(R^2*y*(2.0*R^4*X + R^2*dy*y^2 + dy^2*vN*y^4 + 

dy^4*vN*y^4 - 1.0*R^2*dy^3*vN*y^2 - 2.0*R^2*X*dy*y^2 - 

1.0*R^2*dy*vN*y^2)^2); 
d2z = F_y*z+F_dy*dz; 
end 
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function S_r = fun_Sr(R,y,dy,vN,X) 
S_r = (R^4*X + R^2*dy*y^2 + dy^2*y^4*log((- R^2 + dy*y^2)/(dy*y^2)) + 

R^2*dy^3*vN*y^2 - 1.0*R^2*dy*vN*y^2)/(R^2*dy^2*vN*y^2); 
end 
function S_t = fun_St(R,y,dy,vN,X) 
S_t = (R^4*X + dy*vN*y^4 + R^2*dy*y^2 + dy^2*y^4*log((- R^2 + 

dy*y^2)/(dy*y^2)) - 1.0*R^2*dy*vN*y^2)/(R*dy*vN*y^3); 
end 
function [dSr_y, dSr_dy] = fun_dSr(R,y,dy,vN,X) 
dSr_y = (1.0*(2*R^6*X - 2.0*dy^3*y^6*log((dy*y^2)/(- R^2 + dy*y^2)) + 

2*R^2*dy^2*y^4 + 2.0*R^2*dy^2*y^4*log((dy*y^2)/(- R^2 + dy*y^2)) - 

2.0*R^4*X*dy*y^2))/(R^2*dy^2*vN*y^3*(- R^2 + dy*y^2)); 
dSr_dy = (1.0*(2.0*R^4*X + R^2*dy*y^2 + dy^2*vN*y^4 + dy^4*vN*y^4 - 

1.0*R^2*dy^3*vN*y^2 - 2.0*R^2*X*dy*y^2 - 1.0*R^2*dy*vN*y^2))/(dy^3*vN*y^2*(- 

R^2 + dy*y^2)); 
end 
%% 
function p = bisection(f,a,b) 
if f(a)*f(b)>0 
    disp('Wrong choice bro') 
else 
    p = (a + b)/2; 
    err = abs(f(p)); 
    while err > 1e-7 
        if f(a)*f(p)<0 
            b = p; 
        else 
            a = p; 
        end 
        p = (a + b)/2; 
        err = abs(f(p)); 
    end 
end 
end 

• MATLAB™ codes for plotting Figures 5-10 to 5-13: 

A = 1; 
B = 2; 
C = 3; 
L_0 = 1.077; 
vN10 = [1E-4 1E-4]; 
vN20 = [1E-1 1E-4]; 
X10 = [0.1 0.1]; 
X20 = [1.2 0.1]; 

  
str1 = [-4,-4]; 
str2 = [-1,-4]; 

  
Y0 = [20 10]; 
dy_0 = [0.01 0.1]; 
ddy_0 = [1E-4 1E-2]; 

  
figure('units','normalized','outerposition',[0 0 1 1]) 
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for k = 1:2 
    vN1 = vN10(k); 
    vN2 = vN20(k); 
    X1 = X10(k); 
    X2 = X20(k); 

     
    Y(1) = Y0(k); 

     
    S_r_C = inf; 
    J = 0; 
    j = 0; 
    dy0 = dy_0(k); 
    while abs(S_r_C) > 1E-6 
        J = J+1; 
        j = j+1; 
        if abs(imag(S_r_C)) > 0 || j > 50 && abs(S_r_C) > 1E3 || j > 400 && 

abs(S_r_C) > 1E0 
            dy0 = dy0+ddy_0(k); 
            Y(1) = Y0(k); 
            j = 1; 
        end 
        if J > 1E4 
            break 
        end 
        % initial values 
        y1(1) = L_0; 
        dy1(1) = Y(j); 
        z1(1) = 0; 
        dz1(1) = 1; 
        u0 = [y1(1); dy1(1); z1(1); dz1(1)]; 
        [R1,u1] = ode45(@(R1,u1) odefun(R1,u1,vN1,X1),[A B],u0); 
        y1 = u1(:,1); 
        dy1 = u1(:,2); 
        z1 = u1(:,3); 
        dz1 = u1(:,4); 
        n1 = length(R1); 
        clear S_r1 S_t1 
        for i = 1:n1 
            S_r1(i,1) = fun_Sr(R1(i),y1(i),dy1(i),vN1,X1); 
            S_t1(i,1) = fun_St(R1(i),y1(i),dy1(i),vN1,X1); 
        end 
        y2(1) = y1(n1); 
        z2(1) = z1(n1); 
        dz2(1) = dz1(n1); 
        syms dy 
        eqn = @(dy) S_r1(n1)-fun_Sr(B,y2(1),dy,vN2,X2); 

         
        dy2(1) = fsolve(eqn,dy0); 
        u0 = [y2(1); dy2(1); z2(1); dz2(1)]; 
        [R2,u2] = ode45(@(R2,u2) odefun(R2,u2,vN2,X2),[B C],double(u0)); 
        y2 = u2(:,1); 
        dy2 = u2(:,2); 
        z2 = u2(:,3); 
        dz2 = u2(:,4); 



 

127 

 

        n2 = length(R2); 
        clear S_r2 S_t2 
        for i = 1:n2 
            S_r2(i,1) = fun_Sr(R2(i),y2(i),dy2(i),vN2,X2); 
            S_t2(i,1) = fun_St(R2(i),y2(i),dy2(i),vN2,X2); 
        end 
        S_r_C = S_r2(n2); 
        [dSr_y2, dSr_dy2] = fun_dSr(R2(n2),y2(n2),dy2(n2),vN2,X2); 
        Y(j+1) = real(Y(j)-S_r_C/(dSr_y2*z2(n2)+dSr_dy2*dz2(n2))); 
        [dSr_y2B, dSr_dy2B] = fun_dSr(R2(1),y2(1),dy2(1),vN2,X2); 
        ddy0 = (S_r1(n1)-S_r2(1))/(dSr_y2B*z2(1)+dSr_dy2B*dz2(1)); 
        [S_r_C dy0 j] 
    end 
    %% 
    r1 = y1; 
    r2 = y2; 
    L_r1 = dy1; 
    L_r2 = dy2; 
    L_t1 = r1./R1; 
    L_t2 = r2./R2; 
    vC1 = ((L_t1.^2).*L_r1)-1; 
    vC2 = ((L_t2.^2).*L_r2)-1; 
    %% 
    syms L1 L2 
    eqn1 = @(L1) L1-1/L1+(L1^2/vN1)*(log((L1^3-1)/L1^3)+1/L1^3+X1/L1^6); 
    L1_free = double(bisection(eqn1,1,100)); 
    vC1_free = L1_free^3-1; 
    eqn2 = @(L2) L2-1/L2+(L2^2/vN2)*(log((L2^3-1)/L2^3)+1/L2^3+X2/L2^6); 
    L2_free = double(bisection(eqn2,1,100)); 
    vC2_free = L2_free^3-1; 
    %% 
    color = [1 0 0;0 0 1]; 

     
    subplot(2,2,1); hold on; box on; 
    plot([R1;R2], [r1;r2],'Color',color(k,:),'LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); 
    xlim([A,C]); ylim([0 15]); yticks(0:3:15); 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('r(R)','FontSize',16,'Interpreter','latex'); 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex'; 

     
    subplot(2,2,2); hold on; box on; 
    plot(R1, vC1,'Color',color(k,:),'LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); 
    plot(R2, vC2,'Color',color(k,:),'LineWidth',1.5); 
    xlim([A,C]); ylim([0 150]); yticks(0:30:150); 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('vC','FontSize',16,'Interpreter','latex'); 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex'; 

     
    subplot(2,2,3); hold on; box on; 
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    plot(R1, L_r1,'Color',color(k,:),'LineWidth',1.5); 
    plot(R1, L_t1,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); 
    plot(R2, L_r2,'Color',color(k,:),'LineWidth',1.5); plot(R2, 

L2_free*ones(n2,1),'-.k','LineWidth',0.75); 
    plot(R2, L_t2,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xlim([A,C]); ylim([0 15]); yticks(0:3:15) 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('$$\lambda$$','FontSize',16,'Interpreter','latex'); 
    P_Lr = plot(nan,nan,'k-','LineWidth',1.5); 
    P_Lt = plot(nan,nan,'k--','LineWidth',1.5); 
    P_Lf = plot(nan,nan,'k-.','LineWidth',0.75); 
    legend([P_Lr P_Lt P_Lf],'$$\bf \lambda_{r}$$','$$\bf 

\lambda_{\theta}$$','$$\bf 

\lambda_{free}$$','FontSize',14,'Interpreter','latex') 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex'; 

     
    subplot(2,2,4); hold on; box on; 
    plot(R1, S_r1,'Color',color(k,:),'LineWidth',1.5); 
    plot(R1, S_t1,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xline(B,':k','LineWidth',0.75); yline(0,'-.k','LineWidth',0.75); 
    plot(R2, S_r2,'Color',color(k,:),'LineWidth',1.5); 
    plot(R2, S_t2,'Color',color(k,:),'LineStyle','--','LineWidth',1.5); 
    xlim([A,C]); ylim([-30 10]); yticks([-30 -20 -10 0 10]) 
    xlabel('R/A','FontSize',16,'Interpreter','latex'); 

ylabel('s/NkT','FontSize',16,'Interpreter','latex'); 
    P_Sr = plot(nan,nan,'k-','LineWidth',1.5); 
    P_St = plot(nan,nan,'k--','LineWidth',1.5); 
    legend([P_Sr  P_St],'$$\bf s_{r}$$','$$\bf 

s_{\theta}$$','Location','southeast','FontSize',14,'Interpreter','latex' ) 
    ax = gca; % current axes 
    ax.FontSize = 14; 
    ax.TickLabelInterpreter = 'latex'; 
end 
%% 
subplot(2,2,1); 
txt = {{'$$\bf vN_{I} = 10^{-4}$$'; '$$\bf \chi_{I} = 0.1$$'},... 
    {'$$\bf vN_{II} = 10^{-4}$$'; '$$\bf \chi_{II} = 0.1$$'},... 
    {'$$\bf vN_{II} = 10^{-1}$$'; '$$\bf \chi_{II} = 1.2$$'}}; 
text([1.5 2.5 2.5], [6 13 8.5], [txt(1) txt(2) txt(3)], 

'HorizontalAlignment', 'center', 'BackgroundColor', 'w', 'EdgeColor', 'k', 

'FontSize', 10, 'Interpreter','latex'); 
%% 
function du = odefun(R,u,vN,X) 
du = zeros(4,1); 
du(1) = u(2); 
du(2) = fun_d2y(R, u(1), u(2), vN, X); 
du(3) = u(4); 
du(4) = fun_d2z(R, u(1), u(2), u(3), u(4), vN, X); 
end 
function d2y = fun_d2y(R,y,dy,vN,X) 
d2y = (2.0*dy*(y - R*dy)*(2.0*R^5*X + R^3*dy*y^2 + dy^3*vN*y^5 - 

1.0*R^2*dy^2*vN*y^3 - 2.0*R^3*X*dy*y^2 - 1.0*R^3*dy*vN*y^2 + 

R*dy^2*vN*y^4))/(R^4*dy*y^3 + 2.0*R^6*X*y + R^2*dy^2*vN*y^5 - 
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1.0*R^4*dy^3*vN*y^3 + R^2*dy^4*vN*y^5 - 2.0*R^4*X*dy*y^3 - 

1.0*R^4*dy*vN*y^3); 
end 
function d2z = fun_d2z(R,y,dy,z,dz,vN,X) 
F_y = (2.0*dy^2*(4.0*R^10*X^2 - 8.0*R^8*X^2*dy*y^2 - 6.0*R^8*X*dy^3*vN*y^2 - 

4.0*R^8*X*dy*vN*y^2 + 4.0*R^8*X*dy*y^2 + 8.0*R^7*X*dy^2*vN*y^3 + 

4.0*R^6*X^2*dy^2*y^4 + 12.0*R^6*X*dy^4*vN*y^4 + 8.0*R^6*X*dy^2*vN*y^4 - 

4.0*R^6*X*dy^2*y^4 - 6.0*R^6*X*dy*vN*y^4 + R^6*dy^4*vN^2*y^4 - 

1.0*R^6*dy^4*vN*y^4 + R^6*dy^2*vN^2*y^4 - 2.0*R^6*dy^2*vN*y^4 + R^6*dy^2*y^4 

- 16.0*R^5*X*dy^3*vN*y^5 - 6.0*R^4*X*dy^5*vN*y^6 - 4.0*R^4*X*dy^3*vN*y^6 + 

12.0*R^4*X*dy^2*vN*y^6 - 2.0*R^4*dy^5*vN^2*y^6 + 3.0*R^4*dy^5*vN*y^6 + 

R^4*dy^4*vN^2*y^6 - 2.0*R^4*dy^3*vN^2*y^6 + 2.0*R^4*dy^3*vN*y^6 + 

R^4*dy^2*vN^2*y^6 - 1.0*R^4*dy^2*vN*y^6 + 8.0*R^3*X*dy^4*vN*y^7 - 

4.0*R^3*dy^4*vN*y^7 - 6.0*R^2*X*dy^3*vN*y^8 + R^2*dy^6*vN^2*y^8 - 

2.0*R^2*dy^5*vN^2*y^8 + R^2*dy^4*vN^2*y^8 - 2.0*R^2*dy^3*vN^2*y^8 + 

3.0*R^2*dy^3*vN*y^8 + dy^6*vN^2*y^10 + dy^4*vN^2*y^10))/(R^2*y^2*(2.0*R^4*X 

+ R^2*dy*y^2 + dy^2*vN*y^4 + dy^4*vN*y^4 - 1.0*R^2*dy^3*vN*y^2 - 

2.0*R^2*X*dy*y^2 - 1.0*R^2*dy*vN*y^2)^2); 
F_dy = -(2.0*(8.0*R^10*X^2*dy - 4.0*R^9*X^2*y - 16.0*R^8*X^2*dy^2*y^2 + 

2.0*R^8*X*dy^4*vN*y^2 - 8.0*R^8*X*dy^2*vN*y^2 + 8.0*R^8*X*dy^2*y^2 + 

8.0*R^7*X^2*dy*y^3 - 12.0*R^7*X*dy^3*vN*y^3 + 4.0*R^7*X*dy*vN*y^3 - 

4.0*R^7*X*dy*y^3 + 8.0*R^6*X^2*dy^3*y^4 - 4.0*R^6*X*dy^5*vN*y^4 + 

16.0*R^6*X*dy^3*vN*y^4 - 8.0*R^6*X*dy^3*y^4 + 6.0*R^6*X*dy^2*vN*y^4 + 

2.0*R^6*dy^3*vN^2*y^4 - 4.0*R^6*dy^3*vN*y^4 + 2.0*R^6*dy^3*y^4 - 

4.0*R^5*X^2*dy^2*y^5 + 24.0*R^5*X*dy^4*vN*y^5 - 8.0*R^5*X*dy^2*vN*y^5 + 

4.0*R^5*X*dy^2*y^5 + R^5*dy^6*vN^2*y^5 + 4.0*R^5*dy^4*vN^2*y^5 - 

4.0*R^5*dy^4*vN*y^5 - 1.0*R^5*dy^2*vN^2*y^5 + 2.0*R^5*dy^2*vN*y^5 - 

1.0*R^5*dy^2*y^5 + 2.0*R^4*X*dy^6*vN*y^6 - 8.0*R^4*X*dy^4*vN*y^6 - 

12.0*R^4*X*dy^3*vN*y^6 - 1.0*R^4*dy^6*vN*y^6 - 4.0*R^4*dy^4*vN^2*y^6 + 

4.0*R^4*dy^4*vN*y^6 - 2.0*R^4*dy^3*vN^2*y^6 + 2.0*R^4*dy^3*vN*y^6 - 

12.0*R^3*X*dy^5*vN*y^7 + 4.0*R^3*X*dy^3*vN*y^7 - 2.0*R^3*dy^7*vN^2*y^7 - 

8.0*R^3*dy^5*vN^2*y^7 + 6.0*R^3*dy^5*vN*y^7 + 2.0*R^3*dy^3*vN^2*y^7 - 

2.0*R^3*dy^3*vN*y^7 + 6.0*R^2*X*dy^4*vN*y^8 + 2.0*R^2*dy^5*vN^2*y^8 + 

4.0*R^2*dy^4*vN^2*y^8 - 3.0*R^2*dy^4*vN*y^8 + R*dy^8*vN^2*y^9 + 

4.0*R*dy^6*vN^2*y^9 - 1.0*R*dy^4*vN^2*y^9 - 

2.0*dy^5*vN^2*y^10))/(R^2*y*(2.0*R^4*X + R^2*dy*y^2 + dy^2*vN*y^4 + 

dy^4*vN*y^4 - 1.0*R^2*dy^3*vN*y^2 - 2.0*R^2*X*dy*y^2 - 

1.0*R^2*dy*vN*y^2)^2); 
d2z = F_y*z+F_dy*dz; 
end 
function S_r = fun_Sr(R,y,dy,vN,X) 
S_r = (R^4*X + R^2*dy*y^2 + dy^2*y^4*log((- R^2 + dy*y^2)/(dy*y^2)) + 

R^2*dy^3*vN*y^2 - 1.0*R^2*dy*vN*y^2)/(R^2*dy^2*vN*y^2); 
end 
function S_t = fun_St(R,y,dy,vN,X) 
S_t = (R^4*X + dy*vN*y^4 + R^2*dy*y^2 + dy^2*y^4*log((- R^2 + 

dy*y^2)/(dy*y^2)) - 1.0*R^2*dy*vN*y^2)/(R*dy*vN*y^3); 
end 
function [dSr_y, dSr_dy] = fun_dSr(R,y,dy,vN,X) 
dSr_y = (1.0*(2*R^6*X - 2.0*dy^3*y^6*log((dy*y^2)/(- R^2 + dy*y^2)) + 

2*R^2*dy^2*y^4 + 2.0*R^2*dy^2*y^4*log((dy*y^2)/(- R^2 + dy*y^2)) - 

2.0*R^4*X*dy*y^2))/(R^2*dy^2*vN*y^3*(- R^2 + dy*y^2)); 
dSr_dy = (1.0*(2.0*R^4*X + R^2*dy*y^2 + dy^2*vN*y^4 + dy^4*vN*y^4 - 

1.0*R^2*dy^3*vN*y^2 - 2.0*R^2*X*dy*y^2 - 1.0*R^2*dy*vN*y^2))/(dy^3*vN*y^2*(- 

R^2 + dy*y^2)); 
end 
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%% 
function p = bisection(f,a,b) 
if f(a)*f(b)>0 
    disp('Wrong choice') 
else 
    p = (a + b)/2; 
    err = abs(f(p)); 
    while err > 1e-7 
        if f(a)*f(p)<0 
            b = p; 
        else 
            a = p; 
        end 
        p = (a + b)/2; 
        err = abs(f(p)); 
    end 
end 
end 

 


