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ABSTRACT

Iron deficiency chlorosis (IDC) is the most common reason for chlorosis in soybean

(Glycine max (L.) Merrill) and causes an average yield loss of 120 million dollars per year

across 1.8×106 ha in the North Central US alone. As the most effective way to avoid IDC is

the use of tolerant cultivars, they are visually rated for IDC by experts; however, this method

is subjective and not feasible for a larger scale. An alternate more objective image processing

method can be implemented in various platforms and fields. This approach relies on a color

vegetation index (CVI) that can quantify chlorophyll, as chlorophyll content is a good IDC

indicator. Therefore, this research is aimed at developing image processing methods at leaf,

plot, and field scales with machine learning methods for chlorophyll and IDC measurement.

This study also reviewed and synthesized the IDC measurement and management methods.

Smartphone digital images with machine learning models successfully estimated the

chlorophyll content of soybean leaves infield. Dark green color index (DGCI) was the

best-correlated CVI with chlorophyll. The pixel count of four different ranges of DGCI (RPC)

was used as input features for different models, and the support vector machine produced the

highest performance. Handheld camera images of soybean plots extracted DGCI, which

mimicked visual rating, and canopy size that were used as inputs to decision-tree based

models for IDC classification. The AdaBoost model was the best model in classifying IDC

severity. Unmanned aerial vehicle soybean IDC cultivar trial fields images extracted DGCI,

canopy size, and their product (CDP) for IDC severity monitoring and yield prediction. The

area under the curve (AUC) was employed to aggregate the data into a single value through
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time, and the correlation between all the features and yield was good. Although CDP at latest

growth stage had the highest correlation with yield, AUC of CDP was the most consistent

index for soybean yield prediction. This research demonstrated that digital image processing

along with the machine learning methods can be successfully applied to the soybean IDC

measurement and the various soybean related stakeholders can benefit from this research.
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1. GENERAL INTRODUCTION

From an agriculture standpoint, catering to the food, feed, and fiber needs of the

growing population, which is expected to grow with an additional 2.4 billion and increasing

by 2050, is the major challenge for the farmers, producers, breeders, researchers, industries,

planners, and policymakers. Therefore, it is imperative to develop the best management

practices and crop cultivars by efficient research practices that increase yield and sustain the

whole agriculture enterprise. Among the major field crops that hold the potential to feed the

population, soybean (Glycine max (L.) Merrill) enjoys global importance. Soybean provides

the plant-based protein as soymeal, serves as a good source of edible oil, as well as being an

ingredient of several processed foods. But this important crop is facing major concern

affecting its productivity and sustainability from the soil and weather conditions in which the

crop is grown.

Due to the characteristics of soil and conditions of weather, soybean can experience

iron deficiency chlorosis (IDC), which can affect the performance of the crop. The IDC causes

$120000 000 yield loss every year in parts of the Midwest, let alone the rest of the world.

There are several symptoms associated with IDC in soybeans, such as stunted growth and

yellowing of leaves due to the reduction of chlorophyll. In addition, the amount of time that

iron deficiency is present in soybean significantly affects the final yield. Any methods dealing

with iron deficiency should consider measuring the chlorophyll level in the first place to

quantify the extent of the damage. Therefore, efficient, timely, and repeatable measurement

of chlorophyll is critical in soybean IDC management.
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There are different methods available to quantify IDC both directly by measuring Fe or

chlorophyll in the leaves and indirectly by measuring the symptoms including the reflectance

of soybean canopy or from the leaf samples. Direct methods are atomic absorption

spectroscopy (AAS) (Ferreira et al., 2019b) and chlorophyll extraction in the lab (Santos

et al., 2019). The AAS method measures the amount of iron in the leaves or even from the

roots of soybean. Indirect methods include visual rating (Helms et al., 2010), digital imaging

(Bai et al., 2018), chlorophyll meter reading (Bin et al., 2016), and satellite (Peng et al.,

2017) or unmanned aerial vehicle (UAV) imaging-based analysis(Dobbels and Lorenz, 2019).

Imaging technologies are good to capture larger areas and are capable of recording data

frequently and archive historical data. Image-based analysis methods also could be used to

delineate the IDC regions (Rogovska and Blackmer, 2009) to plant tolerant and susceptible

cultivars in their respective regions. However, breeders usually use the visual rating method.

They rate soybean yield or hill plots for the IDC symptoms mainly the yellowness of the

canopy or leaves. The yellowness or chlorosis is a direct indicator of IDC severity, but this

visual rating method is time-consuming, subjective, sometimes inaccurate, less frequent, and

not feasible for large scales.

Another major activity regarding IDC is to alleviate the symptoms of IDC that has the

potential to recover the crop or improve the crop yield. Of the several methods of alleviating

the IDC symptoms, the major methods considered in general practice include planting a

companion crop (Bloom et al., 2011), planting in wider rows (Wiersma, 2007), applying iron

chelate in furrow (Kaiser et al., 2014) and on leaves (Franzen et al., 2003), and planting a

tolerant cultivar (Naeve and Rehm, 2006). Most of these methods require extra management

steps. For instance, when planting a companion crop, this crop should be killed at a certain
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point before it starts competing for water or other nutrients. Another example is a seed or

foliar treatment which gives a better result when the planing is performed in wider rows or

higher seeding density (Goos and Johnson, 2001). However, among all these methods,

planting a tolerant cultivar is the most efficient way to avoid IDC (Hansen et al., 2003). The

process of selecting a tolerant cultivar involves planting many different cultivars in different

locations usually with a history of IDC. In such selection field trials, trained people will walk

among these cultivars and visually rate them for IDC symptoms mainly the color of the

canopy. However, several factors such as fatigue, gender, and training affect the human

perception of colors (Van Den Broek et al., 2002). Furthermore, this process is performed by

manual means, it is prone to error and subjectivity.

To make the measurements more objective, technologies like UAV and digital cameras

can be used to monitor soybeans and assess their health status through chlorophyll content.

Leaf primary colors — red, green, and blue (RGB) can be extracted from the soybean leaf

images, which were obtained in the field conditions, through image processing. Several

studies measured chlorophyll from images in the laboratory setting (Rigon et al., 2016;

Vollmann et al., 2011), in which all lighting is controlled, through primary colors of the

leaves and other color vegetation indexes (CVIs). Instead of primary colors, the dark green

color index (DGCI) is used in some studies to estimate chlorophyll or nitrogen content. It has

been shown that DGCI can correct the errors in the images due to different light conditions or

different cameras (Rorie et al., 2011).

From digital images, CVIs can be extracted for IDC rating purposes. The quality of the

different turfgrass was rated and compared with visual ratings of experts (Karcher and

Richardson, 2003). Although in most cases raters ranked cultivars with equal tolerance
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similarly, there was a difference among the ratings of individual plots. In a similar study (Bai

et al., 2018), a platform was used to take nadir images of soybean plots and rated them for

IDC through machine learning models. The raw RGB values to hue, saturation, and

brightness (HSB) were converted and divided the available hue for leaves into five different

groups. All the groups were used as independent variables, and office score IDC visual rating

was used as a dependent variable to train the machine learning models.

Another factor that greatly affects the final yield in soybean is the amount of time that

IDC was present in soybean. The longer IDC is present in soybean the greater the yield loss.

It is known that some of the cultivars recover from IDC and become green, but some cultivars

do not recover or some even become worse. With the current rating method which rates

soybean cultivars twice during the growing season, it is almost impossible to quantify the

amount of time that IDC was present in each soybean cultivar. On the other hand, increasing

the number of ratings throughout the growing season is not pragmatic because it takes a long

time to rate cultivars especially if the number of cultivars is high. However, UAVs can be used

to fly the whole cultivar trial in a much shorter time, so they can be flown more frequently to

monitor changes in soybean cultivars. For example, Vega et al. (2015) used UAV to monitor

sunflowers (Helianthus annuus L.) throughout the growing season with a multispectral

sensor. They observed that normalized difference vegetation index (NDVI) calculated from

the images was correlated with yield, except the values from the early stages of growth. They

also observed that the time of day did not influence the NDVI values, so the flexibility of flying

the field is higher during the day. Monitoring crops during the growing season frequently can

help identify problems early and address them with precision agriculture technologies.

4



Machine learning is a great tool for yield prediction and disease rating in crops

especially when imagery is involved as input to train the models. Machine learning models

helped farmers in yield prediction, seed pricing, seed selection, disease detection,

management zone clustering, and several other applications (Rehman et al., 2019). Machine

learning is both science and art of programming the computers so they can learn from the

data (Géron, 2017). There are two main types of machine learning models, supervised and

unsupervised models. Supervised models are the ones that the models have access to the

original dependent variable (target feature) such as disease rating for classification problems

or final yield for regression problems. Different models use the independent variables (input

features) to train themselves to predict as closely as possible to the target feature. On the

other hand, in an unsupervised problem, the models do not have access to labeled target

features to train the model; the model tries to find a pattern among the input features to

organizes the data in different categories or clusters for prediction (Moghadam et al., 2017).

The simplest of all supervised machine learning models are simple linear regression

that has been used in many studies such as chlorophyll estimation (Vollmann et al., 2011),

assessment of leaf nitrogen in corn (Zea mays L.) (Rorie et al., 2011), and yield estimation

based on canopy vigor (Sankaran et al., 2015). The more sophisticated models include

random forest (RF), support vector machine (SVM) K-nearest neighborhood (KNN), and

others, have been used in similar studies such as chlorophyll estimation in fresh-cut rocket

leave (Eruca sativa Mill.) (Cavallo et al., 2017), wheat (Triticum aestivum L.) leaf rust

detection at canopy level (Azadbakht et al., 2019), identifying field attributes that predict

soybean yield (Smidt et al., 2016).
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1.1. Significance of the Problem

Identifying an IDC-tolerant cultivar of soybean is the critical step in managing the

IDC. However, the current process of IDC measurement is laborious and expensive, as well as

selecting the tolerant cultivars is subjective and hard to perform over a large number of

cultivars. Moreover, the current method is incapable of measuring the amount of time that

soybean cultivars were affected by IDC. On the contrary, digital camera, and aerial imagery

from UAVs can be collected from soybean cultivar trials more frequently to monitor both

severity and duration of IDC symptoms. The studies that focused on this area are scarce and

have been done with special platforms or in controlled environments (Bai et al., 2018; Naik

et al., 2017). Therefore, this research study was proposed to measure and monitor IDC at

different scales (leaves, plots, and fields) using image processing and machine learning

approaches.

Estimating the chlorophyll content in soybean leaves as an indicator of IDC in the field

condition is the foundation for any impactful field-based research that implements digital

imaging as a tool to monitor IDC. Vegetation indexes could be investigated for their efficiency

in estimating chlorophyll content. The best index then could be used alongside other features

such as canopy size and other calculated parameters to represent the trends in rating IDC at

the plot level. Smartphones, the most common gadget nowadays, could also be employed in

obtaining the pictures of leaves or plots and processing them for IDC rating within the same

device. This process potentially could be a substitute for visual rating and requires minimal

training. The same vegetation index could be implemented in a pipeline that captures aerial

images of cultivar trials to monitor the growth of soybean as well as progress and recovery

from IDC. Application of UAV enables researchers to monitor agricultural fields more
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frequently for better management of IDC and the images can be kept for future use as

historical layers and further advanced analysis.

1.2. Statement of Hypothesis

1. Color vegetation indexes from digital images can be used to estimate chlorophyll

content, as measured by SPAD meter, in soybean leaves in the field through

machine learning models.

2. Color vegetation indexes derived from digital images with machine learning

models can be used to rate IDC in soybean plots.

3. UAV images and image processing methods can be applied to monitor the progress

of IDC leading to the selection of tolerant cultivars on a cultivar trial.

4. Various image-based parameters derived from IDC affected soybean cultivars will

be correlated with yield and could be used to develop prediction models.

1.3. Statement of Objectives

The specific objectives of this research are presented in individual chapters, while the

major objectives of this research work are:

1. To review the various methods of IDC determination and IDC rating in soybean.

2. To estimate chlorophyll in soybean leaves in-situ with digital imaging using a

smartphone and machine learning.

3. To rate IDC in soybean using image processing technique using a handheld digital

camera and machine learning models at the plot scale.
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4. To monitor the IDC progress in soybean cultivar trials using UAV images at the field

scale and develop the yield prediction models using various image-based

parameters.

1.4. Dissertation Organization

The thesis consists of chapters such as general introduction (Chapter 1), and the

study’s objective is presented in the form of four peer-reviewed journal articles (Chapters

2–5), general conclusions (Chapter 6), combined references, and appendices (A–E). The

research chapters (2–5) are complete with its own introduction with supporting review of

literature, materials and methods, results and discussion, and conclusions. The general

introduction (this chapter) provides an overall picture of the available and methods practiced

to quantify IDC, methods to alleviate the IDC symptoms, and how digital imaging and

machine learning could help researchers in quantifying IDC. It also includes the significance

of the problem, statement of hypothesis, and statement of objectives.

Chapter 2, dealing with the review of literature on soybean IDC (Paper 1), entitled:

“Iron deficiency chlorosis measurement in soybean a review” is presented in the form of a

review paper (Paper 1, Objective 1). This review covers the various methods that both

directly and indirectly quantify IDC in soybean. Direct methods include AAS and chemical

extraction of chlorophyll. Indirect methods include visual rating, chlorophyll meter reading,

digital imaging, and aerial and satellite imaging.

Chapter 3, dealing with smartphone-based chlorophyll estimation (Paper 2), entitled:

“Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and

machine learning” identifies the best vegetation index that is suitable for infield chlorophyll
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estimation through digital imaging. In addition, several machine learning models and

different sets of input features were evaluated for chlorophyll estimation (Objective 2).

Chapter 4, dealing with digital camera-based plot scale IDC rating (Paper 3), entitled:

“Rating iron deficiency in soybean using image processing and decision-tree based models”

studies three machine learning models such as decision tree, random forest, and adaptive

boosting and their performance in classifying IDC severity from features that were extracted

from digital images from soybean plots. The pictures were taken with a handheld digital

camera and closer to a human point of view applied in visual rating (Objective 3).

Chapter 5, dealing with digital UAV-based field scale IDC rating (Paper 4), entitled:

“Measuring soybean iron deficiency chlorosis progression and yield prediction with

unmanned aerial vehicle” implements the vegetation index that was proven in this research

to be effective in quantifying IDC to monitor both severity and progress of IDC for different

cultivars through images of UAV that were taken few times during the growing season.

Soybean yield prediction models were also developed using the image image-based

parameters (Objective 4).

Chapter 6 entitled: “General Conclusions” that summarizes the results derived from

the papers (1–4) and also presents the “Suggestions for Future Work.”

The “References” listing is a combined unnumbered chapter of the whole dissertation.

The APA reference style, which was followed by the American Society of Agricultural and

Biological Engineers (ASABE), was used in the reference listing.

Appendices, A through E present the Python and R code sections for data analysis and

visualization of the results. Appendix A is related to the script that was used to extract

features from smartphone images to estimate chlorophyll content of soybean leaves
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(Chapter 3). Appendix B explains the nested cross-validation script along with an example

that was used to tune the parameters of advanced machine learning models (Chapter 3).

Appendix C demonstrates the script that was required to detect the two middle rows in the

soybean plots (Chapter 4). Appendix D illustrates the scatterplots of yield versus different

features that were extracted from aerial images of soybean plots (Chapter 5). Finally,

Appendix E demonstrates the scripts that were used for data visualization throughout the

dissertation.
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2. IRON DEFICIENCY CHLOROSIS MEASUREMENT IN

SOYBEAN — A REVIEW *

2.1. Abstract

Iron deficiency chlorosis (IDC) causes a great yield loss in soybean (Glycine max (L.)

Merrill). The main symptom for IDC is the lack of chlorophyll that makes crop foliage yellow

resulting in stunted growth leading to lower yields. Several methods were developed to

alleviate the symptoms of IDC, but quantifying its symptoms should be done in advance for

effective management. Measurement of IDC plays an important role in mapping zones that

are susceptible to IDC and aids in selecting tolerant cultivars in experimental trials. However,

synthesis of various IDC measurements, especially related to modern and efficient methods,

such as the use of image processing, is scarce. Therefore, this paper reviews several aspects of

IDC measurement that includes the number of publications available on the topic through

search using a combination of relevant keywords; different methods of IDC measurement

using visual rating by experts, atomic absorption spectroscopy for estimating iron, wet

chemistry of chlorophyll extraction and sensors application for chlorophyll estimation, image

processing methodologies for chlorophyll and IDC rating through different imaging platforms;

analysis of data through statistical and advanced machine learning methods; and methods of

management of IDC. The IDC assessment is also important for the researchers who focus on

* This paper is planned to be submitted as a review article in the Field Crops Research journal. Authors:
Oveis Hassanijalilian, C. Igathinathane, Hans Kandel, Sreekala Bajwa, and John Nowatzki. Oveis performed the
literature survey and wrote the manuscript. Dr. Igathinathane Cannayen is the major advisor and the
corresponding author who worked with Oveis throughout the manuscript development. All the co-authors have
assisted in the research direction and review of the manuscript.
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gene expressions and measure IDC in the lab environment and those developing digital image

processing methodologies to estimate chlorophyll and rate IDC. This review explains the

capabilities of the various IDC measurement methods applicable in different environments

and research scales. Also outlined in this review are the future perspectives of application of

remote sensing, advanced hyperspectral sensors, LiDAR, and soil sampling analysis with

historical data as inputs to machine learning models to detect and delineate IDC.

2.2. Introduction

Iron deficiency chlorosis (IDC) is one of the reasons that causes a great yield loss in

soybean (Glycine max (L.) Merrill), and that is alarming for the farmers, producers, breeders,

and researchers, while there is a growing interest in this crop in North America. In 2004,

soybean was planted on 1.45×106 ha (USDA-NASS, 2005), but in the past three years, it was

planted on an average of 2.70× 106 ha in North Dakota (ND) almost twice the land area that

was planted for corn (Zea mays L.). The amount of land that was planted with soybean was

almost doubled in 14 years (USDA-NASS, 2020), but the land in ND is prone to IDC which

was responsible for $120000 000 yield loss in 1.8× 106 ha in just North Central America

(Hansen et al., 2004). The soil that is susceptible to IDC is usually characterized by high PH,

calcareous, excess moisture, excess nitrate, and high levels of bicarbonate (Hansen et al.,

2003; Roriz et al., 2014).

Soybeans that are affected by IDC show stunt growth and interveinal chlorosis — loss

of green color and becoming yellow, due to lack of chlorophyll, and they might become

necrotic — brown and die in severe cases. Iron deficiency happens in younger leaves because

iron is immobile after the first trifoliolate emerges, and it might be observed in soybean for
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eight weeks, but in some cases, IDC might persist throughout the entire season (Hansen

et al., 2003).

There are several ways to minimize the expression of IDC such as planting a

companion crop (Bloom et al., 2011; Naeve, 2006), applying iron chelate at planting (Kaiser

et al., 2014), or foliar application (Franzen et al., 2003), and increasing seed density at the

time of planting (Goos and Johnson, 2000; Wiersma, 2007). However, the most effective way

to mitigate IDC symptoms is to plant an IDC tolerant soybean cultivar (Naeve and Rehm,

2006). In a survey that was done in 2002 in Minnesota regarding IDC in soybean and best

management practices, the majority of farmers stated that the cultivar selection is the best

way to avoid IDC (Hansen et al., 2003).

Measuring IDC through its symptoms could be beneficial in detecting the severity of

IDC. Additionally, it could help farmers and researchers to delineate the areas that IDC is

prevalent through aerial platforms such as an unmanned aerial vehicle (UAV) and satellites.

With recent technologies, cultivars with different IDC tolerance levels could be planted in the

field. Since a tolerant cultivar does not necessarily produce the highest yield, a susceptible

cultivar could be planted in non-IDC regions with the goal of improving the yield of total

field. Information regarding IDC is scattered and scarce, therefore there is a need to

synthesize the literature and update the information with new research developments for the

benefit of the users.

Our objective with this review paper is to discuss different methods of measuring IDC.

Some of these methods directly measure the iron content is soybean like atomic absorption

spectroscopy, while the others work with the symptoms such as visual rating and imagery

(different imaging platforms) for measuring chlorophyll as the main indicator of IDC.
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2.3. Number of Publications on Soybean IDC and Nature of Work

A snapshot of the number of publications on the subject area of IDC with different

combination of keywords in “Web of Science” database from 1900 to 2020 is presented in

figure 2.1. This snapshot provides an idea of the research landscape of soybean IDC. The

keywords are related to research topics (TS) about soybean, IDC, chlorophyll measurement,

and different remote sensing platforms. The legend of the generated results was sorted from

lowest to highest frequency.

The total number of publications on chlorophyll measurements are high, but

chlorophyll measurement through images shows a 75 % reduction in the number of

publications. As chlorophyll is one of the main indicators of different nutrient deficiency in

soybean, the number of publications therefore on chlorophyll measurement is significantly

higher than measuring IDC in soybean. However, the lack of chlorophyll is the main symptom

of IDC, and measuring chlorophyll is useful in assessing IDC severity.

Direct studies on IDC are mostly related to practices to avoid IDC and on crop

genetics, but less attention was given towards measuring and quantifying IDC spatially.

Therefore, measuring chlorophyll through remote sensing platforms such as satellite is

significantly less. The number of publication on measuring IDC through images or studies

that implement the modern use of sensors on different platforms such as digital cameras,

UAVs, and satellites are highly limited.

2.4. Measurement of IDC

2.4.1. Visual Rating

Breeding programs in academic institutions and seed companies are constantly trying

to produce soybean seeds that are more tolerant to IDC. Iron deficiency varies by location and
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Figure 2.1. Number of publications in Web of Science academic database for different keywords used in the advanced
search in the website. TS stands for topic and different combinations of keywords presented. The legend is sorted
from the lowest frequency to the highest.
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over time such that soybean plants within a meter distance show significantly different IDC

symptoms. The main reason is the heterogeneity of soil which forces the researcher to

consider different environments in their research designs (Naeve and Rehm, 2006).

Breeders plant many different cultivars among different environments for the purpose

of cultivar selection. For cultivar selection, soybean is planted either as hill-plots (Helms

et al., 2010) or multiple-row plots to be harvested for yield (Nowling and Cai, 2018). Helms

(2015) planted 7264 hill-plots within 4 locations and 4 replications, a total of 454 different

cultivars, to be able to compare them for IDC symptoms side by side. The other method

includes planting multiple rows of soybean for each plot which usually is 4.6 to 6.1 m long

with 3 or 4 replications (USDA Soybean Test North Region). The rating is done only on the

center rows to avoid the “border” effect. Similarly, 3.7 to 4.9 m of the center rows are

harvested to avoid the “end of the row” effect.

There are several methods of rating IDC in soybean, and the most widely used one is 1

to 5 scale with one being completely healthy and 5 is severe chlorosis with some necrosis

(Helms et al., 2010; Naeve and Rehm, 2006). A visual scorecard of the range of IDC severity

and its related score are presented in figure 2.2 . The IDC rating scores that were used in the

experiments and the description of the symptoms developed by Helms et al. (2010) are also

given in table 2.1.

Although this rating method is widely used, it is a subjective measure and human bias

introduces significant errors in this process. For example, fig. 2.3 shows three different plots

that were rated by one rater (expert performing the visual rating), and clearly the middle plot

rated very high for IDC while the symptoms are not that different compared to the healthier

plot. Furthermore, Karcher and Richardson (2003) used raters and digital images to quantify
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Figure 2.2. Iron deficiency chlorosis (IDC) visual score for the scale of 1-5. Image
source: Visual representation of NDSU IDC scoring scale, photos by T. Helms, NDSU
soybean breeder.

the color of turfgrass, and they observed differences in absolute rating values among different

raters. Based on the analysis, they concluded that a more consistent rating can be obtained

across researchers, years, and locations through digital images.

2.4.2. Atomic Absorption Spectrometry

Atomic absorption spectrometry (AAS) is one of the widely used techniques for

multi-element determination within a sample. It is based on the measurement of absorption

of energy through the excitation process of free atoms or emission of energy through the
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Table 2.1. Developed visual rating score guidelines for IDC symptoms1.

IDC symptoms description IDC Score

No chlorosis 1
Slight yellowing of the upper leaves 2
Upper leaves without necrosis or stunting and with interveinal chlorosis 3
Upper leaves with reduced growth or beginning of necrosis with interveinal chlorosis 4
Severe stunting, damaged to growing point and chlorosis 5

Note: IDC - Iron deficiency chlorosis; and 1 IDC scores scale was developed by Helms et al. (2010).

2.5 2.5 1.5

Figure 2.3. Soybean plots and their iron deficiency chlorosis visual scores. The middle
plot shows a high amount of error in its score comparing to the plots on its both sides.

decay process of atoms that were excited by light source (Beaty and Kerber, 1978). The

amount of material corresponds to the amount of light that was either absorbed or emitted

from the cloud of atoms. Rodríguez-Lucena et al. (2010) used AAS (Perkin-Elmer AAnalyst

800 Spectrophotometer) to measure the amount of iron in different parts of soybean plants in

order to compare the effectiveness of different iron chelates and complexes in correcting IDC.

The AAS proved to produce the same result in measuring iron in soybean as inductively

coupled plasma mass spectroscopy (ICP-MS) (Jajda et al., 2015). The range of iron for AAS
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was 78.6–210.6 ppm (average = 123.23 ppm) and for ICP-MS was 71.8–200.4 (average =

123.73) with a correlation of 0.98 between two methods.

This method is capable of analyzing other parts of soybean such as root and stem for

Fe concentration. The concentrations of Fe did not change over time and found significantly

lower than those found in the leaves; this indicated the transitory behavior of Fe in the

soybean’s stem (Ferreira et al., 2019b).

All parts of plants including leaves, stem, and roots should be washed and rinsed

appropriately to remove dirt and inorganic contaminants. After separating different parts of

the plant, they could be washed with 0.1 % HCL and 0.01 % non-ionic detergent solution

(Tween 80, Probus, Barcelona, Spain) in 0.1 M HCl for 30 s. Then distilled water should be

used twice to rinse the parts. To determine the dry weights, the parts then should be placed

in a force air oven to get dry in 60 ◦C–65 ◦C for 72 h. To crush the plant samples, a titanium

mill (Retsch ZM200) could be used followed by muffle furnace at 480 ◦C for 2 h to turn them

into ash. Another way is to calcine them at 480 ◦C for 4 h. Acid digestion should be

performed with 1:1 diluted HCl (30 % Suprapur, Merck) or HNO3 (Suprapur, Merck) for ash

solubilisation (Jones Jr, 2001). The total Fe concentration in the digested samples should be

filtered through 20–25µm paper filters (FilterLab 1238) and could be determined by flame

atomic absorption spectroscopy (AAS).

2.4.3. Wet Chemistry — Indirect through Chlorophyll

The reduction of chlorophyll below normal chlorophyll content in the leaf is the main

symptom of IDC in soybean. Therefore, chlorophyll measurement could be an indicator of

IDC severity. There are several methods to measure the chlorophyll in soybean leaves, but the

most accurate one is to extract chlorophyll pigments and measure their concentration. With
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this measurement, the concentration of Chla, Chlb, and total chlorophyll could be determined

by measuring the extinction of the extract at ∼664 nm for Chla and ∼647 nm for Chlb. In this

process, several solvents could be used such as acetone, N,N′-dimethylformamide (DMF),

dimethylsulfoxide (DMSO), and methanol. Aqueous acetone (80:20 v:v pH=7.8) is the

common solvent, which exhibits a sharp peak at the aforementioned wavelengths. The DMSO

and DMF exhibit a sharp peak at those wavelengths, but they are more toxic. On the other

hand, methanol exhibit a broader peak at those wavelengths, but better degrades chlorophyll

in alkaline conditions (Porra, 1991). Cutting and grinding the sample shows a better result in

measuring chlorophyll.

Researchers have been using equations 2.1–3 to determine the concentration of Chla,

Chlb, and total chlorophyll (Chla+b), respectively in aqueous 80 % aceton (Arnon, 1949). The

followings are the equations to calculate Chla,Chlb and total chlorophyll in µg ·ml−1 (Arnon,

1949).

Chla = 12.70E663 − 2.69E645 (2.1)

Chlb = 22.90E645 − 4.68E663 (2.2)

Chlsa+b = 20.21E645 + 8.02E663 (2.3)

where Chla is chlorophyll a content, E is the extinction of mixed chlorophyll at 663 and

645 nm, Chlb is chlorophyll b content, and Chla+b is total chlorophyll content.

However, Porra et al. (1989) argues that these equations produce an average of 10 %

error compared to their method, which produced only an error of 1 % with AAS. New

equations by Porra that uses buffered aqueous 80 % acetone (pH 7.8) can be found below

(for other solvents read Porra (2002)).
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Chla = 12.25E663.6 − 2.55E646.6 (2.4)

Chlb = 20.31E646.6 − 4.91E663.6 (2.5)

Chlsa+b = 17.76E646.6 + 7.34E663.6 (2.6)

2.4.4. Sensors — SPAD — Indirect through Chlorophyll

Several sensors can be used in quantifying IDC in soybean by estimating the

chlorophyll content when an expert detects that the lack of chlorophyll or discoloration is the

cause of IDC. Soil plant analysis development (SPAD) meter (Minolta, 1989) is one of the

sensors that is widely used especially among researches. The SPAD meters estimate the

chlorophyll content by measuring the absorbance of a leaf in two different wavelengths,

namely 650 nm (red) and 940 nm (near-infrared). At 650 nm both chlorophyll ‘a’ and ‘b’ have

the maximum absorbance, whereas 940 nm is used to adjust for individual leaf thickness

(Vollmann et al., 2011). The adjusted coefficient of determination of a second-degree

polynomial model between SPAD and total chlorophyll content found to be high (R2 = 0.96)

(Rigon et al., 2016)

Actual chlorophyll content could be derived from SPAD meter readings (Markwell

et al., 1995) for soybean and corn using the following conversion relationship (eq. 2.7):

CC= 10(SMR0.265) (2.7)

where CC is chlorophyll content (µmol ·m−2), and SMR is the SPAD meter reading. However,

SPAD meters do not necessarily produce identical data. Therefore, the SPAD meter values
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from different devices should not be directly compared unless calibration procedures are

standardized (Markwell et al., 1995).

To properly use the device, the SPAD meter has to be used without any sample in the

sample area. This helps the SPAD meter to record and save the values in the memory for

different wavelengths. Then it has to be used with the provided reference and the

measurements have to be with a defined range. Finally, the SPAD meter could calculate the

transmission of the different wavelengths for other samples relative to the saved values.

(Markwell et al., 1995).

Naeve and Rehm (2006) measured relative leaf chlorophyll concentration with a

SPAD meter and found a high correlation with IDC visual rating (r = −0.93). Chatterjee et al.

(2017) studied the effect of different foliar application of Fe on re-greening and yield of

soybean. They found that the SPAD meter readings of treated soybean plots indicated higher

chlorophyll content over the growing season compared to the control treatment. Moreover,

the application of two different iron chelates that were applied to the soil with chlorotic

soybean plants showed an increase in SPAD measurements in soybean leaves (Ferreira et al.,

2019b).

Symptoms of IDC appear between the veins on the leaf, so measurements over the

veins result in higher reading because veins contain more chlorophyll (Bin et al., 2016; Coste

et al., 2010; Uddling et al., 2007). Additionally, the sampling size of this device is really

small, and to deal with this issue, users measure three to five different spots on a leaf and

average the values to get a more representative estimation for the leaf (Gamble et al., 2014).

Since the IDC is not uniform throughout the plant and some leaves have more IDC than
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others, images from a digital camera can capture the whole leaf and they are more accessible

than SPAD meter (Rigon et al., 2016; Vollmann et al., 2011).

2.4.5. Image Processing — Digital Images and Rating Iron Deficiency

Reduction of chlorophyll and chlorosis is the main symptom of IDC in soybean and

shows itself as the yellow color in the leaves (Ferreira et al., 2019b). Similar to human eyes,

digital cameras are capable of capturing colors. Through images processing software

different features can be extracted from the images and the correlation between these

features can be studied with real features of the soybean such as chlorophyll content (Rigon

et al., 2016; Vollmann et al., 2011), leaf area index (Liu et al., 2013), canopy area (Yu et al.,

2016), among others. The cameras that are widely used for the aforementioned applications

are capable of recording the reflection of the RGB color in three different layers. The

reflected values mostly get recorded as 8-bit numbers, which can be anywhere between 0 and

255 (28 = 256) for every pixel.

The final image is the product of combining these values for every pixel. For instance,

the RGB values of 255, 255, 0 will produce yellow, and RGB values of 255, 0, 255 will

produce purple. The RGB color space might not be intuitive, but the hue, saturation, and

value (HSV) or the hue, saturation, and brightness (HSB) color space is closer to human

perception of color and can be calculated from RGB values (range 0–1) as follows (Smith,

1978):

H ′ =
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S′ =
max(R, G, B)−min(R, G, B)

max(R, G, B)
(2.9)

B′ =max(R, G, B) (2.10)

where H ′ is hue, S′ is saturation, and B′ is the brightness of HSB color space.

Another color space that is being widely used is CIE L∗a∗b∗, where L∗ is lightness from

black to white, a∗ changes from green(−) to red(+), and b∗ changes between blue(−) to

yellow(+).

Bai et al. (2018) converted RGB values of soybean plots into HSV, and extracted all the

pixels with hue between 40° to 170° which includes green, yellow, and orange for initial plant

segmentation. They used the available hue values to train a machine learning model to score

soybean plots for IDC. Naik et al. (2017) calculated the proportion of yellow and brown colors

on the soybean leaves base on their respective hues (21°–50° and 51°–80°, respectively).

They used these values to train several machine learning models to predict IDC visual scores.

2.4.5.1. Image acquisition

The first step in using image processing is acquiring images that provides helpful

information about the health status of the soybean. Images could be captured in different

formats such as raster, spectral reflectance, and point cloud through different platforms and

sensors. Multispectral, RGB, and thermal cameras produce raster formats that can be

captured in different spatial resolution from sub-centimeter of smartphone cameras

(Hassanijalilian et al., 2020b) to 30 m resolution of satellite images (Peng et al., 2017).

Hyperspectral cameras can record the amount of reflectance of soybean in finer resolutions
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compared to multipsectral cameras. However, not all the information is useful in detecting a

disease or deficiency, and techniques such as principal component analysis (PCA) should be

used to extract the relevant wavelength information. Sensors such as LiDAR and Kinect (Ma

et al., 2019) can produce 3D point clouds that can be used to measure canopy height as one

of the main symptoms of IDC.

The spectral and spatial resolution of the sensor plays an important role in the quality

of the information. The RGB cameras record three wide ranges of the electromagnetic

spectrum, but hyperspectral sensors capture many narrow ranges of the spectrum. The RGB

data is easier to store, process, and understand, but hyperspectral that has a better spectral

resolution gives more information about the crop. With respect to spatial resolution, image

registration through georeferencing is necessary for multitemporal studies specially for the

ones that have finer resolution such as UAV images (Dobbels and Lorenz, 2019).

Georefrenceing enables the researchers to compare the data between different dates.

2.4.5.2. Image registration — georeference, radiometric correction, color correction

IDC is known for lack of chlorophyll in soybean leaves and canopy, which make them

appear in yellowish color. However, to be able to compare the images of different leaves,

canopies, and fields that were taken in a different time, images need to be corrected for

different lighting conditions; these methods usually are performed for images taken in the

field because the lighting condition in the controlled environment is constant between images.

In studies with UAV usually a calibration board is placed in the imagery area to correct

the images for different lighting conditions. This board is paint-sand mixed in checkerboard

pattern with different shades of gray to create a near-lambertian reflection surface. Depends

on the area of the study, several calibration board could be made. The relationship between
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digital numbers (DN) and radiance that reaches the sensors is linear. Therefore relative

correction could be performed with linear equations for multi-temporal studies as follows:

BlackT1,k = αk × BlackT2,k + βk (2.11)

WhiteT1,k = αk ×WhiteT2,k + βk (2.12)

where Black and White are DN at time T of band k in the images, α is the slope (gain), and β

is the intercept (offset). The average value of black and white shades of those board could be

used for eqs. 2.11 and 2.12. In case of over exposure of white shade, other objects in the

study area could be use for calibration (Yu et al., 2016). The same method is used for

calibrating satellite imagery with empirical line method (Collings et al., 2011; Smith and

Milton, 1999).

2.4.5.3. Image processing — image segmentation, removing background

Images of soybean could be taken in different light settings and through different

platforms; pictures can be taken in a controlled environment and in the field. Regardless of

the environment, crop segmentation is necessary to isolate soybean leaves or canopy from the

surrounding background, which is soil when pictures are taken in the field. One method to

isolate soybean leaves is to set a manual threshold. This threshold captures the range of

values that is related to soybean in different health conditions (green to yellow and some

cases orange). Different color spaces could be used for this purpose, but the HSV color space

is the common one. Hue settings of 33°–110° and saturations of 6°–100° were used in the

controlled environment (Vollmann et al., 2011), while 40°–170° of hue was used to isolate

soybean crops in the field condition (Bai et al., 2018).
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Another method is to use an automatic threshold, so this method could adjust itself

with different conditions. Otsu method is the famous method that assumes the values in the

image are in two classes, and it tries to maximize the inter-class variance between the classes.

Usually, one out of three channels from different color spaces or any other grayscale image

that is a result of color vegetation index (CVI) is used with Otsu (Liu et al., 2017). Figure 2.4

shows a bimodal histogram of a∗ channel of an aerial image of the soybean research plot.

The peak in the lower end of the histogram relates to soybean canopies, and the other one

relates to the soil.
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Figure 2.4. Histogram of a∗ channel of an aerial image of soybean research plot. The
peak on the left are values that are related to soybean plots, and the peak on the right is
related to the soil background.
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Using special CVI could be beneficial in segmenting crops; CVI such as excess green

index (ExG) and excess red (ExR), or sometimes a combination of CVI could be used for crop

segmentation. one of the unique combination is ExG+ExR that was used in a couple of

studies for crop segmentation (Jin et al., 2017; Meyer and Neto, 2008); the threshold of 0

was used to remove the negative (soil) values. Finally, other sensors such as LiDAR and

thermal camera (Deery et al., 2014) and other advanced methods such as supervised and

unsupervised machine learning could be used for crop segmentation (Dyson et al., 2019;

Sadeghi-Tehran et al., 2017).

2.4.5.4. Color vegetation indices

From the RGB images of digital cameras, several other color spaces can be derived,

and individual components of these color spaces can be used as a color vegetation index or

they can be combined to make more sophisticated ones (Bai et al., 2018; Karcher and

Richardson, 2003; Vollmann et al., 2011). Some of the cameras have sensors that are capable

of recording near infrared (NIR) and infrared (IR) wavelength as well. The reflection of soil,

stressed plants and healthy plants are very different for these wavelengths (Thomas et al.,

2018), so they can be used in image segmentation and feature extraction (da Silva Junior

et al., 2018; Rehman et al., 2019).

Individual components of different color spaces were used in several studies to

estimate the amount of chlorophyll, which is an indicator of IDC in soybean leaves. Vollmann

et al. (2011) found that the green component of RGB has the highest correlation with

chlorophyll content of soybean leaves at the R3 stage in a controlled environment. Since the

red, green, and blue components of RGB and hue, saturation, and brightness of HSB color

space are closely correlated, they observed a similar relationship between green and
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chlorophyll content of soybean leaves. In addition to RGB and HSB color space, Rigon et al.

(2016) used CIE L*a*b components to estimate the chlorophyll content of soybean leaves.

They also used the dark green color index (DGCI), which is a combination of HSB

components, and found a strong correlation with total chlorophyll (r = 0.84). Table 2.2

shows the correlation between different CVIs and chlorophyll measurement related to

different studies; one of these studies were performed in the field condition, while the other

ones were in the controlled environments. Based on the results (table 2.2), DGCI shows a

great correlation in both field and controlled environment, where single channels like green

show inconsistent results.

Normalized difference vegetation index (NDVI) is the most popular vegetation index

that has been used in agricultural research. It can be recorded through custom made digital

cameras (Lelong et al., 2008), crops sensors (Gamble et al., 2014), and multispectral sensors

(Maimaitijiang et al., 2017). Gamble et al. (2014) used GreenSeeker crop sensor (NTech

Industries, Inc., Ukiah, CA) over the soybean canopy to record the reflection to determine

NDVI as a measure of IDC. They mounted the sensor on a hand-pulling bicycle and recorded

the reflection from 80 cm above the canopy of the center rows. They found that NDVI

declined with visual chlorosis score at both V3 (Fehr et al., 1971) and V5 growing stage

(r = −0.63 and r = −0.84, respectively).

2.4.6. Other Imaging Platforms

2.4.6.1. Satellite imagery

Normal digital cameras, which produce RGB imagery, are ubiquitous and available for

both hand-held and UAV applications, but their capability of recording stress in the plants is

limited. On the other hand, multispectral and hyperspectral cameras/sensors can record
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Table 2.2. Correlation of color vegetation indices with SPAD index using RGB and
chromatic coordinates (HSB).

Color vegetation index Definition r for r for r for

field lab lab

Red - −0.84 −0.68 -

Green - −0.77 −0.82 −0.94

Blue - 0.22 0.58 -

Hue - 0.79 0.69 -

Saturation - −0.56 −0.88 -

Brightness - −0.84 −0.81 -

L∗ - - −0.81 -

a∗ - - 0.62 -

b∗ - - −0.90 -

DGCI (Karcher and Richardson, 2003) [(Hue − 60)/60 +(1 − Saturation)+(1 − Brightness)]/3 0.90 0.84 -

ExG (Woebbecke et al., 1995) 2×green − red − blue 0.05 - -

ExR (Meyer et al., 1998) 1.3×red − green −0.82 - -

CIVE (Kataoka et al., 2003) 0.441×red-0.811×green+0.385×blue+18.78745 0.25 - -

ExGR (Meyer and Neto, 2008) ExG − ExR 0.45 - -

Gray 0.2898×red + 0.5870×green + 0.1140×blue −0.79 - -

GB (Woebbecke et al., 1995) green − blue −0.82 - -

ERI (Golzarian and Frick, 2011) (red − green)×(red − blue) −0.81 - -

EGI (Golzarian and Frick, 2011) (green − red)×(green − blue) −0.36 - -

RG (Woebbecke et al., 1995) red − green −0.76 - -

GR green − red 0.62 - -

GBRG (Woebbecke et al., 1995) (green − blue)/(red − green) 0.78 - -

COM1 (Guijarro et al., 2011) ExG + CIVE + ExGR 0.43 - -

MexG (Burgos-Artizzu et al., 2011) 1.262×green − 0.884×red − 0.311×blue 0.41 - -

RGB - Chromatic coordinates; RGB* - Combined combined single RGB input (grayscale); DGCI - Dark green color
index; ExG - Excess green; ExR - Excess red; CIVE - Color index of vegetation extraction; ExGR - Excess green
minus excess red index; COM1- Combined index 1; and MexG - Modified excess green index; GB - Green minus
blue; ERI - Excess red feature; EGI - Excess green feature; RG - red minus green; GR - Green minus red; and GBRG
- GB by RG ratio.

more information from canopies and have the potential to distinguish stress plants. However,

these cameras are more expensive, and usually, if they want to be used with a UAV platform,

both the UAV and the sensor must be customized for installation. These sensors are mostly

used on high altitude platforms such as UAVs and satellites. Peng et al. (2017) used the

bands of multispectral sensors aboard Sentinel-2 to assess canopy chlorophyll content of both

soybean and corn, which were chemically extracted in the lab. They used several vegetation

indices in both visible and NIR range to study the correlation between canopy reflection and
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canopy chlorophyll content. They found that the vegetation indices that consisted of NIR

such as NDVI were highly correlated with chlorophyll content (r = 0.92) and were minimally

affected by crop phenology so they could be used for both crops without algorithm

re-parameterization.

To monitor the dynamics of green LAI, different bands from LANDSAT could be used

to derive vegetation indices such as NDVI, the optimized soil adjusted vegetation index

(OSAVI), the two band enhanced vegetation index (EVI2) and the modified triangular

vegetation index (MTVI2)(Liu et al., 2012). The formulas can be found below:

NDVI= (ρNIR −ρred)/(ρNIR +ρred) (2.13)

OSAVI= 1.16(ρNIR −ρred)/(ρNIR +ρred + 0.16) (2.14)

EVI2= 2.5(ρNIR −ρred)/(ρNIR + 2.4ρred + 1) (2.15)

MTVI2=
1.5|1.2(ρNIR −ρgreen)− 2.5(ρred −ρgreen)|
p

(2ρNIR + 1)2 − (6ρNIR − 5
p
ρred)− 0.5

(2.16)

where ρ is spectral reflectance at different wavelength such as near infrared (NIR), red, and

green. Although at high LAI, the uncertainty of NDVI is the smallest, due to saturation the

uncertainty propagated to the LAI estimation is the largest. However, NDVI is the only one

that is the most influenced by the leaf chlorophyll. The rest of the indices with comparable

results were good indicators of LAI (R2 = 0.83).

In a similar study, Gitelson et al. (2005) developed “green and red edge” models to

estimate chlorophyll content based on spectral reflectance measurement at a canopy level. To

test the models with spectral bands of satellite sensors, they used green and NIR bands from

MODIS System (onboard NASA’s Terra and Aqua Satellite), and the red edge and NIR bands
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of the MERIS system (onboard the polar orbiting Envisat Earth Observation Satellite). Both

models could produce an accurate estimation of total chlorophyll (0.92≤ R2 ≤ 0.94 for both

crops and models). However, the calibration coefficient for both models remains

species-specific for these specific spectral bands from satellites.

2.4.6.2. Aerial imagery

Rating IDC is a time consuming and labor-intensive task, and that is why the breeders

only perform this task only once or twice during the growing season. However, UAV could

capture the variation in canopy colors among different cultivars in research plots more

efficiently. A different algorithm such as random forest and the neural network could be used

to predict the severity of IDC to mimic the breeders’ rating. The rating that is done later in

the season (V6 growth stage) found to be more accurate due to the bigger size of canopies in

the aerial images (Dobbels and Lorenz, 2019).

Kyaw et al. (2008) used aerial imagery and soil electrical conductivity (EC) to

delineate chlorosis management zones. They found that the combination of NDVI and EC is

the best in predicting soybean yield. Moreover, this combination helped them to delineate the

chlorosis zones and associate the yield loss with IDC. Similarly, Rogovska and Blackmer

(2009) used aerial images of soybean canopy to map high pH and calcareous soils at field

scale as a tool for farmers to identify IDC-susceptible areas in their field. The aerial imagery

consisted of both RGB and NIR, and instead of NDVI, they derived green NDVI (GNDVI) as

the vegetation index. They used GNDVI to select 10–18 points for plant and soil sampling

during the growing season. They stated that soybean yield and GNDVI had a positive

correlation among all the fields ranging from 0.69 to 0.91 in early July. They found a negative

correlation between GNDVI and soil pH in the range 5.4< pH< 8.4, which could be partially
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explained by IDC symptoms in the canopy. They also observed a higher variation in GNDVI

for soil pH> 7.9, which indicates that factors other than pH cause variability in GNDVI.

2.5. Analysis of IDC Data

Different methods can be used to estimate or predict IDC in soybean. Most methods

use features from digital images because they provide useful information on the visual

symptoms of IDC. Traditional statistical methods that were usually used to estimate

chlorophyll could be great indicators of IDC (Rigon et al., 2016; Vollmann et al., 2011) while

more sophisticated machine learning models could classify IDC severity using more features

from different sources (Bai et al., 2018; Hassanijalilian et al., 2020b; Naik et al., 2017).

2.5.1. Statistical Methods

Linear regression is the model that has been heavily used in estimating chlorophyll or

nutrients such as iron and nitrogen in different crops. Since the model only can handle one

input feature, it cannot use all the measured or captured features from the plants (Vollmann

et al., 2011). Different studies used RGB images to estimate chlorophyll in a controlled

environment. The presented models could use one of the three provided channels or a

mixture of all of them as a color vegetation index (Rigon et al., 2016). However, the indices

that were calculated in the controlled environment are not necessarily good predictors of

soybean chlorophyll content measurement in the field condition (Hassanijalilian et al.,

2020b).

Another method of implementing chlorophyll estimation for IDC measurement is to

study the trendlines of chlorophyll estimations for different iron treatments (Bin et al., 2016)

or different soil types (Schenkeveld et al., 2008) through different growth stages. The
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differences between treatments could be identified through Dunnett’s t test (Ferreira et al.,

2019a).

2.5.2. Advanced Machine Learning Methods

In contrast to common statistical models, machine learning models are capable of

handling and incorporating many input features. Machine learning models are mostly

categorized into two main types: supervised and unsupervised models. (Géron, 2017).

Supervised models are the ones that target feature is already known and has labels. The

target feature is used in training the models and some portion of it will be used for assessment

of the model. Regression and classification models are among the supervised models. On the

other hand, unsupervised models do not have pre-labeled target feature, and the model tries

to put the dataset in different clusters based on the patterns in the input features.

Classification models such as support vector machine (SVM), decision tree, random

forest, adaptive boosting (AdaBoost) have been used in classifying different severities of IDC

based on extracted features from images of handheld cameras (Bai et al., 2018; Naik et al.,

2017; Zhang et al., 2017) or from aerial images of UAV (Dobbels and Lorenz, 2019). The

purpose of these studies was to build machine learning models to predict visual rating that

was done by a human.

The input features that were used in most of these studies to train the models were

the ratio of different ranges of hue compared to total pixels that were occupied by soybean.

Using only the hue might not give a complete picture of soybean health status as

Hassanijalilian et al. (2020b) observed that adding other channels improved the performance

of the random forest model in predicting the chlorophyll content of soybean leaves.
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Moreover, other features such as canopy size could be used as input features because stunt

growth is one of the main symptoms of IDC (Hassanijalilian et al., 2020a).

The IDC dataset is often imbalanced and it can affect both training and assessment

methods. Different techniques such as defining proper weight for each class or synthetic

minority oversampling technique (SMOTE) could be used to deal with the imbalance nature

of these kind of datasets. In assessing the models that were trained on imbalance datasets,

different metrics such as precision, recall, f1-score, and especially false positive rate could be

used instead of accuracy which misleads the assessments (Géron, 2017; Hassanijalilian et al.,

2020a)

2.6. Management of IDC

Even though there are different management practices to alleviate IDC symptoms,

some practices require farmers to extra steps in their managements such as planting a small

grain companion crop (Kaiser and Bloom, 2018). Oats (Avena sativa L.) or wheat (Triticum

aestivum L.) can reduce both moisture and nitrate in the soil, which both exacerbate the IDC

symptoms for soybean. However, cereal crops should be killed before they start competing

with soybean over resources such as soil moisture (Bloom et al., 2011). Overall it has been

observed that the companion crops are not providing consistent results and it is not always

profitable (Kaiser et al., 2014; Naeve, 2006).

Another management that requires an extra step is to apply iron chelates either to the

soil or as foliar application (Bin et al., 2016; Gamble et al., 2014; Rodríguez-Lucena et al.,

2010; Schenkeveld et al., 2008). Iron chelates provide Fe in a usable form for soybean roots,

however, not all chelates have the same performance. Some release the iron at a slower rate
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and create a higher availability for soybean root (Polyakov et al., 2019), and some foliar

applications only improves the visual symptoms and not the final yield (Liesch et al., 2011).

Increasing the seeding rate or planting soybean in wider rows is another practice that

potentially can reduce IDC in the field (Goos and Johnson, 2000; Naeve, 2006). This could

be because of reduced soil moisture under the row, and the increase in acidity of the root

zone that provides a more friendly environment for the root to take up soluble iron (Goos

and Johnson, 2001). Moreover, planting soybean in wider rows provides farmers with more

choices to add other IDC prevention practices such as adding iron chelate, which increase the

concentration of chelates in the furrow that aid in the uptake of soluble iron and improve the

chlorophyll content of the crop (Goos and Johnson, 2000).

Finally, the most efficient method to avoid IDC is to plant a tolerant cultivar (Helms

et al., 2010; Kaiser et al., 2011; Naeve, 2006). Tolerant cultivars could produce the same

amount of yield compared to when susceptible cultivars are planted with companion crops or

iron chelate (Kaiser et al., 2014). Minnesota farmers revealed in the survey that the majority

of them use tolerant cultivar as the main practice to avoid IDC (Hansen et al., 2003).

2.7. Concluding Remarks and Future Perspective

Different methods of IDC assessments and management were synthesized and

presented. Some of the methods, such as atomic absorption spectroscopy, chlorophyll

extraction, and crop sensors are more relevant to lab environments and studies that focus on

gene expressions. Other methods, such as visual rating and the use of remote sensing in

different platforms are more relevant in field settings of larger scales and studies that focus

more on selecting tolerant cultivars.
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Remote sensing is one of the tools that enables researchers to monitor soybean in

larger scales and in a repeatable manner. However, the majority of studies were dedicated to

normal RGB or multispectral cameras. The capability of these sensors is limited regarding the

spectral signature of the plant. On the other hand, studies with hyperspectral sensors

regarding IDC detection in the field are scarce. Similarly, LiDAR as an emerging tool can

create a 3-D point cloud of soybean canopy and this could be used along with other sensors

to detect the chlorosis in different trifoliolates. This could be helpful since iron is immobile in

soybean and younger leaves are affected by IDC. Additionally, finer resolution soil grid

sampling could be used as input features to machine learning models along with aerial

images and historical data to study the different factors affecting IDC severity.
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3. CHLOROPHYLL ESTIMATION IN SOYBEAN LEAVES

INFIELD WITH SMARTPHONE DIGITAL IMAGING AND

MACHINE LEARNING *

3.1. Abstract

Soybean (Glycine max (L.) Merrill) leaf chlorophyll content is indicative of the plant

growth and health issues. However, chlorophyll measurement using the standard chemical

procedure is laborious, while the sensor-based electronic options, such as soil plant analysis

development (SPAD) meter tend to be highly expensive and made only spot measurements.

Therefore, a simpler and less expensive infield method of chlorophyll measurement in

soybeans using smartphone camera with image processing and machine learning models was

developed. Soybean leaf images (720 images) and SPAD readings were collected from

different cultivars (4), with replications (3) and sampling dates (2) from experimental plots.

Of the several color vegetation indices (CVIs) tested, the dark green color index (DGCI) had

the best correlation with SPAD meter readings (r = 0.90), which was further improved by

color calibration (r = 0.93). The results of the random coefficients model showed that both

cultivars and sampling dates had no significant effect (0.06≤ P ≤ 0.96), hence data were

combined for the analysis. The simpler statistical linear regression (SLR) and polynomial

* This paper has been published in the Computers and Electronics in Agriculture journal. Authors:
Oveis Hassanijalilian, C. Igathinathane, Curt Doetkott, Sreekala Bajwa, John Nowatzki, and Seyed Ali Haji
Esmaeili. Title: Chlorophyll estimation in soybean leaves in field with digital imaging and machine learning.
Year: 2020. Volume: 174. Manuscript No.: 105433. DOI: https://doi.org/10.1016/j.compag.2020.105433.
Oveis performed the literature survey and wrote the manuscript. Dr. Igathinathane Cannayen is the major
advisor and the corresponding author who worked with Oveis throughout the manuscript development. All the
co-authors have assisted in the research direction and review of the manuscript.
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regression (PR), multiple linear regression as well as the advanced machine learning models

(support vector machine (SVM), random forest (RF)) tested with color scheme inputs (RGB,

DGCI, range pixel count (RPC) of DGCI, and ‘Both’ (RPC+RGB)) produced the best

chlorophyll prediction with DGCI, RPC, and ‘Both’ inputs (0.87< R2 < 0.89;

2.90≤ RMSE≤ 3.41 SPAD units). Overall, these models were not significantly different, but

the SVM model found to be the best (R2 = 0.89 and RMSE= 2.90 SPAD units). The simpler

SLR and PR models with DGCI input (R2 ≥ 0.87 and RMSE≤ 3.1 SPAD units) performed as

good as the advanced SVM and RF models. The SVM model had the potential of predicting

the chlorophyll directly with the raw RGB input (R2 = 0.86 and RMSE= 3.20 SPAD units)

without the need of using the standard calibration board. The developed methodology of

image processing with machine learning modeling and conversion relationship of measuring

infield soybean leaf chlorophyll is efficient, inexpensive, not requiring the standard

calibration board, and can be easily extended to other large-scale aerial imaging platforms

and field crops.

3.2. Introduction

Monitoring chlorophyll in soybean (Glycine max (L.) Merrill) crops can be of great use

in assessing growth and detecting important issues such as iron deficiency chlorosis (IDC).

The IDC causes significant soybean yield loss on the order of $120 million per annum across

1.8× 106 hectares in the Midwestern United States (Hansen et al., 2004). The IDC can

reduce plant height and leaf area, and is characterized by a reduction in the leaf chlorophyll

content which turns the color from green to yellowish (Vasconcelos and Grusak, 2014). One

of the standard methods to measure chlorophyll is the laboratory chemical extraction and

calculation based on spectrometer reading using the Von Wettstein (1957) equation.
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However, this method is time-consuming, labor-intensive, and difficult to perform on a large

number of samples. On the other hand, a sensor-based chlorophyll meter method provides a

quick and easy measurement of infield chlorophyll content (Uddling et al., 2007), but tend to

be expensive. Therefore, it is necessary to develop a practical and cost-effective method for

soybean infield chlorophyll measurements.

A commonly used for chlorophyll measurement device is the soil and plant analysis

development (SPAD) meter (Minolta, 1989) and is calibrated for several field crops.

Unfortunately, SPAD meters are relatively expensive, and based on soybean trifoliate

measurements, the sample area for an individual measurement is small (6 mm2) compared to

the average entire leaf size of about 2470 mm2 (Page et al., 2018). Thus, the very small SPAD

sample area will not be necessarily a representative of the whole leaf or the plant. Moreover,

users can introduce error by using the chlorophyll meter on veins (typically green under early

IDC), potentially leading to a false reading (McClendon and Fukshansky, 1990).

Digital imaging combined with image processing is another technique that has been

proven to be useful in measuring chlorophyll (Vollmann et al., 2011). In another study,

images from smartphone were used in soybean chlorophyll estimation (Rigon et al., 2016);

however, the measurements were performed in the controlled conditions of a greenhouse.

From the digital images, many color vegetation indices (CVIs) can be calculated to

assess plant health (Karcher and Richardson, 2003). It was found that with soybean leaves in

a controlled environment at the R3 growing stage (Fehr et al., 1971) green and hue CVIs had

a strong correlation with chlorophyll meter readings (Vollmann et al., 2011). Similarly, in a

controlled environment at different growing stages of a single cultivar of soybean, the hue,

saturation, and brightness CVIs showed a strong correlation with chlorophyll meter readings
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(Rigon et al., 2016). However, processing the pictures of soybean in a controlled

environment may not be representative of images that are taken in field conditions, where

lighting may vary at different sampling times. This could have a direct effect on the

appearance of the colors of the leaves (Bascle et al., 2006), and leads into potentially

inaccurate measurements. A standard calibration board was used in indoors and in the field

conditions to account for differences in artificial and natural lighting conditions and the

variability decreased significantly (R2 = 0.85) (Rorie et al., 2011).

The extracted CVI from images can be used as input in machine learning models to

predict the chlorophyll content. Machine learning has been used to predict the chlorophyll

content of fresh-cut rocket (Eruca sativa Mill.) leaves (Cavallo et al., 2017), and to identify

the field attributes for soybean yield prediction (Smidt et al., 2016). A simple linear

regression (SLR) and a random forest (RF) models were the two machine learning methods

used in these studies. Compared to SLR, the RF model can handle large datasets and

high-dimensional data without the risk of overfitting. Similarly, support vector machine

(SVM) has been used widely alongside machine vision for agricultural applications, and are

very effective in field conditions (Rehman et al., 2019). Along with SLR and RF, we propose

to use polynomial regression (PR), multiple linear regression (MLR), and SVM to study their

performance in chlorophyll estimation through image processing.

To the best of our knowledge, no studies on soybean using smartphones have

analyzed the effect of different cultivars and different sampling times on the relationship

between CVI and chlorophyll meter readings in field conditions in assessing the chlorophyll

content of leaves. Furthermore, the use of the smartphone as a contactless imaging device,

and the standard calibration board to correct the images for lighting variations in the field,
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along with the developed machine learning models will improve the affordability and

accuracy of measurements, hence worth an investigation. The results generated even though

is applicable to single leaf chlorophyll measurement, the proposed overall methodology can

be extended to plot- and field-scales using aerial images through appropriate modifications.

Therefore, the main objectives of this research study were to (i) evaluate the

relationship between the SPAD meter readings and CVIs derived from smartphone images of

soybean plants for chlorophyll estimation in field condition, (ii) evaluate the effect of

different cultivars and sampling time on chlorophyll estimation, and (iii) compare statistically

the performance of the selected five machine learning models in chlorophyll prediction and

make recommendations.

3.3. Materials and Methods

3.3.1. Field Experimental Plots

Four different cultivars of soybean (W3018R2, Mycogen 5N050R2, Asgrow AG0333,

and Dahlman 5311NRR2Y) were planted in Leonard, ND, USA (46.671 783° N,

97.245939° W) for the experiments. The average temperature for the month of May, June

and July, 2015 were 15.0 ◦C, 19.4 ◦C and 22.2 ◦C, respectively, based on the nearest weather

station (46.729381° N, 97.283 470° W). Furthermore, total rainfall for these months were

134.0, 108.1, and 36.6 mm, respectively (NDAWN, 2015).

The experimental plots with three replications each (4 cultivars × 3 replications =

12 plots) were seeded at a density of 30 seeds/m in each row on May 21, 2015 (fig. 3.1).

Each plot was 3.4 m long and 3.0 m wide, and had four rows with a row spacing of 0.76 m.

Since the research sites were not large, weed management was performed manually to avoid

potential negative symptoms likely to be caused by the herbicides.
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Figure 3.1. Soybean experimental field plots for various cultivars and replications
showing various levels of IDC symptoms.

3.3.2. Field Data Collection — SPAD Meter and Digital Images

Field data, in the form of SPAD meter readings and digital color images, were

collected from each plot between 10:00 to 14:00 CDT to maintain consistent light conditions

on the two dates, namely July 1st and July 15th, 2015. When data were collected, the

soybean plants were at V3 (Fehr et al., 1971) and V5 growth stages. These stages were

selected because the breeders rate the crop twice at these stages where the IDC severity

usually changes, hence displaying different levels of chlorophyll for measurements (Helms
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et al., 2010). From each plot having four rows, leaf samples only from the middle rows (2nd

and 3rd) were collected, avoiding the edge effects of the border rows (1st and 4th). The

selected leaf was clipped from the plant and the SPAD meter reading was taken first followed

by the digital image of the same leaf arranged on the standard calibration board. With 30

selected leaves per plot with 12 plots in total resulted in 360 observations at one sampling

date (720 observations for both dates). As the IDC issues were common in the region, several

plants in the experimental field displayed IDC symptoms (fig. 3.1).

3.3.3. Overall Methodology and Analysis

The various methods involved in the experiments and the analysis for the chlorophyll

estimation in soybean leaves using the digital image and machine learning models with SPAD

meter reading as reference are outlined in figure 3.2 and described subsequently.

3.3.3.1. Chlorophyll measurement

A SPAD meter (Model: SPAD-502; Konica Minolta Sensing, Osaka, Japan) was used to

directly estimate the chlorophyll content of soybean leaves. In each plot, the uppermost fully

developed leaves of 30 different plants were used for the SPAD meter readings. Since the

sampling sensor area of the SPAD meter is small, the measurements were taken from three

different spots of every leaf, for representative measurements, and the average was used as

the SPAD meter readings (Roriz et al., 2014). As the plots displayed the IDC symptoms, a

range of leaf samples with different chlorophyll contents was purposefully selected from a

wide spectrum of colors from yellow to green. While making the measurements, the veins of

the leaf were cautiously avoided as IDC will have the least effect on them. Finally, the SPAD

meter readings were converted to actual chlorophyll content (Markwell et al., 1995) using
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Figure 3.2. Flowchart of the proposed image processing and machine learning model
approach developed to predict chlorophyll content of soybean leaves.

the following conversion relationship (eq. 3.1):

CC= 10(SMR0.265) (3.1)

where CC is chlorophyll content (µmolm−2), and SMR is the SPAD meter reading. It should

be noted that the conversion relation type and coefficients (eq. 3.1) will vary among different

makes of SPAD meters and they also require their calibration before measurements.
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3.3.3.2. Image acquisition for chlorophyll measurement

Digital color images of the clipped soybean leaves were acquired with a 38 MP

smartphone camera (Nokia Lumia 1020) for the same 30 leaves that were also used for the

SPAD meter readings from each plot. Double-sided tape was used to attach and flatten the

soybean leaves to the middle of a standard calibration board (FieldScout, Aurora, IL;

fig. 3.3). The standard calibration board was a 230 mm × 290 mm pink color board with two

90 mm diameter discs, one yellow and one green. The leaves were attached to the pink area

of the board, while the green and yellow discs were used to calibrate the images to account

for changes in ambient light.

Figure 3.3. Soybean leaf placed on the standard calibration board.

Munsell color values of the yellow disc were 5 Y 8/11.1 (#e7c71f hex; 50, 87, 91

HSB; and 231, 199, 31 RGB values) and for green disc were 6.7 GY 4.2/4.1 (#576c43 hex;
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91,38,42 HSB; and 87, 108, 67 RGB values). A similar standard calibration board was also

used to account for different cameras and illumination scenarios (Rorie et al., 2011).

The smartphone was set to operate in automatic mode, so the phone could set the

shutter speed and aperture values to maintain a constant amount of incoming light to the

camera. The resolution of the images was on the highest setting of 3072× 1728 pixels, and

the images were saved in a JPEG format. All images (330 usable images per sampling period)

were taken so the whole standard calibration board was in the middle of the frame, and at an

oblique angle to avoid glare or shadow on the board.

3.3.4. Image Preprocessing for Objects Recognition and Indices Determination

The aim of image preprocessing (objects recognition) is to automatically identify the

objects in the standard calibration board with leaf (the calibration board itself, yellow disc,

green disc, and leaf) and extract the pixel color information for various CVIs, for example, the

dark green color index (DGCI). Images were preprocessed with MATLAB (2015a) Image

Processing Toolbox. Suitable codes were written to perform all the stages of the analysis. The

various image preprocessing stages involved in the object recognition for the extraction of the

color information are depicted in figure 3.4.

3.3.4.1. Object recognition - standard calibration board

Images were imported to Matlab as a 3072× 1728× 3 (layers) unsigned 8-bit integer

matrix, which has layers of red, green and blue (RGB). The RGB components of the dominant

pink of the board (fig. 3.4A1) fall in the approximate range of R> 220, G< 60, and B> 125.

Therefore, it is just enough to use red and green bands in the histogram (fig. 3.5) and their

thresholds were determined to extract the standard calibration board. Using these red and
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Isolating
the standard color board

(A) 

Isolating 
the yellow disc

(B)

Isolating
the green disc

(C)

(1) 

(2) 

(3) 

(5) 

(4) 

Figure 3.4. Image preprocessing operations of object recognition and isolation of the
standard calibration board, and the yellow and the green discs for extraction of color
information.
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green thresholds, a binary image was created that was used to create a mask for extracting

the standard calibration board (fig. 3.4A2).

Fr
eq

ue
nc

y

Pixel values Pixel values

RED (R) histogram GREEN (G) histogram

Figure 3.5. Detecting the pink portion of the standard calibration board through red
and green histograms. The highlighted peaks regions of both histograms are selected
the pink portion of the standard calibration board.

The small white speckles (fig. 3.4A2) representing the background soil particles were

removed next by a pixel area threshold <500000 pixels by the bwareaopen() function of

Matlab (fig. 3.4A3). Then the remaining larger objects, such as the green and yellow discs,

text logo, and the leaf were filled with white using the imfill() function (fig. 3.4A4). This

filled binary image was used as the mask to isolate the standard calibration board from the

input image (fig. 3.4A5). For the extraction for the reference color discs and the leaf, this

identified standard calibration board image serves as the input (fig. 3.4B1 and fig. 3.4C1).

3.3.4.2. Object recognition - yellow disc

For the extraction of the yellow disc, as the yellow is the most saturated color in the

image, the RGB color space was converted to hue (H ′), saturation (S′), and brightness (B′)
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HSB color space. The conversion of RGB to H ′S′B′ can be obtained using standard

expressions (Karcher and Richardson, 2003) or though Matlab function rgb2hsv().

From the S channel image (fig. 3.4B2), by defining the threshold of S> 0.9 the binary

image was created (fig. 3.4B3). In the binary image after applying erosion followed by

dilation using imopen() function removed small artifacts and broken up the leaf. Again with

bwareaopen() using 50 000 pixels threshold the remaining parts of the leaf were removed

and the mask was created (fig. 3.4B4). Then from the input (fig. 3.4B1) the created mask the

yellow disk was extracted (fig. 3.4B5).

3.3.4.3. Object recognition - green disc

For the extraction of the green disc, the DGCI (Karcher and Richardson, 2003) was

used as a basis and was calculated using the H ′, S′, and B′ values as follows (eq. 3.2):

DGCI=
(H ′ − 60)/60+ (1− S′) + (1− B′)

3
(3.2)

Applying the DGCI scheme on the input image (fig. 3.4C1), the grayscale image was

obtained that made the pink portion of the board white (fig. 3.4C2). To isolate the green

disk, pixels with a grayscale value greater than 0.9 were removed, which corresponded to the

pink portion of the board. This step’s output image consisted of the green disk, the leaf, and

other small objects (fig. 3.4C3). To further isolate the green disk and create the mask, the

bwareaopen() function was used to remove objects with an area smaller than 50 000 pixels

that removed the leaf and minor artifacts (fig. 3.4C4). This mask, when applied to the input

image, extracted the green disc (fig. 3.4C5).
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3.3.4.4. Object recognition - leaf

In the DGCI image (fig. 3.4C3), the leaf was the second-largest object besides the

green disc portion. By applying the created mask green disc (fig. 3.4C4) to the DGCI image

(fig. 3.4C3), the mask of the leaf was created. Further processing such as bwareaopen()

(4000 pixels threshold) followed by the imopen() with a disk shape structural element

removed the leaf stem (if present) and preserved the leaf shape and created the final leaf

mask. This leaf mask, when applied to the input image (fig. 3.4C1), extracted the leaf from

the standard calibration board, and along with this, a few other leaf samples are shown in

Figure 3.6.

3.3.5. Color Vegetation Indices

From the recognized leaf object in the image (fig. 3.6), all three channels of RGB were

extracted. The RGB channels of the whole leaf extracted were converted to chromatic

coordinates (eq. 3.3), which were used to calculate the excess green index (Hamuda et al.,

2016) as follows:

r =
R∗

R∗ + G∗ + B∗
g =

G∗

R∗ + G∗ + B∗
b =

B∗

R∗ + G∗ + B∗
(3.3)

where r, g, and b are the chromatic coordinates. R∗, G∗, and B∗ are the normalized RGB

values ranging from 0 to 1 (eq. 3.4), and are expressed as:

R∗ =
R

Rmax
G∗ =

G
Gmax

B∗ =
B

Bmax
(3.4)

where Rmax, Gmax, and Bmax are the maximum pixel values in the extracted image object with

the respective color channels. Since the amount of red and blue influences how the green
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Figure 3.6. The extracted leaf sample (top-left) from the standard calibration board
image (fig. 3.4) and a few others showing different levels of chlorophyll in the V3 to V5
stages of the study.

color appears, the RGB color space was converted to HSB color space as suggested by Karcher

and Richardson (2003). A further benefit of HSB color space is that it is closer to the human

perception of color and is device-independent. The DGCI (eq. 3.2) is designed to work best

with the hues present in the leaves (max: 120 and min: 60); however, the average RGB

values were also used for simplicity and model development.

The various CVIs that have been generally used in plant health estimation and plant

detection by various researchers (table 3.2) were employed in this study to select the CVI that
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correlates best with the chlorophyll measured using SPAD meter. The Pearson correlation

coefficients (r) were calculated for all leaves between each mean CVI and SPAD meter

readings for the selection of CVI. Based on the results presented later (section 3.4.2), a

comparison of the r between CVIs and SPAD meter readings indicated that the DGCI had the

best correlation. Therefore, DGCI values were further processed by calibrating the images for

illumination with a two-point linear calibration using the color disks of the standard

calibration board. Since RGB had lower r values compared to DGCI, they were not further

calibrated for ambient light variation. However, to study their application, as RGB is the most

common and simplest values extracted from the images, they were considered as one of the

basic input color schemes.

For calculating slope of the calibration line, the difference between the known and

observed values of both color disks were required. Yellow and green disks had known DGCI

values of 0.0178 and 0.5722, respectively. The average DGCI values of both disks were

derived from the images and used as observed values to calculate the calibration line slope

and y-intercept as described in equations 3.5 and 3.6:

Slope=
0.5722− 0.0178

Observed green DGCI−Observed yellow DGCI
(3.5)

y-intercept= 0.5722− (Slope×Observed green DGCI) (3.6)

The illumination-corrected value for DGCI of the leaf were calculated with the

calculated slope and y-intercept, as shown in equation 3.7:

Corrected leaf DGCI= (Slope×Observed leaf DGCI) + y-intercept (3.7)
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The corrected leaf DGCI values are expected to compensate for the differences in the

lighting conditions (Rorie et al., 2011).

3.3.5.1. Determining the effect of cultivar and sampling date using random coefficients

model

The random coefficients model (RCM) was used to assess the impact of plots,

cultivars, and sampling time on the relationship between corrected leaf DGCI values (eq. 3.7)

and SPAD meter readings. The RCM, also called multi-level or hierarchical model (Hsiao,

1975; LaHuis and Ferguson, 2009), was developed using SAS software proc mixed() method

(SAS, 2015). This model could specify variance components for individual factors to look at

levels represented as a random effect rather than a fixed effect.

Factors typically treated as random effects include blocks and plots. For this study

plots within dates (11) were identified as random effects, while dates (2) and cultivars (4)

were identified as fixed effects in the RCM.

3.3.6. Machine Learning Models

Five machine learning models of varying complexity were studied to fit the

image-based data to the chlorophyll measurement through SPAD meter. Three statistical

(SLR, PR, and MLR) and two advanced models (SVM and RF) were selected for the study. It

should be noted that the application of more advanced machine learning methods, such as

neural network and deep learning are expected to perform better when the size of the dataset

is big. Since, in this study, the dataset was relatively small, the above simpler machine

learning algorithms were employed. The “Scikit-Learn” module in Python (Pedregosa et al.,

2011) was used for models development as well as for validation (cross- and nested
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cross-validation), and R (R Core Team, 2018) for model performance testing and results

visualization.

The simpler statistical models (SLR and PR) used two sets of color schemes as

independent variables, such as a combined average RGB into one grayscale (RGB*), which

was calculated by rgb2gray() function of Matlab, and the average value of DGCI for all the

pixels of each leaf was used as inputs to these models. But the other models used the three

sets of independent variables such as (i) RGB — average of each three bands individually, (ii)

Range pixel count (RPC) — pixel counts of different ranges of DGCI (0.0–0.6 with 0.15

interval) that were normalized by the size of each leaf, and (iii) ‘Both’ — RGB+RPC. For the

combined color scheme (‘Both’), the RGB values and RPC were combined to form the seven

input variables. Since the scale of input variables affect the performance of some of the

machine learning models, all the input values were normalized with their respective mean

and standard deviation values.

Assessments of the performance of the models and parameters were based on the

model coefficient of determination (R2) and the root mean square error (RMSE, expressed in

SPAD units) of the predictions. The best models are those that produce the highest R2 and the

lowest RMSE. Further details of the models’ development, validation, and performance and

statistical analysis are presented subsequently.

For validation, a nested cross-validation (CV) was used to tune the parameters of the

advanced models (SVM and RF), and tested the models with the held-out dataset (Cavallo

et al., 2017). Since the rest of the statistical models (SLR, PR, and MLR) do not have any

parameters to be tuned, only the outer CV of the nested CV was used to assess their

performance with the same held-out dataset. In this study, 10 folds were selected for both
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inner and outer CVs. The R2 was selected as the criteria to pass the best parameters from the

inner CV to the outer CV.

3.3.6.1. Simple, polynomial, and multiple linear regression

The SLR utilizes ordinary least square method to generate a regression line by

minimizing the sum of squares of the differences between the predicted and the observed

values. The SLR model with usual notations (eq. 3.8; Neter (1974) ) is:

Y = β0 + β1X + ε (3.8)

where Y is the output or dependent variable (SPAD meter readings), β0 is the intercept and

β1 is the slope of the regression line, X is input or independent variable (RGB* or DGCI

values), and ε is a random error term.

Following the SLR (eq. 3.8) the PR also called a second-order model with one

independent variable X (eq. 3.9), and MLR models with additional independent variables

(eq. 3.10) are defined as (Neter, 1974):

Y = β0 + β1X + β2X 2 + ε (3.9)

Y = β0 + β1X1 + β2X2 + ...+ βiX i + ε (3.10)

where β0,β1, ...,βi are the parameters, X1, ..., X i are the independent variables, and

i = 1,2, . . . , n are the indices.

The ordinary least square method was used to solve SLR (eq. 3.8) with

LinearRegression module of Scikit-Learn. The same module was used to solve the PR

(eq. 3.9), but PolynomialFeatures were used to add the second-degree features and
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interactions to the independent variables. In MLR, not all variables (eq. 3.10) increase the

performance of the model, so a backward elimination method, using Statsmodels module in

Python, with the exit α level of 0.05 was chosen to eliminate variables that were insignificant

to the model.

3.3.6.2. Support vector machine

An SVM is a powerful model that can be used for both classification and regression,

which was found to be an effective model in field conditions (Rehman et al., 2019). The

procedure for classification can be thought of fitting the widest “street” possible among the

data, and the objective of SVM regression is to fit as much data possible in the street. Several

parameters, such as the kernel, degree, and gamma influence the performance of SVM

models and they should be properly selected for better performance (Géron, 2017).

These SVM model parameters were tuned through nested cross validation with the

following values, as initial guess ranges, used in this study are: (i) C (the penalty parameter

— 0.1 to 2.0 with 0.2 interval), (ii) coef0 (independent term in kernel function — 0 to 10

with 0.2 interval), (iii) degree (2 to 6) and gamma (0.01, 0.1, and 1 ), and (iv) kernel (poly

and rbf).

3.3.6.3. Random forest

The RF model is a group of decision trees used for either classification or regression.

Each decision tree predicts the outcome individually, and the RF model either votes among

the outcomes for classification or averages the outcomes for regression. In RF models

different subsets of input variables can be utilized in each tree, which makes it more useful in

prediction for datasets with higher dimensions (Géron, 2017). Each set of independent and

dependent variables was used to train the random forest models with Scikit-Learn module in
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Python (Pedregosa et al., 2011), and the trained random forest models were used to predict

the SPAD meter readings.

In order to have a better prediction, parameters of the random forest model were

tuned with a nested cross-validation method. The parameters and their defined values were:

(i) maximum depth of trees (4 to 10), (ii) the number of trees that composed the forest (25

to 50), and (iii) the minimum number of samples required to split an internal node (2 to 10).

3.3.6.4. Models performance and statistical analysis

The performance of all models was compared statistically (α= 0.05) based on the

performance parameters (R2 and RMSE) using Duncan’s mean separation analysis (De

Mendiburu, 2019) using the R programming environment. The mean separation analysis was

performed individually with the combination of models and color scheme inputs as well as

pooled data to compare the performance of models and color scheme inputs individually

based on performance parameters.

3.4. Results and Discussion

3.4.1. Field Measurement Results

The mean and the statistical distribution of the image-based (RGB) and SPAD meter

readings corresponding to the two sampling dates are presented in table 3.1. The generated

color patches based on the observed RGB data help in visual comparison. The different colors

of the patches can be found in the various regions of the original leaf image (fig. 3.6). For

comparison, the reference digital colors (hexcolor and fixed RGB shown) that matched the

three colors of the standard calibration board are also shown (table 3.1).

The results and color patches indicate that the leaves RGB is more close to the green

disc than the yellow disc (table 3.1). The minimum of the RGB data tended towards
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Table 3.1. Distribution of the RGB values collected with smartphone camera and SPAD
meter readings for both sampling dates (n = 330).

July 1st, 2015 July 15th, 2015

Data (count = 330) Red1 Green1 Blue1 Color SPAD2 Red1 Green1 Blue1 Color SPAD2

Mean 115.45 112.01 23.30 16.27 120.82 118.27 34.15 18.24

Standard deviation 26.90 14.49 10.02 – 8.29 30.72 18.73 9.50 – 9.18

Minimum 58.10 75.66 9.15 1.80 64.72 71.29 13.62 2.00

First quartile 92.58 100.80 15.67 9.20 95.69 104.20 26.96 10.40

Median 115.41 112.86 20.80 15.45 118.13 117.80 33.17 17.80

Third quartile 138.76 123.50 30.14 23.18 143.21 131.25 40.64 25.80

Maximum 172.03 145.28 54.61 37.60 210.94 169.02 60.38 40.50

Yellow disc* (#E7C71F) 231 199 31 – 231 199 31 –

Green disc* (#576C43) 87 108 67 – 87 108 67 –

Pink board* (#EA328A) 234 50 138 – 234 50 138 –

1 Values vary between 0 and 255; 2 Higher values correspond to higher chlorophyll contents; * Standard values
of the color calibration board; and color patches were derived from the corresponding RGB data presented for
information and may not refer to the same leaf as the distribution derived from 330 observations.

reference green and the maximum towards reference yellow, and the mean data clearly

belonged to the range of these reference colors. For both sampling dates the mean and

median coinciding, with quartiles falling symmetrical on both sides was indicative of the

normal distribution of the data. Overall, the passage of time (14 days) had only a slight

darkening effect during this short period. It should also be noted that these results are based

on the distribution of 330 test samples, and the minimum and maximum are based on

different samples; however, the results offer some indications of the leaf color variations.

3.4.2. DGCI for Chlorophyll Measurement

The various CVIs and their correlation with SPAD meter reading were determined to

identify the best CVI for prediction model development. The Pearson correlation coefficients

(r) between different CVIs and the SPAD meter readings indicated that DGCI had the highest

correlation (r = 0.9); this correlation was even greater than several green-based indices

(table 3.2). Although Vollmann et al. (2011) reported that in soybean the correlation
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between direct green channel and SPAD values had the highest absolute value (r = −0.94) in

comparison to a number of CVIs in a controlled environment, our study found that under the

field conditions the correlation was lower (r = −0.77) for green (table 3.2). In contrast, in

another study with corn (Zea mays L.) Vesali et al. (2015) used a contact imaging method

and found no relationship between green and the SPAD values. Given the inconsistencies,

using green channel alone would not be sufficient to estimate chlorophyll especially in field

conditions.

Table 3.2. Correlation of color vegetation indices with SPAD index using RGB and
chromatic coordinates (HSB).

Color vegetation index Definition r r
RGB chromatic

coordinates

Red - −0.84 −0.87

Green - −0.77 0.33

Blue - 0.22 0.57

Hue - 0.79 N/A
Saturation - −0.56 N/A
Brightness - −0.84 N/A
DGCI (Karcher and Richardson, 2003) [(Hue − 60)/60 + (1 − Saturation) + (1 − Brightness)]/3 0.90 N/A
Gray 0.2898×red + 0.5870×green + 0.1140×blue −0.79 −0.09

ExG (Woebbecke et al., 1995) 2×green − red − blue 0.05 0.33

ExR (Meyer et al., 1998) 1.3×red − green −0.82 −0.82

CIVE (Kataoka et al., 2003) 0.441×red − 0.811×green + 0.385×blue + 18.78745 0.25 −0.37

ExGR (Meyer and Neto, 2008) ExG − ExR 0.45 0.59

GB (Woebbecke et al., 1995) green − blue −0.82 −0.23

ERI (Golzarian and Frick, 2011) (red − green)×(red − blue) −0.81 −0.77

EGI (Golzarian and Frick, 2011) (green − red)×(green − blue) −0.36 0.77

RG (Woebbecke et al., 1995) red − green −0.76 −0.79

GR green − red 0.62 0.79

GBRG (Woebbecke et al., 1995) (green − blue)/(red − green) 0.78 0.33

COM1 (Guijarro et al., 2011) ExG + CIVE + ExGR 0.43 0.51

MexG (Burgos-Artizzu et al., 2011) 1.262×green − 0.884×red − 0.311×blue 0.41 0.61

DGCI - Dark green color index; ExG - Excess green; ExR - Excess red; CIVE - Color index of
vegetation extraction; ExGR - Excess green minus excess red index; COM1- Combined index
1; and MexG - Modified excess green index; GB - Green minus blue; ERI - Excess red feature;
EGI - Excess green feature; RG - red minus green; GR - Green minus red; and GBRG - GB by
RG ratio.
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Some components of RGB and HSB color space had higher absolute correlation values

than green (red: −0.857, hue: 0.886, and brightness: −0.847), whereas these components

had lower correlations than that of green (Vollmann et al., 2011). The blue component had a

low correlation with the SPAD meter readings (r = 0.218); which was supported by some

(Vesali et al., 2015; Yadav et al., 2010) but not others (Vollmann et al., 2011).

Notwithstanding these inconsistencies, using individual color channels of images in

controlled lighting could help estimate the chlorophyll content. But, these channels are less

useful when they have to apply in a field setting, where illumination cannot be controlled.

However, the usage of HSB color space-based DGCI, which incorporates all the channels of

the image, adjusts the image using the range of hues that are available in the leaf for

measurements. Furthermore, the adjusted image is calibrated for changes in ambient light

using the standard calibration board. The correlation of the uncalibrated DGCI values with

SPAD meter readings (r = 0.90) was improved after calibrating the values using standard

calibration board (r = 0.93). Thus, the DGCI, with possible calibration, is likely to be a more

reliable index to estimate chlorophyll content. Therefore, DGCI along with the basic RGB

were selected for prediction models development and were recommended for infield image

analysis for chlorophyll measurement.

3.4.2.1. RCM results for corrected DGCI

A preliminary assessment of the proportion of variance accounted for by date, cultivar,

and plot through intraclass correlations indicated that each variable was associated with

<5 % of the total variation in the data. Of these three possible sources of variation, the plot

accounted for roughly twice as much variation as either cultivar or date. Therefore, the final
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model was simplified to use date and cultivar as fixed effects with plot within date as a

random effect.

Underlying assumptions of normality and homogeneity of variance were assessed

based on the residuals and were well met by this model. The results for the Type III error

tests F -value and corresponding probability (Pr > F) at α= 0.05 for DGCI was 1752.80 and

<0.0001, cultivar was 1.72 and 0.202, and date was 2.65 and 0.122, respectively. This result

indicated that the correlation between DGCI and SPAD meter readings is significant;

additionally, cultivar and date had no significant effect on this relationship.

The SPAD meter reading of Date-2 was 12 % higher than Date-1 (table 3.1). Similarly,

in a foliar magnesium treatment application study, a decline of total chlorophyll at the time of

the first application and a raise at the time of second application was observed (Teklić et al.,

2009). Therefore, the amount of chlorophyll can change through time due to different

factors, and it might not have any effect on the chlorophyll estimation through DGCI.

Parameter estimates for fixed effects of the RCM based on t values indicated their

significance (table 3.3). While comparing the multiple levels of a parameter, a set-to-zero

approach obtained the solutions, so the last level of categorical factors (e.g., cultivar-4 and

Date-2) was essentially used as a reference level, and the parameter estimates for other levels

within a factor were adjustments to the dependent variable compared to the reference level.

The adjustment for SPAD values was for about a 4.3 % increase across the dates. This value is

based on the average SPAD value of about 20 at the corrected DGCI midpoint of about 0.35

as the estimate of 0.8596 divided by 20 was ≈4.3 %. The results (table 3.3) indicate that the

intercept and slope of the general linear regression were significantly different than zero,

while the effect of levels of cultivars and dates were not significantly different in their groups.
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Table 3.3. Parameter estimates for fixed effects of random coefficients model and
comparison.

Effect Estimate t-value Pr > |t|

Intercept* −5.6493 −7.24 <.0001
Slope* 87.6383 41.87 <.0001
Cultivar-1 −0.0338 −0.05 0.9630
Cultivar-2 −0.5705 −0.80 0.4369
Cultivar-3 −1.6320 −2.03 0.0578
Cultivar-4 0.000 – –
Date-1 −0.8596 −1.63 0.1220
Date-2 0.000 – –

* Parameters (slope and intercept) of the general linear regression in the random coefficient model.

The variability in the regression parameters across the plots within dates is

represented in the estimates for the RCM intercepts and slopes. The adjustments to the slope

and intercept in this case are relative to the fixed effects estimates for “Intercept” and “Slope”

in table 3.3. Most of the adjustments for individual plots are not statistically significant

(α= 0.05; data not shown).

The plot of regression lines of RCM grouped based on dates showed similar variation

based on fit slopes and intercepts (fig. 3.7). Overall, the regression lines fitted well across

individual plots and dates (0.77< R2 < 0.95). Also, the grouping of the regression lines

showed an insignificant difference between plots for both slope and intercept, and which

indicated that the relationship between DGCI and SPAD meter readings among the plots is

not significantly different (fig. 3.7). As a result, all the observations can be combined and

analyzed for chlorophyll estimation through the selected machine learning algorithms.

3.4.3. Machine Learning Prediction Models Results

3.4.3.1. Single linear regression

While using DGCI, the statistics of the 10 folds validation produced an average R2 of

0.87±0.02 for the test scores while the training scores average was R2 of 0.88±0.002 that
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74.04 ≤ Slope ≤ 107.25 72.66 ≤ Slope ≤ 95.21

–12.45 ≤ Intercept ≤ –2.37 –7.43 ≤ Intercept ≤ –2.49

0.77 ≤ R2 ≤ 0.94 0.83 ≤ R2 ≤ 0.95

Figure 3.7. Scatterplot of corrected DGCI and SPAD meter readings using RCM for first (left) and second (right)
sampling dates. Each line represents a regression line for individual plots.
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were assessed with only the external part of the nested cross-validation. Similarly, the

average value for RMSE for the SLR model is 3.10±0.26 SPAD units. Furthermore, from the

10 folds, slopes range from 85.25 to 87.08 and intercepts range from −6.36 to −5.91.

The training and test scores for all 10 folds of the SLR models are close to each other,

which means that the SLR models did not over- or under-fit the data. The fact that the DGCI

equation is based on leaf color variations could help the linear model to be a more suitable

model for field conditions. However, average DGCI as one independent variable does not

provide the model with enough information to have a more accurate prediction compared to

more advanced models. On the other hand, using the combined RGB as independent variable

did not give a good performance (R2 < 0.56,RMSE> 5.88 SPAD units; fig. 3.8).

3.4.3.2. Polynomial regression

The DGCI was used as the only independent variable in this model to predict the SPAD

meter readings in PR, similar to SLR. The average R2 is 0.87±0.02 and RMSE is 3.09±0.27

SPAD units, which is the best among all models when the average RGB was used to train the

other models. Furthermore, it performed similarly to SVM when RPC was used as

independent variables. The PR performed almost the same as the SLR and hence not

significantly different from SLR, even though the PR fitted the data non-linearity. Similar to

SLR, this model did not have a good performance when it used the combined RGB

(R2 < 0.56,RMSE> 5.83 SPAD units; fig. 3.8). This could be because of loosing information

while aggregating three RGB channels into one.

3.4.3.3. Multiple linear regression

Since the green and red were highly correlated (r = 0.93), and the green had a lower

correlation with the SPAD meter readings (r = −0.77) compared to red (r = −0.84), the
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green was removed from the models due to multicollinearity, which should be avoided in

MLR modeling (Neter, 1974). Using the remaining average red and blue values, the MLR

performance was the lowest (R2 = 0.83 and RMSE = 3.55 SPAD units) compared to the

advanced models (R2 > 0.84; RMSE < 3.4 SPAD units), but when it used the RPC input, it

performed significantly better (R2 = 0.87 and RMSE = 3.11 SPAD units) that is similar to

using ‘Both’ as input. The performance of MLR using RPC or ‘Both’ was not significantly

different than the advance machine learning models.

3.4.3.4. Support vector machine

When using RGB input with the SVM model, it performed almost the same as simpler

models (SLR and PR) with DGCI as input, with an only 3.3 % increase in the RMSE. The SVM

model, however, performed the best when ‘Both’ was used as independent variables. The

average R2 among all 10 folds is 0.89 and RMSE was 2.90 SPAD units, which was a high score

for an uncontrolled environment. The better performance of the raw RGB input in

combination with SVM model (R2 = 0.86) compared to the other two inputs (R2 =

0.87–0.89), allowed to derive an interesting and useful conclusion of a field chlorophyll

measurement using image processing without the standard calibration board. Based on the

range of the data (table 3.1), the RMSE values can be normalized to a minimum error of

5.6 %, an average error of 7.5 %, and a maximum error of 8.2 %. These values were the

results of models that were built with the selected parameters of the inner CV.

3.4.3.5. Random forest

In RF models predicting SPAD meter reading from RGB values, although the blue

values had a low correlation with SPAD meter readings, the blue values significantly

improved the performance of the random forest models. The average R2 among all 10 folds
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of nested cross-validation was 0.87±0.02 and RMSE of 3.09±0.28 SPAD units, which was

again a high score for an uncontrolled environment similar to SVM. The RMSE values can be

normalized (based on data table 3.1) to minimum error of 6 %, average error of 8 %, and

maximum error of 8.6 %. Even though overfitting occurred in the RF model, observed from

the differences between train and test scores, the test scores on unseen data were almost

equal to or higher than the SLR model.

3.4.3.6. Performance of the machine learning models

The performance bar plots present the average and one standard deviation of R2

(fig. 3.8) and RMSE (fig. 3.9), as the positive component of the error bar, of all the 10 folds of

cross-validation related to each of the five machine learning models used in this study. The

closeness of R2 for both train and test datasets indicated that the models did not over- or

under-fit the datasets (fig. 3.8). The Duncan mean separation analysis, however, was

performed only on the test dataset (figs. 3.8 and 3.9) as it resembles the performance of the

model on the unseen datasets.

The difference between R2 for RGB* and DGCI for the SLR and PR was large and

significantly different (fig. 3.8). This result shows that RGB* applicable to SLR and PR cannot

serve as a good color input to the models. Even though the RGB has a lower R2 compared to

RPC, a combination of these (‘Both’) was not in the middle but better than these. This

observation shows that the contribution of RGB (individual channel inputs) along with RPC is

required to produce the best modeling performance. The variation in chlorophyll can be

accounted through RPC and RGB. However, as these inputs are not significantly different, and

for the sake of simplicity, the DGCI for SLR and PR and RPC input for the rest of the models

can be used directly.
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Figure 3.8. Developed machine learning models comparison based on the coefficient of
determination (R2). Note: Models with ∗ are simpler statistical models and they accept
only one independent variable such as RGB (also equals RGB*) or DGCI, while the other
advanced models accept more variables such as individual color channels (R, G, B), RPC
of four DGCI, or ‘Both’. Error bars showing only the positive component correspond to
one standard deviation.

Among all models with test datasets, SVM had the best R2 values (0.86–0.89) across

different sets of input variables (fig. 3.8). When ‘Both’ was used, the model performance for

SVM was the greatest (R2 = 0.89) among all models and input combinations. However, with

the direct input of RPC producing no significant difference among models, it is worth noting

that the most simple SLR model with DGCI as input is producing comparable performance

(R2 = 0.87).

The other model performance parameter, namely RMSE had the obvious inverse trend

(lower the better; fig. 3.9) with R2 (fig. 3.8) and had similar significance results. For the best

SVM model, the minimum RMSE that was obtained among 10 folds of CV was 2.15 SPAD

units (and corresponding R2 = 0.93, data not shown) using the ‘Both’ input variables. The

68



5.
88

3

3.
09

9

a

cd

−

5.
83

6

3.
09

1

a

cd

−

3.
54

8

3.
11

1

3.
06

9

b

cd cd

3.
20

1

3.
09

0

2.
89

8

cd
cd

d

3.
41

3

3.
14

5

3.
08

5

bc
cd cd

Simple linear regression* Polynomial regression* Multiple linear regression Support vector machine Random forest

RGB DGCI RPC Both RGB DGCI RPC Both RGB DGCI RPC Both RGB DGCI RPC Both RGB DGCI RPC Both

2

4

6

Color scheme input

R
M

S
E

 (
S

PA
D

 u
ni

ts
)

Figure 3.9. Developed machine learning models comparison based on RMSE (SPAD
units). Note: Models with ∗ are simpler statistical models and they accept only one
independent variable such as RGB (also equals RGB*) or DGCI, while the other
advanced models accept more variables such as individual color channels (R, G, B), RPC
of four DGCI, or ‘Both’. Error bars showing only the positive component correspond to
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RMSE for ‘Both’ was smaller by 6.2 % compared to RPC for SVM, but adding the RGB values

to RPC for other models (MLR and RF) did not decrease the RMSE (1.35 %–1.91 %) as much

as it did for SVM (fig. 3.9).

3.4.3.7. Statistical comparison of the developed models and recommendations

The Duncan’s mean separation statistical analysis, after appropriate grouping

(consolidation) of the data, on both R2 and RMSE results (table 3.4), showed that models,

such as SLR with RGB* and PR with RGB* were statistically similar but they were

significantly different (α= 0.05) from the rest of the five models with their corresponding

inputs. Similarly, inputs such as ‘Both’, DGCI, and RPC were similar, and RGB* and RGB were

statistically different from each other and the other groups.
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The SLR and PR models with DGCI input were not significantly different from each

other but performed (R2 ≥ 0.87; RMSE< 3.10 SPAD units) almost as good as the advanced

models (0.84≤ R2 ≤ 0.89; RMSE< 3.21 SPAD units; table 3.4). However, the advanced

models (SVM and RF) have the potential of using the uncorrected RGB values and produce

good results (R2 > 0.86; RMSE < 3.21 SPAD units). With regard to input variables, the

performance of RGB and RGB* (R2 < 0.85; RMSE > 3.38 SPAD units) as exclusive inputs was

significantly lower than the others (DGCI, RPC, and ‘Both’), hence may not be suitable for

prediction model exclusive inputs.

Observing the performance of the models and based on statistical analysis, five

selected models with their inputs, from simple to advanced, are presented in table 3.5. These

models are recommended to predict the SPAD meter readings with their listed inputs. These

models were of high performance (R2 ≥ 0.87; RMSE ≤ 3.12 SPAD units). It is interesting to

observe the simple family of models such as SLR (R2 = 0.875) and PR (R2 = 0.886) with

DGCI can be highly efficient in predicting the SPAD meter readings, while the advanced SVM

produced the best performance (R2 = 0.888). Based on the presented statistical analysis

(fig. 3.8 and table 3.4) all these recommended models (table 3.5) will be statistically similar

and any of these can be used equally.

Using the predicted SPAD meter values, from the developed models along with

suitable conversion relationships, such as equation 3.1, the chlorophyll contents of the leaf

sample from the digital image can be determined. It is expected that similar crop-specific

conversion function or factors will be available or for new crops can be developed in

combination with laboratory procedure of chlorophyll estimation. Application of image

processing and associated models also makes it easier to record and review the collected
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Table 3.4. Comparison of models and inputs with using Duncan’s mean separation analysis.

Performance based on R2 Performance based on RMSE (SPAD units)

Variation due to models Variation due to inputs Variation due to models Variation due to inputs

Model Value Groups† Inputs Value Groups† Model Value Group† Inputs Value Group†

Support vector machine 0.875 a ‘Both’ 0.879 a Simple linear regression* & RGB* 5.883 a RGB* 5.859 a

Polynomial regression* & DGCI 0.873 a DGCI 0.873 a Polynomial regression* & RGB* 5.836 a RGB 3.387 b

Simple linear regression* & DGCI 0.872 a RPC 0.871 a Multiple linear regression 3.243 b RPC 3.116 c

Random forest 0.862 a RGB 0.847 b Random forest 3.214 b DGCI 3.095 c

Multiple linear regression 0.859 a RGB* 0.546 c Simple linear regression* & DGCI 3.099 b ‘Both’ 3.017 c

Polynomial regression & RGB* 0.550 b Polynomial regression* & DGCI 3.091 b

Simple linear regression & RGB* 0.543 b Support vector machine 3.063 b

†Dissimilar mean separation letter groups represent statistical significant (α = 0.05) difference; RGB is the individual color channel intensity values;
DGCI is the dark green color index derived from HSB color space (eq. 3.2) that is applicable to SLR and PR; models with ∗ are simpler statistical models
and they accept only one independent variable while others accept more variables (figs. 3.8 and 3.9); RGB* is the combined single RGB input (grayscale)
and RPC is pixel count of different ranges of DGCI.
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Table 3.5. Recommended machine learning models to predict the SPAD meter reading from the field image-based
inputs for chlorophyll measurement.

Model name Input Recommended final model R2 RMSE
(SPAD units)

Simple linear regression DGCI Y = −6.17+ 85.93X ; eq. 3.8 0.875 3.12
Polynomial regression DGCI Y = −8.09+ 100.99X − 26.15X 2; eq. 3.9 0.886 3.11
Multiple linear regression R, B, RPC (1–3) Y = 17.29− 1.88XR + 0.52XB − 5.66XRPC1 − 5.56XRPC2 − 2.32XRPC3; eq. 3.10 0.881 3.07
Support vector machine ‘Both’ C= 0.3,coef0= 1.8,degree= 4,gamma= 0.1,kernel= “poly” 0.888 2.90
Random forest ‘Both’ Maximum depth of trees= 5, Number of trees= 48, Minimum sample leaf= 6 0.873 3.09

DGCI is the average dark green color index; Y is the predicted SPAD meter reading; X is the input variable used; R and B are the raw red and blue
channel intensity values; RPC (1–3) is the normalized pixel count of first 3 out of four ranges of DGCI; ‘Both’ corresponds to raw R, G, B and RPC. The
R2 and the RMSE belong to the best model from the 10-fold cross-validation. It should be noted that these models recommendations were derived from
data and will be influenced by the different makes of SPAD meters and their calibration.
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data, as the image and other information can be stored digitally. The application of image

processing and machine learning methodology described herein, to be used infield that too

without the standard calibration board, is expected to have a positive impact among

farmers/producers and can also be readily extended to other field crops.

3.5. Conclusions

This paper presented the use of a digital image processing technique to estimate the

chlorophyll content of the soybean leaves infield along with the SPAD meter conversion

relationship. The dark green color index (DGCI) had the highest correlation with SPAD meter

readings among several color vegetation indices, and the correlation was further improved by

color calibration using the standard calibration board. The effect of cultivar, sampling date,

and plot on chlorophyll estimation using RCM with DGCI indicated that these factors did not

significantly affect the relationship between DGCI and the SPAD meter readings, hence

allowed to combine all data and model them with simple linear regression for chlorophyll

estimation. Five machine learning models (two simpler statistical: simple linear regression

and polynomial regression; multiple linear regression; and two advanced: support vector

machine (SVM) and random forest (RF)) tested in combination with image-based inputs,

such as combined RGB*, individual RGB, average DGCI of all pixels in the leaves, pixel count

of four different ranges of DGCI (RPC), and RGB+RPC (‘Both’) showed only SLR and PR

models with RGB* were statistically different. Among the inputs, only RGB* and RGB were

statistically different from each other and other inputs.

The simple statistical models such as SLR and PR with DGCI input (R2 ≥ 0.87;

RMSE≤ 3.1 SPAD units) performed almost as good as the advanced models such as SVM and

RF (0.84≤ R2 ≤ 0.89; 2.90≤ RMSE≤ 3.41 SPAD units). The SVM was found to be the best
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model with the input of ‘Both’ (R2 = 0.89; RMSE= 2.90 SPAD units), and SVM model had the

potential of predicting the chlorophyll directly with the raw RGB input (R2 = 0.86;

RMSE= 3.20 SPAD units) without the use of the standard calibration board. Therefore,

image processing methodology can be used to measure the chlorophyll content of soybean

leaves infield using the standard calibration board with simple statistical models using DGCI

input, or as an alternate inexpensive method without the standard calibration board, through

advanced models such as SVM with raw RGB input. The methodology, even though

developed for individual leaves, can be suitably modified to plot- and field-scale applications

by processing images from unmanned aerial vehicles/systems. This developed image

processing methodology can also be readily extended to other field crops and is expected to

be a simpler and inexpensive chlorophyll measurement tool for the agricultural community.

74



4. RATING IRON DEFICIENCY IN SOYBEAN USING IMAGE

PROCESSING AND DECISION-TREE BASED MODELS *

4.1. Abstract

The most efficient way of soybean (Glycine max (L.) Merrill) iron deficiency chlorosis

(IDC) management is to select a tolerant cultivar suitable for the specific growing condition.

These cultivars are selected by field experts based on IDC visual ratings. However, this visual

rating method is laborious, expensive, time-consuming, subjective, and impractical in larger

scales. Therefore, a modern digital image-based method using tree-based machine learning

classifier models for rating soybean IDC in plot-scale was developed. Data were collected

from a soybean IDC cultivar trial plots. Images were processed with MATLAB and corrected

for light intensity by using a standard color board in the image. The three models used in this

study were decision tree (DT), random forest (RF), and adaptive boosting (AdaBoost).

Calculated indices from images, such as dark green color index (DGCI), canopy size, and

pixel counts into DGCI ranges and IDC visual scoring were used as input and target variables

to training these models. Metrics such as precision, recall, and f1-score were used to assess

the performance of the classifier models. Among all three models, AdaBoost had the greatest

performance (average f1-score = 0.75) followed by RF and DT the least. The developed

method can be easily scaled-up using images from aerial platforms.

* This paper is submitted to the Remote Sensing journal and the second revision is in progress following the
review comments. Authors: Oveis Hassanijalilian, C. Igathinathane, Sreekala Bajwa, John Nowatzki. Title:
Rating Iron Deficiency in Soybean using Image Processing and Decision-Tree based Models. Oveis performed the
literature survey and wrote the manuscript. Dr. Igathinathane Cannayen is the major advisor and the
corresponding author who worked with Oveis throughout the manuscript development. All the co-authors have
assisted in the research direction and review of the manuscript.
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4.2. Introduction

The US is the second exporter of soybean (Glycine max (L.) Merrill) and its product in

the world with a crop value of over $39 billion in 2018 (ASA, 2019), and the Midwest is one

of the biggest production regions. However, the soybean production in general and in the

Midwest specifically can be declined by iron deficiency chlorosis (IDC). The IDC is

characterized by a reduction in the chlorophyll of the leaves, which makes the leaves turn

from green to yellowish that in consequence interferes with photosynthesis, and causing

reduced plant height and leaf area (Vasconcelos and Grusak, 2014) which negatively affect

the production. For efficient management of soybean IDC, measurement and assessment of

the extent of the damage is the key step. The most common and current method employed

IDC assessment is the manual visual scoring system by the field experts, where a higher score

means increased incidence. This method, however, is laborious, expensive, time-consuming,

as well as subjective. Furthermore, it is impractical to use this method in larger scales.

Therefore, a modern method of image processing from the actual field images was proposed,

tested, and compared with manual rating in this study.

Among different methods available to combat IDC, such as planting a companion crop

(Bloom et al., 2011; Naeve, 2006), applying iron chelate (Lucena, 2003; Nadal et al., 2012),

and increasing seeding rate and planting in wider rows (Goos and Johnson, 2000), plating

tolerant cultivars was proposed as the most effective way to avoid IDC (Hansen et al., 2003;

Kaiser et al., 2014; Naeve and Rehm, 2006). Although planting IDC-tolerant cultivar reduces

IDC incidence, it will not increase the yield throughout the entire field all the time (Helms

et al., 2010). For IDC assessment, the commonly followed method is IDC visual score, but is

prone to human inconsistency and is a subjective measurement, which means that different
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experts may rate plots with different scores. A relatively poor correlation among experts

(r < 0.68) was observed when experts visually rated turf plots for leaf spot, density and color

(Horst et al., 1984). Light conditions in the field also affect the appearance of color and the

human perception of color, which in turn will influence the score (Van Den Broek et al.,

2002). The field rating will also be inconsistent because an expert may sometimes rate the

same plot with different scores. Raters’ variance of visual rating scores was found

significantly higher than the variance of dark green color index (DGCI) from digital images

after evaluating the same turf plots for several times (Karcher and Richardson, 2003).

As an alternative to manual visual rating, digital image processing can be used for

efficient IDC assessment in field conditions. Digital image processing captures the reflection

of light similar to human eyes and is much more objective and expected to be consistent

compared to visual rating. These images were used for phenotyping of different crops by

extracting different color vegetation indices (CVI) from them (Atefi et al., 2019; Vollmann

et al., 2011). Yellow and green discs, components of the standard color board, of known

DGCI values, were used to compensate for different lighting conditions and the effect of

different sensitivity to colors among various cameras on corn (Zea mays L.) (Rorie et al.,

2011). A close relationship between the amount of nitrogen in corn leaf and DGCI value was

reported from that study. Image processing was demonstrated to estimate chlorophyll from

soybean leaf images using the DGCI (Hassanijalilian et al., 2020b).

The CVI values that are extracted from digital images for IDC are continuous, but that

from visual ratings are discreet. Advanced machine learning classification algorithms are

required to predict discreet classes, similar to visual scores, based on continuous CVI values.

These machine learning methods have been used in many aspects of agriculture, such as yield
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prediction (Smidt et al., 2016), weed detection (Bakhshipour and Jafari, 2018), iron

deficiency rating (Naik et al., 2017), disease detection in wheat (Triticum aestivum L.)

(Azadbakht et al., 2019), classifying broad agricultural land cover types (Yang et al., 2019),

to mention a few.

Of the several machine learning methods, identification of the most important field

attributes in soybean yield prediction was performed using random forest regression (Smidt

et al., 2016). The random forest model was also used to improve soybean yield estimation

and predict soybean maturity through aerial imagery (Yu et al., 2016). Among several

machine learning classification models, such as decision tree, random forest, and hierarchical

model that were used to rate IDC in soybean five seeds hill plots, under controlled lighting

conditions with images captured from above, the hierarchical classifier resulted in the best

accuracy (Naik et al., 2017). In a similar study, Bai et al. (2018) used a platform to capture

images of soybean plots from above, without ambient light compensation, and used linear

discriminant analysis (LDA) and support vector machine (SVM) to classify the severity of IDC,

and found the SVM produced the increased accuracy. They also rated soybean for IDC

“in-office” by observing the pictures called office score and found that office score was more

consistent in the IDC scoring across different site-years.

Research on soybean IDC rating using image processing in an uncontrolled condition

at actual field plots with lighting compensation is not found in the reported literature.

Therefore, a research investigation on the application of image processing in determining the

IDC and develop prediction models from the image data at the field plot scale was proposed.

The specific objectives of this research are to (i) evaluate the relationship between IDC visual

scoring and DGCI image information obtained infield along with a standard color board, (ii)
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assess several machine learning models on IDC rating, and (iii) to develop ready-to-use

prediction methodology from DGCI input. Outputs of the research work will have broader

applications and expected to impact the soybean farmers/producers, breeders, crop

consultants, agricultural extension agents, and other users.

4.3. Materials and Methods

4.3.1. Field Experimental Plots

Forty different cultivars of soybean were planted in Leonard, ND, USA (46.671 783° N,

97.245939° W) for the IDC tolerant cultivar experiment. The experimental plots with four

replications each (40 cultivars × 4 replications = 160 plots; fig. 4.1) were seeded at a density

of 30 seeds/m in each row on mid-May, 2014. Each plot was 3.4 m long and 3.0 m wide, and

had four rows with a row spacing of 0.76 m. The 1st and 4th rows were the border rows and

to avoid the edge effect were not considered, while 2nd and 3rd rows were only considered

for the analysis.

4.3.2. Overall Methodology

The research aims to apply image processing methodology using field plot images and

develop prediction models to determine the IDC classes of soybean. The overall methodology

showing various processes involved in image processing and machine learning model

development and validation for IDC classification is illustrated in figure 4.2, and described

subsequently. All the plot images were processed to extract features, such as the two-colored

disks and two middle soybean rows. From the middle rows, new features were calculated to

serve as input features to develop and train the tree-based models. These models used visual

expert’s ratings as the target variable and were tested using classification metrics on a portion

of the dataset that was not used in the training of the models.
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Figure 4.1. Portion of the experimental plots showing the plot design and the existing
variation in soybean crop IDC.
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Figure 4.2. Process flowchart of field image processing and machine learning models
development and validation with manual rating for IDC classification.

4.3.3. IDC Visual Rating

In the experiments, soybeans were visually rated for IDC by experts in 2014 first at the

V2–V3 (Fehr et al., 1971) growing stage (July 3) and the second time at the V5–V6 growing

stage (July 17). Table 4.1 shows the developed IDC rating scores used in the experiments

(Helms et al., 2010). For each rating, visual IDC scores were recorded to the nearest one-half

(0.5) unit.

81



Table 4.1. IDC symptoms and the developed visual rating score guidelines1.

IDC symptoms description IDC Score

No chlorosis 1

Slight yellowing of the upper leaves 2

Upper leaves without necrosis or stunting and with interveinal chlorosis 3

Upper leaves with reduced growth or beginning of necrosis with interveinal chlorosis 4

Severe stunting, damaged to growing point and chlorosis 5

Note: IDC - Iron deficiency chlorosis; and 1 IDC scores scale was developed by Helms et al. (2010).

4.3.4. Image Acquisition

Images of soybean plots were captured on the same days that the expert rated

soybean for IDC (July 3 and 17, 2014). To account for differences in ambient lighting and the

effect of different cameras on final images, a standard color board was placed between 2nd

and 3rd rows in each image that will be later processed (fig. 4.3). The middle rows (2nd and

3rd) with the standard color board were captured and analyzed for the image-based IDC

scoring. A SONY ™ DSC-W80 digital camera with an image size of 2304× 3072 pixels was set

to an ISO of 125 in the “Automatic” mode to ensure of equal brightness for all images

captured. Images were saved as JPEG (Joint Photographic Experts Group) files and

numbered based on cameras’ internal numbering sequence. Images were processed in

MATLAB (MATLAB, 2015b) to extract the desirable features (e.g., vegetation, standard color

board, color discs) and perform various analyses.

Standard colors consisted of yellow and green 90 mm diameter circular discs set on a

pink (#eA328A hex; 234, 50, 138 RGB)board. The standard HSB values of yellow disk are 50,

87, and 91 (#e7c71f hex; 231, 199, 31 RGB) and for green disc are 91, 38, and 42 (#576c43

hex; 87, 108, 67 RGB), which produced the DGCI (eq. 4.1) values of 0.0178 for yellow and
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Figure 4.3. A sample image of soybean plot showing the two middle rows with standard
color board at two different growing stages (Left: V2-V3 and right: V5-V6).

0.5722 for green disc (Rorie et al., 2011). These known DGCI values of disks were used along

with the observed values of these disks from the image to calibrate DGCI values of soybeans.

The expression of DGCI values for soybean from the HSB color space channels

(Karcher and Richardson, 2003) used in the analysis is:

DGCI=
(Hue− 60)/60+ (1− Saturation) + (1− Brightness)

3
(4.1)

The raw DGCI values (eq. 4.1) of the extracted vegetation component of the image

needs correction based on the lighting conditions, and this correction was performed using

the extracted colors of the discs of the standard color board. For this correction, it is assumed

that the known and observed values of DGCI from the camera follow a simple linear relation.
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The DGCI correction (eqs. 4.2–4) was performed based on the slope and intercept of the

assumed linear response as:

Slope=
0.5722− 0.0178

Observed green DGCI−Observed yellow DGCI
(4.2)

y-intercept= 0.5722− (Slope×Observed green DGCI) (4.3)

Corrected leaf DGCI= (Slope×Observed leaf DGCI) + y-intercept (4.4)

4.3.5. Object Recognition in Field Image

The purpose of object recognition is to detect multiple features from the images

(fig. 4.3) such as middle rows, standard color board, and the colored disks on the board for

features extraction required in the analysis. The feature detection and extraction were

performed with MATLAB (2015b) image processing toolbox, which was used in the

calculation of DGCI and other input features. Brief description of object recognition is

presented subsequently (figs. 4.5 and 4.7).

Images were imported into MATLAB as a 3D matrix with 3 layers of 2304× 3072 2D

unsigned 8-bit integer matrix, which has layers of red, green, and blue (RGB). In the image

preprocessing, grayscale images were created by slicing the original color images to its

component layers of RGB (e.g., Red = image(:,:,1)). The pixel values of the grayscale

images vary between 0 to 255, where 0 represents absences of the color and is showed by

black. Similarly, 255 represents the pure color and is showed by white; everything in between

represents different shades of that color (R,G,B), but are showed with different shades of

gray. The brightness of the loaded images was calculated through hue, saturation, brightness

(HSB) color space, which is closer to human perception of color and therefore helpful to
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recognize objects in the images. This image preprocessing is essential for features

identification and extraction.

4.3.5.1. Extraction of standard color board

To recognize and extract the two-color disks of the standard color board that had the

reference color information, the color board had to be detected first. The color board can be

easily recognized through a∗ component (red/green chromatics) of L∗a∗b∗ colorspace as the

histogram clearly showing three distinct peaks (fig. 4.4). The a∗ component of the original

image is a grayscale image (fig. 4.5a) that can be used to process several specific binary

images.
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Figure 4.4. Histogram of a∗ component of L∗a∗b∗ colorspace showing different objects
in the image. The small right peak represents the color board, the larger middle peak
represents the soil, and the left mean peak represents the soybean rows based on the
number of pixels in each object. The values were converted to 8-bit unsigned integer
(0-255).
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Using imbinarize() command and proper thresholds (based on the peaks) binary

images were created recognizing different features. This binary image was used to create a

mask for extracting the standard color board using the object’s area property as the board’s

area dominates over other artifacts created by leaves. The artifacts were removed using the

imopen() command with a “square” structure to both remove the small objects and preserve

the shape of the board. In the binary image, it can be seen that the colored disks left holes

(fig. 4.5b) and using bwconvhull() command the holes got filled.

At this stage, the color board was the only object in the binary image (fig. 4.5c), and

its corresponding major and minor axes lengths were extracted using regionprops()

command. These lengths were used to estimate the board area to be used for thresholds in

later morphological operations. Furthermore, the bounding box of the board was extracted

and used to “crop” the board from the image for easier extraction of green and yellow disks.

4.3.5.2. Extraction of yellow and green disks of color board

As L∗a∗b∗ colorspace separated the standard color board from the background and

plant rows, HSB colorspace was suitable to recognize color disks of the color board. The

DGCI values of yellow and green disks were required to calculate the slope and y-intercept

(eqs. 4.2 and 4.3). Since the hue (H of HSB; a grayscale image, fig. 4.5d) for yellow and pink

are significantly different, a value of H> 0.3 was used as the threshold to remove non-yellow

pixels from the cropped image (fig. 4.5d). However, hue for green and yellow are close to

each other, but the saturation (S of HSB) of the green disk was the lowest of the board.

Therefore, using a range of S < 0.1 ensured that the biggest object in the cropped image is

the yellow disk. The rest of the cropped board was converted to a binary image using

imbinarize() command and Otsu threshold method (fig. 4.5e). Otsu method separates the
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a cb

d e f

g ih
Figure 4.5. Object recognition processes from field plot images of detecting standard
color board and its green and yellow disks. (a) Grayscale image of a∗ channel of L∗a∗b∗;
(b) binary image after using a proper threshold on previous image; (c) filling the holes
in the board using bwconvhull() and using imopen() to remove the small artifacts and
create a mask to crop the board; (d) grayscale image of green channel of RGB related to
cropped board; (e) binary image after removing the pixels with H> 0.3 or S< 0.1; (f)
the recognized yellow disk; (g) grayscale image of green channel of RGB related to
cropped board; (h) only keeping pixels with 0.2< hue< 0.5; and (i) the recognized
green disk.
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foreground and background in a grayscale image by maximizing the inter-class variance.

Finally, to remove the small particles from the cropped binary image and to preserve the

shape of the disk, a circular structure was used within imerode() function using the area

threshold from the previous step automatically extracted the yellow disk (fig. 4.5f).

Similarly, the green component of RGB (fig. 4.5g) was used for green disk extraction.

Pixels with hue values outside the range of 0.2–0.5, which do not belong to green, were

removed (fig. 4.5h). Since the shape and size of the disks were equal, the same morphological

operations (structure and area threshold) were performed to extract the green disk (fig. 4.5i).

4.3.5.3. Removing soil background for plant rows extraction

To identify the soil background from the images and extract the soybean rows, the

values from a∗ were increased by 127 to have all values in a positive range. Next, the whole

channel was converted to 8-bit unsigned integer values for easier calculation using uint8()

resulting in a grayscale image (fig. 4.6a). Finally, the Otsu method was used to separate the

soybean rows in the foreground from the soil in the background. Since the soil pixels have

higher values in a∗ channel (fig. 4.6a), the binary image removed the soybean rows as the

background (fig. 4.6b). Therefore, the values of the binary image were inverted so soybean

rows can be used as the mask (fig. 4.6c). The small artifacts were removed with

imopen()(fig. 4.6d).

4.3.5.4. Detecting plot middle rows

After extracting the plant rows, it is necessary to identify the two middle rows of the

plot for further processing. The first step to extract the middle rows was to detect their

centerlines, explained subsequently, which is necessary to create buffers in order to contain

the plant pixels between them. Slope and intercept were required to derive the equation for
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a c db

Figure 4.6. Binary image creation and artifacts removal using a∗ component of L∗a∗b∗

colorspace. (a) The a∗ channel grayscale image of L∗a∗b∗; (b) binary image after
applying Otsu method; (c) inverted binary image of the previous step showing artifacts
(very small objects); and (d) cleaned image after artifacts removal using imopen().

both center lines. To extract these values, the cleaned images obtained earlier (fig. 4.6d)

were used and the top 10 % of the images were ignored because other plots were visible in

the images.

These preprocessed images were searched for two or more objects with using “search

windows” of 100-pixel high and image width (e.g., 2304 pixels) wide from top and bottom

(fig. 4.7a). The bottom search window scanned the image first from the bottom proceeding

upwards and stopped when it found the objects, and the top window performed the search

from the opposite side for objects (fig. 4.7a).

Because of the perspective nature of the images and consistent framing of the image

of each plot, the two objects in the bottom were always related to the middle rows. However,

a proper distant threshold from the standard color board was defined to select the two

appropriate objects on the top (fig. 4.7b). The center points (centroids) of the objects were

detected and the equations of the lines were derived for each row (fig. 4.7c). Pixels that fell

in close proximity of the lines (a fixed buffer) were kept as the mask to extract the middle
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rows (fig. 4.7d). The pixels corresponding to these two rows were used to calculate input

features (e.g., DGCI) of machine learning models that are explained subsequently.

a b dc

Height: 100 pixel

Distance threshold from the 
standard color board

Figure 4.7. Identification and isolation of the plot middle rows from border rows and
other plots. (a) Cleaned image showing only the plants with 100-pixel high and image
width wide “search windows” from top and bottom working inward for identifying
plant pixels; (b) top edge portion representing the adjacent plots were removed, the
two objects that were found from the middle from the bottom and two objects from the
top search windows fixed from the standard color board, and centroids were marked
(red dots); (c) identified top and bottom centroids were connected to create the rows
centerline and a mask was created using a buffer along the centerlines; and (d)
extracted two middle rows of the image after applying the mask for image-based
analysis.

4.3.5.5. Color vegetation index

To measure the greenness of the object in the digital image, it is not practical to use

only the green channel of RGB because the amount of red and blue also affects the

appearance of green in the image. To make the interpretation of digital colors easier and

similar to human perception, Karcher and Richardson (2003) suggested converting the RGB

values to HSB. They derived DGCI (eq. 4.1) from HSB color space to estimate the amount of

nitrogen in corn leaves. The DGCI was found suitable than other CVIs from different studies,

such as average red, average green, average blue, and indices that are a combination of RGB

90



values; and applied based on a fitted model (R2 = 0.89) to estimate the amount of

chlorophyll in individual soybean leaves (Hassanijalilian et al., 2020b). Since chlorophyll is

one of the major indicators of iron deficiency in soybean leaves, the DGCI was selected as the

best CVI to study the relationship between IDC measured through image processing and

visual rating based on the reported studies and the other CVIs with low correlations were not

considered for analysis.

4.3.6. Machine Learning Models

A few advanced machine learning models that were successful in related applications

(Liakos et al., 2018) were used to rate the soybean IDC based on DGCI and compare with

visual ratings. In this study, decision tree (DT), random forest (RF) and adaptive boosting

(AdaBoost) were tested because they are suitable for classification purposes and they range

from simple (DT) to more advanced and computationally intensive model (AdaBoost).

Algorithms such as RF and AdaBoost are considered as “black-box” and hard to interpret

because of the models’ complexity, compared to DT and logistic regression. A brief

description of these selected models is presented subsequently. Inputs to these models were

the different features extracted from the images and the outputs were the prediction for IDC

severity merged rating, which is an integer between 1 and 4.

4.3.6.1. Decision tree classifier

The DT is a machine learning model that can be used for both classification and

regression and is referred to as “classification and regression tree” or CART (Géron, 2017).

The DT is an inverse tree-like graph with root on top and decision nodes at the bottom. When

a node splits further down, it is called a decision node; and when a node cannot be split, it is

called a leaf or terminal node. Each decision node assesses a condition on a single feature to
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split into a sub-node. To find that condition and feature, DT uses the purity index such as

Gini (eq. 4.5) and entropy (eq. 4.6).

G = 1−
n
∑

k=1

pk
2 (4.5)

H = −
n
∑

k=1

pk log2(pk) (4.6)

where G is the Gini index (dimensionless), n is the number of classes, pk is the ratio of class k

instances among the training instances in an individual node, and H is the entropy

(dimensionless).

Furthermore, the DT has some parameters that define how and when each node can

be split. Minimum sample leaf and maximum depth are two of the parameters that have a

significant effect on the DT’s behavior. The former defines the minimum number of samples

in each node before that node can be split into sub-nodes, and the latter defines the maximum

depth of the tree which defines how many levels can be between the root and the leaf nodes.

4.3.6.2. Random forest classifier

RF is one of the popular ensemble models that use DTs as base estimators. Ensemble

classifiers in machine learning consist of several weak classifiers, and voting among these

individual classifiers determines the output class of the ensemble model (Géron, 2017). In

addition to DT’s parameters, RF has other parameters that can be tuned, such as the number

of estimators and bootstrap. The number of estimators defines how many decision trees are

used to build an RF, and bootstrap determines if each tree uses all or a portion of the dataset.

Having a bootstrap option active in the model helps the model to generalize better on future

datasets.
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4.3.6.3. Adaptive boosting (AdaBoost) classifier

In the ensemble methods, the individual classifiers are independent of each other and

train in parallel, but when they are dependent on each other and train sequentially and these

are known as boosting algorithms. AdaBoost is one of the boosting algorithms that passes a

new weight for training instances from a classifier to the next, so the next one can focus more

on the instances that were difficult to predict with the current classifier (Géron, 2017).

Different models can act as the base estimator for the AdaBoost model, but the most common

as well as a default is decision tree (Pedregosa et al., 2011). AdaBoost has some parameters

that are not part of the base estimators and can be set within AdaBoost. “Learning rate” is

one of the parameters that define the boosting for misclassified instances. There is a tradeoff

between the number of estimators and learning rate; the higher the number of estimators,

the smaller the learning rate can be set.

4.3.6.4. Models’ input features

The DGCI values of the middle rows of each plot were used for feature extraction

(fig. 4.7e). The range of available DGCI (0–1) was divided into five equal range classes,

named c1 to c5, with the lowest range (c1) signifying the least dark green meaning the most

severe IDC, and highest range (c5) signifying the darkest green meaning the most healthy

crop. This image-based DGCI ranges follow the IDC symptoms visual rating scores (table 4.1;

Helms et al. (2010)), but the rating scores in reverse order with least score means healthy

crop, and consists of the number of pixels that falls within each range. These ranges were

selected to study the distribution of IDC (yellowness) in each plot.

Since the canopy size (CS) of each plot was different, based on the number of pixels,

the classes observed in each image were normalized by using the minimum, maximum, and
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the total number of pixels in the plots, so all the canopy sizes fall between 0 % and 100 %

(eq. 4.7).

Normalized CS (%) =
CS−min(CS)

max(CS)−min(CS)
× 100 (4.7)

The mean and standard deviation of DGCI of both rows in each image were also used

to train the models. The target feature was IDC visual scores, which were between 1 to 5

with 0.5 increments, but the highest in all datasets from the visual rating was 4. As the most

severe IDC (score = 5) cases were not observed in the study trials, due to lack of such data in

each class, and to increase the instance per class ratio, the observed ratings were merged into

4 classes and named merged rating (MR). Since visual rating 1 is the best score for a soybean

plot related to IDC tolerance, it was assigned to class 1. Visual ratings of 1.5 and 2.0 were

merged as class 2, and so on. The same procedure was performed on both dates; however,

the highest MR for the Date-1 was only a rating of 3.0 as the plants were at the young stage

(V2–V3; fig. 4.3), unlike Date-2, before the full expression of IDC. It should be noted that the

visual IDC scores (table 4.1) or the MR have an inverse relationship with DGCI range classes

(high IDC score = high IDC; high DGCI range class = low IDC) regarding IDC classification.

4.3.7. Imbalance Dataset Oversampling Technique

Often the number of instances that are labeled across classes are remarkably different,

and this can cause issues in the outcome of some machine learning models. The selected

models fit better on the classes with the “majority” of instances and might not perform well

with the rest (“minority”), which in an overall sense is not a good approach. The IDC studies

are mostly produce imbalance datasets and the distribution is not equal among all severities

(Bai et al., 2018). There are two ways to deal with an imbalance dataset such as adjusting

the weight of training instances (Domingos, 1999) and resample the original dataset by
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either oversampling or undersampling. Sometimes, as observed in this study, the application

of undersampling is not practical due to the lack of data in both minority and majority class

to fit the machine learning models, hence oversampling was followed.

One of the widely used oversampling methods is synthetic minority oversampling

technique (SMOTE) (Chawla et al., 2002) which has been used in credit card fraud detection

(Fiore et al., 2019), cancer identification (Geetha et al., 2019), agricultural applications

(Aiken et al., 2019; Espejo-Garcia et al., 2018; Shahriar et al., 2014). In this method, the

minority class is oversampled by creating synthetic instances from the “feature space” rather

than “data space.” Synthetic instances are created along the line between each instance in the

minority class and k-nearest neighbors (KNN algorithm). The amount of oversampling

determines how many of the nearest neighbors are used in the process.

4.3.8. Performance Assessment of Machine Learning Models

In machine learning model development, it is common practice to split the dataset

between training and test datasets. In this study, a 10 % of the dataset was randomly

extracted and used as the validation set. The other 90 % was used in 10-fold cross-validation

to train and test the models. The 10-fold cross-validation function splits the data into 10 and

uses 9 of them for training and the remaining 1 for testing the model, and this process is

repeated for 9 more times until all the splits were used as the test set (Géron, 2017). The

10-fold cross-validation was used each time after changing the parameters to evaluate the

performance of the models. After obtaining the highest performance, the validation set was

used to assess the performance of the models with unseen test data.

The performance of cross-validation for a classifier model can be assessed through

different scores such as accuracy, precision, recall, and f1-score. These scores are based on a
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confusion matrix. “A confusion matrix C is such that Ci, j is equal to the number of

observations known to be in the group i but predicted to be in the group j” (Pedregosa et al.,

2011). In a binary classification C0,0 is considered as true negative (TN), C0,1 is false positive

(FP), C1,0 is false negative (FN), and C1,1 is true positive (TP). In a multi-class confusion

matrix, the value in matrix C is true when i = j, and the rest i 6= j are considered as false. It

is desirable to have increased values of TP and reduced values of FN, which represents a

better performance of the model.

Precision is the ratio of correct predictions for one class to all instances that are

predicted belonging to that class (i.e., what fraction of predictions of each class is true) as:

Precision=
TP

TP + FP
(4.8)

where TP is the number of true positive cases, and FP is the number of false positive cases.

The recall is the ratio of correct prediction of one class to all instances belonging to

that class (i.e., what fraction of instances of each class predicted is true) as:

Recall=
TP

TP + FN
(4.9)

where FN is the number of false positive cases.

The f1-score is a harmonic mean between precision and recall which considers both

FP and FN and is defined as:

f1-score= 2×
Precision×Recall
Precision + Recall

(4.10)
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Another common model performance parameter is “accuracy,” and this with

imbalanced data as seen in the study dataset, sometimes misleads the performance, hence

was not used in this study.

4.4. Results and Discussion

With the progress of time (Date-1 to Date-2) and crop growth, it was observed that

the average canopy size for the Date-2 was increased, but the minimum canopy size was

smaller compared to Date-1; this suggests that some plots had stunted growth or lost some of

their leaves. As expected, with IDC development during crop growth, the average visual IDC

score in the Date-2 was higher than the Date-1 (table 4.2). However, the image-based

average DGCI score (DGCI*) increased as well, which suggests that the crop foliage was

greener, and in other words, the IDC decreased in the plots. This inconsistency between

visual IDC score and image-based DGCI* could be because of both human inconsistency in

visual scoring and ignoring the variation of IDC in the plots by using only the average of

DGCI (DGCI*; table 4.2). The worst chlorosis in each plot, which is shown by DGCI c1, has

higher average values for Date-1 compared to Date-2, whereas c2 and c3 had higher values in

Date-2 that meant more green portions of the crop in each plot. All of these values

corroborate with field observations and the DGCI* values of both dates (table 4.2).

The changes in the greenness of the plots between the dates were observed through

the differences between visual score as well as average DGCI values (DGCI*Date2−DGCI*Date1)

of individual plots (160 data points each) (fig. 4.8). A positive difference value means the

greening of plant canopy and negative the yellowing. Based on visual scores, almost 30 % of

the plots become worse compared to the Date-1, and which is not the actual case. Human
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Table 4.2. Distribution of the input features extracted from images for both sampling dates (n = 320 total).

Data July 03, 2014 (Date-1) July 17, 2014 (Date-2)

(n = 160 each) Normalized IDC DGCI∗ SD DGCI ranges Normalized IDC DGCI∗ SD DGCI ranges

canopy size score DGCI† c1 c2 c3 c4 c5 canopy size score DGCI† c1 c2 c3 c4 c5

Average 31.34 1.98 0.23 0.11 41.52 50.07 8.15 0.26 0.0 52.12 2.06 0.29 0.11 20.93 62.64 15.08 1.28 0.07

SD 8.98 0.54 0.04 0.01 15.28 11.97 3.86 0.23 0.0 14.99 0.85 0.03 0.02 9.00 7.97 7.16 1.91 0.27

Minimum 14.23 1.00 0.14 0.09 8.03 21.24 1.92 0.01 0.0 9.26 1.00 0.22 0.07 4.21 41.31 3.63 0.01 0.00

First Quartile 24.80 1.50 0.20 0.10 30.86 40.17 5.35 0.12 0.0 41.65 1.00 0.27 0.09 14.38 56.91 9.79 0.26 0.00

Median 30.93 2.00 0.23 0.11 41.56 50.98 7.43 0.20 0.0 52.10 2.00 0.29 0.10 19.96 63.36 13.98 0.60 0.00

Third Quartile 35.47 2.50 0.26 0.11 53.58 59.18 9.92 0.33 0.0 61.63 3.00 0.31 0.12 27.07 69.23 19.49 1.22 0.00

Max 56.58 3.00 0.33 0.13 76.81 73.92 23.92 1.29 0.0 100.00 4.00 0.41 0.18 44.56 79.06 39.01 10.06 2.03

Note: ∗ represents the average DGCI values of all the pixel within each plot, † represents the standard deviation of DGCI values of all the pixel within
each plot, SD is the standard deviation, and c1 − c5 are the five DCGI image-based IDC classes (low value = less green and high IDC; high value = dark
green and low IDC) analyzed.
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Figure 4.8. Soybean plots iron deficiency chlorosis (IDC) progression as difference
between both dates based on visual scores and image-based on average dark green
color index (DGCI*) scores.

inconsistency can cause this difference (Karcher and Richardson, 2003; Van Den Broek et al.,

2002), and it was shown that the IDC rating that was done in the “office” or “through

computer” is more consistent than the field rating (Bai et al., 2018). Based on average DGCI

values, most of the plots showed an increase in the average DGCI (table 4.2), which is an

indicator of improvement in their health status. This can be seen from the difference

frequency plot (fig. 4.8) that DGCI had less negative values compared to visual rating scores.

The MR for the Date-1 consisted of 3 classes, and class 2 had the most instances

(61 %), and class 1 was the least instances (11 %). Similarly, in the Date-2 class 2 had the

majority of instances (41 %), but class 4 was the minority (7 %). The distribution of classes of

Date-2 is similar to other studies that classes with severe IDC have a lower number of

instances (Bai et al., 2018), and that is the imbalance nature of these kinds of studies (Naik

et al., 2017). To create a balanced dataset, the SMOTE method oversampled the minority

classes in a way that they have an equal amount of instances in their classes compared to the

majority class.
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Distributions of the average DGCI values for different MR show that plots with lower

MR are scattered around higher average DGCI values, but still, there were a notable amount

of overlaps among adjacent classes (fig. 4.9). Field expert rater’s error in detecting the right

class, and having an average of DGCI for each plot representing IDC severity resulted in

having these increased standard deviations in each class. Therefore, using different classes of

DGCI to study the distribution of chlorosis in each plot could alleviate some of the problems

for machine learning models in the future. It should also be noted that both methods

performing average by some means will result in overlaps of various degrees leading to

misclassification and cannot be eliminated.

Date-2Date-1

Figure 4.9. Distribution of image-based average dark green color index (DGCI*) among
different MR for both dates.

4.4.1. Decision Tree

The DT output as graphs for both dates are shown in figure 4.10 for depth = 3 with

splitting conditions and Gini index for each node. The nodes with a lower Gini index have

less impurity. The leaf nodes which are at the bottom of the trees show the final guess of each

tree depending on which class in the class vector has the highest number. The Gini index for
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Date-1

Date-2

Figure 4.10. Decision criteria of the decision tree model. Two sub-nodes are derived
from each node, and the one that is derived to the left of the node represents the “true”
evaluation of the parent node’s condition. The higher number in the value vector is the
predicted class in the final nodes. Only features with least impurities will be utilized,
hence all features and classes will not feature in the DT models.

the leaf nodes for the Date-2 is relatively lower compared to the Date-1.

The significant overlap of distributions among different MR for the Date-1 is evidence

that the distinction between different classes is a harder task for the DT (fig. 4.9). Further,

the DT had a harder time predicting classes 2 and 3, but it significantly performed better for

class 1 and 4. Classes 1 and 4 are both extreme cases of IDC and much easier to detect by the

visual rating experts (class 1 is the greenest and class 4 is yellow and almost dying).

However, classes 2 and 3 are in the middle of the crop health status and the chance of getting
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them mistaken by each other is much higher than the extreme cases. In another study (Bai

et al., 2018), a similar misclassification was experienced for the plots that were in the middle

of the health status range. Moreover, the overall average scores of performance for Date-2 are

higher than the Date-1 (table 4.3), which suggests that the DT had a harder time

distinguishing IDC between classes in the Date-1.

Table 4.3. Performance of all machine learning models for both dates.

Model MR Visual Date-1 (July 03, 2014) Date-2 (July 17, 2014)

Score Precision Recall f1-score Precision Recall f1-score

Decision Tree 1 1.0 0.67 0.74 0.70 0.79 0.85 0.81

2 1.5–2.0 0.38 0.26 0.31 0.46 0.46 0.46

3 2.5–3.0 0.58 0.70 0.64 0.50 0.43 0.46

4 3.5–4.0 - - - 0.86 0.92 0.89

Average 0.54 0.57 0.55 0.65 0.66 0.66

Random Forest 1 1.0 0.71 0.79 0.75 0.79 0.85 0.81

2 1.5–2.0 0.80 0.42 0.55 0.50 0.38 0.43

3 2.5–3.0 0.70 0.95 0.81 0.54 0.50 0.52

4 3.5–4.0 - - - 0.81 1.00 0.90

Average 0.74 0.72 0.70 0.66 0.68 0.67

AdaBoost 1 1.0 0.78 0.95 0.86 0.80 0.92 0.86

2 1.5–2.0 0.73 0.58 0.65 0.56 0.38 0.45

3 2.5–3.0 0.85 0.85 0.85 0.60 0.64 0.62

4 3.5–4.0 - - - 0.93 1.00 0.96

Average 0.79 0.79 0.78 0.72 0.74 0.72

Note: MR is the merged rating and merges the half step iron deficiency chlorosis (IDC) scores to next integer
(e.g., visual IDC score of 2.5 and 3 were merged to MR 3; Refer defined equations for precision (eq. 4.8), recall
(eq. 4.9), and f1-score (eq. 4.10).

Therefore, the training data for the border classes 1 and 4 had higher quality and the

DT performed better in those cases. Recall for Date-2 shows that 85 % and 92 % of all actual

instances of classes 1 and 4 were predicted correctly. Similarly for precision, 79 % and 86 % of
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predicted classes were actually belong to classes 1 and 4, respectively. The f1-score indicates

that DT tends to score lower than the ensemble methods (fig. 4.11). On the contrary, Naik

et al. (2017) found that the performance of DT is higher compared to other ensemble

methods in classifying IDC severity. However, they only used two features such as %yellow

and %brown pixels, which both were based only on the hue channel. Using a single channel

to identify chlorosis is less effective than using DGCI (Hassanijalilian et al., 2020b). Moreover,

the parameters that were used to train the models were not discussed in the study, and the

train-test split was done randomly disregarding the imbalanced nature of their dataset.

4.4.2. Random Forest

Performance of RF for both dates when the bootstrap = false, which determined if

RF uses all or portion of the data for training individual trees, is shown in table 4.3. Usually

having the bootstrap as “true” helps the RF model to generalize better for unseen data, but in

this study as the amount of data was limited it reduced the performance, hence this setting

was not used. At Date-1, all performance metrics of RF model were significantly higher to

those of DT model; however, at Date-2 the metrics were almost similar for both DT and RF

models. However, recall for class 4 had a slight increase in RF model. In this study, the recall

has an advantage because its purpose is to reduce FN and have the highest number of right

predictions of available instances in each class. The effect of FP will be reduced when plots

are analyzed for replication because the chance of having the correct classification is higher

based on higher recall. Usually, ensemble models like RF tend to perform better than models

like DT because they could be trained with different sub-samples and subset of input features

so that they can be generalized and perform better regarding the unseen datasets. However,

RF was shown to have lower performance metrics compare to DT (Naik et al., 2017). The
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speculation of why this has happened have been mentioned in the last section. In this study,

the f1-scores for RF are slightly higher in predicting most of the IDC classes (fig. 4.11). The

performance of RF in Date-1 is slightly better than Date-2 because there were only 3 classes

available in Date-1 and the RF had a lower chance of miss classification compare to 4 classes

of Date-2 (table 4.3).

4.4.3. AdaBoost Model Performance

The AdaBoost model showed an improvement compared to both DT and RF models

(fig. 4.11). The average f1-score compared to RF had 8 % and 5 % increase for Date-1 and -2,

respectively. The recall is of great importance in this study especially for class 1 because it is

the healthiest class and will help farmers to understand and manage IDC symptoms.

AdaBoost increased the overall f1-score of classes 1 and 3 for Date-1 compared to RF, but the

performance was significantly higher compared to DT model (16 % and 21 % increase for

classes 1 and 3, respectively). With regard to date-2, AdaBoost showed a 7 % increase in

recall for class 1 compared to both DT and RF models. The overall f1-score for AdaBoost was

at least 5 % higher than other models (72 %). AdaBoost also struggled with classifying the

middle MRs (2 and 3), but it performed better than the DT and RF. For instance, f1-score at

Date-1 for class 2 is 65 %, which is still lower than those of class 1 and 3 (≈ 85%), but it is

much greater than that of DT (31 %) and RF (55 %). Similar to RF, the performance of

AdaBoost at Date-1 is significantly better than Date-2 because there were only 3 classes

available in Date-1 and the RF had a lower chance of miss classification compare to 4 classes

of Date-2 (table 4.3).
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Figure 4.11. Comparison of machine learning models tested showing the f1-score of
Date-2 (July 17, 2014), as this date is more representative of the variation in iron
deficiency chlorosis (IDC) classes. DT - decision tree, RF - random forest, and Ada -
AdaBoost.

4.4.4. Models Input Features and their Importance

The distribution of the models input features (canopy size, DGCI*, and DGCI ranges

c1 − c5) that were extracted from the images are presented in table 4.2. Among different

classes of DGCI, the ones with lower DGCI ranges (c1 and c2) had the higher pixel counts.

The average value for c1 for the Date-1 was higher than the Date-2, which corroborates with

average DGCI values (DGCI∗) of both dates (0.23< 0.29). The DGCI∗ value for the Date-2 is

higher than the Date-1 and this suggests that the plants were slightly healthier, so the

proportion of c1 was lower. Similarly, the values for c2 and c3 for the Date-2 are higher

compared to Date-1 that suggests these plants were less chlorotic. About canopy size, the

Date-1 had the smaller average canopy size and with a lower variation which is an indicator
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of more uniform emergence and less dead plants. However, the Date-2 had an increased

canopy size due to its growth but had a higher variation because IDC stunted growth of the

canopy and the number of dead plants was higher.

On the influence of model performance, not all features affect the output with the

same weight. Some of these features, such as canopy size and DGCI c1 contributed the most

to train the models. The feature importance, in training the model, with the tree-based

models can be explained using a factor termed “mean decrease impurity” (Louppe et al.,

2013), evaluated through available function in Python and presented in table 4.4.

Table 4.4. Feature importance of the machine learning models through mean decrease
impurity factor.

Feature Date-1 (July 03, 2014) Date-2 (July 17, 2014) Mean*

DT RF AdaBoost DT RF AdaBoost

c1 0.41 0.28 0.14 0.51 0.28 0.22 0.31

c2 0.11 0.15 0.14 0.00 0.01 0.03 0.07

c3 0.03 0.11 0.20 0.22 0.16 0.24 0.16

c4 0.09 0.09 0.08 0.00 0.09 0.05 0.07

c5 0.00 0.00 0.00 0.00 0.01 0.01 0.00

Canopy Size 0.35 0.16 0.26 0.26 0.22 0.32 0.26

Average DGCI 0.00 0.14 0.05 0.00 0.17 0.09 0.08

SD DGCI 0.00 0.08 0.13 0.01 0.06 0.03 0.05

Note: Mean* represents the average performance of each feature among all models and both dates; Average DGCI
is the average DGCI of the pixels of the two middle rows (DGCI*); SD DGCI is the standard deviation of the DGCI
values of the pixels in the two middle rows; DT is decision tree; RF is random forest; and AdaBoost is adaptive
boosting.

Among all the features that were used in decision-tree-based models, the DCGI c1 had

the highest importance (table 4.4). The DT, unlike the ensemble models, only uses one tree

for prediction, and c1 shows the highest importance especially for the Date-2, where the

average canopy size and variation among canopy sizes were dominant. Canopy size is the
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second important feature as IDC causes stunt growth in soybean plots. Middle range DGCI

range c3 is in the third place and it showed significant importance in all models, except DT for

the Date-1. The average value and variation of c3 in the Date-1 were much lower than

previous classes and lower than the Date-2, so DT could not use this class effectively for

prediction; however, the ensemble methods utilized this class more effectively.

The DGCI∗ showed good feature importance only in RF model because RF model is

the only model in this study that was set to use a subset of both features and samples to train

individual trees. The DGCI∗ was more effective when some other features were absent in a

tree. Therefore, RF could utilize DGCI∗ better than the other models for training and the

importance of this feature is relatively higher with RF.

The other features’ contributions are significantly low and could be removed from the

model. If these features are not removed from the model, they would not decrease the

performance of the model in both training and prediction phases because the total number of

features is low. Otherwise, these features should be removed, or dimensionality reduction

techniques such as principal component analysis (PCA) should be used to improve the

performance of the model.

Conversely, simply removing features that have lower correlation with the target

variable, sometimes have a potentially negative effect on the performance of the models

because ML algorithms could work in higher dimensions that are difficult to illustrate. For

example, Bai et al. (2018) removed the ratio_GC feature, which was observed to be small and

changed little across the different IDC scores that could conversely affect the model

performance. Hassanijalilian et al. (2020b) found a low correlation between the blue index
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and chlorophyll content of soybean leaves, but it significantly increased the performance of

the RF model, illustrating against the elimination of low correlation features.

4.5. Conclusions

Image processing in combination with machine learning was successful in rating iron

deficiency chlorosis (IDC) as an alternative to visual rating by experts. The use of the dark

green color index (DGCI), previously showed to have a high correlation with chlorophyll

content in individual soybean leaves, was also found efficient in plot-scale image application

to be used in machine learning algorithm development for IDC rating.

Advanced tree-based machine learning classification algorithms such as decision tree

(DT), random forest (RF), and adaptive boosting (AdaBoost) were found suitable in the

classification of severity of IDC in soybean plots. AdaBoost and RF models, which are

ensembles of decision tree, performed better than a single DT. Even though some

performance deviation was observed between the datasets (two dates) studied, the AdaBoost

model performance was better than the RF model on both dates and with all classes (f1-score

≈ 75%). The MR classes 2 and 3, which are in the middle of the health spectrum and easier

to get misclassified even by the field expert rater, represent lower quality training target

variable and are the hardest to classify by all models.

To ensure the higher quality of the input data, ratings should be performed by several

experts and/or several times by one expert. Testing with a large number of soybean cultivars

for IDC measurement with replications providing a sufficiently large number of images will

improve the performance of the selected machine learning as well as other advanced

methods, such as convolutional neural network and deep learning. As the most effective way

to avoid IDC is to use tolerant cultivars, which have the lowest visual ratings, the
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image-based objective technique of the study will be of great use in soybean cultivar

selection. This developed plot-scale image processing technique could be extended with

suitable modification to field-scale operations through aerial imaging platforms (unmanned

aerial vehicles, UAV) implementation.
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5. MEASURING SOYBEAN IRON DEFICIENCY CHLOROSIS

PROGRESSION AND YIELD PREDICTION WITH UNMANNED

AERIAL VEHICLE *

5.1. Abstract

Iron deficiency chlorosis (IDC) in soybean (Glycine max (L.) Merrill), with symptoms

of reduction in chlorophyll and stunted growth, causes a great yield loss every year in the

Midwest, and the most efficient method to manage IDC is to plant tolerant cultivars. The

assessment of cultivars tolerance is traditionally performed by visually rating the IDC

symptoms based on leaves discoloration twice during the growing season. However, the

visual rating method is time-consuming, subjective, not suitable at large scales,

labor-intensive, and unaffordable for frequent observation. Therefore, in this study, we used

unmanned aerial vehicle (UAV) as a tool to monitor the soybean cultivars more frequently

and more efficiently through image processing approach of the whole field. Images were

taken with a DJI Phantom 4 and orthomosaicked in Agisoft Photoscan. A 40-cultivar soybean

experimental plots (3000 m2; 1 ac) at 5 locations of North Dakota, USA (Amenia, Cofax,

Leonard (2), and Hunter) for 2 years (2016 and 2017) were used in the study. The stitched

images were processed in MATLAB to calculate the dark green color index (DGCI), which is a

* This paper will be submitted to the Computers and Electronics in Agriculture journal. Authors:
Oveis Hassanijalilian, C. Igathinathane, Stephanie Day, Sreekala Bajwa, John Nowatzki. Oveis performed the
literature survey and wrote the manuscript. Dr. Igathinathane Cannayen is the major advisor and the
corresponding author who worked with Oveis throughout the manuscript development. All the co-authors have
assisted in the research direction and review of the manuscript.
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good indicator of chlorophyll in soybean leaves. The grayscale DGCI images were then

processed in ArcGIS to extract average DGCI and canopy size (CS) for each plot for each

flight. The area under the curve (AUC) was calculated for DGCI, CS, and CS × DGCI product

(CDP) to aggregate the values of all flights within each year. The correlation of AUC of CDP

and yield was the more consistent among both years and the better predictor of yield

(R2 = 0.74 and R2 = 0.79). The latest growth stage (more representative of yield) values of

both years were combined to build models for yield prediction and the CDP produced the

lowest error (11.72 %). Future studies should look into IDC progress measurement involving

more cultivars, geographical locations, frequent imaging, as well as methods applied to

regular soybean production sites to evaluate various image-based parameters and their

interaction for yield predictions.

5.2. Introduction

In 2004 soybean was planted on 1.45× 106 ha (USDA-NASS, 2005), but in the past

three years, it was planted on an average of 2.7× 106 ha in North Dakota (ND), which is

almost double the area of the corn (Zea mays L.) — a leading field crop of the US. Even

though the area of the land that was planted with soybean in ND was almost doubled in 14

years (USDA-NASS, 2020) showing the farmers’ interest in the crop, some of the lands in ND

are prone to iron deficiency chlorosis (IDC), a symptom of yellowing of plant leaves caused

by iron deficiency at affects photosynthesis thereby affecting the soybean yields. The IDC was

responsible for $120000 000 yield loss in 1.8× 106 ha in just North Central America alone

(Hansen et al., 2004). The kind of soil that exacerbates the IDC symptoms in soybean is

usually characterized by high PH, calcareous, excess moisture, excess nitrate, and high levels

of bicarbonate among other factors (Hansen et al., 2003; Roriz et al., 2014).
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Soybeans that are affected by IDC show stunt growth and interveinal chlorosis — loss

of green color and becoming yellow, due to lack of chlorophyll, and they might become

necrosis — brown and die in severe cases. The IDC happens in younger leaves because iron is

immobile after the first trifoliate emerges, and it might stay in soybean for 8 weeks, but in

some cases, IDC might persist throughout the entire season (Hansen et al., 2003).

There are several ways to alleviate the impact of soybean IDC, such as planting a

companion crop (Bloom et al., 2011; Naeve, 2006), applying iron chelate (Kaiser et al.,

2014), foliar application (Franzen et al., 2003), and increasing seed density at the time of

planting (Goos and Johnson, 2000; Wiersma, 2007). However, researches indicate that the

most effective way to mitigate IDC symptoms is to plant a tolerant cultivar (Naeve and Rehm,

2006). For example, in a 2002 survey in Minnesota regarding IDC in soybean and best

management practices, the majority of farmers stated that the cultivar selection is the best

way to avoid IDC (Hansen et al., 2003).

Breeding programs in academic institutions and seed companies are constantly trying

to produce soybean cultivars that are more tolerant to IDC. They plant several cultivars in

locations that have a history of IDC and rate each cultivar by visually scoring the plants for

IDC symptoms, usually two times during the growing season.

This visual method of rating, however, is both labor-intensive and impractical for

larger-scale trials. Moreover, the involvement of human experts in this procedure makes it

subjective. Karcher and Richardson (2003) used raters (experts performing the visual rating)

and digital images to quantify the color of turfgrass, and they observed differences in

absolute rating values among different raters. Based on the analysis, they concluded that a

more consistent rating can be obtained through digital images across researchers, years, and
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locations. Moreover, lighting conditions also affect the appearance of color and the human

perception of color and these, in turn, will influence the score (Van Den Broek et al., 2002).

In contrast to visual rating, the application of digital images is expected to be more

objective and repeatable. Also, there are methods to compensate for the effect of different

light conditions, which affects the visual rating, on digital images through image processing

techniques. Furthermore, the digital image based methods can be used in larger-scale trials

where the use of human raters is not pragmatic.

At present, platforms that can capture digital images are ubiquitous such as digital

single lens reflex (DSLR) camera, smartphone, unmanned aerial vehicle (UAV), manned

aircraft, and satellites. All of these devices are equipped with sensors that can capture the

reflection of the electromagnetic (EM) spectrum that is visible to human eyes as well as that

record other portions of the EM spectrum. The images from these devices can be processed to

assess the IDC symptoms through image processing and machine learning techniques.

Hassanijalilian et al. (2020b) used DSLR to rate IDC in soybean plots; the ratings

related to plots with the lowest and highest scores were quite successful. Kyaw et al. (2008)

used aerial imagery and soil electrical conductivity (EC) to delineate chlorosis management

zones. They found that the combination of normalized vegetation index (NDVI) and

electrical conductivity (EC) is the best in predicting soybean yield. This combination helped

them to delineate the chlorosis zones and associate the yield loss from IDC. Similarly,

Rogovska and Blackmer (2009) used manned aircraft to capture aerial images of soybean

canopy to map high pH and calcareous soils at field scale as a tool for farmers to identify

IDC-susceptible areas in their field.
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Given the versatility and affordability, the UAV can be used as an imaging platform to

rate IDC and to monitor its progress. In the traditional method, IDC is rated only a couple of

times during the growing season (Helms et al., 2010), which is not enough to measure when

and the extent of severity of IDC changes through time. However, UAV flights can cover the

field in a drastically shorter time compared to a human rater, and this makes it possible to

monitor, after proper analysis, the soybean trial plots for as many times as required (> 2) to

study the changes in IDC severity. Consequently, monitoring the IDC changes at necessary

intervals can lead to a better cultivar selection and yield prediction. Moreover, the images can

be archived for further or advanced analysis at a later time.

Research on monitoring IDC progress in soybean using UAV and image processing at

actual field plot scale and in an uncontrolled condition is not found in the literature, even

though this method holds great potential. Therefore, a research investigation on the

application of UAV and image processing in monitoring the changes in IDC severity and study

its relationship with yield and cultivar tolerance to IDC was proposed. The specific objectives

of this research are to (i) evaluate the correlation between image-based crop vegetation

index, canopy size, and their interaction with yield in different growth stages, and (ii)

develop the prediction models based on progress of soybean IDC and yield.

The methodologies and recommendations from this research will provide a tool to the

users to assess the IDC status of their field themselves repeatably with UAV and other limited

resources. Outputs of the research work are expected to have a wider application and impact

various stakeholders, such as farmers/producers, breeders, crop consultants, agricultural

extension agents, and other users.

114



5.3. Materials and Methods

A brief overview of different hardware, and software, and details of the techniques

used and developed are presented subsequently. The main piece of hardware is the UAV (DJI

Phantom 4; https://www.dji.com/phantom-4) and others include the necessary tools for

color correction. Software includes Agisoft (Agisoft, 2016), MATLAB (MATLAB, 2015b), and

ArcMap (ArcMap, 2017). Tableau (Tableau, 2020) and Python (Van Rossum and Drake,

2009) were used for data visualization and exploratory data analysis, respectively. An

overview of all the processes involved in the analysis as a flow diagram is illustrated in

figure 5.1.

5.3.1. Field Experimental Plots

Forty different cultivars of soybean were planted in Amenia, ND (47.049 000° N,

97.329833° W), Colfax, ND, (46.444 170° N, 97.084 731° W), and Leonard, ND, USA

(46.671783° N, 97.245 939° W) mid-May, 2016. In 2017, three locations were flown with

UAV, where only two of them were harvested for yield. The locations were Hunter, ND,

(47.167486° N, 97.314 839° W) and Leonard, ND, USA like the previous year. The

experimental plots with four replications each (40 cultivars × 4 replications = 160 plots)

were seeded at a density of 30 seeds/m in each row (fig. 5.2). Each plot was 4.0 m long, and

had four rows with a row spacing of 0.76 m (fig. 5.2). The overall area of the field that

contained the experimental plots was about 3000 m2 (≈ 1 ac).

5.3.2. Image Acquisition

To monitor the growth of soybean and severity of IDC in different growth stages, aerial

images were captured for four and five times during the growing season in 2016 and 2017,

respectively. The durations between each flight were tried to be close to a week and were
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Image acquisition Yield data

Create orthomosaic

Color calibration

DGCI raster creation

Extract plot values

Shapefiles creation

Calculate AUC

Dataset creation

Canopy size DGCI Canopy × DGCI

Correlation analysis and linear model development

Yield prediction

Figure 5.1. Overall flow diagram of the data collection and analysis followed in this
study.
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Figure 5.2. Aerial image of Hunter, ND, USA trial site (July 14, 2017). Plots that consist of four rows are easily
recognizable because they were planted in an offset pattern. All experimental fields had four replications of 40
soybean cultivars arranged in a quadrant layout. The overall field area of the plots was about 3000 m2 (≈ 1 ac).
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scheduled considering the weather condition. Images of all locations were captured within

the same day for each growth stage around 10:00–14:00 to have consistent lighting for all

locations. Details of image acquisition and image processing are presented subsequently.

5.3.2.1. UAV information

There are main types of UAV that have a wide range of applications are fixed wings

and rotary wings (Sankaran et al., 2015). The fixed wings are good for larger fields and they

can withstand higher wind speeds, but rotary wings are better at hovering and flying the

smaller fields. A DJI Phantom 4 was used in this study to fly the soybean cultivar trials.

Phantom 4 is a quad-copter that weighs 1380 g and was used with the original camera. The

camera sensor is 1/2.3′′ CMOS with 12.4 million effective pixels. The image size is

4000× 3000, and the whole camera was stabilized through a gimbal that could help the

camera stay nadir against all 3-axis movements of the UAV.

Regarding the lighting of the pictures, the camera settings such as white balance and

exposure settings were set to auto to ensure the same amount and quality of light was

recorded for each picture throughout the growing season. Images were recorded as JPEG,

which is a compressed format, and each image recorded latitude and longitude (geotag)

through the on-board GPS. The GPS tags helped Agisoft to align the pictures and recognize

their positions.

5.3.2.2. Flight control

To record the aerial pictures in a consistent way, DroneDeploy

(https://www.dronedeploy.com/solutions/agriculture/) mobile application was used.

DeroneDeploy helps a pilot to create a boundary to a field and it creates a serpentine flight

path, so the UAV can take pictures of the whole field in a consistent manner. To make the
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flight path, there are several settings that some of them affect the accuracy of Agisoft

orhomosaick output. The most important of these settings is the amount of front-overlap and

side-overlap. The amount of overlap in both directions was set to 70 %. The other settings

were flight altitude, flight speed, and exposure control that were set to 100 ft, 5 m/s, and

‘Auto,’ respectively. The remote control was set to full GPS control mode, so DroneDeploy can

function properly.

5.3.2.3. Color calibration checkerboards

Color calibration was performed to account for variation in illumination between

images of different dates. In order to correct images for illumination, four checkerboards

were placed in each corner around the cultivar trials field (fig. 5.3). The checkerboards

consisted of the colors black, white, and two shades of gray — one light and another dark

(Haghighattalab et al., 2016; Yu et al., 2016).

Each color on the board had a known (standard) RGB values, and average values of

each color on the checkerboard was measured through images and used as observed values.

The standard and observed values were used in an “empirical line method” to derive a

prediction equation. The equation was calculated separately for each channel and each date

to correct the images individually (Yu et al., 2016).

5.3.3. Orthomosaic Creation

Agisoft Photoscan was used to attach individual pictures from the UAV together and

create an orthomosaic of each field. Agisoft could recognize the geotag of each image and be

able to align them and locate their position. Locating the pictures in Agisoft depends on the

accuracy of the on-board GPS. Next, for each image, Agisoft searches for similar pixels due to
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Figure 5.3. Checkerboard that was used for color correction.

70 % overlap to improve the alignment accuracy. The product was saved as a ‘tiff’ file and

exported to be used in MATLAB, ArcMap, or other image processing software.

5.3.4. Image Processing for Color Calibration and Plots Extraction

The orthomosaic image covered an area 2-3 times bigger than the cultivar trials, and

in order to reduce the size of the file and further calculations, the mosaic files were cropped

through MATLAB to only include the cultivar trials.

For each field-date average values of the checkerboards were measured through

MATLAB, and used alongside the standard values (white section: red=238, green=239,

blue=234; black section: red=47, green=47, blue=48; and two shades of gray that were not
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used in the color calibration) to calculate the prediction equation. The center of the

checkerboard with four colors is could get identified easily. The prediction equation was then

used to correct the images of corresponding dates on individual RGB levels.

To isolate the soybean plots from the soil in the background, the RGB color space was

converted to L∗a∗b∗. The L∗ channel represents the lightness of colors from black to white, a∗

represents colors from green to red, and b∗ represents colors from blue to yellow. Since the

green component has a stronger presence in soybean canopy, the a∗ channel was used for

crop and soil segmentation. To make it easier to work with a∗ channel, and to create a mask

the absolute value of the minimum of a∗ was added to all the pixel values of a∗. Finally, the

values were divided by the maximum value of a∗ to convert all the pixel values between 0

and 1 (fig. 5.4). To remove the noise from the image, a median filter was used (medfilt2()).

Each pixel in the output image contains the median value of a 3-by-3 neighborhood

surrounding the corresponding input pixel.

As it appears in figure 5.4, a∗ has a bimodal distribution. The smaller values on the

left correspond to soybean plots and the higher values correspond to the soil in the

background. Otsu method (graythresh() function of MATLAB) finds a threshold between

these two classes by maximizing the inter-class variance. This threshold was used to create a

binary image through imbinarize() function. The values above the threshold were assigned

1 and the rest 0. Since the soil had higher values, the values of the mask were inverted, so

the soybean plots could be extracted through the mask.

The dark green color index (DGCI), a crop vegetation index producing good

performance, of the image were calculated from the images (eq. 5.1) to monitor the progress

and severity of IDC in the soybean plots. Karcher and Richardson (2003) used DGCI to
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Figure 5.4. Histogram of plants and background with Otsu threshold to extract plants
of the plot.

quantify the color of turfgrass using image processing. They observed that DGCI was more

consistent than the ratings of the experts. The DGCI has also been used in measuring

chlorophyll of soybean leaves, and rating IDC in soybean plots (Hassanijalilian et al., 2020b).

Another advantage of DGCI is that it is derived from HSB color space and it uses all the

available channels in the image, so it gives a more accurate measurement of green color

because the amount of red and blue can affect the appearance of green in the images

(Karcher and Richardson, 2003).

DGCI=
(Hue− 60)/60+ (1− Saturation) + (1− Brightness)

3
(5.1)
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For easier preprocessing of the color image, the equation 5.1 can be used to generate a

DGCI image by mapping all pixels. The DGCI image is a grayscale image with pixels values

that were transformed to vary between 0 and 1 with higher values represent greener pixels.

Therefore, from DGCI images, the soil is removed between soybean rows using the higher

DGCI pixel values, an indicator of greener soybean, with a suitable threshold. These DGCI

images were then used in ArcMap to extract individual plots within each field.

5.3.5. Object Recognition and Dataset Creation

The DGCI images were imported into ArcMap to manually digitize polygons over each

plot. The first polygon was drawn over the two middle rows of the first plot leaving some

margin on the bottom and top portion (fig. 5.5). This area represented by the “rectangular”

polygon region of interest (ROI) in each plot was the same area that the visual experts use to

rate the IDC in each plot. This polygon ROI was copied over all other plots to maintain a

consistent sampling size. All the polygon ROIs were included in a single Environmental

Systems Research Institute (ESRI) shapefile. A “PlotNumber” field was added to the shapefile,

so it could store the plot numbers for later use in processing and yield analysis.

To automate the process the ModelBuilder of ArcMap was used to design a tool that

could get the shapefile and DGCI image as inputs and produce an Excel table with mean

DGCI and corresponding plot numbers (fig. 5.6). MATLAB converted the DGCI images to

unsigned 8-bit integer values so that all values were between 0 and 255. In order to fix this,

‘Raster Calculator’ was used in ModelBuilder. The ‘float()’ function was used to convert

the integers to float, then when all the pixel values were divided by 255 the DGCI image

values fell between 0 and 1.
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Figure 5.5. Polygonal regions of interest arrangement over soybean plot, and each color is representative of a
different replication (40 plots × 4 replications). Hatched plots were not used in the analysis.
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Figure 5.6. ArcMap ModelBuilder flowchart to derive dark green color index (DGCI)
values from each plot.

Polygonal ROIs that were placed over each plot comprised of both soybean canopies

and the soil background in between and around them. For ArcMap to not count the soil pixels

into consideration, ‘Set Null’ tool was used to assign Null to pixels with 0 value. Then,

‘Zonal Statistics as Table’ tool was used to aggregate the values related to DGCI pixels

that fell within each polygon. The values that were calculated and added to the shapefile

were: (i) the average of DGCI pixels, and (ii) the total number of pixels as a representative of

the canopy size. The product of the last step was an ArcMap table, which was converted to an

Excel table through ‘Table To Excel’ tool. A python script was written to merge the datasets

based on plot numbers (Appendix-D). The merged datasets contained the yield data and

extracted tables from ArcMap for individual flights.

5.3.6. Feature Engineering

Direct (DGCI and canopy size) and combined features (combination of direct and

other parameters) derived from the data set to monitor the health status of each soybean

plot. All the features were also studied against yield to determine their relationship.

5.3.6.1. DGCI and canopy size

The DGCI and canopy size are good indicators of soybean yield if selected at an

appropriate point of time during the crop growth. The continuous variation of these

125

Appendix-D


parameters will be more useful to study the progression of the IDC and vegetative growth of

the crop. Sometimes, based on the performance of the cultivar, soybean crop recovers from

IDC and the DGCI and canopy size measurements at a later stage (end of peak vegetative

stage) will predict the yield better than any other stage or an average.

5.3.6.2. Combined DGCI and canopy size

Although DGCI as well as canopy size is informative about IDC severity, it does not

provide information on the growth status of soybean plots. Since stunted growth is one of the

main indicators of IDC, combining DGCI and canopy size as “canopy × DGCI product” (CDP)

is expected to provide more valuable information regarding IDC severity.

5.3.6.3. Area under the parameter curve

The area under the curve (AUC) of DGCI and dates, and CDP and dates were used for

each plot to combine all the DGCI values from all flights to a single value (Simko and Piepho,

2012). This aggregation provides a better input for yield prediction models as opposed to

single-point data such as DGCI of the latest growth stage. The data of the latest growth stage

even though expected to correlate well with the final yield performance of the crop, the

limited data might not have enough variations to build a reliable model, but AUC can take

into account all the previous growth stages (trend). The higher the AUC is for a plot the

healthier it is and the less time it was affected by IDC. The AUC can be calculated as:

AUC=
n f −1
∑

i=1

yi + yi+1

2
× (t i+1 − t i) (5.2)

where AUC is the area under the curve, yi is the DGCI for the ith flight (dimensionless), t i is

the time in day at the ith flight, and n is the number of flights. The AUC was also calculated

again where yi is CDP at the time of each flight.
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5.4. Results and Discussion

5.4.1. Attributes of Soybean IDC Trial Plots

Summary of different attributes measured or calculated for soybean plots for both

years and all locations are presented in table 5.1. Colfax, ND in 2016 had the highest average

yield among all sites in both years. Furthermore, it had one of the lowest standard deviations

among the sites in 2016, which showed that high yield was more consistent among all plots

within this location. Similarly, Colfax had the highest average canopy size with the lowest

standard deviation. The canopy size of Colfax was close to Leonard, ND in 2016, but the

average yield was significantly greater than Leonard. This can be due to IDC leading the plots

to stunt growth and show high variability in the canopy size in Leonard. The DGCI for Colfax

2016 is the highest among all locations and years, which suggests that the soybean plots were

in better health compare to the other sites, and it led to the highest yield. However, Colfax in

2016 did not have the lowest average IDC score, but it had the highest variation. On the

other hand, Leonard had the lowest yield in 2016 along with the highest IDC score and

lowest average DGCI value. Leonard’s location had a history of severe IDC and the same

pattern was observed in 2017. In 2017, the average canopy size was smaller than that of

2016, and the standard deviation of canopy size for both locations were double the amount

for all locations in 2016. This shows a great variability in canopy growth and was one of the

indicators of lower yield in 2017. Both locations had lower yield compared to 2016, but

Leonard produced a significantly lower yield.

All attributes regarding 2017 show significant differences among both locations

(table 5.1); despite the fact that the cultivars were the same for both locations, IDC

symptoms were more prevalent in Leonard, which caused a much lower yield. Although
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Table 5.1. Distribution of the measured and calculated attributes of soybean IDC trial
plots at different ND locations and years.

Attribute 2016 2017

Amenia Colfax Leonard Hunter Leonard

Yield (kg/ha) 3487(990) 5267(634) 3470(580) 2419(556) 625(455)

Canopy size (m2) 3.92(0.73) 4.95(0.34) 4.67(0.39) 3.91(0.80) 1.61(0.84)

IDC score 1.24(0.32) 2.06(0.54) 2.15(0.51) 2.35(0.79) 3.28(0.42)

DGCI * 0.31(0.03) 0.35(0.04) 0.27(0.03) 0.30(0.04) 0.23(0.02)

Iron deficiency chlorosis (IDC) score visually rated (range: 1–5) with higher values represent severe IDC symptoms
and vice versa. * DGCI values (range: 0–1) represent average value of all plots among all flights with higher values
represent healthier fields.

Hunter, ND had a higher yield than Leonard in 2017, it yielded less than all the locations

including Leonard in 2016. All the attributes of Hunter in 2017 are close to those of Leonard

2016; the yield of these to sites are also close to each other.

5.4.2. IDC Progress Through DGCI Trends for Different Cultivars

Breeders usually rate IDC twice during the growing season to monitor the severity of

IDC and to assess if a cultivar recovers from the IDC. However, different cultivars recover at

different rates and some may recover even after the second visual rating. Aerial images make

it possible to monitor the plots more frequently and in a more efficient way. Figure 5.7 shows

different patterns of IDC recovery for the common cultivars in both years. Each line

represents a plot and each color represents each location, the four replications of each

cultivar in a location are shown in one color.

For some cultivars, plots (replications) within each location follow one another closely,

which is an indicator that they show the same symptoms of IDC in different spots in a field

such as Dahlman 6703XN in 2016 (fig. 5.7). On the other hand, some plots show different

symptoms of IDC among a location, which could be an indicator of different severity of IDC
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Figure 5.7. The dark green color index (DGCI) trend among common cultivars in 2016
and 2017 at different locations.
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(NKS12-R3 in 2017 and Integra 20775N in 2016 fig. 5.7). Furthermore, some cultivars have

close responses to IDC for all plots and locations such as Dahlman 6703XN (2016) and

W1048NRX (2016), which shows a consistent response to IDC. However, the DGCI values for

both cultivars were removed from the analysis for Leonard where the IDC had the highest

severity. This could be an indicator that these two cultivars are not tolerant to IDC, but show

great DGCI values under no IDC.

The average and standard deviation of DGCI for all the trial plots in each location with

time (different UAV flights) are shown in table 5.2. All the locations have increasing DGCI as

the crops grow except Leonard in both years. In 2016, the DGCI at Leonard for the first flight

was close to those of other locations, but it decreased in the second flight, while the increase

in DCGI values was significantly high with other sites. In 2017, Hunter had the increasing

DGCI for all dates except a slight drop in the second flight. The same pattern was observed

for Leonard, but with smaller DGCI values for all dates, and the last flight had a drop of DGCI

as well.

Table 5.2. Distribution of the DGCI for each flight on different locations and dates.

Date 2016 Date 2017

Amenia Colfax Leonard Hunter Leonard

June 23 0.23(0.02) 0.23(0.03) 0.20(0.02) June 25 0.26(0.02) 0.22(0.01)

July 01 0.28(0.02) 0.33(0.04) 0.16(0.03) July 03 0.24(0.04) 0.21(0.01)

July 22 0.35(0.04) 0.41(0.05) 0.30(0.04) July 08 0.28(0.04) 0.24(0.02)

July 29 0.37(0.04) 0.43(0.03) 0.40(0.04) July 14 0.35(0.04) 0.25(0.02)

July 24 0.38(0.04) 0.22(0.03)

DGCI - dark green color index. Average DGCI values at respective dates and locations are shown along with their
respective standard deviation in the parenthesis.
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The aerial images of Leonard for both July 14 and 24, 2017 shown side by side, and it

is apparent that most of the plots, instead of recovering from IDC, got worse and become

yellow (fig. 5.8), even though some natural vegetative growth was observed. Lower DGCI

values of all flights (≤ 0.43; max = 1.0), as well as a reduction in DGCI in the second and last

flight, were symptoms of severe IDC and low yield at the end of the season. In both years

Leonard had the lowest DGCI and also the lowest yield. Multiple observation of soybean

cultivars (table 5.2) gives a better understanding of each cultivar’s IDC progress or recovery

rate compared to the visual ratings recorded.

5.4.3. DGCI Variation on Yield

The correlation of DGCI with yield in 2016 and 2017 at different experiment locations

(fig. 5.9) showed an overall increase in the correlation (r value) with the progress of the

season. This observation indicated that the DGCI at later stages of crop growth is better

correlated with the yield and produced better prediction models. Plots of complete data set

for both years and respective locations presented as appendix figures (figs. D1 and D2)

showed a clear separation (as different clusters of data) of the DGCI vs yield among different

locations, which indicated the growth and yield pattern of the crop cultivar and location were

different.

In 2017, because of the yield difference, this trend is more pronounced even towards

the two locations considered. As observed in the IDC progress of DGCI (fig. 5.8) a drop in the

values of 2016 in 2/3 of locations in the 3rd and 4th flight dates, and in 2017 a total flat

trend on 1/2 of locations, reflected on the DGCI correlation (fig. 5.9). Soybean crop recovery

from IDC, which can also be observed with DGCI vs yield correlation on the later stages,

especially in 2017.
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Figure 5.8. Unmanned aerial vehicle orthomosaic images of Leonard, ND. (Left) Plots of small canopy on July 14,
2017; and (Right) Plots with slightly increased canopy but with many plots the iron deficiency chlorosis (IDC)
symptoms got worse compared to July 24, 2017.
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Figure 5.9. Unmanned aerial vehicle image extracted parameters correlation with yield
in 2016 and 2017 at different experiment locations. DGCI - dark green color index, CS -
canopy size, and CDP - canopy and DCCI product.

As expected, higher values of DGCI (dark green of the canopy) are related to higher

yields, and the later flights have a better relationship; and the same positive relationship is

exhibited for all locations in 2017 (figs. D1 and D2). A similar pattern is also reported in

different studies that different vegetation indices including normalized difference vegetation

index (NDVI) relationship with the yield for soybean was stronger at later growth stages such

as R2 – R5 (Maimaitijiang et al., 2020; Zhang et al., 2019).

5.4.4. CS Variation on Yield

The average of DGCI alone is not a good predictor of IDC because it does not give any

information on the size of the canopy. In some cases, only a few plants have survived at the
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end of the season but they were healthy and might have produced normal yield per plant,

however, have affected the overall yield of the plot that was measured. In such situations,

only considering DGCI can mislead the yield prediction. It is interesting to observe that the

CS follows a similar correlation variation as DGCI (figs. D1 and D2). A bigger canopy is an

indicator of soybean plots’ health and results in higher yield. However, in the case of IDC,

soybean canopy can stop growing and in some cases shrinks or dies. A similar pattern can be

observed as different plots show different patterns of growth between the last two flights in

Leonard in 2017 (fig. 5.8).

In 2016, unlike DGCI the CS, as the plants grow, a clear increasing trend of CS vs yield

correlation with days was seen; however, in 2017, there was a dip in the correlation of CS is

not as pronounced in DGCI because CS most likely will increase towards a peak value, and

any stagnation or reduction might be due to stunted growth or plants dying. The increase in

the later stages might indicate the crop recovery from IDC as observed both with CS and

DGCI and a positive effect on the prediction of these parameters to predict the yield (fig. 5.9).

The canopy size had a positive relationship with yield in both years, but this

correlation was stronger for 2017. Both the years had a higher correlation towards the end of

the growing season. The variation in canopy size was greater in 2017, so the relationship

between canopy size and yield was the greatest (r = 0.92). Hoyos-Villegas and Fritschi

(2013) observed the same relationship (r = 0.89) when soybeans were under moderate or no

water stress. However, the relationship was weak when the water stress was severe. In a

different study, almost similar correlation (r = 0.71) was observed at the R3 growth stage (Yu

et al., 2016).
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5.4.5. CDP Variation on Yield

As observed before, higher values of DGCI and CS are indicators of healthier soybean

plots. Therefore, the combined CDP product can be a better and potential indicator and

higher values of this product signify healthier soybeans (fig. 5.9). The CDP in both years

showed a positive correlation between yield and CDP (figs. D1 and D2). Similar to DGCI and

canopy size, the graphs that are related to flight days toward the end of the growing season

have a stronger correlation. In 2016, the last flight shows a strong correlation (r = 0.84), and

it is as strong as the last flight in 2017 (r = 0.94). This correlation for the most flights of both

years was greater than those of DGCI or canopy size. Based on these observations, the

interaction between canopy size and DGCI (CDP) could be a good predictor of yield.

5.4.6. AUC Variation on Yield

The relationship between AUC of DGCI (ADGCI), AUC of canopy size (ACS), as well as

of AUC of CDP (ACDP) and yield is shown in figure 5.10 considering yi in equation 5.2. Both

trends show a good correlation with yield, however, the ACDP seems to have a stronger

correlation with yield in general and is more consistent among both years (r = 0.86 and

r = 0.89 for 2016 and 2017, respectively) compared to only DGCI (r = 0.85 and r = 0.89).

The AUC aggregates all values for all flights and gives a better indicator compared to

when the yield is predicted based on one flight (single data point). For instance, the

correlation of ADGCI and yield for 2016 (r = 0.85) is greater than that of all flights of that

year. This shows that including the history of DGCI can be helpful for predicting yield.

Similarly, in 2017, the correlation of ADGCI and yield (r = 0.89) is greater than that of all

flights that year except the last one which had the highest correlation (r = 0.92).
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Figure 5.10. Yield correlations with area under the curve (AUC) of parameters at different locations and years. (Left)
AUC for dark green color index (DGCI); (Middle) AUC of canopy size, and (Right) AUC for Canopy×DGCI.
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Despite the highest correlation of AUC and yield, these data could not be combined in

this study because the sampling dates were different. Moreover, the period of monitoring in

2016 was greater than that of 2017 (36 days and 29 days for 2016 and 2017, respectively).

However, by assuming that soybeans are at the same growth stages at last flight, the CS and

DGCI could be combined as defined earlier as CDP for both years to build a more

representative dataset. The scatterplot (fig. 5.11) shows the individual (DGCI and CS) and

combined (CDP) data distribution and yield with corresponding linear models. As expected

the CDP had a stronger fit with yield (R2 = 0.80) compared to the direct inputs (R2 ≤ 0.73).

The various best fitted linear models of yield with selected independent parameters

(ADGCI, ACS, and ACDP) are presented in table 5.3 along with their corresponding

coefficient of determination (R2), root mean square error (RMSE), and the error (ratio of the

RMSE compared to the respective yield) in percentage. The measured data and the fitted

models are also shown in figures 5.10 and 5.11. At first glance, based on RMSE, it seems that

the models in 2017 performed better. However, the error was almost the same as other

models because the yield was much lower in 2017. Overall the best performance is for the

model that covers both years and uses CDP as an independent variable. The error rate is

lower than all the other models (11.72 %) and it is more representative because it is based on

two years of data.

Even though the ADGCI and canopy DGCI interaction is a good and consistent

predictor of yield and a good metric to select tolerant cultivars to IDC. In this study, as the

weather restriction, the sampling dates, and the period of study were not the same for both

years, the AUC could not be combined with CDP for both years. However, the latest growth

stage (subdata), which are more relevant to grain yield than earlier stages, values of each

137



0.0 0.1 0.2 0.3 0.4 0.5

Last DGCI

0K

1K

2K

3K

4K

5K

6K

7K

Yi
el

d 
(k

g/
ha

)

0 1 2 3 4 5 6

Last Canopy Size (m²)

0K

1K

2K

3K

4K

5K

6K

7K

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Last Canopy Size x DGCI

0K

1K

2K

3K

4K

5K

6K

7KLocation
Amenia
Colfax
Hunter
Leonard

Year
2016
2017

5�� ����� 5�� �����5�� �����

Y = 17175 × DGCI − 3135 Y = 1086 × CS − 1080 Y = 2234 × CDP − 226

Figure 5.11. Unmanned aerial vehicle image combined data extracted parameters variation with yield and models for
both years and locations. (Left) Dark green color index (DGCI) variation with yield; (Middle) Canopy size (CS)
variation with yield; and (Right) Canopy and DGCI product (CDP) variation with yield.
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Table 5.3. Soybean yield prediction models to predict yield based on different variables
and combination.

Parameter Year Model R2 RMSE Error
(kg/ha)

Direct 2016 Y = 19155×DGCI− 3621 0.52 1304 20.18 %
Y = 1006×CS− 405 0.72 892 13.80 %

2017 Y = 10581×DGCI− 1668 0.85 397 11.22 %
Y = 668×CS− 320 0.84 418 11.82 %

Both years Y = 17175×DGCI− 3135 0.72 833 12.89 %
Y = 1086×CS− 1080 0.73 880 13.61 %

Combined 2016 Y = 2303×CDP− 98 0.81 756 11.70 %
Y = 455×ADGCI− 1182 0.72 888 13.74 %
Y = 58×ACS− 237 0.70 918 14.21 %
Y = 138×ACDP+ 495 0.74 850 13.16 %

2017 Y = 1472×CDP+ 136 0.88 361 10.21 %
Y = 661×ADGCI− 3594 0.80 456 12.90 %
Y = 41×ACS− 130 0.76 502 14.19 %
Y = 103×ACDP+ 199 0.79 477 13.48 %

Both years Y = 2234×CDP− 226 0.80 757 11.72 %

RMSE - root mean square error, Error - ratio of RMSE to the corresponding yield, Y - soybean yield (kg/ha),
DGCI - dark green color index, CS - canopy size (m2), CDP - canopy and DGCI product extracted from the image,
ADGCI - area under curve of DGCI with time, ACS - area under curve of CS with time, ACDP - area under curve
of CDP with time. The direct parameter (DGCI and CS) models used the data of the latest growth stage (subset)
within the dataset. Maximum yield were 6461 and 3537 kg/ha for 2016 and 2017, respectively.

year were combined and used to build models to predict yield. Frequent and consistent

monitoring during all growth stages in the future will help in determining what independent

variables will model the soybean multi-year yield data.

5.5. Conclusions

Selecting a tolerant cultivar is the most efficient way to avoid iron deficiency chlorosis

(IDC), which at present performed by visual rating by experts; and this process of visual

rating is subjective, time-consuming, not feasible in larger scales, and not frequent enough to

record the recovery of all cultivars. Unmanned aerial vehicle (UAV) was successfully used in
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this study to monitor both severity of IDC and recovery rate for each cultivar throughout the

growing season using the image processing approach and model the yield based on several

image extracted parameters. The dark green color index (DGCI), canopy size (CS), and CS

and DGCI product (CDP), extracted using image processing of UAV imagery, were useful in

assessing the IDC progress of different soybean cultivars and model crop yields. The best

correlation for these features and yield was observed in the latest growth stage, as the earlier

stages of crop growth did not influence significantly the crop yield. However, using the single

value data (latest growth stage) is not representative of the overall health status of soybean

plots, and therefore the area under the curve (AUC) that encompasses the whole trend was

found to successfully aggregate different features that were extracted from aerial images

across different times.

The correlation between AUC of CDP and yield was more consistent across the years

studied and the linear model produced about 13 % error for each year. As the AUC cannot be

combined with CDP for both years, due to weather restriction and the difference in sampling

dates in both years, however, the latest growth stage values of both year were combined and

CDP produced the best yield prediction model (11.72 % error). Future studies should look

into IDC progress measurement involving more cultivars, geographical locations, and

frequent monitoring flights and image data. Also, along with IDC experiments the regular

soybean production sites could be evaluated using AUC of DGCI, canopy size, and their

interaction for yield predictions.
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6. GENERAL CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

6.1. General Conclusions

Soybean is one of the important agricultural commodities especially in the Midwest.

However, iron deficiency chlorosis (IDC) can significantly reduce its yield. To alleviate IDC

from soybean fields, it is known that planting a tolerant cultivar is the most efficient method.

Digital imaging on different platforms was used in this study to reduce the subjectivity that is

in the process of selecting tolerant cultivars. Moreover, these process could help breeders to

both monitor the progresses of IDC and perform studies in larger scales. Machine learning

models were used along with the digital imaging platforms, and these models were able to

detect the pattern that was not feasible for humans to detect among the input features with

high dimensions. The findings from each objective are presented here:

• Objective 1 (IDC — review): Different methods of measuring IDC were explained

through this objective that are suitable for research projects in small and large scales.

Small scale projects that can be done in a controlled environment can benefit from

methods such as atomic absorption spectroscopy, chlorophyll extraction, and crop

sensors. Visual rating and image processing through different platforms such as digital

cameras, unmanned aerial vehicle (UAV), and satellites could be helpful in quantifying

IDC for research and production. The lack of more sophisticated sensors such as

hyperspectral cameras, LiDAR for IDC assessment is noticeable among research
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publications. Soil grid sampling with higher resolution could be used along with many

of the aforementioned methods’ output for the purpose of building machine learning

models to gain a better understanding of IDC.

• Objective 2 (Chlorophyl measurement — smartphone): Several machine learning models

were used to estimate the chlorophyll content of soybean leaves infield condition from

smartphone images. The models were simple linear regression (SLR), polynomial

regression (PR), multiple linear regression (MLR), random forest (RF), and support

vector machine (SVM). Different sets of input features were used to train these models

such as average DGCI of all pixels of a leaf, average RGB value, separate averages of

RGB, pixel count of different ranges of DGCI (RPC) and separate RGB + RPC. The SVM

model had the highest R2 of 0.89 and lowest root mean square (RMSE) of 2.90 in

predicting the chlorophyll content. It even performed better than other models where it

used separate averages of RGB without color calibration (R2 = 0.86 and RMSE= 3.20).

• Objective 3 (Plot IDC rating — handheld camera): Decision tree based models such as

decision tree, random forest, and adaptive boosting were used to classify different

severity of IDC. These models are famous supervised machine learning models that can

be trained using a dataset with predefined target feature labels. Features such as

canopy size and pixel count of different classes of DGCI were extracted from the images

that were captured close to the human point of view with a DSLR. The adaptive

boosting model performed better than other models especially in classifying classes that

are in both extreme ends of the health status. All the performance metrics were
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significantly lower for two classes in the middle of health status. That was due to a

higher error in the visual rating of these classes that were mistaken for each other.

• Objective 4 (IDC cultivar trials — UAV): Aerial images of soybean cultivar trials were

captured 4-5 times per growing season in two years to monitor the growth of soybean

as well as the recovery rate of IDC among different cultivars. It was found that DGCI

that were extracted from images toward the end of the growing season had a higher

correlation with yield. The area under the curve (AUC) of DGCI for different flights

were extracted for individual plots. it was found that the AUC that is calculated from

DGCI × canopy size is highly correlated to the yield and more consistent among both

years (R2 = 0.79).

6.2. Suggestions for Future Work

The future research works suggested here pertain to possible work that can be

extended from each of the objectives considered in this dissertation.

1. Develop convolutional neural networks from different cultivars of soybean infield

conditions.

2. Develop models that could benefit from multispectral and hyperspectral sensors for

early detection of IDC.

3. Develop models that incorporate LiDAR and RGB technology to rate IDC.

4. Develop machine learning models that incorporate high-resolution soil grid

sampling to rate IDC in commercial fields.

5. Develop a methodology that can benefit from historical yield maps and other

sensors’ output to study the effect of multi-cultivar planting.
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APPENDIX A. FUNCTION TO DETECT THE LEAF, GREEN AND

YELLOW DISK

This appendix provides the pseudocode of the function which detects the standard

color board and extract different features such as DGCI value for green and yellow disks and

the leaf picture (Chapter 3). Comments are presented subsequently for following the overall

algorithm and better understanding of the processes.

/********************************************************************************
* Function to detect the leaf, green and yellow disk
* Developed by H. Oveis & C. Igathinathane; ABEN, NDSU
*********************************************************************************/
;
/*************************************************************************/
// input: im the image of the leaf, pink board and background
// output: pic (leaf image)
// DGCIg (DGCI value of the green disk)
// DGCIy (DGCI value of the yellow disk)
function [pic,DGCIg,DGCIy]=Leaf(im)

// detecting the pink board
r = im(:,:,1);g = im(:,:,2);b = im(:,:,3);
//create a black background to fill it later with the pink board mask
bwPink = zeros(size(g));
//using proper threshold on green and red to extract the board
bwPink(g<100 & r>100) = 1;

bwPink = bwareaopen(bwPink,500000); //removing small objects
bwPink = imfill(bwPink,’holes’);
// applying open morphological operation
bwPink = imopen(bwPink,strel(’square’,20));
//extract the bounding box of the board to crop the board
Prop = regionprops(bwPink,’BoundingBox’);
r(bwPink==0) = 0;g(bwPink==0) = 0;b(bwPink==0) = 0;
im = cat(3,r,g,b);
//cropping the board by the extracted bounding box
im = imcrop(im,Prop.BoundingBox);
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/****************** Extracting Features from Cropped Image *******************/
//Here im is a cropped image of the original one.

r = im(:,:,1);g = im(:,:,2);b = im(:,:,3);
hsv = rgb2hsv(im); //converting the im to the HSV color space
h = hsv(:,:,1); s = hsv(:,:,2); v = hsv(:,:,3);
DGCI = (((360*h-60)/60)+(1-s)+(1-v))/3;
DGCIg = DGCI; // creage a copy of DGCI to extract green disk
DGCIg(DGCIg>0.9) = 0; // threshold to remove pink color

/********************** Detecting Color Disks **********************/

//Detecting Green Disk
bwGreen = im2bw(DGCIg,0.5);
bwGreen = bwareaopen(bwGreen,50000);
DGCIg(bwGreen==0) = 0;
DGCIg = mean(nonzeros(DGCIg));

//Detecting Yellow Disk
bwYellow=zeros(size(s));
bwYellow(s>0.9)=1;
bwYellow=imopen(bwYellow,strel(’disk’,25));
bwYellow=bwareaopen(bwYellow,5000);
DGCIy=DGCI;
DGCIy(bwYellow==0)=0;
DGCIy=mean(nonzeros(DGCIy));

/********************** Extracting the Leaf **********************/

rLeaf = r;
rLeaf(s<0.2 | h>0.4)=0;
bwLeaf=im2bw(rLeaf,graythresh(rLeaf));
bwLeaf=imfill(bwLeaf,’holes’);
bwLeaf=imerode(bwLeaf,strel(’disk’,3));
bwLeaf=bwareaopen(bwLeaf,4000);
StatLeaf=regionprops(bwLeaf,’BoundingBox’);
r(bwLeaf==0 | h>0.6)=0;g(bwLeaf==0 | h>0.6)=0;b(bwLeaf==0 | h>0.6)=0;
pic=cat(3,r,g,b);
pic=imcrop(pic,StatLeaf.BoundingBox);
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APPENDIX B. FUNCTIONS FOR NESTED CROSS VALIDATION

AND RANDOMIZED GRID SEARCH

This appendix provides a brief explanation on nested cross validation along with a

visual example (Chapter 3). Following the example, the code that was used in Python can be

found. Nested cross validation was used in this study to assess the performance of the

machine learning models that have parameters and to find the best parameters for those

models. An example of nested cross validation is illustrated in figure B1. In this study, a

randomized grid search, which chooses random combinations of parameter values, was

performed as the regular grid search trains the models with all possible combinations of the

defined parameters that are computationally intensive. Since the study dataset was not very

large, the number of combinations was set to 50.

To perform the nested cross-validation, the first dataset was split into 10 folds

(external CV). One fold was held-out as a test set and other nine were combined into one

dataset and passed to randomized grid search. In the next step, randomized grid search again

split the receiving dataset into 10 folds (inner CV). Again, one fold was left out as a

validation set and other 9 were combined as a training set to train the models that were built

with all 50 random combinations. Random grid search then tests all 50 models with the

validation set and records the test scores. This process will repeat 9 more times by keeping

the next fold out as a validation set every time.
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Figure B1. An illustration of nested cross-validation applicable to SVM and RF models. This illustration uses a dataset
with 1000 observations showing one external CV and must be repeated for 9 times to complete the cross-validation.
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For all the 10 folds, the randomized grid search calculates the average test score for all

50 models and passes the best model with the highest average test score to the external CV.

Then this model was trained again with the initial dataset that was passed into the inner CV.

The new model predicted values for the held-out dataset to assess its performance on the

unseen data. The whole process is repeated 9 more times by keeping another fold as held-out

dataset every time.

/********************************************************************************
* Function to to randomized the parameter search for nested cross

validation
* Developed by H. Oveis & C. Igathinathane; ABEN, NDSU
*********************************************************************************/
;
/*************************************************************************/
//importing the necessary modules into the script
import numpy as np
from sklearn import model_selection
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.utils import shuffle

//input: X_train (the folds of data from features that should be used to train the
models)

// X_test (the fold of data from features that should be used to test the models)
// y_train (the folds of data from target feature that should be used to train the

models)
// y_test (the fold of data from target feature that should be used to test the

models)
// reg (the type of machine learning model)
// parameters (a dictionary of parameters of the model with its corresponding

values)
// scoring (the value that nested cv uses to assess the performance of each model

withing inner and outer cv. Typically $R^2$)
// inner_split (number of folds within inner cv, default value is 10)
// n_iter (number of samples from parameters dictionary, default value is 2)

//output: cv_results (the cross validation parameters of inner cv)
// scores (the score for each fold of inner and outer cv)

165



def randomized_search(X_train, X_test, y_train, y_test, reg, parameters, scoring,
inner_split=10, n_iter=2):

scores=[]
regName=str(type(reg)).split(’.’)[-1][:-2]

randomSearch=model_selection.RandomizedSearchCV(reg,
param_distributions=parameters, scoring=scoring, cv=inner_split,
n_iter=n_iter, random_state=42, return_train_score=True)

randomSearch.fit(X_train, y_train)
print(randomSearch.best_params_)
cv_results = pd.DataFrame(randomSearch.cv_results_)

best_reg=randomSearch.best_estimator_
best_reg.fit(X_train, y_train)
y_pred=best_reg.predict(X_test)

print(’*’*20,regName,’*’*20)

print("R Square for training is {}".format(best_reg.score(X_train,y_train)))
scores.append(best_reg.score(X_train,y_train))
print("R Square for test is {}".format(best_reg.score(X_test,y_test)))
scores.append(best_reg.score(X_test,y_test))
print("mean square error is

{}".format(np.sqrt(mean_squared_error(y_test,y_pred))))
scores.append(np.sqrt(mean_squared_error(y_test,y_pred)))
print(’*************************’)

return (cv_results, scores)

/********************************************************************************
* Nested cross validation function
* Developed by H. Oveis & C. Igathinathane; ABEN, NDSU
*********************************************************************************/
;
/*************************************************************************/
// This function deals with both machine learning model types with/out parameters
//input: X (input features dataset)
// y (target featuer dataset)
// reg (machine learning model)
// inner_split
// outer_split
// n_iter (number of random samples from parameters dictionary that will be used

a input for randomized_search() function)
// scoring
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//output: cv_result_list
// dgci_coef (list of coefficient for linear regression models)
// external_cv (list of best parameters selected for outer cv)
// scores_list (list of scores for both inner and outer cv)

def nested_cross_validation(X, y, reg, inner_split, outter_split, n_iter=10,
parameters=None ,scoring=’neg_mean_squared_error’):

X, y = shuffle(X,y, random_state=13)

outter=model_selection.KFold(n_splits=outter_split, shuffle=False,
random_state=53)

dgci_coef=[]
external_cv=[]
cv_result_list=[]
scores_list=[]

for train_index_outer, test_index_outer in outter.split(X):
X_train, X_test = X[train_index_outer], X[test_index_outer]
y_train, y_test = y[train_index_outer], y[test_index_outer]
#X_List2.append(X_test) # to see if the loop produce the same results

everytime. Just for test

if str(type(reg)).split(’.’)[-1][:-2] in [’RandomForestRegressor’,’SVR’]:

cv_results, scores = randomized_search(X_train, X_test, y_train, y_test,
reg, parameters, scoring, inner_split=inner_split, n_iter=n_iter)

cv_result_list.append(cv_results)
scores_list.append(scores)

else:
scores=[]

reg.fit(X_train, y_train)
lin_coef=list(reg.coef_)
lin_intercept=reg.intercept_
lin_coef.append(lin_intercept)
train_score=reg.score(X_train,y_train)
lin_coef.append(train_score)
dgci_coef.append(lin_coef)

y_pred=reg.predict(X_test)
print("R Square for training is {}".format(reg.score(X_train,y_train)))
print("R Square for test is {}".format(reg.score(X_test,y_test)))
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print("mean square error is
{}".format(np.sqrt(mean_squared_error(y_test,y_pred))))

scores.append(reg.score(X_train,y_train))
scores.append(reg.score(X_test,y_test))
scores.append(np.sqrt(mean_squared_error(y_test,y_pred)))
print(’*************************’)
external_cv.append(scores)

return cv_result_list, dgci_coef, external_cv,scores_list

168



APPENDIX C. FUNCTION TO DETECT TWO MIDDLE ROWS

This appendix provides the pseudocode of the function which detects the middle two

rows of soybean plots (Chapter 4). Comments are presented subsequently for following the

overall algorithm and better understanding of the processes.

/*********************************************************************************
Function to detect Two Middle Rows

Developed by H. Oveis & C. Igathinathane; ABEN, NDSU
*********************************************************************************/
// input: I the image of a 4-row plot
// output: Rows the mask for the two middle rows
function [Rows] = Row_Detection(I)

// The images were rotated, so rows are close to horizontal
I = imrotate(I, 90);

/*************************************************************************/
//Detecting the standard color board
//converting the image to L*a*b* color space
lab = rgb2lab(I);
a = lab(:,:,2);
//Since the original values for a* are between -128,127, the values were increased

by 127. Therefore, all the values are positive integers
a = uint8(a+127);
board = a;
//turning all the pixels off except standard board pixels which have new a* values

greater than 150
board(a<150) = 0;
//converting the image to binary
board = im2bw(board);
board = imfill(board,’holes’);
//removing objects small than 10000 pixels
board = bwareaopen(board,10000);
//storing the centroid of the standard board
statPink = regionprops(board,’Centroid’);

/*************************************************************************/
//Removing soil and detecting plots
bg = a; //assigning a* to background (bg)
//turing the board pixels to the average values of the a*, so it does not

interfere with Otsu method for fg/bg separation
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bg(board==1) = mean(mean(a));
//converting the image to binary and inverting it at the same time to extract the

soybean plots
bg = ~im2bw(bg, graythresh(bg));
//using morphological operation in the next 3 lines to clean the small speckles
bg = imerode(bg,strel(’disk’,3));
bg = imdilate(bg,strel(’disk’,30));
indBW = bwareaopen(bg,40000);
statRows = regionprops(indBW,’Centroid’,’PixelIdxList’,’Orientation’);

/*************************************************************************/
section = 25; //width of each section
for i = 1000:section:2000

indbw = indBW(:,i:section+i); //creating a section of image
indbw = imdilate(indbw,strel(’disk’,120));
stat = regionprops(indbw,’Centroid’);
statSize = size(stat,1);
if statSize >= 2

break
end

end
findCenter = zeros(1,statSize);

for j = 1:statSize
findCenter(j) = stat(j).Centroid(2)-statPink(1).Centroid(2);

end
//Finding the minimum of the centroids and switching the values with 999999

because the loop goes over the findCenter again.
for mid = 1:2

[~,id] = min(abs(findCenter));
nStat(mid) = stat(id);
nStat(mid).Centroid(1) = nStat(mid).Centroid(1)+i;
findCenter(id) = 99999;

end

/*************************************************************************/
section = 25; //width of each section
for i = 2500:-1*section:1500
//Plots are almost horizontal because we rotated the image.

indbw = indBW(:,i-section:i); //creating a section of image
indbw = imdilate(indbw,strel(’disk’,120));
stat = regionprops(indbw,’Centroid’);
statSize = size(stat,1);
if statSize >= 2

break
end

end
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findCenter = zeros(1,s tatSize);
for j = 1:statSize

findCenter(j) = stat(j).Centroid(2)-statPink(1).Centroid(2);
end
for mid = 3:4

[~,id] = min(abs(findCenter));
nStat(mid) = stat(id);
nStat(mid).Centroid(1) = nStat(mid).Centroid(1)+i-75;
findCenter(id) = 99999;

end
/*************************************************************************/
//Altering Matlab because sometimes it put the greater Yvalue of two points in 2nd

place
//nStat(5) is only a placeholder for swaping the values
if nStat(3).Centroid(2) < nStat(4).Centroid(2)

nStat(5).Centroid(2) = nStat(3).Centroid(2);
nStat(3).Centroid(2) = nStat(4).Centroid(2);
nStat(4).Centroid(2) = nStat(5).Centroid(2);

end
if nStat(1).Centroid(2) < nStat(2).Centroid(2)

nStat(5).Centroid(2) = nStat(1).Centroid(2);
nStat(1).Centroid(2) = nStat(2).Centroid(2);
nStat(2).Centroid(2) = nStat(5).Centroid(2);

end
/*************************************************************************/

//Drawing two centerlines and finding slope of two lines
m1 = (nStat(3).Centroid(2)-nStat(1).Centroid(2))/

(nStat(3).Centroid(1)-nStat(1).Centroid(1));
m2 = (nStat(4).Centroid(2)-nStat(2).Centroid(2))/

(nStat(4).Centroid(1)-nStat(2).Centroid(1));

/*************************************************************************/
//Detecting rows
Rows = false(size(indBW));
for obj = 1:size(statRows,1)
//y2 = m(x2-x1)+y1
//Calculating the y of centerpoints of all possible plot rows.
Yline = round(m1*(statRows(obj).Centroid(1)-nStat(3).Centroid(1))+

nStat(3).Centroid(2));
//if the distance of calculated y of centerpoint was less than 200 pixel away

from its actual y, then it is one of the middle rows.
if abs(Yline-statRows(obj).Centroid(2)) < 200

Rows(statRows(obj).PixelIdxList) = true;
end

end
for obj = 1:size(statRows,1)
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Yline = round(m2*(statRows(obj).Centroid(1)-nStat(4).Centroid(1))+
nStat(4).Centroid(2));

if abs(Yline-statRows(obj).Centroid(2)) < 200
Rows(statRows(obj).PixelIdxList) = true;

end
end

stat = regionprops(Rows,’Orientation’,’PixelIdxList’);
for z = 1:size(stat,1)

if abs(stat(z).Orientation) > 65
Rows(stat(z).PixelIdxList) = false;

end
end
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APPENDIX D. AERIAL IMAGE FEATURES RELATIONSHIP

WITH YIELD FOR DIFFERENT DATES

This appendix provides illustrations on the relationship of different features from

aerial images (Chapter 5) with yield for 2016 (fig. D1) and 2017 (fig. D2). These features

include dark green color index (DGCI), canopy size, and canopy size × DGCI product.
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Figure D1. An illustration of relationship of different features from aerial images with
yield for 2016. (Left) DGCI, (Middle) Canopy size, (Right) DGCI × canopy size.
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Figure D2. An illustration of relationship of different features from aerial images with
yield for 2017. (Left) DGCI, (Middle) Canopy size, (Right) DGCI × canopy size.
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APPENDIX E. SCRIPTS FOR DATA VISUALIZATION THROUGH

R AND PYTHON

This appendix provides scripts for data visualization in R through ggplot2

(https://ggplot2-book.org) and in Plotly through Python

(https://plotly.com/python/). The originals graphs derived from chapters 3, 4, and 5 are

reproduced again for ready reference at the end of each code sections.

/*********************************************************************************
Script to create bar graphs to compare the performance of different

machine learning algorithms in ggplot (R)

Developed by Oveis Hassanijalilian and C. Igathinathane; ABEN, NDSU
*********************************************************************************/
---
title: "ggplot2 model drawing"
author: "Oveis and C. Igathi"
date: "2/23/2019"
output: pdf_document
---

‘‘‘{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
x = 3
‘‘‘

#setwd("C:/Users/Oveis/Desktop/dgci_spad/model_scores/AllModels/R_csvFiles")

Models R^2 with color scheme inputs

‘‘‘{r}
library(ggplot2)
library(scales)
df3 <- read.csv(’aggregated_Rsqr.csv’)
df3
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df3$models <- factor(df3$models,levels = c("Simple linear regression*",
"Polynomial regression*",
"Multiple linear regression",
"Support vector machine",
"Random forest")) # reorder the levels

df3$Inputs <- factor(df3$Inputs,levels = c("RGB", "DGCI", "Both")) # reorder the
levels

df3$Method <- factor(df3$Method,levels = c("Train", "Test")) # reorder the levels
df3$label <- factor(df3$label)

p <- ggplot(data=df3, aes(x=Inputs, y=Rsqr, fill=Method)) +
geom_errorbar(aes(ymin = Rsqr - error, ymax = Rsqr + error),

position = position_dodge2(width = 0.5, padding = 0.5)) +
geom_bar(stat="identity", position=position_dodge()) +
scale_fill_manual(values=c(’darkgreen’,’orange’)) +
scale_y_continuous(limits = c(0.3, 1.0), oob = rescale_none) +
facet_grid(. ~ models) +
geom_col(position = "dodge2") +
geom_text(aes(label=sprintf("%.3f", round(Rsqr,3))), vjust=0.5, hjust=1.3,

color="white",
position = position_dodge(0.9), size=3.5, angle = 90) +

geom_text(aes(label=label, y=Rsqr + error), vjust=-0.8, hjust=0.5, position =
position_dodge(0.9), size=3.5) +

theme_bw() +
theme(strip.text.x = element_text(size = 9, face = "bold")) # order is important

p + theme(legend.position = c(0.04, 0.9),
legend.text=element_text(size=6),
legend.title=element_text(size=7),
legend.key.size = unit(0.175, "in")) +

labs(x = "Color scheme input", y = expression("Model’s" ~ R^2))

ggsave("modelR2.pdf", width = 9, height = 4.5, units = "in")
‘‘‘

RMSE with color scheme inputs

‘‘‘{r}
library(ggplot2)
library(scales)
df1<- read.csv(’aggregated_RMSE.csv’)
df1

df1$models <- factor(df1$models,levels = c("Simple linear regression*",
"Polynomial regression*",
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"Multiple linear regression",
"Support vector machine",
"Random forest")) # reorder the levels

df1$Inputs <- factor(df1$Inputs,levels = c("RGB", "DGCI", "Both")) # reorder the
levels

df1$label <- factor(df1$label)

ggplot(data=df1, aes(x=Inputs, y=RMSE)) +
geom_errorbar(aes(ymin = RMSE - error, ymax = RMSE + error), width=0.4) +
geom_bar(stat="identity", fill="darkgreen", width = 0.5) +
facet_grid(. ~ models) + # should follow geom_bar
scale_y_continuous(limits = c(1, 7.0), oob = rescale_none) +
geom_text(aes(label=sprintf("%.3f", round(RMSE,3))), vjust=0.5, hjust=1.3,

color="white",
position = position_dodge(0.9), size=3.5, angle = 90) +

geom_text(aes(label=label, y=RMSE + error), vjust=-0.8, hjust=0.5, position =
position_dodge(0.9), size=3.5) +

labs(x = "Color scheme input", y = "RMSE") +
theme_bw() +
theme(strip.text.x = element_text(size = 9, face = "bold"))

ggsave("modelRMSE.pdf", width = 9, height = 4.5, units = "in")
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Figure E1. Bar graph of R2 with error bars produced by ggplot2 in R to compare perfor-
mance of different machine learning algorithms.

178



5.
88

3

3.
09

9

a

cd

−

5.
83

6

3.
09

1

a

cd

−

3.
54

8

3.
11

1

3.
06

9

b

cd cd

3.
20

1

3.
09

0

2.
89

8

cd
cd

d

3.
41

3

3.
14

5

3.
08

5

bc
cd cd

Simple linear regression* Polynomial regression* Multiple linear regression Support vector machine Random forest

RGB DGCI RPC Both RGB DGCI RPC Both RGB DGCI RPC Both RGB DGCI RPC Both RGB DGCI RPC Both

2

4

6

Color scheme input

R
M

S
E

 (
S

PA
D

 u
ni

ts
)

Figure E2. Bar graph of RMSE with error bars produced by ggplot2 in R to compare
performance of different machine learning algorithms.

/*********************************************************************************
Script to create bar graphs to compare correlation of UAV image parameters in

ggplot (R)

Developed by Oveis Hassanijalilian and C. Igathinathane; ABEN, NDSU
*********************************************************************************/
---

# Visualization of correlation of UAV image parameters
# with soybean yield - R ggplot2 code

dat <- read.table(header = T, text = "
year day parameter rvalue
2016 Jun-23 DGCI 0.36
2016 Jul-01 DGCI 0.65
2016 Jul-22 DGCI 0.75
2016 Jul-29 DGCI 0.72
2017 Jun-25 DGCI 0.84
2017 Jul-03 DGCI 0.66
2017 Jul-08 DGCI 0.68
2017 Jul-14 DGCI 0.89
2017 Jul-24 DGCI 0.92
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2016 Jun-23 CS 0.49
2016 Jul-01 CS 0.64
2016 Jul-22 CS 0.74
2016 Jul-29 CS 0.85
2017 Jun-25 CS 0.79
2017 Jul-03 CS 0.79
2017 Jul-08 CS 0.77
2017 Jul-14 CS 0.85
2017 Jul-24 CS 0.92
2016 Jun-23 CDP 0.49
2016 Jul-01 CDP 0.66
2016 Jul-22 CDP 0.82
2016 Jul-29 CDP 0.90
2017 Jun-25 CDP 0.81
2017 Jul-03 CDP 0.74
2017 Jul-08 CDP 0.73
2017 Jul-14 CDP 0.87
2017 Jul-24 CDP 0.94
")

library(ggplot2)
library(RColorBrewer)

dat$year <- factor(dat$year, levels = c("2016", "2017"))
dat$day <- factor(dat$day, levels =
c("Jun-23", "Jul-01", "Jul-22", "Jul-29", "Jun-25", "Jul-03", "Jul-08", "Jul-14",

"Jul-24"))
dat$parameter <- factor(dat$parameter, levels = c("DGCI", "CS", "CDP"))
dat$rvalue <- as.numeric(as.character(dat$rvalue))

plt <- ggplot(dat, aes(x = day, y = rvalue, fill = parameter)) +
geom_bar(width = 0.6, colour="black", stat="identity", position="dodge")+
theme_bw() +
scale_fill_brewer(palette="Set1") +
theme(legend.position= c(.08, .8), legend.title = element_blank())+
facet_wrap(year~., scales = "free") +
scale_y_continuous(breaks=seq(0.0,1.0,0.1)) +
theme(strip.text.x = element_text(size = 12, face = "bold")) +
xlab("Days") +
ylab(expression(italic("r ")~value))

plt
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by ggplot2 in R to compare the correlation between parameters and yield.

/*********************************************************************************
Script to create bar graphs to show frequency of different classes

in Plotly (Python)

Developed by Oveis Hassanijalilian; ABEN, NDSU
*********************************************************************************/

x = sorted(Diff.diff_rate.unique())
y = Diff.diff_rate.value_counts().sort_index()
y = [i for i in y]

colors = [’#E09C00’,’#FFD700’,’#DDE800’,’#BBD900’,’#97FF00’,’#5BCF00’,’#449A00’]

fig = go.Figure(data=[go.Bar(
x=x, y=y,
text=y,
marker_color=colors

)])
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fig.update_layout(
template="plotly_white",
autosize=True,
width=700,
height=500,
yaxis=dict(

title=’Frequency’
),
xaxis=dict(

title=’Differences between IDC rating for both dates’
),
xaxis_showgrid=False, yaxis_showgrid=False

)
fig.update_yaxes(showline=True, linewidth=1,

linecolor=’black’,ticks=’outside’,mirror=True)
fig.update_xaxes(showline=True, linewidth=1,

linecolor=’black’,ticks=’outside’,mirror=True)

fig.show()

/*********************************************************************************
Script to create a histogram

in Plotly (Python)

Developed by Oveis Hassanijalilian; ABEN, NDSU
*********************************************************************************/

colors= [’#c5d627’,’#b3d627’,’#9fd627’,’#90d627’,
’#7fd627’,’#6ad627’,’#56d627’,’#47d627’,
’#43bd28’,’#3fab27’,’#3b9c25’,’#388c24’]

fig = go.Figure(data=[go.Histogram(x=Diff.diff_dgci,marker_color=colors)])
fig.update_layout(

template="plotly_white",
autosize=True,
width=600,
height=500,
yaxis=dict(

title=’Frequency’
),
xaxis=dict(

title=’Differences between average DGCI of both dates’
),
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xaxis_showgrid=False, yaxis_showgrid=False)

fig.update_yaxes(showline=True, linewidth=1,
linecolor=’black’,ticks=’outside’,mirror=True)

fig.update_xaxes(showline=True, linewidth=1,
linecolor=’black’,ticks=’outside’,mirror=True)

fig.show()
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Figure E4. Bar graph on the left and histogram on the right produced by Plotly in Python.

/*********************************************************************************
Script to create bar graphs to compare the performance of different

machine learning algoritms in Plotly (Python)

Developed by Oveis Hassanijalilian; ABEN, NDSU
*********************************************************************************/
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_csv(’./Performance.csv’)

classes=[’Class=1’, ’Class=2’, ’Class=3’, ’Class=4’]

fig = go.Figure(data=[
go.Bar(name=’DT’, x=classes, y=df2.loc[df2.Model==’DT’,’Value’]),
go.Bar(name=’RF’, x=classes, y=df2.loc[df2.Model==’RF’,’Value’]),
go.Bar(name=’Ada’, x=classes, y=df2.loc[df2.Model==’Ada’,’Value’]),

])
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# Change the bar mode
fig.update_layout(template="plotly_white",

barmode=’group’,width=700,yaxis=dict(title=’f1-score’,tickmode =
’linear’,tick0 = 0.00,dtick = 0.1),

xaxis_showgrid=False, yaxis_showgrid=False)

fig.update_yaxes(showline=True, linewidth=1,
linecolor=’black’,ticks=’outside’,mirror=True)

fig.update_xaxes(showline=True, linewidth=1,
linecolor=’black’,ticks=’outside’,mirror=True)

fig.show()
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Figure E5. Bar graph produced by Plotly in Python to compare classification metric among
different machine learning algorithms.

184


	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	LIST OF APPENDIX FIGURES
	General Introduction
	Significance of the Problem
	Statement of Hypothesis
	Statement of Objectives
	Dissertation Organization

	Iron Deficiency Chlorosis Measurement in Soybean — A Review*
	Abstract
	Introduction
	Number of Publications on Soybean IDC and Nature of Work
	Measurement of IDC
	Analysis of IDC Data
	Management of IDC
	Concluding Remarks and Future Perspective

	Chlorophyll Estimation in Soybean Leaves Infield with Smartphone Digital Imaging and Machine Learning*
	Abstract
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions

	Rating Iron Deficiency in Soybean using Image Processing and Decision-Tree based Models*
	Abstract
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions

	Measuring Soybean Iron Deficiency Chlorosis Progression and Yield Prediction with Unmanned Aerial Vehicle*
	Abstract
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions

	General Conclusions and Suggestions for Future Work
	General Conclusions
	Suggestions for Future Work

	REFERENCES
	References
	APPENDIX A. Function to detect the leaf, green and yellow disk
	APPENDIX B. Functions for nested cross validation and randomized grid search
	APPENDIX C. Function to Detect Two Middle Rows
	APPENDIX D. Aerial image features relationship with yield for different dates
	APPENDIX E. Scripts for data visualization through R and Python

