
FORMAL VERIFICATION METHODOLOGIES FOR NULL CONVENTION LOGIC

CIRCUITS

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Son Ngoc Le

In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Electrical and Computer Engineering

June 2020

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Formal Verification Methodologies for NULL Convention Logic Circuits

 By

Son Ngoc Le

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Sudarshan K. Srinivasan

 Chair

Scott C. Smith

 Co-Chair

Dharmakeerthi Nawarathna

Kenneth Magel

 Approved:

 07/01/2020 Benjamin Braaten

 Date Department Chair

iii

ABSTRACT

NULL Convention Logic (NCL) is a Quasi-Delay Insensitive (QDI) asynchronous design

paradigm that aims to tackle some of the major problems synchronous designs are facing as the

industry trend of increased clock rates and decreased feature size continues. The clock in

synchronous designs is becoming increasingly difficult to manage and causing more power

consumption than ever before. NCL circuits address some of these issues by requiring less

power, producing less noise and electro-magnetic interference, and being more robust to Process,

Voltage, and Temperature (PVT) variations. With the increase in popularity of asynchronous

designs, a formal verification methodology is crucial for ensuring these circuits operate correctly.

Four automated formal verification methodologies have been developed, three to ensure delay-

insensitivity of an NCL circuit (i.e., prove Input-Completeness, Observability, and Completion-

Completeness properties), and one to aid in proving functional equivalence between an NCL

circuit and its synchronous counterpart. Note that an NCL circuit can be functionally correct and

still not be input-complete, observable, or completion-complete, which could cause the circuit to

operate correctly under normal conditions, but malfunction when circuit timing drastically

changes (e.g., significantly reduced supply voltage, extreme temperatures). Since NCL circuits

are implemented using dual-rail logic (i.e., 2 wires, rail0 and rail1, represent one bit of data), part

of the functional equivalence verification involves ensuring that the NCL rail0 logic is the inverse

of its rail1 logic. Equivalence verification optimizations and alternative invariant checking

methods were investigated and proved to decrease verification times of identical circuits

substantially. This work will be a major step toward NCL circuits being utilized more frequently

in industry, since it provides an automated verification method to prove correctness of an NCL

implementation and equivalence to its synchronous specification, which is the industry standard.

iv

ACKNOWLEDGEMENTS

This dissertation is based upon work supported by the National Science Foundation under

Grant No. CCF-1717420.

v

DEDICATION

To my parents, Ngoc and Tammy Le.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS ... x

1. INTRODUCTION .. 1

1.1. Formal Verification Overview ... 1

1.2. NULL Convention Logic (NCL) Overview ... 2

1.3. Dissertation Work .. 10

1.4. Related Work .. 11

2. NCL EQUIVALENCE VERIFICATION .. 13

2.1. Equivalence Verification for Combinational NCL Circuits ... 14

2.1.1. Functional Equivalence Check .. 15

2.1.2. Invariant Check ... 20

2.1.3. Combinational NCL Circuits Results .. 23

2.2. Equivalence Verification for Sequential NCL Circuits .. 23

2.2.1. NCL to Synchronous Reduction .. 23

2.2.2. Exploiting Dual-Rail Invariants for Equivalence Verification 34

2.3. Equivalence Verification Conclusion ... 39

3. NCL INPUT-COMPLETENESS VERIFICATION ... 42

3.1. Input-Completeness Verification ... 43

3.1.1. Input-Completeness Proof Obligation: NULL to DATA .. 43

3.1.2. Input-Completeness Proof Obligation: DATA to NULL .. 44

vii

3.1.3. Input-Completeness Results .. 46

3.1.4. Input-Completeness Conclusion .. 48

4. NCL OBSERVABILITY VERIFICATION ... 50

4.1. Observability Verification .. 50

4.1.1. Observability Proof Obligation: NULL to DATA .. 50

4.1.2. Observability Proof Obligation: DATA to NULL .. 51

4.1.3. Observability Results ... 53

5. NCL COMPLETION-COMPLETENESS VERIFICATION... 56

5.1. Completion-Completeness Previous Work .. 56

5.2. Completion-Completeness Verification ... 58

5.2.1. Completion-Completeness Proof Obligation .. 59

5.2.2. Completion-Completeness Results .. 61

5.2.3. Completion-Completeness Conclusion ... 62

6. CONCLUSION ... 64

6.1. Summary .. 64

6.2. Future Work ... 65

REFERENCES ... 67

APPENDIX. LIST OF PUBLICATIONS .. 70

viii

LIST OF TABLES

Table Page

1. Dual-rail signal representation [5] .. 3

2. Fundamental NCL gates [5] .. 4

3. Predicates for invariant check ... 21

4. Predicates for revised invariant check .. 22

5. Verification results of various C/L NCL circuits (in sec.) .. 24

6. Verification results for sequential NCL circuits (in sec.) ... 34

7. Predicates for equivalence check .. 37

8. Dual-rail refinement results .. 38

9. Predicates for input-completeness check .. 45

10. Verification results of input-completeness (in sec.) ... 48

11. Predicates for observability check .. 52

12. Verification results of observability (in sec.) .. 54

13. Predicates for completion-completeness check .. 60

14. Verification results of completion-completeness (in sec.) .. 63

ix

LIST OF FIGURES

Figure Page

1. NCL system framework [5] .. 3

2. Single-bit dual-rail register [5] .. 5

3. N-bit completion detection [5] .. 6

4. Full-word completion [8] .. 7

5. Bit-wise completion [8] .. 8

6. Input-incomplete dual-rail two-input AND circuit [5] ... 9

7. Input-complete dual-rail two-input AND circuit [8] .. 9

8. Unobservable dual-rail two-input XOR circuit [5] ... 10

9. NCL half-adder ... 16

10. NCL full-adder [5] .. 16

11. 3×3 NCL multiplier .. 17

12. (a) 3×3 NCL multiplier netlist, (b) Converted Boolean netlist ... 18

13. Multiply and accumulate (MAC) circuit: (a) Synchronous (b) NCL 25

14. 4 + 2 × 2 NCL MAC datapath .. 26

15. (a) 4 + 2 × 2 NCL MAC netlist, (b) Converted synchronous equivalent netlist 28

16. Depiction of proof obligation to check equivalence of NCL_SYNC and

SPEC_SYNC netlists .. 30

17. Handshaking connections for the 4+2×2 NCL MAC ... 32

18. reg_fanin and ko_fanout lists for the 4+2×2 NCL MAC .. 33

19. (a) 3×3 NCL multiplier netlist (b) Converted netlist using method in Section 2 (c)

Converted netlist using proposed Register Invariance Refinement 40

20. ISCAS-85 C432 M1 module nine-input NCL NAND that generates PA 55

21. Completion-incomplete NCL circuit .. 58

x

LIST OF ABBREVIATIONS

DI ...Delay-Insensitivity

EMI ..Electro-magnetic Interference

FA(s) ..Full-Adder(s)

HA(s)..Half-Adder(s)

IoT ..Internet of Things

MAC ..Multiply and Accumulate

MTNCL ...Multi-Threshold NULL Convention Logic

NCL..NULL Convention Logic

PVT ..Process, Voltage, Temperature

QDI ..Quasi-Delay Insensitive

rfn ...Request for NULL

rfd ...Request for DATA

RTL ..Register-Transfer Level

SCL ..Sleep Convention Logic

SMT ...Satisfiability Modulo Theory

SMT-LIB..Satisfiability Modulo Theory Library

SOP ..Sum of Products

TO ..Timeout

TS(s) ...Transition System(s)

WEB ...Well-Founded Equivalence Bisimulation

WSN ..Wireless Sensor Networks

1

1. INTRODUCTION

1.1. Formal Verification Overview

Formal verification is an alternative approach to validation of a circuit design. The

correctness of formal methodologies is based on mathematical proofs instead of individual test

cases, which are used in the traditional test-based approach to validation. The benefit of using a

formal method over the traditional test-based approach is that a single proof can be used to cover

many test cases. As circuit size increases, the number of test cases for a system increases

exponentially making it increasingly difficult to achieve an acceptable amount of test coverage

using traditional methods. Due to this fact, formal verification has been shown to be crucial to

ensuring design correctness and finding corner-case bugs that can be easily missed using the

traditional test methodology. The semiconductor industry has started incorporating formal

methods into their design cycle for validation after the floating-point bug was found on the Intel

Pentium processor in 1994, which cost Intel $500 million to fix.

One of the more popular formal verification approaches that has been found to be

extremely scalable and useful in semiconductor design is equivalence checking. Typically, a lot

of time, money, and effort is invested into ensuring the correctness of a design. However, the

design itself is never static, as it is continuously tinkered with and optimized. Equivalence

checking technology can, with a high degree of automation and efficiency, check that the golden

model (i.e., the design that has been extensively validated) and its derivative are functionally

equivalent. Scalability is harnessed by exploiting the structural similarity of the golden model

and its derivative. Examples of commercial equivalence checkers include IBM Sixth Sense,

Jasper Gold Sequential Equivalence Checker, Calypto SLEC, Mishchenko EBCCS13, and

Cadence Encounter Conformal Equivalence Checker.

2

1.2. NULL Convention Logic (NCL) Overview

Traditional digital design is reliant on operating clocks that dictate when data needs to be

available in a circuit. To increase a circuit’s speed the operating clock speed is increased. This

along with the desire to have less area have caused many clock-related issues. These issues

require the circuit designer to have more and more area dedicated to fix these clock related issues

causing high power consumption and high complexity when designing. Asynchronous designs,

like NULL Convention Logic (NCL) [1], are clockless designs and have benefits over their

synchronous counterparts due to the lack of clocking within a circuit. Asynchronous circuits

require less power, generate less noise, and produce less electro-magnetic interference (EMI)

than the traditional clocked circuits.

NCL is a Quasi-Delay Insensitive (QDI) asynchronous design style that has been

demonstrated to function in environments characterized by high radiation and extreme

temperatures, both high and low, and is also very robust to process and voltage variations, all of

which can cause traditional synchronous circuits to fail due to circuit timing [2]. Being able to

function correctly in these extreme environments makes NCL designs very suitable for space

exploration, the power industry, the automobile industry (internal combustion engines), oil/gas

exploration, medical imaging instrumentation, the laser industry, superconducting computing and

energy storage systems, and low voltage or low power applications such as wireless sensor

networks (WSN) or Internet of Things (IoT).

The NCL system framework, shown in Fig. 1, depicts how an NCL circuit operates. In

short, the delay-insensitive (DI) combinational logic is placed between DI registers. These

registers use local handshaking and completion components to request and acknowledge

alternating DATA and NULL wavefronts, as further explained below. To achieve delay-

3

insensitivity, meaning the circuit will operate regardless of when circuit inputs become available,

NCL is typically constructed using dual-rail signals. A dual-rail signal consists of two wires,

called rails, with rail0 and rail1 representing the two wires. With these two wires, four states are

possible: 0b00 is known as the NULL state or absence of data; 0b01 and 0b10 are the DATA0

and DATA1 state corresponding to a Boolean 0 and 1, respectively; and 0b11 is an ILLEGAL

state that will never occur in a properly operating circuit. The states of a dual-rail signal are

shown in Table 1.

Figure 1. NCL system framework [5]

Table 1. Dual-rail signal representation [5]

 DATA0 DATA1 NULL ILLEGAL

rail0 1 0 0 1

rail1 0 1 0 1

NCL consists of 27 fundamental gates, with each of these gates having a state-holding

capability called hysteresis, meaning that once the gate becomes asserted, it stays asserted until

all the inputs are de-asserted. These gates, called threshold gates, are described as 𝑇𝐻𝑚𝑛, where

1 ≤ 𝑚 ≤ 𝑛. 𝑛 represents the number of inputs to the gate; and 𝑚 represents the threshold value

(i.e. how many of the inputs that must be asserted for the output to be asserted). There is also a

weight mechanism which gives certain inputs more influence or weight in calculating whether

the threshold has been reached. These gates are depicted as 𝑇𝐻𝑚𝑛𝑊𝑤1, … , 𝑤𝑅 , 𝑅 < 𝑁 , where

𝑤1, … , 𝑤𝑅 are the integer weights of inputs that are more than weight 1. The function to assert

each of these 27 gates is shown in Table 2.

4

Table 2. Fundamental NCL gates [5]

NCL Gate Boolean Function

TH12 𝐴 + 𝐵

TH22 𝐴𝐵

TH13 𝐴 + 𝐵 + 𝐶

TH23 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

TH33 𝐴𝐵𝐶

TH23w2 𝐴 + 𝐵𝐶

TH33w2 𝐴𝐵 + 𝐴𝐶

TH14 𝐴 + 𝐵 + 𝐶 + 𝐷

TH24 𝐴𝐵 + 𝐴𝐶 + 𝐴𝐷 + 𝐵𝐶 + 𝐵𝐷 + 𝐶𝐷

TH34 𝐴𝐵𝐶 + 𝐴𝐵𝐷 + 𝐴𝐶𝐷 + 𝐵𝐶𝐷

TH44 𝐴𝐵𝐶𝐷

TH24w2 𝐴 + 𝐵𝐶 + 𝐵𝐷 + 𝐶𝐷

TH34w2 𝐴𝐵 + 𝐴𝐶 + 𝐴𝐷 + 𝐵𝐶𝐷

TH44w2 𝐴𝐵𝐶 + 𝐴𝐵𝐷 + 𝐴𝐶𝐷

TH34w3 𝐴 + 𝐵𝐶𝐷

TH44w3 𝐴𝐵 + 𝐴𝐶 + 𝐴𝐷

TH24w22 𝐴 + 𝐵 + 𝐶𝐷

TH34w22 𝐴𝐵 + 𝐴𝐶 + 𝐴𝐷 + 𝐵𝐶 + 𝐵𝐷

TH44w22 𝐴𝐵 + 𝐴𝐶𝐷 + 𝐵𝐶𝐷

TH54w22 𝐴𝐵𝐶 + 𝐴𝐵𝐷

TH34w32 𝐴 + 𝐵𝐶 + 𝐵𝐷

TH54w32 𝐴𝐵 + 𝐴𝐶𝐷

TH44w322 𝐴𝐵 + 𝐴𝐶 + 𝐴𝐷 + 𝐵𝐶

TH54w322 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶𝐷

THxor0 𝐴𝐵 + 𝐶𝐷

THand0 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐷
TH24comp 𝐴𝐶 + 𝐵𝐶 + 𝐴𝐷 + 𝐵𝐷

NCL circuits function under the propagation of NULL and DATA waves through the

circuit. These waves contain handshaking protocols that are used to replace the clock in

traditional designs. To ensure that DATA from one wavefront does not overwrite the DATA of

another wavefront, a minimum of two register stages are required at the input and output of the

circuit. Each single-bit dual-rail register component, as seen in Fig. 2, has seven signals. I0 and I1

represent the dual-rail input; O0 and O1 represent the dual-rail output; Reset is used to set the

register output into a known state (i.e., registers can be reset to three states, NULL, DATA0, or

5

DATA1; and these are referred to as Reset-to-NULL, Reset-to-DATA0, and Reset-to-DATA1

registers, respectively); and Ki and Ko are handshaking signals used for communication between

register stages. When the register output is NULL and needing DATA, the Ko value is 1, known

as request for DATA (rfd). When in a DATA state and needing NULL, the Ko value is 0, known

as request for NULL (rfn). The Ko values from each register are fed through Completion

Detection circuitry, as shown in Fig. 3, to determine whether the current register stage needs a

DATA wavefront or a NULL wavefront. The output generated from the Completion Detection

circuitry is fed to the Ki inputs of the previous register stage.

Figure 2. Single-bit dual-rail register [5]

6

Figure 3. N-bit completion detection [5]

When pipelining two completion strategies can be used: full-word and bitwise-

completion. The decision on which completion type to use is circuit dependent, with bit-wise

completion having the possibility of reducing completion logic delay to increase throughput of

the circuit, or possibly decreasing area. When implementing full-word completion, all the

acknowledge bits from registeri are fed into the same Completion Detection circuit to generate a

single output that is then fed to all the request signals of registeri-1. When using bit-wise

completion, a separate Completion Detection circuit is used to generate each request signal of

registeri-1, whose inputs are only the acknowledge signals of the registeri outputs calculated using

7

that particular registeri-1 output. Full-word and bit-wise completion strategies are demonstrated

using Fig. 3 and 4, respectively. In Fig. 3, only one Completion Detection unit is required, which

combines all the registeri’s Ko signals. Its output is then fed to every Ki signal in registeri-1. In

contrast, there are four Completion Detection units in Fig. 4, one for each bit in registeri-1.

Figure 4. Full-word completion [8]

8

Figure 5. Bit-wise completion [8]

Aside from the logic being correct, NCL circuits must satisfy the following properties to

ensure delay-insensitivity: input-completeness, observability, and completion-completeness.

Input-completeness is a property that states that an NCL circuit’s output may only transition

from NULL to DATA after all of its inputs have transition from NULL to DATA, and

conversely, that an NCL circuit’s output may only transition from DATA to NULL after all of its

inputs have transition from DATA to NULL. According to Seitz’s “weak conditions”, some of

the outputs can transition in a circuit as long as at least one remains untransitioned until all inputs

arrive. Violation of this property can be shown with the input-incomplete NCL AND function

shown in Fig. 6. Assume the circuit is in a NULL state, and inputs X and Y are DATA0 and

NULL, respectively; the TH12 gate would assert, therefore asserting Z0
 and making Z become

DATA0, which violates the input-completeness property because the output Z has transitioned

9

from NULL to DATA before Y has transitioned from NULL to DATA. Contrarily, the output Z

of the input-complete AND2 shown in Fig. 7 cannot transition until both inputs have become

DATA, therefore making it input-complete even though the two implementations are

functionally equivalent.

Figure 6. Input-incomplete dual-rail two-

input AND circuit [5]

Figure 7. Input-complete dual-rail two-

input AND circuit [8]

Observability is another property that must be satisfied for NCL circuits to be delay-

insensitive. The observability property states that no orphans may propagate through a gate. An

orphan is defined as a wire that transitions during the DATA wavefront but is not used to

determine the output. This means that if a gate transitions from NULL to DATA or from DATA

to NULL, that transition must be necessary to transition one of the outputs. Violation of this

property can be shown in Fig. 8. Assume both X and Y are DATA0, which asserts the TH12

gate; however, the output of this gate is only connected to the TH33w2 gate that determines Z1,

which will not be asserted for this scenario, as the TH23w2 gate that determines Z0 will instead

be asserted. Hence, the TH12 gate is not observable, which can lead to an incorrect output when

timing changes (i.e., the circuit is not delay-insensitive).

10

Figure 8. Unobservable dual-rail two-input XOR circuit [5]

Completion-Completeness is a property that must be checked for NCL circuits that utilize

bit-wise completion along with some input-incomplete logic functions. It states that completion

signals must be generated such that two adjacent DATA wavefronts cannot interact within a

combinational logic component. This property is automatically satisfied when using full-word

completion, since there is only a single handshaking signal for each stage that allows a DATA or

NULL wavefront to enter the stage. Hence, as long as the circuit is input-complete, it is also

completion-complete when using full-word completion. When using bit-wise completion, the

input-completeness criterion does not fully ensure delay-insensitivity, because there are multiple

request signals for each stage, which change at different times as the stage outputs change.

1.3. Dissertation Work

The contents of this dissertation can be split into two main formal verification categories,

equivalence checking, and checking of NCL properties, which are divided into their respective

chapters. Chapter 2 presents two methods used to decrease equivalence verification time of NCL

11

circuits. Chapter 3, 4, and 5 all revolve around defining formal properties to check for input-

completeness, observability, and completion-completeness of a circuit, respectively.

1.4. Related Work

Vidura et al. [3] have previously developed an approach for verifying the equivalence of

an NCL circuit against a synchronous circuit. They use the theory of Well-Founded Equivalence

Bisimulation (WEB) refinement [4] as the notion of equivalence. In WEB refinement, both the

circuit to be verified (here the NCL circuit) and the specification circuit (here the synchronous

circuit) are modeled as transition systems (TSs), which capture the behavior of the circuit as a set

of states and transitions between the states. WEB refinement essentially defines what it means

for two TSs to be functionally equivalent. Their approach performs symbolic simulation on both

the NCL circuit and the synchronous circuit to generate the TSs corresponding to both circuits. A

decision procedure is then used to verify that the two TSs satisfy the WEB refinement property.

However, this technique suffers from state space explosion, since they model the QDI circuits as

TSs, which become very complex for large circuits due to the non-deterministic signal

transitioning order of QDI paradigms.

A manual approach to checking input-completeness is outlined in [5]. To check a circuit

for input-completeness, an analysis has to be done on each output term. For example, in order for

output Z to be input-complete with respect to input A, every product term in all rails of Z (in SOP

format) must contain any rail of A. This ensures that Z cannot be DATA until A is DATA, and if

Z is constructed solely out of NCL gates with hysteresis, the gate hysteresis ensures that Z cannot

transition from DATA to NULL until A transitions from DATA to NULL. Hence, Z is input-

complete with respect to A. However, this method cannot ensure input-completeness of relaxed

NCL circuits [6], where not all gates contain hysteresis. Also, scalability is a problem with this

12

approach, as the number of product terms that need to be verified grows exponentially as the

number of inputs increase. Kondratyev et al. [7] provide a formal verification approach for

observability verification, which entails determining all input combinations that assert gatei, then

forcing gatei to remain de-asserted while checking that none of those input combinations result

in all circuit outputs becoming DATA. This check is performed for all gates to ensure circuit

observability; and if also applied to each circuit input (i.e., replace gatei with inputi in the

observability check explanation), will guarantee input-completeness. Our approach for

observability checking, detailed in Section 4, is very similar to [7], while our approach checks

input-completeness for all inputs simultaneously using only two proof obligations, as detailed in

Section 3. The completion-completeness property was demonstrated to be required for NCL

circuits utilizing bit-wise completion in [8], and methods were presented to ensure that circuits

were completion-complete; however, an algorithm to determine whether a circuit was

completion-complete was not included.

13

2. NCL EQUIVALENCE VERIFICATION1

In working with the approach described in [3], we found that because NCL circuits

exhibit highly non-deterministic behaviors, the corresponding TSs are very complex, even for

relatively simple circuits. This complexity leads to two issues. First is state space explosion.

Second, it becomes very difficult to compute the reachable states of the resulting TS. Computing

reachable states is important because unreachable states often flag numerous spurious

counterexamples, which makes verification intractable.

We have therefore developed an alternate approach to circumvent having to deal with the

NCL TS. The high-level idea is to perform structural transformation on the NCL circuit netlist to

convert the NCL circuit into an equivalent synchronous circuit. The converted synchronous

circuit is then compared against the specification synchronous circuit, using WEB refinement as

the notion of correctness. The converted synchronous circuit, specification synchronous circuit,

and the WEB refinement property are then automatically encoded in the Satisfiability Modulo

Theory Library (SMT-Lib) language [9]. The resulting equivalence property is then checked

using an SMT solver. Additional checks need to be performed to ensure that the NCL circuit is

live (i.e., deadlock free). Thus, the overall verification has three high-level steps:

1) Conversion from NCL to synchronous.

2) Verification of converted synchronous against specification synchronous.

1 The functional equivalence check and invariant checks documented in this chapter were a collaborative work

between Ashiq Sakib, Son Le, Scott Smith, and Sudarshan Srinivasan. The conversion of NCL combinational

circuits to equivalent Boolean circuits and conversion of NCL sequential circuits to equivalent synchronous circuits

were done by Ashiq. Equivalence checking for combinational circuits was done by Ashiq. An automated tool to

generate the initial equivalence proof for the sequential logic and proofs of sequential circuits was done by Son. For

the invariant check, all combinational circuits were done by Ashiq and the sequential circuits were done by

modifying Son’s equivalence models. The handshaking check algorithms for both combinational and sequential

NCL circuits were developed and implemented by Ashiq. The dual-rail invariant work was done independently by

Son.

14

3) Additional checks on original NCL circuit to ensure liveness.

The methodology can also be used to check the equivalence of two NCL circuits by applying the

conversion technique to both NCL circuits to obtain two corresponding synchronous circuits,

verifying these two synchronous circuits against each other, and performing the additional

liveness checks on both NCL circuits.

2.1. Equivalence Verification for Combinational NCL Circuits

In industry, asynchronous NCL circuits are typically synthesized from their synchronous

counterparts. Throughout the synthesis and optimization process, the synchronous specification

undergoes several transformations, resulting in major structural differences between the

implemented NCL circuit and its synchronous specification. For this kind of scenario,

equivalence checking is a widely used formal verification method that checks for logical and

functional equivalence between two different circuits.

NCL verification based on equivalence checking has proved to be a unified, fast, and

scalable approach that eliminates most of the limiting factors of previous verification works in

the field. The NCL equivalence verification method requires 3 steps, as described below and

detailed in the following sub sections:

1) The netlist of an NCL circuit to be verified is converted into a corresponding

Boolean/synchronous netlist, which is modeled in the SMT-Lib language using an

automated script that we developed. The converted netlist is then checked against its

corresponding Boolean/synchronous specification using an SMT solver to test for

functional equivalence.

2) Step 1 only checks the converted circuit’s signals corresponding to the original NCL

circuit’s rail1 signals, with their equivalent Boolean/synchronous specification external

15

outputs or register outputs; hence, the original NCL circuit’s rail0 signals must also be

ensured to be inverses of their respective rail1 signals in order to guarantee safety after

passing Step 1.

3) The NCL netlist is then automatically converted into a graph-structure, and information

related to the handshaking control is gathered by traversing the graph. This information is

utilized to analyze the handshaking correctness of the circuit in order to check for

deadlock.

2.1.1. Functional Equivalence Check

A 3×3 NCL multiplier, shown in Fig. 11, is used as an example to illustrate the

equivalence verification procedure for combinational NCL circuits. NCL multipliers use input-

incomplete NCL AND functions (denoted with an I inside the AND symbol), input-complete

NCL AND functions (denoted with a C inside the AND symbol), NCL Half-Adders (HA), and

NCL Full-Adders (FA), which all consist of a combination of NCL threshold gates, as shown in

Figs. 6, 7, 9, and 10, respectively. All signals in Fig. 11 are dual-rail; and all registers are reset-

to-NULL, denoted as REG_NULL. In addition to the I/O registers, the multiplier in Fig. 11

includes one intermediate register stage to increase throughput.

The netlist of the NCL 3×3 multiplier is shown in Fig. 12(a). The first two lines indicate

all primary inputs and primary outputs, respectively. Lines 3-44 correspond to the NCL C/L

threshold gates, where the first column is the type of gate, the second column lists the gate’s

inputs, in comma separated format starting with input A, and the last column is the gate’s output.

Lines 45-64 correspond to 1-bit NCL registers, where the first column is the reset type of the

register (i.e., _NULL, _DATA0, or _DATA1, for reset to NULL, DATA0, or DATA1,

respectively), the second column denotes the register’s level (i.e., the depth of the path through

16

registers without considering the C/L in-between. For the 3×3 multiplier example, there are 3

stages of registers, with levels 1, 2, and 3, starting from the input registers), the third and fourth

columns are the register’s rail0 and rail1 data inputs, respectively, the fifth and sixth columns are

the register’s Ki input and Ko output, respectively, and the seventh and eighth columns are the

register’s rail0 and rail1 data outputs, respectively. Lines 65-72 correspond to the C-elements

(i.e., THnn gates) used in the handshaking control circuitry, where the first column is Cn, with n

indicating the number of inputs to the C-element, the second column lists the inputs in comma

separated format, and the last column is the C-element’s output. For example, C4 on line 65 is a

4-input C-element.

Figure 9. NCL half-adder

Figure 10. NCL full-adder [5]

17

Figure 11. 3×3 NCL multiplier

18

Figure 12. (a) 3×3 NCL multiplier netlist, (b) Converted Boolean netlist

 (a) (b)

1. xi0_0, xi0_1, xi1_0, xi1_1, … , yi1_0, yi1_1,yi2_0, yi2_1
2. p0_0,p0_1, p1_0, p1_1,…,p5_0,p5_1
3. th22 x0_1,y0_1 m0_1
4. thand0 y0_0,x0_0,y0_1,x0_1 m0_0
5. th22 x0_1,y1_1 t0_1
6. th12 x0_0,y1_0 t0_0
7. th22 x0_1,y2_1 t4_1
8. th12 x0_0,y2_0 t4_0
9. th22 x1_1,y0_1 t1_1
10. th12 x1_0,y0_0 t1_0
11. th22 x1_1,y1_1 t2_1
12. thand0 y1_0,x1_0,y1_1,x1_1 t2_0
13. th22 x1_1,y2_1 t6_1
14. th12 x1_0,y2_0 t6_0
15. th22 x2_1,y0_1 t3_1
16. th12 x2_0,y0_0 t3_0
17. th22 x2_1,y1_1 t5_1
18. th12 x2_0,y1_0 t5_0
19. th22 x2_1,y2_1 t7_1
20. thand0 y2_0,x2_0,y2_1,x2_1 t7_0
21. th24comp t0_0,t1_0,t0_1,t1_1 m1_1
22. th24comp t0_0,t1_1,t1_0,t0_1 m1_0
23. th22 t0_1, t1_1 c1_1
24. th12 t0_0,t1_0 c1_0
25. th23 t3_0,t2_0,c1_0 c2_0
26. th23 t3_1,t2_1,c1_1 c2_1
27. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
28. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
29. th24comp s1_0,t4_0,s1_1,t4_1 m2_1
30. th24comp s1_0,t4_1,t4_0,s1_1 m2_0
31. th22 s1_1,t4_1 c3_1
32. th12 s1_0,t4_0 c3_0
33. th23 m5_0,m4_0,m3_0 c4_0
34. th23 m5_1,m4_1,m3_1 c4_1
35. th34w2 c4_0,m5_1,m4_1,m3_1 s2_1
36. th34w2 c4_1,m5_0,m4_0,m3_0 s2_0
37. th24comp s2_0,m6_0,s2_1,m6_1 z3_1
38. th24comp s2_0,m6_1,m6_0,s2_1 z3_0
39. th22 s2_1,m6_1 c5_1
40. th12 s2_0,m6_0 c5_0
41. th23 m7_0,c4_0,c5_0 z5_0
42. th23 m7_1,c4_1,c5_1 z5_1
43. th34w2 z5_0,m7_1,c4_1,c5_1 z4_1
44. th34w2 z5_1,m7_0,c4_0,c5_0 z4_0
45. Reg_NULL 1 xi0_0 xi0_1 KO3 ko1 x0_0 x0_1
46. Reg_NULL 1 xi1_0 xi1_1 KO3 ko2 x1_0 x1_1
47. Reg_NULL 1 xi2_0 xi2_1 KO3 ko3 x2_0 x2_1
48. Reg_NULL 1 yi0_0 yi0_1 KO3 ko4 y0_0 y0_1
49. Reg_NULL 1 yi1_0 yi1_1 KO3 ko5 y1_0 y1_1
50. Reg_NULL 1 yi2_0 yi2_1 KO3 ko6 y2_0 y2_1
51. Reg_NULL 2 m0_0 m0_1 ko15 ko7 z0_0 z0_1
52. Reg_NULL 2 m1_0 m1_1 ko16 ko8 z1_0 z1_1
53. Reg_NULL 2 m2_0 m2_1 ko17 ko9 z2_0 z2_1
54. Reg_NULL 2 c3_0 c3_1 KO4 ko10 m3_0 m3_1
55. Reg_NULL 2 c2_0 c2_1 KO4 ko11 m4_0 m4_1
56. Reg_NULL 2 t5_0 t5_1 KO4 ko12 m5_0 m5_1
57. Reg_NULL 2 t6_0 t6_1 KO4 ko13 m6_0 m6_1
58. Reg_NULL 2 t7_0 t7_1 KO5 ko14 m7_0 m7_1
59. Reg_NULL 3 z0_0 z0_1 Ki ko15 p0_0 p0_1
60. Reg_NULL 3 z1_0 z1_1 Ki ko16 p1_0 p1_1
61. Reg_NULL 3 z2_0 z2_1 Ki ko17 p2_0 p2_1
62. Reg_NULL 3 z3_0 z3_1 Ki ko18 p3_0 p3_1
63. Reg_NULL 3 z4_0 z4_1 Ki ko19 p4_0 p4_1
64. Reg_NULL 3 z5_0 z5_1 Ki ko20 p5_0 p5_1
65. C4 ko7,ko8,ko9,ko10 KO1
66. C4 ko11,ko12,ko13,ko14 KO2
67. C2 KO1,KO2 KO3
68. C3 ko18,ko19,ko20 KO4
69. C2 ko19,ko20 KO5
70. C3 ko4,ko5,ko6 KO6
71. C3 ko1,ko2,ko3 KO7
72. C2 KO7,KO6 KO

1. xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2. p0_0,p0_1, p1_0, p1_1,…,p5_0,p5_1
3. not xi0_1 xi0_0
4. not xi1_1 xi1_0
5. not xi2_1 xi2_0
6. not yi0_1 yi0_0
7. not yi1_1 yi1_0
8. not yi2_1 yi2_0
9. th22 xi0_1 ,yi0_1 p0_1
10. thand0 yi0_0,xi0_0,yi0_1,xi0_1 p0_0
11. th22 xi0_1,yi1_1 t0_1
12. th12 xi0_0,yi1_0 t0_0
13. th22 xi0_1,yi2_1 t4_1
14. th12 xi0_0,yi2_0 t4_0
15. th22 xi1_1,yi0_1 t1_1
16. th12 xi1_0,yi0_0 t1_0
17. th22 xi1_1,yi1_1 t2_1
18. thand0 yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19. th22 xi1_1,yi2_1 t6_1
20. th12 xi1_0,yi2_0 t6_0
21. th22 xi2_1,yi0_1 t3_1
22. th12 xi2_0,yi0_0 t3_0
23. th22 xi2_1,yi1_1 t5_1
24. th12 xi2_0,yi1_0 t5_0
25. th22 xi2_1,yi2_1 t7_1
26. thand0 yi2_0,xi2_0,yi2_1,xi2_1 t7_0
27. th24comp t0_0,t1_0,t0_1,t1_1 p1_1
28. th24comp t0_0,t1_1,t1_0,t0_1 p1_0
29. th22 t0_1, t1_1 c1_1
30. th12 t0_0,t1_0 c1_0
31. th23 t3_0,t2_0,c1_0 c2_0
32. th23 t3_1,t2_1,c1_1 c2_1
33. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
34. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
35. th24comp s1_0,t4_0,s1_1,t4_1 p2_1
36. th24comp s1_0,t4_1,t4_0,s1_1 p2_0
37. th22 s1_1,t4_1 c3_1
38. th12 s1_0,t4_0 c3_0
39. th23 t5_0,c2_0,c3_0 c4_0
40. th23 t5_1,c2_1,c3_1 c4_1
41. th34w2 c4_0,t5_1,c2_1,c3_1 s2_1
42. th34w2 c4_1,t5_0,c2_0,c3_0 s2_0
43. th24comp s2_0,t6_0,s2_1,t6_1 p3_1
44. th24comp s2_0,t6_1,t6_0,s2_1 p3_0
45. th22 s2_1,t6_1 c5_1
46. th12 s2_0,t6_0 c5_0
47. th23 t7_0,c4_0,c5_0 p5_0
48. th23 t7_1,c4_1,c5_1 p5_1
49. th34w2 p5_0,t7_1,c4_1,c5_1 p4_1
50. th34w2 p5_1,t7_0,c4_0,c5_0 p4_0

19

The NCL netlist is input to a conversion algorithm that converts it into an equivalent

Boolean netlist, as shown in Fig. 12(b) for the Fig. 11 example. Each NCL C/L gate is replaced

with its corresponding Boolean gate that has the same set function, but no hysteresis; each

internal dual-rail signal is already represented as two Boolean signals, the first for rail1 and the

second for rail0, so no changes are needed for these; and each primary dual-rail input is replaced

with that signal’s rail1, as this corresponds to the equivalent Boolean signal. The rail1 primary

inputs are then inverted to produce internal signals corresponding to what used to be the rail0

primary inputs, as these are utilized in the internal logic. The first two lines in the converted

netlist are the list of primary inputs and outputs, respectively, where the inputs correspond to the

original NCL netlist’s rail1 inputs, and the outputs include both rail0 and rail1 outputs. Lines 3-8

in the converted netlist are the added inverters used to produce the equivalent signals to the

original rail0 inputs, as these were removed in the conversion. The format of each gate is the

same as explained above for the NCL netlist. All Reg_NULL components are removed during

conversion by setting their data outputs equal to their data inputs, since these have no

corresponding functionality in the equivalent Boolean circuit. Purely C/L circuits will not

include Reg_DATA components, as these correspond to synchronous registers; these will be

discussed in Section 2: Equivalence Verification for Sequential NCL Circuits.

The converted Boolean netlist is automatically encoded in the Satisfiability Modulo

Theory Library (SMT_LIB) language [9], using a conversion tool we developed, which is then

input to an SMT solver to check for functional equivalence with the corresponding specification.

For the 3×3 multiplier example, the SMT solver checks for the following safety property:

FNCL_Bool_Equiv. (x2_1, x1_1, x0_1, y2_1, y1_1, y0_1) = MUL (x, y), where (x2_1, x1_1, x0_1)

and (y2_1, y1_1, y0_1) are the x and y rail1 inputs, respectively, starting with the MSB. We use

20

the Z3 SMT solver [10] to check for equivalence, but any combinational equivalence checker

could be used. Note that only the rail1 outputs need to be checked here, as these correspond to the

Boolean specification circuit outputs. The rail0 outputs will be utilized for the invariant check,

described next.

2.1.2. Invariant Check

Since only the rail1 outputs are utilized for the functional equivalence check, the rail0

outputs must also be checked to ensure safety. To address correctness of the rail0 outputs, an

additional SMT invariant proof obligation is required for the original NCL circuit, which states

that in any reachable NCL circuit state where the outputs are all DATA, every rail0 output must

be the inverse of its corresponding rail1 output.

One way to achieve this is to initialize all registers to NULL, all C/L gate outputs to 0,

and all register Ki inputs to rfd (i.e., logic 1), then make all the primary inputs DATA (i.e.,

represented in SMT as all combinations of valid DATA) and step the circuit. This will allow the

input DATA to flow through all stages of the circuit, generating all possible combinations of

valid DATA at the primary outputs. For each primary dual-rail output, the invariant is then

checked to ensure that the rail0 output is the inverse of its corresponding rail1 output. For a C/L

circuit with 𝑗 registers 𝑟1, … , 𝑟𝑗 , 𝑘 C/L threshold gates 𝑔1, … , 𝑔𝑘, 𝑞 dual-rail inputs 𝑖1, … , 𝑖𝑞, and

𝑙 dual-rail outputs 𝑜1 < 𝑅0, 𝑅1 >, … , 𝑜𝑙 < 𝑅0, 𝑅1 >, where 𝑅0 and 𝑅1 are the output’s rail0 and

rail1, respectively. The predicates for this invariant check are shown in Table 3. 𝑝0 indicates that

all registers in are reset-to-NULL. 𝑝1 and 𝑝2 state that all threshold gates and Ki register inputs

are initialized to logic 0 and 1, respectively. 𝑝3 indicates that all inputs are DATA. 𝑝4 represents

the symbolic step of the circuit with all threshold gates set to 0 and all inputs set to DATA, with

the new values of the threshold gates stored in (𝑔𝐵
1, … , 𝑔𝐵

𝑘). 𝑝5 states that the rails of each

21

dual-rail output are complements of each other. The proof obligation, PO0, indicates that if

DATA is allowed to flow from the primary inputs to the primary outputs, then for all possible

valid DATA inputs, each output’s rail0, 𝑅0, is always the inverse of its respective rail1 output,

𝑅1.

Table 3. Predicates for invariant check

𝒑𝒏 Predicate

𝑝0

⋀(𝑟𝐴
𝑛 = 0𝑏00)

𝑛=𝑗

𝑛=1

𝑝1

⋀(𝑔𝐴
𝑛 = 0)

𝑛=𝑘

𝑛=1

𝑝2

⋀(𝐾𝑖𝐴
𝑛 = 1)

𝑛=𝑗

𝑛=1

𝑝3

⋀((𝑖𝐴
𝑛 = 0𝑏01) ∨ (𝑖𝐴

𝑛 = 0𝑏10))

𝑛=𝑞

𝑛=1

𝑝4 (𝑔𝐵
1, … , 𝑔𝐵

𝑘) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴
1, … , 𝑖𝐴

𝑞)

𝑝5

⋀ 𝑜𝐵
𝑛 < 𝑅0 > ≠

𝑛=𝑙

𝑛=1

𝑜𝐵
𝑛 < 𝑅1 >

𝐏𝐎𝟎: { 𝑝0 ∧ 𝑝1 ∧ 𝑝2 ∧ 𝑝3 ∧ 𝑝4} → 𝑝5

An alternative, faster method to check invariants is to check each NCL circuit stage

independently. To do this, we developed an algorithm that reads the original NCL circuit netlist

and separately extracts each circuit stage. Then, for each extracted stage, we set all gate outputs

to 0, all stage inputs to DATA, and step the circuit, such that the stage’s outputs become all

possible combinations of valid DATA. Finally, the invariant is checked for each of the stage’s

dual-rail outputs to ensure that its rail0 is the inverse of its corresponding rail1. The proof

obligation for this second invariant check method is shown below as PO1 and its predicates are

listed in Table 4, where the extracted stage has 𝑗 dual-rail inputs 𝑖1, … , 𝑖𝑗, 𝑚 threshold gates

22

𝑔1, … , 𝑔𝑚, and 𝑘 dual-rail outputs 𝑜1 < 𝑅0, 𝑅1 >, … , 𝑜𝑘 < 𝑅0, 𝑅1 >, where 𝑅0 and 𝑅1, are the

output’s rail0 and rail1, respectively. Predicate 𝑝0 indicates that all stage inputs are valid DATA;

𝑝1 indicates that all NCL threshold gates in the stage are initialized to 0; 𝑝3 corresponds to a

NULL to DATA transition of the stage; and 𝑝3 states that the rails of each dual-rail output are

complements of each other. The predicates for PO1, states that after a NULL to DATA transition

of the stage with all possible valid DATA inputs, that each output’s rail0, 𝑅0, is always the

inverse of its respective rail1 output, 𝑅1.

Table 4. Predicates for revised invariant check

𝒑𝒏 Predicate

𝑝0

⋀((𝑖𝐴
𝑛 = 0𝑏01) ∨ (𝑖𝐴

𝑛 = 0𝑏10))

𝑛=𝑗

𝑛=1

𝑝1
⋀ (𝑔𝐴

𝑛 = 0)

𝑛=𝑚

𝑛=1

𝑝2 (𝑔𝐵
1, … , 𝑔𝐵

𝑚) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴
1, … , 𝑖𝐴

𝑗)

𝑝3

⋀ 𝑜𝐵
𝑛 < 𝑅0 > ≠

𝑛=𝑘

𝑛=1

𝑜𝐵
𝑛 < 𝑅1 >

𝐏𝐎𝟏: { 𝑝0 ∧ 𝑝1 ∧ 𝑝2} → 𝑝3

This second invariant check method is much faster than the first, since it breaks the

problem into a set of smaller invariant checks (i.e., one per stage), whereas the first method

checks the invariant for the entire circuit all at once. For example, method 2 is 38% faster for a

2-stage 10×10 multiplier and becomes even faster when the circuit includes additional stages.

Note that for both invariant check methods, the NCL gates are modeled in SMT as Boolean

functions (i.e., no hysteresis), since invariant checking only requires the NULL to DATA

transition, which only utilizes each gate’s set function, that is the same for the Boolean and NCL

state-holding gate implementations. This optimization reduces the invariant check time by

23

approximately half (e.g., 377 sec. vs. 192 sec. for a non-pipelined 10-bit × 10-bit unsigned

multiplier).

2.1.3. Combinational NCL Circuits Results

The methodology has been demonstrated on several multipliers and ISCAS-85 [11]

combinational circuit benchmarks, as shown in Table 5. umultN represents a non-pipelined N-

bit×N-bit unsigned multiplier. The NCL-to-Boolean netlist conversion time was negligible

compared to the safety and invariant checks performed by the Z3 SMT solver [10] on an Intel®

Core™ i7-4790 CPU with 32GB of RAM, running at 3.60 GHz. To test the methodology, we

injected several bugs. The umult10-Bn multipliers are circuits with n different kinds of bugs, and

the (B) in either the Functional Check, Invariant check, or Handshaking Check column denotes

which check detected the bug. The –B1 bug incorrectly swaps rails of a dual-rail signal. –B2

represents a faulty data connection. For example, the F output of NCL gatei should be connected

to the X input of NCL gatej; however, X is instead connected to the output of NCL gatek, which

results in a logical error. –B3 corresponds to an incorrect handshaking connection; and external

Ki and Ko bugs are represented by –B4. –B5 denotes a rail-duplication error, where rail0 and

rail1of a particular signal is the same wire. Z3 reported all functional and invariant bugs along

with a counter example; and our handshaking check tool identified and reported the location of

all inserted completion logic bugs.

2.2. Equivalence Verification for Sequential NCL Circuits

2.2.1. NCL to Synchronous Reduction

As described in Section 2.1, our equivalence verification methodology proved to be a fast

and scalable approach for C/L NCL circuits. Hence, in this section we extend that approach to

24

verify both safety and liveness of sequential NCL circuits, which is more complex due to

datapath feedback.

Table 5. Verification results of various C/L NCL circuits (in sec.)

Circuit Functional Check Invariant Check Total Time

ISCAS C17 0.01 0.01 0.02

umult2 0.02 0.01 0.03

umult3 0.04 0.02 0.06

umult6 0.32 0.33 0.65

umult8 10.62 6.79 17.41

umult10 683.49 192.39 875.88

ISCAS C432 1.03 1.06 2.09

umult10-B1 0.08 (B) 0.10 (B) 0.18

umult10-B2 0.06 (B) 192.39 192.45

umult10-B3 683.49 192.39 875.88

umult10-B4 683.49 0.08 (B) 683.57

umult10-B5 0.10 (B) 0.09 (B) 0.19

To describe our methodology, we will use an unsigned Multiply and Accumulate (MAC)

unit as an example circuit. Fig. 13(a) shows a synchronous MAC, where A’ = A+X×Y; and Fig.

13(b) shows the equivalent NCL version. The 4-phase QDI handshaking protocol utilized for

NCL circuits requires at least 2N+1 NCL registers in a feedback loop that contains N DATA

tokens, in order to avoid deadlock [5].

Hence, at least 3 NCL registers are needed in the MAC feedback loop to avoid deadlock,

as shown in Fig. 13(b). Although the synchronous and NCL MACs seem similar, they are

structurally very different. Synchronous registers are clocked, whereas alternating DATA/NULL

transitions in NCL are maintained via C-elements and a well-defined handshaking scheme. Ki

and Ko are the external request input and acknowledge output, respectively.

25

 (a)

Figure 13. Multiply and accumulate (MAC) circuit: (a) Synchronous (b) NCL

Fig. 14 shows the datapath diagram for a 4+2×2 NCL MAC with 2 C/L stages and 4

registers in the feedback loop (note that including a 4th register in the feedback loop increases

throughput compared to using the minimum required 3 registers, since this allows the DATA and

NULL wavefronts to flow more independently [5]). (Xi1, Xi0) and (Yi1, Yi0) are the two bits of

inputs Xi and Yi, respectively. The product of Xi and Yi is added with the 4-bit accumulator

output, Acci, where Acci3 and Acci0 are the MSB and LSB, respectively.

Combinational

Unit

X

Y

A

A

A
N-bit Register

Reset

Reset to 0

Clock

X

Y
NCL

Combinational
Unit

A’

A

COMP

Ko

Ki

A

NCL Register NCL Register NCL Register

Reset to NULL Reset to DATA0Reset to NULL

COMP

Reset

Ko KiKoKi KiKo

(b)

26

Figure 14. 4 + 2 × 2 NCL MAC datapath

All signals shown in Fig. 14 are dual-rail signals. HA and FA are the NCL half-adder and

full-adder components, shown in Figs. 9 and 10, respectively; and FAs is a full-adder component

without a carry output; hence, it utilizes two 2-input XOR functions, each comprised of two

TH24comp gates (same as the HA sum output shown in Fig. 9, to compute its sum output. The

highlighted components in Fig. 14 are the NCL registers.

Fig. 15(a) shows the netlist of the NCL 4+2×2 MAC, following the same structure as

described in Section 2. The first 2 lines are the circuit inputs and outputs, respectively; lines 3-38

HA

HAFA HA

HA

FA
FAs

x1

acc0
t0

t2

t3

t5c1

t4
t6

c2
t7c3

t8

c5

t1

y1 x0y1 x1 y0 y0x0

acc1
acc2

t9t10

x0x1y0y1

REG_NULL
(4)

REG_NULL
(3)

REG_NULL
(2)

REG_NULL
(1)

acc0acc1acc2acc3

REG_NULL
(8)

REG_NULL
(7)

REG_NULL
(6)

REG_NULL
(5)

REG_NULL
(19)

REG_NULL
(18)

REG_NULL
(17)

REG_NULL
(16)

REG_DATA0
(23)

REG_DATA0
(22)

REG_DATA0
(21)

REG_DATA0
(20)

p
0p
1

p
2p
3

acci0acci1acci2acci3

acci0acci1acci2acci3 xi0xi1yi0yi1

REG_NULL
(12)

REG_NULL
(11)

REG_NULL
(10)

REG_NULL
(9)

REG_NULL
(13)

REG_NULL
(14)

r0r1r2r3r4r5

C
/L1

C
/L2

REG 2

REG 3

REG 4

CC I I

REG_NULL
(15)

r6

REG 1

27

are the NCL threshold gates; lines 39-61 are the NCL registers; and lines 62-69 are C-elements

used in the handshaking network.

2.2.1.1. Safety

Safety verification requires two steps. In the first step, we take a sequential NCL circuit

and convert it to an equivalent synchronous circuit. We utilize the theory of WEB-refinement [4]

to compare the synchronous netlist generated from the NCL circuit with the original synchronous

specification, as the notion of correctness. The major advantage of applying WEB-refinement to

the generated equivalent synchronous circuit instead of the actual NCL circuit is that a

synchronous circuit is much more deterministic compared to its NCL equivalent, which makes

the verification time much faster. The generated synchronous circuit, specification synchronous

circuit, and the WEB-refinement property are automatically encoded in the SMT-LIB language.

The resulting equivalence property is then checked using an SMT solver. In the second step, we

check the invariant for each C/L stage, the same as previously discussed in Section 2.1.

The converted netlist (NCL-SYNC) is depicted in Fig. 15(b). The conversion algorithm

for sequential NCL circuits is slightly different than for C/L NCL circuits, described in Section

2.1, since the sequential NCL circuit contains reset-to-DATA registers, which are replaced with a

2-bit resettable synchronous register, 1 bit for each rail of the corresponding NCL dual-rail

register. Like for C/L NCL circuits, all reset-to-NULL registers, handshaking signals, and C-

elements are eliminated; and all C/L NCL gates are replaced with their corresponding relaxed

(i.e., Boolean) gate.

28

 (a) (b)

Figure 15. (a) 4 + 2 × 2 NCL MAC netlist, (b) Converted synchronous equivalent netlist

1. xi0_0, xi0_1, xi1_0, xi1_1, yi0_0, yi0_1, yi1_0, yi1_1
2. acci0_0,acci0_1,acci1_0,acci1_1,…,acci3_0,acci3_1
3. th22 x0_1,y0_1 t0_1
4. thand0 y0_0,x0_0,y0_1,x0_1 t0_0
5. th12 x1_0,y0_0 t1_0
6. th22 x1_1,y0_1 t1_1
7. th12 x0_0,y1_0 t2_0
8. th22 x0_1,y1_1 t2_1
9. th12 x1_0,y1_0 t3_0
10. th22 x1_1,y1_1 t3_1
11. th24comp t2_0,t1_1,t1_0,t2_1 t4_0
12. th24comp t2_0,t1_0,t2_1,t1_1 t4_1
13. th12 t2_0,t1_0 c0_0
14. th22 t1_1,t2_1 c0_1
15. th24comp acc0_0,t0_1,t0_0,acc0_1 t5_0
16. th24comp acc0_0,t0_0,acc0_1,t0_1 t5_1
17. th12 acc0_0,t0_0 c1_0
18. th22 t0_1,acc0_1 c1_1
19. th24comp acc1_0,t4_1,t4_0,acc1_1 t6_0
20. th24comp acc1_0,t4_0,acc1_1,t4_1 t6_1
21. th12 acc1_0,t4_0 c2_0
22. th22 t4_1,acc1_1 c2_1
23. th23 t3_0,acc2_0,c0_0 c3_0
24. th23 t3_1,acc2_1,c0_1 c3_1
25. th34w2 c3_1,t3_0,acc2_0,c0_0 t7_0
26. th34w2 c3_0,t3_1,acc2_1,c0_1 t7_1
27. th24comp r1_0,r2_1,r2_0,r1_1 t8_0
28. th24comp r1_0,r2_0,r1_1,r2_1 t8_1
29. th12 r1_0,r2_0 c4_0
30. th22 r2_1,r1_1 c4_1
31. th23 r4_0,r3_0,c4_0 c5_0
32. th23 r4_1,r3_1,c4_1 c5_1
33. th34w2 c5_1,r4_0,r3_0,c4_0 t9_0
34. th34w2 c5_0,r4_1,r3_1,c4_1 t9_1
35. th24comp r5_0,r6_1,r6_0,r5_1 c6_0
36. th24comp r5_0,r6_0,r5_1,r6_1 c6_1
37. th24comp c5_0,c6_1,c6_0,c5_1 t10_0
38. th24comp c5_0,c6_0,c5_1,c6_1 t10_1
39. Reg_NULL 1 xi0_0,xi0_1 KO2 ko1 x0_0,x0_1
40. Reg_NULL 1 xi1_0,xi1_1 KO2 ko2 x1_0,x1_1
41. Reg_NULL 1 yi0_0 yi0_1 KO2 ko3 y0_0 y0_1
42. Reg_NULL 1 yi1_0 yi1_1 KO2 ko4 y1_0 y1_1
43. Reg_NULL 1 acci0_0 acci0_1 KO2 ko5 acc0_0 acc0_1
44. Reg_NULL 1 acci1_0 acci1_1 KO2 ko6 acc1_0 acc1_1
45. Reg_NULL 1 acci2_0 acci2_1 KO2 ko7 acc2_0 acc2_1
46. Reg_NULL 1 acci3_0 acci3_1 KO2 ko8 acc3_0 acc3_1
47. Reg_NULL 2 t5_0 t5_1 ko16 ko9 r0_0 r0_1
48. Reg_NULL 2 c1_0 c1_1 KO3 ko10 r1_0 r1_1
49. Reg_NULL 2 t6_0 t6_1 KO3 ko11 r2_0 r2_1
50. Reg_NULL 2 c2_0 c2_1 KO3 ko12 r3_0 r3_1
51. Reg_NULL 2 t7_0 t7_1 KO3 ko13 r4_0 r4_1
52. Reg_NULL 2 c3_0 c3_1 KO3 ko14 r5_0 r5_1
53. Reg_NULL 2 acc3_0 acc3_1 KO3 ko15 r6_0 r6_1
54. Reg_NULL 3 r0_0 r0_1 ko20 ko16 p0_0 p0_1
55. Reg_NULL 3 t8_0 t8_1 ko21 ko17 p1_0 p1_1
56. Reg_NULL 3 t9_0 t9_1 ko22 ko18 p2_0 p2_1
57. Reg_NULL 3 t10_0 t10_1 ko23 ko19 p3_0 p3_1
58. Reg_DATA0 4 p0_0 p0_1 KO4 ko20 acci0_0 acci0_1
59. Reg_DATA0 4 p1_0 p1_1 KO5 ko21 acci1_0 acci1_1
60. Reg_DATA0 4 p2_0 p2_1 KO6 ko22 acci2_0 acci2_1
61. Reg_DATA0 4 p3_0 p3_1 KO7 ko23 acci3_0 acci3_1
62. C4 ko9,ko10,ko11,ko12 KO1
63. C4 ko13,ko14,ko15,KO1 KO2
64. C3 ko17,ko18,ko19 KO3
65. C2 Ki,ko5 KO4
66. C2 Ki,ko6 KO5
67. C2 Ki,ko7 KO6
68. C2 Ki,ko8 KO7
69. C4 ko1,ko2,ko3,ko4 KO

1. xi0_1, xi1_1, yi0_1, yi1_1
2.acci0_0,acci0_1,acci1_0,acci1_1,…,acci3_0,acci3_1
3. not xi0_1 xi0_0
4. not yi0_1 yi0_0
5. not xi1_1 xi1_0
6. not yi1_1 yi1_0
7. th12 xi0_0,yi0_0 t0_0
8. th22 xi0_1,yi0_1 t0_1
9. th12 xi1_0,yi0_0 t1_0
10. th22 xi1_1,yi0_1 t1_1
11. th12 xi0_0,yi1_0 t2_0
12. th22 xi0_1,yi1_1 t2_1
13. th12 x1_0,y1_0 t3_0
14. th22 x1_1,y1_1 t3_1
15. th24comp t2_0,t1_1,t1_0,t2_1 t4_0
16. th24comp t2_0,t1_0,t2_1,t1_1 t4_1
17. th12 t2_0,t1_0 c0_0
18. th22 t1_1,t2_1 c0_1
19. th24comp acci0_0,t0_1,t0_0,acci0_1 t5_0
20. th24comp acci0_0,t0_0,acci0_1,t0_1 t5_1
21. th12 acci0_0,t0_0 c1_0
22. th22 t0_1,acci0_1 c1_1
23. th24comp acci1_0,t4_1,t4_0,acci1_1 t6_0
24. th24comp acci1_0,t4_0,acci1_1,t4_1 t6_1
25. th12 acci1_0,t4_0 c2_0
26. th22 t4_1,acci1_1 c2_1
27. th23 t3_0,acci2_0,c0_0 c3_0
28. th23 t3_1,acci2_1,c0_1 c3_1
29. th34w2 c3_1,t3_0,acci2_0,c0_0 t7_0
30. th34w2 c3_0,t3_1,acci2_1,c0_1 t7_1
31. th24comp c1_0,t6_1,t6_0,c1_1 t8_0
32. th24comp c1_0,t6_0,c1_1,t6_1 t8_1
33. th12 c1_0,t6_0 c4_0
34. th22 t6_1,c1_1 c4_1
35. th23 t7_0,c2_0,c4_0 c5_0
36. th23 t7_1,c2_1,c4_1 c5_1
37. th34w2 c5_1,t7_0,c2_0,c4_0 t9_0
38. th34w2 c5_0,t7_1,c2_1,c4_1 t9_1
39. th24comp c3_0,acci3_1,acci3_0,c3_1 c6_0
40. th24comp c3_0,acci3_0,c3_1,acci3_1 c6_1
41. th24comp c5_0,c6_1,c6_0,c5_1 t10_0
42. th24comp c5_0,c6_0,c5_1,c6_1 t10_1
43. Reg_0 t5_0 t5_1 acci0_0 acci0_1
44. Reg_0 t8_0 t8_1 acci1_0 acci1_1
45. Reg_0 t9_0 t9_1 acci2_0 acci2_1
46. Reg_0 t10_0 t10_1 acci3_0 acci3_1

29

The NCL-SYNC netlist must next be checked against the synchronous specification

(SPEC-SYNC) netlist for equivalence. When verifying C/L NCL circuits, the circuit

functionality could be specified as a Boolean function. However, since sequential circuits

involve states and transitions, we use transition systems as the formal model to capture the

behaviors of both the NCL-SYNC netlist as well as the SPEC-SYNC netlist. The theory of WEB

refinement [5] defines what it means for an implementation transition system to be functionally

equivalent to a specification transition system. Therefore, we use the theory of WEB refinement

for checking equivalence for sequential circuits.

The theory of WEB refinement allows for stutter between the implementation transition

system and the specification transition system. What this means is that multiple but finite

transitions of the implementation can match to a single specification transition. Rank functions

(functions that map circuit states to natural numbers) are used to distinguish finite stutter from

deadlock (infinite stutter). Another characteristic of WEB refinement is the use of refinement

maps, which are functions that map implementation states to specification states. Refinement

maps allow for the implementation and specification to be specified at significantly different

abstraction levels. However, since the rail1 registers of NCL-SYNC and the registers of SPEC-

SYNC have a one-to-one mapping, there is no stutter between these two transition systems, and

the refinement is simply a projection of the rail1 registers of the implementation state to the

registers of the specification state. Therefore, the correctness proof obligations required for

verifying WEB refinement can be reduced to the proof obligation depicted in Fig. 16, where s is

a state of NCL-SYNC; u is a SPEC-SYNC state obtained by projecting the values of the rail1

registers from state s; StepSYNC_NCL and StepSYNC_SPEC are the functions that correspond to

a single step of the NCL-SYNC circuit and the SPEC-SYNC circuit, respectively; w is the state

30

obtained by stepping NCL-SYNC from state s; and v is the state obtained by stepping SPEC-

SYNC from state u. The proof obligation states that the two circuits are functionally equivalent if

for every state s of NCL-SYNC, the corresponding projection of values from the rail1 registers of

the w state are equivalent to the values of the corresponding registers in the v state. This proof

obligation can be encoded in the SMT-LIB language, as shown below in PO2, and checked using

an SMT solver.

𝑷𝑶𝟐: {∀𝑠 ∷ 𝑠 ∊ 𝑆𝑆𝑦𝑛𝑐𝑁𝐶𝐿

∷ [𝑢 = 𝑅𝑒𝑔𝑃𝑟𝑜𝑗(𝑠) ∧ 𝑤 = 𝑆𝑡𝑒𝑝𝑆𝑦𝑛𝑐𝑁𝐶𝐿(𝑠) ∧ 𝑣

= 𝑆𝑡𝑒𝑝𝑆𝑦𝑛𝑐𝑆𝑃𝐸𝐶(𝑢)] 𝑅𝑒𝑔𝑃𝑟𝑜𝑗(𝑤) = 𝑣}

After verifying function equivalence, the rail0 outputs of each C/L stage must also be

checked to ensure safety, as detailed in Section 2.2.1.1. Note that for sequential circuits, which

include datapath feedback, the first invariant check method that checks the entire circuit

simultaneously will not work; hence, the second, much faster method that performs the invariant

check independently for each stage is utilized.

Figure 16. Depiction of proof obligation to check equivalence of NCL_SYNC and SPEC_SYNC

netlists

s

w

u

v

StepSYNC_NCL StepSYNC_SPEC

Implementation Specification

31

2.2.1.2. Liveness

Fig. 17 shows the handshaking connections for the 4+2×2 NCL MAC. Full-word

completion is used by the input register, Reg 1, to generate a single Ko. Full-word completion is

also utilized between Reg 1 and Reg 2, since bit-wise completion would have the same delay and

require more area. Partial bit-wise completion is utilized between Reg 2 and Reg 3, since full bit-

wise completion would have the same delay and require more area. Bit-wise completion is

utilized between Reg 3 and Reg 4, and for the output register, Reg 4. The handshaking check for

sequential NCL circuits is essentially the same as that for C/L NCL circuits, described in Section

2. The only addition is calculating a feedback register’s level, which should be assigned the same

level as other registers that share its Ki input signal, or 1 level more than its previous register, if

its Ki input signal is not shared with another register already assigned a level. For the MAC

example in Fig. 17, feedback registers 5-8 would be assigned level 1, since they share their Ki

input with the other level 1 registers, 1-4; and feedback register 15 would be assigned level 2,

since it shares its Ki input with other level 2 registers, 9-14. Fig. 18 shows the reg_fanin and

ko_fanout lists for each register in the 4+2×2 NCL MAC example.

32

REG (8)

ko8

ki

REG (7)

ko7

ki

REG (6)

ko6

ki

REG (5)

ko5

ki

REG (4)

ko4

ki

REG (3)

ko3

ki

REG (2)

ko2

ki

REG (1)

ko1

ki

REG (19)

ko19

ki

REG (17)

ko17

ki

REG (18)

ko18

ki

REG (16)

ko16

ki

REG (20)

ko20

ki

REG (21)

ko21

ki

REG (22)

ko22

ki

REG (23)

ko23

ki

C C C C

Ki

C

KO

KO4KO5KO6KO7

REG (12)

ko12

ki

REG (10)

ko10

ki
REG (11)

ko11

ki

REG (9)

ko9

ki

C

REG (13)

ko13

ki

REG (14)

ko14

ki

C

KO1

KO2

C

KO3

REG (15)

ko15

ki

REG 1

REG 2

REG 3

REG 4

Figure 17. Handshaking connections for the 4+2×2 NCL MAC

33

After verifying handshaking correctness, each stage’s C/L must also be checked for

input-completeness and observability, utilizing the methods detailed in Sections 15.3.4 and

15.3.5, respectively, to guarantee liveness.

Figure 18. reg_fanin and ko_fanout lists for the 4+2×2 NCL MAC

2.2.1.3. Sequential NCL Circuit Results

The verification results for sequential NCL circuits, including functional equivalence and

handshaking checks, are shown in Table 6. Since the invariant, input-completeness, and

observability checks are exactly the same for combinational and sequential NCL circuits, these

results are not included in Table 6. Test circuits include multiple MAC units and one ISCAS-89

benchmark, s27 [12]. The MAC units are represented as A+M×N, where A, M, and N represent

the length of the accumulator, multiplicand, and multiplier, respectively. The same types of bugs

were tested for the MACs as tested for the multipliers, and the same machine was used to

1: reg_fanin: 0 ko_fanout: 0

2: reg_fanin: 0 ko_fanout: 0

3: reg_fanin: 0 ko_fanout: 0

4: reg_fanin: 0 ko_fanout: 0

5: reg_fanin: [20] ko_fanout: [20]

6: reg_fanin: [21] ko_fanout: [21]

7: reg_fanin: [22] ko_fanout: [22]

8: reg_fanin: [23] ko_fanout: [23]

9: reg_fanin: [1, 3, 5] ko_fanout: [1,2,3,4,5,6,7,8]

10: reg_fanin: [1, 3, 5] ko_fanout: [1,2,3,4,5,6,7,8]

11: reg_fanin: [1, 2, 3, 4, 6] ko_fanout: [1,2,3,4,5,6,7,8]

12: reg_fanin: [1, 2, 3, 4, 6] ko_fanout: [1,2,3,4,5,6,7,8]

13: reg_fanin: [1, 2, 3, 4, 7] ko_fanout: [1,2,3,4,5,6,7,8]

14: reg_fanin: [1, 2, 3, 4, 7] ko_fanout: [1,2,3,4,5,6,7,8]

15: reg_fanin: [8] ko_fanout: [1,2,3,4,5,6,7,8]

16: reg_fanin: [9] ko_fanout: [9]

17: reg_fanin: [10, 11] ko_fanout: [10,11, 12, 13, 14,15]

18: reg_fanin: [10, 11, 12, 13] ko_fanout: [10,11, 12, 13, 14,15]

19: reg_fanin: [10,11, 12, 13,14,15] ko_fanout: [10,11, 12, 13, 14,15]

20: reg_fanin: [16] ko_fanout: [16]

21: reg_fanin: [17] ko_fanout: [17]

22: reg_fanin: [18] ko_fanout: [18]

23: reg_fanin: [19] ko_fanout: [19]

34

perform the sequential circuit verification, both as described at the end of Section 2.2. Z3

reported all functional bugs along with a counter example; and our handshaking check tool

identified and reported the location of all inserted completion logic bugs.

Table 6. Verification results for sequential NCL circuits (in sec.)

Circuit Functional Check Handshaking Check Total Time

ISCAS s27 0.01 0.0019 0.0119

4+2×2MAC 0.01 0.0045 0.0145

8+4×4MAC 0.05 0.79 0.84

12+6×6MAC 0.77 2.33 3.10

16+8×8MAC 47.55 21.74 69.18

20+10×10MAC 2643.99 163.65 2807.64

20+10×10MAC-B1 0.11 (B) 163.65 163.76

20+10×10MAC-B2 0.13 (B) 163.65 163.78

20+10×10MAC-B3 2643.99 169.84 (B) 2813.83

20+10×10MAC-B4 2643.99 159.33 (B) 2803.32

20+10×10MAC-B5 0.20 (B) 163.65 163.85

2.2.2. Exploiting Dual-Rail Invariants for Equivalence Verification

In the previous sections, NCL equivalence verification is broken down into two basic

steps. In the first step, an NCL netlist is converted into its Boolean/synchronous equivalent

netlist. The conversion from an NCL netlist to its Boolean/synchronous equivalent netlist is done

by first converting all NCL combinational logic (C/L) gates with their relaxed counterparts,

which have the same function but without hysteresis. Next, each primary circuit input is

transformed from a dual-rail representation to a single bit that represents the rail1 input. The rail0

value is generated by negating the rail1 input, which is then used internally. Furthermore, all

Reset-to-NULL register components (denoted as Reg_NULL herein) were removed, and their

inputs connected directly to their outputs. All Reset-to-DATA register components (denoted as

Reg_DATA herein) were replaced with corresponding 2-bit resettable synchronous registers to

capture both the rail1 and rail0 values. In the second step, the converted Boolean/synchronous

35

implementation netlist is then encoded in SMT-LIB along with its corresponding synchronous

specification, and the two are verified to be equivalent using the theory of Well-Founded

Equivalence Bisimulation (WEB) refinement [5]. An SMT solver was used to check the

equivalence property. These steps proved very beneficial because the model of the converted

Boolean/synchronous circuit is much more deterministic in regard to when signals transition,

resulting in much faster verification times. This section proposes the Dual-Rail Register

Invariant technique that modifies the conversion technique described above for the register

components.

2.2.2.1. Safety

The 3×3 unsigned NCL multiplier that implements the function p(5:0) = xi(2:0) × yi(2:0),

as shown in Fig. 11 without its completion logic, will be used as the example circuit to show the

circuit transformation done in the previous work and contrast that to the proposed Dual-Rail

Register Invariant. It is comprised of several components including dual-rail inputs and outputs,

input-complete NCL AND functions (represented with a C inside the AND symbol), input-

incomplete NCL AND functions (represented with an I inside the AND symbol), NCL Half-

Adders (HA) and Full-Adders (FA), and dual-rail Reset-to-NULL registers (REG_NULL).

To accompany the circuit in Fig. 11, its netlist, and the netlist of the previous work’s

circuit transformation, are shown in Fig. 19(a) and 19(b), respectively. In Fig. 19(a), the first two

lines indicate all primary inputs and primary outputs, respectively. Lines 3-44 correspond to the

NCL C/L threshold gates, where the first column is the type of gate, the second column lists the

gate’s inputs, in comma separated format starting with input A, and the last column is the gate’s

output. Lines 45-64 correspond to 1-bit NCL registers, where the first column is the reset type of

the register, the second column denotes the register’s level (i.e., the depth of the path through

36

registers without considering the C/L in-between; for the 3×3 multiplier example, there are 3

stages of registers, with levels 1, 2, and 3, starting from the input registers), the third and fourth

columns are the register’s rail0 and rail1 data inputs, respectively, the fifth and sixth columns are

the register’s Ki input and Ko output, respectively, and the seventh and eighth columns are the

register’s rail0 and rail1 data outputs, respectively. Lines 65-72 correspond to the C-elements

(i.e., THnn gates) used in the handshaking control circuitry, where the first column is Cn, with n

indicating the number of inputs to the C-element, the second column lists the inputs in comma

separated format, and the last column is the C-element’s output.

2.2.2.2. Previous Circuit Transformation

For Fig. 19(b), each NCL gate from Fig. 19(a) is replaced with its corresponding Boolean

gate without hysteresis, and the dual-rail primary inputs are replaced by their respective rail1

input, which are then complemented by inserting invertors (lines 3-8) to generate their

corresponding rail0 signals. The Reg_NULL components are removed by connecting their inputs

to their outputs; and the handshaking C-elements are also removed.

2.2.2.3. Proposed Dual-Rail Register Invariant

Instead of removing the Reg_NULL components by connecting their inputs to their

outputs, the proposed Dual-Rail Register Invariant removes the Reg_NULL components by

connecting their rail1 inputs to their corresponding rail1 outputs, and then generates each rail0

output by inverting its corresponding rail1 input. This transformation is possible due to the

inherent NCL property where the rail1 and rail0 values are inverses of each other in the DATA

phase. Note that both this inverse signal property and correctness of the NULL phase are

checked as part of the NCL formal verification method presented in [13]. The proposed Dual-

Rail Register Invariant allows the SMT solver to trim the circuit by removing all logic solely

37

used to generate the Reg_NULL rail0 inputs, replacing this instead with a single inverter, as

shown in Fig. 19(c).

2.2.2.4. Proof Obligation

While the circuit transformation is different for the two above techniques, the proof

obligation remains the same. To describe the circuits without loss of generality, assume an NCL

circuit has p dual-rail inputs and q dual-rail outputs, while its Boolean/synchronous specification

has p and q Boolean inputs and outputs, respectively. Let i1, …, ip represent the Boolean circuit

inputs, ONCL
1, …, ONCL

q be the dual-rail output values after symbolically stepping the converted

NCL circuit using inputs i1, …, ip, and Osync
1, …, Osync

q be the Boolean output values after

symbolically stepping the Boolean/synchronous specification using inputs i1, …, ip. The

predicates in Table 7 are used to construct the Equivalence Proof Obligation as follows:

Table 7. Predicates for equivalence check

𝒑𝒏 Predicate

𝑝0 (𝑂𝑁𝐶𝐿
1, … , 𝑂𝑁𝐶𝐿

𝑞) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖1, … , 𝑖𝑝)

𝑝1 (𝑂𝑆𝑌𝑁𝐶
1, … , 𝑂𝑆𝑌𝑁𝐶

𝑞) = 𝑆𝑦𝑛𝑐𝑆𝑡𝑒𝑝(𝑖1, … , 𝑖𝑝)

𝑝2

⋀(𝑟𝑎𝑖𝑙1(𝑜𝑁𝐶𝐿
𝑛) = 𝑜𝑠𝑦𝑛𝑐

𝑛)

𝑛=𝑞

𝑛=1

𝑷𝑶𝟑: { 𝑝0 ∧ 𝑝1 } → 𝑝2.

𝑝0 represents the symbolic step of the converted NCL circuit and 𝑝1 the symbolic step of

the Boolean/synchronous specification, both using inputs i1, …, ip, with the values of the circuit

outputs recorded in ONCL
1, …, ONCL

q and Osync
1, …, Osync

q, respectively. 𝑝2 indicates that the rail1

symbolic outputs of the converted NCL circuit are equal to those of the Boolean/synchronous

specification.

38

For comparison, the same unsigned NCL Multiply and Accumulate (MAC) circuits as in

[13], with increasing operand sizes to show scalability, were used. These implement the function

acci = acci + xi × yi, as shown in Fig. 14 for a 4+2×2 NCL MAC, without its completion logic.

As shown in the Fig. 14 example, each MAC’s C/L is partitioned into 2 stages by inserting a

Reset-to-NULL register between the last carry-save adder and the final ripple-carry adder; and

the feedback loop contains 4 registers for increased performance. Note that the proposed Dual-

Rail Register Invariant can also be applied to Reset-to-DATA registers, resulting in their

replacement with a single synchronous register, plus an inverter to generate the rail0 output,

instead of the previous conversion technique that required 2 synchronous registers, as described

in Section 2.

Table 8. Dual-rail refinement results

The Z3 SMT solver [10] was used to check for equivalence, but any combinational

equivalence checker could be used. Table 8 lists the verification results, where the first column

indicates the MAC size, and the second column is speedup (i.e., equivalence verification time

using the method described in [13] divided by equivalence verification time using the proposed

Dual-Rail Register Invariant). Timeout (TO) denotes that the verification time exceeded one day.

The last 2 rows in Table 8 are for MACs with an additional Reset-to-NULL register inserted

between the partial product generation circuitry (i.e., AND functions) and the first carry-save

adder.

Circuit Speedup

8+4×4 MAC 1.14
12+6×6 MAC 1.17
16+8×8 MAC 2.75

20+10×10 MAC 1.31
22+11×11 MAC 3.63
24+12×12 MAC TO/67,599 sec

16+8×8 MAC-5 Reg 3.44
20+10×10 MAC-5 Reg 1.46

39

The results show speedups ranging from 14% - 263% for the various 4-register MACS,

and an additional speedup of 25% and 11% when adding an extra 5th register stage in the

16+8×8 and 20+10×10 MACs, respectively. Note that the 24+12×12 MAC timed out using the

previous approach in [13] but was successfully verified in less than 1 day utilizing the proposed

Dual-Rail Register Invariant.

2.3. Equivalence Verification Conclusion

Section 2 presents a novel methodology for formally verifying the correctness (both

safety and liveness) of combinational and sequential NCL circuits. The approach includes

methods for ensuring handshaking correctness, and functional correctness of both rail1 and rail0

outputs. The presented methodology is applicable to both NCL circuits designed using only NCL

gates with hysteresis, as well as relaxed NCL circuits, where NCL gates with hysteresis are

replaced with their Boolean equivalent gate when hysteresis is not required. Section proposes the

Dual-Rail Register Invariant technique to speedup equivalence checking of NCL circuit

implementations with respect to their Boolean/synchronous specifications. It has been shown to

significantly reduce equivalence checking times, and to further speedup equivalence checking

when additional pipeline stages are added to the NCL circuit, as this allows for more usage of the

proposed technique.

The proposed Dual-Rail Register Invariant technique is also applicable to equivalence

verification of Sleep Convention Logic (SCL) circuits [14] with respect to their

boolean/synchronous specifications, as the circuit transformation and safety verification are the

same for SCL and NCL, only liveness verification differs [15].

40

1. xi0_0, xi0_1, xi1_0, xi1_1, , yi1_0, yi1_1,yi2_0, yi2_1
2. p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3. th22 x0_1,y0_1 m0_1
4. thand0 y0_0,x0_0,y0_1,x0_1 m0_0
5. th22 x0_1,y1_1 t0_1
6. th12 x0_0,y1_0 t0_0
7. th22 x0_1,y2_1 t4_1
8. th12 x0_0,y2_0 t4_0
9. th22 x1_1,y0_1 t1_1
10. th12 x1_0,y0_0 t1_0
11. th22 x1_1,y1_1 t2_1
12. thand0 y1_0,x1_0,y1_1,x1_1 t2_0
13. th22 x1_1,y2_1 t6_1
14. th12 x1_0,y2_0 t6_0
15. th22 x2_1,y0_1 t3_1
16. th12 x2_0,y0_0 t3_0
17. th22 x2_1,y1_1 t5_1
18. th12 x2_0,y1_0 t5_0
19. th22 x2_1,y2_1 t7_1
20. thand0 y2_0,x2_0,y2_1,x2_1 t7_0
21. th24comp t0_0,t1_0,t0_1,t1_1 m1_1
22. th24comp t0_0,t1_1,t1_0,t0_1 m1_0
23. th22 t0_1, t1_1 c1_1
24. th12 t0_0,t1_0 c1_0
25. th23 t3_0,t2_0,c1_0 c2_0
26. th23 t3_1,t2_1,c1_1 c2_1
27. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
28. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
29. th24comp s1_0,t4_0,s1_1,t4_1 m2_1
30. th24comp s1_0,t4_1,t4_0,s1_1 m2_0
31. th22 s1_1,t4_1 c3_1
32. th12 s1_0,t4_0 c3_0
33. th23 m5_0,m4_0,m3_0 c4_0
34. th23 m5_1,m4_1,m3_1 c4_1
35. th34w2 c4_0,m5_1,m4_1,m3_1 s2_1
36. th34w2 c4_1,m5_0,m4_0,m3_0 s2_0
37. th24comp s2_0,m6_0,s2_1,m6_1 z3_1
38. th24comp s2_0,m6_1,m6_0,s2_1 z3_0
39. th22 s2_1,m6_1 c5_1
40. th12 s2_0,m6_0 c5_0
41. th23 m7_0,c4_0,c5_0 z5_0
42. th23 m7_1,c4_1,c5_1 z5_1
43. th34w2 z5_0,m7_1,c4_1,c5_1 z4_1
44. th34w2 z5_1,m7_0,c4_0,c5_0 z4_0
45. Reg_NULL 1 xi0_0 xi0_1 KO3 ko1 x0_0 x0_1
46. Reg_NULL 1 xi1_0 xi1_1 KO3 ko2 x1_0 x1_1
47. Reg_NULL 1 xi2_0 xi2_1 KO3 ko3 x2_0 x2_1
48. Reg_NULL 1 yi0_0 yi0_1 KO3 ko4 y0_0 y0_1
49. Reg_NULL 1 yi1_0 yi1_1 KO3 ko5 y1_0 y1_1
50. Reg_NULL 1 yi2_0 yi2_1 KO3 ko6 y2_0 y2_1
51. Reg_NULL 2 m0_0 m0_1 ko15 ko7 z0_0 z0_1
52. Reg_NULL 2 m1_0 m1_1 ko16 ko8 z1_0 z1_1
53. Reg_NULL 2 m2_0 m2_1 ko17 ko9 z2_0 z2_1
54. Reg_NULL 2 c3_0 c3_1 KO4 ko10 m3_0 m3_1
55. Reg_NULL 2 c2_0 c2_1 KO4 ko11 m4_0 m4_1
56. Reg_NULL 2 t5_0 t5_1 KO4 ko12 m5_0 m5_1
57. Reg_NULL 2 t6_0 t6_1 KO4 ko13 m6_0 m6_1
58. Reg_NULL 2 t7_0 t7_1 KO5 ko14 m7_0 m7_1
59. Reg_NULL 3 z0_0 z0_1 Ki ko15 p0_0 p0_1
60. Reg_NULL 3 z1_0 z1_1 Ki ko16 p1_0 p1_1
61. Reg_NULL 3 z2_0 z2_1 Ki ko17 p2_0 p2_1
62. Reg_NULL 3 z3_0 z3_1 Ki ko18 p3_0 p3_1
63. Reg_NULL 3 z4_0 z4_1 Ki ko19 p4_0 p4_1
64. Reg_NULL 3 z5_0 z5_1 Ki ko20 p5_0 p5_1
65. C4 ko7,ko8,ko9,ko10 KO1
66. C4 ko11,ko12,ko13,ko14 KO2
67. C2 KO1,KO2 KO3
68. C3 ko18,ko19,ko20 KO4
69. C2 ko19,ko20 KO5
70. C3 ko4,ko5,ko6 KO6
71. C3 ko1,ko2,ko3 KO7
72. C2 KO7,KO6 KO

1. xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2. p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3. not xi0_1 xi0_0
4. not xi1_1 xi1_0
5. not xi2_1 xi2_0
6. not yi0_1 yi0_0
7. not yi1_1 yi1_0
8. not yi2_1 yi2_0
9. th22 xi0_1 ,yi0_1 p0_1
10. thand0 yi0_0,xi0_0,yi0_1,xi0_1 p0_0
11. th22 xi0_1,yi1_1 t0_1
12. th12 xi0_0,yi1_0 t0_0
13. th22 xi0_1,yi2_1 t4_1
14. th12 xi0_0,yi2_0 t4_0
15. th22 xi1_1,yi0_1 t1_1
16. th12 xi1_0,yi0_0 t1_0
17. th22 xi1_1,yi1_1 t2_1
18. thand0 yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19. th22 xi1_1,yi2_1 t6_1
20. th12 xi1_0,yi2_0 t6_0
21. th22 xi2_1,yi0_1 t3_1
22. th12 xi2_0,yi0_0 t3_0
23. th22 xi2_1,yi1_1 t5_1
24. th12 xi2_0,yi1_0 t5_0
25. th22 xi2_1,yi2_1 t7_1
26. thand0 yi2_0,xi2_0,yi2_1,xi2_1 t7_0
27. th24comp t0_0,t1_0,t0_1,t1_1 p1_1
28. th24comp t0_0,t1_1,t1_0,t0_1 p1_0
29. th22 t0_1, t1_1 c1_1
30. th12 t0_0,t1_0 c1_0
31. th23 t3_0,t2_0,c1_0 c2_0
32. th23 t3_1,t2_1,c1_1 c2_1
33. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
34. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
35. th24comp s1_0,t4_0,s1_1,t4_1 p2_1
36. th24comp s1_0,t4_1,t4_0,s1_1 p2_0
37. th22 s1_1,t4_1 c3_1
38. th12 s1_0,t4_0 c3_0
39. th23 t5_0,c2_0,c3_0 c4_0
40. th23 t5_1,c2_1,c3_1 c4_1
41. th34w2 c4_0,t5_1,c2_1,c3_1 s2_1
42. th34w2 c4_1,t5_0,c2_0,c3_0 s2_0
43. th24comp s2_0,t6_0,s2_1,t6_1 p3_1
44. th24comp s2_0,t6_1,t6_0,s2_1 p3_0
45. th22 s2_1,t6_1 c5_1
46. th12 s2_0,t6_0 c5_0
47. th23 t7_0,c4_0,c5_0 p5_0
48. th23 t7_1,c4_1,c5_1 p5_1
49. th34w2 p5_0,t7_1,c4_1,c5_1 p4_1
50. th34w2 p5_1,t7_0,c4_0,c5_0 p4_0

1. xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2. p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3. not xi0_1 xi0_0
4. not xi1_1 xi1_0
5. not xi2_1 xi2_0
6. not yi0_1 yi0_0
7. not yi1_1 yi1_0
8. not yi2_1 yi2_0
9. th22 xi0_1 ,yi0_1 p0_1
10. not p0_1 p0_0
11. th22 xi0_1,yi1_1 t0_1
12. th12 xi0_0,yi1_0 t0_0
13. th22 xi0_1,yi2_1 t4_1
14. th12 xi0_0,yi2_0 t4_0
15. th22 xi1_1,yi0_1 t1_1
16. th12 xi1_0,yi0_0 t1_0
17. th22 xi1_1,yi1_1 t2_1
18. thand0 yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19. th22 xi1_1,yi2_1 t6_1
20. not t6_1 t6_0
21. th22 xi2_1,yi0_1 t3_1
22. th12 xi2_0,yi0_0 t3_0
23. th22 xi2_1,yi1_1 t5_1
24. not t5_1 t5_0
25. th22 xi2_1,yi2_1 t7_1
26. not t7_1 t7_0
27. th24comp t0_0,t1_0,t0_1,t1_1 p1_1
28. not p1_1 p1_0
29. th22 t0_1, t1_1 c1_1
30. th12 t0_0,t1_0 c1_0
31. th23 t3_1,t2_1,c1_1 c2_1
32. not c2_1 c2_0
33. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
34. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
35. th24comp s1_0,t4_0,s1_1,t4_1 p2_1
36. not p2_1 p2_0
37. th22 s1_1,t4_1 c3_1
38. not c3_1 c3_0
38. th12 s1_0,t4_0 c3_0
39. th23 t5_0,c2_0,c3_0 c4_0
40. th23 t5_1,c2_1,c3_1 c4_1
41. th34w2 c4_0,t5_1,c2_1,c3_1 s2_1
42. th34w2 c4_1,t5_0,c2_0,c3_0 s2_0
43. th24comp s2_0,t6_0,s2_1,t6_1 p3_1
44. not p3_1 p3_0
45. th22 s2_1,t6_1 c5_1
46. th12 s2_0,t6_0 c5_0
47. th23 t7_1,c4_1,c5_1 p5_1
48. not p5_1 p5_0
49. th34w2 p5_0,t7_1,c4_1,c5_1 p4_1
50. not p4_1 p4_0

(a) (b) (c)

Figure 19. (a) 3×3 NCL multiplier netlist (b) Converted netlist using method in Section 2 (c)

Converted netlist using proposed Register Invariance Refinement

41

Future work includes investigating additional refinements and invariants to potentially

further reduce verification time, such as applying the technique described herein, to generate rail0

as the inverse of rail1, at the outputs of every NCL C/L function (e.g., HA, FA, AND), instead of

only at the register boundaries. This would require NCL C/L functions to be reconstructed from a

flattened NCL gate netlist, where the two wires of a dual-rail signal are disassociated.

Additionally, the invariant check from [13] that ensures that the rail1 and rail0 outputs of each

NCL register are always inverses of each other during the DATA phase would need to be

checked at the output of each NCL C/L function, instead of only at the register boundaries.

The framework of this verification methodology can also be applied to other QDI

paradigms, such as MTNCL and PCHB. For MTNCL, the functional checking and invariant

checking methods are essentially the same as for NCL, but the handshaking check is slightly

different [15].

42

3. NCL INPUT-COMPLETENESS VERIFICATION

An automated formal verification approach for ensuring input-completeness of NULL

Convention Logic (NCL) circuits [1] is proposed. NCL circuits have the benefit that they can

operate in extreme environments where traditional synchronous circuits fail due to significant

fluctuations in circuit timing. Input-completeness is a critical property to ensure correct

functioning of NCL circuits in extreme environments and therefore is required to be verified.

Note that an NCL circuit can be functionally correct and still not be input-complete, which could

cause the circuit to operate correctly under normal conditions, but malfunction only when the

circuit timing is substantially changed (e.g. operating in a very hot or cold environment such as

outer space).

NULL Convention Logic (NCL) circuits [1] are a type of Quasi-Delay Insensitive (QDI)

asynchronous design style that has been demonstrated to function in environments characterized

by high radiation exposure, and high or low temperatures or large temperature fluctuations,

where synchronous circuit counterparts fail [2]. The ability of NCL circuits to function correctly

in extreme environments makes them very suitable for space exploration, the power industry, the

automobile industry (internal combustion engines), oil/gas exploration, medical imaging

instrumentation, the laser industry, superconducting computing and energy storage systems, and

low voltage or low power applications such as wireless sensor networks (WSN) or Internet of

Things (IoT).

Synchronization of NCL circuits happens via the propagation of NULL and DATA

waves through the circuit, utilizing handshaking instead of a traditional clock signal. Dual-rail

signals are used for data representation. A NULL state (absence of data) is represented by 0b00

and a DATA state is represented as either 0b01 (0 in Boolean) or 0b10 (1 in Boolean). The state

43

0b11 is an ILLEGAL state. As mentioned in Section 2, to achieve delay-insensitivity, all NCL

circuits must satisfy two properties, input-completeness and observability. In order for a

combinational NCL circuit to be input-complete, its outputs may not all transition from NULL to

DATA until all inputs have transitioned from NULL to DATA, and conversely, may not all

transition from DATA to NULL until all inputs have transitioned from DATA to NULL [16].

Note that some outputs can transition to DATA (NULL) before all inputs are DATA (NULL) as

long as all outputs cannot become DATA (NULL) until all inputs are DATA (NULL) [17].

Observability ensures that every gate asserted during a DATA wavefront propagates through the

circuit to cause at least one circuit output to be asserted. In this paper, an automated formal

verification approach to check input-completeness of NCL circuits is proposed. The efficiency of

the proposed approach is demonstrated using 37 NCL circuit benchmarks.

3.1. Input-Completeness Verification

The proposed approach for input-completeness verification is as follows. Two proof

obligations (POs) have been formulated, one for NULL to DATA transition and one for DATA

to NULL transition. The POs are generic and can be applied to any NCL combinational circuit

and can be automatically checked using a decision procedure such as a Satisfiability Modulo

Theories (SMT) solver. The PO for the NULL to DATA transition is described next.

3.1.1. Input-Completeness Proof Obligation: NULL to DATA

Without loss of generality, assume an NCL circuit has 𝑚 threshold gates, 𝑝 dual-rail

inputs, 𝑞 dual-rail outputs. Let 𝑔𝐴
1, … , 𝑔𝐴

𝑚 represent Boolean variables that correspond to the

current state of the NCL threshold gates before 𝑠𝑡𝑒𝑝 𝐴 and 𝑔𝐵
1, … , 𝑔𝐵

𝑚 represent the same

threshold gates’ state after 𝑠𝑡𝑒𝑝 𝐴. Let 𝑖𝐴
1, … , 𝑖𝐴

𝑝 represent the circuit inputs for 𝑠𝑡𝑒𝑝 𝐴, and

𝑖𝐵
1, … , 𝑖𝐵

𝑝 for 𝑠𝑡𝑒𝑝 𝐵. Let 𝑜𝐴
1, … , 𝑜𝐴

𝑞 be the circuit output values after symbolically stepping

44

the circuit using inputs 𝑖𝐴
1, … , 𝑖𝐴

𝑝 and threshold gates states 𝑔𝐴
1, … , 𝑔𝐴

𝑚. Let 𝑜𝐵
1, … , 𝑜𝐵

𝑞be the

circuit output values after symbolically stepping the circuit using 𝑖𝐵
1, … , 𝑖𝐵

𝑝 and threshold gate

states 𝑔𝐵
1, … , 𝑔𝐵

𝑚. The proof obligation predicates for input-completeness are given in Table 9.

𝑝0 indicates that no dual-rail inputs are in an illegal state. 𝑝1 states that all the threshold

gate’s current output values are 0, which indicates that the circuit is in the NULL state before a

DATA transition. 𝑝2 indicates that at least one of the dual rail inputs is NULL, and 𝑝3 indicates

that at least one of the dual-rail outputs is NULL. Proof obligation 𝑃𝑂2 below is used to check

input-completeness of the NULL to DATA transition of the circuit. 𝑃𝑂2 states that if none of the

inputs are ILLEGAL, all current threshold gate outputs are 0, and at least one of the dual-rail

inputs is NULL, then at least one of the dual-rail outputs must be NULL. Since the dual-rail

inputs in the proof obligation are symbolic, the SMT solver checks this property for all possible

input combinations.

3.1.2. Input-Completeness Proof Obligation: DATA to NULL

When NCL circuits are constructed using only threshold gates with hysteresis, ensuring

input-completeness of the NULL to DATA transition guarantees input-completeness of the

DATA to NULL transition. Reason for this is because gate hysteresis ensures that a gate output

cannot transition to 0 until all its inputs transition to 0. However, there are NCL based designs

that are comprised of both threshold gates with hysteresis and Boolean gates. These types of

circuits are called relaxed NCL circuits. Hence, for relaxed NCL circuits, input-completeness of

the DATA to NULL transition must also be checked.

To formulate the DATA to NULL proof obligation, the circuit must first be symbolically

initialized with all possible threshold gate outputs after a transition from NULL to DATA. This

is done by first initializing the circuit to the NULL state (i.e., all threshold gates are set to 0) and

45

then stepping the circuit with valid symbolic DATA (i.e., not NULL and not illegal) inputs,

identified as 𝑠𝑡𝑒𝑝 𝐴. The symbolic values of the threshold gates from 𝑠𝑡𝑒𝑝 𝐴 are retained, and

the circuit is symbolically stepped again with new inputs, identified as 𝑠𝑡𝑒𝑝 𝐵, which represents

the DATA to NULL transition.

Table 9. Predicates for input-completeness check

𝒑𝒏 𝑷𝒓𝒆𝒅𝒊𝒄𝒂𝒕𝒆

𝑝0

⋀ ∼ (𝑖𝐴
𝑛 = 0𝑏11)

𝑛=𝑝

𝑛=1

𝑝1
⋀ (𝑔𝐴

𝑛 = 0)

𝑛=𝑚

𝑛=1

𝑝2

⋁(𝑖𝐴
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

𝑝3

⋁(𝑜𝐴
𝑛 = 0𝑏00)

𝑛=𝑞

𝑛=1

𝑝4

⋀((𝑖𝐴
𝑛 = 0𝑏01) ∨ (𝑖𝐴

𝑛 = 0𝑏10))

𝑛=𝑝

𝑛=1

𝑝5 (𝑔𝐵
1, … , 𝑔𝐵

𝑚) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴
1, … , 𝑖𝐴

𝑝)

𝑝6

⋀((

𝑛=𝑝

𝑛=1

𝑖𝐵
𝑛 = 𝑖𝐴

𝑛) ∨ (𝑖𝐵
𝑛 = 0𝑏00))

𝑝7

⋁(𝑖𝐵
𝑛 = 𝑖𝐴

𝑛)

𝑛=𝑝

𝑛=1

𝑝8

⋁((𝑜𝐵
𝑛 = 0𝑏01) ∨ (𝑜𝐵

𝑛 = 0𝑏10))

𝑛=𝑞

𝑛=1

𝑷𝑶𝟒: { 𝑝0 ∧ 𝑝1 ∧ 𝑝2 } → 𝑝3

𝑝1 initializes all threshold gate outputs to 0 before 𝑠𝑡𝑒𝑝 𝐴. 𝑝4 indicates that all 𝑠𝑡𝑒𝑝 𝐴

inputs are DATA. 𝑝5 represents the symbolic step of the circuit with all threshold gates set to 0

46

and all inputs set to DATA, with the new values of the threshold gates stored in (𝑔𝐵
1, … , 𝑔𝐵

𝑚).

𝑝6 indicates that each input for 𝑠𝑡𝑒𝑝 𝐵 is either the same DATA value it was for 𝑠𝑡𝑒𝑝 𝐴, or has

transitioned to NULL. 𝑝7 indicates that at least one of the inputs for 𝑠𝑡𝑒𝑝 𝐵 is still DATA; and

𝑝8 indicates that at least one of the outputs of 𝑠𝑡𝑒𝑝 𝐵 remains DATA. The final proof obligation

for input-completeness of the DATA to NULL transition is given below as 𝑃𝑂3. It states that

after initializing the circuit to the NULL state and symbolically stepping the circuit with all

possible DATA inputs to generate all possible DATA states, that if at least one dual-rail input

remains DATA while other inputs may transition to NULL, at least one of the outputs must

remain DATA, meaning that the circuit has not fully transitioned to the NULL state, because all

inputs have not yet transitioned to NULL. Like the NULL to DATA proof obligation, all inputs

are symbolic, so the SMT solver checks all combinations.

𝑷𝑶𝟓: { 𝑝1 ∧ 𝑝4 ∧ 𝑝5 ∧ 𝑝6 ∧ 𝑝7 } → 𝑝8

3.1.3. Input-Completeness Results

Verification of the two proof obligations can be performed using an SMT solver. The

benchmarks used for verification were NxN unsigned dual-rail NCL multipliers ranging from 3

to 20 bits, as well as the ISCAS-85 C432 27-channel interrupt controller [18]. To perform

verification, both the circuit and the POs needed to be encoded in the SMT-LIB [9] language.

This was performed automatically using a developed tool that took as input the netlist of the

circuit and generated both the circuit model and PO specifications in SMT-LIB format. PO

checking was preformed using the z3 SMT solver [10]. Verification experiments were run on a

Intel® Core™ i7-4790 CPU with 32GB of RAM, running at 3.60 GHz.

The results of all benchmarks are listed in Table 10, where the first column is the Circuit

Name, the second column is the verification time for the NULL to DATA proof obligation of a

47

correct input-complete implementation, the third column is the verification time for the NULL to

DATA proof obligation of an incorrect input-incomplete implementation, and columns four and

five report the verification times for the DATA to NULL proof obligations for input-complete

and input-incomplete implementations, respectively. 𝑢𝑚𝑢𝑙𝑡𝑁 represents an 𝑁- 𝑏𝑖𝑡 𝑥 𝑁- 𝑏𝑖𝑡

unsigned multiplier that was constructed using only NCL gates with hysteresis. 𝑟 − 𝑢𝑚𝑢𝑙𝑡𝑁

represents a relaxed version of 𝑢𝑚𝑢𝑙𝑡𝑁 where NCL gates are replaced with their Boolean

equivalent gates when hysteresis is not required for input-completeness. Any verifications that

had a run time greater than one day is listed as Timeout (TO).

The benchmark multipliers were designed with input-complete AND functions to

generate the 𝑋𝑖𝑌𝑖 partial products and input-incomplete AND functions for the 𝑋𝑖𝑌𝑗 partial

products, where 𝑖 ≠ 𝑗, but without the intermediate NCL register (i.e., a single stage with only

input and output registers [18]). To create the buggy non-relaxed versions, 1 ≤ 𝑘 ≤ 𝑁 was

chosen at random and the input-complete AND function used to generate the 𝑋𝑘𝑌𝑘 partial

product was replaced with an input-incomplete version. NCL half-adders (HAs) and full-adders

(FAs) are inherently input-complete and therefore cannot be made input-incomplete when

constructed only using NCL gates with hysteresis. The relaxed version of each multiplier was

constructed by taking the non-relaxed version and replacing the TH22 gate within the input-

incomplete AND and HAs components with a Boolean AND gate. Buggy relaxed circuits were

constructed by relaxing one of the following: either the TH22 or THand0 gate in a 𝑋𝑖𝑌𝑖 partial

product AND component, a TH24comp gate in a HA component, or either a TH34w2 or TH23

gate in a FA component. The ISCAS-85 C432 circuit was designed using input-incomplete

functions when possible while maintaining input-completeness. The buggy version was obtained

48

by replacing one of the input-complete 3-input NAND functions that calculate RC, in Module

M3 [19], with an input-incomplete version. Z3 reported all bugs along with a counter example.

Table 10. Verification results of input-completeness (in sec.)

Circuit N to D Buggy N to D D to N Buggy D to N

umult3 0.02 0.01 0.03 0.04

umult4 0.02 0.05 0.06 0.0.06

umult5 0.09 0.05 0.12 0.11

umult6 0.11 0.15 0.38 0.24

umult7 0.38 0.27 1.49 1.23

umult8 1.44 0.49 5.47 3.60

umult9 5.30 2.37 22.38 1.28

umult10 20.22 8.92 102.42 18.45

umult11 54.09 2.99 430.29 22.81

umult12 236.00 8.21 1909.44 23.17

umult13 885.30 3.85 7401.11 15.11

umult14 3424.89 114.41 34961.6 8.26

umult15 9663.01 19.41 TO 112.55

r-umult3 0.02 0.02 0.04 0.07

r-umult4 0.02 0.02 0.06 0.07

r-umult5 0.05 0.04 0.10 0.08

r-umult6 0.15 0.12 0.42 0.07

r-umult7 0.39 0.12 1.48 0.11

r-umult8 1.38 1.43 6.38 0.17

r-umult9 4.74 5.17 28.03 0.20

r-umult10 16.26 19.02 146.95 0.20

r-umult11 58.04 46.53 642.80 0.31

r-umult12 215.75 228.47 3635.01 0.35

r-umult13 729.11 34.97 15663.24 0.40

r-umult14 3045.99 4104.45 80213.90 0.68

r-umult15 10561.11 9974.39 TO 0.31

C432 0.062 0.068 0.074 0.94

3.1.4. Input-Completeness Conclusion

An approach to automated verification of input-completeness for NCL circuits is

presented. It ensures input-completeness of combinational NCL circuits comprised solely of

gates with hysteresis, as well as relaxed NCL circuits that contain some gates without hysteresis;

whereas the previous manual approach for ensure input-completeness [5] is not applicable to

49

relaxed NCL circuits. It also ensures input-completeness for all inputs simultaneously, whereas

[7] must check each input separately. The proposed approach is efficient; however, scalability

can be improved and will be a topic for future work.

50

4. NCL OBSERVABILITY VERIFICATION

Observability requires every gate transition to be observable at the output, which means

that every gate that transitions is necessary to transition at least one output. Observability of

every gate in every C/L stage is required for NCL circuits to be QDI; an unobservable gate in

any stage may cause the circuit to deadlock under some timing scenarios.

4.1. Observability Verification

Observability can be proven in a similar fashion to input-completeness. Two proof

obligations are needed for each C/L gate, one for the NULL to DATA transition, and the other

for the DATA to NULL transition. The proof obligations, like those for input-completeness, have

been encoded in a decidable fragment of first order logic and are automatically checked using an

SMT solver. The PO for the NULL to DATA transition is described next.

4.1.1. Observability Proof Obligation: NULL to DATA

To verify observability, a check must be performed on each C/L gate. For each gate

𝑔1, … , 𝑔𝑚 assertion of that gate is first computed, denoted as 𝑓1, … , 𝑓𝑚 = 1, respectively. During

the NULL to DATA observability verification of 𝑓1, … , 𝑓𝑚 = 1, where 1 ≤ 𝑛 ≤ 𝑚, the output of

𝑔𝑛 is forced to 0. Simulation of a circuit with 𝑔𝑛 forced to 0 is called a Gn0 simulation, and the

resulting function is 𝑛𝑐𝑙𝑐𝑘𝑡𝐺𝑛0(𝑖1, … , 𝑖𝑝). To formulate the DATA to NULL observability proof

obligation, the circuit must first be symbolically initialized with all possible threshold gate

outputs that assert 𝑔𝑛 after a transition from NULL to DATA. This is done by first initializing

the circuit to the NULL state (i.e., all threshold gates are set to 0) and then stepping the circuit

with valid symbolic DATA (i.e., not NULL and not illegal) inputs, identified as 𝑠𝑡𝑒𝑝 𝐴. The

symbolic values of the threshold gates from 𝑠𝑡𝑒𝑝 𝐴 are retained as 𝑔𝐵
1, … , 𝑔𝐵

𝑚, and the circuit is

symbolically stepped again with new inputs, identified as 𝑠𝑡𝑒𝑝 𝐵, which represents the DATA to

51

NULL transition. During the verification of 𝑔𝑛, where 1 ≤ 𝑛 ≤ 𝑚, the output of 𝑔𝑛 is forced to

1. Simulation of a circuit with 𝑔𝑛 forced to 1 is called a Gn1 simulation, and the resulting

function is 𝑛𝑐𝑙𝑐𝑘𝑡𝐺𝑛1(𝑖1, … , 𝑖𝑝). The predicates required for observability are listed below in

Table 11.

𝑝0 states that all the threshold gates’ current output value is 0, which indicates that the

circuit is in the NULL state before a DATA transition. 𝑝1 indicates that every circuit input is

valid DATA. 𝑝3 assigns the outputs of the NCL circuit for a Gn0 simulation, where the output of

gn, the gate under test, is forced to 0. 𝑝4 enables only valid input combinations that would assert

gn to be used to step the circuit in 𝑝3. Finally, 𝑝5 ensures that at least one of the outputs is NULL.

The proof obligation to test observability of the NULL to DATA transition is given below as

PO4, which tests observability of all gates, g1, …, gm. If true for gn, this ensures that there is at

least one output that will not be asserted if gn is not asserted, for all sets of inputs in which gn

should be asserted, therefore proving that gn is observable for the NULL to DATA transition.

𝑷𝑶𝟔: ⋀ ({ 𝑝0 ∧ 𝑝1 ∧ 𝑝3 ∧ 𝑝4 } → 𝑝5)

𝑛=𝑚

𝑛=1

4.1.2. Observability Proof Obligation: DATA to NULL

Like input-completeness, NCL circuits consisting only of NCL gates with hysteresis are

inherently observable for the DATA to NULL transition if observable for the NULL to DATA

transition, since gate hysteresis ensures that a gate output cannot transition to 0 until all its

preceding gates’ outputs transition to 0. However, this is not the case for relaxed NCL circuits,

which are comprised of both threshold gates with hysteresis and Boolean gates. Hence, for

relaxed NCL circuits, observability of the DATA to NULL transition must also be checked.

52

Table 11. Predicates for observability check

𝒑𝒏 𝑷𝒓𝒆𝒅𝒊𝒄𝒂𝒕𝒆

𝑝0
⋀ (𝑔𝐴

𝑛 = 0)

𝑛=𝑚

𝑛=1

𝑝1

⋀((𝑖𝐴
𝑛 = 0𝑏01) ∨ (𝑖𝐴

𝑛 = 0𝑏10))

𝑛=𝑝

𝑛=1

𝑝2 (𝑔𝐵
1, … , 𝑔𝐵

𝑚) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴
1, … , 𝑖𝐴

𝑝)

𝑝3 (𝑜𝐴
1, … , 𝑜𝐴

𝑞) = 𝑛𝑐𝑙𝑐𝑘𝑡𝐺𝑛0(𝑖𝐴
1, … , 𝑖𝐴

𝑝)

𝑝4 𝑓𝑛 = 1

𝑝5

⋁(𝑜𝐵
𝑛 = 0𝑏00)

𝑛=𝑞

𝑛=1

𝑝6 ⋀(𝑖𝐵
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

𝑝7 (𝑜𝐵
1, … , 𝑜𝐵

𝑞) = 𝑛𝑐𝑙𝑐𝑘𝑡𝐺𝑛1(𝑖𝐵
1, … , 𝑖𝐵

𝑝)

𝑝8

~ ⋀(𝑜𝐵
𝑛 = 0𝑏00)

𝑛=𝑞

𝑛=1

𝑝0 initializes all threshold gate outputs to 0 before 𝑠𝑡𝑒𝑝 𝐴. 𝑝1 indicates that all 𝑠𝑡𝑒𝑝 𝐴

inputs are DATA. 𝑝2 represents the symbolic step of the circuit with all threshold gates set to 0

and all inputs set to DATA, with the new values of the threshold gates stored in (𝑔𝐵
1, … , 𝑔𝐵

𝑚).

𝑝4 enables only valid input combinations that would assert gn to be used to step the circuit in 𝑝2.

𝑝6 indicates that all inputs for 𝑠𝑡𝑒𝑝 𝐵 have transitioned to NULL. 𝑝7 assigns the outputs of the

NCL circuit for a Gn1 simulation, where the output of gn, the gate under test, is forced to 1.

Finally, 𝑝8 ensures that all outputs are not NULL. The proof obligation to test observability of

the DATA to NULL transition is given below as PO5, which tests observability of all gates, g1,

…, gm. If true for gn, this ensures that following a NULL to DATA transition that asserts gn, there

is at least one output that will not become NULL during the subsequent DATA to NULL

transition while gn remains asserted, therefore proving that gn is observable for the DATA to

NULL transition.

53

𝑷𝑶𝟕: ⋀ ({ 𝑝0 ∧ 𝑝1 ∧ 𝑝2 ∧ 𝑝4 ∧ 𝑝6 ∧ 𝑝7 } → 𝑝8)

𝑛=𝑚

𝑛=1

4.1.3. Observability Results

Verification of the proof obligations for observability can be performed using any SMT

solver. To perform observability verification, we developed a tool to automatically generate the

circuit model and proof obligation specifications, encoded in SMT-LIB format, from the original

circuit netlist, such as the one shown in Fig. 12(a) for the 3×3 multiplier. For the verification

results presented here, N-bit×N-bit unsigned dual-rail NCL multipliers were used as benchmarks,

where 3 ≤ 𝑁 ≤ 13. The ISCAS-85 C432 27-channel interrupt controller circuit was also used as

a benchmark [19]. The verification proof obligations were checked using the Z3 SMT solver on

an Intel® Core™ i7-4790 CPU with 32GB of RAM, running at 3.60 GHz.

The verification results are listed in Table 12, where the first column is the Circuit Name,

the second column is the verification time for the NULL to DATA proof obligation and the third

column is the verification time for the DATA to NULL proof obligation. 𝑢𝑚𝑢𝑙𝑡𝑁 represents an

N-bit×N-bit unsigned multiplier constructed using only NCL gates with hysteresis, while 𝑟 −

𝑢𝑚𝑢𝑙𝑡𝑁 represents a relaxed version of the N-bit×N-bit multiplier, where NCL gates are

replaced with Boolean gates when hysteresis is not required. Timeout (TO) is listed in the

verification results when the verification time exceeded one day.

The test multipliers were designed exactly the same as the ones used for testing input-

completeness (i.e., input-complete AND functions generate the 𝑋𝑖𝑌𝑖 partial products, and input-

incomplete AND functions generate the 𝑋𝑖𝑌𝑗 partial products, where 𝑖 ≠ 𝑗). To create buggy

multipliers that were input-complete but not observable, a HA was chosen at random and the

XOR function to generate its sum (i.e., the two TH24comp gates in Fig. 9 was replaced with the

54

unobservable XOR function, shown in Fig. 8. To check observability of relaxed circuits, the M1

module of the ISCAS-85 C432 benchmark [20] was used, where the 9-input NAND function that

generates PA was composed of two relaxed input-incomplete 4-input AND functions, followed

by an input-complete 2-input AND function, and then an input-complete 2-input NAND

function, as shown in Fig. 20. To create a buggy version that was input-complete but not

observable, any of the 4 gates comprising the 2-input AND function or the 2-input NAND

function shown in Fig. 20 could be relaxed. The test times reported for the circuits are for testing

every single gate for observability, even if a previous gate was found to be unobservable.

Therefore, the time to detect a buggy circuit will be less than or equal to the reported times since

the rest of the gates would no longer need to be tested once an unobservable gate was identified.

Z3 reported all bugs along with a counter example.

Table 12. Verification results of observability (in sec.)

Circuit N to D D to N
umult4 0.001 0.001

umult5 8.203 8.944

umult6 13.7599 16.1921

umult7 27.8229 36.528

umult8 54.062 105.4979

umult9 138.3139 412.605

umult10 363.7079 1968.434

umult11 902.046 9657.475

umult12 2384.504 52093.64

umult13 5797.037 TO

C432 M1 1.53 3.882

55

Figure 20. ISCAS-85 C432 M1 module nine-input NCL NAND that generates PA

56

5. NCL COMPLETION-COMPLETENESS VERIFICATION

In order to achieve delay-insensitivity, NCL circuits must be input-complete and

observable [5]. Input-completeness requires that all outputs of a combinational circuit may not

transition from NULL to DATA until all inputs have transitioned from NULL to DATA, and that

all outputs of a combinational circuit may not transition from DATA to NULL until all inputs

have transitioned from DATA to NULL. In circuits with multiple outputs, it is acceptable

according to Seitz’s “weak conditions” of delay-insensitive signaling [17], for some of the

outputs to transition without having a complete input set present, as long as all outputs cannot

transition before all inputs arrive. Observability requires that no orphans may propagate through

a gate, where an orphan is defined as a wire that transitions during the current DATA wavefront

but is not used in the determination of the output. NCL circuits that utilize the bit-wise

completion strategy along with input-incomplete logic functions/components must also be

completion-complete [8] to ensure delay-insensitivity. Completion-completeness requires that

completion signals only be generated such that no two adjacent DATA wavefronts can interact

within any combinational logic (C/L) component. Note that completion-completeness is inherent

when using full-word completion. While [13] presents automated formal methods for ensuring

that NCL circuits utilize correct handshaking, and are input-complete and observable, this paper

describes an automated formal method to ensure that NCL circuits are also completion-complete.

5.1. Completion-Completeness Previous Work

The need for completion-completeness was demonstrated in [8] by showing a number of

example NCL circuits that utilized proper handshaking connections and were input-complete and

observable, but still were not delay-insensitive, since they allowed two adjacent DATA

wavefronts to interact within a C/L component. Take for example the partial product

57

generation circuit for X(1:0) × Y(1:0) utilizing bit-wise completion, as shown in Fig. 21. AND

functions Y(1) • X(1) and Y(0) • X(0) are input-complete, as shown in Fig. 7, while the other two

AND functions are input-incomplete, as shown in Fig. 6, such that the entire circuit is input-

complete (i.e., all outputs cannot become DATA until all inputs are DATA). To show that this

circuit is not completion-complete, and therefore not delay-insensitive, let Xi and Yi be 002 and

112, respectively, which would result in PPi = 00002; and let Xi+1(0) = DATA1 and Yi+1(1) =

DATA0, which would result in PPi+1(1) = DATA0, where the subscript, i, refers to the

wavefront. Now, assume that the signals transition as follows, starting from the NULL state (i.e.,

all dual-rail signals are NULL and all Ki and Ko signals are rfd): Xi changes to DATA

(i.e., 002), Yi(0) changes to DATA (i.e., DATA1), and Yi(1) remains NULL. This causes

PPi(2:0) to become 0002, as expected, while PPi(3) remains NULL, which in turn causes

Kic0 and Kic1 to become rfn, allowing NULL to flow through these two input registers. This in

turn causes PPi(1:0) to become NULL, assuming their respective Ki signals are rfn,

which transitions Kic0 to rfd, allowing Xi+1(0) = DATA1 to flow through its register. Yi(1) now

finally transitions to DATA1, which causes two adjacent DATA wavefronts, Xi+1(0) and

Yj(1), to interact within the combinational logic, which violates the completion-completeness

criterion; and this produces PPi+1(1) = DATA1, which is incorrect. In addition to showing how

to manually determine if an NCL circuit is completion-complete, [8] also presented a variety of

methods to make NCL circuits completion-complete, so that they would be delay-insensitive. For

this example, either the two input-incomplete AND functions could be replaced with input-

complete versions, or the completion logic sets would need to be modified. The work herein

presents an automated method to formally verify that an NCL circuit is completion-complete.

58

Figure 21. Completion-incomplete NCL circuit

5.2. Completion-Completeness Verification

The proposed completion-completeness verification is as follows. The NCL circuit is

partitioned into stages, and each stage is handled independently. If a stage has p inputs, then p

proof obligations are required for that stage. Below, we describe the generic proof obligation

(PO) template that must be applied to each input of a circuit stage. The approach described using

this template can be applied to any arbitrary NCL circuit. The POs are formulated such that they

can be automatically checked using a Satisfiability Modulo Theories (SMT) solver [9].

59

5.2.1. Completion-Completeness Proof Obligation

Without loss of generality, an NCL circuit stage is assumed to have m threshold gates, p

dual-rail inputs, and q dual-rail outputs, and include a p-bit input register and q-bit output

register, as shown in Fig. 21 for p=q=4. To formulate the proof, three separate symbolic steps of

the NCL circuit are required, denoted as Steps A, B, and C, respectively.

gA/B/C/D
1, … , gA/B/C/D

m, are Boolean variables that represent the current state of the threshold

gates for the corresponding symbolic step. iA/B/C
1, …, iA/B/C

p, are the symbolic values applied to

the circuit inputs for the corresponding symbolic step; and iA/B/C
k represents the circuit input

that is being verified. oA/B/C/D
1, … , oA/B/C/D

q, are the output values acquired during the

corresponding step of the circuit with current state and input values mentioned above.

KoA/B/C/D
1, … , KoA/B/C/D

p and KicA/B/C/D
1, … , KicA/B/C/D

p represent the Ko outputs and Ki

inputs, respectively, of the NCL input register for the corresponding step, as labeled in Fig. 21.

KiA/B/C
1, … , KiA/B/C

q corresponds to the Ki inputs to the output register for the respective

steps. Note that Ko, Kic, and Ko are all threshold gate outputs, and are therefore accounted for in

variable g.

The predicates used to construct the completion-completeness PO are shown in Table 13.

p0 indicates that all threshold gate output values are 0 for Step A, which indicates that the circuit

is in the NULL state before a DATA transition. p1 indicates that all circuit inputs during Step A

are NULL. p2 indicates that all circuit Ki inputs are 1, which indicates that the circuit is in a rfd

state. p3 symbolically steps the circuit stage under test using dual-rail inputs (iA
1, … , iA

p), Ki

inputs (KiA
1, … , KiA

q
) and threshold gate values (gA

1, … , gA
m), and stores the gate output values

to (gB
1, … , gB

m). p4 indicates that the circuit stage input being tested for completion-

completeness, iB
k, remains NULL, and all other inputs are DATA for Step B. p5

60

Table 13. Predicates for completion-completeness check

𝒑𝒏 Predicate

𝑝0
⋀ (𝑔𝐴

𝑛 = 0)

𝑛=𝑚

𝑛=1

𝑝1

⋀(𝑖𝐴
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

𝑝2

⋀(𝐾𝑖𝐴
𝑛 = 1)

𝑛=𝑞

𝑛=1

𝑝3 (𝑔𝐵
1, … , 𝑔𝐵

𝑚, 𝐾𝑜𝐵
1, … , 𝐾𝑜𝐵

𝑝) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴
1, … , 𝑖𝐴

𝑝, 𝑔𝐴
1, … , 𝑔𝐴

𝑚, 𝐾𝑖𝐴
1, … , 𝐾𝑖𝐴

𝑞)

𝑝4

⋀(𝑖𝐵
𝑛 = {

0𝑏00, 𝑛 = 𝑘
(0𝑏01 ∨ 0𝑏10), 𝑛 ≠ 𝑘

)

𝑛=𝑝

𝑛=1

𝑝5 (𝑔𝐶
1, … , 𝑔𝐶

𝑚, 𝐾𝑜𝐶
1, … , 𝐾𝑜𝐶

𝑝) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐵
1, … , 𝑖𝐵

𝑝, 𝑔𝐵
1, … , 𝑔𝐵

𝑚, 𝐾𝑖𝐵
1, … , 𝐾𝑖𝐵

𝑞)

𝑝6

⋀(𝑖𝐶
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

𝑝7

⋀(𝐾𝑖𝐶
𝑛 = {

 0, 𝑜𝐵
𝑛 = (0𝑏01 ∨ 0𝑏10)

1, 𝑜𝐵
𝑛 = 0𝑏00

)

𝑛=𝑞

𝑛=1

𝑝8 (𝑔𝐷
1, … , 𝑔𝐷

𝑚, 𝐾𝑜𝐷
1, … , 𝐾𝑜𝐷

𝑝) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐶
1, … , 𝑖𝐶

𝑝, 𝑔𝐶
1, … , 𝑔𝐶

𝑚, 𝐾𝑖𝐶
1, … , 𝐾𝑖𝐶

𝑞)

𝑝9

⋀ {
 (𝐾𝑜𝐷

𝑛 = 𝐾𝑖𝑐𝐶 = 1), 𝑛 = 𝑘

~(𝐾𝑜𝐷
𝑛 ⊼ 𝐾𝑖𝑐𝐶), 𝑛 ≠ 𝑘

𝑛=𝑝

𝑛=1

symbolically steps the circuit stage under test using the Step B inputs, and stores the gate output

values to (gC
1, … , gC

m). p6 indicates that all circuit inputs during Step C are set to NULL. p7 is

used to constrain the Ki inputs for Step C, such that if a particular circuit output is DATA, then

its corresponding Ki input is constrained to 0, indicating rfn; and if the circuit output is NULL,

then its corresponding Ki input is constrained to 1, indicating rfd. p8 symbolically steps the

circuit stage under test using the Step C inputs and stores the gate output values to

(gD
1, … , gD

m). p9 checks the Kic and Ko values of the input register to ensure that they are

61

correct for input ik being constrained to NULL (i.e., Kic and Ko for input registerk should both be

1, since ik never transitioned from NULL; and the rest of the input register bits’ Kic and Ko

should not both be 1, as this would allow the subsequent DATA wavefront to pass through into

the C/L, thus violating the completion-completeness criteria). The completion-completeness

proof obligation is constructed as follows:

𝑷𝑶𝟖: { 𝑝0 ∧ 𝑝1 ∧ 𝑝2 ∧ 𝑝3 ∧ 𝑝4 ∧ 𝑝5 ∧ 𝑝6 ∧ 𝑝7 ∧ 𝑝8} → 𝑝9

At a high level, these predicates restrict the input under test so that it stays NULL and is

therefore requesting DATA for all three symbolic steps (A, B, and C). The other inputs are not

constrained and can transition from NULL to DATA and back to NULL, as allowed by their

respective handshaking signals. If the circuit is completion-complete, then the unconstrained

inputs can transition from DATA to NULL, but not back to DATA before the constrained input

transitions to DATA and then to NULL. An unconstrained input that could transition back to

DATA indicates that the circuit is not completion-complete. Essentially, 𝑝9 indicates that none of

the unconstrained inputs could transition back to DATA, which is what the SMT solver is

checking. This can be observed when looking back to the Fig. 20 example in Section 5. The

property is violated when the constrained input, Y(1) is tested, as both Kic0 and KoX0 are 1 after

NCLStep C, such that Xi+1(0) would be allowed to pass through into the C/L. If the solver can

prove the PO, then this indicates that the circuit is completion-complete w.r.t. input k. If, however,

there is a violation, then the solver will provide a counter example to the proof obligation, which

can then be used to trace the source of the completion-completeness violation.

5.2.2. Completion-Completeness Results

For the verification results presented herein, partial-product generation of N-bit × N-bit

unsigned dual-rail NCL multipliers were used as benchmarks, where 4 ≤ 𝑁 ≤ 64. The

62

verification proof obligations were checked using the Z3 SMT solver [10] running on an Intel®

Core™ i5-6600k CPU with 16GB of RAM, operating at 3.50 GHz; however, any SMT solver

could be used. The results are listed in Table 14, where the first column is N, corresponding to an

N-bit × N-bit dual-rail NCL unsigned multiplier partial product generation circuit. The second

column is the verification time in seconds of completion-complete multipliers that are

constructed using only input-complete AND2 components, shown in Fig. 7. The third column is

the verification time in seconds of completion-incomplete multipliers, where the input-complete

AND2 components are replaced with their input-incomplete version, shown in Fig. 6, for partial

products 𝑋𝑖𝑌𝑗, where 𝑖 ≠ 𝑗. These are used to test the time to detect circuits that are input-

complete but not completion-complete. The time reported for each completion-complete circuit

is the total time to verify that all inputs are completion-complete; and the time reported for each

completion-incomplete circuit is the total time until one input is found to be completion-

incomplete. Z3 detected all completion-incomplete circuits and provided a counter example.

In addition to the multiplier partial product generation circuits, the other two circuits

described in [8] where tested as well: a) the final stage of an unsigned multiplier with

completion-complete and completion-incomplete GEN_S7 components, and b) the six 2-input

AND function circuit. The developed automated completion-completeness verification method

correctly verified the completion-complete versions and flagged the completion-incomplete

circuits.

5.2.3. Completion-Completeness Conclusion

This chapter presents the first automated methodology for formal verification of

completion-completeness of NCL circuits. The results are very promising, as even a 64 × 64

multiplier partial product generation circuit could be fully verified in 19.5 minutes. The

63

limitation to verification using the computer described above was not verification timeout of

more than one day, but storage limitation as circuit size grew. Techniques to further improve

efficiency and scalability could be explored as future work.

Table 14. Verification results of completion-completeness (in sec.)

N Completion-Complete Completion-Incomplete

4 2.785 .186

8 2.785 .186

12 7.131 .315

16 15.315 .525

20 30.135 .797

24 49.909 1.142

28 78.887 1.628

32 115.078 2.092

36 169.248 2.745

40 229.685 3.278

44 314.026 3.967

48 429.539 4.776

52 564.778 5.739

56 709.051 6.835

60 1042.379 8.469

64 1170.315 10.883

64

6. CONCLUSION

Proposed throughout this dissertation are new or improvements on existing formal

verification methods for NULL Convention Logic (NCL) circuits. The goal of this dissertation

work was to develop automated formal verification techniques that would check for equivalence

when compared to a synchronous design and ensure delay-insensitivity through property

checking of input-completeness, observability, and completion-completeness. Although

optimizations and alternative methodologies to make formal techniques more scalable are always

areas to investigate, this work serves as a baseline to help better integrate Quasi-Delay

Insensitive digital design into the semiconductor industry.

6.1. Summary

In Chapter 1, an overview of formal verification and NULL Convention Logic (NCL)

circuits are presented and serve as a background and motivation as to why this dissertation work

was required. Chapter 2 dives into an existing equivalence checking technique and explores ways

to improve the scalability of the pre-existing methodologies. The results were very promising,

with the NCL to Synchronous Reduction reducing the state explosion significantly from previous

works. The NCL to Synchronous Reduction was then further improved using an exploitation of

the invariant property of NCL circuits at the register stage outputs. With this invariant,

significant speedups were observed, allowing for verification of a 24+12×12 MAC, whereas the

previous method would timeout. This is an exciting prospect because as the MAC size grows, the

area and number of components grows along with it, but at an exponential pace. The rest of the

dissertation focuses on circuit properties that ensure delay-insensitivity of NCL circuits. The

contents of Chapters 3 and 4 revolve around property checking of input-completeness and

observability for any arbitrary NCL circuit in an automated fashion. This was the first formal

65

method developed for input-completeness where all inputs were checked simultaneously,

decreasing the amount of proofs required to ensure input-completeness. Previous input-

completeness checks were done by checking observability of a circuit at the inputs. From the

work in Chapter 4, it was concluded that this previous method was more complex and required

more verification time than the proposed input-completeness check. Finally, in

Chapter 5, a formal method was developed for checking the completion-completeness property

of NCL circuits using bit-wise completion. As mentioned before, when developing NCL circuits,

bit-wise completion is a useful tool to potentially increase throughput and decreases area. Unlike

circuits that utilize full-word completion, ensuring input-completeness of circuits using bit-wise

completion does not guarantee delay-insensitivity, which is the justification for the completion-

completeness work. Those results are extremely promising, allowing verification of a 64×64

NCL multiplier partial-product generation circuit in less than 20 minutes.

6.2. Future Work

As with most formal verification techniques, additional refinements can be researched to

improve scalability of previous techniques. For most of the methods presented herein, this could

be a topic of future work, as verification times grow exponentially along with circuits size. For

equivalence verification, the proposed invariant technique in Section 2.2.2 could be further

applied at a more granular level (e.g. at the NCL component level) to potentially further reduce

verification time, and could be a topic to investigate in the future. The property checking

methods developed could be investigated for additional refinement techniques like the ones

applied to equivalence checking. These refinements would change how the circuitry is modeled,

but the proof obligation would stay the same. Another area that can be looked into is

incorporating the work presented here into a commercial tool, such as JasperGOLD Sequential

66

Equivalence Checker, which is more prevalent in industry. The focus of most of this dissertation

has been safety and liveness of NCL circuits, with problems arising from design flaws. A future

area of research could be development of formal methods to detect circuitry inserted for

malicious purposes, such as leaking private information.

67

REFERENCES

[1] K. M. Fant and S. A. Brandt, “NULL Convention Logic TM: a complete and consistent logic

for asynchronous digital circuit synthesis,” in Application Specific Systems, Architectures

and Processors, 1996. ASAP 96. Proceedings of International Conference on, Aug 1996, pp.

261–273.

[2] S. Le, S. K. Srinivasan and S. C. Smith, "Automated verification of input completeness for

NCL circuits," in Electronics Letters, vol. 54, no. 20, pp. 1158-1160, 4 10 2018.

doi: 10.1049/el.2018.6068

[3] V. Wijayasekara, S. K. Srinivasan, and S. C. Smith, “Equivalence Verification for NULL

Convention Logic (NCL) Circuits,” 32nd IEEE International Conference on Computer

Design (ICCD), pp. 195-201, October 2014.

[4] P. Manolios, “Correctness of pipelined machines,” in FMCAD 2000, ser. LNCS, W. A. Hunt,

Jr. and S. D. Johnson, Eds., vol. 1954. Springer-Verlag, 2000,

pp. 161–178.

[5] S. C. Smith and J. Di, “Designing Asynchronous Circuits using NULL Convention Logic

(NCL),” Synthesis Lectures on Digital Circuits and Systems, Morgan & Claypool Publishers,

Vol. 4/1, July 2009.

[6] C. Jeong and S. M. Nowick, “Optimization of robust asynchronous circuits by local input

completeness relaxation,” Asia and South Pacific Design Automation Conference, Jan. 2007,

pp. 622–627.

[7] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant, “Checking delay-insensitivity:

104 gates and beyond,” 8th International Symposium on Asynchronous Circuits and Systems,

April 2002, pp. 149–157.

68

[8] S. C. Smith, “Completion-Completeness for NULL Convention Digital Circuits Utilizing the

Bit-wise Completion Strategy,” International Conference on VLSI, pp. 143-149, June 2003.

[9] D. Monniaux, “A survey of Satisfiability Modulo Theory” [online]. Available:

https://hal.archives-ouvertes.fr/hal-01332051/document [Accessed May 25, 2020].

[10] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS, ser. Lecture

Notes in Computer Science, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963, Springer,

2008, pp. 337–340.

[11] D. Bryan, “The ISCAS '85 benchmark circuits and netlist format” [online]. Available:

https://ddd.fit.cvut.cz/prj/Benchmarks/iscas85.pdf [Accessed: May 25, 2020].

[12] [Online] http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/bench/, Accessed: May 25,

2019.

[13] A. A. Sakib, S. Le, S. C. Smith, and S. K. Srinivasan, “Formal Verification of NCL

Circuits,” in Asynchronous Circuit Applications, pp. 309-338, IET, December 2019.

[14] L. Zhou, R. Parameswaran, F. Parsan, S. C. Smith, and J. Di, “Multi-Threshold NULL

Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design

Methodology,” Journal of Low Power Electronics and Applications, Vol. 5/2, pp. 81-100,

May 2015.

[15] M. Hossain, A. A. Sakib, S. K. Srinivasan, and S. C. Smith, “An Equivalence Verification

Methodology for Asynchronous Sleep Convention Logic Circuits,” IEEE International

Symposium on Circuits and Systems, pp. 1-5, May 2019.

[16] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb, “Optimization of null

convention self-timed circuits,” Integr. VLSI J., vol. 37, no. 3, pp. 135–165, Aug. 2004.

[Online]. Available: http://dx.doi.org/10.1016/j.vlsi.2003.12.004.

69

[17] C. L. Seitz, Introduction to VLSI Systems. Boston, MA, USA: Addison Wesley Longman

Publishing Co., Inc., 1979, ch. System Timing, pp.218–262.

[18] “ISCAS-85 c432 27-channel interrupt controller” [online]. Available:

http://web.eecs.umich.edu/~jhayes/iscas.restore/c432.html [Accessed: May 25, 2020].

[19] “ISCAS-85 c432 27-channel interrupt controller Module M3” [online]. Available:

http://web.eecs.umich.edu/~jhayes/iscas.restore/c432m3.html [Accessed: May 25, 2020].

[20] “ISCAS-85 c432 27-channel interrupt controller Module M1” [online]. Available:

http://web.eecs.umich.edu/~jhayes/iscas.restore/c432m1.html [Accessed: May 25, 2020].

70

APPENDIX. LIST OF PUBLICATIONS

• S. N. Le, S. K. Srinivasan and S. C. Smith, "Automated Verification of Input-

Completeness for NCL Circuits," in Electronics Letters, vol. 54, no. 20, pp. 1158-1160,

2018.

• A. A. Sakib, S. N. Le, S. C. Smith, and S. K. Srinivasan, “Chapter 15: Formal

Verification of NCL Circuits”, in Asynchronous Circuit Applications, Institution of

Engineering and Technology (IET), London, UK, pp. 309-338, 2019.

• S. N. Le, S. K. Srinivasan, S. C. Smith, “Exploiting Dual-Rail Register Invariants for

Equivalence Verification of NCL Circuits”, IEEE International Midwest Symposium on

Circuits and Systems (MWSCAS), 2020 (accepted).

• S. N. Le, S. K. Srinivasan, S. C. Smith, “Formal Verification of Completion-

Completeness for NCL Circuits”, IEEE International Midwest Symposium on Circuits

and Systems (MWSCAS), 2020 (accepted).

