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ABSTRACT

No two species can indefinitely occupy the same ecological niche according to the compet-

itive exclusion principle. When competing strains of the same pathogen invade a homogeneous

population, the strain with the largest basic reproductive ratio R0 will force the other strains to

extinction. However, over 51 pathogens are documented to have multiple strains [3] coexisting,

contrary to the results from homogeneous models. In reality, the world is heterogeneous with the

population varying in susceptibility. As such, the study of epidemiology, and hence the problem of

pathogen coexistence should entail heterogeneity. Heterogeneous models tend to capture dynamics

such as resistance to infection, giving more accurate results of the epidemics. This study will focus

on the behavior of multi-pathogen heterogeneous models and will try to answer the question: what

are the conditions on the model parameters that lead to pathogen coexistence? The goal is to un-

derstand the mechanisms in heterogeneous populations that mediate pathogen coexistence. Using

the moment closure method, Fleming et. al. [22] used a two pathogen heterogeneous model (1.9)

to show that pathogen coexistence was possible between strains of the baculovirus under certain

conditions. In the first part of our study, we consider the same model using the hidden keystone

variable (HKV) method. We show that under some conditions, the moment closure method and

the HKV method give the same results. We also show that pathogen coexistence is possible for

a much wider range of parameters, and give a complete analysis of the model (1.9), and give an

explanation for the observed coexistence.

The host population (gypsy moth) considered in the model (1.9) has a year life span, and

hence, demography was introduced to the model using a discrete time model (1.12). In the second

part of our study, we will consider a multi-pathogen compartmental heterogeneous model (3.1)

with continuous time demography. We show using a Lyapunov function that pathogen coexistence

is possible between multiple strains of the same pathogen. We provide analytical and numerical

evidence that multiple strains of the same pathogen can coexist in a heterogeneous population.
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1. INTRODUCTION

1.1. History and background

”As a matter of fact, all epidemiology concerned as it is with the variation of disease from time

to time or from place to place, must be considered mathematically, however many variables as

implicated, if it is to be considered scientifically at all. To say that a disease depends upon certain

factors is not to say much, until we can form an estimate as to how largely each factor influences

the whole result. And the mathematical method of treatment is really nothing but the application

of careful reasoning to the problems at issue”.

-Sir Ronald Ross 1911 [2, 25].

The mathematical study of infectious diseases began with the work of John Graunt (1620-

1674), whose 1663 book Natural and Political Observations Made upon the Bills of Mortality was

concerned with methods of public health statistics [2]. He analyzed multiple diseases and estimated

the comparative risks of dying from various diseases [6]. A century later, Daniel Bernoulli (1700-

1782) introduced what is considered the first model in mathematical epidemiology on the inoculation

against smallpox. His publication in 1766 [5] argued that inoculation with a mild strain of the

smallpox could provide a lifelong immunity. Early contributions to the study of epidemics continued

through the works of Louis Pasteur (1822-1875), John Snow(1873) and William Budd (1873).

In 1906, W. H. Hamer proposed the mass action law for the rate of new infections in his

studies of the recurrences of measles. He theorized that the spread of infection should depend on

the number of susceptible individuals and the number of infected individuals. This idea is generally

very useful in compartmental models. Sir Ronald Ross, Nobel Prize winner and the discoverer of the

malaria parasite was one of the first scientists to use compartmental models in epidemic modeling.

In his book The Prevention of Malaria, published in 1911, he developed a compartmental model to

study the dynamics of the transmission of malaria between mosquitoes and humans. He was the

first to introduce the concept of the basic reproductive number. Through his models, he showed

that reduction in the number of mosquitoes could eradicate malaria [2,6,7]. Quoted in the British

Medical Journal, Sir Ross pleaded that epidemics should be studied mathematically.
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Mathematical epidemiology was made more popular by Kermack and McKendrick in 1927. In their

three paper series [30–32], they introduced a deterministic model which categorizes the population

into three distinct classes: Susceptible, Infectious, and Recovered classes.

Consider a population of size N with some initial number of infected people. People go suc-

cessively through three states: the susceptible state S, the infectious state I, and the recovered state

R. The model formulated by Kermack and McKendrick is mathematically detailed and generally

complex, however, a simplified version of the so-called SIR model can be written as

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

(1.1)

where β is the transmission rate and γ is the recovery or removal rate. The reciprocal of the removal

rate 1/γ is the average infectious period. In the model (1.1), S(t) + I(t) + R(t) = N for any t.

In their model (1.1), there are no death and birth rates, so the population size is constant. There

are different versions of (1.1) depending on how the transmission term and the population size are

defined, details can be found in [4].

Since the works of Kermack and McKendrick, epidemic modeling has been heavily studied

among mathematicians and biologist using the SIR approach in many directions [6]. Epidemic

models tend to give a snapshot of how diseases spread when there is an outbreak and help decision

makers to devise strategies to tackle it.

In reality, many diseases are caused by multiple strains of the same pathogen. For instance,

over 51 human pathogens including malaria, dengue fever, gonorrhea and tuberculosis can be

categorized into distinct strains, each defined by its antigenic properties [3]. Phenotypic variations

within a pathogen species as well as heterogeneity in pathogen virulence are key reasons why

multiple-strain models are necessary. The existence of multiple strains can affect the prevention

and treatment process of an infection. An accurate understanding of the spread of such diseases

requires multi-strain or multi-pathogen models. The number of strains increase the number of

compartments into which the population can be subdivided.
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The study of multi-strains models is common and can be seen in [33]. Such models allow

us to investigate the evolution of the disease, the behavior of the disease and the optimal strategy

for disease control.

A possible modification of (1.1) into a two-pathogen-strain model is

Ṡ = µ− β1SI1 − β2SI2 − φS,

İ1 = β1SI1 − γ1I1 − φI1,

İ2 = β2SI2 − γ2I2 − φI2,

Ṙ = γ1I1 + γ2I2 − φR.

(1.2)

The four distinct compartmental classes in this model are: the susceptible to both strains S,

infectious with strain 1 I1, infectious with strain 2 I2, and recovered and therefore immune to both,

R [29]. We assume that the pathogen strains have different transmission rates βi and different

recovery rates γi (i = 1, 2). In this model, demography is captured by µ as the birth rate and φ as

the mortality rate.

Early multi-strain epidemic models studied the competition between two distinct strains

[18, 19, 24]. The models investigated the duration of infection for each strain and analyzed the

dynamics of the infection if one strain provided immunity to the other [33]. In 1989, Castillo-

Chavez et al. [10] introduced a model which involved little or no cross immunity. When researchers

consider multi-strain models, they are often interested in knowing the impact of each strain on

the dynamics. In modeling, different strains of the same pathogen often vary in terms of their

virulence or transmission rates. However, the property that is mostly of high interest is the basic

reproductive number R0.

The basic reproductive number is defined as the average number of secondary cases arising

from an average primary case in an entirely susceptible population [29]. The basic reproductive

number is a measure for the reproductive potential of an infectious disease. R0 is a threshold

parameter. In general, a pathogen strain i can only invade a susceptible population if and only if

its strain specific basic reproductive number is greater than one, R0i > 1. Another useful application

of R0 is in determining the fraction of the populations that needs to be vaccinated in order to avoid

a major outbreak. In (1.1), that fraction is Pcrit = 1− 1
R0

[29].
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For multi-strain models, we have the strain-specific basic reproductive number and the

overall basic reproductive number for the infection. Computation of the R0 for compartmental

models is often done by using the next generation matrix [17]. An overall discussion of basic

reproductive numbers in multi-strain models can be seen in [36]. In (1.1), R0 = βN
γ , meaning if

γ > βN , there is no infection and the disease dies out quickly. In (1.2), the strain specific basic

reproductive number is given by R0i = βiS
∗

γi+φ
(i = 1, 2), where S∗ is the density of the susceptible

class at the disease free equilibrium. Studies have shown that if R0i > R0j , then only pathogen

strain i survives in the long term [29]. In this case, we refer to pathogen strain i as the dominant

strain.

We use the next generation matrix (NGM) to find R0 of (1.2). The next generation matrix

is a matrix that relates the number of newly infected individuals in the various compartmental

classes in consecutive generations; it was introduced by Diekmann in 1990 [17]. The NGM can be

derived from the infection subsystem (the infection subsystem describes the production of newly

infected individuals and changes in the states of already existing infected). The infection subsystem

of equation (1.2) is

İ1 = β1SI1 − γ1I1 − φI1,

İ2 = β2SI2 − γ2I2 − φI2.

(1.3)

Let x = (I1, I2)
′
, where the prime denotes the transpose. The linearized subsystem of (1.3) around

the disease free equilibrium (DFE) (S∗, 0, 0) is

ẋ =(T + Σ)x,

where T =

β1S
∗ 0

0 β2S
∗

 , and Σ =

−γ1 − φ 0

0 −γ2 − φ

 .
(1.4)
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The matrix T corresponds to transmissions and the matrix Σ corresponds to the transitions. The

basic reproductive number R0 is computed as the spectral radius of the NGM, K = −TΣ−1 [17].

K = −TΣ−1 = −

β1S
∗ 0

0 β2S
∗


 1
−γ1−φ 0

0 1
−γ2−φ


=

 β1S∗

γ1+φ 0

0 β2S∗

γ2+φ

 .

(1.5)

Therefore,

R0 = max

{
β1S

∗

γ1 + φ
,
β2S

∗

γ2 + φ

}
= max {R01 , R02} . (1.6)

The system (1.2) has three equilibria when the strain-specific R0i ’s are different:

x̂1 = (S∗, 0, 0) , x̂2 =

(
γ1 + φ

β1
, I∗1 , 0

)
and x̂3 =

(
γ2 + φ

β2
, 0, I∗2

)
. (1.7)

The case where both pathogens coexists requires γ1+φ
β1

= γ2+φ
β2

, which only occurs when

the two pathogen strains have the same strain specific basic reproductive number. The bifurcation

diagram of the homogeneous model (1.2) is given in Figure 1.1.

Only pathogen strain 2 survives

Only pathogen strain 1 survives

R01 < R02

R01 > R02

0.5 1.0 1.5 2.0
R01

0.5

1.0

1.5

2.0

R02

R01 = R02

Figure 1.1. The bifurcation diagram of system (1.2). A pathogen strain is only able to invade
susceptible population when its strain specific R0i > 1. The strain with the largest R0 forces the
other strain to extinction.

5



Equations (1.1) and (1.2) are considered homogeneous because they assume that the entire

susceptible class has the same level of risk to infection or the same susceptibility. The real world is

evidently heterogeneous with the population differing in the level of risk of infection or transmit-

ting an infection. Almost all populations can be subdivided into different groups depending on this

factor. There are multiple forms of heterogeneity. For airborne diseases, proximity to the source of

infection determines the level of risk, and hence location defines the heterogeneity (spatial hetero-

geneity). For sexually transmitted diseases, a person with multiple sex partners is at a higher risk

of getting infected than a person with one or no partners therefore heterogeneity is defined by the

number of contacts (partners). Diseases like prostate cancer are only applicable to men and hence

requires models which divides the population into two classes: males and females. Other diseases

like arthritis, hypertension and Alzheimer’s are more likely to affect old people than young peo-

ple, therefore age is the heterogeneous trait. In general, genetic variations and vaccination history

creates division in susceptibility levels in humans, therefore the level of risk to infection generally

varies from person to person. Models that includes heterogeneity such as age, gender, behavior and

risk of infection tends to give a better representation of reality.

Model (1.1) can be modified into a simple heterogeneous model with the host population

varying in susceptibility. Let s(t, ω) be the density of susceptible hosts having the susceptibility

that is characterized by the trait value ω. The total size of the susceptible population at time t

is given by S(t) =
∫

Ω s(t, ω)dω, where Ω is the set of trait values. Here, s(0, ω) defines the initial

distribution of susceptibility before the infection starts. Let I(t) be the density of the infected

population and R(t) be the density the recovered class at time t. A simple heterogeneous model is

∂s(t, ω)

dt
= −β(ω)s(t, ω)I(t),

dI(t)

dt
=

∫
Ω
β(ω)s(t, ω)dωI(t)− γI(t),

dR(t)

dt
= γI(t).

(1.8)

The transmission rate β is a function of this trait value ω. This particular type of heterogeneity is

referred to as parametric heterogeneity.
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In (1.8), we assume that difference in susceptibility with respect to the trait value ω does

not lead to difference in infectiousness or difference in rate of recovery, therefore the entire infectious

class can be summed up as I(t) with recovery rate γ. Discussion of such types of models can be

found in [28,35].

One of the most highly discussed topics in multi-strain epidemic models is competitive

exclusion and coexistence of pathogens. According to Gause’s law or what it is commonly referred

to as competitive exclusion principle, no two species can indefinitely occupy the same ecological

niche. Studies on homogeneous multi-strain models [8] such as (1.2) shows that coexistence is not

possible when the competing strains have different R0i ’s. The reality, however, is that, we observe

multiple strains of pathogens coexisting in the current world [3]. Our main goal for this research

is to show that coexistence is possible for a wide range of parameters in heterogeneous models and

identify the exact conditions that promote coexistence.

1.2. A short review of existing models

Mathematical models have been used in the study of epidemics for a long time [6], but

the study of multi-strain models in heterogeneous models is a more current area of research. Such

models generally have a higher number of compartmental classes making them generally more

difficult to analyze. A significant part of the study on heterogeneous multi-strain models is focused

on sexually transmitted diseases [13,16,26].

In their study of multi-strain models, Castillo-Chaves et al. showed in a series of papers

[11, 14] that coexistence is not possible in a heterosexually-active homogeneous population using

SIS STD models. However, they later focused their study on just the female population and divided

them into two different groups based on their susceptibility to the two different pathogenic strains.

They showed that heterogeneity in susceptibility to the acquisition of the infection can lead to

pathogen coexistence [12]. Whilst they proved that variability in susceptibility in the female sub-

population leads to pathogen coexistence, the immediate question was: how can their studies can

be extended to the entire population?

In [13], Castillo-Chaves et al. extended their study in [12] to a two-sex heterosexually active

population that includes a single group of males and two different groups of females. They showed

that there exists a unique coexistence equilibrium if and only if the boundary equilibria both exist

and have the same stability. They also presented the necessary conditions for the existence and
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global stability of such equilibria. Their study shows that heterogeneity in just a subpopulation

(only females) can lead to pathogen coexistence. Authors of [15] did a similar analysis and confirmed

the results of [13] by increasing the number of divisions in the female population. So what happens

when the entire population is heterogeneous that is when we consider different classes of the male

population varying in susceptibility to infection?

Authors of [16] studied the dynamics of sexually transmitted diseases in a homosexually

active population. Here, the entire population was divided into three groups based on their suscep-

tibility to the infection (by two distinct pathogenic strains). The measure of one’s susceptibility was

determined by the number of contacts (partners) for the individual. Similar to [13], they presented

sufficient mathematical analysis to conclude that there exists a unique coexistence equilibrium if

and only if the boundary equilibra both exist and have the same stability. In the case of existence,

the coexistence equilibrium is globally stable. Whilst their model addresses heterogeneity in the

entire population, they do not account for heterosexually active populations.

The study of multi-strain pathogens is not only limited to sexually transmitted diseases.

Many researchers have studied pathogen coexistence of the dengue virus. For instance, there are

four known serotypes of the dengue arbovirus [20] each of which provides complete host immunity

but not a complete cross immunity from the other serotypes. In [21], Zhilan et al. studied the

interactions between two serotypes of the dengue virus in a population of variable size. With no

heterogeneity in the susceptible population, they showed that there is no long term persistence of

both strains in the host population. In [20] however, they showed that changes in the susceptibility

to the heterologous serotype can lead to coexistence. In general, coexistence of the serotypes was

favored by the increase of the susceptibility to the secondary infection and less favored by cross

immunity.

There are some studies on spatial heterogeneity. The study of pathogen coexistence in such

populations can be seen in [1]. Ackleh et al. considered a two-strain pathogen model described

by a system of reaction-diffusion equations. They showed that spatial heterogeneity promotes

coexistence. Their model assumes that individuals in the same location have the same level of

susceptibility which is applicable to most airborne diseases. In addition, they assume that the total

population size is a constant and demography is in the form of migration when a person move from

one location to another location. Their model is applicable to short term epidemics where we can
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assume that natural birth and death rates are negligible. It will be interesting to know the results

for long term dynamics which incorporates natural birth and death.

1.3. The gypsy moth model

Fleming-Davies et al. [22] conducted a study on the effects of host heterogeneity on pathogen

diversity and evolution. They used mathematical and statistical tools to analyze a two-pathogen

competition model in which heterogeneity is modeled as a continuous variation in host susceptibil-

ities. The two pathogens in their model were two different isolates of the baculovirus species that

infected gypsy moth (Lymantria dispar) caterpillars. When the gypsy moth larva hatches, it gets

infected by the baculovirus when it consumes contaminated egg material. The transmission hap-

pens only after the infected neonate dies. When the infected neonate dies, it contaminates the area

(leaves or barks of trees) where it died. The baculovirus can only infect the gypsy moth larvae and

not the adults. Therefore, infected neonates in season n only infects neonates in season n+ 1. The

virus overwinters in the area where the infected neonate died, sheltered by gypsy moth egg masses.

In their model, host individuals vary continuously in their susceptibility, however, the differences

in their susceptibility do not lead to differences in infectiousness when they are infectious cadavers.

Let s(t, β1, β2) be the density of the host population at time t susceptible to pathogen

strain 1 with transmission rate β1, and pathogen strain 2 with transmission rate β2. Thus at any

time t, s is a two-dimensional distribution that depends on the the infection risk with respect to

pathogen 1, β1, and pathogen 2, β2 [22]. Here, s(0, β1, β2) is the initial distribution of susceptibility

before the outbreak, and S(t) =
∫

Ω1

∫
Ω2
s(t, β1, β2)dβ1dβ2 is the total population density of the host

population at time t, where Ω1×Ω2 = [0,∞)× [0,∞). Let Ii(t) be the density of infectious cadavers

at t relative to pathogen strain i. The two-pathogen competition model that was considered in [22]

is

∂s

∂t
= −β1s(t, β1, β2)I1 − β2s(t, β1, β2)I2,

dI1

dt
= I1

∫ ∞
0

∫ ∞
0

β1s(t, β1, β2)dβ1dβ2 − γ1I1,

dI2

dt
= I2

∫ ∞
0

∫ ∞
0

β2s(t, β1, β2)dβ1dβ2 − γ2I2.

(1.9)

Model (1.9) is a generalization of (1.2) and (1.8).
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Let P (β1, β2) be a bivariate probability distribution. The initial conditions for (1.9) are

s(0, β1, β2) = S0P (β1, β2), Ii(0) = I0i , i = 1, 2, (1.10)

where S0 is the total initial density of the host population.

Fleming-Davies et al. [22] used moment closure method to simplify (1.9). The moment clo-

sure method uses properties of the joint j-k-th moment of s(t, β1, β2), Sj,k =
∫∞

0

∫∞
0 βj1β

k
2s(t, β1, β2)

dβ1dβ2 to derive differential equations for the marginal mean transmission rates. In this case, the

method worked under the assumption that the coefficients of variation Ci, i = 1, 2 for each pathogen

is constant, and the Pearson product-moment correlation coefficient ρ is also constant. In model

(1.9), the susceptibility of the host population varies continuously with time, as such the instanta-

neous mean transmission rate changes with time. During the epidemic, the transmission rate will

drop since the highly susceptible individuals are infected first, and removed from the susceptible

class. This causes a decrease in the instantaneous mean transmission rate. The measure of the

changes in the instantaneous mean transmission rate is what we call variation in transmission (co-

efficient of variation). The coefficient of variation, Ci = σ
β̄

is the ratio of the standard deviation

σ to the mean β̄. The correlation coefficient, ρ = cov(β1,β2)
σ1σ2

(where cov(β1, β2) is the covariance

between the transmission rates and σi, ı = 1, 2 are the standard deviations) is a measure of the

relationship between the transmission rates βi, i = 1, 2. A measure of ρ = 1 means that there is a

strong relation between the transmission rates that is, the probability of being infected by pathogen

strain 1 is highly dependent on the probability of being infected by pathogen strain 2. A measure

of ρ = 0 means that there is not correlation that is, the probability of being infected by pathogen

strain 1 is independent (has no relation) of the probability of being infected by pathogen strain

2. A measure of ρ = −1 means that there is a negative correlation that is, the higher probability

of being infected by pathogen strain 1 is, the lower the probability of being infected by pathogen

strain 2. Fleming-Davies et. al. assumed that the time dependent coefficients of variation and the

correlation coefficient are constant, in effect, they proved in Appendix of [22] the following theorem.

Theorem 1.3.1. Let s(t, β1, β2) solve system (1.9). Assume that the initial distribution P (β1, β2) of

susceptibility is such that the time dependent coefficients of variations and the correlation coefficient

are constant and equal to C1, C2, ρ. Also assume that β̄1(0) =
∫ ∫

Ω1×Ω2
β1p(β1, β2)dβ2dβ1,
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β̄2(0) =
∫ ∫

Ω1×Ω2
β2p(β1, β2)dβ1dβ2 in (1.9). Then given the same initial conditions S0, I01 , I02,

S(t) =
∫ ∫

Ω1×Ω2
s(t, β1, β2)dβ1dβ2 solves problem (1.11).

dS

dt
= −(β̄1(t)I1 + β̄2(t)I2)S,

dβ̄1(t)

dt
= −β̄1(t)2C2

1I1 − ρC1C2I2β̄1(t)β̄2(t),

dβ̄2(t)

dt
= −β̄2(t)2C2

2I2 − ρC1C2I1β̄1(t)β̄2(t),

dI1

dt
= β̄1(t)SI1 − γ1I1,

dI2

dt
= β̄2(t)SI2 − γ2I2,

(1.11)

where β̄i is the instantaneous mean transmission rate of pathogen strain i, Ci is the coefficient of

variation, and ρ is the correlation coefficient.

Proof. A comprehensive proof can be seen in the Appendix of [22].

The life-cycle of the gypsy moth larvae is one year. Therefore the susceptible population

for the current infected neonates is the next generation of larvae. The process is represented by a

discrete time model. Let the entire population density at the end the nth season be denoted by

Nn, the fraction of larvae infected by pathogen strain i by ιi, and both pathogen strains reproduce

at the rate φ. Let Zi,n+i denote the density of pathogen strain i at the beginning of the (n+ 1)-th

season. Demography was introduced to the model (1.9) using the following discrete time model:

Nn+1 = λnNn(1− ι1 − ι2),

Z1,n+1 = φNnι1,

Z2,n+1 = φNnι2.

(1.12)

At the end of the season, surviving hosts Nn(1 − ι1 − ι2) reproduce at rate λN , to give the host

population for the next year, Nn+1 . A pathogen was said to be extinct if its density at the end of

a season was less than 10−6.

Using data from field and laboratory experiments, they found that two pathogen strains are

more likely to coexist if they differ in transmission rates: a low variability, low mean transmission is

able to coexist with a more variable, high mean transmission (about 10 times the low one) pathogen
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[22]. They also produced evidence that pathogen coexistence was not possible in homogeneous

systems. A sample of their simulation is shown in Figure 1.2.
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Figure 1.2. Two strains of baculovirus can survive in multiple generations of gypsy moths when
one pathogen strain has a high mean transmission rate β̄1 = 10.5 and a high coefficient of varia-
tion C1 = 2.06, and the other pathogen strain has a low transmission rate β̄2 = 0.5 coupled with
a low coefficient of variation C2 = 0.68. Other parameter values are ρ = 0.5 , γ1 = 0.99, γ2 = 0.32,
φ = 0.4, λN = 10, initial densities N0 = 100, Z1,0 = Z2,0 = 1.

The work of Fleming-Davies et al. [22] leads to a number of questions:

• What if the coefficients of variation were not constant?

• What if the correlation coefficient was not constant?

• What happens if we replace the discrete seasons with continuous time?

• What probability distribution describes the initial distribution of the susceptible population?

• Is it possible to find other conditions for pathogen coexistence?

1.4. Preview of results

In this study, we use a different approach, the hidden keystone variable (HKV) or Reduction

theorem method to analyze the integro-differential system (1.9) and discuss the topic of pathogen

coexistence. We show that it is possible to derive a simplification of model (1.9) without assuming

that the coefficients of variation and the correlation coefficient are constant. We show that the initial
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distribution of susceptibility in the moment closure model used by [22] can be approximated by

the gamma distribution if the correlation coefficient is zero. We analyze our model using multiple

initial distributions for the susceptible population, and show that when the assumptions on the

coefficients of variation and correlation coefficient are lifted, pathogen coexistence is possible for a

much wider range of parameters. Example: a pathogen strain with a high mean coupled with low

variation can coexist with a strain with a low mean, high variation (contrary to the results in [22],

where coexistence was only possible between a pathogen strain with a high mean, high variation

and a low mean low variation pathogen strain).

It is important to understand the effect of the maintenance population and the maintenance

community in our models [9]. As a next step, we extend model (1.9) to include demographics which

are continuous with respect to time, thus replacing the discrete seasons. We show that even in

cases where pathogens go extinct, heterogeneity can prolong coexistence compared to homogeneous

models. We use bifurcation analysis to explain the reason behind the coexistence observed in the

gypsy moth model. In addition, we use numerical simulations showcase some interesting behaviors

of heterogeneous models. Example: a pathogen strain with the largest initial basic reproductive

number can go extinct faster than the strain with the lowest initial basic reproductive number, this

observation is not possible in homogeneous models.

The reduction method only works for a special types of equations (of the form

N(t)′ = N(t)F (t, f(Et[a])) for a population N distributed to the parameter a). Therefore for

model (1.9), we can only consider demographic terms of the form s(t, β1, β2)(f(S)). To account for

models which do not have this form of demography, we will also consider a multi-pathogen heteroge-

neous model with compartmentalized host population (3.1). Heterogeneity is going to be addressed

through the transmission rates with each susceptible subclass having a different transmission rate.

We show that in general, the strictly positive endemic equilibrium is globally asymptotically stable

when it exists. We give some general conditions that can lead to the existence of coexistence equi-

librium. As evidence of pathogen coexistence, we consider some specific cases of (3.1), and show

numerically that pathogen coexistence is possible among multiple strains of the same pathogen.
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2. ANALYTICAL AND NUMERICAL ANALYSIS OF

HETEROGENEOUS MODELS WITH TWO PATHOGENS

AND DISCRETE SEASONS

2.1. Two-pathogen competition model with no demography

We use an approach introduced by Georgiy P. Karev (On mathematical theory of selec-

tion: continuous time population dynamics) [27] to analyze (1.9). Let s(t, β1, β2) denote the

density of susceptibles varying in susceptibility with respect to the transmission rates β1 and β2

at time t. Therefore, the total density of the susceptible population at any time t is S(t) =∫∫
Ω s(t, β1, β2)dβ1dβ2 (here Ω = [0,∞)× [0,∞)). Let Ii(t) be the density of the population infected

by pathogen i. The following theorem is a particular case of a more general statement proved

in [27]. We state it here and provide a simplified proof to make the text self contained.

Theorem 2.1.1. Consider model (1.9) and let P (β1, β2) be an initial distribution of susceptibility,

and M(0, λ1, λ2) be its moment generating function. Then S(t) =
∫ ∫

Ω s(t, β1, β2)dβ1dβ2 solves

the system of ordinary differential equations (2.1) provided the initial conditions S0, I01 , I02 are the

same for both (1.9) and (2.1).

dS(t)

dt
= −β̄1(t)S(t)I1(t)− β̄2(t)S(t)I2(t),

dI1(t)

dt
= β̄1(t)S(t)I1(t)− γ1I1(t),

dI2(t)

dt
= β̄2(t)S(t)I2(t)− γ2I2(t),

qi(t)

dt
= −Ii(t), qi(0) = 0, i = 1, 2,

(2.1)

where β̄i(t) = d
dλi
M(t, λ1, λ2)|λi=0, i = 1, 2, and

M(t, λ1, λ2) =
M(0, λ1 + q1(t), λ2 + q2(t))

M(0, q1(t), q2(t))
.
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Proof. Consider the equation

∂s(t, β1, β2)

dt
= −β1I1(t)s(t, β1, β2)− β2I2(t)s(t, β1, β2). (2.2)

Dividing through by s(t, β1, β2), we get

ṡ(t, β1, β2)

s(t, β1, β2)
= −β1I1 − β2I2.

It follows that s(t, β1, β2) = s(0, β1, β2)e
∫
−β1I1(t)−β2I2(t)dt.

Let q̇i = −Ii(t), i = 1, 2,

then

s(t, β1, β2) = s(0, β1, β2)eβ1q1(t)+β2q2(t) (2.3)

By definition, the total susceptible class is

S(t) =

∫∫
Ω
s(t, β1, β2)dβ1dβ2.

Hence we have

S(t) =

∫∫
Ω
s(0, β1, β2)eβ1q1(t)+β2q2(t)dβ1dβ2

= S(0)

∫∫
Ω

s(0, β1, β2)

S(0)
eβ1q1(t)+β2q2(t)dβ1dβ2 (2.4)

= S(0)

∫∫
Ω
P (0, β1, β2)eβ1q1(t)+β2q2(t)dβ1dβ2,

where P is a time dependent probability density function.

Using the definition of the moment generating function (MGF),

S(t) = S(0)M(0, q1(t), q2(t)).

By definition, the MGF is

M(t, λ1, λ2) =

∫∫
Ω
P (t, β1, β2)eλ1β1+λ2β2dβ1dβ2

15



=
1

S(t)

∫∫
Ω
s(t, β1, β2)eλ1β1+λ2β2dβ1dβ2.

Putting (2.3) into the last equation, we get

M(t, λ1, λ2) =
1

S(t)

∫∫
Ω
s(0, β1, β2)eβ1q1(t)+β2q2(t)eλ1β1+λ2β2dβ1dβ2

=
1

S(t)

∫∫
Ω
s(0, β1, β2)e(λ1+q1)β1+(λ2+q1)β2dβ1dβ2

=
S(0)

S(t)

∫∫
Ω
P (0, β1, β2)e(λ1+q1)β1+(λ2+q1)β2dβ1dβ2.

Putting (2.4) into the last equation,

M(t, λ1, λ2) =
S(0)

S(0)M(0, q1, q2)

∫∫
Ω
P (0, β1, β2)e(λ1+q1)β1+(λ2+q1)β2dβ1dβ2.

Simplifying by using the definition of MGF,

M(t, λ1, λ2) =
M(0, λ1 + q1(t), λ2 + q2(t))

M(0, q1(t), q2(t))
.

From the time dependent moment generating function M(t, λ1, λ2), we can obtain an expression for

the instantaneous mean transmisssion rates using properties of the moment generating functions:

β̄i(t) =
d

dλi
M(t, λ1, λ2)|λi=0, i = 1, 2.

Integrating the equation (2.2) over Ω, we get the equation for the susceptible class S(t) and the

auxiliary terms qi(t), i = 1, 2. The equations for the infectious subsystem can be obtained as follows

Ii(t)

∫ ∞
0

∫ ∞
0

βis(t, β1, β2)dβ1dβ2 =Ii(t)

∫ ∞
0

∫ ∞
0

βis(t, β1, β2)
S(t)

S(t)
dβ1dβ2

=S(t)Ii(t)

∫ ∞
0

∫ ∞
0

βiP (t, β1, β2)dβ1dβ2

=β̄i(t)S(t)Ii(t),

where β̄i(t) =

∫ ∞
0

∫ ∞
0

βiP (t, β1, β2)dβ1dβ2 and i = 1, 2.

(2.5)
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Remark 1. Actually, following [22], it is possible to show that models (1.9) and (2.1) are equivalent,

but we will not need this later.

Unlike the moment closure method, which requires the coefficients of variation and the

correlation coefficient of the transmission rates to be constant, Theorem 2.1.1 allows us reduce

(1.9) to a system of differential equations without making any additional assumptions. Moreover,

we can use any bivariate probability distribution with a known MGF as the initial distribution of

the transmission rates. We therefore have more information of the model as we know the properties

of that probability distribution.

2.1.1. Comparison between the moment closure method and the reduction method of

Theorem 2.1.1

The moment closure method, which was used to derive system (1.11), assumes that the

coefficients of variation of the distribution of the parameters (βi, i = 1, 2) are constants (does not

change with time). The primary difference between homogeneous and heterogeneous models is

that, the coefficient of variation for the transmission rate is zero in homogeneous models, therefore

the transmission rate remains constant with time. It also assumes that the correlation between

both parameters β1 and β2 are constant. It is shown in [28] that if the coefficient of variation of

a parameter distribution does not change with time, then the initial distribution of the parameter

follows the gamma distribution. The results can be extended to a joint bivariate gamma distribution

when the correlation coefficient is zero. Let us illustrate this fact.

The moment generating function of a joint bivariate gamma distribution with zero correla-

tion coefficient is

M(0, λ1, λ2) =
1

(1− θ1λ1)k1(1− θ2λ2)k2
,

where θ1, θ2, k1, k2 are parameters.

Considering the assumptions made in (1.11), solutions of (2.1) with the transmission rates

distributed to joint bivariate gamma distribution should coincide with solutions of (1.11) when the

correlation coefficient ρ̄ is 0. We demonstrate their similarity in the Figs. 2.1,2.2.
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Figure 2.1. Comparison between model (2.1) and model (1.11). For model (1.11), the initial dis-
tribution of the parameters β̄i, i = 1, 2 in the host population is the bivariate gamma distribution
with correlation coefficient ρ̄ = 0. Pathogen strain 1 has a high mean transmission rate β̄1 = 10.5,
high coefficient of variation C1 = 2.06 and pathogen strain 2 has a low mean transmission rate
β̄2 = 0.5, low variation C2 = 0.68. The initial conditions S(0) = 10, I1(0) = I2(0) = 0.5, parame-
ter values γ1 = γ2 = 0.65.
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Figure 2.2. Comparison between model (2.1) and model (1.11). For model (1.11), the initial dis-
tribution of the parameters β̄i, i = 1, 2 in the host population is the bivariate gamma distribution
with correlation coefficient ρ̄ = 0. The mean transmission rates are β̄1 = 3, β̄2 = 1.5 with the
coefficients of variation C1 = 1.5, C2 = 0.5 . The initial conditions S(0) = 10, I1(0) = I2(0) = 0.5,
parameter values γ1 = 0.65, γ2 = 0.32.

Theorem 2.1.2. System (2.1) follows from heterogeneous model (1.11) only if the marginal dis-

tributions of the initial distribution of susceptibility are gamma distributions (with correlation co-

efficient equal to zero).
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2.2. Numerical analysis of (2.1) with examples of pathogen coexistence.

Using the moment closure method and the discrete time model (1.12), the authors of [22]

showed that pathogen coexistence was possible between a strain with high mean transmission,

high coefficient of variation (β̄1 = 10.5, C1 = 2.06) and a strain with low mean transmission,

low coefficient of variation (β̄2 = 0.5, C2 = 0.68). We replicate their experiment by introducing

demography to model (2.1) using the discrete time model (1.12), and investigate the conditions for

pathogen coexistence.

We showed in the previous section that the model (1.11) is equivalent to model (2.1) when

the initial distribution is gamma, where the coefficients of variation are constant. We will confirm

that the conditions for coexistence (high mean, high variation versus low mean, low variation) as a

result of model (1.11) is similar in the conditions for coexistence using model 2.1.

As a next step, we will extend our results to probability distributions with non-constant

coefficients of variation, and show multiple conditions of coexistence. In all our simulations, we will

use the same range of parameters was used by [22].

2.2.1. Probability distribution with constant coefficient of variation

We assume that the initial distribution of the susceptible population is a gamma distribution

with parameters k1,k2,θ1, and θ2 with the MGF given by

M(0, β1, β2) = (1− θ1β1)−k1(1− θ2β2)−k2 . (2.6)

It follows from Theorem 2.1.1 that, for t > 0,

M(t, β1, β2) =
(1− θ1q1(t))k1(1− θ2q2(t))k2

(1− θ1β1 − q1(t)θ1)k1(1− θ2β2 − q2(t)θ2)k2
. (2.7)

Using properties of moment generating functions, the mean and the variance at any time t are

given by

Et[βi] =
kiθ

2
i

(−1 + qi(t)θi)2
, V art[βi] =

kiθi
1− qi(t)θi

. (2.8)

At any time moment, the coefficients of variation Ci(t) = 1/
√
ki are constant.
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Figure 2.3. Two pathogen strains can coexist in over 150 generations (prolonged coexistence) of
the gypsy moth population when pathogen 1 has a high mean transmission rate β̄1 = 10.5 and
a high coefficient of variation C1 = 2.06 competes against pathogen 2 with a low transmission
rate β̄2 = 0.15, low coefficient of variation C2 = 0.68. Other parameter values are µ1 = 0.99,
µ2 = 0.32, φ = 0.4, λN = 10, initial densities N0 = 100, Z1,0 = Z2,0 = 1.

We know that coexistence means that the limit as t→∞ for both pathogen strains is non-

zero. We do not show that the limit is non-zero in this text but for the purpose of our numerical

analysis, we define pathogen coexistence as when the densities of the population infected by both

strains are greater than 10−6 at the end of each season for 150 generations. A strain is considered

extinct if at the end of the season, the density of the population infected by it is less that 10−6.

As shown in Figure 2.3, coexistence is possible when a pathogen strain with high mean

transmission rate, high variability in transmission compete with a strain with low mean transmission

rate, low variability in transmission. This results is similar to the results in [22]. This is not

surprising since we have already shown that both models are essentially the same when the initial

distribution is bivariate gamma (2.6).

The coexistence parameters showcased in figure 2.3 are not unique. For a fixed pair of

coefficients of variation (C1, C2), there are several points (β1, β2) for which coexistence was possible.

Similarly, for a given pair of transmission rates (β1, β2), we can find that there were multiple points

(C1, C2) for which coexistence is possible. When the initial distribution of the susceptible population

is gamma (2.6), the simulations show in most cases that coexistence is possible when one pathogen

strain possesses a high mean transmission rate paired with a high coefficient of variation and the
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other pathogen strain has a relatively low transmission rate, low variability (similar results in [22]).

We show multiple cases where coexistence is possible below:
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Figure 2.4. Coexistence is possible when pathogen 1 has a high mean transmission rate β̄1 = 5
and a high coefficient of variation C1 = 2.06 competes against pathogen 2 with a low transmis-
sion rate β̄2 = 0.1, low coefficient of variation C2 = 0.68. Other parameter values are µ1 = 0.99,
µ2 = 0.32, φ = 0.4, λN = 10, initial densities N0 = 100, Z1,0 = Z2,0 = 1.
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Figure 2.5. Two pathogen strains can coexist in over 150 generations of the gypsy moth popula-
tion when pathogen 1 has a high mean transmission rate β̄1 = 5 and a high coefficient of varia-
tion C1 = 2.06 competes against pathogen 2 with a low transmission rate β̄2 = 0.1, low coefficient
of variation C2 = 0.68. Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10, initial
densities N0 = 100, Z1,0 = Z2,0 = 1.
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Figure 2.6. Two pathogen strains can coexist in over 150 generations of the gypsy moth popula-
tion when pathogen 1 has a high mean transmission rate β̄1 = 4 and a high coefficient of varia-
tion C1 = 2.06 competes against pathogen 2 with a low transmission rate β̄2 = 0.12, low coeffi-
cient of variation C2 = 0.68. Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10,
initial densities N0 = 100, Z1,0 = Z2,0 = 1.

In Figs. 2.4, 2.5 and 2.6, we observe that coexistence is possible for different parameters and

initial conditions. In all those figures, the coefficients of variation were C1 = 2.06, and C2 = 0.68.

This shows that for a given pair of coefficients of variation, there are multiple points (transmission

rates) for which pathogen coexistence is observed. On the plane of transmission rates, β1 and β2,

we show the region for which coexistence when the coefficients of variation are C1 = 2.06, and

C2 = 0.68 below.
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Figure 2.7. The figure shows the various points for β1 and β2 for which prolonged coexistence is
possible when the coefficients of variation are fixed (C1 = 2.06 and C2 = 0.68). µ1 = 0.65,
µ2 = 0.65, φ = 0.4, λN = 10, initial densities N0 = 100, Z1,0 = Z2,0 = 1. A pathogen is said to be
extinct when its density is less than 10−6

We observe in Figure 2.7 that, in the entire region of coexistence, coexistence occurs when

the dominant pathogen strain’s mean transmission is about 10 times bigger than the other strain’s

mean transmission rate. We conclude that when the coefficients of variation are constant, two

pathogen strains can coexist in over 150 generations of the gypsy moth population between a strain

with a high mean, high variation and a strain with low mean, low variation.

Intuitively, when the variation in transmission is constant, the decline in the mean transmis-

sion rate is uniform for the pathogen strain. The pathogen strain i with high mean, high variation

infects a higher proportion of the susceptible population at the initial stage of the epidemic, how-

ever, its mean transmission rate decreases rapidly due to its high variation. For the pathogen

strain j with low mean, low variation, it initially affects a very low proportion of the susceptible

population, however, its rate of transmission decreases very slowly due to the low variation. When

pathogen strain i’s mean transmission rate drops rapidly, pathogen strain j gets an opportunity

to fully invade the susceptible population if its mean transmission rate is still high enough. This

trade-off allows both pathogen strains to coexist.

In the next section, we look at an example where the coefficient of variation is not constant

for at least one pathogen i strain. This means that for that pathogen strain i, the rate of change

of the mean transmission rate is different at different time t.
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2.2.2. Probability distribution with a non-constant coefficient of variation

Theorem 2.1.1 allows us to use any bivariate probability distribution with a known MGF

as the initial distribution for the host population. In the previous section, we showed that the

conditions for prolonged pathogen coexistence (high mean high variation strain can coexist with

low mean low variation strain) when the coefficient of variation is constant for both strains. In this

section, we consider a probability distribution, where the coefficients of variation are not constant

for both strains.

Consider the joint probability distribution with moment generating function

M(0, β1, β2)=(1− θβ1)−k exp

λ
(

1−
√

1− 2β2α2

λ

)
α

 . (2.9)

Here, the marginal distribution of β1 is a gamma distribution with

Et[β1] =
kθ2

(−1 + q1(t)θ)2
, V art[β1] =

kθ

1− q1(t)θ
,

and hence C1(t) = 1/
√
k.

The marginal distribution of β2 is the inverse Gaussian distribution with

Et[β2] =
α2√

1− 2q2(t)α2

λ

, V art[β2] =
α3

λ(1− 2q2(t)α2

λ )
3
2

,

and hence C2(t) =
√

α

λ(1− 2q2(t)α
2

λ
)
1
2
. C2 is therefore not a constant that is,

for different time values, the coefficient of variation is different.

It must be noted that the correlation coefficient between the transmission rates in (2.9) is

zero. That means the probability of a susceptible being infected by pathogen strain 1 has no effect

on its probability of being infected by pathogen strain 2. Statistically, the transmission rates are

independent.

Numerical simulations using (2.1) and (2.9) showed that pathogen coexistence was possible

for a wider range of parameters when the coefficient of variation is not a constant. We categorize

the range of parameters necessary for pathogen coexistence in the sections below.
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2.2.2.1. High mean transmission, low variability versus low mean transmission, high

variability

When the coefficient of variation is not constant in at least one strain, numerical simula-

tions show that coexistence is possible between a pathogen strain with a high mean, low variation

(example: β1=10, C1 = 1.6) and a strain with a low mean, high variation (example: β2 = 5,

C2 = 6.7).
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Figure 2.8. Two pathogen strains can coexist in over 150 generations of the gypsy moth popula-
tion when pathogen 1 has a high mean transmission rate β̄1 = 10 and a low coefficient of varia-
tion C1 = 1.6 competes against pathogen 2 with a low transmission rate β̄2 = 5, high coefficient
of variation C2 = 6.7. Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10, initial
densities N0 = 100, Z1,0 = Z2,0 = 1.

In Figure 2.8, we observe that prolonged coexistence is possible between a pathogen strain

1 with high mean, low variation (β̄1 = 10, C1 = 1.6) and pathogen strain 2 with low mean, low

variation (β̄2 = 5, C2 = 6.7). The variation in transmission for pathogen strain 1 is not a constant,

the C1 = 1.6 value varies with time.
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Figure 2.9. Two pathogen strains can coexist in over 150 generations of the gypsy moth popula-
tion when pathogen 1 has a high mean transmission rate β̄1 = 4 and a low coefficient of variation
C1 = 1.6 competes against pathogen 2 with a low transmission rate β̄2 = 3, high coefficient of
variation C2 = 6.7. Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10, initial
densities N0 = 100, Z1,0 = Z2,0 = 1.

Figure 2.9 is another example where prolonged coexistence is possible between a pathogen

strain 1 with high mean, low variation (β̄1 = 4, C1 = 1.6) and pathogen strain 2 with low mean,

low variation (β̄2 = 3, C2 = 6.7).
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Figure 2.10. Two pathogen strains can coexist in over 150 generations of the gypsy moth popula-
tion when pathogen 1 has a high mean transmission rate β̄1 = 5 and a low coefficient of variation
C1 = 1.5 competes against pathogen 2 with a low transmission rate β̄2 = 2.5, high coefficient of
variation C2 = 7. Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10, initial
densities N0 = 100, Z1,0 = Z2,0 = 1.

26



Another example where prolonged coexistence is possible between a pathogen strain 1 with

high mean, low variation (β̄1 = 4, C1 = 1.6) and pathogen strain 2 with low mean, low variation

(β̄2 = 3, C2 = 6.7) is Figure 2.10.

This case (high mean low variation versus low mean high variation) of coexistence is gener-

ally not possible when the coefficients of variation are constant. We observe such type of coexistence

since the variation of transmission in pathogen strain 1 is not uniformly decreasing.

2.2.2.2. High mean transmission versus low mean transmission with same variability

It was found that two pathogen strains can coexist in over 150 generations of the gypsy

moth population when a pathogen with a high mean transmission rate competed with a strain with

a low mean transmission rate even though they both have the same coefficient of variation.
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Figure 2.11. Two pathogen strains can coexist in over 150 generations of the gypsy moth popu-
lation when both pathogen strains have the same variation C1 = C2 = 10 and different mean
transmission rates β̄1 = 10, β̄2 = 5. The other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4,
λN = 10, initial densities N0 = 100, Z1,0 = Z2,0 = 1.

Figure 2.11 is an example showing prolonged coexistence is possible between strains of the

same variation in transmission, but differing in mean transmission rates. An interesting observation

is, despite having the lower mean transmission rate, the density of the population infected by

pathogen strain 2 is generally higher than the density of the population infected by pathogen strain

1. We will try and give an explanation for this observation in the subsequent sections.
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Figure 2.12. Two pathogen strains can coexist in over 150 generations of the gypsy moth pop-
ulation when both pathogen strains have the same variation C1 = C2 = 7 and different mean
transmission rates β̄1 = 8, β̄2 = 2. The other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4,
λN = 10, initial densities N0 = 100, Z1,0 = Z2,0 = 1.

Figure 2.12 is another example showing prolonged coexistence is possible between strains

of the same variation in transmission, but differing in mean transmission rates. We show Figure

(2.12) to illustrate that there are multiple parameters for which this type (high mean versus low

mean with same variation) of coexistence is possible.
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2.2.2.3. Same mean transmission, low variability versus high variability

Finally, we look at an example where the transmission rates are the same but they differ in

variability.
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Figure 2.13. Two pathogen strains can coexist in over 150 generations of the gypsy moth popu-
lation when pathogen 1 has a low mean transmission rate β̄1 = 0.5 and a low coefficient of varia-
tion C1 = 1.3 competes against pathogen 2 with a low transmission rate β̄2 = 0.5, high coefficient
of variation C2 = 3.5. Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10, initial
densities N0 = 100, Z1,0 = Z2,0 = 1.

Figure 2.13 is an example where prolonged pathogen coexistence is possible between strains

with the same mean transmission rate, different variations. Generally, it is possible for two pathogen

strains with the same mean to coexist in homogeneous models if the resulting strain specific basic

reproductive numbers are the same. However, there is no variation in transmission for homogeneous

models where as there is some variation in heterogeneous models.
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Figure 2.14. Two pathogen strains can coexist in over 150 generations of the gypsy moth popula-
tion when pathogen 1 has a low mean transmission rate β̄1 = 2 and a low coefficient of variation
C1 = 1.3 competes against pathogen 2 with a low transmission rate β̄2 = 0.5, high coefficient of
variation C2 = 3.5. Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10, initial
densities N0 = 100, Z1,0 = Z2,0 = 1.

We show in Figure 2.14 that the parameters for prolonged coexistence in Figure 2.13 are

not unique. There are multiple cases where two pathogen strains with different mean transmission

rates (same variation) can coexist.

Overall, the parameters for prolonged coexistence are not unique. For a fixed pair of trans-

mission rates (β1, β2), the region of coexistence in the C1-C2 plane may contain multiple points.

Example: In Figure 2.15 below, we show the region in the C1-C2 plane where pathogen coexistence

can be observed when the transmission rates are β1 = 10 and β2 = 5.
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Figure 2.15. Figure shows some of the possible points (C1 and C2) for which prolonged coexis-
tence was possible when the mean transmission rates are β1 = 10 and β2 = 5. Observe that for
some of the points C1 ≥ C2 and for other points C1 ≤ C2. Other parameter values are µ1 = 0.99,
µ2 = 0.32, φ = 0.4, λN = 10, initial densities N0 = 100, Z1,0 = Z2,0 = 1.

Similarly, we show in Figure 2.16 below, the region of coexistence in the β1-β2 plane when

the variations in transmissions are C1 = 1.6 and C2 = 6.7.
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Mean Comparisons, Fixed Variations: C1=1.6 C2=6.7

Figure 2.16. Here we see some of the other possible combinations of the mean transmission rate
for which prolonged coexistence is possible when the coefficient of variation is fixed(C1 = 1.6 and
C2 = 6.7). Other parameter values are µ1 = 0.99, µ2 = 0.32, φ = 0.4, λN = 10, initial densities
N0 = 100, Z1,0 = Z2,0 = 1. Observe that even though for most cases β1 > β2, there are some few
cases where β1 < β2.
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From the above Figs. 2.8-2.16, it is evident that as far as the coefficient of variation(s) is

not a constant, coexistence is possible for a much wider range of parameters. The condition for

coexistence is not restricted to the high mean, high variation paired with low mean, low variation

as shown in [22] (where the variation is constant).

Intuitively, we can say that, the lack of uniformity in variation in transmissions allows either

transmission rate to be higher at different times. When both pathogen strains have the opportunity

to invade, they are able to coexist for a longer period of time.

Mathematically, we want to show the reason behind prolonged coexistence for all the cases

observed. With the changes in both the mean transmission rates, and the coefficients of variation,

the strain specific basic reproductive numbers also changes as a result. Ideally, we are interested

in showing a bifurcation diagram for model (1.9), to see how the changes in the mean transmission

rates affect the dynamics. However, since model (1.9) has no demography term, this can not be

done. We therefore introduce an auxiliary birth term to (1.9), to make it possible to provide a

bifurcation analysis. It is important to note that, at a fixed time t, the mean transmission rates

are constant, and hence, the system can be treated as a homogeneous model. We will therefore

compare our bifurcation diagram to Figure 1.1.

2.3. Heterogeneous model (1.9) with continuous demography

In the previous section, we introduced demography to heterogeneous model (1.9) using a

discrete time model. In this section, we introduce demography to the heterogeneous model (1.9)

as a continuous time process. The goal is show using bifurcation analysis, the reason behind the

prolonged pathogen coexistence observed in the gypsy moth model.

Lemma 2.3.1. Given a heterogeneous model (1.9) with the birth term s(t, β1, β2)f(S(t)):

∂s(t, β1, β2)

∂t
= s(t, β1, β2)f(S)− β1sI1 − β2sI2 − φs,

dI1

dt
= I1

∫ ∞
0

∫ ∞
0

β1s(t, β1, β2)dβ1dβ2 − γ1I1 − φI1,

dI2

dt
= I2

∫ ∞
0

∫ ∞
0

β1s(t, β1, β2)dβ1dβ2 − γ2I2 − φI2,

(2.10)

where φ is the mortality rate (by natural cause), and f is any population growth function of S(t),

pathogen coexistence is not possible.
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Proof. Using theorem (2.1.1), the system can be reduced to

dS(t)

dt
= S(f(S))− β̄1(t)S(t)I1(t)− β̄2(t)S(t)I2(t)− φS(t),

dI1(t)

dt
= β̄1(t)S(t)I1(t)− γ1I1(t)− φI1(t),

dI2(t)

dt
= β̄2(t)S(t)I2(t)− γ2I2(t)− φI2(t),

dqi(t)

dt
= −Ii(t), i = 1, 2.

(2.11)

where β̄i(t) = d
dλi
M(t, λ1, λ2), λi = 0, i = 1, 2 and

M(t, λ1, λ2) =
M(0, λ1 + q1(t), λ2 + q2(t))

M(0, q1(t), q2(t))
.

Observe that the system has only one equilibrium (S∗, I∗1 , I
∗
2 ) = (S∗, 0, 0). Therefore, there is no

endemic equilibrium pathogen, and hence coexistence is not possible.

Even though both pathogen strains go extinct, numerical analysis of model (2.11) gives an

insight on the reason behind coexistence when the demography is discrete. For the purpose of our

analysis, we will let f(S) = A(1− S
K ), therefore the birth term is f(S) = A(1− S

K )s(t, β1, β2) is a

logistic equation. We will compare model (2.11) to the homogeneous model:

dS(t)

dt
= AS(1− S

K
)− β1S(t)I1(t)− β2S(t)I2(t)− φS(t),

dI1(t)

dt
= β1S(t)I1(t)− γ1I1(t)− φI1(t),

dI2(t)

dt
= β2S(t)I2(t)− γ2I2(t)− φI2(t),

(2.12)

whose bifurcation diagram is shown in Figure 1.1.

In the example below, we will use the parameters (A = 5, K = 20) coupled with the initial

conditions S(0) = 100, I1(0) = I2(0) = 1, γ = 1, µ1 = µ2 = 0.99. The initial distribution of the

susceptible population is the joint gamma distribution (2.6) with no correlation.
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Figure 2.17. The initial strain specific basic reproductive numbers are 8 and 4 for pathogen 1 and
pathogen 2 respectively (β1 = 1, C1 = 0.1, β2 = 0.5, C2 = 0.1)

In Figure 2.17, we observe that heterogeneity prolongs pathogen coexistence. Pathogen

strain 1 has a higher initial transmission rate. As it slowly declines, it reaches a point where the

transmission rate of pathogen strain 2 becomes momentarily higher in terms of mean transmission

rate, it slowly declines and the process repeats. The continuous tradeoff in dominance allows both

pathogen strains to coexist for a long period of time. We get more understanding by looking at the

changes in the mean transmission rates below.
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Figure 2.18. The mean transmission rate of pathogen strain 1 slowly declined with time contrast
to that of pathogen strain 2 which almost reduced to zero during the entire epidemic. It explains
why figure 11 hardly showed any sign of pathogen strain 1.
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We observe that, at different times t, the pathogen with the highest mean transmission

rate is different. The changes in the means were significant enough to affect the behavior of basic

reproductive ratios at different times. The graph of the means keeps crossing the bifurcation line

(equal basic reproductive ratios) showing that at any fixed time, the pathogen strain with the

dominant R0 can be either strains.

0.2 0.4 0.6 0.8 1.0
β1
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Parametric Plot

β1 versus β2

β1 = β2

Figure 2.19. The phase portrait showing the changes in the mean, and consequently the changes
in the basic reproductive ration assuming that at a fixed time, the system is homogeneous. The
dotted red line is the bifurcation line β1 = β2 (consequently R0,1 = R0,2) and the purple line
represents the changes in the means.

The bifurcation diagram for the homogeneous model (2.12) is the same for (1.2). Recall the

bifurcation diagram Figure 1.1 for the homogeneous model (1.2) is
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Only pathogen strain 2 survives

Only pathogen strain 1 survives

R01 < R02

R01 > R02
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R01 = R02

Figure 2.20. The bifurcation diagram of system (2.12). A pathogen strain is only able to invade
susceptible population when its strain specific R0i > 1. The strain with the largest R0 forces the
other strain to extinction.

In homogeneous models, there are no changes in the transmission rates with time. Therefore,

when you start at any of the 3 regions (only pathogen 1 survives, only pathogen 2 survives, both

die out) in the bifurcation diagram, Figure 1.1, you stay there throughout the infection period.

In Figure 2.19 however, we observe that the changes in the means allows us to travel across all 3

regions. As a result, both pathogen strains are able to survive for a long period of time.

With the discrete seasons (discrete time model), the dynamics start all over again every

year (season). Within each year, if the case is similar to the example above (where coexistence is

prolonged), there will be enough pathogen strains from the previous year to successfully invade the

population the following season. This results in the overall prolonged coexistence observed in the

gypsy moth model.
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2.3.1. Some interesting observations of heterogeneous models

Even though both pathogens always go extinct in model (2.11), numerical simulations re-

vealed some interesting cases. In homogeneous models, the pathogen strain with the highest mean

transmission rate is always the dominant strain. Heterogeneous models however can be unpre-

dictable with regards to which pathogen strain is dominant. We show some few examples in this

section.

In this first example, we observe that despite both pathogens eventually dying out, the

heterogeneous model has a prolonged high incidence compared to the homogeneous model.

50 100 150
Time

2

4

6

8

10

12

14

Population Density

Heterogeneous Path. 1

Heterogeneous Path. 2

Homogeneous Path. 1

Homogeneous Path. 2

Figure 2.21. The basic reproductive rates are 8 and 4 for pathogen 1 and pathogen 2 respectively
(β1 = 1, C1 = 0.1, β2 = 0.5, C2 = 2). In both models, pathogen 1 dies out pretty quickly. It
will be interesting to find the reason behind the behavior of the heterogeneous model (pathogen
1) considering how high it relatively rises before eventually dying.

Since the coefficient of variation is not zero, the mean transmission rate changes with time

in the heterogeneous model. Equation (2.11) allows us to observe the changes in transmission rates

with time. We see below in Figure 2.22 that the transmission rate for pathogen strain 1 remained

consistently higher than the transmission rate for pathogen strain 2. The average rate at which the

transmission rate is changing is the coefficient of variation.
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Figure 2.22. Figure showing how the strain specific infectious rates changes with time. The mean
transmission rate of pathogen strain 1 slowly declined with time contrast to that of pathogen
strain 2 which almost reduced to zero during the entire epidemic. It explains why Figure 2.21
hardly showed any sign of Pathogen strain 1

The phase portrait for the dynamics shows that throughout the epidemic, pathogen strain

1 has a higher basic reproductive ratio than strain 2 (that is, at any fixed time t, if the system was

homogeneous, pathogen strain 1 would die out).
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Figure 2.23. The phase portrait showing the changes in the mean, and consequently the changes
in the basic reproductive ratio assuming that at a fixed time, the system is homogeneous. The
dotted red line is the bifurcation line β1 = β2 (consequently R0,1 = R0,2) and the purple line
represents the changes in the means.

In our next example simulation, we show with an example that the pathogen with the

highest initial R0 in the heterogeneous model can go extinct at a faster rate than the other strain.
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This is a consequence of the difference in the coefficient of variance. A high variation means the

mean transmission rate declines faster and a low variation means the transmission rate declines

slowly.
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Figure 2.24. Even though pathogen strain 1 has R01 = 8 and pathogen strain 2 has R02 = 6.4,
pathogen 1 is hardly seen in the epidemic process as it dies out pretty quickly. This due to its
high coefficient of variation C1 = 1.5 compared to C2 = 0.2, the transmission rates are β1 = 1 and
β2 = 0.8.

With its high initial transmission rate, pathogen strain 1 infects a higher proportion of

the susceptible class and its infectious rate drops rapidly due to its high coefficient of variation.

The transmission rate for pathogen strain 2 declines relatively slow whilst successfully invading the

susceptible population before eventually dying out.
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Figure 2.25. Figure showing how the marginal mean transmission rates change with time in Fig-
ure 2.24. The mean transmission rate of pathogen strain 1 rapidly declined due to its high vari-
ability. The decline was so fast that it failed to successfully invade the susceptible population.
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We observe that due to its high variation in transmission, pathogen strain 1 had a steep de-

cline in its mean transmission rate, the variation for pathogen strain 2 allows it to have a prolonged

high mean transmission rate.
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Figure 2.26. The phase portrait showing the changes in the mean, and consequently the changes
in the basic reproductive ration assuming that at a fixed time, the system is homogeneous. The
dotted red line is the bifurcation line β1 = β2 (consequently R0,1 = R0,2) and the purple line
represents the changes in the means.

We observe in Figure 2.26 that even though the initial basic reproductive number of

pathogen strain 1 is higher, the rest of the infection period has pathogen strain 2 as the domi-

nant strain. This observation is simply not possible in homogeneous models.
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3. ANALYTICAL AND NUMERICAL ANALYSIS OF

HETEROGENEOUS MODELS WITH MULTIPLE

PATHOGENS AND CONTINUOUS TIME DEMOGRAPHY

In the previous chapter, we considered a two pathogen heterogeneous model, and gave a full

analysis on why we observe pathogen coexistence in the gypsy moth problem. In general, Theorem

2.1.1 which was used in our analysis of model (1.9) only works for a special class of equations (of

the form N ′(t) = N(t)F (t, Et[a]). Therefore, we could only consider demographic terms of the

form s(t, β1, β2)f(S(t)) in model (1.9). In this section, we consider heterogeneous models which do

not have this specific form, and show that pathogen coexistence is possible.

We consider a multi-pathogen heterogeneous model with compartmentalized host popula-

tion. We will generalize the birth term as fi(S, I) for each susceptible compartmental class. Here,

S denote the density of the susceptible population and I denote the density of the infected pop-

ulation. We investigate pathogen coexistence by considering infectious classes Ij as the density of

the population infected by pathogen strain j.

Consider the model

Ṡi =fi(S, I)−
n∑
j=1

βijSiIj − φSi, i = 1, . . . ,m,

İj =

m∑
i=1

βijSiIj − (γj + φ)Ij , j = 1, . . . , n, (3.1)

Ṙ =

n∑
j=1

γjIj − φR.

Here Si is the density of the susceptible population in compartment i, infected by pathogen strain

j at the transmission rate βij , fi(S, I) is the birth term for each susceptible class i, and φ is the

mortality rate for the population. For the purpose of our analysis, we assume that fi is continuous,

bounded, monotonically increasing, and at any point in time, fi(S, I) > φ ≥ 0. The S, I terms in

the birth term is to signify that fi is a function of the densities of the susceptible population and

the infected population. βij is the rate at which individuals in susceptible class i is infected by
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pathogen strain j. Assuming there is a recovery class R, γj is the recovery rate, otherwise, γj is

the removal rate due to infection by pathogen strain j.

We start by proving some basic facts about model (3.1). In the analysis, we in part follow

[34].

3.1. Positiveness and boundedness

Proposition 3.1.1. Given the non-negative initial conditions, Si(0) ≥ 0 and Ij(0) ≥ 0, for all i, j,

each sub-population remains non-negative.

Proof. Let us assume Si(0) ≥ 0 and Ij(0) ≥ 0 for all i and j.

Consider the equation for the susceptible compartment Si(t)

Ṡi = fi(S, I)−
n∑
j=1

βijSiIj − φSi, i = 1, . . . ,m.

Let τ ≥ 0 be the time such that Si(τ) = 0. Then

Ṡi(τ) = fi(S, I)−
n∑
j=1

βijSi(τ)Ij(τ)− φSi(τ) , i = 1, . . . ,m.

= fi(S, I) > 0,

since the birth term fi(S, I) is a positive function. Therefore, Si(t) ≥ 0 at any time t.

Next, consider the equation corresponding to the population infected by pathogen strain j

İj(t) =
m∑
i=1

βijSi(t)Ij(t)− (γj + φ)Ij(t).

Let τ ≥ 0 be the time such that Ij(τ) = 0. Then

İj(τ) =

m∑
i=1

βijSi(τ)Ij(τ)− (γj + φ)Ij(τ) = 0.

Therefore when Ij(τ) = 0, Ij(t) remains 0 for any time t ≥ τ . Since the initial condition is such

that Ij(0) ≥ 0, we have Ij(t) ≥ 0 for all t.

Similarly for the recovered class, if τ is the time such that R(τ) = 0. At time t = τ ,

Ṙ(τ) =
∑m

j γjIj(τ)− φR(τ) ≥ 0. Therefore, since Ij(t) ≥ 0, R(t) ≥ 0.
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Proposition 3.1.2. Given the non-negative initial conditions: Si(0) ≥ 0, Ij(0) ≥ 0, and R(0) =

0 for all i, j, the total population size N(t) =
∑m

i=1 Si(t) +
∑n

j=1 Ij(t) + R(t) is bounded, that is,

there exists a scalar ℵ such that 0 ≤ N(t) ≤ ℵ at any time t.

Proof. Summing up all the equations in model (3.1), we get

Ṅ(t) =

m∑
i=1

fi(S, I)− φ

 m∑
i=1

Si +

n∑
j=1

Ij +R(t)

− n∑
j=1

γjIj

=
m∑
i=1

fi(S, I)− φN(t)−
n∑
j=1

γjIj .

Since each fi(S, I) is assumed bounded, let κ =
∑m

i=1 maxi fi(S, I), also we have Ij ≥ 0, for all j.

Therefore, Ṅ(t) ≤ κ−φN(t). Consider also an ODE ẋ(t) = k−φx(t), x(0) = N0. We have x(t)→ k
φ

as t → ∞ and hence bounded for all t. By comparison theorem, N(t) ≤ x(t) for all t and hence

also bounded by, say, constant ℵ. Together with Proposition 3.1.1, we have 0 ≤ N(t) ≤ ℵ.

Corollary 1. Given positive initial conditions, every compartmental class in model (3.1) is bounded.

Proof. Observe that at any time t, Si(t), Ij(t), R(t) < N(t) for all i and j.

Therefore, from Proposition (3.1.1) and Proposition (3.1.2), we have

0 ≤ Si(t), Ij(t), R(t) < N(t) ≤ ℵ.

Remark 2. From Proposition 3.1.1 and Corollary 1, we conclude that, given non-negative initial

conditions, the epidemic model (3.1) always have non-negative solutions. Furthermore, the solutions

are bounded and defined for all t ∈ (0,∞)

3.2. Basic reproductive number of model (3.1)

We compute the basic reproductive number R0 using the next generation matrix. Details

on this method can be found in [17].

Consider the infection subsystem of model (3.1)

İj =

m∑
i=1

βijSiIj − (γj + φ)Ij , j = 1, . . . , n. (3.2)

43



We linearize the infection subsystem (3.2) around the disease free equilibrium (dfe),

dfe = (S∗1 , S
∗
2 , . . . , S

∗
m, I

∗
1 = 0, I∗2 = 0, . . . , I∗n = 0).

The Jacobian matrix is

JI =



∑m
i=1 βi1S

∗
i 0 . . . 0

0
∑m

i=1 βi2S
∗
i . . . 0

...
... . . .

...

0 0 . . .
∑m

i=1 βinS
∗
i


+



−γ1 − φ 0 . . . 0

0 −γ2 − φ . . . 0

...
... . . .

...

0 0 . . . −γn − φ


= T + Σ,

where T corresponds to the transmissions and Σ corresponds to the transitions.

The next generation matrix K is K = −TΣ−1.

K =



∑m
i=1 β1nS

∗
i

γ1+φ 0 . . . 0

0
∑m
i=1 βi2S

∗
i

γ2+φ . . . 0

...
... . . .

...

0 0 . . .
∑m
i=1 βinS

∗
i

γn+φ



=



R01 0 . . . 0

0 R02 . . . 0

...
... . . .

...

0 0 . . . R0n


.

Therefore, the basic reproductive number is

R0 = max
j
R0j , (3.3)

where the strain specific basic reproductive number is

R0j =
β1jS

∗
1 + β2jS

∗
2 + · · ·+ βmjS

∗
m

γj + φ
, j = 1, . . . , n. (3.4)
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3.3. Stability of the disease free equilibrium

The disease free equilibrium is such that Ij = 0 for all j.

Consider the equations for the susceptible classes in model (3.4.1):

Ṡi = fi(S, I)−
∑n

j=1 βijSiIj − φSi, i = 1, . . . ,m.

Since Ij = 0, at the dfe,

0 = fi(S
∗, I∗)− φSi, i = 1, . . . ,m.

Let µi = fi(S
∗, I∗), then S∗i = µi

φ . It follows from equation (3.4) that the strain specific basic

reproductive number is

R0j =

∑m
i=1 βijS

∗
i

γj + φ
=

∑m
i=1

βijµi
φ

γj + φ
=

m∑
i=i

βijµi
φ(γj + φ)

.

Theorem 3.3.1. The disease free equilibrium (dfe) of model (3.1) is asymptotically stable if the

basic reproductive number is less than 1, R0 < 1. Precisely, the dfe is stable if all the strain specific

basic reproductive numbers are less than 1, R0i < 1.

Proof. We linearize the sytem (3.1) around the dfe to study its stability.

The Jacobian for the system (3.1) is

J =

A B

C D

 , (3.5)
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where

A =



−
∑n

j=1 β1jIj − φ 0 . . . 0

0 −
∑n

j=1 β2jIj − φ . . . 0

...
... . . .

...

0 0 . . . −
∑n

j=1 βmjIj − φ


,

B =



−β11S1 −β12S1 . . . −β1nS1

−β21S2 −β22S2 . . . −β2nS2

...
... . . .

...

−βm1Sm −βm2Sm . . . −βmnSm


,

C =



β11I1 β21I1 . . . βm1I1

β12I2 β22I2 . . . βm2I2

...
... . . .

...

β1nIn β2nIn . . . βmnIn


,

and

D =



∑m
i=1 βi1Si − γ1 − φ 0 . . . 0

0
∑m

i=1 βi2Si − γ2 − φ . . . 0

...
... . . .

...

0 0 . . .
∑m

i=1 βinSi − γn − φ


.

At the dfe, C = 0, therefore, the Jacobian takes the form

Jdfe =

A B

0 D

 . (3.6)

The eigenvalues therefore depends on the sub-matrices A and D.

At the dfe, matrix A is

Adfe =



−φ 0 . . . 0

0 −φ . . . 0

...
... . . .

...

0 0 . . . −φ


,
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therefore, the eigenvalues of A are all negative.

For matrix D, we have at the dfe

Ddfe =



∑m
i=1

βi1µi
φ − γ1 − φ 0 . . . 0

0
∑m

i=1
βi2µi
φ − γ2 − φ . . . 0

...
... . . .

...

0 0 . . .
∑m

i=1
βinµi
φ − γn − φ


.

The eigenvalues of Ddfe are all negative if and only if for all j = 1, . . . , n,

m∑
i=1

βijµi
φ
− γj − φ < 0⇐⇒

m∑
i=1

βijµi
φ

< γj + φ⇐⇒

m∑
i=1

βijµi
φ(γj + φ)

< 1⇐⇒

R0j < 1.

(3.7)

Therefore, the dfe is asymptotically stable if all the strain specific R0j are less than 1.

Corollary 2. If the strain specific basic reproductive number R0j is greater than 1 for at least one

j, the disease free equilibrium is unstable.

Proof. It follows directly from Theorem 3.3.1.

3.4. Stability of strictly positive endemic equilibrium

Consider the equilibrium state of model (3.1).

Let µi = f∗i = fi(S
∗, I∗) at the equilibrium, then

µi =
n∑
j=1

βijS
∗
i I
∗
j + φS∗i , i = 1, . . . ,m, (3.8)

γjI
∗
j =

m∑
i=1

βijS
∗
i I
∗
j − φI∗j , j = 1, . . . , n. (3.9)
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The strictly positive endemic equilibrium state Q∗ = (S∗1 , S
∗
2 , ..., S

∗
m, I

∗
1 , ..., I

∗
n) > 0 is such that:

µi
S∗i
− φ =

n∑
j=1

βijI
∗
j , (3.10)

γj + φ =

m∑
i=1

βijS
∗
i . (3.11)

Theorem 3.4.1. The strictly positive endemic equilibrium state Q∗ = (S∗1 , S
∗
2 , ..., S

∗
m, I

∗
1 , ..., I

∗
n) > 0

is Lyapunov stable if it exists. If it is unique, it is globally asymptotically stable.

Proof. We consider a modified version of the Goh’s logarithmic Lyapunov function [23,37].

V (S1, ..., Sm, I1, .., Im) =

m∑
i=1

S∗i

(
Si
S∗i
− 1− ln

Si
S∗i

)
+

n∑
j=1

I∗j

(
Ij
I∗j
− 1− ln

Ij
I∗j

)
.

V is well defined and continuous for all Si, Ij > 0, V ≥ 0, and V (Q∗) = 0. Its derivative along the

orbits of model (3.1) is

V̇ =

m∑
i=1

Ṡi

(
1− S∗i

Si

)
+

n∑
j=1

İj

(
1−

I∗j
Ij

)
.

Expand and group all the I and I∗ terms.

V̇ =
n∑
j=1

[Ij(β1jS
∗
1 + β2jS

∗
2 + . . .+ βmjS

∗
m − φ)− γjIj ]

+

n∑
j=1

[
I∗j (φ− β1jS1 − β2jS2 − . . .− βmjSm) + γjI

∗
j

]
+

m∑
i=1

[
µi

(
1− S∗i

Si

)
+ φS∗i − φ(Si)

]
.

At the endemic equilibrium: γj =
∑
i

βijS
∗
i − φ and γjI

∗
j =

∑
i

βijS
∗
i I
∗
j − φI∗j , therefore,

V̇ =

n∑
j=1

[
I∗j (γj + φ− β1jS1 − β2jS2 − . . .− βmjSm)

]
+ µ1

(
1− S∗1

S1

)
+ µ2

(
1− S∗2

S2

)
+ . . .+ µm

(
1− S∗m

Sm

)
+ φ(S∗1 + . . .+ S∗m)

− φ(S1 + . . .+ Sm)

=
m∑
i=1

[
(S∗i − Si)(βi1I∗1 + βi2I

∗
2 + . . .+ βinI

∗
n + φ− µi

Si
)

]
.
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From (3.10),
µi
S∗i

= φ+
∑
j

βijI
∗
j , therefore,

V̇ =

m∑
i=1

[
(S∗i − Si)(

µi
S∗i
− µi
Si

)

]

=−
m∑
i=1

µi
S∗i Si

(S∗i − Si)2

≤ 0.

Hence all the conditions for Lyapunov function are satisfied and we conclude that Q∗ is Lyapunov

stable. If Q∗ is unique, the maximum invariant subset of the set {(S, I) : V̇ (S, I) = 0} coincides

with Q∗ and hence by the Krasovskii-LaSalle invariance principle, Q∗ will be globally stable.

3.5. Existence of the strictly positive endemic equilibrium

In the previous section we proved that the strictly positive endemic equilibrium is always

asymptotically stable if it exists. The theorem did not, however, guarantee that such equilibrium

always exists. Since the dimension of the generalized model (3.1) is unknown, we cannot write

an explicit formula for the strictly positive endemic equilibrium. However, we can look and the

behavior of the equilibrium points and give some general conditions which may lead to the existence

of endemic equilibrium. In general, each pathogen strain is only able to invade the population if

and only if its strain specific basic reproductive ratio R0j is greater than one. In addition, from

Corollary 2, the dfe is unstable when all the strain specific basic reproductive number are greater

than 1, which makes us suspect that there might be other equilibrium points.

Theorem 3.5.1 (Necessary conditions for existence of coexistence equilibrium). Let the strain

specific basic reproductive numbers be R0j > 1, j = 1, . . . , n.

• if m = n, then there exist a unique an internal strictly positive equilibrium only if det(B) 6= 0,

where B = [βi,j ] is an n× n matrix of transmission coefficients.

• if m < n, and the vectors {(β11, β21, . . . , βm1, γ1), . . . , (β1n, β2n, . . . , βmn, γn)} are not linearly

dependent, then there is no coexistence equilibrium.

• if m > n, S∗i > 0, i = 1, . . . ,m, and the vectors {(β11, β12, . . . , β1n,
µ1
S∗1

), . . . ,

(βm1, βm2, . . . , βmn,
µm
S∗m

)} are not linearly dependent, then there is no coexistence equilibrium.
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Proof. The equations for the equilibrium can be written

µi =
n∑
j=1

βijS
∗
i I
∗
j + φS∗i , i = 1, . . . ,m, (3.12)

γjI
∗
j =

m∑
i=1

βijS
∗
i I
∗
j − φI∗j , j = 1, . . . , n,

where µi = f∗i = fi(S
∗, I∗).

Consider the infectious subsystem of (3.12)

β11S
∗
1I
∗
1 + β21S

∗
2I
∗
1 + . . . + βm1S

∗
mI
∗
1 = (γ1 + φ)I∗1 ,

β12S
∗
1I
∗
2 + β22S

∗
2I
∗
2 + . . . + βm2S

∗
mI
∗
2 = (γ2 + φ)I∗2 , (3.13)

...

β1nS
∗
1I
∗
n + β2nS

∗
2I
∗
n + . . . + βmnS

∗
mI
∗
n = (γn + φ)I∗n.

Observe the system (3.13) has a trivial solution I∗j = 0 for all j. Suppose I∗j 6= 0 for all j, then the

system (3.13) can be written as

β11S
∗
1 + β21S

∗
2 + . . . + βm1S

∗
m = (γ1 + φ),

β12S
∗
1 + β22S

∗
2 + . . . + βm2S

∗
m = (γ2 + φ), (3.14)

...

β1nS
∗
1I
∗
n + β2nS

∗
2 + . . . + βmnS

∗
m = (γn + φ).

Let γ̄j = γj + φ, B =



β11 β21 . . . βm1

β12 β22 . . . βm2

...
...

...

β1n β2n . . . βmn


, ~S =



S∗1

S∗2
...

S∗m


, and, ~w =



γ̄1

γ̄2

...

γ̄n


, then

B~S = ~w. (3.15)
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Similarly, we consider the subsystem for the susceptible population in (3.1). At the equilibrium,

we have

β11S
∗
1I
∗
1 + β12S

∗
1I
∗
2 + · · ·+ β1nS

∗
1I
∗
n − φS∗1 = f1(S∗, I∗),

β21S
∗
2I
∗
1 + β22S

∗
2I
∗
2 + · · ·+ β2nS

∗
2I
∗
n − φS∗1 = f2(S∗, I∗),

...

β11S
∗
1I
∗
1 + β12S

∗
1I
∗
2 + · · ·+ β1nS

∗
1I
∗
n − φS∗1 = fm(S∗, I∗).

(3.16)

The system (3.16) has a trivial solution if and only if S∗i = 0 and fi(S
∗, I∗) = 0 for all i. Let

µi = fi(S
∗, I∗) and assume S∗i 6= 0 for all i, then system (3.16) becomes

β11I
∗
1 + β12I

∗
2 + · · ·+ β1nI

∗
n = φ+

µ1

S∗1
,

β21I
∗
1 + β22I

∗
2 + · · ·+ β2nI

∗
n = φ+

µ2

S∗2
,

...

βm1I
∗
1 + βm2I

∗
2 + · · ·+ βmnI

∗
n = φ+

µm
S∗m

.

(3.17)

Therefore,

Bτ ~I = ~µ,

where τ denotes matrix transpose, ~I =



I∗1

I∗2
...

I∗n


and ~µ =



µ1+φS∗1
S∗1

µ2+φS∗2
S∗2
...

µm+φS∗m
S∗m


. We observe that the solution

of the susceptible subsystem (3.17) depends on the solution of the infectious subsystem (3.15) (at

the equilibrium).

From Remark 2, we know that given non-negative initial conditions, all solutions of system

(3.1) are non-negative.

If m = n, a unique solution for the systems B~S = ~w and Bτ ~I = ~µ will require det(B) =

det(Bτ ) 6= 0.

If m 6= n, then the systems will only have a solution if the rows/columns of the augmented

matrices

[
B

... ~w

]
and

[
Bτ

... ~µ

]
are linearly dependent.
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As evidence of pathogen coexistence resulting from model (3.1), we consider specific cases

of (3.1), and give a generalized condition for the existence of a strictly positive endemic equilibrium

in the next section. We will show both analytically and numerically that pathogen coexistence is

possible between multiple strains of the same pathogen.

3.6. Two pathogen heterogeneous model with constant birth rate

Consider the heterogeneous multi-pathogen model

Ṡ1 = Kp− β11S1I1 − β12S1I2,

Ṡ2 = K(1− p)− β21S2I1 − β22S2I2, (3.18)

İ1 = β11S1I1 + β21S2I1 − γ1I1,

İ2 = β12S1I2 + β22S2I2 − γ2I2,

where Si is the density of susceptible class i, Ii is the density of those infected by pathogen strain

i, βij is the transmission rate of pathogen strain j with respect to susceptible class i, and p is the

probability that a new born will be in susceptible class in susceptible class 1. Hence 0 ≤ p ≤ 1.

3.6.1. Existence of strictly positive endemic equilibrium

Consider the heterogeneous system (3.18), each pathogen strain can only invade if and only

if their strain specific basic reproductive ratios R0i is greater than one. In addition, if

β11 >
β12γ1

γ2
, β22 >

β21γ2

γ1
, and

β11β21γ2 − β12β21γ1

β11β22γ1 − β11β21γ2
< 1− p < β11β22γ1 − β12β22γ1

β12β22γ1 − β12β21γ2
,

then for any K ∈ R+, the system has a unique strictly positive endemic equilibrium.

3.6.1.1. Stability of the strictly positive endemic equilibrium

Let µ1 = Kp and µ2 = k(1− p), the endemic equilibrium state Q∗ = (S∗1 , S
∗
2 , I
∗
1 , I
∗
2 ) is such

that

β11S
∗
1I
∗
1 + β12S

∗
1I
∗
2 = µ1, (3.19)

β21S
∗
2I
∗
1 + β22S

∗
2I
∗
2 = µ2, (3.20)

β11S
∗
1I
∗
1 + β21S

∗
2I
∗
1 = γ1I

∗
1 , (3.21)

β12S
∗
1I
∗
2 + β22S

∗
2I
∗
2 = γ2I

∗
2 . (3.22)
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Corollary 3. The endemic equilibrium state Q∗ of system (3.18) is Lyapunov stable if it exists.

Proof. It follows from Theorem 3.4.1.

Consider a specific example of model (3.18). Let K = 5, p = 0.6, β11 = 0.7, β12 = 0.3,

β21 = 0.4, β22 = 1, and γ1 = γ2 = 1. The system becomes

Ṡ1 = 3− 0.7S1I1 − 0.3S2I2,

Ṡ2 = 2− 0.4S2I1 − S2I2,

İ1 = 0.7S1I1 + 0.4S2I1 − I1,

İ2 = 0.3S1I2 + S2I2 − I2.

We look at the equilibria of the system and analyze its stability. The endemic equilibrium is

S∗1 = 1.03, S∗2 = 0.6895, I∗1 = 3.52142, I∗2 = 1.49208. The Jacobian matrix of the system is

J =



−0.7I1 − 0.3I2 0 −0.7S1 −0.3S1

0 −0.4I1 − I2 −0.4S2 −S2

0.7I1 0.4I1 0.7S1 + 0.4S2 − 1 0

0.3I2 I2 0 0.3S1 + S2 − 1


At the equilibrium, the eigenvalues are λ1 = −2.7478, λ2 = −0.1597, λ3,4 = −1.4553±0.888i.

Therefore, the endemic equilibrium is asymptotically stable since Re(λi) < 0 for all i, which implies

that coexistence is possible.

3.7. More examples of coexistence equilibrium in model (3.1)

We construct examples of model (3.1) where there exist a stable positive coexistence. Since

model (3.1) has arbitrary number of compartmental classes, we will consider different cases with

different compartmental classes and number of pathogen strains.

3.7.1. Case 1: m=2, n=3 (2 susceptible classes, 3 pathogen strains)

We consider a specific case of model (3.1) with 2 susceptible classes and 3 pathogen strains.

We assume that individuals within each susceptible class have the same risk of infection to the

various strains. We will show two examples of this case where pathogen coexistence is possible.
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The model is

Ṡ1 = Kp− β11S1I1 − β12S1I2 − β13S1I3 − φS1,

Ṡ2 = K(1− p)− β21S2I1 − β22S2I2 − β23S2I3 − φS2,

İ1 = β11S1I1 + β21S2I1 − γ1I1 − φI1,

İ2 = β12S1I2 + β22S2I2 − γ2I2 − φI2,

İ3 = β13S1I3 + β23S2I3 − γ3I3 − φI3,

(3.23)

where Si is the density of susceptible class i, Ii is the density of those infected by pathogen strain

i, βij is the transmission rate of pathogen strain j with respect to susceptible class i, and p is the

probability that a new born will be in susceptible class in susceptible class 1. Hence 0 ≤ p ≤ 1.

Example 1. Let

β11 = 5, β12 = 0.4, β13 = 5.4,

β21 = 0.3, β22 = 4, β23 = 4.3,

K = 5, p = 0.6, γ1 = 0.1, γ2 = 0.2, γ3 = 0.3 φ = 0.

Then, the equilibrium point is

S1 = 0.0387324, S2 = 0.0211268, I1 = 1.22313, I2 = 10.1842, I3 = 12.4565.

Hence from Theorem 3.4.1, the equilibrium point is globally stable. Mathematica simulations for

this case is Figure 3.1.
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Figure 3.1. An example of pathogen coexistence in (3.1) with 2 susceptible classes and 3
pathogen strains. The parameters used are K = 5, p = 0.6, β11 = 5, β12 = 0.4, β13 = 5.4, β21 =
0.3, β22 = 4, β23 = 4.3, γ1 = 0.1, γ2 = 0.2, γ3 = 0.3 and, φ = 0. The initial conditions are
S1(0) = S2(0) = 5, I1(0) = I2(0) = I3(0) = 1.

We conclude that theoretically, 3 strains of the same pathogen can coexist in a heteroge-

neous population with 2 sub-populations with different risk levels of infection (consequently the

transmission rates).

3.7.2. Case 2: m=3, n=2 (3 susceptible classes, 2 pathogen strains)

We consider a specific case of model (3.1) where there are 3 susceptible classes and 2

pathogen strains. The model is

Ṡ1 = µ1 − β11S1I1 − β12S1I2 − φS1,

Ṡ2 = µ2 − β21S2I1 − β22S2I2 − φS2,

Ṡ3 = µ3 − β31S3I1 − β32S2I2 − φS3,

İ1 = β11S1I1 + β21S2I1 − γ1I1 + β31S3I1 − φI1,

İ2 = β12S1I2 + β22S2I2 − γ2I2 + β32S3I2 − φI2,

(3.24)

where Si is the density of susceptible class i, Ii is the density of those infected by pathogen strain

i, βij is the transmission rate of pathogen strain j with respect to susceptible class i, and µi is the

birth rate of susceptible class i.
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Example 1. Let

µ1 = µ2 = µ3 = 3.1, β11 = 1, β12 = 0.5,

β21 = 0.5, β22 = 0.5, β31 = 0.4, β32 = 0.8,

γ1 = 2.2, γ2 = 2.16, φ = 1.

The coexistence equilibrium point is

S∗1 = 1.49891, S∗21.90327, S∗3 = 1.87364, I∗1 = 0.878779, I∗2 = 0.378779.

Therefore, by Theorem 3.4.1, the coexistence equilibrium is globally stable. Numerical simulation

using Mathematica confirms the results:

20 40 60 80 100
time

1

2

3

4

population density

S1

S2

S3

Pathogen 1

Pathogen 2

Figure 3.2. An example of pathogen coexistence in (3.1) with 3 susceptible classes and 2
pathogen strains. The parameters used are µ1 = µ2 = µ3 = 3.1, β11 = 1, β12 = 0.5, β21 =
0.5, β22 = 0.5, β31 = 0.4, β32 = 0.8, γ1 = 2.2, γ2 = 2.16 and, φ = 1 The initial conditions are
S1(0) = S2(0) = S3(0) = 5, I1(0) = I2(0) = 1.

Other numerical simulations showing examples of pathogen coexistence are shown in Figure

3.3 and Figure 3.4.
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Figure 3.3. An example of pathogen coexistence in (3.1) with 3 susceptible classes and 2
pathogen strains. The parameters used are µ1 = 0.2375, µ2 = 0.384, µ3 = 0.191, β11 = 4, β12 =
0.5, β21 = 0.3, β22 = 3, β31 = 4.3, β32 = 3.5, γ1 = 3.1, γ2 = 3.35 and, φ = 0 The initial conditions
are S1(0) = S2(0) = S3(0) = 50, I1(0) = I2(0) = 1.
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Figure 3.4. An example of pathogen coexistence in (3.1) with 3 susceptible classes and 2
pathogen strains. The parameters used are µ1 = 13.75, µ2 = 5.4, µ3 = 7.8, β11 = 1, β12 =
0.5, β21 = 0.5, β22 = 0.8, β31 = 0.4, β32 = 0.8, γ1 = 6.2, γ2 = 5.5 and, φ = 1 The initial conditions
are S1(0) = S2(0) = S3(0) = 50, I1(0) = I2(0) = 1.

We conclude that theoretically, 2 strains of the same pathogen can coexist in a heterogeneous

population with 3 sub-populations, with each having a different level of susceptibility.
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Overall, multiple strains of the same pathogen can coexist in a heterogeneous population.

This is the reality that we observe [3]. Model (3.1) and Theorem 3.4.1 show that mathematically,

n multiple strains of the same pathogen can coexist in heterogeneous population with m distinct

sub-populations of different levels of risks of infection.
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4. CONCLUSION

In this text, we studied mathematical models that describe an epidemic spread in popula-

tions with parametric heterogeneity. We gave evidence that host heterogeneity promotes pathogen

coexistence in both host populations with discrete life cycles (e.g., gypsy moths), and host pop-

ulations with continuous life cycles (e.g., human beings). The form of heterogeneity described

was parametric heterogeneity, where the host population varies in susceptibility, that is, different

individuals are assumed to have different resistance to infection or different levels of risk of infection.

One of our main discussions was on the gypsy moth model (1.9) with the demographic

model (1.12). With the help of the reduction theorem, we gave analytic and numerical analysis

of system (1.9), and showed that two pathogen (baculovirus) strains can survive within multiple

generations (over 150) of the gypsy moth population. Our analysis on (1.9) made no assumptions on

neither the coefficients of variation nor the correlation coefficient. Our results can be summarized

as follows.

1. When the variations in transmission for both pathogen strains are constant, the initial dis-

tribution of susceptibility follows the gamma distribution.

2. When the variations in transmission are constant, a pathogen strain with a high mean, high

variation can coexist with a pathogen strain with a low mean, low variation. That was the

case considered initially in [22].

3. When the time dependent coefficients of variation are not constant, it is possible for a pathogen

strain with a high mean, low variation to coexist with a pathogen strain with low mean, high

variation. It is also possible for two strains with the same mean or the same variation to

coexist. Hence, coexistence is possible for a wide range of parameters when the variations in

transmission are not constant.

4. Coexistence is only possible because the infection period starts over every season with the

same initial distribution of susceptibility. Coexistence occur if both pathogen strains success-

fully invaded the previous season with a prolonged intra-season coexistence.
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5. The behavior of heterogeneous models can be counterintuitive that is the dominant strain is

not always the strain with the largest basic reproductive number. Example: a high initial

basic reproductive number and initial mean transmission rate does not always guarantee a

successful invasion.

In chapter 3, we gave analytical and numerical analysis of heterogeneous models with multiple

pathogens and continuous time demography. The model considered was system (3.1) where the

host population was divided into m sub-populations, each characterized by their level of risk of

infection, and the demographic terms are continuous with respect to time. We showed using a

Lyapunov function that, the coexistence equilibrium is Lyapunov stable if it exists. Using numerical

simulations, we presented evidence of several special cases where pathogen coexistence is possible.

Our results can be summarized as follows.

1. The basic reproductive number for model (3.1) is the maximum of all the strain specific basic

reproductive numbers.

2. When the basic reproductive number is less than 1, there exists a disease free equilibrium.

3. The dfe is asymptotically stable if all the strain specific basic reproductive numbers are less

than 1.

4. The strictly positive endemic equilibrium is Lyapunov stable if it exists. It is globally asymp-

totically stable if it is unique.

5. A necessary condition for the existence of the coexistence equilibrium is R0 > 1. (This

condition does not however guarantee the existence of coexistence equilibrium).
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