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ABSTRACT

One of the Grand Challenges for Engineering is advancing personalized learning, but chal-

lenges remain to identify and understand potential student pathways. This is especially difficult

in complex, open-ended learning environments such as innovation-based learning courses. Student

data from an iteration of an innovation-based learning course were analyzed using two educational

data mining techniques: classification and clustering. Classification was used to predict student

success in the course by creating a model that was both interpretable and robust (accuracy over

0.8 and ROC AUC of over 0.95). Clustering grouped student behavior into four main categories:

Innovators, Learners, Surveyors, and Surface Level. Furthermore, noteworthy variables from each

model were extracted to discover what factors were most likely to lead to course success. The work

presented contributes to gaining a better understanding of how engineering students innovate and

brings us closer to solving the Grand Challenge of advancing personalized learning.
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PREFACE

“Scientists study the world as it is; engineers create the world that has never been.”

- Theodore von Karman

For the past few years I have spent endless hours teaching thousands of Kindergarten-

12th Grade students what engineering is. When I started, I often struggled with developing a

definition of engineering because engineers can do just about anything. However, I often found

myself coming back to von Karman’s idea of creation. Rather than studying facts and figures,

engineers create and innovate.

In order to help students better understand this idea of creation and how to “think like

an engineer,” I often present them with the Engineering Design Process, a seemingly basic list of

actions that explains how engineers solve problems. However, the more and more I spend time with

this tool, the more and more it frustrates me. Surely no one goes from step to step as smoothly

and easily as the perfectly spaced diagram leads us to believe. The recipe for innovation must go

deeper than that, and this work is a first step in better understanding that.

How do engineers create? What leads to a successful idea? How we can empower future

engineers to create a world we want to live in? Engineering is not a linear process, but rather a

complex, awe-inspiring machine involving people and processes working together to achieve great

things. This work strives to understand that complex, awe-inspiring machine and to illustrate the

complexities of the true Engineering Design Process.

So, come along for the journey. If you are here for the educational piece, I hope you learn

something about engineering and data mining. If you’re here for the engineering, I hope you learn

something about pedagogy and education. By joining both of these areas, I truly believe we can

better prepare the next generation of engineers, the ones that can create the world that has never

been.
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1. INTRODUCTION

1.1. A World Full of Grand Challenges

Since the beginning of our civilization, engineers have been the drivers in making technical

advancements such as the steam engine, electricity, the automobile, and the internet. So what comes

next? The National Academies for Engineering have created a list of fourteen Grand Challenges

that a team of top scientists and engineers have determined to be the most important problems to

solve within the next century [1]. These challenges are shown in Figure 1.1.

Figure 1.1. Grand Challenges for Engineering [1]

National organizations and experts in engineering and the sciences have agreed that in

order to solve the Grand Challenges and other complex problems, engineers need to have skills

beyond their technical expertise. When exploring the desired student outcomes from ABET (the

accrediting agency for engineering programs) [2], the portrait of the Engineer of 2020 painted by
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the National Academy of Engineering [3], and a metastudy about what engineering employers want

from recent graduates [4], five consistent themes emerge: 1) an ability to solve complex problems,

2) communication skills, 3) teamwork, especially on interdisciplinary teams, 4) entrepreneurship

and business intelligence, and 5) the ability to be a lifelong learner.

1.2. An Educational Model to Promote Innovation

In order to give students an opportunity to develop these skills, an upper level Cardiovascu-

lar Engineering course was revamped using the Innovation-Based Learning (IBL) model [5]. Rather

than being assessed on homework, tests, and quizzes, these students were assessed on their ability

to apply what they were learning in class to an innovation project. Success in the course is defined

by achieving external value, which involves making an impact outside of the classroom and getting

some sort of outside review (e.g. presenting a peer-reviewed poster at a conference, competing in a

business plan competition, or submitting and getting a review on an invention disclosure). Students

work on their problem solving abilities by identifying a project with their group, communication

by presenting about their work both in and outside of class, teamwork by working on teams (many

of which have students from multiple majors or programs), entrepreneurship by exploring ways to

create value with their project, and lifelong learning skills by creating their own pathway through

the course. Many students have found success in this model [5], but questions still remain about

what made these students successful and how this can be transferred to other courses and experi-

ences. When looking at a dynamic system involving students, instructors, projects, successes, and

failures, typical IF-THEN relationships aren’t able to paint a full picture of the inner workings of

the course [6]. Therefore, just as the students in this course aim to tackle complex problems, the

course itself must be explored as a complex problem [7].

1.3. Understanding Complexity and its Implications

The idea of complexity can be better understood in the context of the Cynefin Framework,

shown in Figure 1.2. Complex systems are defined as a collection of elements that interact in a

dynamic way. The interactions are often elaborately interconnected and nonlinear. Each element

in the system has its own behavior, and changes in the behavior of one part change the entire

system. The system behaves in conditions far from equilibrium, meaning it is always fluctuating

and responding to changes within its parts. Even throughout all the changes, emergent patterns

are generated, accomplishing some function [8]. Many of the Grand Challenges listed in Figure 1.1
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are examples of complex systems. From the network of deeply interconnected neurons within the

brain [9], to the hierarchical biological interactions that contribute to engineering better medicines

[10], to the effects of agriculture and human behavior on the nitrogen cycle [11], these problems

require analysis at the system level. Learning is a complex process as well; students, instructors,

groups, classes, and universities, and external stakeholders are all interacting in unpredictable and

tightly interwoven ways [12].

Figure 1.2. The Cynefin Framework is broken up into four domains: simple, complicated, complex,
and chaotic. The simple domain consists of cause-and-effect relationships which are well understood.
The complicated domain also has consistent relationships, but understanding them requires expert
understanding. Relationships in the complex domain are interwoven and dynamic; modeling alone
cannot predict future relationships with certainty, but relationships can be discovered. Finally, the
chaotic domain does not have relationships that can be modeled or discovered [98]

However, educators and researchers often map learning as a complicated process rather than

a complex process. In circuits courses, for example, learning is usually mapped in a linear way;

if you follow the steps, you’ll reach the right answer. To solve a complicated problem, first you

need to be able to understand electric quantities like voltage and current, and that allows you to

understand basic circuit elements like resistors and capacitors. When you understand how these

elements work alone, then you can start to learn about how they work together in parallel and series.
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These concepts lead into learning about voltage nodes and current loops, and those concepts build

into being able to understand the circuit. There are multiple steps to the process, but it is mapped

in a linear and straightforward way.

We even often simplify engineering down to a complicated process. The Engineering Design

Process tells us that to solve an engineering problem, first we ask a question, then we research more

about the problem and what solutions are available, we brainstorm solutions, we make a plan, we

create a prototype, we test it out, and then we continue to improve it until we have a solution [13].

Modeling learning and engineering as a complicated process might work in the most basic

of cases, but it fails when we start to look at more complex problems such as what happens

when students guide their own learning or when engineers are working on developing a new and

innovative product or solution. In these cases, the learning process transfers from being mapped

as a complicated problem to a complex problem. Work still needs to be done to better map and

understand these processes holistically. Models of complex systems need to incorporate experiment

and observation of the real world, mathematical modeling and analysis, and underlying theory

[14]. By understanding the art of learning and innovation as a complex system, we can improve

our ability to prepare our students to meet the aspirations of the Engineer of 2020 and solve the

problems our ever-changing world is facing.

1.4. Outline

This work explores how data mining techniques can be used to discover information about

open-ended learning, specifically on data collected about students’ learning process when working

on innovation projects in a cardiovascular engineering course. It will look specifically at two machine

learning methods: classification and clustering. Classification is a machine learning method used

to predict which class an item will belong to. In our case, we will use classification to train a model

to predict student performance. Success was defined as creating at least one deliverable with high

external value (e.g. presenting at a conference, competing in a business competition, submitting

an invention disclosure, or publishing a paper). Clustering is a machine learning method used to

group similar items together (in this case, students). The biggest difference between classification

and clustering is that classification is a supervised machine learning method, meaning we tell the

algorithm which students fell into each group. Clustering, on the other hand, is an unsupervised

machine learning method, meaning there are no pre-existing labels.
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We have two main research questions, each with three subquestions:

1. Can classification models predict how students will perform in the course?

(a) Which classification algorithms and feature sets have the best performance when differ-

entiating between top performing students and lower performing students?

(b) At what point in the semester can the classification algorithms predict student trajectory

with sufficient accuracy?

(c) Which features are most likely to differentiate top performing students and lower per-

forming students?

2. Can clustering models tell us more about how students approach the course?

(a) How does the unsupervised clustering model group students?

(b) Do students change clusters throughout the course? If so, how?

(c) What variables are most strongly weighted in forming these clusters?

Chapter 2 outlines the importance of knowledge discovery and data mining, specifically in

the context of complex problems. Chapter 3 introduces educational data mining, its history, and

the most common algorithms and methods. Chapter 4 explores the literature on using educational

data mining in more complex contexts, specifically, open-ended learning environments. Chapter

5 details the data mining process, including choosing the data and running appropriate tasks

and algorithms; excerpts from Chapter 5 were adapted from a research paper titled “Design and

Development of a Machine Learning Tool for an Innovation-Based Learning MOOC,” published at

IEEE LWMOOCs 2019 and was co-authored by Lauren Singelmann, Ellen Swartz, Mary Pearson,

Ryan Striker, and Enrique Alvarez Vazquez. Chapter 6 explores the format of the IBL course

and explores the student population; this chapter is adapted from a research paper titled “Student-

Developed Learning Objectives: A Form of Assessment to Promote Professional Growth,” accepted

for publication at the American Society for Engineering Education 2020 conference and was co-

authored by Lauren Singelmann, Enrique Alvarez, Ellen Swartz, Mary Pearson, and Ryan Striker.

Chapter 7 and Chapter 8 explore the results and evaluate the use of classification and clustering,

respectively. Chapter 7 was adapted from a research paper titled “Predicting and Understanding
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Success in an Innovation-Based Learning Course” accepted for publication at the Educational Data

Mining 2020 conference and was co-authored by Lauren Singelmann, Enrique Alvarez, Ellen Swartz,

Ryan Striker, Mary Pearson, and Dan Ewert. Chapter 8 was adapted from a research paper

titled “Innovators, Learners, and Surveyors: Clustering Students in an Innovation-Based Learning

Course,” accepted for publication at the IEEE Frontiers in Education 2020 conference and was

co-authored by Lauren Singelmann, Enrique Alvarez, Ellen Swartz, Ryan Striker, Mary Pearson

and Dan Ewert. Chapter 9 discusses the meaning of the results and how they can drive educational

reform. Chapter 10 summarizes the work and suggests future directions both short and long term.
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2. KNOWLEDGE DISCOVERY, DATA MINING, AND

MACHINE LEARNING

2.1. Introduction

In the age of information, data is more readily available than ever, but analyzing this data

presents its own set of challenges. Machine learning is the use of algorithms to complete a specific

task without being explicitly programmed. One of the main applications of machine learning is

data mining, or using algorithms to find patterns within data [15]. The result of this process is

known as knowledge discovery in databases. These emerging patterns should be useful and relevant,

and they are usually not able to be found by a human analyzing the data [16]. Machine learning,

data mining, and knowledge discovery in databases are becoming prominent in areas ranging from

the stock market to online marketing and advertising to music and movie recommendations [17].

These algorithms and methods are also being used widely within the engineering field, including to

solve some of the Engineering Grand Challenges discussed in Chapter 1. This chapter will explore

how machine learning, data mining, and knowledge discovery in databases are being used to solve

five of the Engineering Grand Challenges. By understanding how these skills can be used to solve

complex problems like the ones presented in the Grand Challenges, we can apply similar strategies

to the complex data collected from the IBL course. In addition, this chapter will illustrate how

the work presented in the following chapters can contribute to the work aiming to solve the Grand

Challenges, specifically in advancing personalized learning.

2.2. Machine Learning and Data Mining to Solve the Engineering Grand Challenges

2.2.1. Advancing Health Informatics

Machine learning and data mining have been growing in the use of multiple areas of medical

research, contributing to solving the Grand Challenge of advancing health informatics. Five main

applications were identified in [18]:

• Translational bioinformatics - studying molecular processes (e.g. genetics, protein interac-

tions) to better understand how and why organisms behave and respond the way they do

• Medical imaging - using image analysis to make more accurate diagnoses
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• Pervasive sensing - the use of multiple kinds of sensors (e.g. wearables, implantable sensors,

ambient sensors) to make health recommendations

• Medical informatics - analyzing patient data (e.g. doctor visit records, lab results, medication

plans, and immunization records) to better understand potential risk factors and relationships

• Public health - exploring how the health of community members can be effected by the factors

in that community (e.g. air and water quality)

There have been significant advances in the use of machine learning and data mining in

the health field [18, 19], but this is an excellent example of a complex problem, meaning there are

also significant challenges. These challenges can be summarized by the four Vs: volume, velocity,

variety, and veracity [20]. Volume refers to the sheer amount of data available, and this amount

is growing as more information is being added to medical databases. Velocity refers to the speed

at which data is accumulating, but also the urgency required to make timely medical decisions.

Variety speaks to the different types of available data whether that be quantitative or qualitative,

text or images, or structured or unstructured. Finally, veracity refers to the potential for noisy

data, biased data, or abnormalities that could lead to training an algorithm with data that is not

representative of the patient population [20]. Researchers are working on ways to account for these

issues [18, 20], and their work influences not only the medical community, but those working on

using machine learning and data mining to solve any complex problem.

Like most complex problems, health informatics illustrates the importance of using multi-

modal data in order to explore problems with multiple lenses and viewpoints [18], ensuring that

you are accounting for the possibility of biases and inaccurate data [19], integrating expert domain

knowledge into the data mining process [18], and being careful to not make sweeping claims and

assumptions [19].

2.2.2. Making Solar Energy Economical

Although renewable energy is on the rise, fossil fuels are still the predominant source for

electricity in the world. In order for renewable energy sources such as solar energy to become

widely implemented, they need to become more affordable and easier to implement into current

infrastructure [1]. Therefore, the next Grand Challenge is making solar energy more economical.

Machine learning can be used to help this integration by improving solar radiation forecasting.
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Various models have been created to help predict how much solar power will be added to the grid,

allowing the grid’s infrastructure to adapt accordingly without causing outages [21]. However, like

many of the Grand Challenges, solar energy falls into the complex domain because the energy

output relies on multiple variables, making predictions extremely difficult [22]. Although simple

models have shown some success [23], in order to improve efficiency and make solar energy feasible,

these predictions must be improved by accounting for future changes rather than relying only on

past data to train the model [22].

Machine learning making solar energy more economical illustrates why it is important to

avoid only using past data when working with complex systems. As the climate is changing, it is

important to integrate models that account for future changes and consider expert understanding

of the problem [22].

2.2.3. Restoring and Improving Urban Infrastructure

Infrastructure around the world needs to be repaired and replaced in order to continue to

support new technologies and increasing populations, making this another of the Grand Challenges

[1]. Machine learning can either be used as a tool to better map and improve existing infrastructure

or can be implemented into the infrastructure itself, helping to optimize the way we live, work, and

travel.

Keeping infrastructure safe and up-to-date has always been a challenge, but one issue that

is becoming more prevalent is being able to upgrade buried infrastructure like pipes and cables,

especially because there are few existing comprehensive maps or plans [1, 24, 25, 26]. Some re-

searchers are using machine learning models to predict which areas are most likely to experience

failure by training the models with data from previous failures [24]. Prior to the use of computer-

aided vision, inspection and prediction involved experts spending hours looking at camera footage.

Now, this analysis can be automated by using data from pipe scanners, ultrasound, laser profiling,

and infrared technology. Each of these tools has its strengths and weaknesses, so using models that

can analyze this multimodal data can improve accuracy [25]. Some systems combine rules identified

by experts in the field with machine learning in order to create hybrid information systems, helping

to place some bounds around this complex problem [26].

Some engineers are working to integrate machine learning right into the infrastructure itself,

revitalizing our current system. Within transportation, applications include travel route optimiza-
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tion, streamlining finding parking by using sensors and cameras, making smarter streetlights, and

collecting more data from cars, buses, and bicycles to better understand and optimize how vehi-

cles travel [27]. Others are implementing machine learning into the construction of buildings and

other civil projects in order to analyze these projects as complex adaptive systems. Creation of

infrastructure involves many people, resources, and considerations, so this well-rounded approach

has started to lead to buildings that are more safe, green, and inexpensive [28].

Once again, the importance of being able to understand and integrate multimodal data is

clear when attempting to solve complex problems [25, 27, 28]. In addition, these complex models

make use of expert reasoning in order to improve their versatility and flexibility [26, 28].

2.2.4. Securing Cyberspace

As the world becomes more reliant on the cloud for storing data and personal information,

the need for securing cyberspace is more important than ever, adding this to the Grand Challenges

list. Previously, “firewalls” or “perimeter defense” were integrated as main points of security,

blocking potential intruders from being able to access secure data. However, these techniques are

becoming older and weaker as hackers get more innovative in bypassing the security [1]. Some

engineers are working towards securing cyberspace by using machine learning to identify potential

attacks and respond before important information can be breached. There are three main types

of machine learning applied to cybersecurity including misuse-based (using information about past

attacks to identify attacks that are similar), anomaly-based (using normal activity as a baseline and

looking for unusual activity that might signal an attack), and hybrid (a combination of misuse-based

and anomaly-based) [29].

The use of machine learning in cybersecurity illustrates the importance of adaptable models

that can be retrained quickly and efficiently [29]. In order to make real-time decisions about a

problem, the model must be able to take in new information and integrate it into the model.

Similar to the problems seen with using only existing data in the solar energy problem, if only old

data is used, algorithms will do poorly in identifying new types of attacks [30].

2.2.5. Advancing Personalized Learning

Researchers such as Piaget [31], Kolb [32], and Dewey [33] have all explored and modeled the

different ways that people learn, but yet many instructors and institutions still use a one-size-fits-all

approach [1]. Engineers are helping improve personalized learning by working to better understand
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the science of learning, how learners vary, and how data can be collected and used to improve the

learning experience [1]. For example, learning analytics and educational data mining aim to collect

data from students in order to better understand how students navigate learning environments.

This information can then be used to help instructors or make direct recommendations to students.

Educational data mining will be discussed more in depth in Chapter 3.

2.3. Conclusion

Across all of these problems, three themes continue to emerge about using machine learning

to solve complex problems: 1) using multimodal data to create a well-rounded model, 2) imple-

menting expert domain knowledge to help steer your model, and 3) continuing to adjust and adapt

your model over time. Therefore, these themes must be considered when working with educational

data as well. Although engineers are far from solving the Grand Challenges, the work that has

already been done can help guide analysis of the IBL data. Similarly, careful analysis and under-

standing of the IBL data can help add to the ever-growing body of work towards solving the Grand

Challenges, especially within education.
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3. EDUCATIONAL DATA MINING

3.1. Introduction

Educational data mining (EDM) is a field with the goal of “developing methods for exploring

the unique and increasingly large-scale data that come from educational settings and using those

methods to better understand students, and the settings which they learn in” [34]. EDM emerged

as a field in the late-2000s because of the growing popularity of computer-based learning tools and

online learning, making data available for researchers to analyze [35, 36]. Applications of EDM as

listed in [35] include predicting student performance, making suggestions for instructors, analyzing

and visualizing educational data, grouping students, and improving courseware.

3.2. Techniques

There are five main techniques used in EDM including classification, clustering, association

analysis, sequential pattern analysis, and process mining. These tasks are depicted in Figure 3.1

[37].

3.2.1. Classification

Classification is placing each object into a category by using its properties [37]. The four

main functions of classification in academic data as compiled by [37] are:

• Predicting academic success - This can be predicting success at the university or program

level, including who will graduate on time, who will dropout, or who is most likely to need

additional support and advising.

• Predicting course outcomes - This prediction task is at the course level, including who is most

likely to pass/fail, who might dropout, and who might get what scores on certain assignments.

• Predicting success in the next task - This application uses data from previous tasks in order

to predict success on the upcoming tasks.

• Metacognitive skills, habits, and motivation - This can consist of better understanding the

ways students learn, their engagement level, and what resources might benefit students most.
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Figure 3.1. Types of tasks commonly performed in educational data mining

3.2.2. Clustering

Clustering is an unsupervised form of EDM, meaning no categories are predetermined.

Instead, the algorithms look for similar data points and groups them together into clusters. Uses

of clustering in EDM as listed in [38] include:

• Analyzing student motivation, attitude, and behavior - This data can take the form of survey

responses, annotations on class materials, or student interviews to better understand what

patterns can be found in students’ goals or motivations for taking the course

• Understanding learning preferences - Various learning models and theories have been pub-

lished in order to help better understand how students learn. By clustering students into these

groups, teachers or learning platforms can present personalized content and recommendations.

• e-Learning - This application of clustering takes data directly from learning management

systems to form activity clusters. The data can include click streams, discussion posts, visit

length and frequency, etc.

13



• Collaborative learning - Clustering can also be used to better understand and evaluate collab-

orative work by using online activity of members of a group or expert observations, potentially

improving group dynamics and helping students grow in their ability to work well in a team.

3.2.3. Association Analysis

Association analysis is a task that finds variables within data sets that have a high affinity for

each other. This produces IF-THEN rules that are an easy and straightforward way to understand

relationships within the data [37]. Association analysis is one of the most common tasks to be

performed on educational data because the rules discovered can usually be easily understood by

instructors. Although it does not have the predictive power of classification, it does offer more

flexibility. Classification aims to put data points into specific categories, meaning there is usually

one variable that is being considered the dependent variable (e.g. predicting pass or fail students).

In association analysis, on the other hand, rules can be formed with any variables, therefore finding

relationships that may not have been discovered in a classification problem.

[35] lists a variety of tasks that have been conducted using association analysis including:

• Using student behavior to recommend learning materials - By assessing what students know

and by looking at what resources similar students found helpful, the algorithm can recommend

the most helpful resource for the student.

• Finding relationships that could help an instructor improve a course - For example, maybe if

a student completes a certain activity, then they are likely to get a higher score on a certain

assessment.

• Finding groups of questions that students are likely to perform similarly on - By exploring

what questions have similar response rates, questions can be grouped into categories. An

instructor can then look at those categories to see if there are underlying misconceptions that

are causing students to answer groups of questions incorrectly.

3.2.4. Sequential Pattern Analysis

Sequential pattern analysis is the exploration of patterns of events. Each sequence contains

subsequences made up of items or events. By looking at subsequences that occur most often

across sequences, information can be gained about how the order of events effects the outcome for
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that particular sequence [37]. Sequential pattern analysis differs from the other tasks previously

mentioned because it focuses on the temporal component.

Four applications of sequential pattern analysis as reported in [37] are included below:

• Create appropriate learning paths - Sequence mining can help improve the order of activities

and lessons in a course to improve student understanding of the content.

• Adapt and customize resource delivery - The creation of learning paths can be taken one step

further in order to customize the delivery based on student behavior. The system can assess

the student’s learning strategies and content knowledge and recommend resources accordingly.

• Identify interaction sequences that are most likely to lead to problems or success - Student

pathways can also be used in order to find what user patterns are most likely to differentiate

between success or failure of an activity.

• Recommend links and web pages for a student to visit next - Similar to a website that

recommends a product based off of other user’s shopping activities, sequence pattern analysis

can recommend web pages that a user might find helpful based off of what other users have

looked at.

3.2.5. Process Mining

Process mining takes sequential pattern analysis one step further; it allows for multiple

events happening at once and explores variables associated with each event rather than just the

event itself [39]. Whereas sequence mining can be thought of as a discrete signal, process mining

can be thought of as a continuous signal.

The three levels of education processes that can be explored using process mining according

to [37] include:

• At the university level - This level can explore things such as how students progress through

their curriculum, how students change their major, or factors that might effect likeliness of

leaving a program or the university.

• At the course level - This level explores how students progress through assignments, what

resources they view or return to, or even how they approach exams or other assessments. This
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is especially helpful in e-Learning and blended learning classes because students can interact

with the material at different times and rates.

• At the project level - Depending on the nature of the project, it might also be possible to

explore how students work on specific projects. For example, work has been done to track how

students work together on programming assignments by exploring the commits submitted by

each group member.

3.3. Conclusion

These five methods are the building blocks of most EDM problems, but there is still much

to be solved in this field. In 2010, [35] conducted a review of the most influential work in EDM up

to that point. The review ended with future work and research lines that the authors believe will

be the most important and influential. They include making tools that are easier for educators to

use, integrating tools directly into e-learning platforms, standardizing data and models, and tuning

traditional data mining algorithms to better fit educational models. Although these future lines

of work are older, they still are relevant to any EDM research; it is important to have tools that

educators can use, integrate these tools into existing platforms, and ensure that education theory

is being considered and implemented when appropriate.

More recently, the 2020 Educational Data Mining Conference put out a call for papers that

fit within their topics of interest. The entire list can be found at [40], but the 3 listed below have

inspired the direction of the research presented.

• Modeling real-world problem solving in open-ended domains

• Data mining to understand how learners interact in formal and informal educational contexts

• Modeling student and group interaction for collaborative and/or competitive problem-solving

This call for understanding how learners interact, how groups work on problem-solving, and

how students navigate in open-ended domains directly inspires the analysis detailed in this thesis.

Researchers are just starting to scratch the surface in these areas, but current progress can help

direct the analysis of the IBL data.
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4. EDUCATIONAL DATA MINING IN OPEN-ENDED

LEARNING ENVIRONMENTS

4.1. Introduction

Open-ended learning is a pedagogical approach that leverages students’ intrinsic motivation

to learn. Students are encouraged to develop their own approach to learning, and there are multiple

ways to solve a problem or learn about a concept [41]. Open-ended learning requires students to

work on authentic problems and practice metacognition. Benefits of open-ended learning include

increased motivation, improved student engagement, and better retention of information [42]. IBL

is an example of an open-ended learning environment because students are expected to determine

their own way to meet course objectives by tying cardiovascular engineering concepts to a project

of their group’s choosing.

In addition, we draw from research from a closely related field to open-ended learning envi-

ronments: self-regulated learning. Self-regulated learning is the practice of “planning, monitoring,

and modifying” cognition [43]. Many open-ended learning environments are designed to help stu-

dents practice self-regulated learning [44]. For example, IBL students are practicing self-regulated

learning because they are writing their own learning objectives, monitoring their progress through-

out the semester, and adjusting their plan as needed.

EDM has shown great potential in allowing us to better understand open-ended learning en-

vironments and self-regulated learning [45, 46]. This chapter will explore both open-ended learning

environments and self-regulated learning in a variety of applications: online learning environments,

programming, and project-based learning. Studies that use EDM to explore these applications will

be summarized, and we will detail how these studies inspire the exploration and analysis of the

IBL data.

4.2. Online Learning Environments

Online learning environments have been gaining popularity over recent years due to better

affordability, convenience, and freedom [47]. This added freedom means students can navigate the

environments in many ways, and these trajectories can be tracked by the online learning platform.
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For example, one group of researchers created a biology tutoring program that allows stu-

dents to interact with complex material in multiple forms. The students can take quizzes to assess

their knowledge, add notes, and make and track progress on goals. The researchers were then able

to cluster similar students and then look for action sequences that occurred most frequently in each

cluster [48]. Another group of researchers created a learn-by-teaching environment where students

teach a virtual “student” about a topic in order to demonstrate their learning. Their actions in the

platform could be tracked and compared to their performance in the course [49]. Some preliminary

work has also been done to explore student behavior in lab [50] and simulation environments [51].

In contrast to exploring student behavior, other researchers have taken an approach that

integrates student attitudes and perceptions by having them take surveys asking about course

difficulty, quality, and level of support; [52] used this approach in an SAT math course, and [53]

used it in a language tutoring software.

This use of EDM with online learning management systems can guide the development and

use of our own learning management system for the IBL course. By tracking student behaviors over

time, patterns can be found which lead to better understanding of student learning in the course.

4.3. Programming

Learning how to program is another example of an open-ended learning environment. When

working on a program, there are many different solutions and many different ways to get to each of

those solutions, making an unbounded number of potential states [54, 55]. Advances in EDM and

machine learning make these tools a great resource in better understanding how students learn how

to program, if and how we can predict student success in programming, and how to automatically

assess and provide feedback to students [54, 55, 56].

A review on the use of EDM on programming data broke studies up into three main cat-

egories: students, environments, and programming [56]. In the student category, algorithms are

designed to be able to tell what concepts a student knows or if they are at risk of dropping out or

not passing the course. The environment category aims to be able to provide feedback to students

based off of their work or automatically grade assignments. The programming category works to

explore the programming process rather than just the final solution; it looks at if a solution is

working to approach a goal, what features make up a successful program, and how errors effect the

code [56].
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Some of the studies found within the programming field can be adapted to the IBL student

data. For example, one group of researchers has attempted to use the programming actions of

students to predict if they will need help with the assignment. They also explored at what point

in the activity their model had the best performance [54, 57]. This study directly inspired the

classification experiments presented in Chapter 7; we explored many of the same classification

methods and applied a similar trajectory exploration in order to see at what point in the semester

we could tell if a student would be successful.

Similarly, another group of researchers used coding data over time to not only predict

student success, but also cluster student behavior into distinct groups. These groups provide more

insight into different approaches students can take, rather than just sorting students into binary

successful/unsuccessful groups [55]. This study showcased the potential benefits of using clustering

as performed in Chapter 8 of this thesis.

Another group of researchers has developed a platform that can observe how students are

working on a program and make suggestions that are personalized to the progress they have made

so far [58]. This sort of work could inspire future work within the IBL data; if pathways emerge

from the data, hints can be generated for students that help them reach success while still aligning

with their current learning goals.

4.4. Project-Based Learning

Project-based learning is another example of an open-ended learning environment that is

being explored using EDM. Project-based learning is a form of constructionism, or a learning

theory that focuses on students creating an artifact in order to better cement learning [59, 60].

Some researchers have asserted that EDM is the most appropriate tool to study constructionism

because it allows for multiple correct solutions and strategies, especially when using unsupervised

methods such as clustering [61].

One application of EDM to explore contructionism and project-based learning is within

computer-aided drafting projects. In order to better understand how students use different exper-

imentation strategies, researchers have used log data from a computer-aided drafting environment

as students worked on designing an energy-efficient house [62, 63]. The use of log data gives an

accurate temporal representation of student learning [64].

19



Similarly, EDM can be used to explore students working on robotics projects. Some re-

searchers have tracked body language, how students are positioned in relation to each other, noise

level, and types of code blocks in their Adruino code [65, 66]. Other researchers have looked at the

type and order of actions completed (e.g. adding a move block, attaching a sensor, etc.) [67].

EDM is not widely used in project-based learning yet, but researchers have argued that

there is great potential in using EDM to better understand how students work on open-ended

problems [61], and some preliminary work has shown to be successful [62, 63, 65, 66, 67].

4.5. Conclusion

The use of EDM in online learning environments, programming, and project-based learning

show that there is great potential in using EDM to study the IBL data. Classification can be used

to help identify factors that lead to success in the learning environment, and clustering can be used

to identify student pathways beyond a binary successful/unsuccessful classification.
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5. METHODS

5.1. Introduction

In order to discover patterns and information from the data, we must identify and preprocess

our dataset, choose appropriate algorithms, and decide appropriate evaluation metrics. This chapter

discusses the methods by detailing each step in the Knowledge Discovery in Databases (KDD)

Process as seen in Figure 5.1 [16]. This chapter is meant to give greater detail about how various

metrics are calculated, the theory behind various steps, and how the tasks and algorithms were

chosen.

Figure 5.1. The process for knowledge discovery and data mining [16]

Some material in this chapter was drawn directly from [68], a publication co-authored by Lauren Singelmann,
Ellen Swartz, Mary Pearson, Ryan Striker, and Enrique Alvarez Vazquez. Lauren Singelmann had primary respon-
sibility for developing the data structure used here. Lauren Singelmann also drafted and revised all versions of this
chapter. Other authors served as reviewers of the content.
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5.2. The KDD Process

5.2.1. Developing an Understanding of the Application Domain

This step consists of researching the problem at hand as well as any prior knowledge in order

to determine appropriate goals. Learning more about the application domain is where researchers

should start, but should also be an important component throughout the entire KDD process. In

addition to using data mining and machine learning on our data, various other approaches were

taken to get a full picture of the course. The pedagogy behind the work was explored, the learning

objectives were analyzed by the research team, and survey data from the students was collected

and analyzed. The work from this step makes up Chapter 6.

5.2.2. Selecting and Creating a Data Set

Creating the data set requires the researcher to investigate what data is already available,

decide what other data is needed, and determine an appropriate way to collect that data and get

it into one data set. We chose to start with log data because it is shown to be more accurate than

relying on student’s reporting of their learning process and metacognition [64].

5.2.2.1. Feature Selection

Features were collected at the following levels: 1) Class, 2) Student, 3) Learning Objective,

and 4) Deliverables.

• Class - The highest level that data was collected is the class or cohort. Each semester the

class is held, the class and online learning analytics system change. Therefore, it is important

to have this information tied to each iteration of the class. This allows the system to group

students that were taking the class at the same time, students that had the same instructor,

or students that had the same in-class meeting location.

• Student - The second level of data that was collected is at the student level. Information was

collected before and during the course to help the system understand the student’s background

and how they progress through the course. Demographic information was collected so we could

explore how specific groups progress through the open-ended course.

• Learning objective - Each student was able to log multiple learning objectives within the

system. Because these learning objectives changed throughout the course, all changes were
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recorded. Students could type in their titles and descriptions, but they also sorted learning

objectives into predefined categories to help group similar learning objectives together. In

addition, learning objectives were also categorized using Bloom’s Revised Taxonomy [69].

Low-level learning objectives might consist of tasks like memorizing the structures and func-

tions of the heart, while high-level learning objectives might consist of tasks like creating a

new component for a pacemaker. This classification process helps them determine appropriate

ways to assess and document their learning.

• Deliverable - The last level at which data was collected is the milestone/deliverable level.

Students divided all learning objectives into various deliverables. For example, to accomplish

the learning objective of presenting at a conference, the student might need to submit an ab-

stract, receive feedback, create a poster, and present the poster. Each of these is a deliverable

that will be monitored within the system. In addition, the students were able to mark off

when each deliverable was completed, creating a virtual timeline of the student’s learning.

Because the deletion of a deliverable can be just as telling as the creation of one, all records

were tracked in real time.

5.2.2.2. Feature Collection

All features were collected through an online learning management system for students in

the course. Students log in with their unique username and password to ensure that each student

sees personalized content. They then can add, edit, or delete learning objectives and deliverables.

5.2.3. Preprocessing and Cleaning

Preprocessing consists of dealing with missing data, noise, and outliers. The preprocessing

step can be as simple as removing incomplete data or as complicated as using statistical methods

to try to predict values for a missing data attribute.

Every time a student added or adjusted a learning objective, a new entry was added to a

Structured Query Language (SQL) database. Entries from the database were then exported to a

.CSV file. In order to prepare the data for analysis, the data were converted from raw log events

to entries in a spreadsheet that broke each event into multiple columns (e.g. time of event, type of

event, name of learning objective, category of learning objective, etc.)
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Another part of the preprocessing step included adding missing information. The original

goal is that no human intervention would need to take place within the SQL database, but the

original database was not displaying the number associated with each deliverable. The bug was

fixed, but previous entries had to be fixed manually.

5.2.4. Data Transformation

Data transformation is making changes to the data so they are able to be used by data

mining algorithms. This step consists of choosing which features will be used, reducing dimension,

or discretizing numerical attributes.

For this step, the data from the spreadsheet from the previous step were converted to

quantifiable features (e.g. number of learning objectives, time of first learning objective, number of

deletions, etc.) Similarly, any text that students wrote was extracted; words were then tokenized

and counted in Python.

Next, all features were scaled to a value between 0 and 1. For some of our classification

models, feature selection was performed by using a function in the scikit-learn library called selec-

tKBest which allows us to input a value for K and a performance metric. Our performance metric

was Chi-Square, which is calculated using Equation 5.1 where Oi represents the observed values

and Ei represents the expected values.

χ2 =
∑ (Oi − Ei)

2

Ei
(5.1)

Therefore, the K features with the highest Chi-Square value are the only ones used in the final

model. The comparison of the models that did and did not use feature selection is included in

Chapter 7.

5.2.5. Choosing Appropriate Data Mining Task

As seen in Chapter 3, there are five main tasks performed in EDM: classification, clustering,

association analysis, sequential pattern analysis, and process mining. We chose to start with

classification in order to predict which students would be successful in the course and clustering in

order to see if any other patterns emerged.
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5.2.6. Choosing the Data Mining Algorithm

After choosing your tasks, there are multiple algorithms that can be chosen from. One

deciding factor when choosing algorithms is the type of data collected. Some algorithms allow only

for categorical data, others only allow for quantized data, and others allow for both. In addition,

the size of the data set is important to consider. With the small, complex data sets often found

in educational data, overfitting can be a big problem. When overfitting occurs, algorithm might

perform well on training data, but poorly on new data. There also needs to be a balance between

power, flexibility, and ease of understanding. Instructors and other non-experts in data mining are

more likely to understand and trust the algorithm’s findings if they are able to understand how they

work. All of these variables must be weighed when choosing an appropriate data mining algorithm.

5.2.6.1. Choosing Classification Algorithms

Possible choices for classification include decision trees, nearest neighbors classifiers, neural

networks, support vector machines, Bayesian classifiers, and logistic regression. These algorithms

are shown in Figure 5.2.

Decision trees are a common, simple form of classification. The decision tree is made up

of branches, where each branch represents a possible outcome. Although decision trees are easy to

understand, they can struggle with educational data because they are prone to overfitting if the

data sets are small and are often unstable (a small change in data can lead to a major change in

the structure of the tree).

In order to use something that updates more efficiently with new data, K-Nearest Neighbor

Classifiers can be considered. K-Nearest Neighbor Classifiers work by finding similar data points

rather than building a global model. This algorithm is fairly simple to understand and implement

because it only needs two parameters: number of neighbors to consider K and distance d. Choosing

K is straightforward, but one of the main disadvantages of this method is the difficulty of choosing

d. Because the features of educational data sets are often on different scales, it is often necessary

to develop a weighted distance function, meaning lots of data is needed to correctly determine the

weights. One possible solution is to remove features that are not relevant to the classification, but

that can be difficult to determine.
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Neural networks are extremely common in machine learning problems because of their

flexibility and power. Neural networks are comprised of algorithms inspired by the workings of the

human brain; information moves through the network by passing through nodes that each perform a

different function on the data. As more and more data is passed through the network, the more the

network learns and the more accurate it becomes, making it especially good at image and language

processing. However, they are usually not the most appropriate algorithms for educational data

because they require large amounts of numeric data and a lot of knowledge about how to best train

the model. Educational data sets usually do not have enough quantifiable data and are therefore

prone to overfitting. In addition, neural networks are seen as somewhat of a black box, meaning

that the workings might be difficult to understand.

If our data set is small, support vector machines might be a more appropriate algorithm

because of their ability to find nonlinear class boundaries even with little data. Support vector

machines work by using kernel functions that implicitly map the data to a higher dimension without

using valuable computing time. When the data is converted to a higher dimension, a linear class

boundary can be found without overfitting. Sometimes this algorithm struggles to deal with outliers,

but this can be avoided by using soft margins (allowing some data points to be misclassified by

the algorithm if it appears that the point is an outlier). Support vector machines also have some

disadvantages; like neural networks, all features must be quantized, and it can be difficult to

understand the workings of the algorithm.

Naive Bayes is another algorithm that is common in EDM. The algorithm takes training

data and determines the probability of all features for each possible class. It can then return the

most probable class given new sets of feature values. The algorithm works using categorical input

variables, so any numerical variables must be discretized. Problems can occur when using Naive

Bayes if a variable does not appear in the training set but appears in later data. In addition, Naive

Bayes assumes that all variables are independent of each other, which is not often the case in real

life. However, there are ways to help offset these issues, and Naive Bayes is still widely used because

of its ease and relatively good performance compared to other models.

Finally, logistic regression is another algorithm that works to find a class boundary that

minimizes the classification error. It is similar to a support vector machine, but it calculates error

in a slightly different way.
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With our data, we wanted to choose algorithms that 1) allowed for quantifiable features

(not just categorical), and 2) had the ability to extract the most pertinent features. Predicting the

right class can be helpful, but understanding why a prediction was made can be even more helpful

for an instructor. Therefore, support vector machines, logistic regression, and K-Nearest Neighbors

were chosen as options.

Figure 5.2. Common classification algorithms

5.2.6.2. Choosing Clustering Algorithms

Within clustering, there are two main types: hierarchical and partitional [16]. Hierarchical

clustering determines which students are most closely related and forms a tree with each student

acting as branch. Partitional clustering breaks students into a specific number of groups; each

student falls into only one group.

We chose hierarchical clustering because by looking at the branches of the tree, we can see

how many clusters emerge. In addition, information can be gained by seeing the which students

and clusters are most closely related. We used a Ward’s agglomerative hierarchical clustering as

detailed in [70].
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5.2.7. Employing the Data Mining Algorithm

This step consists of running the data mining algorithm and tuning its parameters until

an acceptable result is achieved. The algorithms were all written and run in Python using the

following libraries: Numpy [71] to perform mathematical functions, scikit-learn [72] to perform

machine learning tasks and evaluation, pandas [73] to read and write CSV files, and NLTK: The

Natural Language Toolkit [74] to process the raw text data extracted from students’ learning

objectives. Python is often used in EDM because of its power and flexibility [75]. In addition,

Python is open source and could be more easily implemented into a learning management system.

5.2.8. Evaluation

Evaluation is quantifying the performance of the results acheived in Step 7. This step also

consists of comparing each of the models that were built to see which has the highest performance.

5.2.8.1. Evaluation of Classification Models

For classification, a variety of performance metrics can be used for each model. For this

work, accuracy, recall, F1 score, and Receiver Operating Characteristic Area Under the Curve (ROC

AUC) were calculated and used for evaluation because they are commonly used in classification

EDM problems [54].

Accuracy of a model calculates the percentage of correct classifications. It is the most

commonly reported performance metric, but does not always give a complete picture, so other

metrics should be used as well. In our case, accuracy tells us how many students are model

correctly classified into either successful/unsuccessful. Accuracy can be calculated using Equation

5.2.

Accuracy =
TruePositive+ TrueNegative

Total
(5.2)

Recall, also known as sensitivity, gives the proportion of true positives to total positives. In

our case, recall tells us how many of the low performing students were correctly identified. Recall

was chosen as a performance metric because we would rather have a student who was on track in

the course be identified as potentially needing help than have a student who is not on track be

identified as a student who doesn’t need as much help. Recall can be calculated using Equation

5.3.

Recall =
TruePositive

TruePositive+ FalseNegative
(5.3)
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The F1 score of a model is the harmonic mean of precision (how many of the identified

positives were actually positives) and recall. F1 score is advantageous because it takes into account

both precision and recall. In our case, precision looks at how many of the students that we identified

needing help actually needed help, and recall tells us how many students that needed help actually

were identified as needing help. F1 score can be calculated using Equation 5.4.

F1 = 2 ∗ Precision ∗Recall
Precesion+Recall

(5.4)

A ROC is a graph that has True Negatives on the X-Axis and True Positives on the Y-Axis.

It plots points for the entire range of thresholds (or cutoff points between classes). The typical

threshold value of a classifier is 0.5. If the model predicts a probability of less than 0.5 for an item,

that item is classified as a 0. If the the model predicts a probability of more than 0.5, that item is

classified as a 1. The ROC allows us to see how the classifier works at any probability threshold.

In order to quantify the ROC, we can calculate the AUC. A ROC Auc of 1 means that the model

perfectly differentiates between 0s and 1s, a ROC AUC of 0.5 means that the model is equivalent to

random guessing, and a ROC AUC of less than 0.5 means that the model is worse than randomly

guessing. In the context of the IBL data, a high ROC AUC means that there was clear separation

between the students that would achieve high external value and those that wouldn’t.

For all of these metrics, ten-fold cross validation was used, which is a practice often found in

EDM (e.g. [76, 77, 78]. Many machine learning problems split their data into a training set and a

test set; the model is trained with the training set and accuracy is calculated for the test set to see

how well the model works on new data. However, when working with a small data set of students

who are all very different, it is imperative to use all students’ data when training the model; if any

student is not included in the model, important insights might be missed. That being said, if all

students are included in the training set, there is no test set to evaluate the model. Therefore, a

method called cross validation should be used. In k -fold cross validation, the dataset is split up

into k equal parts (folds). k -1 folds are then used to train the data, and the model is tested using

the last fold. Accuracy, recall, F1 score, and ROC AUC can then be calculated for that iteration.

This is then repeated k times. Each fold is used as training data in k -1 of the iterations and as test
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data during 1 of the iterations. The average of the accuracy, recall, F1 score, and ROC AUC can

then be calculated across all k iterations to get a final value [79].

Figure 5.3. The Receiver Operating Curves (ROCs) for 3 different datasets are graphed. The false
positive rate is graphed on the X-axis and the true positive rate is graphed on the y-axis. Each
point on the graph represents a different decision boundary, or the value that differentiates between
positive and negative classes. The yellow dataset has a clear boundary between the Xs (negative
cases) and Os (positive cases). Therefore, the ROC has an AUC of 1. The red dataset still has
some separation in the Xs and Os; the ROC AUC is 0.8. The blue dataset has the least separation
in the Xs and Os; the ROC AUC is 0.6. Note: Although the yellow dataset has a perfect ROC
AUC score of 1, the classifier itself would not have a perfect classification. The decision boundary
of a classifier is automatically set to 0.5. Therefore, if we split the yellow dataset at 0.5, the O at
about 0.45 would be classified as a negative case, putting the classifier accuracy at 0.9.

5.2.8.2. Evaluation for Clustering Models

Evaluation for clustering is less straightforward. Because there are no classes assigned to

each data point, it is not possible to calculate accuracy or other quantifiable metrics. Rather, the

success of a clustering method is determined by the amount of information the results provide [37].

If the clustering model provides new insights, then the model can be deemed successful. In addition

to exploring the information provided by the model, we also compared the algorithm’s clustering

of students to the instructors’ clustering of students. This is not necessarily a measure of accuracy,

but the results of this comparison can help us gain insights into the model.

5.2.9. Using Discovered Knowledge

By using the discovered knowledge, changes can be made within a system. The success of

the entire process is determined in this step because it becomes clear if the knowledge gained was
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only applicable in one snapshot or if it can be applied at a wider scope. Multiple patterns and

insights were discovered during the KDD process, but future work will be needed in order to see

how well the models hold up.

5.3. Conclusion

This chapter detailed the KDD process and gave details about the algorithms chosen and

evaluation metrics. Chapters 6, 7, and 8 all use the theory and methods presented.
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6. DEVELOPING AN UNDERSTANDING OF

INNOVATION-BASED LEARNING

6.1. Introduction

The first step of the KDD process is to have a strong understanding of the domain you

are working in. Therefore, the work detailed in this chapter helped guide all future decisions and

conclusions. This chapter will discuss the motivation behind Innovation Based Learning (IBL),

detail the process of IBL, and explain how it is applied in a Cardiovascular Engineering course. It

will also give examples of student learning objectives, discuss the reliability of IBL as an assessment

form, and speak to student attitudes about the course. Finally, it will present some key takeaways

from the assessment process for both instructors and educators. This initial exploration of the

assessment process provided us with a better understanding of the students and course, which

plays a role in the analyses discussed later in the thesis.

6.2. The Motivation behind Innovation Based Learning

In the world of engineering (and beyond), an ability to innovate is of the utmost impor-

tance. However, traditional high-stakes assessments have been shown to squelch innovation both

for the instructors organizing the course and the students that are working within the boundaries

of the course [81]. Therefore, work is being done to design assessment that allows for student

freedom with strategies like project-based learning and learning portfolios [82]. Many researchers

have found benefits when implementing more opportunities for student-directed learning both in

higher education [42, 83, 84, 85] and the K-12 system [86]. Giving students ownership and flexi-

bility increases motivation [84, 42], improves student engagement [87, 42], helps with information

retention [87, 88], and promotes lifelong learning [89, 88].

6.3. Format

The assessment process has three main components: 1) Students develop their own learning

objectives and share them with the class and instructor, 2) Students use Bloom’s Taxonomy to

Some material in this chapter was drawn directly from [80], a publication co-authored by Lauren Singelmann,
Enrique Alvarez, Ellen Swartz, Mary Pearson, and Ryan Striker. Lauren Singelmann drafted and revised all versions
of this chapter. Other authors served as reviewers of the content.
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help illustrate to what level they will learn each of their desired objectives, and 3) Students will be

assessed based on the amount of external value they achieve through their objectives.

6.3.1. Student-Developed Learning Objectives

Normal assessment usually has instructors develop learning objectives and ways to assess

that those learning objectives are met. However, in this form of assessment, students fill this

role. While working on a project and learning course content, students are expected to write

learning objectives that explain what they will learn, to what level they will learn it, and how

they will demonstrate it. By writing learning objectives, students are taking part in the process

of metacognition, which helps solidify both content and skills [90]. To give students ideas for

objectives, categories are given to the students from which they can choose. These categories range

from literature review to data collection to conference presentations to business models.

6.3.2. Bloom’s Taxonomy

Because of the large amount of freedom when writing objectives, Bloom’s 3D Taxonomy of

Learning [69] is used to help provide students with scaffolding. In the first week of class, students

are taught about the taxonomy (shown in Figure 6.1) and learn about how to build from low-

level to high-level learning. Students start by showing low-level learning (e.g. writing a report

that shows understanding of concepts) which then builds into high-level learning (e.g. publishing

a paper about the creation of an experimental procedure). Classifying learning with Bloom’s 3D

provides structure while still allowing for student freedom.

Figure 6.1. Bloom’s 3D Taxonomy adopted from [15]
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6.3.3. External Value

Assessment in the course is done by measuring external value, which consists of 1) providing

value outside the classroom, and 2) some sort of external review from the scientific community or

end-users. For example, an in-class presentation would be lower external value than presenting at

a business pitch competition. Other examples of external value are shown in Table 6.1. Students

feel invested because they have the freedom to choose a form of external value that most closely

aligns with their personal and professional goals, and they are able to work on meaningful solutions

that benefit their community.

Table 6.1. Examples of deliverables at each level of external value

Level of external value Examples

Low Tests, quizzes, homework, in-class surveys, reviewing others’
evidence, documented general assistance to the class

Medium Standard operating procedures, non-refereed conferences,
providing expertise to other research groups in a lab

High Invited outreach activities, refereed conferences, refereed
journal manuscripts, scholarships, fellowships, awards, in-
vention disclosures, business pitches, business plan compe-
titions

6.4. Application in a Cardiovascular Engineering Course

6.4.1. Structure of the Course

A 3-credit Cardiovascular Engineering Course offered by the Department of Electrical and

Computer Engineering has used a form of this assessment style for the last four years, and student

data was collected during the most recent iteration of the course. Students learn five main car-

diovascular engineering concepts (functional block diagram of the cardiovascular system, resistance

and compliance concepts, pressure/volume loops and time domain, ECG, and arterial systems) and

are expected to demonstrate their competency in each of these areas. These objectives fall under

the category of Discipline Specific Knowledge 0 (DSK0), the only required objective. Students

watch videos outside of class about each of the topics and are expected to come to class ready to

participate in worksheets and discussion. Beyond DSK0, students are allowed to write their own

objectives and edit them as the course goes on. Class time is dedicated to both digging deeper
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into DSK0 concepts and having students present learning updates where they share their objectives

with the class and instructors, get feedback, and offer support to other groups [5, 91]. If students

show competency in each of the five areas of DSK0, they are at a grade level of a C. If students

apply the knowledge to a project, they are at a B grade level. Finally, if students achieve high

external value with their project, they will receive the grade of an A.

6.4.2. Choosing a Team and Topic

As students decide on learning objectives, most of the learning is based around an innovation

project that teams choose. At the beginning of the semester, students look at cardiovascular-related

funding opportunity announcements from agencies like National Science Foundation and National

Institute of Health to determine projects of interest. From there, students pitch project ideas and

form teams based around the projects [92]. Students are not evaluated based on their ability to

solve the problem presented in the funding opportunity announcement, but rather on their ability

to demonstrate how they applied their learning to their innovation project and share it with a

broader audience.

6.4.3. Logging Learning Objectives

Students use an online portal to log learning objectives and corresponding deliverables,

allowing them to track progress on each objective in real time [93]. Each student has multiple

learning objectives, and each learning objective may have one or more deliverables. Learning

objectives are categorized with Bloom’s Taxonomy and the Learning Objective codes. Deliverables

are categorized with the level of external value, expected completion dates, and current progress

level (not started, in progress, and completed).

6.5. Methods

6.5.1. Participants

28 students chose to share their learning objectives during the span of the course. Of those

28 students, 22 were male and 6 were female, and the mean age of the group was 26.5. There were

13 undergraduate seniors, 3 Masters, and 11 PhD students (1 student did not provide a response

to this question). A variety of majors and programs were also represented in the sample. The

class is offered by the department of Electrical and Computer Engineering, but other departments

allow their students to take the class for technical elective credit. 9 students were in Biomedical

Engineering, 9 in Electrical Engineering, 5 in Mechanical Engineering, 4 in Computer Engineering
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and 1 in Health, Nutrition, and Exercise Science. This offering of the course was different from

other years in part because students from a partner university and distance students were allowed

to enroll. 20 of the students in the study were from the local university, 5 were from a partner

university, and 3 were distance students.

6.5.2. Learning Objective Collection

Throughout the semester, all students logged their progress in an online portal where they

could add, categorize, update, and delete learning objectives and deliverables. Whenever a student

made an addition, change, or deletion, the event was logged in a searchable database [68]. Therefore,

in addition to being able to analyze the end state for each student, we could also analyze the steps

that it took to get there. Trace data were collected because self-reported data about metacognition

is often inaccurate. Although this method loses some student perspective, it does gain temporal

accuracy by being able to reference the log data directly [64].

6.5.3. Assessment Reliability

In order to measure the reliability of the assessment process, all six members of the instructor

team graded the level of external value of each of the students in the class. Two of the raters

consistently attended class, and all six have either taken or taught the class in the past. The raters

discussed the grading criteria, but did not discuss individual instances until after the individual

ratings had been completed. The interrater reliability was calculated by taking Fleiss’ Kappa,

which measures agreement while factoring out agreement due to chance [94].

6.5.4. Post-Survey

During the last two weeks of the semester, students were asked to fill out an online survey

about the class. 24 students responded to the survey, and it should be noted that the students

that completed the survey are not necessarily the same students that agreed to share their learning

objectives. 26 questions were asked, 5 of which were most pertinent to the research questions of

this paper and will be discussed here. Other questions were focused on topics such as the team

formation process, team composition, and use of various software in the class. Those questions will

be published in other papers exploring these specific topics. The 5 questions are listed below:

• Note something that this class has inspired you to do better or differently. (Free response)
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• Describe new competencies you have learned/developed (skills, tools, methods, software).

(Free response)

• Describe qualities you have discovered about yourself (characteristics, traits, features) through

the class. (Free response)

• I would recommend this class to another student. (5-point Likert scale)

• How would you describe the class to a peer? Pick all that apply. (15 words were included as

options as well as a space for students to write their own)

The first three questions were adapted from Jaeger [95]. The goal of these questions was to assess

student perceptions about skills they have gained without priming them by asking about specific

skills. The goal of the last two questions was to assess overall student sentiment about the class.

6.6. Results

6.6.1. Learning Objective Collection Results

Of the 28 students that shared their learning objectives, 18 clearly achieved high external

value, 8 were borderline, and 2 did not provide any evidence at all. Learning objectives for two

example students are included below. Student A is an example of a student that clearly achieved

high external value. Student B is an example of a student that attempted an innovation project

but was not quite up to the level of high external value.

Student A had five main objectives, each with clear deliverables and linked evidence. They

are shown in Table 6.2. The student’s project was to work with their team to build a prototype of

a multi-parameter biosensor. In addition to learning the main fundamentals of the cardiovascular

system (DSK0), they also determined that they needed to better understand how ECG, cough

frequency, and respiratory rate relate to each other (DSK3). They showed that they learned

these topics by summarizing what was read in a variety of publications. In addition to gaining

information, they also worked on team conduct, evaluating a product, and outreach communication.

They demonstrated external value by presenting at a poster session and getting review, sharing

their work with a wider audience, and winning an award for their work. Many of student A’s

objectives are at the metacognition and/or creation level.
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Table 6.2. Student A’s learning objectives and deliverables

Learning Objective Deliverables Linked Evidence

Learn the fundamentals of
the cardiovascular system
(DSK0: Fundamental
Cardio Concepts,
Understand, Conceptual)

Create a functional block diagram Virtual copy of notes
Understand R&C relationship and
pressure volume loops

Virtual copy of notes

Understand ECG concepts Virtual copy of notes
Understand the arterial system Virtual copy of notes

Develop a measurable
relationship between ECG,
cough frequency, and
respiratory rate (DSK3:
Learning outside of
student’s College, Create,
Procedural)

Compile resources that discuss the
relationship between variables

List of 12 peer-reviewed journal ar-
ticles

View resources given by other
teammates to develop understand-
ing of biosensors

Link to a shared folder with papers
from other group members

Determine limits of variables A summary slideshow with infor-
mation compiled in literature re-
view and applied to project

Collaborate with team to
complete project (RM6:
Team conduct, Evaluate,
Metacognitive)

Create Gantt chart to map out
project timeline

Link to Gantt chart document

Create google drive to compile all
documents/progress of project

Link to shared drive

Develop the multi
parameter biosensor into
plan for a prototype (ES5:
Product evaluation,
Create, Procedural)

Create layout of expected device Block diagram of the device
Create a 3D model of the expected
device

Screenshots of model

Begin a material analysis for fu-
ture material selection in proto-
type stage

Document with advantages and
disadvantages of various materials
for each design component

Communicate technical
knowledge that relates to
the group project (PC7:
Outreach communication,
Create, Metacognitive)

Create a poster that communicates
overall idea of project

Copy of poster

Obtain feedback from class for re-
visions of symposium poster

Copy of the poster with new revi-
sions

Present poster at graduate sympo-
sium

Photo of group at the symposium

Student B also listed 5 objectives with evidence, but the external value of the work is less

clear. Their learning objectives and deliverables are shown in Table 6.3. Some possible ways for the

student to improve would have been to find a clearer need to fulfill, rather than making a website

that might not be helpful or easy to find. Also note that the Bloom’s categorization levels do not

have anything at the creation or metacognitive level.

6.6.2. Assessment Reliability Results

After all six raters scored all students, Fleiss’ Kappa was calculated to determine interrater

reliability. One rater had a misunderstanding about some of the students’ deliverables, so some

of that rater’s scores were adjusted before large group discussion began. Kappa was 0.412 before

this adjustment, and was 0.505 after the adjustment. A score close to 0 is considered no better

agreement that if the raters had randomly scored the subjects; a score close to 1 is considered almost
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Table 6.3. Student B’s learning objectives and deliverables

Learning Objective Deliverables Linked Evidence

Class Learning (DSK0:
Fundamental Cardio Concepts,
Understand, Factual)

Make connection of in class
learning

Summary of notes

In-class worksheets Virtual copy of worksheets com-
pleted in class

Website (DSK2: Learning in
student’s College, Evaluate,
Conceptual)

Create a template Link to the website
Website content review Link to a form where website

users can submit feedback
Design critique No evidence linked; marked as

still in progress

Code documentation (DSK3:
Learning outside of student’s
college, Understand, Procedural)

Make READme documenta-
tion

Link to code repository with
READme file

LO contribution Document explaining how work
was split between group mem-
bers

Cardiovascular genetics (DSK3:
Learning outside of student’s
College, Understand, Factual)

Find/read an educational
journal

Link to 13 online sources

Create intro to genomics
video

Link to video

Add information to website Link to website that student cre-
ated about cardiovascular genet-
ics

Distance collaboration tools
(DSK3: Learning outside of
student’s College, Understand,
Procedural)

Use Google Drive for working
collaboration

Link to shared drive

Discord Copies of meeting minutes
(meetings were held using the
program, Discord)

perfect agreement. Although there is no officially agreed upon benchmark for Fleiss’ Kappa, 0.4-

0.6 is considered moderate agreement, meaning there is still room for improvement in increasing

reliability. Suggestions for improving interrater reliability is included in the Discussion section

under Takeaways for Evaluators.

6.6.3. Survey Results

For the three open response questions, six gained skills were identified from the emergent

coding. The categories and the number of students who mentioned each skill are shown in Figure

6.2. The most commonly mentioned skill gained was communication. Student responses that

were coded in the communication category ranged from improving presentation skills to better

communicating projects to non-engineers to technical writing. A large number of students also

had responses mentioning teamwork, leadership, and teaching others. In addition, some students

mentioned gained technical skills, including five responses about software and programming, two

about cardiovascular engineering, two about web design, and one about electronics skills.
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Figure 6.2. Top skills gained identified by students

The next category was learning flow, or the ability to direct your own goals and learning. Nine

students included a response with this theme; they mentioned that they learned how to set goals, go

out and find new information, and assess themselves. Two students mentioned the idea of external

value or being able to identify and solve a problem that meets a clear need, and two other students

mentioned improvements to their confidence.

Figure 6.3 shows how students responded to the prompt, “I would recommend this class to

another student,” and Figure 6.4 shows the top words chosen to describe the class to a peer. Top

words included time-consuming with 17 responses, satisfying with 14 responses, beneficial with 12

responses, frustrating with 11 responses, and motivating with 11 responses. Students could choose

multiple words from the list or write in their own responses.

6.7. Discussion

6.7.1. Takeaways for Educators

This unique form of assessment puts students in the driver’s seat, allowing them to focus

on learning both content and skills that are called for by ABET and engineering employers and
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Figure 6.3. Responses to the question: “I would recommend this class to another student.”

Figure 6.4. Top words chosen to describe the class to a peer

institutions. The assessment strategy requires students to identify and solve complex problems

(ABET Desired Student Outcome 1), develop a solution (ABET Desired Student Outcome 2), and

run experiments and collect data (ABET Desired Student Outcome 6). Students recognize that

they are working to improve communication, leadership, and their ability to acquire new knowledge

(ABET Student Outcomes 3, 5, and 7, respectively). Many students met and exceeded expectations
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by publishing, presenting, and submitting invention disclosures while gaining knowledge about

cardiovascular engineering. However, to help more students succeed and decrease confusion, more

time should have been spent at the beginning of the semester defining terms and how students will

be assessed. For example, when an instructor says “research paper”, they often think of a peer-

reviewed publication; a student, on the other hand, might think of writing a summary of existing

information. Spending time defining some of these outcomes at the beginning of the semester will

help students plan accordingly and rise to the challenge at hand. Another way to better support

struggling students is to encourage more entrepreneurial thinking. Who is their customer/audience,

and what are their wants/needs? By focusing on these ideas, students can better understand the

idea of external value and find more ways to add external value to their work. Finally, reviews

should occur early and often. By communicating what students are doing well and what they can

improve upon, they begin to feel more comfortable with the control they have.

6.7.2. Takeaways for Evaluators

For those that are evaluating students at the end of the semester, it is important to make sure

both the students and instructors know how you plan to evaluate different cases. For example, what

will you do if there is missing evidence? Will you allow students to provide it after the due date? For

this class, students were allowed to clarify the level of external value of a deliverable by providing

more information, but they were not allowed to add more evidence after the due date passed. On a

similar note, what happens if DSK0 is not included and the fundamental cardiovascular engineering

elements are not demonstrated? In this class, students were dropped a letter grade, but that does

bring up more questions about how to ensure that all students are meeting the main content-

oriented learning objectives of the class. Finally, most disagreement in evaluators was about the

difference between a B and a C. To get a B, students were supposed to apply their knowledge to

an innovation project, but what happens if their project isn’t innovative? How can we recognize

the effort they put in, but also encourage them to focus more on the innovation? These questions

need to be answered by any instructional team that is considering implementing this assessment

technique.

6.8. Conclusion

Having a strong understanding of the many facets of the course is an important component of

being able to make claims from the data mining algorithms, especially with complex problems. This
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chapter gave background about the pedagogy and course, presented example learning objectives,

and discussed assessment challenges. These conclusions will be used to guide the work in Chapter

7 on the classification models and Chapter 8 on the cluster models and will be an integral part of

discussing the results as a whole in Chapter 9.
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7. CLASSIFICATION RESULTS

7.1. Introduction

One of the main research questions was if we could use classification methods to predict

which students will perform well in the course. In order to explore this problem, two types of

feature sets (quantitative and text) and three types of algorithms (support vector machine, K-

nearest neighbor, and logistic regression) were compared. In addition, the performance of the

model over time was assessed in order to discover how early in the semester the model can be

used for accurate prediction. Finally, the most important features that differentiated between top

performing students and lower performing students were extracted in order to better understand

what activities differentiate between high and low performing students.

This chapter details the feature sets and algorithms used, compares the results from each of

the models, graphs model performance over time during the semester, and presents the features that

the models deemed most important. Finally, the results and overall insights gained are discussed.

7.2. Methods

7.2.1. Feature Collection

Two main types of features were used and compared: quantitative data and text data. The

quantitative features that were extracted from the data are shown in Table 7.1.

For the text data, all learning objective and deliverable titles and descriptions were extracted

for each student. Using the scikit-learn library in Python, all the words that students wrote in their

objectives and deliverables were tokenized, counted, and scaled.

7.2.2. Models and Feature Sets

In order to predict which students would achieve high external value during the course

of the semester, three classifier models were tested: Support Vector Machine (SVM), Logistic

Regression (LR), and K-Nearest Neighbors (KNN). These three models were chosen because they

have some level of interpretability, an important feature in EDM [97]. In order for instructors to

Some material in this chapter was drawn directly from [96], a publication co-authored by Lauren Singelmann,
Enrique Alvarez, Ellen Swartz, Ryan Striker, Mary Pearson, and Dan Ewert. Lauren Singelmann drafted and revised
all versions of this chapter. Other authors served as reviewers of the content.
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Table 7.1. Types of quantitative features collected by the platform

Category Description Example features

Total counts Countable features from end
of semester data

Number of planned learning
objectives, number of logins,
number of deletions, etc.

Quarter-Based
Progress

The course was split up into
quarters and progress was cal-
culated for each quarter to see
how students broke up their
work

Number of deliverables com-
pleted during quarter 2, num-
ber of learning objectives
deleted during quarter 4, etc.

Specific learning
objectives

These features checked for the
presence of different learning
objective categories

Presence of Invention Dis-
closure objective, number of
Fundamentals of Research ob-
jectives, etc.

Level of learning Calculated from the Bloom’s
Revised Taxonomy catego-
rizations and level of external
value

Number of high external value
deliverables, average level of
Bloom’s

use the discovered information, they need to be able to understand where it was derived from. The

baseline model was a Majority Class (MC) classifier.

In addition to comparing the models, both the text and quantitative features were compared.

For each set, we also compared using all features to using the top K features. K was optimized and

set a 24 for text and 15 for quantitative.

7.2.3. Evaluation Metrics

Each model was evaluated by calculating accuracy, recall, F1 score, and Area Under Receiver

Operating Characteristic Curve (AUC). Accuracy is the proportion of correctly classified students

to all students. Recall is the proportion of students that the model identified as not being on

track to success to the number of total students that did not achieve high external value during

the course. F1 score is a performance metric that takes the harmonic mean of precision and recall.

AUC is the area under the Receiver Operating Characteristic (ROC) curve which shows how well

the model can differentiate between the two classes. All models were evaluated using ten-fold cross

validation.
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7.2.4. Trajectory

In addition to exploring models that were developed by using each student’s final learning

objectives and deliverables, we were also able to explore how prediction power of the models changed

during the course of the semester. Models were created using daily snapshots of all students to see

at which point in the semester the model can begin predicting student success.

7.3. Results

7.3.1. Comparing Models and Feature Sets

Table 7.2 shows the accuracy, recall, F1 score, and AUC for each of the models and feature

sets explored. These classifiers used all available data during the semester. Almost all models

performed better than the MC baseline test. The text features consistently performed better than

the quantitative features, and using feature selection usually improved the model as well. The

top models are SVM and LR, both using the top 24 text features. In addition to having low

performance, the quantitative models are also difficult to assess in real time. The most relevant

features of the quantitative models can give us some information, but they are not as helpful when

making predictions. Therefore, we’ll focus on using the text models moving forward.

Table 7.2. Performance metrics for each of the models using end of semester data

Feature Type Model Accuracy Recall F1 AUC

Baseline MC .6 - - .5

All Text Features SVM .783 .85 .758 .831
LR .883 .85 .866 .972

KNN .583 .95 .533 .700

Top 24 Text Features SVM .917 .85 .9 .937
LR .917 .85 .9 .952

KNN .783 .85 .767 .832

All Quantitative Features SVM .7 .6 .648 .704
LR .717 .5 .612 .697

KNN .567 .7 .482 .523

Top 14 Quantitative Features SVM .667 .5 .563 .851
LR .7 .5 .597 .798

KNN .667 .9 .615 .65

Halfway through the semester, it would be helpful to know which students are most likely

to be successful and which could use extra help. Therefore, classifier models were also created using
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text data for only the first half of the semester. The results are shown in Table 7.3. From this, we

see that using SVM with the top 24 text features gives us the best performance.

Table 7.3. Performance metrics for each of the text-based models halfway through the semester

Feature Type Model Accuracy Recall F1 AUC

Baseline MC .6 - - .5

All Text Features SVM .7 .6 .631 .732
LR .733 .6 .665 .756

KNN .6 .9 .55 .726

Top 24 Text Features SVM .817 .8 .792 .979
LR .8 .7 .758 .967

KNN .783 1 .767 .742

7.3.2. Exploring Model Trajectory

We found that our model performs fairly well at the midpoint in the semester, so our next

experiment was to see at what point in the semester we can begin to differentiate between top-

performers and lower-performers. All models used the 24 top text features. Figures 7.1 and 7.2

show the accuracy and AUC of the models over time, respectively.

Figure 7.1. Accuracy of the text-based models over time compared with the baseline MC classifier
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Figure 7.2. AUC of the text-based models over time compared with the baseline MC classifier

7.3.3. Knowledge Discovery

In order to better understand what features are most significant in predicting success, we

wanted to be able to extract the most pertinent features. By using linear classifier models instead

of black-box models like neural networks and other deep-learning models, we are able to calculate

Chi-Square and the weights of each feature. Chi-Square tells us which features are not independent

of their classification, meaning they are more likely to differentiate between classes. The greater

the Chi-Square value, the greater dependence on classification, meaning that feature is a strong

differentiator. Weight can tell us which class a feature is more likely to be found in. A positive

weight is more associated with successful students, and a negative weight is more associated with

unsuccessful students.

Figure 7.3 shows the 24 features with the largest Chi-Square value. If the weight showed

that the word was more likely to be found in a low-performing student, the Chi-Square value was

multiplied by -1 to allow for easier interpretation. The top words that differentiated low-performing

students were information, presentation, engineering, website, loops, review, and feedback. The top

words that differentiated high-performing students were sensor, signal, model, device, idea, and

symposium.
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Figure 7.3. The top 24 text features that differentiated the most between successful and unsuccessful
students. Words with positive Chi-Square values were more associated with successful students.
Words with negative Chi-Square values were more associated with unsuccessful students.

Table 7.4 shows the quantitative features that had the highest Chi-Square values. The

weights were used to know which group the variable was more likely to be present in. Top students

were more likely to have data analysis, data collection, journal manuscripts, and general Mechanisms

of Research learning objectives. Unsuccessful students were more likely to have providing critique

and outreach communication learning objectives.

Table 7.4. Quantitative features with the highest Chi-Square values

Variable Chi-Square Group

Presence of MR4: Data analysis 3.882 Successful

Presence of RM3: Providing critique 3.091 Unsuccessful

Total number of Mechanisms of Research Learning Objectives 2.146 Successful

Presence of MR3: Data collection 1.941 Successful

Presence of PC5: Journal manuscript 1.941 Successful

Presence of PC7: Outreach communication 1.807 Unsuccessful
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7.4. Discussion

7.4.1. Insights Gained

Unsurprisingly, top students were more likely to mention work on their abstracts, posters,

pitches, and presence at the BME Symposium (an on-campus biomedical engineering conference).

Low-performing students were more likely to have deliverables like websites and outreach activities.

Although websites could be high impact deliverables, they can also just be a report of students’

lower-level learning. For outreach activities, this can be interpreted broadly and could be outreach

to a classmate or small group rather than a visit of high impact.

In addition, successful students were more likely to have words related to the design process

such as idea, develop, and data. Unsuccessful students were more likely to mention words like

information, presentations, review, and feedback. We believe these words appeared in low-level

students because they were activities required by the class. Therefore, top students did not see the

need to write specific learning objectives about them, but lower performing students added them

in an attempt to have more items logged.

7.5. Conclusion

Modeling student learning in open-ended learning environments can be challenging, but

SVM classifiers show potential in being able to predict which students will be successful in an IBL

course. Models had accuracy of over 80% and AUC of over .95 by the midpoint in the semester.

This accuracy increased to over 90% by the last few weeks of the semester. By using linear models,

we could also gain insight as to what features differentiated between successful and unsuccessful

students. Using these results can help instructors know which students could use extra support and

lead to more understanding about how students progress through problem-solving environments in

general. By understanding how to better support our students in the innovation process, we can

foster the next generation of problem-solvers.
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8. CLUSTERING

8.1. Introduction

The second research question explored is about what insights can be gained about the course

by using clustering models. How do students fall into clusters, and what clusters do successful

students fall into? Do students change clusters over time? If so, how? Finally, what words are

most likely to differentiate between clusters?

In this chapter, the clustering process is explained along with how trajectory of students

and most pertinent features were determined. Next, the learning frameworks of Bloom’s Revised

Taxonomy of Learning and Webb’s Depth of Knowledge are introduced. The clustering results,

student trajectory, and most pertinent features are then presented. These clustering results are

then compared with instructor observations in order to better identify strengths and weaknesses of

the clustering model. The clusters are then clearly defined and mapped to the Cynefin framework,

Bloom’s Taxonomy of Learning, and Webb’s depth of knowledge. To conclude, insights will be

shared and limitations of the model will be discussed.

8.2. Methods

8.2.1. Clustering

Using the scikit-learn library in Python, all the words that students wrote in their learning

objectives and deliverables were tokenized and counted. The cosine similarity was then calculated

to compare each student with every other student. Agglomerative clustering was then performed

on the cosine similarities. This creates a tree that shows which students are most closely related to

each other. By looking at the output in Figure 8.1, it was clear that four main clusters emerged.

Each student is represented by a branch and is connected to other students at junctions. The lower

the dissimilarity coefficient of the junction, the more similar those students were. The colors were

added in order to better visualize each of the clusters.

Some material in this chapter was drawn directly from [98], a publication co-authored by Lauren Singelmann,
Enrique Alvarez, Ellen Swartz, Ryan Striker, Mary Pearson, and Dan Ewert. Lauren Singelmann drafted and revised
all versions of this chapter. Other authors served as reviewers of the content.
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Figure 8.1. A dendrogram showing the hierarchical agglomerative clustering performed on the
students. Each branch represents a student. Students that are connected by a branch are most
closely related, and the lower the dissimilarity coefficient of a connection, the closer they are
related. For example, students 1 and 12 are most closely related because their branches connect
at a dissimilarity coefficient of about 0.5. From the dendrogram, it was clear that 4 main clusters
emerged from the data. Each of the clusters is colored to help visualize the natural breaks in
clusters.
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8.2.2. Mapping Student Trajectory

After each of the students had been placed into a cluster, a support vector machine classi-

fication model was trained to predict which cluster a new student would fall into. Data for each

student was then broken up by day, and the cluster was predicted for each student over time. For

example, the dataset for a student on Day 50 would include all the learning objectives and deliv-

erables they had added by Day 50, but none of the data following Day 50. Each student’s cluster

can then be mapped over time in order to see if and how clusters change.

8.2.3. Extracting Most Pertinent Features

Using the classification model, Chi-Square was calculated for each word, showing which

words are more likely to differentiate between classes. The greater the Chi-Square value, the

greater dependence on classification, meaning that word is a strong differentiator. Words with the

highest Chi-Square values were then sorted into their associated cluster. These words along with

analysis of each cluster contributed to the naming of each cluster.

8.2.4. Comparing with Instructor Observations

After the clusters had been formed and named, the descriptions of each cluster were given

to two of the instructors. These descriptions can be found in Table 8.1. The instructors then

individually grouped the students into clusters based off of their own observations. They then both

came together to discuss any students that they disagreed on and came to a final decision about

all students. Their results were then compared with the clustering algorithm’s results. The inter-

rater reliability was calculated by finding Cohen’s Weighted Kappa. Cohen’s Weighted Kappa was

chosen because it accounts for ordered categories. For example, a mismatch of learner and innovator

would be weighted as a closer match than a mismatch of surface level and innovator. Finally, the

instructors were given the algorithm’s groupings and were asked about any discrepancies in order

to learn why discrepancies may have occurred.

8.2.5. Mapping Clusters to Learning Frameworks

Each cluster was mapped to three frameworks: the Cynefin framework, Bloom’s Revised

Taxonomy of Learning, and Webb’s Depth of Knowledge.

The Cynefin framework can be broken up into four domains: simple, complicated, complex,

and chaotic. Things in the simple domain are consistent. The cause and effect relationships between

53



Table 8.1. Cluster descriptions

Name Description

Surface Level Compiled some information about a topic but got little to
no review and did not reach any audience

Researcher Explored and summarized existing information about a topic
and compiled it to share with others

Learner Worked to become a subject matter expert in a specific area
and applied that expertise to a problem

Innovator Used the engineering design process to develop a new and
unique solution to a problem

components are predictable and repeatable. The complicated domain similarly has predictable

cause and effect relationships, but understanding them requires a domain expert. The complex

domain has much more intertwined interactions that cannot easily be predicted or understood.

These interactions can be measured and patterns can be found to gain a better understanding of

the system, but those patterns might not hold true in the future. Finally, the chaotic domain has

no cause and effect relationships, meaning virtually no information can be gained [99].

Bloom’s Revised Taxonomy of Learning consists of six levels of learning: memorizing, un-

derstanding, applying, analyzing, evaluating, and creating [69]. The memorizing level can be

demonstrated by activities like defining, reproducing, and listing. Understanding includes actions

like describing, explaining, and extrapolating. The application level involves skills such as imple-

menting, demonstrating, and calculating. Analysis can be demonstrated by comparing, contrasting,

and examining. Evaluating includes activities like judging, defending, and assessing. Finally, the

top level of creating can be demonstrated by constructing, designing, and developing [100].

Figure 8.2. Bloom’s Revised Taxonomy of Learning [69]
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Webb’s Depth of Knowledge is broken up into four levels: recalling and reproducing, ap-

plying basic knowledge and skills, thinking strategically, and thinking extensively [101]. DK1:

Recalling and reproducing is a student’s ability to remember definitions, formulas, and simple pro-

cesses and procedures. All of the information they need to complete the task has already been

provided to them. For DK2: Applying basic knowledge and skills, students are describing, explain-

ing, and interpreting information. No complex reasoning is needed to answer these questions, but it

does require students to take more than one step to solve the problem. DK3: thinking strategically

requires reasoning and planning. Students working in DK3 are solving non-routine problems and

proposing solutions to problems. Rather than just being able to explain a relationship, they are

backing their explanations up with evidence and application of knowledge. DK3 is mapped to the

complicated domain. For DK4: thinking extensively, students are relating multiple big variables

and concepts in order to understand a topic at a deep level. Students must weigh options in order

to decide the best way to approach the problem and make multiple decisions during their learning

process. DK4 is mapped to the complex domain [101].

Figure 8.3. Webb’s Depth of Knowledge [100]

55



8.3. Results

8.3.1. Clustering Results

Four clusters emerged from the data, and they were later named based off of the words

that differentiated them from the other clusters. More information about how the clusters were

named can be found in subsection 8.3.3. Of the 28 students, 13 were classified as Innovators, 5

were classified as Learners, 4 were classified as Surveyors, and 6 were classified as Surface Level.

Figure 8.4 shows what clusters top performing and lower performing students fell into, and Figure

8.5 shows the cluster breakdown by year in school.

All Innovators were considered top performing students, meaning they had a high external

value deliverable by the end of the semester. All Surface Level students were considered lower

performing students. 4 of the 5 Learners were considered top performing students; the 5th did not

complete any of their planned deliverables.

Undergraduate seniors fell into all 4 of the cluster categories; 6 were Surface Level, 3 were

Surveyors, 3 were Learners, and 1 was an Innovator. Graduate students only fell into the Learner

and Innovator categories; 12 were Innovators and 2 were Learners. 1 student did not provide a year

in school, so that student was omitted from Figure 8.5.

Figure 8.4. The number of students in each cluster in relation to their performance in the class.
Top performing students were students that had a high external value deliverable during the course
of the semester (e.g. peer-reviewed publication or presentation, invention disclosure, etc.
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Figure 8.5. The number of students in each cluster in relation to their status in school.

8.3.2. Student Trajectory Results

The cluster trajectory for each student was mapped as shown in Figure 8.6. At the beginning

of the semester, there was not enough logged information to group the students. By the third week,

many students were starting to log learning objectives and deliverables to prepare for their first

group in-class presentation. By the time of the presentation, about half of the students were already

grouped into the cluster that they would stay in for the rest of the semester. By the halfway point

of the semester, all but one student was classified into their final cluster.

Many of the groups had members that all ended up in the same cluster, and almost all

groups had members that were either consistently high performers or consistently low performers.

Only Group D had 3 members that were low performers and 1 member that was a high performer.

8.3.3. Extracting Most Pertinent Features Results

The Innovator cluster was differentiated by their use of the words application, knowledge,

analysis, data, symposium, literature, create, processing, and patent. These words are tied closely

to the high external value deliverables that the students created or the engineering design process,

giving us the name of this cluster. The Learner cluster was differentiated by their use of the words

learning, course, concepts, study, and pitch. Most of the Learners focused on learning the course

content as well as completing online courses related to their topic. Pitch was a popular word
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Figure 8.6. Student trajectory through the course. Each row corresponds to a different student, and
students are grouped based off of their teams and their success in the course. Various milestones
are marked at the top of the figure including team formation (TF), the 1st presentations that
teams gave (Presentations), the first learning objective checks (LO Checks), and the midpoint in
the semester (Halfway Point).

because some of the Learners competed in a business pitch competition which was often discussed

in their learning objective and deliverable logging. The name for this cluster came directly from

the presence of the word learning. The top words for Surveyors were presentation, paper, research,

and writing. These students focused on reviewing and summarizing existing knowledge about a

particular area and sharing it both through presentations and a research paper. Although the word

survey did not appear in this cluster’s learning objectives, the name was chosen to differentiate this

group from those doing scientific research. The Surface Level cluster was differentiated by their use

of the words website, video, layout, analysis, and, most strongly, information. These students found

information about a topic and created websites or videos to compile their work. These students

did not dive deep into their topic and did not share their learning more broadly, giving this cluster

the Surface Level name. The words that differentiated most between each cluster appear in Figure

8.7.
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Figure 8.7. The top words that differentiated between each cluster. Larger words had larger Chi-
Square values, meaning they more strongly differentiate students in that cluster from students in
other clusters.

8.3.4. Comparing with Instructor Observations

Figure 8.8 shows how the instructor and algorithm classifications compare. The shaded

diagonal represents cases where the algorithm and instructor classifications match. 18 of the 27

classifications matched (the student that did not complete any deliverables was not included in this

chart because the instructors agreed there was not enough information to classify that student).

The weighted Kappa between the algorithm and the instructors was 0.608. Kohen’s Weighted

Kappa of 0 means random agreement and Kappa of 1 means perfect agreement. Although there

is no firmly agreed upon appropriate ranges of Kappa, 0.608 is considered moderate agreement by

most experts [94].

After instructor interviews were completed and the mismatches were analyzed, it became

clear that discrepancies occurred for two main reasons: 1) difficulties recognizing and classifying

a learner, and 2) the algorithm’s inability to tell quality of work. Reason 1 led to 7 differences

in classification, and reason 2 led to 2 differences in classification. Difficulties in recognizing and

classifying learners may have occurred because of the ambiguity of the word learning. It is hard to

differentiate Surveyors from Learners because of the difficulty in comparing lower level and higher
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level learning, and it is hard to differentiate Learners from Innovators because the deliverables

for both Learners and Innovators look similar. This problem also occurs when differentiating

Webb’s DK3: Thinking Strategically from Webb’s DK2: Apply basic knowledge and skills and

DK4: Thinking extensively [101].

The algorithm’s inability to tell quality of work caused 2 students to be classified as Inno-

vators by the algorithm and surface level by the instructors. Although the students were writing

about the right things, they did not perform at the level that the instructors expected of them.

Figure 8.8. Comparison of algorithm classification and instructors classification. The number in
each box is the number of students that fell into that classification. The shaded boxes along
the diagonal represent matches between the algorithm and the instructors. Non-shaded boxes are
mismatches between the algorithm and the instructors.

8.4. Discussion

8.4.1. Cluster Descriptions and Examples

By looking at the top words that differentiated between each cluster and at each student’s

learning objectives and deliverables, we were able to understand more about each cluster and map

them to Bloom’s Revised Taxonomy, Webb’s Depth of Knowledge framework, and the Cynefin

Framework. Bloom’s Revised Taxonomy and Webb’s Depth of Knowledge framework both serve as

ways to map the level of learning that the students in the clusters reach. The Cynefin framework

details how the students in each of the clusters defines the problem at hand; students can approach

the problem as if it were simple, complicated, or complex. This mapping is shown in Figure 8.9.
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• Surface Level : Surface Level students compiled some information about a topic but did not

reach an audience or get review on their work. Students in this cluster started with innova-

tive ideas, but eventually moved to creating websites and videos that summarized existing

resources. These deliverables were not classified as high impact because the videos and web-

sites had little to no visits or reviews. Rather than focusing on learning and gaining knowledge,

these students focused on collecting information, mapping them to Webb’s DK1: recalling and

reproducing. For Bloom’s Taxonomy, these learners fall somewhere between memorizing and

understanding; their deliverables show that they were able to reiterate existing information,

but they do not show direct evidence of understanding. An example of a group of students

that fell into this cluster was one that chose a topic, read a handful of resources, and put the

information they read onto a website. These students are are mapped to the simple domain

because they explored only the certainties of their problem.

• Surveyor : Surveyors explored and summarized existing information about a topic and com-

piled it to share with others. It is important to note that the Surveyor cluster is not performing

original scientific research. Rather, they are reviewing and summarizing existing work in or-

der to share it with a wide range of audiences. The main difference between this group and

the Surface Level cluster is that these students dug deeper into their topic and made an effort

to share their work with others, mapping them to Webb’s DK2: applying basic knowledge

and skills. Because they were able to share their work for a variety of audiences and contexts,

they showed evidence of achieving the Understanding level of Bloom’s. An example of a group

with students in this category was one that chose a broad topic, reviewed existing resources,

and gave a presentation about their findings. This differed from the website because the

students had to explain their content and answer questions. This cluster also approached the

course in the context of the simple domain of Cynefin. They gained a broad understanding

of a topic, but they did not contribute new information or ideas to the field.

• Learner : Learners became content experts in a specific area to complete their projects. Learn-

ers differ from Surveyors because the Learners dive deep into one topic rather than learning

about something more broadly. These students reached Webb’s DK3: thinking strategically

because they used their learning to solve a problem. In addition, they have applied their
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new skills and knowledge to make contributions to the field, mapping them to the Bloom’s

Apply and Analyze levels. Most of the students in the Learner cluster did show an ability

to innovate, but they rooted their work more deeply in their learning. Some of the students

that fell into this cluster worked on a project where they used an Application Programming

Interface (API) to add new features to an existing system. They added new value to the sys-

tem, but they could use existing resources to work step-by-step through the project. Learners

approach the course within the complicated domain of the Cynefin framework. They aim to

have expert understanding of a topic in order to succeed and add value.

• Innovator : Innovators are defined by their work to solve a problem with no clear answer.

In order to work in this domain, the students must be able to devise a solution, test it, and

use the information gained to improve the solution. Having an expert understanding alone

cannot lead to a perfect solution. Rather, Innovators must come at the problem from multiple

ways to better understand the project and improve a solution, mapping them to Webb’s DK4:

thinking extensively. Innovators reach the Bloom’s levels of Evaluate and Create because they

are evaluating potential solutions in order to better understand the problem and create a new

one. An example of a group of Innovators worked on a new wearable sensor. The students

needed to combine knowledge from multiple areas in order to create a product. Innovators

approach the course from the complex domain; they understand that there is no clear or

straightforward answer, but they are able to determine what they will be able to learn in

order to move towards a better understanding of the problem and work towards a possible

solution.

Figure 8.9. Clusters and their mapping to the Cynefin Framework, Bloom’s Taxonomy of Learning,
and Webb’s Depth of Knowledge.

62



8.4.2. Insights Gained

By exploring the breakdown of clusters, it is clear that Innovators and Learners were more

likely to complete a high external value deliverable during the course. In addition, all Surveyors and

Surface Level students were undergraduates. This illustrates that undergraduate students might

need additional support to grow into Learners or Innovators. The three undergraduate Learners

and one undergraduate Innovator all were in groups that had both undergraduate and graduate

students, potentially adding to their success. In the future, it may be wise to encourage more

groups that mix both undergraduate and graduate students together to help foster growth, but

questions still remain about why mixed groups found more success. Top undergraduates may be

more likely to choose complex projects or join up with graduate students, for example.

From the trajectory results, we see that it is possible for students to switch to a different

cluster during the semester, especially if the majority of their team is in that cluster. Because it is

possible to switch clusters, the instructor can play a role in providing guidance for students in the

Surface Level and Surveyor clusters. By being able to categorize students (either by observation

or by using the trained classifier), instructors can try to better guide students into the Learner or

Innovator clusters.

The trajectory results also illustrate the importance of providing student feedback early and

often during the semester. By the midpoint in the semester, most students were already settled into

the cluster they would stay in. Rather than waiting until later in the semester, instructors should

try to provide a formal review sometime during the second quarter of the semester to ensure the

students have time to adjust their plans if needed. In addition, it is possible that more feedback

near the end of the semester might have caused students to switch clusters later in the semester.

8.4.3. Limitations

Two of the major limitations of this work are the algorithm’s inability to understand the

context of words and its inability to understand the quality of the deliverables being created. For

example, if a student uses the word research in their learning objectives, the algorithm cannot

tell the difference between survey and summarize research and scientific research. Similarly, if a

student has a firm understanding of the process of the class and is able to write learning objectives

and deliverables that have clear high external value, the algorithm will not be able to tell if a
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student is actually creating high quality work. Therefore, this tool is not designed to take the place

of instructor review, but rather to supplement it.

In addition, because this data is only from one semester, the developed clusters and classifier

model may not perform similarly in future semesters. Therefore, the goal is not to develop one

perfect model, but rather continue to explore how the model might change over time. Important

insights into improving engineering education may be found by looking into these changes.

8.5. Conclusion

Clustering students by using their learning objective data provides new insights about how

students navigate an Innovation-Based Learning course. Four main clusters emerged from this data

set: Surface Level, Surveyors, Learners, and Innovators, each with their own words that differentiate

them from other clusters. Students can switch clusters during the semester, and many of those

switches seem to be related to group behavior. This work could lead to better understanding of how

students innovate and solve problems, allowing for advancements in personalized education, group

matchmaking, and even assessment. By implementing these tools, these education models can be

scaled up, allowing more students to grow in their ability to work within the complex domain.

They develop problem solving, adaptability, and creativity, helping them tackle big problems and

become an Engineer of 2020.
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9. DISCUSSION

9.1. Insights

One of the most encouraging recurring themes in the data analysis is growth. The clustering

results show that students can change clusters during the semester to switch from a Surface Level or

Surveyor to become a Learner or Innovator. That being said, this directly illustrates the importance

of providing feedback early and often during the semester in order to get students on track to make

this change. The classification and clustering results show that these students did not change

clusters or classifications after the midpoint in the semester. Therefore, feedback should be given

early in the semester, but continued throughout.

Another takeaway is the potential benefit of having diversity in groups. We saw that groups

made up entirely of undergraduate students consisted of almost all Surface Level and Surveyors,

whereas mixed groups consisted of mostly Learners and Innovators. By diversifying these groups,

hopefully group members can help each other move to the Learner or Innovator categories.

Finally, we saw a recurring theme of how the same word can have different meanings,

confusing both students and our algorithms. For example, in Chapter 6, we saw that one of the

issues with assessment was the differing definitions for “research paper”, and in Chapter 8, the

difference between scientific research and surveying research was discussed. By discussing some of

the possible deliverables and what the expectations are for those deliverables at the beginning of

the semester, students and instructors will be working with a more similar understanding of terms

throughout the course.

For future semesters, this work led us to three recommendations: 1) provide both informal

and formal feedback before the midpoint in the semester, 2) encourage groups to mix both under-

graduate and graduate students, and 3) spend more time at the beginning of the semester making

sure student understand the expectations for different types of deliverables. By implementing these

recommendations, hopefully more students will be able to make the shift to a Learner or Innovator.

9.2. Limitations

Just as the world around us is transforming every day, so are our students. Therefore, these

models will need to continue to evolve and improve as students change their approach to the class.
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Like with many of the complex problems presented in Chapter 2, our models need to be updated

as more information becomes available and as student populations continue to grow and adapt.

Aiming for consistently high performing models is not a realistic goal for this work. Rather, we can

use the knowledge discovery from these models to better understand how students move through

these environments and aim to better support them. The number of students used in this study

was small, so it is still to early to make significant claims or to generalize our findings to other

contexts. However, there does seem to be potential in using EDM to better understand how IBL

students move through the model.

There are also some limitations due to the models and feature sets that were used. Because

text data showed the most promise in classifying students, our final models for both classification

and clustering focused on the text features. As of now, these models only accounted for the number

of times each word was mentioned, meaning the models do not account for the context the words

were used in. In addition, there are other factors that are not yet included such as as the quality

of deliverables uploaded, group dynamics, and temporal components (e.g. the order in which

deliverables were completed, when group presentations occurred, etc.) Many of these components

are things an instructor would know, reiterating the importance of being able to harness both the

power of the algorithm and the wisdom of the instructor.

9.3. Future Work

Moving forward, we have identified three main future directions: collecting more learning

objective data, exploring the use of other machine learning tasks, and diving deeper into individual

students’ experiences.

In upcoming iterations of the course, we are planning to continue to collect data to see

how well our current models perform with new students. By having a larger sample size, we can

continue to improve our models and identify patterns in student trajectory. If these pathways are

better understood, instructors could recommend specific next steps that help students stay on track

while staying true to their own learning goals. In addition, collecting data from students at other

universities will reveal how well our models transfer to other student populations. The universities

in this study were both public research universities, but future work could include students from

private universities or non-traditional engineering programs.
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Another possible avenue for future work is to explore the use of association analysis, se-

quential pattern analysis, and process analysis. These techniques could allow for more patterns

to be identified and better understanding of student behavior at the temporal level. Many EDM

researchers use a hybrid approach (e.g. performing cluster analysis to find similar students and

then performing sequential pattern analysis to find commonalities in each cluster as seen in [48]).

Exploring hybrid approaches may also help uncover other patterns in the data.

Finally, more work can be done to dive deeper into individual students to better understand

the context of their work. For example, it might be insightful to do an interview with a student

that switches clusters during the semester to see if they had any changes in attitude, understanding

of the course, group dynamics, etc. These interviews can be coded by researchers or analyzed by a

program like SenseMaker, a tool that analyzes narratives in order to find recurring themes [102].

As with any Grand Challenge, it is imperative to explore the problem from multiple angles

in order to fully understand the domain you’re working in. The analysis completed so far has

shown great promise, but collecting more data, exploring new machine learning techniques, and

exploring other forms of data collection will help us get a full picture of how engineering students

tackle problems and innovate new solutions.
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10. CONCLUSION

This work demonstrated the potential for using classification and clustering models to un-

derstand more about students in an Innovation-Based Learning course. A support vector machine

classification model that used text written in students’ learning objectives and deliverables was

developed that achieved over 80% accuracy and ROC AUC of over 0.95 by the midpoint in the

semester. Words more likely to be included in objectives written by successful students included

words that were directly related to high external value deliverables (e.g. symposium, abstract, and

poster) and words related to the engineering design process (e.g. idea, data, and develop). Words

more likely to be found in the learning objectives of less successful students included website,

information, and presentations.

A hierarchical clustering model grouped students into four main groups that were then

named Innovators, Learners, Surveyors, and Surface Level. Innovators were more likely to use words

such as create, data, patent, and symposium. Learners were more likely to use words such as learning,

study, course, and concepts. Surveyors were more likely to use words such as presentation, paper,

writing, and research. Surface Level students were more likely to include website, information, and

video in their learning objectives. About 1/4 of the students changed clusters during the semester,

and all but 1 student remained in the same cluster from the midpoint in the semester to the end.

Although the IBL data is a complex problem, patterns and information were still able to be

found and extracted using these algorithms. These insights can be used to improve future iterations

of the course and potentially to better understand how engineering students innovate and work on

projects in other contexts. By improving these experiences, we are helping students develop the

skills that engineering organizations and professionals are calling for such as the ability to solve

complex problems, communicate, work on a team, think like an entrepreneur, and practice lifelong

learning.

Not only are we working to solve the Engineering Grand Challenge of advancing personalized

learning, but we are also working to better educate our engineering students, preparing them to

take on the Engineering Grand Challenges and any other challenge that comes their way.
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Figure A.2. First generation college student
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Figure A.4. School

Figure A.5. Gender

81
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