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ABSTRACT 

About 75% of human food in the 21st century consists of just 12 crops, though specific 

crops vary among nations. Modern technology has allowed development of innovative food and 

non-food uses for these commodities. For instance, corn (maize (Zea mays L.)) is produced for 

many purposes, including food, livestock feed, biofuels, fiber for clothing, etcetera. 

Scientists project the human population will reach 9.2 billion in next 20 years—an 18% 

increase from the 2020 population of 7.8 billion—resulting in increased demand for corn and 

other crops. Hence, farmers must increase total crop production to meet demand; however, local 

agricultural resource endowments such as climate, land and water availability, and soil attributes 

constrain production. Perhaps the quickest yield and efficiency improvements will result from 

farm management practices that tailor input applications to match accurate seasonal weather 

forecasts. Regional seasonal weather forecasts would enable farmers to optimize yields by 

reducing yield risk from extreme weather events, as well as from less extreme inter-annual 

weather variability. Improved productive efficiency is also critical to reducing environmental 

harms, e.g. contaminated runoff from excessive agricultural input use. 

The objective of this dissertation is to estimate the corn yield frontier and efficiency 

measures based on agricultural input management and weather. This research contributes to an 

enhanced understanding of how the corn yield frontier responds to inter-annual weather 

variations, and how it may shift with climate change. 

The first chapter summarizes three main topics—farm technology, climate change and 

weather variability, and methods for evaluating production efficiency. The second presents 

estimated corn yield frontiers and efficiency measures based on stochastic frontier and data 

envelopment analyses for nine North Dakota Agricultural Statistics Districts from 1994 to 2018. 
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The third presents corn yield efficiency measures for five states: Minnesota, North Dakota, 

Nebraska, South Dakota, and Wisconsin from 1994 to 2018. The results reveal the major causes 

of inter-annual yield variation are variability of rainfall and temperature. Development of 

accurate growing-season weather forecasts is likely to result in high value-added for farmers and 

downstream agribusinesses. Federal, state, and private research funding in seasonal weather 

forecasting would probably be well invested.  
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CHAPTER 1. INTRODUCTION 

1.1. Farm Technology 

Agriculture in North Dakota uses over 90 percent of the state’s total land area for farming 

and ranching (ND Department of Agriculture, 2011). Farming and ranching are constrained by the 

limited arable land supply, while the demand for food, feed, fuel and fiber are still increasing 

dramatically. Both agricultural activities are constrained by different pressures from society to 

promote policies, including natural resource conservation and preservation programs (Johnson, 

2000), the development of urbanization and industrialization (Honeywell, 2011), and the 

recreational parks (Leitch et al., 1990). An accounting of all constraints, on top of limited 

resources and increasing the crop yield through efficient farm production, is a top priority for 

sustainable agriculture in North Dakota and throughout the world. 

Before 1930s, the primary driver of increased crop production was expansion of the 

agricultural land base. However, land base expansion is no longer viable due to the constrained 

supply of arable land. Fortunately, the development and introduction of hybrid corn varieties in 

the 1930s has helped the production increase even further by increasing yields. According to 

Harvard Economist, Zvi Griliches, science-based technological advances such as hybrid corn seed 

continuously sustained higher growth of corn production since 1950s (Griliches, 1957). Thus, 

hybrid corn seed enabled farmers to produce more corn without adding any more arable land. On 

top of that, hybrid corn seeds reduced the yield variation substantially because of the uniform 

resistance to pests and disease. Based on the prediction by Griliches (1957), the returns from 

switching to hybrid corn varieties were significantly large enough to persuade farmers to adopt 

this new technology without any hesitation. Farmers took the risk and paid the higher seed prices, 

which were offset by the resulting yield increases. While hybrid corn seed has been (and 
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continues to be) essential to increased agricultural production in North Dakota and the nation as a 

whole, this has not been the only technological advance to increase corn yield during same period. 

The United States corn yield was also increased by widespread use of commercial 

fertilizers: nitrogen, phosphate, and potassium. According to Ruddy et al. (2006), the nitrogen and 

phosphorus fertilizer inputs increased by 14.0 percent and 10.6 percent, respectively from 1987 to 

1997, in the US alone. Increases in fertilizer inputs are mainly due to increases in farm input 

application. Based on the estimation by Gro Intelligence (2018), total fertilizer application rate in 

the United States increased from 46 lbs. per acre in 1960 to 146 lbs. per acre in 2004. Among the 

three categories, nitrogen fertilizer has the highest application rate of 82.5 lbs. per acre in 2007, 

and the nutrient accounts almost 60 percent of total fertilizer weight. Interestingly, about 40 

percent of total commercially applied fertilizers are put on corn fields in the Midwestern United 

States. 

Increased fertilizer use and application rate management over several decades enabled 

farmers to maintain or increase corn yield. Stewart et al. (2005), estimated the overall crop yield 

effect from commercial fertilizers. They found at least 30 to 50 percent of crop yield is 

attributable to commercial fertilizer nutrient inputs. Specifically, about 40 to 60 percent of corn 

yield is now attributable to fertilizer, especially nitrogen. Thus, the current level of yield is highly 

dependent on fertilizer use, and this state of affairs is likely to continue in the future (Stewart et 

al., 2005). Another managed farm input is pesticide, which not only increases crop yield but also 

plays an important role in maintaining yield improvements by reducing pest damage. 

Pesticide, now an essential input that sustains increased crop yields, has been used 

increasingly in agriculture to address evolving crop pest pressures. According to the Gro 

Intelligence (2018), the United States currently spends about $15 billion on pesticides annually, 
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and approximately 80 percent of total pesticide treatment is used for corn, soybeans, wheat and 

cotton. Corn dominates pesticide usage with a share of 39 percent, followed by soybean (22 

percent). In the state of North Dakota, it is estimated that pesticide-treated corn seed accounted 

for 93 percent of all corn planted in 2008. Additionally, herbicide application on North Dakota’s 

cropland increased from 17.5 million to 21.4 million acres, from 1984 to 2008 (Zollinger et al., 

2018). According to the estimation by Zollinger et al. (2018) total applied insecticides and 

fungicides increased from 2.5 million to 4 million acres, and 0.5 million to 5.9 million acres, 

respectively, during the same period . 

In the 1940s and 50s, North Dakota farmers were late adopters of new agricultural 

technologies such as hybrid corn seed, commercial fertilizer and other agrichemicals relative to 

the farmers in other Corn Belt states such as Iowa, Illinois, Indiana, and Minnesota (Griliches, 

1957). They have caught up with modern technologies today. In fact, the State is ranked as the 

11th leading corn producer in the nation. According to US Department of Agriculture historical 

data, corn yield in North Dakota has increased by 146 percent in the last three decades, which is 

the third highest percentage yield improvement among the Corn Belt states, just behind Missouri 

(230 percent increase) and South Dakota (189 percent increase). In 2018, the state’s average yield 

was about 153 bushels per acre, and the state’s total corn production was 448.2 million (USDA-

NASS, 2019).  

While farmers have seen the adopted technology as a major driver of the State’s increased 

corn yield and production, there is also inter-annual variation of weather each growing season that 

leads to yield and financial risk for farmers, along with inter-annual variation of the crop’s ability 

to use applied inputs. Ameliorating these risks by developing accurate predictive models for 
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seasonal weather forecasting will help farmers set appropriate yield goals and select optimal input 

application rates early in the growing season. 

1.2. Climate and Weather Variation  

A pilot study by Badh et al. (2009) used air temperature data from six weather station in 

the North Dakota Agriculture Weather Network (NDAWN) from 1879 to 2008 to assess the 

average annual rate of changes in growing season length. Their results indicated the average 

growing season lengthened by 1.2 days per decade. Which means the expected duration of the 

state’s growing season in 2008 was nearly 16 days longer than in 1879. This long-term increasing 

trend in the length of North Dakota’s annual growing season has certainly played a role in 

increasing the state’s crop yields for the past several decades by providing more time for crops to 

grow and mature, thus allowing farmers to plant late maturity corn hybrids (e.g. 120-day corn vs. 

80-day corn). Moreover, the lengthening of the growing season may be one of the factors 

contributing to rising corn and soybean acreage in North Dakota since 1995 (USDA NASS, 

2018). In short, the state’s agricultural sector has evolved due, in part, to climate change’s effects 

on the crop yields. 

According to Simmer et al. (2015), inter-annual weather variations impact crop yields 

differently across geographical locations, particularly since each geographic location has its own 

baseline climate and natural resource endowment. Farmers have difficulty forecasting yield 

potential each year because the timing and intensity of precipitation and heat varies wildly. Wang 

et al. (2016) found drought is the strongest stress factor affecting inter-annual  variability of corn 

yield in the Midwest region of the United States. However, this result does not apply equally 

throughout the Midwest. After all, different geographic locations have varied probabilities of 

diverse hazards, including drought, flood, hail, pests, and disease.  
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Liu et al. (2010), found corn yield changes in response to climate change using Vegetation 

Interface Processes (VIP) ecosystem model in two counties of the Huang-Huai-Hai Plain in 

China. Based on the crop yield simulation for two temperature change scenarios, the results 

showed that there is an impact of higher temperature on crop yield. They attribute the negative 

correlation of corn yield and temperature to the decreased length of the optimal growth period; 

however, they were uncertain whether temperature increases would affect corn yield equally 

throughout the study region. The results of the precipitation changes suggest corn yield has a 

positive correlation with the precipitation changes in the region. This suggests corn yield in this 

region is highly dependent on the precipitation level. If the precipitation is more than expected, 

then farmers will expect higher corn yield (Liu et al., 2010).  

Moreover, Lobell et al. (2011) found that climate trends, which vary from region to 

region, have reduced global corn yield by 3.8 percent. However, impacts of temperature and 

precipitation trends on corn yield in the U.S. were not statistically detectable due to a lack of 

significant climate trends from 1980 to 2011, relative to other corn producing regions. In contrast, 

their research suggests no climate change-related global decline in yields of other crops, such as 

soybeans and rice yields, despite detectable positive and negative impacts in several nations, 

because the yield losses and gains of the major soy and rice producing countries balance each 

other out at the global scale (Lobell et al., 2011).  

Given North Dakota and other states in the northern U.S. Corn Belt are distinct from not 

only the rest of the United States but also other parts of the world in that climate trends in the 

state are strongly evidenced (Badh et al., 2009), it is essential interest that farmers and policy 

makers, as well as agronomists and economists who advise them, understand how weather 

variables (e.g., temperature and precipitation) in the region may impact both the corn yield 
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frontier and corn production efficiency. Improved understanding of systematic changes in 

climatic conditions will allow farmers to more efficiently manage their seed, fertilizer, and 

pesticides to maintain or increase yields and profitability in the presence of climate change and 

variation in inter-annual weather. 

1.3. Efficiency Measures 

1.3.1. Technical Efficiency Concept 

Economists evaluate firm technical efficiency and productivity through time series and/or 

cross-sectional analysis (Fried et al., 2008). Efficiency is measured by the relationship between 

inputs and outputs. Efficiency improvements generally occur in three ways (Shaik et al., 2012): 1) 

total output increases without increasing total inputs, 2) total inputs decrease without decreasing 

total output, and/or 3) total output increases and total inputs decrease simultaneously. 

According to Fried et al. (2008), the single firm production function is expressed as set of 

inputs: x = (𝑥1, … , 𝑥𝑁) ∈ 𝑅+
𝑁 are used to produce an output(s): y = (𝑦1, … , 𝑦𝑁) ∈ 𝑅+

𝑁 . Thus, the 

production technology can be represented by the production set: 

 T = {(y, x): x can produce y} (1) 

 

where T presents the production technology; y presents the firm’s total output; x presents the 

firm’s total input, and total inputs (x) is used to produce total output of (y). The conceptual 

framework of economic efficiency was initially developed by Koopmans (1957) and Shephard 

(1953) and has been well documented by Fried et al. (2008), upon which much of the discussion 

of technical efficiency in the present document is based.  

Technical efficiency information can be conceptualized in three ways: 1) output-oriented 

technical efficiency, which is derived by maximizing radial expansion in all outputs that is 

feasible with given technology and inputs, 2) input-oriented technical efficiency, which is derived 
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by maximizing radial reduction in all inputs that is feasible with given technology and fixed 

outputs, and 3) combined output- and input-oriented technical efficiency, which is derived by 

improving technical efficiency from both output- and input-oriented procedures applied at the 

same time.  

To illustrate the concept of technical efficiency, Figure 1 presents a graph showing how 

firm A can improve technical efficiency and reach the efficiency frontier curve, T, or move from 

an interior, inefficient production level to the efficiency frontier by either increasing output while 

keeping inputs constant or by maintaining outputs while reducing input use. The horizontal 

distance implies firm A can increase its technical efficiency by reducing the given level of inputs, 

x. Thus, it represents input-oriented technical efficiency, which is mathematically expressed: 

 𝑇𝐸𝐼 = (𝑦𝐴, 𝑥𝐴) = 𝜃𝑥𝐴/𝑥𝐴 = 1 (2) 

 

where 𝑇𝐸𝐼 is technical efficiency score from the input-oriented efficiency procedure; 𝑦𝐴 is total 

output of firm A; 𝑥𝐴 is total input of firm A; 𝜃 is total radial reduction (e.g. total input 

inefficiency) of firm A. On the other hand, the vertical distance implies the producer can also 

increase its technical efficiency without increasing input use. Thus, it represents output-oriented 

technical efficiency, which is mathematically expressed: 

 𝑇𝐸𝑂 = (𝑦𝐴, 𝑥𝐴) = 𝜙𝑥𝐴/𝑥𝐴 = 1 (3) 

 

where 𝑇𝐸𝑂 is technical efficiency score from the output-oriented efficiency procedure; 𝑦𝐴 is total 

output of firm A; 𝑥𝐴 is total input of firm A; 𝜙 is total radial expansion (e.g., total output 

inefficiency) of firm A. 
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Figure 1. Technical efficiency frontier curve.  

Fried et al. (2008). 

Figure 2 presents the stochastic production frontier model (Coelli et al., 2005). The graph 

demonstrates two firms. Firm A uses the input level 𝑥𝐴 to produce the output 𝑞𝐴, while firm B 

uses the input level 𝑥𝐵 to produce the output 𝑞𝐵; these values are represented by the small (x). If 

both firms were efficient, then the outputs would be on the production frontier curve. The 

functional forms for each firm are presented below: 

 𝑞𝐴
∗ = 𝑒𝑥𝑝(𝛽0 + 𝛽1 ln 𝑥𝐴 + 𝑣𝐴), and (4) 

 

 

where 𝑞𝐴
∗  and 𝑞𝐵

∗  are the optimal levels of total output for firms A and B, respectively; 𝛽0 is an 

intercept of the model; 𝛽1 is the parameter estimated to quantify the relation between inputs and 

the optimal output at various levels of input use; 𝑥𝐴 and 𝑥𝐵 are total inputs used by firms A and B, 

respectively; and 𝑣𝐴 and 𝑣𝐵 represent the statistical error terms. 𝑞𝐵
∗  𝛽0 𝛽1𝑥𝐵 𝑣𝐵. 

Firm A lies above the deterministic production frontier because the noise effect is positive, 

whereas firm B lies below the frontier because the noise effect is negative. The observed output 

 𝑞𝐵
∗ ≡ 𝑒𝑥𝑝(𝛽0 + 𝛽1 ln 𝑥𝐵 + 𝑣𝐵) (5) 
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for firm A lies below the frontier, because the sum of the noise effect, and the inefficiency effect 

is negative. The only case where observed outputs lie above the deterministic production frontier 

when the noise effect is positive and larger than the inefficiency effect, which is represented: 

 𝑞𝑖
∗ > exp(𝑋𝑖

′𝛽) 𝑖𝑓𝑓𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 > 0 (6) 

 

where 𝑞𝑖
∗is the optimal level of total output of firm i; 𝑋𝑖

′is the vector of firms’ inputs; 𝛽 is the 

vector of unknown parameters to be estimated; 𝜀𝑖 is error terms of firm i; 𝑣𝑖 is the statistical error 

terms of firm i; and 𝑢𝑖 is error terms represents ith firm’s technical inefficiency. 

 

Figure 2. Stochastic production frontier technical efficiency.  

Coelli et al.(2005). 

1.3.2. Efficiency Approaches 

Two popular approaches: Stochastic Frontier Analysis (SFA) and Data Envelopment 

Analysis (DEA) are commonly used in an analysis of technical efficiency and productivity (Fried 

et al., 2008). SFA is a statistical approach that simultaneously investigates the issues of input use 

efficiency and the effects of unusual events like extreme weather and climate variables on yields 

and maximum yield potential. The stochastic production frontier model was initially proposed by 

Aigner et al. (1977), and Meeusen and Van Den Broeck (1977). The stochastic frontier production 
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model collects the error structure via a two-sided, symmetric error component and a one-sided 

error component. The one-sided component captures inefficiency, while the two-sided component 

accounts for statistical noise.  

On the other hand, DEA is a non-parametric approach for modeling technical and 

allocative efficiency in the production, cost, revenue, and profit data (Fried et al., 2008). DEA is 

fundamentally based on a comparison among observed Decision Making Units (DMUs), and it 

does not require assumptions about the functional form, the distribution of the one-sided error 

term (inefficiency), or the technology employed by producers, which can be problematic (Seiford, 

1996). The paper by Seiford (1996) briefly summarized the development of DEA based on the 

broad-brush description of incremental growth, enhancement, and improvement of the 

methodology between 1980 and 1995. More importantly, the paper discussed potential issues 

regards to the DEA modelling, such as the validation of the results obtained by DEA, and 

measures of DEA’s goodness of fit in the variety of complex applications. The paper suggested 

some ways to validate the DEA results as well as the goodness of fit. For instance, the validation 

can be done by comparing published articles that used DEA or testing the sensitivity of the results 

with respect to the data. The paper pointed out that the biggest disadvantage of DEA is DEA 

omits or ignores statistical error (i.e. measurement error) in the underlying data. Thus, stochastic 

DEA will be the biggest challenge for DEA literature in the future (Seiford, 1996). 

Banker et al. (1989) proposed a linear “rule of thumb”, which indicates that the sample 

size (n) should satisfy this formula: 𝑛 ≥ max[ 𝑝 ∗ 𝑞, 3(𝑝 + 𝑞)], where, p is the total number of 

inputs and q is the total of outputs. However, Dyson et al. (2001) argued that the “rule of thumb” 

should focus on the number of DMUs that should be at least twice the total number of inputs and 

output variables. Cooper et al. (2007) defined that an appropriate sample size should be up to 160 
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DMUs in order to have bias-free performance estimates, or a sample size adjusted due to the 

number inputs and outputs variables. Their findings were conforming the result found by 

Alirezaee et al. (1998), where DMUs should be at least few hundred to expect reasonably accurate 

estimation of efficiency scores from DEA. Nevertheless, the “rule of thumb” suggested that DEA 

estimation with a large sample size (i.e. n >160) would most likely provide an unbiased 

estimation of efficiency.  

However, according to Pedraja-Chaparro et al. (1999), even though the “rule of thumb” 

accounts some of the key elements (e.g., sample size and number of factors), it does not capture 

other key elements such as distribution of efficiency, and covariance structure of factors (i.e. 

inputs). Pedraja-Chaparro et al. (1999) explored that four basic objectives in using DEA model, 

and each objective is reflected by following four performance measures: 1) the proportion of 

DMUs deemed inefficiency using DEA, 2) Spearman rank correlation coefficient between DEA 

and true efficiency, 3) the proportion of DMUs whose DEA efficiency is within 20% of their true 

efficiency, and 4) the percentage by which DEA efficiency exceeds true efficiency. All four 

performance measures were compared with the linear “rule of thumb” based on their 

isoperformance paths. The comparison suggested that the sample size should not be the main 

reason for choosing DEA analysis. Because the accuracy of DEA efficiency compare to true 

efficiency does not significantly changes in response to changes in the sample size. Their final 

conclusion was there is no simple way to determine what’s the best rules of thumb to offer the 

DEA users, whose are seeking guidance on the reliability of the results obtained. (Pedraja-

Chaparro et al., 1999).  

Various empirical studies have focused on the comparison of SFA and DEA using 

different sectors' data (Murwirapachena et al., 2019; Silva et al., 2017). Moreover, choosing one 
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method over another is still controversial (Coelli, 1995; Bravo-Ureta and Pinheiro, 1993). Sharma 

et al. (1997) investigated the results from SFA and DEA and found technical efficiency scores 

from both methods are slightly different; specifically, the mean technical efficiency score of 0.64 

from the Constant Returns to Scale (CRS) DEA model is significantly lower than mean technical 

efficiency of 0.75 from SFA model. The research data was collected from 60 swine farms in 

Hawaii in 1994. The research concluded that DEA efficiency measures have a significantly higher 

variability than the SFA efficiency scores. Moreover, based on Spearman's rank correlation 

coefficient, technical efficiency scores from both methods are correlated positively, and it's 

significant. The strongest correlation was achieved between SFA and CRS DEA (0.88), even 

though the means of technical efficiency were significantly different from each other. 

Another comparison study was done by Madau (2015), who collected data from a sample 

of 107 Italian citrus farms. The study used gross revenue as the response variable in the model, 

which is different output data then crop yield or Total Factor Productivity. The study found the 

mean technical efficiency from SFA and Variable Returns to Scale (VRS) DEA are not 

significantly different from each other. However, there is significant difference between SFA and 

CRS DEA, which differed from the results found by Sharma et al. (1997).  

Moreover, Kalaitzandonakes and Dunn (1995) measured technical efficiency scores from 

SFA and DEA on Guatemalan corn production using a sample of 82 family farms. The study 

found the mean technical efficiency of 0.93 from DEA-CRS is significantly greater than mean 

technical efficiency of 0.74 from SFA. While SFA-derived technical efficiency scores for corn 

production in Guatemala were higher than DEA-based scores, DEA-derived scores were higher 

than SFA-based scores in the case of swine production in Hawaii (Sharma et al., 1997; 

Kalaitzandonakes and Dunn, 1995). The present document presents similar analysis of results 
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obtained from SFA, DEA-VRS and DEA-CRS for corn production in the northern United States 

Corn Belt.  

A meta-analysis of scholarly technical efficiency literature by Odeck and Bråthen (2012) 

found the following: 1) the random-effect model seems to be a better estimator than the fixed-

effect model based on the explanatory power and capability of accounting specific effects of each 

individual study, 2) modern studies tended to reveal lower mean technical efficiency scores than 

older studies, 3) studies with DEA models tended to have higher mean technical efficiency scores 

than those with SFA models, and 4) studies with panel data tended to have lower technical scores 

than those with cross-sectional data, which conflicts with findings from the meta-analysis by 

Bravo-Ureta and Pinheiro (1993). Lastly, studies using European seaport data provided lower 

mean technical efficiency scores than the rest of the studies. Thus, to capture individual-specific 

effects, the study favored the use of the random-effects regression model in the meta-analysis. 

Efficiency studies were developed to estimate farm technical efficiency (Bravo-Ureta and 

Pinheiro, 1993). Bravo-Ureta and Pinheiro (1993),  analyzed a total of 30 different efficiency 

studies across 14 different countries. Their meta-analysis highlighted seven essential components 

for estimating the technical efficiency and efficiency frontiers from farm level data.  

The first component is random variables in the frontier model – estimation performance 

on farm efficiency was certainly dependent on different sets of variables – a variation of variables 

will be different across the regions and time variant as well as socio-economic data.  

The second component is the selection of the modelling method: parametric modeling, 

non-parametric modeling, or both in the same study. The main distinction is that parametric 

requires underlying assumptions about the distribution of the population, while the non-

parametric modelling techniques require no such assumptions.  
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The third component is the selection of functional form in the case of parametric 

modelling (e.g., linear, or nonlinear). Researchers still need to be cautious about the selection of 

functional form, although many studies concluded differences in functional form have only small 

effects on the efficiency analysis.  

The fourth component is the underlying assumptions about the distribution of the one-

sided error terms (i.e. inefficiency effect). Many proposed distributions for this error component, 

including half-normal, truncated-normal, exponential, and gamma-normal distributions, are an 

important for efficiency analysis. Thus, one needs thorough understanding of the distribution 

assumptions.  

The fifth component is selection between one-step or two-step procedures. The main 

difference is the one-step procedure does not omit socioeconomic variables, incorporating such 

variables directly into the production frontier model, whereas the two-step procedure produces 

conventional (in)efficiency estimates in the first step, and then the effects of variables on 

efficiency are estimated in the second step of the procedure (see Greene (2004)).  

The sixth component is cross-sectional versus panel data. Because a single production 

period might not be representative of most production periods due to period-specific exogenous 

shocks, the efficiency estimates might not be accurate and unbiased if the period-specific 

distortions are significant. Thus, they conclude, it is better to estimate the efficiency effects from 

multiple production periods without imposing an arbitrary assumption on the distribution of the 

efficiency term.  

The last component is the selection of a single equation model or systems equation model. 

Both provided significantly different results. For instance, the systems equation model has better 

asymptotic efficiency than the single equation model. However, a single equation model may be a 
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proper method when analyzing farm level productivity and technical efficiency (Bravo-Ureta and 

Pinheiro, 1993).  

In consideration of these components, this dissertation investigates the corn yield frontier 

and efficiency measures for selected regions in the northern U.S. Corn Belt. The SFA (a 

parametric model) and DEA (a nonparametric technique) efficiency approaches are both applied 

to the same dataset. A parametric approach, the SFA estimation used as the primary econometric 

model under specification of stochastic translog yield frontier model. In addition, output-oriented 

DEA-VRS and DEA-CRS are applied as nonparametric estimations are used to compare their 

performances against the SFA model in estimation of the technical efficiency scores. 

To data, little or no research has yet evaluated the changes in the corn yield frontier from 

both weather variables and farm input expenditures in the single model. Thus, the research 

findings from the following two studies advance the existing scholarly literature on stochastic 

frontier analysis by analyzing the effects of basic weather (e.g., precipitation, and temperatures) in 

which their effects will be separated from the other inefficiency effects on the frontier analysis.  

Hopefully, seasonal weather forecasts will be developed to help farmers optimize input 

expenditures for productive efficiency as well as make better selection of seed varieties for 

interannual weather variation and also climate change. Furthermore, a better seasonal weather 

forecast could potentially reduce crop yield uncertainty and, by extension, inefficiency in crop 

production thus allowing farmers to more effectively target their input allocations to efficiently 

reach the yield frontier.   
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CHAPTER 2. NORTH DAKOTA CORN EFFICIENCY FRONTIER: STOCHASTIC 

FRONTIER ANALYSIS AND DATA ENVELOPMENT ANALYSIS 

2.1. Abstract 

Long-term increases in crop yields will be essential to satisfy surging global food demand 

over coming decades, and climate change is likely to play a major role in determining producers’ 

ability to meet that demand. Changing temperature and precipitation patterns all over the world 

are likely to necessitate myriad changes in farm management. Some evidence from prior research 

indicates North Dakota’s climate has changed over the last several decades; however, how state’s 

corn yields and production efficiency has been affected by changes in the climate and weather has 

not previously been addressed. This paper presents corn yield frontiers, maximum yield 

potentials, and efficiency measures, based on agricultural input use and weather variables, for the 

nine North Dakota Agricultural Statistics Districts from 1994 to 2018. The findings of this study 

reveal a median technical efficiency score of 0.85, indicating that corn yield at the USDA 

Agricultural Statistics District level could increase substantially in North Dakota, potentially by 

reallocating production inputs to better match interannual weather variability and/or systematic 

climate change that shifts yield potential. Lastly, the effects of temperature and rainfall on the 

state’s corn yield frontier were far greater than those of farm input variables, and average growing 

season temperature is found to be the factor with the largest effect on corn yield and the corn yield 

frontier. The implication of this finding is important: future warming is likely to increase corn 

yield in the northern region of the United States Corn Belt. 

2.2. Introduction 

North Dakota’s annual growing season lengthened by an average of 1.2 days per decade 

between 1879 and 2008, as demonstrated by Badh et al. (2009) using air temperature data from 
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six weather stations in the North Dakota Agricultural Weather Network, meaning the expected 

duration of the state’s growing season in 2008 was nearly 16 days longer than in 1879. According 

to National Agricultural Statistics Service data, average reported corn yields in the state have 

increased by 595 percent, and corn is one of the dominant crops due to the acreage planted every 

year (USDA NASS, 2018). 

A large proportion of corn yield and efficiency improvement could be attributed to 

technological advances in agriculture. According to Ruddy et al. (2006), annual nitrogen fertilizer 

applications in the U.S. have increased 1,000 percent since 1950. Stewart et al. (2005) found that 

40 to 60 percent of corn yield is now attributable to commercially produced fertilizers, especially 

nitrogen. Another significant technological innovation in corn production was the introduction of 

high-yielding hybrid corn seed varieties in the early 1930s, which were adopted at varying rates 

as adapted seed lines were released for different production environments (Griliches, 1957). Other 

technological trends, such as mechanization and the development of herbicides and pesticides, 

have also improved yields of major crops in the United States. 

However, while technological change has been a major driver of North Dakota’s increased 

agricultural productivity, the increase in the length of North Dakota’s annual growing season has 

undoubtedly played a role in boosting the state’s crop yields for the past several decades by 

giving many crops more time to grow and mature. The lengthening of the growing season may be 

one of the drivers of rapidly increasing corn and soybean acreage in North Dakota since 1995. In 

short, the state’s agricultural sector has evolved due, in part, to climate change’s effects on 

commodity crop yields. 

Five consecutive years of bullish commodity crop markets, from 2007 to 2012, caused 

farm sales in the United States to increase by $97 billion, or 33 percent (USDA NASS, 2012). 
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During the same timeframe, farm sales in North Dakota increased by $4.9 billion, or roughly 44% 

(USDA NASS, 2018). The Bakken crude oil boom in western North Dakota, brought not only 

rapid economic growth but also substantially increased the state budget (Weber et al., 2014). 

However, a recent price rout for both crude oil and agricultural commodities has caused economic 

growth to stall, decreasing the state’s GDP and causing a one-billion-dollar shortfall in the state 

budget (Maness, 2017; Nowatzki, 2016). The recent commodity price collapse, along with high 

price and yield volatility for North Dakota’s corn, places farmers amid significant financial 

instability (Good and Irwin, 2008). 

Given low, volatile commodity prices and changing and unpredictable climatic conditions, 

farmers will benefit from an improved understanding of the processes that have been and will 

continue to be at play. Understanding historical weather fluctuations’ effects on agricultural 

productivity will help corn producers be technically and financially efficient in the face of climate 

trends and volatile markets. Intense investigation of the combined effects of crop production 

inputs, including both those that are managed by producers (e.g., seed, and fertilizer) and those 

that are uncontrollable (e.g. rainfall and temperature), on the technical efficiency of crop yield is 

critically important. Besides, almost no research has addressed the effects of climatic change and 

farm input expenditures on the yield frontier and technical efficiency in corn production. This 

research is aimed to answer the following four questions:  

1. How do interannual weather variations and agricultural input use affect corn yield 

potential (i.e. the yield frontier) throughout North Dakota’s nine USDA Agricultural 

Statistics Districts? 

2. How does corn production efficiency vary across the state’s USDA Agricultural Statistics 

Districts and over time? 
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3. What will be the likely effects of systematic climate change on the corn yield frontier and 

the optimal levels of controlled agricultural inputs? 

4. Do stochastic frontier analysis and data envelopment analysis provide similar corn 

production efficiency estimates? 

The following section of this paper presents the methodology. Subsequent sections 

describe the statistical models used for the analysis, indicate the data sources and structure, 

present and explore numerical and graphical results, and discuss the inferences and conclusions of 

the analysis. 

2.3. Literature Review 

In 2019, North Dakota corn grain valued approximately $1.62 billion at the average price 

of $3.55 per bushel and provided the highest production value to the State’s economy (USDA 

NASS, 2020). Detailed study of corn yield and production efficiency in the State could provide a 

strong insight into what we may expect nationally in corn yield and efficiency variations. Corn 

yield and efficiency analysis should be of particular interest to farmers, Cooperative Extension 

Educators, and state government officials for several reasons. According to Taylor and Koo 

(2013), corn planted acres have increased approximately 148% in the past couple of decades. 

Based on the USDA historical data, corn yield has increased about 146% in the last three decades, 

which is the third largest yield increase in the United States Midwestern region. Lastly, the total 

economic contribution from the State’s corn production has increased from $626 million in 2009 

(Taylor and Koo, 2013) to $1.616 billion in 2019 (USDA NASS, 2020).   

Inter-annual and spatial crop yield variation is attributable to many factors. Farm 

production inputs such as seed, fertilizer, chemicals, labor, and machinery are directly managed 

by farmers to optimize crop yield, subject to constraints imposed by, e.g., climate and soil 
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properties. Nitrogen and phosphorus fertilizers are used as agricultural nutrients in many 

countries, and use of these two nutrients in agriculture increased sevenfold (nitrogen) and 3.5-fold 

(phosphorus) between 1960 and1995 (Tilman et al., 2002). According to the forecast by Tilman et 

al. (2002), global agricultural use of both nitrogen and phosphorus are likely to increase threefold 

again by 2050 barring substantial improvement in fertilize efficiency. Though nitrogen fertilizer is 

highly effective in increasing yield whenever nitrogen is the limiting factor, unusual weather 

events such as heatwaves, cold snaps, excessive rainfall, and drought can reduce plants’ ability to 

use nutrients and, thereby, cause customary nitrogen application rates to be inefficient Powell and 

Reinhard (2016). For efficiency’s sake, farmers would prefer to use more nitrogen given 

favorable growing conditions, and less when the weather will stunt plant growth. A longer 

growing season in North Dakota, for example, would allow crops to use more nitrogen and, by 

doing so, increase the responsiveness of corn to nitrogen. Failing to calibrate nitrogen application 

rates to the changing climate conditions—generally becoming increasingly favorable to corn and 

soybean production in North Dakota—could mean lost opportunities for profit. 

However, profit is not the only motive to improve efficiency of input use in agriculture. 

According to Tilman et al. (2002), efficiency of farm input use must improve substantially to 

reduce the harms of agricultural pollution. Their research indicates inefficient use of four farm 

inputs—nitrogen, phosphorus, pesticides, and water—is harmful to both humans and the 

environment and suggests these should be targeted for increased input-use efficiency to make 

agriculture more sustainable. Furthermore, Raun and Johnson (1999) found that increasing 

nitrogen use efficiency—i.e. increasing the share of total applied nitrogen incorporated into plant 

tissues—by 20 percent globally would save the world’s farmers $4.7 billion per annum by 

reducing overall nitrogen applications. This may seem trivial on the global scale; however, 
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improving nitrogen use efficiency will also prevent an imbalance in nutrient cycles and ameliorate 

harms to ecosystems and human health.  

Agrochemicals besides fertilizers—i.e. pesticides, herbicides, fungicides—play an 

important role in preventing yield losses by averting approximately 37 percent of potential yield 

loss that would otherwise be caused by insects and plant diseases annually in the U.S. (Pimentel, 

1995). However, pesticide and nutrient contamination are detected in surface waters more 

frequently than in groundwater, and most such pollution is attributable to contaminated surface 

runoff from agricultural fields, which harms aquatic ecosystems (Rosen and Lapham, 2008).  

Contamination from fertilizers and other agrochemicals damages not only ecosystems but 

also human health. Indeed, the cost of treating human health problems associated with 

agrochemical exposure and contamination in the U.S. is approximately $786.5 million per year 

(Pimentel, 1995). Given current knowledge of the benefits and detriments of agrochemicals and 

fertilizers, it seems essential that farmers more efficiently manage the timing, placement, and 

quantities of such inputs to sustain or increase crop yields while reducing the harmful impacts on 

ecosystems, natural resources, and human health.  

Inter-annual weather variations impact crop yields differently across geographical 

locations, particularly since each geographic location has its own baseline climate and natural 

resource endowment (Simmer et al., 2015). Farmers have difficulty forecasting yield potential 

each year largely because the timing and intensity of precipitation and heat varies substantially by 

year. According to Wang et al. (2016), drought is the strongest stress factor affecting inter-annual 

variability of corn yield in the Midwest region of the U.S. However, this result does not apply 

equally throughout the Midwest. After all, different geographic locations have varied probabilities 

of diverse hazards—drought, flood, hail, pests, disease, etc. Moreover, Lobell et al. (2011) found 
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that climate trends, which vary from region to region, have reduced global corn and wheat yields 

by 3.8 percent and 5.5 percent, respectively. The impacts of temperature and precipitation trends 

on corn and wheat yields in the U.S. were not statistically detectable due to a lack of significant 

climate trends from 1980 to 2011, relative to other corn and wheat producers. In contrast, their 

research suggests no climate change-related global decline in soybean and rice yields, despite 

detectable positive and negative impacts in several nations, because the yield losses and gains of 

the major soy and rice producing countries balance each other out at the global scale. Given North 

Dakota is distinct from the U.S. as a whole, in that climate trends in the state are strongly 

evidenced (Badh et al., 2009), it is of essential interest to farmers to understand how future 

temperature and precipitation trends in the state may impact maximum corn yield potential and 

production efficiency measures for North Dakota. Improved understanding of systematic changes 

in climatic conditions will allow farmers to more efficiently manage their fertilizer and 

agrochemical inputs to maintain or increase yields and profitability as the climate changes. 

2.4. Methodology 

2.4.1. Theoretical Model  

The main concept is that managed agricultural inputs, along with uncontrollable factors 

such as weather, determine a crop’s maximum yield potential (the yield frontier) in a particular 

location. Each producer is then able to realize a yield on the frontier only if managed inputs are 

matched to the crop’s agronomic needs given weather patterns during the growing season, which 

vary by year. Any unexpected weather pattern, such as rainfall being above or below average 

during the growing season, may lead to a gap between maximum potential yield and the yield 

realized in the field, which can be attributed to inefficiency. Therefore, we have to specify the 

model carefully in terms of data restrictions and the choice of random variables in the model. 
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The stochastic production frontier initially proposed by Aigner et al. (1977) to address 

these unknown factors by composing two different error terms. Thus, a generic form of the 

stochastic production frontier model is represented as:  

 ln𝑦𝑖 = 𝑓(𝑋𝑖; 𝛽) + 𝜀𝑖  (7) 

 

 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 (8) 

 

where ln𝑦𝑖 is the natural log of output of the 𝑖th firm; 𝑋𝑖 is the vector of inputs used by the 𝑖𝑡ℎ 

firm; 𝛽 is the vector of unknown parameters to be estimated; 𝜀𝑖 is an overall random error, which 

includes both 𝑣𝑖 and 𝑢𝑖; 𝑣𝑖 is a two-sided error term that represents the level of uncertainty about 

the yield frontier, and 𝑢𝑖 is a non-negative one-sided random error term that captures the 

deviations from the frontier, which represents inefficiency effects of 𝑖𝑡ℎ production unit. The 

following distribution assumptions are made on these two error components in the stochastic 

production frontier model according to Kumbhakar and Knox Lovell (2003): 1) 

𝑣𝑖 ~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2), and 2) 𝑢𝑖~ 𝑖𝑖𝑑 𝑁+(0, 𝜎𝑢

2), where 𝑣𝑖 and 𝑢𝑖 are assumed to be uncorrelated. 

Thus, the stochastic yield frontier model for panel data is defined as:  

 𝑙𝑛𝑦𝑖𝑡 = 𝑓(𝑋𝑖𝑡; 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 (9) 

 

where 𝑙𝑛𝑦𝑖𝑡 is the natural log of corn yield of the 𝑖𝑡ℎ Agricultural Statistics District (ASD) in 𝑡𝑡ℎ 

year from 1994 to 2018; 𝑋𝑖𝑡 is farm inputs of the 𝑖𝑡ℎ ASD in 𝑡𝑡ℎ year; 𝛽 is the vector of unknown 

parameters to be estimated; 𝑣𝑖𝑡  is a two-sided error term representing uncertainty about the 

estimated yield frontier for 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year, which is assumed to be independently and 

identically distributed 𝑁(0, 𝜎𝑣
2); and 𝑢𝑖𝑡 is the non-negative one-sided error term that represents 

the yield gap, or yield inefficiency, for the 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year, and it is assumed to be 
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independently and identically distributed 𝑁+(0, 𝜎𝑢
2). Additionally, 𝑣𝑖𝑡  𝑎𝑛𝑑 𝑢𝑖𝑡 are assumed to be 

uncorrelated over time and across ASDs. 

Based on the concept of the stochastic yield frontier model with panel data, we can 

compute the Technical Efficiency (TE) scores for 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year as follows: 

 𝑇𝐸𝑖𝑡 =
𝑞𝑖𝑡

𝑒𝑥𝑝(𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡)

=
𝑒𝑥𝑝(𝑋𝑖𝑡

′ 𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡)

𝑒𝑥𝑝(𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡)

= exp(−𝑢𝑖𝑡) (10) 

 

If 𝑇𝐸𝑖𝑡 = 1, then ASD i efficiently produced its corn output in year t—i.e. there was no 

statistically significant gap between the estimated frontier yield potential and the yield realized. 

On the other hand, if 𝑇𝐸𝑖𝑡 < 1 the ASD’s yield fell short of its potential that year, potentially 

indicating that a superior allocation of controlled agricultural inputs such as fertilizer and 

chemicals might have ameliorated the yield gap.  

2.4.2. Empirical Model for Stochastic Frontier Model 

The empirical model of stochastic translog yield frontier is presented: 

 

𝑙𝑛𝑦𝑖𝑡 = 𝛽0 + ∑ 𝛽1,𝑗

7

𝑗=1

𝑙𝑛𝑥𝑖𝑗𝑡 +
1

2
∑ ∑ 𝛽2,𝑗

7

𝑖=1

7

𝑖=1

𝑙𝑛𝑥𝑖𝑗𝑡𝑙𝑛𝑥𝑖𝑗𝑡

+  ∑ ∑ 𝛽3,𝑗,𝑘

6

𝑘=1

6

𝑗=1

𝑙𝑛𝑥𝑖𝑗𝑡𝑙𝑛𝑥𝑖𝑘𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

(11) 

 

where 𝑙𝑛𝑦𝑖𝑡  is the natural log of corn yield in ASD i in year t; 𝛽0 is the estimated intercept; 

𝛽1,1 ⋯ 𝛽1,7 are the estimated first-degree parameters relating natural logs of J = 7 farm input 

variables to the frontier yield; 𝛽2,1, 𝛽2,2, ⋯ , 𝛽2,7 are the estimated parameters relating the squared 

natural logs of  the seven farm input variables to the yield frontier; the 𝛽3,𝑗,𝑘  are the estimated 

parameters relating the products of the natural logs of farm input variables j and k (for all 𝑗 ≠ 𝑘) 
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to the yield frontier; 𝑣𝑖𝑡 is the statistical random error term; and 𝑢𝑖𝑡 is the technical inefficiency 

error term.  

A log likelihood ratio test is used to assess the goodness of fit of the model by jointly 

testing the statistical significance of the parameters relating each independent variable to the yield 

frontier. Let βj be the vector of parameters relating farm input j to the yield frontier, including 

first-degree, second-degree, and interaction parameters. The null hypothesis is then 𝐻0: βj = 0, 

meaning farm input j has no statistically discernible relation to corn yield or to the corn yield 

frontier. The test statistic is: 

  𝜒𝐿𝑅𝑇
2 = −2{𝐿𝐿𝐹𝑅 − 𝐿𝐿𝐹𝑈} (12) 

 

where  𝜒𝐿𝑅𝑇
2  is the log likelihood test statistic, 𝐿𝐿𝐹𝑅 is the value of the log likelihood function 

when the restrictions are imposed according to 𝐻0, and 𝐿𝐿𝐹𝑈 is the log likelihood function value 

when the restrictions are lifted. The statistic is distributed chi-square with degrees of freedom 

equal to the number of parameters restricted by 𝐻0. If the test statistic exceeds the chi-square 

critical value the null hypothesis is rejected, revealing a statistically discernible relation between 

the yield frontier and farm input j through direct first- and/or second-degree effects and/or 

interactions with other farm inputs. Thus, the tested variable should be included in the regression, 

even if none of the individual parameters in βj are statistically significant per t-testing. The 

intention of using log-likelihood ratio test is to improve the goodness of fit of the stochastic 

translog yield frontier model, hopefully, which leads to be a parsimonious model and provide 

robust estimation for corn yield technical efficiencies for each ASD. The Variance Inflation 

Factor (VIF) test is used to detect the presence of multicollinearity among the independent 
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variables1 (Joshi et al., 2012). In addition, it is appropriate to estimate the elasticity of mean 

production with respect to the independent variables for the stochastic translog yield frontier 

model. The formula is given by Battese and Broca (1997):  

 𝜗𝑘 = 𝛽𝑘 + 2𝛽𝑘𝑘𝑥𝑘𝑖 + ∑ 𝛽𝑘𝑗𝑥𝑗𝑖𝑗≠𝑘   (13) 

 

where 𝜗𝑘  is the mean output elasticity of the corn yield frontier for independent variable k; 𝛽𝑘  is 

the parameter estimates of the kth independent variable; 2𝛽𝑘𝑘  is the squared parameter estimates 

of the kth independent variable;  𝑥𝑘𝑖 is the recent five year averages (e.g., 2014 – 2018) of the kth 

independent variable in the ith  ASD;  𝛽𝑘𝑗 is the parameter estimates of the interaction among the 

independent variables; and 𝑥𝑗𝑖 is the recent five year averages (e.g., 2014 – 2018) of the jth 

independent variable in the ith  ASD.  

2.4.3. Empirical Model for Data Envelopment Analysis 

According to Sharma et al. (1997), the output-oriented DEA model for a single output is 

generalized based on work by Ali and Seiford (1993), presented below. We have n number of 

DMUs (ASDs), and each produces single output (e.g., corn) by using m different inputs. The ith 

ASD uses xki units of kth input in the production of yi  unit of output. Thus, the Linear 

Programming (LP) problem will be separately solved for each ASD in the year t is presented with 

the assumption of Variable Returns to Scale (VRS) of DEA: 

  Maximize
𝜙𝑖𝑡𝜆𝑖𝑡

𝜙𝑖𝑡   

 Subject to:    

  ∑ 𝜆𝑗𝑡𝑦𝑗𝑡 − 𝜙𝑖𝑡𝑦𝑖𝑡 − 𝑠 = 0𝑛
𝑗=1     

  ∑ 𝜆𝑗𝑡𝑥𝑘𝑗𝑡 + 𝑒𝑘𝑡 = 𝑥𝑘𝑖𝑡
𝑛
𝑗=1   k = 1,…, m inputs;  

  ∑ 𝜆𝑗𝑡 = 1𝑛
𝑗=1   j = 1,…, n DMUs;  

  𝜆𝑗 ≥ 0; 𝑠 ≥ 0; 𝑒𝑘 ≥ 0; t = 1,…, t years; (14) 

 
1 The Variance Inflation formula is 𝑉𝐼𝐹𝑖 =

1

1−𝑅𝑖
2  
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where 𝜙𝑖𝑡 is the proportional increase in output for the ith ASD in the year t; s is the output slack; 

𝑒𝑘𝑡 is the kth input slack in the year t; and 𝜆𝑗𝑡 is the weight of jth ASD in the year t.  

The analysis of the output-oriented DEA frontier model is to maximize the proportional 

increase in output while the current level of inputs stays constant. The output maximization of ith 

ASD requires the output slack, s, to be zero; therefore, ith ASD will be fully efficient in the year t. 

In other words, that ASD lies on the DEA frontier when 𝜙𝑖𝑡 = 1, 𝜆𝑖𝑡 = 1, and 𝜆𝑗𝑡 = 0 for 𝑗 ≠ 𝑖 ≠

𝑡. If 𝜙𝑖𝑡 > 1, 𝜆𝑖𝑡 = 0, and 𝜆𝑖𝑡 ≠ 0 for 𝑗 ≠ 𝑖 ≠ 𝑡, then ith ASD is inefficient in the year t, implying 

that the current level of inputs can be used to achieve more output levels. The frontier production 

level for the ith ASD is given by Sharma et al. (1997): 

 𝑦̂𝑖𝑡 =  ∑ 𝜆𝑗𝑡𝑦𝑗𝑡
𝑛
𝑗=1 = 𝜙𝑖𝑡𝑦𝑖𝑡   (14) 

 

where 𝑦̂𝑖𝑡  is the projected. Based on the 𝑦̂𝑖𝑡 , we can calculate the TE of ith ASD by the ratio 

between the observed output level of ith ASD and projected production frontier level for the ith 

ASD in the same year t, which is same as the ratio between one and the proportional increase in 

output for the ith ASD in the year t (Sharma et al., 1997): 

 𝑇𝐸𝑖𝑡 =  
𝑦𝑖𝑡

𝑦̂𝑖𝑡
=

1

𝜙𝑖𝑡
 (15) 

 

The ratio between 𝑇𝐸𝑖𝑡 of CRS and 𝑇𝐸𝑖𝑡 of VRS provides the scale efficiency (𝑆𝐸𝑖𝑡) for 

the 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year (Wadud and White, 2010):  

 𝑆𝐸𝑖𝑡 =
𝑇𝐸𝑖𝑡  (CRS) 

𝑇𝐸𝑖𝑡  (VRS)
 (16) 

 

If the 𝑆𝐸𝑖𝑡 = 1 for 𝑖𝑡ℎ ASD in the year t, then the corn production in the  𝑖𝑡ℎ ASD is at the most 

productive scale size (MPSS), which indicates CRS in the year t. If SE <1 for the 𝑖𝑡ℎ ASD in the 

year t, then the corn production in 𝑖𝑡ℎ ASD has locally decreasing returns to scale (DRS), whereas 
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if SE >1 for the 𝑖𝑡ℎ ASD in the year t, then corn production in the 𝑖𝑡ℎ ASD has locally increasing 

returns to scale (IRS) (Fried et al., 2008). 

2.4.4. Data Description 

This research provides estimates and analysis of the corn yield frontiers and efficiency 

components (e.g., technical efficiencies and scale efficiencies) by analyzing a panel data set of the 

nine ASDs in the state of North Dakota from 1994 to 2018. Figure 3 presents a North Dakota map 

with ASDs and counties labeled.  

The primarily reason of using the ASDs as our research DMUs is twofold: 1) ASDs are 

intended to provide timely, accurate and useful statistical information to United States’ 

agricultural service; therefore, the variety of crops’ input and output data are available spatially as 

well as timely at the ASD level, and 2) ASDs are defined groupings of counties in each state, by 

geography, climate, and cropping practices that have similarities on the geographic attributes 

(e.g., soil type, terrain, and elevation), climate components (e.g., mean temperature, precipitation 

and length of growing season) and cropping practices (e.g., use of irrigation, crop rotation and 

specialty crops). 

 Each ASD has a number and corresponds to a geographic region within the state. For 

instance, North Dakota’s district ND10 is the Northwest region of North Dakota, district ND20 is 

the North-central region, ND30 is the Northeast region, and so forth.   
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Figure 3. Agricultural Statistics Districts of the state of North Dakota.  

The data sample includes corn yield as a dependent variable. Independent variables 

include per acre expenditures on seed, fertilizer, labor, and used in corn production. Additional 

independent variables include average corn land area, total growing season rainfall, average 

temperature, maximum temperature as independent variables. For each ASD each year, average 

corn yield per acre, average corn land area per farmer, and average per acre expenditures on seed, 

fertilizer, and labor were retrieved from the Farm Financial Management Database2 (FINBIN). 

Data for total growing season rainfall and annual growing season averages of daily average 

temperature, and daily maximum temperature were collected from the PRISM Climate Database3 

 
2 Farm data sources: https://finbin.umn.edu/.  
3 Weather data sources: http://www.prism.oregonstate.edu/. 
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for each ASD each year. The sources and definitions of the variables are presented in Table 1. 

The descriptive statistics for each variable are presented in Table 2.  

Table 1. Descriptions of input and output variables and data sources. 

Variables Unit descriptions Sources  

Yield Average corn yield by ASD (bushels per acre) FINBIN 

Land Average corn acreage by ASD (acres per farmer) FINBIN 

Seed  Average seed expenditure by ASD ($ per acre) FINBIN 

Fertilizer Average fertilizer expenditure by ASD ($ per acre) FINBIN 

Labor Average labor expenditure by ASD ($ per acre) FINBIN 

Rainfall Total growing season rainfall by ASD (inches per year) PRISM 

Mean Temperature Growing season average daily mean temperature by ASD (°F) PRISM 

Max Temperature Growing season average maximum daily temperature by ASD (°F) PRISM 

 

According to the descriptive statistics in Table 2, the average corn yield in North Dakota 

from 1994 to 2018 is 113.61 bushel per acre, with a standard deviation of 26.01. One standard 

deviation is approximately 23% of the statewide average (26.01/113.61 ≈ 0.23). The average 

cornfield is 316.71 acres, with a standard deviation of 154.52. Acres of corn per operation vary 

substantially across ASDs and within most ASDs over time. Farmers in the south and eastern 

regions usually plant relatively more corn per operator than the farmers in the north and western 

regions. The overall share of agricultural land planted to corn has increased in recent decades due 

to increasing domestic and international corn demand (Taylor and Koo, 2013). Fertilizer was used 

extensively, averaging $75.18 per acre statewide with a standard deviation of $38.46. Thus, for 

68% of observations, fertilizer expenditures are between $39.99 and $116.31 per acre. The 

variation in expenditures on fertilizer can be attributed to increasing application rates over the 

study period and to variability of crop fertilizer needs across the ASDs. The average corn seed 

expenditure $60.49 per acre with a standard deviation of $25.63; thus, a strong majority (84%) of 

observations had average seed expenditures greater than $34.86 per acre. Real expenditures on 

corn seed increased during the study period, potentially reflecting (1) production value-added 
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from development of improved varieties for the Northern Great Plains and (2) generally 

decreasing row spacing (i.e. increasing plant population) (Henderson et al., 2000). The average 

expenditure on labor is $19.28 per acre of corn, and average expenditure for 84% of observations 

exceeding $12.39 per acre ($12.39 = 19.28 – 6.89). 

Table 2. State-level descriptive statistics of input and output variables, North Dakota 1994-2018. 

Variable Unit N Mean Std Dev Minimum Maximum 

Yield Bu./acre 225 113.61 26.01 13.96 184.34 

Land Acres 225 316.71 154.52 61.13 794.92 

Seed  $/acre 225 60.94 25.63 19.84 110.61 

Fertilizer $/acre 225 75.18 38.46 24.00 172.22 

Labor $/acre 225 19.28 6.89 2.76 37.02 

Rainfall Inches 225 14.97 3.75 6.92 24.34 

Temperature °F 225 59.55 1.49 54.58 62.85 

Max Temperature °F 225 82.72 3.86 74.20 93.30 

 

All corn input expenditure variables are adjusted for inflation and presented in 2018 USD 

per acre ($/ac.). The deflation is based on the Gross Domestic Product (GDP) deflator, and the 

formula is used as: 

 𝐺𝐷𝑃 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟 =
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃

𝑅𝑒𝑎𝑙 𝐺𝐷𝑃
∗ 100  (17) 

 

The statewide growing season average of daily mean temperature (“average temperature”) 

is 59.55 °F, with a very small standard deviation of 1.49 °F. Higher average temperature values 

were recorded in the south and southeast, while lower values in the north and northwest. The 

growing season average daily high temperature (“maximum temperature”) is 82.72 °F, with a 

standard deviation of 3.86 °F. Maximum temperature shows the same spatial pattern as average 

temperature—warmer in the South and Southeast and cooler in the North and Northwest—and 

exhibits about 2.6 times as much variability as the average temperature. Total rainfall varied 

substantially over the study period, with a standard deviation 3.75 inches per season (about 25% 
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of the sample average, 14.97 inches). Rainfall values are higher in the eastern half of the state, 

with the highest growing season rainfall occurring in the southern Red River Valley.  

Figure 4 presents corn yield descriptive statistics for each ASD over the study period. In 

the past 25 years, farmers in the Southeast ASD had an average corn yield of 127.14 bushels per 

acre with standard deviation of 25.36 bu./ac. Farmers in the East-central ASD had average corn 

yields of about 125.22 bushels per acre with standard deviation of 25.04 (not statistically different 

from the Southeast ASD). For Northeast ASD farmers, the mean corn yield was 118.27 bu./ac., 

with standard deviation 23.17—again, not statistically different from the farmers of the Southeast 

and East-central ASDs. In fact, every ASD’s mean yield was within one or two standard 

deviations of every other ASD’s mean yield during the study period. However, the mean yields 

have not been stationary over time; corn yield increased in every ASD throughout the study 

period. 

 

Figure 4. Corn yield summary statistics by Agricultural Statistics District, 1994-2018.  
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Qualitative and Limited Dependent Variable model (QLIM) of the Statistical Analysis 

System (SAS) is used for the estimation of the stochastic yield frontier model to provide SFA 

technical efficiency scores for each ASD in each year. In addition, Stata 14 is used for Monte 

Carlo simulations to estimate the standard errors for each elasticity effect from the independent 

variables. The simulated standard error for each output elasticities enables us to determine the 

significant level of each elasticities by using t-test. Simply, our hypothesis test is the output 

elasticities are no different from zero. If we reject the null, then the elasticities are statistically 

significant from zero and we have sufficient evidence to make inference on the relationship 

between inputs and output variables. In addition, we also used STATA for estimating the DEA 

yield efficiency frontier under both VRS and CRS assumptions to compare their technical 

efficiency scores with SFA’s technical efficiency scores.   

2.5. Results and Discussion 

2.5.1. Results from Stochastic Frontier Model  

Table 3 shows the results of the log-likelihood ratio tests for the joint significance of the 

parameter estimates for each of the farm input expenditure and weather variables. We found the 

effects of almost all variables, except labor on the corn yield frontier are statistically determined 

as significant. All insignificant parameters are tested by the log-likelihood ratio test and their joint 

effects are also statistically determined as significant. In addition, the VIF test is used for 

investigating the presence of multicollinearity in the model by regressing the Ordinary Least 

Squares (OLS) estimation in SAS. VIF results indicate the coefficient of factor level from each 

variable is less than five, implying that no independent variable in the model is a linear function 

of one or more other independent variables. Therefore, all independent variables are included in 
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the model, including their terms of multiplication and interactions, to estimate the technical 

efficiency scores for each of the ASDs. 

Table 3. Log likelihood ratio and variance inflation factor test results. 

Variable Null Hypothesis 

Degrees of 

freedom 

Log Likelihood 

Ratio Test Statistic VIF 

Land 𝐻0: βland = 0 4 73.60***a,b 2.59 

Seed 𝐻0: βseed = 0 5 47.76*** 4.81 

Fertilizer 𝐻0: βfert. = 0 4 47.96*** 3.91 

Labor 𝐻0: βlabor = 0 5 6.88 3.89 

Rainfall 𝐻0: βrain = 0 4 8.04** 1.72 

Temperature 𝐻0: βμtemp = 0 5 29.48*** 3.44 

Max Temp 𝐻0: βμmaxtemp = 0 5 19.44*** 4.25 

Insignificant Parameters 𝐻0: βinsignificant = 0 15 45.80*** N/A 

a The test statistics are distributed chi-square with the indicated degrees of freedom equal to the 

number of restricted parameters. 
b Asterisks indicate exceedance of the chi-square critical value at significance levels 0.01 (***), 

0.05 (**), and 0.10 (*). 

The maximum likelihood parameter estimates of the stochastic semi-translog yield frontier 

model, specified in equation (11), are in Table 4. A total of 26 parameters, of which eight are 

statistically non-zero (for 𝛼 ≤ 0.10).  

The variance component gamma indicates the proportion of the total variance attributable 

to inefficiencies—about 80.9%—related to unexpected shifts in the corn yield frontier caused by 

favorable or unfavorable temperature and rainfall variations each year, as well as to any extreme 

weather events, crop disease, and accidents that may have contributed to yield gaps. This result is 

conforming other research done in the past (Asmara et al., 2016; Wadud and White, 2010; Odeck, 

2007; Sharma et al., 1997). Thus, the variance parameters indicate that the stochastic frontier 

model is an appropriate modelling technique for the error structure present in the data (as opposed 

to ordinary least squares). Other parameters are not individually significant; however, the 
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combined parameter estimates for each variable are significant in the model based on the results 

of log-likelihood ratio test.  

Table 4. Stochastic semi-translog yield frontier model of estimation.  

Variables Parameter Estimate St. Error p-value 

Stochastic Yield Frontier  
   

Constant β0 13.98 200.71 0.944 
Land βL 0.94 0.51 0.065 

Land Square βLL -0.08 0.04 0.058 

Seed βS -1.28 8.11 0.875 

Seed Square βSS -0.06 0.09 0.508 
Fertilizer βF 5.41 6.61 0.413 

Fertilizer Square βFF -0.06 0.04 0.150 

Labor βLa -0.07 0.58 0.908 
Labor Square βLaLa 0.02 0.07 0.775 

Rainfall βR 1.23 0.59 0.039 

Rainfall Square βRR -0.02 0.09 0.863 
Temperature  βT -125.41 83.90 0.135 

Temperature Square βTT 33.28 11.91 0.005 

Maximum Temp βMt 105.97 41.49 0.011 

Max Temp Square βMtMt 4.92 4.07 0.226 
Land x Labor βLLa 0.23 0.11 0.042 

Land x Rainfall βLR -0.15 0.12 0.213 

Seed x Labor βSLa -0.29 0.16 0.066 
Seed x Temperature βST 1.04 2.06 0.616 

Seed x Max Temp βSMt -0.32 1.27 0.801 

Fertilizer x Temperature βFT 0.54 1.82 0.765 

Fertilizer x Max Temp βFMt -1.62 1.12 0.149 
Labor x Rainfall βLR -0.09 1.11 0.571 

Temperature x Max Temp βLaT -34.67 12.55 0.006 

Variance Parameters     
Sigma2_v 𝜎𝑣

2 0.005   

Sigma2_u 𝜎𝑢
2 0.020   

Sigma2 𝜎2 = 𝜎𝑣
2 + 𝜎𝑢

2 0.025   

Gamma 𝛾 = 𝜎𝑢
2/𝜎2 0.809   

Log-likelihood ℒ 124.61   

Observations  225   

 

Table 5. presents the output elasticities of the stochastic semi-translog yield frontier 

model, specified in equation (13). Almost all the output elasticities are discernibly different from 

zero (𝛼 ≤ 0.10), except the elasticity for labor. We estimated the elasticities of the corn yield 

frontier for the average temperature, for the maximum temperature, and for the combined average 

and maximum temperatures. The combined elasticity estimate indicates how corn yield may 
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respond to a uniform increase in temperature in which the distribution of temperatures increases 

by one percent. The elasticity of output for temperatures is positive, as expected, and is 

statistically significant level at 𝛼 = 0.01. A general interpretation of this combined temperature is 

that a general temperature increase of 1% will increase expected maximum yield potential (i.e. the 

frontier) by 52.3%, an increase of 59 bu./ac. This large elasticity indicates interannual variability 

of temperature has an outsize impact on the frontier yield and that climate warming is likely to 

substantially improve corn yield potential, especially as North Dakota producers re-optimize their 

managed agricultural inputs as climatic conditions change over decades to come. 

The elasticity of the yield frontier to total growing season rainfall is 4.97%, and it is 

highly significant(𝛼 = 0.01). This implies 1% more precipitation in the growing season—an 

increase of just 0.15 inches—will increase maximum yield potential by nearly 17 bu./ac. The 

output elasticities for farm input expenditures are all statistically significant and positive, with the 

exception of the labor expenditure elasticity which is negative and not statistically significant. 

The elasticity response of the yield frontier to seed expenditure is 3.63% (𝛼 = 0.05). This 

indicates that the corn yield frontier rose substantially during the study period in response to 

increasing expenditures on seed, probably because North Dakota farmers adopted narrower row 

spacing and because improved seed varieties developed and released since 1994 are much higher 

yielding but also more expensive as a proportion of total variable costs. Additional seed line 

improvements in coming decades will likely have similar effects. The yield frontier is also 

significantly responsive (𝛼 = 0.10) to fertilizer expenditure, with the elasticity estimate indicating 

that a 1% increase in fertilizer expenditure (about $0.75 per acre) can raise the frontier yield by 

2.54% (nearly 3 bu./ac.) if other factors such as rainfall and temperature are not limiting plant 

growth. The average farmer’s land area planted to corn also has a statistically significant and 
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positive relation to yield, with the elasticity estimate indicating a 1% increase in the average area 

planted per farmer is correlated with a 1.47% increase in yield (𝛼 = 0.05). This relation does not 

necessarily imply causality; it is possible that planting more acreage to corn allows for economies 

of scale, but it is also possible that farmers who attain higher yields for other reasons simply plant 

more corn acres. 

The elasticity estimates for each variable are approximately the same for every ASD, 

despite variations in temperature, precipitation levels, and input expenditures among the nine 

ASDs. The uniformity of such elasticity estimates at the ASD level conflict with the results of 

Simmer et al. (2015), who found corn yield responses to interannual weather variations were 

different across geographic locations. On the other hand, the results of the present work may 

simply suggest that the marginal factor productivity is similar in every ASD given local 

temperature and precipitation regimes and current local input management practices. After all, 

experienced farmers typically have reasonable expectations about weather and crop input needs 

for their farms and manage their factors of production accordingly. In fact, the equal marginal 

principle indicates producers should all be producing such that the expectation of the marginal 

revenue product of each input is equalized across all producers. In the context of the corn yield 

frontier, then, it should not be surprising that these elasticities vary little from one ASD to the 

next. It is possible, however, that expanding the study region to encompass more heterogeneity 

would affect this result. 
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Table 5. Output elasticities of the corn yield in each Agricultural Statistics District. 

Variables ND50 ND60 ND20 ND30 ND10 ND80 ND90 ND70 ND40 State 

Land 1.48** 1.48** 1.48** 1.48** 1.48** 1.48** 1.48** 1.48** 1.48** 1.48** 

 (0.61) (0.61) (0.61) (0.61) (0.61) (0.61) (0.61) (0.61) (0.61) (0.61) 

Seed 3.63** 3.63** 3.63** 3.63** 3.63** 3.64** 3.63** 3.64** 3.63** 3.63** 

 (1.56) (1.56) (1.56) (1.56) (1.56) (1.56) (1.56) (1.56) (1.56) (1.56) 

Fertilizer 2.54* 2.54* 2.54* 2.54* 2.54* 2.54* 2.54* 2.54* 2.54* 2.54* 

 (1.47) (1.47) (1.47) (1.47) (1.47) (1.47) (1.47) (1.47) (1.47) (1.47) 

Labor -1.36 -1.36 -1.36 -1.35 -1.35 -1.36 -1.35 -1.36 -1.36 -1.36 

 (0.96) (0.96) (0.96) (0.96) (0.96) (0.96) (0.96) (0.96) (0.96) (0.96) 

Rainfall 4.99*** 4.97*** 4.97*** 4.97*** 4.95*** 4.97*** 4.97*** 4.96*** 4.97*** 4.97*** 

 (1.39) (1.39) (1.39) (1.39) (1.39) (1.39) (1.39) (1.39) (1.39) (1.39) 

Temperature 39.28** 39.28** 39.27** 39.27** 39.23** 39.28** 39.29** 39.28** 39.27** 39.27*** 

 (15.95) (15.95) (15.95) (15.95) (15.95) (15.95) (15.95) (15.95) (15.95) (15.95) 

Max Temp 13.06* 13.04* 13.06* 13.06* 13.05* 13.06* 13.05* 13.05* 13.05* 13.06* 

 (6.36) (6.36) (6.36) (6.36) (6.36) (6.36) (6.36) (6.36) (6.36) (6.36) 

MtemTemp 52.33*** 52.32*** 52.33*** 52.33*** 52.28*** 52.33*** 52.35*** 52.33*** 52.32*** 52.32*** 

 
(18.03) (18.03) (18.03) (18.03) (18.03) (18.03) (18.03) (18.03) (18.03) (18.03) 

***, **, and * indicate significance at 𝛼 = 0.01, 𝛼 = 0.05, and 𝛼 = 0.10, respectively. Max Temp represents the maximum 

temperature in growing season. MtemTemp represents the combined elasticities of maximum temperature and average temperature.  
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Figure 5 presents corn yield technical efficiency scores from the semi-translog stochastic 

yield frontier model for each ASD from 1994 to 2018. The black line represents the annual 

median of the technical efficiency scores for all ASDs. The median technical efficiency score 

exceeds 0.80 every year, indicating corn production in the majority of ASDs are very technically 

efficient, producing 80% or more of the estimated maximum corn yield potential for the year. The 

only technical efficiency scores lower than 0.72 is for the Central ASD in 2004, with a score of 

only 0.49, indicating this district was shy of its frontier yield by 51%. The 2004 growing season 

corresponds to the coolest North Dakota summer from 1994 to 2018. The growing season 

statewide average temperature that year was 2.36 °F below the study period average. The low 

efficiency score for the Central ASD that year may indicate corn yield (but not the yield frontier) 

in this ASD is more sensitive to unexpectedly cool weather than yield in the other ASDs. Overall, 

there is no discernible time trend in the efficiency scores; they do not seem to be increasing or 

decreasing over time. 

 

Figure 5. Technical efficiency scores from Stochastic Frontier Model, 1994-2018. 
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Figure 6 presents some descriptive statistics for each ASD’s estimated technical efficiency 

scores over the study period. The stochastic semi-translog yield frontier-based estimates of corn 

technical efficiency scores for the South East region have a mean of 0.908 and standard deviation 

of 0.041. The Southeast region in the state is where corn production has been most efficient, on 

average, from 1994 to 2018. The second highest average technical efficiency score is that of the 

Northwest region with average score of 0.893. This is somewhat surprising, as very little corn is 

produced in this ASD. It’s possible that much of the corn grain produced there is irrigated (see 

Figure A1), unlike corn acreage in the rest of the state. The lowest efficiency score belongs to the 

Central region, with a score of 0.848; however, the mean efficiency scores for all the ASDs are 

statistically indistinguishable from one another, as all ASDs’ average scores are within one 

standard deviation of the Central ASD’s average score. This result means the efficiency scores do 

not discernibly differ in any systematic way across ASDs. These average technical efficiency 

scores indicate each corn producing ASD could substantially increase its average corn yield by 

improving its technical efficiency, possibly by reallocating expenditures on managed inputs to 

address the evolving weather-related risks. 



 

41 

 

Figure 6. Technical efficiency score from Stochastic Frontier Model in each Agricultural 

Statistics District, 1994-2018. 

2.5.2. Results from Data Envelopment Analysis 

We also applied the output-oriented DEA model under both technological assumptions: 

VRS and CRS to estimate the corn yield frontier and technical efficiency for each ASD. Figure 7 

presents corn yield technical efficiency scores from the DEA-VRS model for each ASD from 

1994 to 2018. The black line is the median of the annual technical efficiency scores. Based on the 

technical efficiency scores from the DEA-VRS model, the median technical efficiency score 

varies wildly by year, relative to the scores from the stochastic yield frontier model.  
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Figure 7. Technical efficiency scores from the Data Envelopment Analysis with Variable Returns 

to Scale, 1994-2018. 

The wide range in the technical efficiency scores from the DEA-VRS model may suggest 

that the corn yield frontier changes substantially from year to year in ways farmers cannot predict. 

However, the stochastic frontier estimates suggest that weather variables shift the yield frontier in 

ways that linear programming methods like DEA cannot capture. The DEA-VRS model results in 

technical efficiency scores that range from 0.55 to 1.00, which is much greater than range of 

scores estimated by stochastic yield frontier model (Figure 5). The high variability of technical 

efficiency scores based on DEA-VRS relative to the stochastic yield frontier efficiency estimates 

is consistent with results of other research (Wadud and White, 2010; Kurkalova and Carriquiry, 

2003). In addition, higher variability of technical efficiency scores might be due to the sample 

size in the study. For instance, Alirezaee et al. (1998) studied samples of various sizes under DEA 

method, and found that smaller sample size often leads to biased efficiency estimation using 

DEA. They concluded that the number of DMUs should be at least a few hundred to expect 

reasonably accurate estimation of efficiency if the assumption of technology is CRS. For VRS, 

DMUs should be roughly doubled to have unbiased estimation. Thus, due to our sample size of 
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225 observations, it may not be the most accurate technical efficiency estimation under the DEA-

CRS.  

A paired differences t-test—in which the differences between the stochastic frontier 

efficiency score and the DEA-VRS efficiency score for each ASD in each year are tested against 

the null hypothesis that the average difference is zero—shows the mean efficiency scores from 

the two estimation techniques are not discernibly different at any significance level (p ≤ 0.10), 

primarily because the variation in the DEA-VRS technical efficiency scores is very large relative 

to that of the stochastic frontier estimates. 

Figure 8 presents basic summary statistics for each ASD’s technical efficiency scores over 

the study period. The DEA-VRS estimates of technical efficiency scores for the Northwest region 

have a mean of 0.912 with standard deviation of 0.129, which is the highest average technical 

efficiency score amongst others. The second highest average technical efficiency score is 

estimated in the Southeast region with average score of 0.903. The third highest average technical 

efficiency score is estimated in the East-central region with average score of 0.890 and the 

followed by North-central (0.878), West-central (0.867), Central (0.862), Northeast (0.860), 

South-central (0.843), and Southwest (0.837). These average technical efficiency scores indicate 

each corn producing ASD could substantially increase the corn yield by improving its technical 

efficiency. For instance, the average technical efficiency can improve by 0.088 in the Northwest 

region, the average technical efficiency can improve by 0.097 in the Southeast region, the average 

technical efficiency can improve by 0.11 in the East-central region, the average technical 

efficiency can improve by 0.122 in the North-central region, the average technical efficiency 

score can improve by 0.133 in the West-central region, the average technical efficiency score can 

improve by 0.138 in the Central region, the average techincal efficiency score can improve by 
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0.140 in the Northeast region, the average techincal efficiency score can improve by 0.157 in the 

South-central region, and the average techincal efficiency score can improve by 0.163 in the 

South-west region. The lowest efficiency score belongs to the Southwest region, with a score of 

0.837, but the mean efficiency scores for all the ASDs are statistically indistinguishable from one 

another, as all ASDs’ average scores are within one standard deviation of the Central ASD’s 

average score. This result seemed to be consistent with what we found in Figure 6, where the 

efficiency scores do not discernibly differ in any systematic way across ASDs. 

 

Figure 8. Technical efficiency score from Data Envelopment Analysis with Variable Returns to 

Scale in each Agricultural Statistics District, 1994-2018. 

Figure 9 presents corn yield technical efficiency scores from the DEA-CRS model for 

each ASD from 1994 to 2018. The black line represents the median of the annual technical 
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efficiency scores. The median technical efficiency score changed substantially from one year to 

another, which looks very similar to Figure 7, but some years are slightly different. For example, 

we can see the median technical efficiency scores in 1997, 2004, 2012, 2017, and 2018 are 

estimated much lower than the median estimated of DEA-VRS. DEA-CRS model results in 

technical efficiency scores that range from 0.55 to 1.00, which is about the same range of scores 

estimated by DEA-VRS, in contrast to the range of scores estimated by SFA (Figure 5). The wide 

range of technical efficiency scores from the DEA-CRS model may be suggesting the corn yield 

frontier changes dramatically over the years in ways farmers cannot predict. Moreover, it may be 

suggesting that CRS is likely inappropriate and unrealistic technology assumption for estimating 

the efficiency in crop production at the ASD level or based on the size of the sample (Alirezaee et 

at., 1998). Moreover, the higher variability of technical efficiency scores from DEA-VRS and 

CRS relative to the stochastic yield frontier efficiency estimates is consistent with some research 

results (Madau, 2015; Sharma et al., 1997), but contrasts with other research (Asmara et al., 

2016).  

 

Figure 9. Technical efficiency scores from the Data Envelopment Analysis with Constant Returns 

to Scale, 1994-2018. 
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Figure 10 presents the important summary statistics for each ASD’s technical efficiency 

scores over the study period. Based on the corn technical efficiency scores from DEA-CRS, the 

average technical efficiency score in the Northwest region is predicted as 0.860 with standard 

deviation of 0.120, which is also the highest average scores amongst others, same as Figure 10. 

The second highest technical efficiency score of 0.847 is predicted in the Southeast region and the 

followed by the other technical efficiency scores corresponding their regions: 0.823 in the East-

central region, 0.816 in the Northeast region, 0.791 in the West-central region, 0.789 in the North-

central region, 0.787 in the Central region, 0.769 in the South-central region, and 0.748 in the 

Southwest region.  

These average technical efficiency scores imply that corn producing ASDs: Northwest, 

Southeast, East-central, Northeast, West-central, North-central, Central, South-central, and 

Southwest, could potentially increase their corn yield with the improvement of their technical 

efficiencies by 0.140, 0.153, 0.177, 0.184, 0.209, 0.211, 0.213, 0.231, and 0.252, respectively. 

Efficiency gains could be achieved by re-optimizing the levels of managed agricultural inputs 

based on accurate seasonal weather forecasts, should such forecasts be available. 
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Figure 10. Technical efficiency score from Data Envelopment Analysis with Constant Returns to 

Scale in each Agricultural Statistics District, 1994-2018. 

2.5.3. Comparison of the Efficiency Results 

The descriptive statistics for technical efficiency scores from SFA, DEA-VRS and DEA-

CRS are reported in Table 6. The DEA-VRS estimates of technical efficiency scores for the 

Northwest region have a mean of 0.912 with standard deviation of 0.129, The statewide average 

of technical efficiency score from SFA is 0.89, from DEA-VRS is 0.91, and from DEA-CRS is 

0.81. These medians mean at least half of the corn yield technical efficiency scores were 

performed above 0.89, 0.91, and 0.81 under the estimations of SFA, DEA-VRS, and DEA-CRS, 

respectively, in the past years from 1994 to 2018.  
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Table 6. Descriptive statistics of technical efficiency scores. 

 
SFA DEA-VRS DEA-CRS DEA-SE 

Median  0.89 0.91 0.81 0.95 

Mean 0.88 0.87 0.80 0.95 

Std Dev 0.06 0.13 0.15 0.10 

Minimum 0.49 0.48 0.11 0.11 

Maximum  0.97 1.00 1.00 1.28 

 

The mean technical efficiency scores estimated from SFA, DEA-VRS, and DEA-CRS are 

about 0.88, 0.87, and 0.80, with their standard deviation of 0.06, 0.13, and 0.15, respectively. 

Interestingly, the mean of SFA and DEA-VRS estimated very close, but the standard deviation of 

DEA-VRS is twice as large than the standard deviation of SFA. The mean of DEA-CRS 

estimated relatively lower than SFA and DEA-VRS, with a higher standard deviation than both. 

Thus, technical efficiency scores from DEA should be carefully compared with the scores from 

SFA in this study since their variances are significantly large in all ASDs. These differences 

between two approaches are in accord with the efficiency study done by Madau (2015), and 

Theodoridis and Anwar (2011), where the means of SFA and DEA-VRS were estimated about 

same but means of SFA and DEA-CRS were estimated significantly different. In addition, our 

efficiency results are conforming to other research (Sharma et al., 1997) in which the means of 

DEA-CRS were estimated much lower than the means of SFA and DEA-VRS in the study of 

swine efficiency study in Hawaii. In contrast, our findings are not conformed with other studies 

that compared these two approaches (Asmara et al., 2016; Hassan et al., 2014; Kalaitzandonakes 

and Dunn, 1995). The coefficients of variances are considerably small, but the variance of SFA is 

even smaller than the others.  

We calculated scale efficiency using equation (17). The wide range of scale efficiencies 

from minimum of 0.11 to maximum of 1.28 with the mean of 0.95 and the standard deviation of 
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0.10. The median of scale efficiency is equal to 0.95, meaning that at least half of these corn 

producing ASDs were at decreasing returns to scale. This basically suggests corn operations in 

North Dakota have a potential to expand some degree until scale efficiency reaches to 1. 

Figure 11 presents the descriptive summary for each ASD’s scale efficiency scores over 

the study period. Based on the corn scale efficiency scores, the average scale efficiency score for 

the Northeast region is determined as 0.950, and this is the highest average amongst others. The 

second highest scale efficiency score is estimated as 0.945 for the Northwest region and the 

following scale efficiency scores are estimated as 0.937 for the Southeast region, 0.925 for the 

East-central region, 0.921 for the Central region, 0.914 for the West-central region, 0.913 for the 

South-central region, 0.902 for the North-central and 0.898 for the Southwest region.  

 

Figure 11. Scale efficiency scores from Data Envelopment Analysis in each Agricultural Statistics 

District, 1994-2018. 
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Table 7 presents the correlation coefficients among the efficiency approaches. In order to 

contribute to better understanding of the distinction between two different approaches: SFA 

(parametric) and DEA (non-parametric), many researches use the Spearman correlation matrix to 

estimate the relationships between technical efficiencies generated from these two approaches. In 

this study, we found all correlations have a positive relationship, and they are performed with a 

strong significance level (𝛼 = 0.01). Our rankings indicate a weak correlation between SFA and 

DEA-VRS with coefficient of 0.44, whereas a stronger correlation between SFA and DEA-CRS 

(0.54). Furthermore, the strongest correlation (0.78) is between DEA-VRS and DEA-CRS as we 

anticipated during the discussion of Figures 7 and 9.  

Table 7. Spearman correlation coefficients. 

 
SFA (TE) VRS (TE) CRS (TE) 

SFA (TE) 1.000  
 

VRS (TE) 0.438*** 1.000 
 

CRS (TE) 0.537*** 0.776*** 1.000 

Prob > |r| under H0: Rho=0 

Even though the finding for the means of technical efficiency scores from SFA and DEA 

were consistent with Madau (2015), our correlation results between SFA and DEA did not 

conform to the results found by Madau (2015). Interestingly, the correlation coefficients found in 

other research (Sharma et al., 1997) are a little bit higher, but the correlation between SFA and 

DEA-VRS was weaker than the correlation between SFA and DEA-CRS and is consistent with 

our results. 

Table 8 presents the ASD ranking based on the technical efficiency, scale efficiency, and 

average yield. We found the highest average yield was estimated in the Southeast region. The 

highest average corn yield technical efficiency score is also estimated in the Southeast region 

under SFA. But under the DEA estimations, the highest average corn yield technical efficiency 
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score is in the Northwest region under both VRS and CRS, even though the average corn yield in 

the Northwest region was recorded as the third highest amongst others. This is quite interesting to 

see two efficiency methods’ technical efficiency scores that are different by ASD. However, 

according to Chen et al. (2016), SFA is more appropriate for estimating DMU’s under a variety of 

sizes, but DEA seemed to under-estimated due to the estimation of relative efficiency amongst 

DMUs in the dataset. Thus, some regions with smaller inputs and output are considered as 

efficient in DEA, and efficiency scores are estimated as close to 1 or even 1. This interpretation 

might possibly make sense to our findings. Corn producers in the Northwest region may not be 

quite as big as corn producers in the South and East region in terms of size of operation (e.g., 

land, capital). That maybe the case why we had higher efficiency scores for the Northwest region 

from DEA method. But one can also argue that the Northwest ASD is ranked second-highest in 

technical efficiency under the SFA method, thus there may be some other managed variables (e.g. 

irrigation (see the Figure A1 in the appendix section)) that reduces the variability of the corn yield 

frontier and technical efficiency in the Northwest region. 

Table 8. Agricultural Statistics Districts ranking for efficiency estimates. 

Rank SFA DEA-VRS DEA-CRS  DEA-SE Mean corn yield 

1 Southeast  Northwest Northwest Northeast Southeast 

2 Northwest Southeast Southeast Northwest East-central 

3 Northeast East-central East-central Southeast Northwest 

4 West-central North-central Northeast East-central Northeast 

5 East-central West-central West-central Central West-central 

6 North-central Central North-central West-central North-central 

7 South-central Northeast Central South-central South-central 

8 Southwest Southcentral South-central North-central Central 

9 Central Southwest Southwest Southwest Southwest 

 



 

52 

2.6. Summary and Conclusion  

Long-term increases in crop yields will be essential to satisfy surging global food demand 

over coming decades, and climate change is likely to play a major role in determining producers’ 

ability to meet that demand. Prior research indicates North Dakota’s climate has changed over the 

last several decades such that the state’s suitability for corn production has improved. However, 

no studies have holistically estimated corn yield frontier and technical efficiency for the whole 

state. Therefore, this research presents corn production efficiency measures and estimates of corn 

yield frontiers, based on agricultural input use and weather variables, for the nine North Dakota 

Agricultural Statistics Districts from 1994 to 2018. The research uses the stochastic semi-translog 

yield model to estimate the corn yield technical efficiency scores and to approximate the yield 

variation in response to the different yield attributes. In addition, we estimate the output-oriented 

DEA model to estimate the corn yield efficiency scores to compare the efficiency results from 

two different approaches.   

According to the SFA model, average temperature, maximum temperature, and total 

rainfall in the growing season are the crucial attributes to increase corn yield. Precisely, warmer 

growing condition with more rainfall in each North Dakota ASD is predicted to increase yield 

from an average of 113.16 to 172.34 bushels per acre, while current farm technology and better 

weather forecast continue to improve the in the future. The coefficient of elasticity for 

independent variables reveal the farm input expenditures (e.g., seed, land, and fertilizer), 

excluding labor expenditure, are positive to the corn yield with strong significant levels. 

However, their effects are much smaller than the effects of uncontrollable inputs (e.g., 

temperature and rainfall).  



 

53 

Furthermore, SFA indicates the proportion of the total variance attributable to 

inefficiencies—about 80.9%—related to unexpected shifts in the corn yield frontier caused by 

favorable or unfavorable temperature and rainfall variations each year, as well as to any extreme 

weather events, crop disease, and accidents that may have contributed to yield gaps. The overall 

findings of this study reveal a median technical efficiency score of 0.85, indicating that corn yield 

at the ASD level could increase substantially in North Dakota, potentially by reallocating 

production inputs to better match weather variability that shifts yield potential.  

Our study features the following highlighted findings: 

1) The corn yield will increase in all ASDs of the state when there will be higher temperature 

with more rainfall in the growing season. 

2) The elasticity estimates for each variable are approximately the same for every ASD, 

implying the marginal factor productivity is similar in every ASD given local 

heterogeneities. 

3) The variation of efficiency scores of SFA is significantly smaller than DEAs, which seems 

familiar with other efficiency studies. 

4) The mean of SFA (0.88) is estimated about same as DEA-VRS (0.87), but higher than the 

mean of DEA-CRS (0.80). 

5) The coefficient correlations between SFA and DEA-CRS is better than SFA and DEA-

VRS. 

6) At least half of the corn producing ASDs were technically efficient at 0.85 or above in the 

past couple of decades. 

Based on the different efficiency approaches, the estimated technical efficiency scores 

from DEA model varied much wider range than the scores from SFA model. Thus, the prediction 
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of yield frontier and technical efficiency by the SFA model will be a better estimate than 

compared to the linear programming methods like DEA. The final conclusion is corn production 

in each North Dakota’s ASD is technically efficient levels (0.85 to 1), but there can be 

improvements on the yield gap and technical inefficiencies. The output elasticities from SFA 

indicated that increase in farm input expenditures will increase corn yield; however, better 

interannual weather forecasting and weather risk management practices will certainly bring higher 

corn yields in the future for North Dakota farmers.  
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CHAPTER 3. CORN YIELD EFFICIENCY MEASURES IN MULTISTATES: 

STOCHASTIC FRONTIER ANALYSIS AND DATA ENVELOPMENT ANALYSIS 

3.1. Abstract 

Climate is changing both globally and regionally, and partly in response to climate 

change, major commodity crop yields have been changing substantially as cold regions become 

warmer and warm places become hotter. As a result of these climatic changes, farmers in the 

northern region of the U.S. Corn Belt might be able to attain higher yield from warm-season crops 

than has historically been possible. Since 1990, for instance, North Dakota corn yield has 

increased by 146%, which is the third-highest yield increase amongst the Corn Belt states. In 

2019, about 3.5 million acres of corn (up from 770,000 acres in 1994) were planted in the state, 

accounting for 9% of North Dakota’s total farmland. In this research, both stochastic frontier and 

data envelopment analyses are used to quantify the corn yield responses in the different U.S. Corn 

Belt states by analyzing data from 775 USDA Agricultural Statistics Districts in Minnesota, North 

Dakota, Nebraska, South Dakota and Wisconsin from 1994 to 2018. Results indicate weather 

variables (e.g., rainfall, and temperatures) account for most of the interannual variability of 

maximum corn yield potential. Further temperature increases resulting from global climate 

change are likely to increase the yield frontier at a much higher rate in the north than in the south. 

We conclude that the corn yield in each state has the potential to increase a certain degree, but the 

yield increases will differ regionally as a result of regional differences in climate — e.g. baseline 

regional differences in growing season length. It is impossible to determine how far will the U.S. 

Corn Belt shift to the northwestern region, but our finding suggests that the higher corn yield and 

increasing corn plantings will shift in that direction if the cold regions continue to warm in the 

future. 
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3.2. Introduction 

In the early 20th century, about half of the population in the United States was involved in 

farming because traditional farming required an intensive labor force (Dimitri et al., 2005). U.S. 

agricultural productivity increased by 1.9% annually from 1948 to 1999 as farming became 

increasingly industrialized, starting shortly after World War II (Dimitri et al., 2005). 

According to Grassini et al. (2015), the annual total corn supply from the United States 

accounted for about 38% of the total global corn supply between 2007 and 2011. Therefore, U.S. 

corn suppliers play an essential role in the corn market not only nationally but also globally. The 

majority of U.S. corn is grown in the region known as the Corn Belt. There is no formal definition 

that describes the Corn Belt, but it often refers to regions or states that consistently produce a 

large proportion of U.S. corn output every year.  

According to the United States Department of Agriculture, the U.S. farmers produced 

approximately 15.1 billion bushels of corn in 2016. Iowa’s farmers produced about 18.1% of total 

corn in 2016. About 14.9% was produced in Illinois, 11.22% in Nebraska, 10.19% in Minnesota, 

6.25% in Indiana, 5.45% in South Dakota, 4.61% in Kansas, 3.78% in Wisconsin, 3.77% in 

Missouri, 3.41% in North Dakota, 2.11% in Michigan, and 1.47% in Kentucky. All of these 

states, including others not mentioned above, contribute to the total corn supply in the United 

States.  

These previously named states are variously considered part of the Corn Belt (see 

appendix Figure A2 to A10). Figure A11 in the appendix is an animated clip showing how total 

plated corn acreage has changed from 2010 to 2018 at the Agricultural Statistics District (ASD) 

level within each state. Based on this animation, the state of Iowa is undoubtedly the center of 

corn production in the U.S. Corn Belt. The surrounding states: Illinois, Indiana, Minnesota, 
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Nebraska, South Dakota, and Missouri plant a considerable amount of corn acres, but their 

acreages are vary substantially from year to year. 

Reilly et al. (2001) stated corn producers in these states recognize the substantial corn 

yield variability caused by inter-annual weather variation and, potentially, global climate change. 

Many types of research have acknowledged and tried to better understand the yield variability 

attributable to weather variation (Bhattarai et al., 2017; Westcott and Jewison, 2014). Due to 

climate change, cooler locations are transitioning toward warmer, longer growing seasons, while 

warmer states are becoming hotter than they have historically been. As a result, farmers in the 

northern region of the U.S. Corn Belt may benefit more than southern farmers as northern states 

become more suitable for warm season crops such as corn, soybean, and sorghum (Hoffman et al., 

2018). In contrast, the warmer areas in more southerly locations may not be able to attain the 

yield that they used to expect due to temperature thresholds of certain crops (Meerburg et al., 

2009).  

Figure A12 to A20 present the average corn yield at the ASD level within each state from 

2010 to 2018 in the appendix section. Figure A21 in the appendix is an animated clip showing 

how the average corn yield of each ASD has varied from 2010 to 2018 in the Corn Belt region. 

According to Figure A21, the average corn yield has trended upward substantially over the years 

in each state, but each ASD does not provide a consistent high yield every year from 2010 to 

2018. Thus, it is clear that higher corn acreage does not necessarily mean higher corn yields. In 

other words, states with less corn acreage can also expect to achieve high corn yields in the areas 

where corn is grown. 

Various crop modeling and simulation techniques have been developed to quantify the 

impacts of managed inputs (e.g. fertilizer) and exogenous inputs (e.g., rainfall and temperature) 
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on crop yields (Bhattarai et al., 2017). Bhattarai et al. (2017) investigate the corn and soybean 

yields repsonse simulated from Enronmntal Policy Integrated Climate (EPIC) by using the down-

scaled weather data for the period from 2015 to 2099. Based on the different carbon scenarios, 

they found corn and soybeans yields will increase by the end of the century. In addition, they 

found that the yields variablity increases substantally due to the impact of climate change after 

middle of the century. According to Reilly et al. (2001), the Canadian and Hadley crop yield 

simulation showed the average corn yields will increase by 15% to 40% by the end of the 21st 

century in the U.S. Corn Belt. However, these corn yield increases will not be equally distributed 

throughout the nation, as can also be discerned from Figure A21. Their simulations have 

predicted that the most significant yield increases will most likely be realized in regions like the 

Northern Great Plain and the Northern Lakes Region, where the corn production might increase 

due to the warmer temperature and more rainfall under both climate scenarios (Reilly et al., 

2001). Therefore, the research presented in the present dissertation has objectives that focus on 

analyzing corn yield in the northern region of the U.S. Corn Belt. More specifically, the research 

addresses the following questions: 

1. How do interannual weather variations and agricultural input use affect corn yield 

potential (i.e. the yield frontier) in the northern region of the U.S. Corn Belt? 

2. How does corn production efficiency vary across the study region’s USDA Agricultural 

Statistics Districts and over time? 

3. What will be the likely effects of systematic climate change on the corn yield frontier and 

the optimal levels of controlled agricultural inputs? 

4. Do stochastic frontier analysis and data envelopment analysis provide similar corn 

production efficiency estimates? 
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5.   Do output elasticities vary by state when the geographic extent is increased to include more 

observations? 

6.   Do technical efficiency results vary for different approaches (i.e. stochastic frontier, and 

data envelopment analysis) at the state level? 

The rest of this paper is organized as follows: Section 3.3 reviews the scholarly literature 

explores the research methodologies typically used to measure technical efficiency in production. 

Section 3.4 outlines the methodology applied in this research and provides descriptions of the data 

used; Section 3.5 presents the results and discussion; lastly, Section 3.6 summarizes the research 

and presents conclusions. 

3.3. Literature Review 

One statistical approach that can be used to simultaneously investigate the issues of input 

use efficiency and the effects of climate change on the corn yield is Stochastic Frontier Analysis 

(SFA), first empirically applied by Farrell (1957) to estimate production efficiency. The SFA 

model separates the error structure into components—a two-sided, symmetric error component 

and a one-sided error component. The one-sided component captures inefficiency, while the two-

sided component accounts statistical noise. SFA has been used to evaluate economic efficiency, 

especially technical efficiency in developing and developed countries. Due to capital constraints 

in many developing countries, increasing productive efficiency by reallocating variable inputs has 

historically been a more viable means of increasing agricultural output than adopting new, costly 

technologies (Baten and Hossain, 2014; Naqvi and Ashfaq, 2013; Coelli et al., 2003). A case 

study by Bravo-Ureta and Pinheiro (1993) highlighted the fact the most farmers in developing 

countries have a potential to increase their efficiency to maximize farm output without increasing 

total input use or purchasing costly technological upgrades. Coelli et al. (2003) evaluated the 
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profit efficiency of modern rice farmers in Bangladesh by determining the impacts of farm inputs 

on technical efficiency. The purpose of their research was to investigate how changing input 

combinations and adoption of new, modern rice varieties led to increasing yields on Bangladesh’s 

rice farms. Despite increasing rice yields and acreage following the adoption of modern varieties, 

farm income in Bangladesh has declined. Their results indicate a mean technical efficiency score 

of 0.77 for the sample, implying modern rice farmers in Bangladesh have the potential to increase 

profit by improving economic efficiency, which is likely to happen autonomously as they gain 

more experience with modern rice varieties and improved access to input markets (Coelli et al., 

2003).  

Many researchers have studied productivity and efficiency measures using SFA (Njuki et 

al., 2019). The fundamental assumption of SFA is that uncontrollable events (e.g., cold snaps, 

droughts, flooding, and crop disease) will appear as inefficiency effects on agricultural 

productivity. Thus, it is common to see farm efficiency analysis tend to omit basic information 

about weather and environmental heterogeneity (e.g., temperature, and precipitation) (Lachaud et 

al., 2017). According to Lachaud et al. (2017), the combined effect of temperature and 

precipitation patterns had an adverse impact on agricultural output and farm productivity in the 

Latin American and Caribbean countries from 1961 to 2012. Specifically, the farm productivity 

across the region was reduced an average between 0.02% and 22.7%, attributable to weather 

variables. The output reductions varied considerably across the countries, where 20 out of 28 

countries' agricultural output was negatively impacted by weather variability.  

Other research by Njuki et al. (2018) analyzed the changes in Total Factor Productivity 

(TFP) from the weather variables by using the stochastic production frontier model. Their study 

concludes that accounting for environmental variables is an essential part of explaining changes in 



 

61 

agricultural TFP. They found that technological change has had a positive effect on agricultural 

output and is the primary engine to improve TFP. In addition, advanced farming technologies 

have improved farm level efficiency, which directly helps farmers to be more adaptive to the local 

environment. Their research concluded additional efforts to learn the best management practices 

will allow farmers to be more resilient to spatial weather variation as well as agricultural 

ecological factors (Njuki et al., 2018). 

The absence of extreme weather and other catastrophic data in the analysis of crop 

productivity and efficiency seems to be a common constraint in most related research, unless 

crops were grown in the greenhouse environment (Bournaris et al., 2019). The study by Bournaris 

et al. (2019) used the Data Envelopment Analysis (DEA) model to evaluate the productive 

efficiency of four different greenhouse vegetables (e.g., cucumber, eggplant, pepper, and tomato) 

in southern Greece. They analyzed the farm level efficiency by using the input-oriented DEA 

model with the technological assumption of variable return to scale (VRS). However, Cooper et 

al. (2004) suggested the input-oriented radial efficiency should be used carefully because it 

neglects slack variables in the inputs and output. To help farmers make better decisions on crop 

rotations as well as agricultural input allocations, it might be more appropriate to use the multiple-

output or single output of DEA model with both technological assumptions (e.g., VRS and CRS) 

as suggested by Cooper et al. (2004), or multiple input-output frontier analysis, which is proposed 

by Dellnitz and Kleine (2019).  

Ullah et al. (2019) analyzed the efficiency of sugarcane production in Thailand. Their data 

was gathered via face-to-face interviews with 1,366 farmers in six different sugarcane production 

regions in Thailand. The research used a Slack Based Measure (SBM) to evaluate the percentage 

reduction in each input in the input-oriented DEA model. They assumed farming has VRS due to 
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the law of diminishing returns4. The main findings of their study are as follows: 1) most of the 

production inefficiency is associated with farm-level decision-makers (farmers) in general, but 

inefficiency varies by regional size of scale such as sugarcane production efficiency are 

significantly lower in the Northeast, Central, and West regions, 2) profit maximization will be 

more attainable if farmers reduce the quantity of physical inputs through better, or more precise, 

management practices, and 3) labor intensive farming practices might be possible solutions to 

increase efficiency and reduce the environmental costs. One interesting aspect of their research 

was the analysis of the heterogeneity in both intra-regional and inter-regional efficiency of 

Decision Making Units (DMUs). One drawback of the study was the lack of accounting for the 

heterogeneity of environmental effects on sugarcane production in the study region. 

Various studies have focused on comparing SFA and DEA using data from different 

industrial sectors (Murwirapachena et al., 2019; Silva et al., 2017; Kaitelidou et al., 2016). In the 

efficiency literature, choosing one method over another is still controversial (Coelli, 1995; Bravo-

Ureta and Pinheiro, 1993). Thus, many studies compare these two methods using the same data 

(Mathur and Ramnath, 2018). Research by Sharma et al. (1997) compared the results from SFA 

and DEA. Their analysis indicated technical efficiencies from both methods are slightly different. 

Specifically, the mean technical efficiency of 0.64 form the DEA-CRS model is lower than the 

mean technical efficiency of 0.75 from the SFA model. Data for their research was collected from 

60 swine farms in Hawaii in 1994, thus it is a cross-sectional dataset. Moreover, DEA efficiency 

measures indicate a significantly higher variability than the SFA efficiency scores. The 

researchers used Spearman's rank correlation coefficient to examine the technical efficiencies 

from both methods. The correlation results indicated the technical efficiencies from both SFA, 

 
4 According to Basu & Fernald (1997), the law of diminishing returns to scale states that adding more input in the 

production will increase the output at a diminishing rate until additional input can no longer increase the output. 
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and DEA are positively correlated, and that these correlations are statistically significant. But the 

strongest correlation was between SFA and DEA-CRS (e.g., 0.88), even though the means of 

technical efficiencies are significantly different from each other (Sharma et al., 1997). 

Similar research was done by Kalaitzandonakes and Dunn (1995) to measure technical 

efficiency from SFA and DEA on Guatemala corn production using a sample of 82 family farms. 

The study provides different results where the mean technical efficiency of 0.74 from SFA is 

significantly smaller than the mean technical efficiency of 0.93 from DEA-CRS. Technical 

efficiency scores derived from non-parametric methods (i.e. DEA or deterministic frontier) are 

higher, relative to stochastic frontier-derived efficiency scores, in the case of corn production in 

Guatemala. A similar study by Madau, (2015) compared the technical efficiency results from SFA 

and DEA. This research used the cross-sectional data set of 107 Italian citrus farms. The output 

data (i.e. the response variable) is gross revenue, which is slightly different from crop yield or 

TFP. The study found that the strong correlation between SFA-derived technical efficiency scores 

and DEA-VRS-derived technical efficiency scores, whereas slightly weak correlation is found 

between SFA-derived technical efficiency scores and DEA-CRS-derived technical efficiency 

scores based on the Spearman’s rank. This result conflict with some findings of Sharma et al. 

(1997). The existing literature seems to provide mixed results about SFA and DEA and the 

accuracy of their efficiency measures; therefore, more research is needed to explore the accuracy 

of the technical efficiency estimation from SFA and DEA methods. 

3.4. Methodology 

3.4.1. Conceptual Framework  

SFA and DEA will be used in the present research. Under SFA, corn yield frontiers and 

technical efficiency scores are estimated, and output elasticities of corn yield frontiers are derived 
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for each independent variable. The critical component of the SFA focuses on the deviations from 

the production frontier, which is the corn yield frontier. Each DMU has a unique yield frontier, 

which varies randomly according to a collection of stochastic elements not controlled by the 

DMUs. In our research, each corn producing Agricultural Statistics District (ASD) is a DMU with 

its own production frontier, randomly varying with uncontrolled elements that appear as an 

inefficiency. Therefore, our methodology focuses on the following two crucial aspects of 

modeling: 1) functional form of the production (yield) function, and 2) appropriate selection of 

independent variables. 

The study performed the log-likelihood ratio test to assess the goodness of fit of the model 

by jointly testing the statistical significance of the parameters relating each independent variable 

to the yield frontier. Let βj be the vector of parameters relating farm input j to the yield frontier, 

including first-degree, second-degree, and interaction parameters. The null hypothesis is then 

𝐻0: βj = 0, meaning farm input j has no statistically discernible relation to corn yield or to the 

corn yield frontier. The test statistic is: 

  𝜒𝐿𝑅𝑇
2 = −2{𝐿𝐿𝐹𝑅 − 𝐿𝐿𝐹𝑈} (18) 

 

where  𝜒𝐿𝑅𝑇
2  is the log-likelihood ratio test statistic, 𝐿𝐿𝐹𝑅 is the value of the log likelihood 

function when the restrictions are imposed according to 𝐻0, and 𝐿𝐿𝐹𝑈 is the log likelihood 

function value when the restrictions are lifted. The statistic is distributed chi-square with degrees 

of freedom equal to the number of parameters restricted by 𝐻0. If the test statistic exceeds the chi-

square critical value the null hypothesis is rejected, revealing a statistically discernible relation 

between the yield frontier and farm input j through direct first- and/or second-degree effects 

and/or interactions with other farm inputs. Thus, the tested variable should be included in the 

regression, even if none of the individual parameters in βj are statistically significant per t-testing. 
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The intention of using log-likelihood ratio test is to improve the goodness of fit of the stochastic 

translog yield frontier model, hopefully, which leads to be a parsimonious model and provide 

robust estimation for corn yield technical efficiencies for each ASD. In addition, we will perform 

the Variance Inflation Factor (VIF) test to detect the presence of collinearity among the 

independent variables5 (Joshi et al., 2012).  

The pioneers of stochastic frontier analysis include Farrell (1977), Aigner et al. (1977), 

and Meeusen and Van Den Broeck (1977). There are different functional forms (e.g., Cobb-

Douglas, a log-linear, or translog) are assumed in the parametric efficiency. In the research, 

stochastic translog yield frontier model is specified and the theoretical model for this frontier 

model is expressed as: 

 𝑙𝑛𝑦𝑖𝑡 = 𝑓(𝑋𝑖𝑡; 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 (19) 

 

where 𝑙𝑛𝑦𝑖𝑡 is the natural log of corn yield of the 𝑖𝑡ℎ ASD within each state in 𝑡𝑡ℎ year from 1994 

to 2018; 𝑋𝑖𝑡 is farm inputs of the 𝑖𝑡ℎ ASD within each state in 𝑡𝑡ℎ year; 𝛽 is the vector of 

unknown parameters to be estimated; 𝑣𝑖𝑡  is a two-sided error term representing uncertainty about 

the estimated yield frontier for 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year, which is assumed to be independently and 

identically distributed 𝑁(0, 𝜎𝑣
2); and 𝑢𝑖𝑡 is the non-negative one-sided error term that represents 

the yield gap, or yield inefficiency, for the 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year, and it is assumed to be 

independently and identically distributed 𝑁+(0, 𝜎𝑢
2). 𝑣𝑖𝑡  𝑎𝑛𝑑 𝑢𝑖𝑡 are assumed to be uncorrelated 

over time and across ASDs. 

Based on the concept of the stochastic yield frontier model with panel data, a technical 

efficiency score is computed for 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year as follows: 

 
5 The Variance Inflation formula is 𝑉𝐼𝐹𝑖 =

1

1−𝑅𝑖
2  
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 𝑇𝐸𝑖𝑡 =
𝑞𝑖𝑡

𝑒𝑥𝑝(𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡)

=
𝑒𝑥𝑝(𝑋𝑖𝑡

′ 𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡)

𝑒𝑥𝑝(𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡)

= exp(−𝑢𝑖𝑡) (20) 

 

where if 𝑇𝐸𝑖𝑡 = 1, then ASD i efficiently produced its corn output in year t—i.e. there was no 

statistically significant gap between the estimated frontier yield potential and the yield realized. 

On the other hand, if 𝑇𝐸𝑖𝑡 < 1 the ASD’s yield fell short of its potential that year, potentially 

indicating that a superior allocation of controlled agricultural inputs such as fertilizer and 

chemicals might have ameliorated the yield gap.  

3.4.2. Empirical Model for Stochastic Frontier Model 

The empirical model of stochastic translog yield frontier is written as follows: 

 

𝑙𝑛𝑦𝑖𝑡 = 𝛽0 + ∑ 𝛽1,𝑗

10

𝑗=1

𝑙𝑛𝑥𝑖𝑗𝑡 +
1

2
∑ ∑ 𝛽2,𝑗

10

𝑖=1

10

𝑖=1

𝑙𝑛𝑥𝑖𝑗𝑡𝑙𝑛𝑥𝑖𝑗𝑡

+  ∑ ∑ 𝛽3,𝑗,𝑘

9

𝑘=1

9

𝑗=1

𝑙𝑛𝑥𝑖𝑗𝑡𝑙𝑛𝑥𝑖𝑘𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

(21) 

 

where 𝑙𝑛𝑦𝑖𝑡  is the natural log of corn yield in ASD i of the state in year t; 𝛽0 is the estimated 

intercept; 𝛽1,1 ⋯ 𝛽1,10 are the estimated first-degree parameters relating natural logs of J = 10 

farm input variables to the frontier yield; 𝛽2,1, 𝛽2,2, ⋯ , 𝛽2,10 are the estimated parameters relating 

the squared natural logs of  the ten farm input variables to the yield frontier; the 𝛽3,𝑗,𝑘  are the 

estimated parameters relating the products of the natural logs of farm input variables j and k (for 

all 𝑗 ≠ 𝑘) to the yield frontier; 𝑣𝑖𝑡 is the statistical random error term; and 𝑢𝑖𝑡 is the technical 

inefficiency error term. In addition, we estimate the elasticity of mean production with respect to 

the independent variables for the stochastic translog yield frontier model. According to Battese 

and Broca (1997), the output elasticity calculation is given as:  

 𝜗𝑘 = 𝛽𝑘 + 2𝛽𝑘𝑘𝑥𝑘𝑖 + ∑ 𝛽𝑘𝑗𝑥𝑗𝑖𝑗≠𝑘   (22) 
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where 𝜗𝑘  is the mean output elasticity of the corn yield frontier for independent variable k; 𝛽𝑘  is 

the parameter estimates of the kth independent variable; 2𝛽𝑘𝑘  is the squared parameter estimates 

of the kth independent variable;  𝑥𝑘𝑖 is the recent five year averages (e.g., 2014 – 2018) of the kth 

independent variable in the ith  state;  𝛽𝑘𝑗 is the parameter estimates of the interaction among the 

independent variables; and 𝑥𝑗𝑖 is the recent five year averages (e.g., 2014 – 2018) of the jth 

independent variable in the ith  state.  

3.4.3. Empirical Model for Data Envelopment Analysis 

According to Sharma et al. (1997), the output-oriented DEA model for a single output is 

generalized based on the research by Ali and Seiford (1993), presented below. We have n number 

of DMUs (ASDs), and each produces single output (e.g., corn) by using m different inputs. The ith 

ASD uses xki units of kth input in the production of yi  unit of output. Thus, the linear programming 

(LP) problem will be separately solved for each ASD in the year t, which is presented in the 

following formulas (Equation 24), based on the assumption of Variable Returns to Scale (VRS) of 

DEA: 

  Maximize
𝜙𝑖𝑡𝜆𝑖𝑡

𝜙𝑖𝑡   

 Subject to:    

  ∑ 𝜆𝑗𝑡𝑦𝑗𝑡 − 𝜙𝑖𝑡𝑦𝑖𝑡 − 𝑠 = 0𝑛
𝑗=1     

  ∑ 𝜆𝑗𝑡𝑥𝑘𝑗𝑡 + 𝑒𝑘𝑡 = 𝑥𝑘𝑖𝑡
𝑛
𝑗=1   k = 1,…, m inputs;  

  ∑ 𝜆𝑗𝑡 = 1𝑛
𝑗=1   j = 1,…, n DMUs;  

  𝜆𝑗 ≥ 0; 𝑠 ≥ 0; 𝑒𝑘 ≥ 0; t = 1,…, t years; (23) 

 

 where 𝜙𝑖𝑡 is the proportional increase in output for the ith ASD in year t; s is the output slack; 𝑒𝑘𝑡 

is the kth input slack in year t; and 𝜆𝑗𝑡 is the weight of jth ASD in year t.  

The analysis of the output-oriented DEA frontier model is to maximize the proportional 

increase in output while the current level of inputs stays constant. The output maximization of ith 
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ASD requires the output slack, s, to be zero; therefore, the ith ASD will be fully efficient in year t. 

In other words, that ASD lies on the DEA frontier when 𝜙𝑖𝑡 = 1, 𝜆𝑖𝑡 = 1, and 𝜆𝑗𝑡 = 0 for 𝑗 ≠ 𝑖 ≠

𝑡. If 𝜙𝑖𝑡 > 1, 𝜆𝑖𝑡 = 0, and 𝜆𝑖𝑡 ≠ 0 for 𝑗 ≠ 𝑖 ≠ 𝑡, then ith ASD is inefficient in year t, implying that 

the current level of inputs can be used to achieve a higher output level. The frontier production 

level for the ith ASD is given by Sharma et al. (1997): 

 𝑦̂𝑖𝑡 =  ∑ 𝜆𝑗𝑡𝑦𝑗𝑡
𝑛
𝑗=1 = 𝜙𝑖𝑡𝑦𝑖𝑡   (24) 

 

where 𝑦̂𝑖𝑡  is the projected production yield frontier. Based on 𝑦̂𝑖𝑡 , the TE of the ith ASD is 

calculated as the ratio of the observed output level of the ith ASD and the projected production 

frontier level for the ith ASD in the same year t, which is same as the ratio between one and the 

proportional increase in output for the ith ASD in the year t (Sharma et al., 1997): 

 𝑇𝐸𝑖𝑡 =  
𝑦𝑖𝑡

𝑦̂𝑖𝑡
=

1

𝜙𝑖𝑡
 (25) 

 

The ratio between 𝑇𝐸𝑖𝑡 of CRS and 𝑇𝐸𝑖𝑡 of VRS provides the scale efficiency (𝑆𝐸𝑖𝑡) for 

the 𝑖𝑡ℎ ASD in the 𝑡𝑡ℎ year (Wadud and White, 2010):  

 𝑆𝐸𝑖𝑡 =
𝑇𝐸𝑖𝑡  (CRS) 

𝑇𝐸𝑖𝑡  (𝑉𝑅𝑆)
 (26) 

 

If the 𝑆𝐸𝑖𝑡 = 1 for 𝑖𝑡ℎ ASD in the year t, then the corn production in the  𝑖𝑡ℎ ASD is at the most 

productive scale size (MPSS), which indicates CRS in the year t. If SE <1 for the 𝑖𝑡ℎ ASD in the 

year t, then the corn production in 𝑖𝑡ℎ ASD has locally decreasing returns to scale (DRS), whereas 

if SE >1 for the 𝑖𝑡ℎ ASD in the year t, then corn production in the 𝑖𝑡ℎ ASD has locally increasing 

returns to scale (IRS) (Fried et al., 2008).  
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3.4.4. Data Description 

This research analyzes a panel data set of the 31 ASDs in five different states: Minnesota, 

North Dakota, Nebraska, South Dakota and Wisconsin, from 1994 to 2018. The following two 

reasons are why our research used ASDs as our research DMUs (USDA NASS, 2018): 1) ASDs 

are intended to provide timely, accurate and useful statistical information to United States’ 

Agricultural Service; therefore, the variety of crops’ input and output data are available spatially 

as well as historically at the ASD level, and 2) ASDs are defined groupings of counties in each 

state, by geography, climate, and cropping practices that have similarities on the geographic 

attributes (e.g., soil type, terrain, and elevation), climate components (e.g., mean temperature, 

precipitation and length of growing season) and cropping practices (e.g., use of irrigation, crop 

rotation and specialty crops).  

Figure 12 presents the map with ASD and states are labeled with underline. Due to the 

data availability and limitation, we are able to organize and collect data of all nine ASDs for only 

the state of North Dakota. However, for other states, we are not able to collect data of all ASDs. 

Thus, we only have data of eight ASDs for the state of Minnesota, data of five ASDs for the state 

of South Dakota, data of six ASDs for the state of Nebraska, and three ASDs for the state 

Wisconsin. Each ASD has a number and corresponds to a geographic region within the state. For 

instance, Minnesota’s district MN10 is the Northwest region, district MN20 is the North-central 

region, MN90 is the Southeast region, and so forth.   

The response variable for this research is corn yield at the ASD level. Independent 

variables include land area planted to corn, expenditures on seed, fertilizer, pesticide, labor, and 

machinery, as well as rainfall and temperature variables (average daily minimum and maximum 

temperatures and average daily mean temperature for the growing season). Data for corn yield, 
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corn area planted, and expenditures on seed, pesticide, fertilizer, labor, and machinery were 

collected from the Farm Financial Management Database6 (FINBIN). Data for rainfall and 

temperatures were collected from PRISM Climate Database7. The data descriptions are provided 

in Table 9. The descriptive statistics associated with the response and explanatory variables are 

presented in Table 10.  

 

Figure 12. Agricultural Statistics Districts of five state.  

 

 

 

 
6 Farm data sources: https://finbin.umn.edu/. 
7 Weather data sources: http://www.prism.oregonstate.edu/. 
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Table 9. Descriptions of input and output variables and data sources. 

Variables Unit descriptions Sources  

Yield Average corn yield by ASD (bushels per acre) FINBIN 

Land Average corn acreage by ASD (acres per farmer) FINBIN 

Seed  Average seed expenditure by ASD ($ per acre) FINBIN 

Fertilizer Average fertilizer expenditure by ASD ($ per acre) FINBIN 

Pesticide Average pesticide expenditure by ASD ($ per acre) FINBIN 

Labor Average labor expenditure by ASD ($ per acre) FINBIN 

Machinery Average machinery expenditure by ASD ($ per acre) FINBIN 

Rainfall Total growing season rainfall by ASD (inches per year) PRISM 

Mean Temperature Growing season average daily mean temperature by ASD (°F) PRISM 

Min Temperature Growing season average minimum daily temperature by ASD (°F) PRISM 

Max Temperature Growing season average maximum daily temperature by ASD (°F) PRISM 

 

Table 10 presents the multistate-level descriptive statistics for all inputs and output used in 

the research. In addition, we also report descriptive statistics for all inputs and output of each state 

in Appendix A from Table A1 through A5. 

Table 10. Multistate-level descriptive statistics of input and output variables, 1994-2018. 

Variable Unit N Mean Std Dev Minimum Maximum 

Yield Bu./acre 775 127.06 34.12 13.96 220.16 

Land Acres 775 277.30 122.33 58.77 794.92 

Seed  $/acre 775 64.59 28.06 19.24 144.73 

Fertilizer $/acre 775 80.66 40.82 21.40 224.16 

Pesticide $/acre 775 31.13 9.57 12.44 78.48 

Labor $/acre 775 17.96 11.27 2.76 96.77 

Machinery $/acre 775 6.24 3.38 0.00 22.84 

Rainfall Inches 775 20.57 6.60 6.92 43.64 

Temperature °F 775 61.40 4.06 45.63 70.05 

Min Temperature °F 775 37.30 5.93 22.70 61.05 

Max Temperature °F 775 83.48 4.16 73.30 96.20 

 

Based on Table 10, the average corn yield in the study region from 1994 to 2018 is 127.06 

bushel per acre, with a standard deviation of 34.01. The average cornfield was approximately 

277.30 acres, with a standard deviation of 122.33. According to Table A1 through A5, cornfield 

size varies substantially across the states. For instance, the average corn acreage in North Dakota 
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is 316.71, which is the largest average corn acreage amongst the states, whereas Nebraska’s 

average corn acreage of 221.62 is the smallest in the data sample. In the past 25 years, acres of 

corn per operation varied substantially across each state’s ASDs and within most ASDs over time. 

The standard deviation of the average corn acreage in North Dakota is 154.52, which is the largest 

amongst other states: standard deviations of 116.41 in Minnesota, 97.18 in Nebraska, 87.07 in 

South Dakota, and 50.92 in Wisconsin. This is indicating the farmers in North Dakota use crop 

rotations every year, so the total corn acreage changes substantially from year to year. Moreover, 

the average cropland size per farmer in North Dakota may also be relatively larger than others. On 

the other hand, the farmers in Wisconsin do not change corn acreage as much as other states. This 

may be due to the consistent quantity of corn demanded at the local level in every year; therefore, 

the total corn acreage per farmer will also be consistent over time.  

For farm input expenditures, the aggregated seed expenditure from all states averages 

$64.59 per acre with a standard deviation of $28.06. The average corn seed expenditure in 

Nebraska is $53.92 per acre, which is the lowest seed expenditure of all states studied. Minnesota 

farmers’ average spending on seed is much higher, at $72.71 per acre. The aggregated fertilizer 

expenditure from all five states is averaged as $80.66 per acre, with a standard deviation of 

$40.82. Surprisingly, the average fertilizer expenditures in each state have relatively wider 

variation. The fertilizer expenditure in Wisconsin is $99.77 per acre and followed by $97.02 in 

Minnesota, $75.18 in North Dakota, $68.49 in South Dakota, and $67.66 in Nebraska. The 

aggregated pesticide expenditure is averaged as $31.13 per acre, with a standard deviation of 

$9.57. By state, the average pesticide expenditure in Wisconsin is the highest amongst others. 

Noticeably, the pesticide expenditures in Wisconsin, Nebraska, and Minnesota are relatively 

higher than the expenditures in South Dakota and North Dakota. The aggregated expenditure of 
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farm labor and machinery are averages as $17.96 per acre and $6.24 per acre, respectively. Both 

expenditures in each state are estimated fairly close (see Table A1 to A5). All corn input 

expenditure variables are adjusted for inflation and presented in 2018 USD per acre ($/ac.). The 

deflation is based on the Gross Domestic Product (GDP) deflator, and the formula is used as:  

 𝐺𝐷𝑃 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟 =
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃

𝑅𝑒𝑎𝑙 𝐺𝐷𝑃
∗ 100  (27) 

 

Based on the study region, total rainfall in the growing season is averaged approximately 

20.57 inches over the study period, with a standard deviation of 6.60. Specifically, almost all 

states’ total rainfall stayed around 20.57 range, except North Dakota’s total rainfall. Because total 

rainfall in North Dakota is averaged as 14.97, which is considerably lower than the overall 

average. For growing season average daily mean temperature (“average temperature”), the study 

region’s temperature is average of 61.40 °F with a standard deviation of 6.60 °F. The highest 

mean temperature of 66.22 °F is in Nebraska, whereas the lowest mean temperature is estimated 

in South Dakota with 58.37 °F. The temperature difference makes sense geographically, where 

Nebraska is located in the further south of the Northern Plains than South and North Dakota. Due 

to climate change, the growing season in the southern states is hotter compared to northern states 

(Allen et al., 2015). The growing season average daily high temperature (“maximum 

temperature”) is 83.48 °F, with a standard deviation of 4.16°F. Maximum temperature in 

Nebraska is the highest of 87.99 °F and followed by 84.66 °F in South Dakota, 82.72 °F in North 

Dakota, 81.14 °F in Wisconsin, and 81.09 °F in Minnesota. The growing season average daily 

low temperature (“minimum temperature”) is 37.30 °F, with a standard deviation of 5.93 °F. 

Minimum temperature in South Dakota is the highest of 44.54 °F and followed by 39.93 °F in 

Nebraska, 38.05°F in Wisconsin, 36.34 °F in Minnesota, 32.12 °F in North Dakota. To visually 
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observe the corn yield variation across the study region, Figure 15 presents corn yield descriptive 

summary of each state over the study period from 1994 to 2018.  

According to Figure 13, farmers in Minnesota, North Dakota, South Dakota, Nebraska, 

and Wisconsin had an average corn yield of 145.77 bushels per acre, 113.61 bushels per acre, 

115.46 bushels per acre, 119.42 bushels per acre, and 152.10 bushels per acre, respectively. The 

average corn yields in Minnesota and Wisconsin are significantly higher than the other three 

states’ corn yield averages. The highest corn yield was recorded in Minnesota with 220.16 

bushels per acre, whereas the lowest corn yield was recorded in North Dakota with 13.96 bushels 

per acre in the past 25 years. 

 

Figure 13. Corn yield summary statistics by state, 1994-2018. 
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Qualitative and Limited Dependent Variable model (QLIM) in the Statistical Analysis 

System (SAS) is used to estimate the stochastic yield frontier model. The estimation provides a 

coefficient for each parameter in the model and generates estimates for yield frontier as well as 

technical efficiency scores. Additionally, Stata 14 is used for Monte Carlo simulations to 

approximate the standard errors of the elasticity estimates for each explanatory variable. This 

process enables us to determine the significance level of each elasticity by using a t-test. Our null 

hypothesis for the test is that the output elasticities are no different from zero. If we reject the null 

hypothesis, the tested elasticities are statistically different from zero. Thus, we can conclude that 

there is sufficient evidence to make inferences about the relationships between inputs and output 

variables and economies of scale. We also used Stata to estimate the DEA yield efficiency 

frontier under two technological assumptions (VRS and CRS) to compare their technical 

efficiency scores with SFA’s technical efficiency scores.  

3.5. Results and Discussion 

3.5.1. Results from Stochastic Frontier Model 

Table 11 presents the log-likelihood ratio test results. The joint significance of the 

parameter estimates for each of the farm input expenditure and weather variables are tested 

comparing the log-likelihood ratio statistic calculated with equation (19) to the appropriate chi-

square critical value. The test results indicate that the effects of all explanatory variables, 

including second-degree and interaction effects, on the corn yield frontier are all statistically 

significant. In addition, the Variance Inflation Factor (VIF) test indicates the coefficient of each 

variable is lower than six. Thus, VIF results indicates multicollinearity should not have substantial 

effects on the standard errors of the parameter estimates. Given the statistical results and 

discussion above, all the explanatory variables in the dataset can be included in the estimated 
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translog stochastic frontier model of corn yield. The parameter estimates of this model are 

presented in Table 12. 

Table 11. Multistate log likelihood ratio and Variance Inflation Factor test results. 

Variables Null Hypothesis 

Degrees of 

freedom 

Log Likelihood Ratio 

Test Statistic VIF 

Land 𝐻0: βland = 0 8 145.44***a, b 1.75 

Seed 𝐻0: βseed = 0 7 46.02*** 5.59 

Fertilizer 𝐻0: βfert. = 0 8 35.48*** 4.79 

Pesticide 𝐻0: βPest. = 0 11 57.56*** 2.13 

Labor 𝐻0: βLabor = 0 9 55.08*** 1.17 

Machinery 𝐻0: βMach. = 0 11 46.46*** 1.50 

Rainfall 𝐻0: βrain = 0 7 46.56*** 2.55 

Temperature 𝐻0: βμtemp = 0 7 113.42*** 2.44 

Min Temp 𝐻0: βμmintemp = 0 7 77.54*** 2.29 

Max Temp 𝐻0: βμmaxtemp = 0 6 92.64*** 1.67 

Insignificant Parameters 𝐻0: βinsignificant = 0 26 205.84*** N/A 

a The test statistics are distributed chi-square with the indicated degrees of freedom equal to the 

number of restricted parameters. 
b Asterisks indicate exceedance of the chi-square critical value at significance levels 0.01 (***), 

0.05 (**), and 0.10 (*). 

The stochastic translog yield frontier model is specified in equation (22). Table 12 

presents the maximum likelihood estimates of the model. The model estimated a total of 54 

parameters, including sigma v and u. Almost half of 54 parameters are individually significant at 

𝛼 = 0.10 or above. Moreover, the variance component gamma represents the proportion of the 

inefficiency from the total variance, and it is estimated at 0.918. This implies that about 91.8% of 

corn yield variation is caused by the technical inefficiency effects. In chapter 2, the gamma 

coefficient was 0.809 (80.9%) for the analysis of corn yield efficiency in North Dakota, which is 

little bit smaller than this coefficient for the multistate analysis.  
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Table 12. Multi-states stochastic translog yield frontier model of estimation.  

Variables Parameter Estimate t-statistic p-value 

Stochastic Yield Frontier     
Constant β0 -83.43 41.08 0.042 

Land βL 7.01 1.22 <0.001 

Land Square βLL -0.01 0.03 0.671 

Seed βS 0.93 0.49 0.060 

Seed Square βSS 0.05 0.09 0.153 

Fertilizer βF -3.27 1.24 0.008 

Fertilizer Square βFF 0.14 0.06 0.046 

Pesticide βP 9.21 2.14 <0.001 

Pesticide Square βPP -0.06 0.06 0.380 

Labor βLa -0.52 1.22 0.674 

Labor Square βLaLa 0.04 0.02 0.021 
Machinery βM -0.76 0.77 0.328 

Machinery Square βMM -0.00 0.00 0.699 

Rainfall βR 1.87 1.77 0.289 

Rainfall Square βRR -0.07 0.04 0.094 

Temperature  βT -32.03 9.08 0.001 

Temperature Square βTT 4.09 1.17 0.001 

Minimum Temp βMi -6.29 1.54 0.080 

Min Temp Square βMiMi 0.61 0.22 0.005 

Maximum Temp βMa 59.79 16.41 <0.001 

Max Temp Square βMaMa -5.35 1.82 0.003 

Land x Seed βLS 0.04 0.05 0.463 
Land x Pesticide βLP -0.05 0.06 0.383 

Land x Machinery βLM 0.02 0.02 0.244 

Land x Rainfall βLR -0.07 0.04 0.132 

Land x Temperature βLT -0.31 0.31 0.324 

Land x Min Temp βLMi 0.04 0.12 0.726 

Land x Max Temp βLMa -1.23 0.31 0.001 

Seed x Fertilizer βSF -0.33 0.14 0.025 

Seed x Pesticide βSP 0.04 0.11 0.735 

Seed x Labor βSL -0.06 0.03 0.044 

Seed x Machinery βSM 0.06 0.04 0.139 

Fertilizer x Pesticide βFP -0.09 0.09 0.353 

Fertilizer x Machinery βFM -0.12 0.04 0.002 
Fertilizer x Temperature βFT -0.20 0.32 0.535 

Fertilizer x Min Temp βFMi 0.33 0.12 0.005 

Fertilizer x Max Temp βFMa 0.80 0.30 0.008 

Pesticide x Labor βPL 0.15 0.05 0.001 

Pesticide x Machinery βPM 0.02 0.03 0.409 

Pesticide x Rainfall βPR 0.10 0.09 0.285 

Pesticide x Temperature βPT 0.27 0.48 0.586 

Pesticide x Min Temp βPMi 0.13 0.19 0.507 

Pesticide x Max Temp βPMa -2.36 0.40 <0.001 

Labor x Machinery βLM -0.04 0.02 0.066 

Labor x Rainfall βLR 0.07 0.05 0.190 
Labor x Temperature βLT 0.10 0.31 0.755 

Labor x Min Temp βLMi 0.11 0.12 0.360 

Labor x Max Temp βLMa -0.22 0.26 0.408 

Machinery x Rainfall βMR 0.07 0.03 0.007 
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Table 12. Multi-states stochastic translog yield frontier model of estimation (continued). 

Variables Parameter Estimate t-statistic p-value 

Machinery x Min Temp βMMi -0.37 0.08 0.001 

Machinery x Max Temp βMMa -0.14 0.23 0.526 

Rainfall x Max Temp βRMa -0.36 0.36 0.321 

Variance Parameters         

Sigma2_v 𝜎𝑣
2 0.003   

Sigma2_u 𝜎𝑢
2 0.028   

Sigma2 𝜎2 = 𝜎𝑣
2 + 𝜎𝑢

2 0.031   
Gamma 𝛾 = 𝜎𝑢

2/𝜎2 0.918   
Log-likelihood ℒ 404.02     

Observations  775   

 

The higher gamma estimate for the larger geographic region in this chapter may simply 

reflect that larger geographic regions have greater heterogeneity of climate, as compared with 

smaller regions such as the state of North Dakota. This is possible that more observations in the 

dataset will definitely increase the inefficiency effects, where the prediction of the technical 

efficiency and the effect of yield frontier become more accurate under the SFA model.  

One relatively simple way to assess the effects of the several input variables is to explore 

the output elasticity of the corn yield frontier’s response to each explanatory variable. The 

elasticity estimates provide standardized, unit-free statistical quantifications of the percentage 

change in in the corn yield frontier resultant from a 1% increase in each of the individual 

explanatory variables, ceteris paribus. 

Table 13 reports the output elasticities derived from equation (23). The output elasticities 

quantify the effects of changes in each explanatory variable on the corn yield frontier. A total of 

14 output elasticities are derived from the SFA model and their standard errors are approximated 

using Monte Carlo simulation to determine each output elasticity’s significance level. 

To better assess how the yield would change in response to three daily temperatures: 

minimum temperature, maximum temperature, and mean temperature, we estimated the combined 

output elasticities. For instance, MiMatemTemp represents the combined output elasticity of a 



 

79 

uniform shift in mean temperature, minimum temperature, and maximum temperature. The 

elasticities of MiMatemTemp in each state are statistically significant at 𝛼 < 0.10. In the multi-

state study region, the corn yield frontier will increase by 31.12% when the entire growing season 

temperature distribution increases by 1%. In other words, if daily average temperature increases 

from 61.40 to 62.01, daily maximum temperature increases from 83.48 to 84.31, and daily 

minimum temperature increases from 37.30 to 37.67, the average corn yield frontier in the 

northern U.S. Corn Belt will increase to 166.37 bushels per acre (an increase of approximately 40 

bushels per acre). 

Notably, each MaMitemTemp elasticity varies by state. For instance, the North Dakota 

corn yield will increase by 48.25%, up to 168.42 bu./acre, the Minnesota corn yield will increase 

by 38.30%, up to 201.59 bu./acre, the South Dakota corn yield increase by 40.26%, 161.94 

bu./acre, the Wisconsin corn yield will increase by 43.32%, up to 217.98 bu./acre, and Nebraska 

corn yield increase by 17.53%, up to 178.76 bu./acre. Among the states, North Dakota’s corn 

yield will increase the most, whereas corn yield in Nebraska will increase the least. However, all 

states’ average corn yields are predicted to increase from general temperature increases. Greater 

yield responses to temperature changes will occur at more northern latitudes because colder 

temperatures in the northern states are more constraining than the warmer temperatures in the 

southern portions of the study region.  
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Table 13. Output elasticities of the corn yield in each state. 

Variables MN ND NE SD WI Pooled 

Land 1.46*** 1.66*** 1.20*** 1.78*** 1.62*** 1.54*** 

 (0.18) (0.18) (0.18) (0.18) (0.18) (0.18) 

Seed 2.31 3.31** 3.13** 3.31** 3.32** 3.08** 

 (1.53) (1.53) (1.53) (1.53) (1.53) (1.53) 

Fertilizer 2.51*** 3.26*** 3.51*** 3.03*** 2.26*** 2.91*** 

 (0.92) (0.92) (0.92) (0.92) (0.92) (0.92) 

Pesticide 0.19 0.77* 0.09 0.88 0.59* 0.51 

 (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) 

Labor 2.16 3.15* 3.17* 2.48 3.50* 2.89* 

 (1.83) (1.83) (1.83) (1.83) (1.83) (1.83) 

Machinery 3.51 2.52 3.49 3.55 5.62 3.74 

 (4.42) (4.42) (4.42) (4.42) (4.42) (4.42) 

Rainfall 7.95* 7.98* 9.98** 8.95* 9.95** 8.96** 

 (4.43) (4.43) (4.43) (4.43) (4.43) (4.43) 

Temperature 27.14** 34.08*** 18.28* 24.09** 24.15** 18.24** 

 (11.68) (11.68) (11.68) (11.68) (11.68) (11.68) 

Min Temp 5.27* 5.25* 7.30*** 5.27* 5.29* 6.48* 

 (2.94) (2.94) (2.94) (2.94) (2.94) (2.94) 

Max Temp 5.89 8.93 11.56 13.90* 13.88* 6.21* 

 (7.54) (7.54) (7.54) (7.54) (7.54) (7.54) 

MiMatemTempa 38.30** 48.25*** 17.53* 40.26*** 43.32*** 31.12*** 

 (10.13) (10.13) (10.13) (10.13) (10.13) (10.13) 

MitemTempb 32.41*** 39.32*** 5.98 20.36*** 29.44** 24.91*** 

 (10.32) (10.32) (10.32) (10.32) (10.32) (10.32) 

MatemTempc 33.03*** 43.00*** 10.83*** 29.99*** 38.03*** 24.65*** 

 (10.91) (10.91) (10.91) (10.91) (10.91) (10.91) 

MiMatemd 11.16 14.17 0.25 19.17** 19.18** 12.68** 

 
(8.90) (8.90) (8.90) (8.90) (8.90) (8.90) 

***, **, and * indicate the significant level at 𝛼 = 0.01, 𝛼 = 0.05, and 𝛼 = 0.10, respectively.  
a MiMatemTemp represents the combined elasticities of minimum temperature, maximum 

temperature, and average temperature.  
b MitemTemp represents the combined elasticities of minimum temperature and average 

temperature.  
c MatemTemp represents the combined elasticities of maximum temperature and average 

temperature. 
d MiMatem represents the combined elasticities of minimum temperature and maximum 

temperature.  
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Under the assumption that average temperature and minimum temperature can shift 

together, while maximum temperature stays constant, the yield frontier will increase by 

approximately 25% for a 1% increase in mean temperature and minimum temperature in the same 

growing season in the northern region. Looking at each state alone, the effects of MitemTemp in 

North Dakota corn are the highest, at 39.32% (𝛼 = 0.01) whereas Nebraska corn yield will 

increase least, at 5.98% (not statistically significant).  

If mean temperature and maximum temperature shift simultaneously while minimum 

temperature remains constant, the elasticity of MatemTemp predicts the corn yield frontier would 

increase by 24.6%, (31.25 bu./ac), on average. If this happens, then we should expect the average 

corn yield in the northern U.S. Corn Belt to be approximately 158.50 bushels per acre, on 

average. These elasticity estimates vary from state-to-state, again, with the largest estimated 

elasticity  in North Dakota, where the corn yield frontier will increase by 43.0% (𝛼 = 0.01) 

whereas Nebraska’s corn yield least, by 10.83% (𝛼 = 0.01).  

The MiMatem elasticity is estimated to assess how corn yield might respond to 

simultaneous changes in daily minimum temperature and daily maximum temperature coincide, 

while average temperature stays constant (admittedly, an unlikely scenario). MiMatem elasticity 

indicates that corn yield will increase by 12.68% when there is a 1% increase in both daily 

maximum and minimum temperatures in the northern region. By state, the elasticities of South 

Dakota (19.17%) and Wisconsin (19.18%) are statistically significant (𝛼 = 0.05), while others 

are not. Generally, we can infer that corn yield in the northern region of the US Corn Belt is very 

responsive to increases in the general temperature level, especially in states north of Nebraska. 

More importantly, the yield frontier seems to depend on general, uniform increases in all three 

temperature variables in the model, this finding has not been reported in the related literature. 
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The mean temperature has the highest effect on the corn yield by 18.24% for the study 

region, 34.08% for North Dakota, 27.14% for Minnesota, 24.15% for Wisconsin, 24.09% for 

South Dakota, and 18.28% for Nebraska. The maximum temperature has the second highest effect 

on the corn yield, but not all elasticities are statistically significant.  

In addition, the elasticities of minimum temperature in each state are significant at 𝛼 =

0.10 or above. If a 1% increase occurs in the minimum daily temperature, it is predicted to 

increase corn yield by 7.30% in Nebraska, 5.90% in South Dakota, 5.29% in Wisconsin, 5.27% in 

Minnesota, and 5.25% in North Dakota. The variation of the minimum temperature in the 

growing season is estimated to be another critical factor. Sources of average minimum daily 

temperature increases during the growing season would be earlier spring thaw, later first fall frost, 

and general warming. It seems obvious that when the minimum daily temperature during the early 

growing season is higher than the average, farmers may be able to plant their crops a bit earlier 

than usual, which provides more time for crops to grow and mature and allows farmers to select 

higher-yielding corn varieties that need more time for maturation. Similarly, a longer frost-free 

period in fall further increases the viable growth period. If farmers had better information about 

the weather in the crop growing season, especially in early spring and fall, then they would be 

able to better manage the timing of inputs and potentially find other ways to adaptively increase 

crop yield.  

The elasticities of rainfall in each state are significant at 𝛼 ≤ 0.10 or better. Thus, the corn 

yield frontier shifts with inter-annual and spatial variations in rainfall—increases of 8.96% in the 

pooled study region, 9.98% in Nebraska, 9.95% in Wisconsin, 8.95% in South Dakota, 7.98% in 

North Dakota, and 7.95% for Minnesota, when there is a 1% increase in total rainfall in the 
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growing season. The variation of total rainfall has the second largest effect, after temperature, on 

the corn yield frontier in the pooled study region, as well as in the states individually. 

In terms of farm input expenditure, machinery expenditure seems a vital factor for corn 

yield, but some state's elasticities are not statistically significant. Machinery expenditure is 

referring to agricultural machinery and equipment leases. Thus, farmers using newer, more 

advanced, and costlier farming machinery and equipment will have higher machinery 

expenditures. Because newer implements are designed to improve input use efficiency while 

increasing yield, it is expected that farmers with higher machinery expenditures can produce more 

output given the same level (or a lower level) of other inputs such as labor. In this case, an 

increase in expenditures on machinery and equipment leases may maintain the current level of 

corn yield, but it is not quite increasing the yield in the substantially. 

The corn yield frontier is also highly responsive to seed expenditure. The estimated 

elasticity of yield’s response to seed expenditure for the pooled study region is 3.08, meaning a 

1% increase in seed expenditure leads to a 3.08% increase in corn yield significant at 𝛼 = 0.05. 

All states in the study region have similarly elastic yield responses to seed expenditure: a 1% 

increase in seed expenditure should increase corn yield by 3.13% in Nebraska, 3.31% in South 

Dakota, 3.32% in Wisconsin, 3.31% in Minnesota, and 3.31% in North Dakota. Perhaps this 

elasticity indicates that increases in the real price of corn seed during the study period reflect the 

higher productivity of new (and costlier) seed lines during the study period, as well as 

simultaneously decreasing row spacing to allow higher plant populations. The output elasticities 

of seed expenditures imply that the price of new varieties is probably competitive, and that 

breeding effort have resulted increasing productivity that outweighs the increase in costs.  
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Fertilizer expenditure is the third essential expense for increasing the yield, and all 

fertilizer elasticities are statistically significant at 𝛼 = 0.01. This means a 1% increase in fertilizer 

expenditure is predicted to increase the yield by 3.51% in Nebraska, 3.03% in South Dakota, 

2.91% in Wisconsin, 2.51% in Minnesota, and 3.26% in North Dakota.  

The labor expenditure is the fourth essential expense in terms of increasing yield, but this 

expenditure is related to farm management, and one of the management goals is to increase or 

maintain the crop yield without increasing total inputs. In other words, labor expenditures may 

not directly increase the yield; however, it might have indirect effects that should be explored in 

the model. Based on the estimated elasticity of labor expenditure, corn yield would increase by 

3.17% in Nebraska, 2.46% in South Dakota, 3.50% in Wisconsin, 2.16% in Minnesota, and 

3.15% in North Dakota when the labor expenditure increases about 1%.  

The last (and maybe least) essential farm input is land quantity (acreage of corn planted), 

but each elasticity of land in the states is statistically determined as significance at 1% level. The 

elasticities of yield response to land do not vary from state-to-state; that is to say the 90% 

confidence intervals for these estimates have substantial overlap. The general interpretation would 

be about a 1% increase in the average planted area per farmer would increase corn yield by 1.20% 

in Nebraska, 1.78% in South Dakota, 1.62% in Wisconsin, 1.46% in Minnesota, and 1.66% in 

North Dakota. This translates to an increase of 2.12 bu./ac. in Minnesota and Nebraska, 1.88 

bu./ac. in North Dakota, 1.38 bu./ac. in South Dakota, , and 2.46 bu./ac. in Wisconsin. 

According to the overall interpretation of the output elasticities, the study found that the 

variation of weather variables is the dominant factor affecting inter-annual corn yield variation in 

all five states, though farm input expenditures are also important factors of production. 

Unfortunately, the effects of managed inputs on yield are decidedly smaller than weather effects. 
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Most weather variable’s elasticities are statistically significant at 𝛼 = 0.10 or better; however, 

their effects vary substantially at the state level, which implies that when the geographic scope of 

the study region increases, the effects of weather variables change substantially throughout the 

region. This may not be the case at ASD level because of the results found in chapter 2. In chapter 

2, each variable’s elasticities were not discernibly different across the ASDs in North Dakota. We 

conjecture that the different findings in chapters 2 and 3might be related to the various attributes 

of the study regions, such as location, size, and number of DMUs included in the study region, 

and a higher degree of weather variability when the geographic scope is extended. In this case, we 

used the state averages to estimate the elasticities of corn yield from each explanatory variable. 

Hence, differences between the state and ASD suggest each variable’s elasticities would vary 

relatively more at the state level than at the ASD level. One may be interested in how the 

elasticity effects will be different at the county or country level if data for crop inputs and outputs 

are publicly available at these levels. 

The state-level comparison provides more inferences about which variables account for 

the most and least yield variation in each state. We find that the yield frontier shifts much more in 

response to temperature variation in the more northern states, such as North Dakota and 

Minnesota, than in the southern-most state in the study region (Nebraska). The greater 

responsiveness of yield to temperature variation in the north (vs. in Nebraska) can likely be 

attributed primarily to lower baseline temperatures in the northern latitudes and corn yield’s dose-

response relation with heat. Therefore, northern states should be expected to experience greater 

yield gains in response to climate change than southern states. In fact, states far to the south of the 

study region may even see corn yields decline in response to higher temperatures 
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Figure 14 presents the corn yield efficiency scores derived from the stochastic translog 

yield frontier model for each of the five states from 1994 to 2018. The black line represents the 

median efficiency score each year. The median remains fairly constant from year to year, always 

between 0.80 and 0.95. This means that every year at least three states were 80% efficient or 

better; however, none of the states attained an efficiency score of 1 in any year, indicating that 

each state has some inefficient ASDs every year. In 2002 and 2012, the distribution of technical 

efficiency scores was negatively skewed, indicating the technical efficiency distribution has a 

long left tail. This means some states, Wisconsin, Minnesota, and North Dakota performed at an 

economically efficient level relative to Nebraska and South Dakota.. 

 

Figure 14. Technical efficiency scores from Stochastic Frontier Model, 1994-2018. 

Corn producers from Nebraska in 2002, North Dakota in 2011, and South Dakota and 

Nebraska in 2012 had substantially lower technical efficiency scores than the other states. This 

may be due to abnormal weather patterns or crop disease outbreaks in these states during those 

years. Based on historical weather information, the more southern states in the study region had 

severe to extreme drought conditions during the summer of 2012. For North Dakota in 2011, the 
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summer was much cooler than usual, and it was a rainy, excessively wet summer. For Nebraska in 

2002, there was a severe drought all summer long and farmers had a poor crop yield. These 

abnormal effects could be the main disruption causing low technical efficiency in South Dakota 

and Nebraska in 2002 and 2012, and North Dakota in 2011. Overall corn technical efficiency 

scores in the study region haven’t fluctuated much over the study period according to the SFA 

model.  

Figure 15 presents the descriptive summary for each state's technical efficiency scores at 

the ASD level. From 1994 to 2018, the average technical efficiency scores in Southern Minnesota 

and South Western Wisconsin had the highest average technical efficiency scores amongst all the 

ASDs analyzed. The average technical efficiency scores in the Central ASD in North Dakota, and 

the South-central ASD in Nebraska were as the lowest. Based on the aggregated ASDs' technical 

efficiency scores in each state, the technical efficiency score in Wisconsin averaged 0.916, which 

is the highest average comparatively. The second-highest average is in Minnesota, the third is in 

North Dakota, followed by South Dakota, and Nebraska. During the past 25 years, the lowest 

technical efficiency score in a North Dakota ASD was 0.128 (Central and 2004) for North 

Dakota, and the highest was 0.977 (Northeast and 2009), which implies technical efficiencies 

varied substantially in North Dakota compared to other states. This efficiency variation could be 

attributable to the following: 1) there are more observations (more of North Dakota’s DMUs) in 

the dataset than for the other states, and 2) North Dakota has substantial daily temperature 

variations, that are relatively more prominent than other state's daily temperature variations. 

Nevertheless, Nebraska's estimated standard deviation is the largest (0.123), indicating corn 

production technical efficiency varies much more in Nebraska than other states. 
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Figure 15. Technical efficiency score from Stochastic Frontier Model in each Agricultural 

Statistics District within states, 1994-2018. 

3.5.2. Results from Data Envelopment Analysis 

The output-oriented DEA model with the technology assumption of VRS and CRS are 

estimated to generate the corn yield technical efficiency scores for all ASDs within the five states. 

Figure 16 presents the technical efficiency scores generated by the DEA-VRS for all ASDs within 

the five states over 25 years from 1994 to 2018. The black line represents the overall median of 

the technical efficiency scores. The overall median technical efficiency score has peaks and 

troughs on the same timeline as the median score from SFA; however, the peaks and troughs of 

the DEA-derived scores are much more extreme by comparison. Nonetheless, the range of 

variability of technical efficiency scores seem to be reduced some if this one is compared to the 
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one in Figure 7, which has smaller data sample (225 DMUs). In other words, the sample size of 

775 DMUs clearly provides better efficiency estimates under the DEA-CRS by reducing the 

variance of estimated technical efficiency scores which is supporting the results found in some 

research (Clement et al., 2008; Sarkis, 2007; Alirezaee et al., 1998; Banker et al., 1989), but 

conflicts with some research (Pedraja-Chaparro et al., 1999).  

 

Figure 16. Multistate technical efficiency scores from the Data Envelopment Analysis with 

Variable Returns to Scale, 1994-2018 

The year 1995 was a special one for corn because widespread wheat disease occurred in 

1994, leading farmers to plant more corn acreage than usual in 1995. However, many of them 

were new and inexperienced at corn production in the northern region at that time, which might 

have caused them to have lower efficiency scores in Nebraska, South Dakota, and North Dakota. 

In 2002, Nebraska's average efficiency score was 0.28, which is the lowest among all states over 

the study period. In 2012, Nebraska's average efficiency score was about 0.37. Thus, it is evident 

that occasionally, technical efficiency scores in Nebraska are shocked by something very severe 

(e.g., drought, crop disease, water issue).  
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Figure 17 presents the descriptive summary of each state’s technical efficiency score at the 

ASD level from 1994 to 2018. Based on the DEA-VRS, the average technical efficiency scores in 

Northwest of North Dakota, Northeast of South Dakota, Central and the whole South of 

Minnesota, and Southwest of Wisconsin are high relative to the study region as a whole. On the 

other hand, the average estimated technical efficiency scores for the North-central ASD of 

Nebraska, the Southeast and Central ASDs of South Dakota, and Northwest ASD of Minnesota 

are the lowest in the study region. 

 

Figure 17. Technical efficiency score from Data Envelopment Analysis (VRS) in each 

Agricultural Statistics District within states, 1994-2018. 

Based on the aggregated ASD’s technical efficiency scores in each state, the technical 

efficiency score in Minnesota averaged 0.901, followed by Wisconsin (0.890), North Dakota 
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(0.869), South Dakota (0.833) and Nebraska (0.821). In the past 25 years, the lowest minimum 

technical efficiency was in Nebraska with a score of 0.171 (South-central and 2002). The standard 

deviation of Nebraska’s technical efficiency scores is the largest (0.193) amongst all, and this is 

consistent with standard deviations from SFA (Figure 15). 

Figure 18 presents the corn yield efficiency scores generated from the DEA-CRS for all 

ASDs within the five states over the study period. The black line represents the median of the 

efficiency scores. These efficiency scores look very similar to the one found from DEA-VRS 

(Figure 16). The medians from DEA-VRS and DEA-CRS covary closely to each other, except in 

1998, 2002, and 2012. In these three years, the distribution of technical efficiency scores is 

negatively skewed significantly, which indicates some technical efficiency scores in some states 

are estimated significantly lower in the CRS model. Otherwise, one small difference between 

CRS and VRS is the range of variation of the scores over time. The state average of TE scores 

from DEA-CRS ranged between 0.70 and 1, but the range of the DEA-VRS scores was 0.65 to 

0.98. 

 

Figure 18. Multistate technical efficiency scores from the Data Envelopment Analysis with 

Constant Returns to Scale, 1994-2018 
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By state, Nebraska's technical efficiency scores in 1995, 2002, 2003, and 2012 were 

substantially lower than other states, but most years the average technical efficiency scores for 

Nebraska ranged between 0.75 and 1. The average technical efficiency score of North Dakota in 

2011 and South Dakota in 2012 are also considerably lower. The DEA-CRS, excluding the years 

mentioned above, indicates the five states' corn producers were technically efficient between 0.70 

and 0.99 in the past.  

Figure 19 presents the descriptive summary for each state’s technical efficiency scores at 

the ASD level. Based on DEA-CRS, the average technical efficiency scores in all South regions 

of Minnesota, and Southwest of Wisconsin is noticeably higher than other ASDs in the study 

region, whereas the average technical efficiency scores in the North-central and Southeast ASDs 

of South Dakota, the Southwest and Central ASDs of North Dakota, and the North-central ASD 

of Nebraska were the lowest scoring DMUs in the study area. 

The average technical efficiency score in Minnesota is 0.888, followed by Wisconsin 

(0.884), North Dakota (0.825), Nebraska (0.805) and South Dakota (0.789). The lowest minimum 

technical efficiency score during the study period was in North Dakota, with a score of 0.106 

(Central and 2004), whereas the highest maximum technical efficiency was 1 for each state during 

at least one year of the study period. The standard deviation of scores in Nebraska is the largest, at 

0.195. 
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Figure 19. Technical efficiency score from Data Envelopment Analysis (CRS) in each 

Agricultural Statistics District within states, 1994-2018.  

Figure 20 presents the descriptive summary for each ASD’s scale efficiency scores over 

the study period. We found the best scale efficiency or (MPSS) is in South-central of Minnesota, 

suggesting no potential to increase the size of corn operation in terms of improving technical 

efficiency because it has already reached the optimal scale. Furthermore, the suboptimal scale 

efficiencies are found in Southeast of North Dakota, almost all regions in Minnesota, Wisconsin, 

and Nebraska and South-central and East of South Dakota. These results indicate there is no 

potential to improve scale efficiency because they are at decreasing returns to scale. Overall, the 

scale efficiencies in these regions are very close to the optimal scale level (close to 1). However, 

there are some regions such as the Central ASD of North Dakota, the North-central, Northeast, 
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Central and Southeast ASDs of South Dakota, North-central, Northeast ASD of Nebraska, and the 

Northwest ASD of Minnesota that should not expand their corn operation size because their scale 

efficiencies are not at Increasing Returns to Scale.   

According to the aggregated ASDs scale efficiencies in each state, the average scale 

efficiencies are estimated as 0.99, 0.98, 0.98, 0.95, and 0.95 for the state of Wisconsin, 

Minnesota, Nebraska, South Dakota, and North Dakota, respectively. The lowest scale efficiency 

is found in North Dakota with a score of 0.106, whereas the highest scale efficiency is found in 

Wisconsin with a score of 0.957.  

 

Figure 20. Scale efficiency scores from Data Envelopment Analysis in each Agricultural Statistics 

District within states, 1994-2018. 
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3.5.3. Comparison of the Efficiency Results 

The descriptive statistics of technical efficiency scores derived from SFA and DEA are 

presented in Table 14. Based on the SFA efficiency scores, the most technically efficient corn-

producing state is Wisconsin with a score of 0.92 and followed by Minnesota (0.90), South 

Dakota (0.88), North Dakota (0.88) and Nebraska (0.87). Based on the DEA-VRS, the most 

technically efficient corn-producing state is Minnesota, with a score of 0.90, followed by 

Wisconsin (0.89), North Dakota (0.87), South Dakota (0.83), and Nebraska (0.82). Based on the 

DEA-CRS, the most technically efficient corn-producing state is Minnesota with a score of 0.88 

and followed by Wisconsin (0.88), North Dakota (0.82), Nebraska (0.80), and South Dakota 

(0.80).  

Table 14. Descriptive statistics of technical efficiency scores. 

 
North Dakota Minnesota 

  SFA VRS CRS SE SFA VRS CRS SE 

Mean 0.877 0.869 0.825 0.953 0.900 0.901 0.888 0.986 

Std Dev 0.091 0.128 0.133 0.088 0.069 0.107 0.113 0.043 

Min 0.128 0.510 0.106 0.106 0.547 0.455 0.409 0.487 

Max 0.977 1.000 1.000 1.000 0.968 1.000 1.000 1.000 

 
South Dakota Wisconsin 

  SFA VRS CRS SE SFA VRS CRS SE 

Mean 0.876 0.833 0.789 0.949 0.916 0.890 0.884 0.993 

Std Dev 0.079 0.140 0.142 0.075 0.041 0.078 0.078 0.009 

Min 0.559 0.239 0.233 0.559 0.755 0.676 0.671 0.957 

Max 0.975 1.000 1.000 1.000 0.959 1.000 1.000 1.000 

 
Nebraska Pooled 

 
SFA VRS CRS SE SFA VRS CRS SE 

Mean 0.868 0.821 0.805 0.980 0.885 0.864 0.838 0.970 

Std Dev 0.123 0.193 0.195 0.059 0.089 0.140 0.145 0.068 

Min 0.258 0.171 0.163 0.339 0.128 0.171 0.106 0.106 

Max 0.976 1.000 1.000 1.000 0.977 1.000 1.000 1.000 
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The two efficiency approaches found different states to be the most efficient. This also 

happens when we compare both approaches using North Dakota’s ASDs in Chapter 2. This result 

may be attributable to the differences in the representation of each state in in the dataset; there are 

eight ASDs in Minnesota versus only three ASDs in Wisconsin. Other idiosyncrasies in the data 

may also contribute to the variant results from DEA and SFA. 

Under the pooled estimates, the mean technical efficiency scores from SFA, DEA-VRS, 

and DEA-CRS are approximately 0.88, 0.86, and 0.84, with their standard deviations of 0.089, 

0.140, and 0.145, respectively. These estimates imply that the corn yield in the northern region of 

U.S. Corn Belt, including Nebraska, is technically efficient at 88.0% by SFA, 86.0% by DEA-

VRS, and 84% by DEA-CRS in the period from 1994 to 2018. On the other hand, the yield can 

potentially increase by 12% according to the SFA estimation, 14% according to the DEA-VRS 

estimation, and 16% according to the DEA-CRS, without changing the current level of total 

expenditure on inputs, and its production practices and technologies. All three means are 

considerably close to each other; however, one should be careful in comparing their means due to 

their substantively different standard deviations. The standard deviation from SFA is much 

smaller than the standard deviations from both DEA techniques, which implies that DEA might 

be possibly under-estimated the technical efficiency scores due to the assumptions of relative 

efficiency in data set in each year (see Alirezaee et al., 1998).   

Table 15. Ranking based on technical efficiency, scale efficiency, and average yield. 

Rank SFA DEA (VRS) DEA (CRS)  DEA (SE) Mean Corn Yield 

1 Wisconsin Minnesota Minnesota Wisconsin Wisconsin 

2 Minnesota Wisconsin Wisconsin Minnesota Minnesota 

3 North Dakota North Dakota North Dakota Nebraska Nebraska 

4 South Dakota South Dakota Nebraska North Dakota South Dakota 

5 Nebraska Nebraska South Dakota South Dakota North Dakota 
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Table 15 presents the rankings based on the state level. These rankings are based on the 

means of the SFA and DEA (VRS and CRS) technical efficiency scores, the DEA-based scale 

efficiencies, and corn yield for each state in the study region. Wisconsin had the highest average 

corn yield. Based on the SFA efficiency scores, Wisconsin is also the most technically efficient 

corn producing state among the five. In addition, Wisconsin is ranked as number one corn 

producing state based on the scale efficiency derived from DEA. Though average corn yield in 

Minnesota was the second-highest in the region, the technical efficiency of Minnesota corn 

production is ranked the most technically efficient of all five states based on the results of both 

DEA models. Based on these first and second ranking, the study can conclude that a strong 

positive relation exists between high corn yield and high technical efficiency.  

Table 16. Spearman correlation coefficients. 

 
SFA (TE) VRS (TE) CRS (TE) 

SFA (TE) 1.000 
  

VRS (TE) 0.650*** 1.000 
 

CRS (TE) 0.783*** 0.872*** 1.000 

Prob > |r| under H0: Rho=0 

Table 16 presents Spearman rank correlation coefficients between the technical efficiency 

scores derived from SFA, DEA-VRS and DEA-CRS. All correlations have a positive relationship 

with a strong significance level (𝛼 = 0.01). The rankings indicate the slightly weak correlation is 

between SFA and VRS (0.650), whereas a slightly strong correlation is between SFA and CRS 

(0.783). These correlations are consistent with the correlation results found in Chapter 2. The 

strongest correlation is between DEA-VRS and DEA-CRS, which makes sense in light of the 

Figures 16 and 18. Overall, the correlation result supports the results of Sharma et al. (1997), 

where the correlation between SFA and DEA-VRS was a little bit weaker than the correlation 

between SFA and DEA-CRS. 
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3.6. Summary and Conclusion  

Globally, about 38% of corn supply is dependent on corn producers in the United States 

(Grassini et al., 2015). The majority of corn is grown in the region known as the U.S. Corn Belt. 

The Corn Belt includes states with massive corn production, such as Illinois, Indiana, Iowa, 

Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, 

and Wisconsin. The report by Courter (2018) stated that Taylor, climatologist at the Iowa State 

University Extension discussed about the Corn Belt shifts. Due to the climate shift, corn acres are 

rapidly increasing in the North-Western region of U.S. Corn Belt, specifically, in the states of 

North Dakota, South Dakota, and Minnesota. In addition, Hoffman et al. (2018) found that a 

northwestward shift of the U.S. Corn Belt is in progress, with gradual changes resulting from 

farmers’ autonomous adaptation to a changing production environment. Their research concluded 

that a further investigation should focus on what region will provide a better yield for certain 

crops under its current and evolving weather conditions (Hoffman et at., 2018) 

This dissertation research aimed to evaluate the corn yield frontier and technical efficiency 

measures based farm input management and weather variables at the ASD level within the 

following states in the northern U.S. Corn Belt: North Dakota, Minnesota, South Dakota, 

Wisconsin, and Nebraska. The stochastic semi-translog yield frontier model was developed to 

estimate the changes in corn yield frontier and technical efficiency scores for each ASD. In 

addition, the output-oriented DEA model to estimate the non-parametric technical efficiencies to 

compare the parametric technical efficiencies from SFA and to estimate the scale efficiencies for 

each ASD within each state. The research found all output elasticities of corn yield for each state 

are positive, suggesting that the corn yield has a positive relationship with all inputs included in 

the SFA model. The growing season temperatures are the variables that most restrict yield, 
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especially in the states bordering Canada, and corn yield is highly and positively responsive to 

changes in temperature in such states. The second most constraining factor of production is 

rainfall. Farm input expenses are also important factors for increasing yield; however, their output 

elasticities are much smaller than the weather output elasticities. 

Furthermore, we also found the estimated output elasticities of weather variables differ by 

the state. For instance, a 1% increase in the average growing season temperature in North Dakota 

will increase the corn yield by 34.08%, which is the highest percentage yield response to 

temperature amongst all states in the region. In contrast, a 1% increase in Nebraska's average 

growing season temperature will raise corn yield by only 18.28%, which is lower than in all other 

states in this study. This result likely indicates that an equivalent increase in average growing 

season temperature (1 °F, say) will increase corn yield much more in northern states than in 

southern states. 

The difference in output elasticities among the states contrasts with the results we found in 

chapter 2. In Chapter 2, we found that the output elasticities did not differ among the ASDs of 

North Dakota. Therefore, further research is necessary to elucidate the effects of scale 

(geographic size of individual DMUs) and scope (the geographic extent of the entire study region) 

on differences in output elasticities and yield frontiers by region. Based on the findings, many of 

the output elasticities vary at the state level.  

The technical efficiency performance in each state is estimated differently. The average 

corn yield technical efficiency in Wisconsin is the highest of all based on the SFA estimates, and 

Wisconsin is nearest of all the states to being scale-efficient under the DEA over the past 25 years 

from 1994 to 2018. However, Wisconsin did not rank as the most technically efficient under the 

DEA estimates. Based on the SFA estimates, the second most technically efficient corn-producing 
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state is Minnesota, which also has the second highest rank by scale efficiency, but Minnesota 

ranked as the most technically efficient under the DEA estimates. In third place, the most 

technically efficient corn-producing state is North Dakota under both SFA and DEA estimates, 

but the scale efficiency for North Dakota is ranked very last. The fourth most technically efficient 

corn-producing state is South Dakota under SFA, and DEA-VRS, as well as South Dakota, is 

ranked as fourth in scale efficiency. Nebraska is the least technically efficient corn-producing 

state under the SFA and DEA-VRS, but Nebraska's scale efficiency is third highest. 

Overall, we conclude that the corn yield frontier in each state has the potential to increase 

substantially in the selected study area in response to climate change, but the yield increases will 

differ among states and regions based on constraints imposed by current and historical weather 

patterns, which will become less constraining with anticipated global warming. In addition, the 

corn yield can be increased to some degree throughout this study region by improving technical 

efficiency, especially if meteorologists develop a seasonal weather forecast that can help farmers 

better anticipate the constraints that may (or may not) be imposed by inter-annual weather 

variation. An accurate seasonal forecast would have implications about the shifts in the yield 

frontier, allowing farmers to set reasonable yield goals and better manage their controlled inputs 

to attain those goals. This research does not predict the extent of the spatial shift of the U.S. Corn 

Belt, nor does it quantify the degree to which climate change has been a driver of shifting corn 

acreage, but it does provide evidence suggesting that corn yield and acreage are already 

expanding northward. As climate change continues to warm the Northern Great Plains, corn yield 

and area planted will continue to increase in these states. Longer-term climate projections, along 

with seasonal weather forecasts will help farmers to understand how they can adapt to a climate 

that is changing systematically but is also highly variable.  
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APPENDIX 

Table A1. Descriptive statistics of Minnesota data. 

Variable Unit Mean Std Dev Minimum Maximum 

Yield Bu./acre 145.77 32.83 51.78 220.16 

Land Acres 294.68 116.41 78.75 545.54 

Seed  $/acre 72.71 30.80 29.62 137.10 

Fertilizer $/acre 97.02 44.91 32.77 224.16 

Pesticide $/acre 33.02 7.00 17.80 55.59 

Labor $/acre 13.00 4.53 3.38 28.69 

Machinery $/acre 6.50 2.56 0.38 17.18 

Rainfall Inches 21.51 4.90 12.05 38.85 

Temperature °F 61.48 1.86 56.18 65.30 

Min Temperature °F 36.34 3.15 24.80 44.00 

Max Temperature °F 81.09 2.83 73.30 88.80 

 

Table A2. Descriptive statistics of North Dakota data. 

Variable Unit Mean Std Dev Minimum Maximum 

Yield Bu./acre 113.61 26.01 13.96 184.34 

Land Acres 316.71 154.52 61.13 794.92 

Seed  $/acre 60.94 25.63 19.84 110.61 

Fertilizer $/acre 75.18 38.46 24.00 172.22 

Pesticide $/acre 23.91 5.10 14.05 58.02 

Labor $/acre 19.28 6.89 2.76 37.02 

Machinery $/acre 4.41 2.65 0.11 19.05 

Rainfall Inches 14.97 3.75 6.92 24.34 

Temperature °F 59.55 1.49 54.58 62.85 

Min Temperature °F 32.13 3.09 22.70 38.10 

Max Temperature °F 82.72 3.86 74.20 93.30 
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Table A3. Descriptive statistics of South Dakota data. 

Variable Unit Mean Std Dev Minimum Maximum 

Yield Bu./acre 115.46 30.70 30.57 177.92 

Land Acres 259.81 87.07 131.28 576.33 

Seed  $/acre 66.14 28.53 28.91 144.73 

Fertilizer $/acre 68.49 32.26 28.21 155.87 

Pesticide $/acre 28.40 9.83 12.44 60.28 

Labor $/acre 22.43 16.67 5.66 86.21 

Machinery $/acre 8.22 3.20 1.23 18.64 

Rainfall Inches 26.83 7.96 8.73 43.64 

Temperature °F 58.37 6.76 45.63 67.26 

Min Temperature °F 44.54 7.86 31.60 61.05 

Max Temperature °F 84.66 3.33 77.25 95.18 

 

Table A4. Descriptive statistics of Nebraska data. 

Variable Unit Mean Std Dev Minimum Maximum 

Yield Bu./acre 119.42 36.50 19.03 187.04 

Land Acres 221.62 97.18 58.77 539.63 

Seed  $/acre 53.92 21.60 19.24 96.73 

Fertilizer $/acre 67.66 32.87 21.40 159.48 

Pesticide $/acre 38.03 10.25 18.17 78.48 

Labor $/acre 20.52 15.92 5.55 96.77 

Machinery $/acre 6.75 4.48 0.00 22.84 

Rainfall Inches 21.02 4.83 8.43 34.05 

Temperature °F 66.22 1.48 61.50 70.05 

Min Temperature °F 39.93 2.71 33.90 46.30 

Max Temperature °F 87.99 3.33 80.70 96.20 
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Table A5. Descriptive statistics of Wisconsin data. 

Variable Unit Mean Std Dev Minimum Maximum 

Yield Bu./acre 152.10 21.11 105.55 202.00 

Land Acres 253.22 50.92 173.61 374.91 

Seed  $/acre 72.64 28.89 34.94 128.00 

Fertilizer $/acre 99.77 41.82 46.48 199.58 

Pesticide $/acre 38.53 6.15 27.45 55.59 

Labor $/acre 14.67 4.18 7.77 27.10 

Machinery $/acre 6.76 2.17 1.36 12.57 

Rainfall Inches 23.51 4.50 17.03 35.74 

Temperature °F 62.11 1.19 59.03 64.39 

Min Temperature °F 38.05 2.50 33.30 44.55 

Max Temperature °F 81.14 2.64 75.75 89.05 

 

 

Figure A1. North Dakota irrigated acres in 2004. 

Source: North Dakota Department of Commerce. 
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Figure A2. Planted corn acreage in Agricultural Statistics District within states in 2010. 

Ones with white color represents no data.  

 

Figure A3. Planted corn acreage in Agricultural Statistics District within states in 2011. 

Ones with white color represents no data.  
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Figure A4. Planted corn acreage in Agricultural Statistics District within states in 2012. 

Ones with white color represents no data.  

 

Figure A5. Planted corn acreage in Agricultural Statistics District within states in 2013. 

Ones with white color represents no data.  
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Figure A6. Planted corn acreage in Agricultural Statistics District within states in 2014. 

Ones with white color represents no data.  

 

Figure A7. Planted corn acreage in Agricultural Statistics District within states in 2015. 

Ones with white color represents no data.  
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Figure A8. Planted corn acreage in by Agricultural Statistics District within states in 2016. 

Ones with white color represents no data.  

 

Figure A9. Planted corn acreage in by Agricultural Statistics District within states in 2017. 

Ones with white color represents no data.  
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Figure A10. Planted corn acreage in Agricultural Statistics District within states in 2018. 

Ones with white color represents no data.  
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Figure A11. Animated clip of corn acreage changes from 2010 to 2018. 
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Figure A12. Average corn yield in Agricultural Statistics District within states in 2010. 

Ones with white color represents no data.  

 

Figure A13. Average corn yield in Agricultural Statistics District within states in 2011. 

Ones with white color represents no data.  
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Figure A14. Average corn yield in Agricultural Statistics District within states in 2012. 

Ones with white color represents no data.  

 

Figure A15. Average corn yield in Agricultural Statistics District within states in 2013. 

Ones with white color represents no data.  
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Figure A16. Average corn yield in Agricultural Statistics District within states in 2014. 

Ones with white color represents no data.  

 

Figure A17. Average corn yield in Agricultural Statistics District within states in 2015. 

Ones with white color represents no data.  
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Figure A18. Average corn yield in Agricultural Statistics District within states in 2016. 

Ones with white color represents no data.  

 

Figure A19. Average corn yield in Agricultural Statistics District within states in 2017. 

Ones with white color represents no data.  
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Figure A20. Average corn yield in Agricultural Statistics District within states in 2018. 

Ones with white color represents no data.  
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Figure A21. Animated clip of average corn yield changes from 2010 to 2018. 

 


