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ABSTRACT

In healthcare, a large number of medical data has emerged. To effectively use these data

to improve healthcare outcomes, clinicians need to identify the relevant measures and apply the

correct analysis methods for the type of data at hand. In this dissertation, we present various

machine learning (ML) and data mining (DM) methods that could be applied to the type of data

sets that are available in the healthcare area.

The first part of the dissertation investigates DM methods on healthcare or medical data

to find significant information in the form of rules. Class association rule mining, a variant of

association rule mining, was used to obtain the rules with some targeted items or class labels.

These rules can be used to improve public awareness of different cancer symptoms and could also

be useful to initiate prevention strategies.

In the second part of the thesis, ML techniques have been applied in healthcare or medical

data to build a predictive model. Three different classification techniques on a real-world breast

cancer risk factor data set have been investigated. Due to the imbalance characteristics of the data

set various resampling methods were used before applying the classifiers. It is shown that there

was a significant improvement in performance when applying a resampling technique as compared

to applying no resampling technique.

Moreover, super learning technique that uses multiple base learners, have been investigated

to boost the performance of classification models. Two different forms of super learner have been

investigated - the first one uses two base learners while the second one uses three base learners.

The models were then evaluated against well-known benchmark data sets related to the healthcare

domain and the results showed that the SL model performs better than the individual classifier

and the baseline ensemble.

Finally, we assessed cancer-relevant genes of prostate cancer with the most significant cor-

relations with the clinical outcome of the sample type and the overall survival. Rules from the

RNA-sequencing of prostate cancer patients was discovered. Moreover, we built the regression

model and from the model rules for predicting the survival time of patients were generated.
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1. INTRODUCTION

Machine Learning (ML) and data mining (DM) have become an integrative part of modern

scientific methodology, providing insights about data and offering prediction based on historical

observations. The use of DM and ML techniques require a reasonable understanding of their

mechanisms, properties and constraints in order to better understand and interpret their results.

Researchers have used ML and DM techniques in various fields of science, technology, and human-

ities, as in biology, meteorology, healthcare or finance [1].

Cancer has become one of the most devastating diseases worldwide, with more than 10

million new cases every year, according to the World Health Organization (WHO) [2]. The causes

and types of cancer vary in different geographical regions, however, nearly every family in the world

is touched by cancer. The disease burden is enormous, not only for affected individuals but also for

their family as well as society. Detecting cancer early saves lives. According to WHO, 8.8 million

people die from cancer each year, mostly in low- and middle-income countries. One problem is that

many cancer cases are diagnosed too late. In addition, detecting cancer early also greatly reduces

economic cost: not only is the cost of treatment much less in cancer’s early stages, but people can

also continue to work and support their families if they can access effective treatment in time.

DM has been widely used in the healthcare domain to extract knowledge in the form of rules.

Public awareness of various disease/cancer symptomps can be taken and different preventation

strategies could also be initiated by using these rules. ML and DM have been widely used to build

predictive models from historical observations [3], [4], [5], [6]. These models can predict whether

new patients are vulnerable to particular diseases or cancers. Performance of the ML model is

very important and researchers are trying to use an appropriate model for a particular problem.

However, choosing the best ML or DM model for a specific problem is a complex task. Due to this

researchers are trying to use multiple models to obtain better performance. Effective use of DM

and ML can contribute in early detection of many diseases including various cancers. For that, a

detailed analysis needs to be performed before selecting a model for a specific task. Ultimately,

by early detecting disease or cancer cases accurately, economic costs can be reduced and most

importantly human lives can be saved.
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Building an integrative models considering both clinical and genomic data simultaneously

is a challenging task, however, it can provide vital information that is present in both data sets.

In most of the cases, the goal is bio-marker discovery which is to find the clinical and genomic

factors related to a particular disease phenotype such as cancer vs. no cancer, tumor vs. normal

tissue samples, or continuous variables such as the survival time after a particular treatment. These

models can help in the design of effective diagnostics, and novel drugs, which can lead us one step

closer to personalized medicine.

The following sections briefly describe the research conducted. Brief description of the

background are presented in Sections 1.1-1.4. The motivation of the work is discussed in Section

1.5. The contributions of the work is described in Section 1.6, and an overview of the dissertation

is listed in Section 1.7.

1.1. Data Mining and Machine Learning Techniques

Machine Learning (ML) or Data Mining (DM) algorithms [7], [8] can be classified into

supervised or unsupervised learning depending on the data. Supervised methods are used when

there is a variable whose value has to be predicted. Such a variable is referred to as a response

or output variable. For an unsupervised method, the data is not labeled and there is no value to

predict or classify.

Supervised learning algorithms generate a function that is able to map the input/output

values. In these algorithms the data provides examples about the kind of relationship between

the input and output variables that has to be learnt. In unsupervised learning, there is no output

value, but instead just a collection of input values. Supervised learning algorithms can be further

divided into classification and regression algorithms.

Unsupervised is a learning method, in which an (output) unit is trained to respond to clus-

ters of patterns within the input. In this paradigm the system is supposed to discover statistically

salient features of the input population. Unlike the supervised learning paradigm, there is no a

priori set of categories into which the patterns are to be classified; rather the system must develop

its own representation of the input stimuli. Unsupervised algorithms seek out similarity between

pieces of data in order to determine whether they can be characterized as forming a group. Apriori

algorithm is another classic unsupervised algorithm which extracts association rules from a data

set [9].
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1.2. Knowledge Discovery

Knowledge in the form of rules can be extracted from various data sets using the association

rule mining technique. The idea of association rules originated from the market basket analysis

where a rule is sought to be like “When a customer buys a set of products what is the probability

that he or she buys another product?” Mathematically, an association rule is defined as A ⇒ B

where A (antecedent) and B (consequent) are logical predicates constructed by Boolean predicates.

A logical predicate in an association rule consists of one or more Boolean conditions and they are

connected by the logical AND (∧) operator. In a transactional data set (e.g., sales database of a

supermarket), an association rule appears as (item = milk) ∧ (item = bread) ⇒ (item = butter),

which means when a customer buys milk and bread it is most likely that he or she also buys butter.

The likelihood of an association rule is measured by many values, e.g., support, confidence, lift,

and so on.

Association rule mining [9] has been introduced in 1993, and since then it has attracted

considerable attention. The discovery of association rules is an important component of data

mining [10]. Association Rule Mining (ARM) has been widely used by the retail industry under

the name “market-basket analysis”. However, the concept of association rules is general and has

wide applicability also in the medical domain [11], [12], [13], [14]. ARM can be applied to a cancer

risk factors data set to discover hidden but significant rules that could be useful not only for medical

professionals but also for health organizations. Rules can also be generated from data sets having

specified target classes as their consequences under the name of class association rule mining.

1.3. Classification Techniques

Classification is the task of learning a target function f(x) that maps each attribute set x

into one of the pre-defined class labels y [15], [16]. The target function is also informally known as

the classification model. The goal of classification is to predict quantitative or categorical outputs

that assume values in a finite set of classes (e.g. Yes/No, Disease/No-disease or Green/Red/Blue

etc.) without an explicit order. Categorical variables are also called Factors. In regression the

output to predict is a real-valued number.

The problem of classification can be stated as “given a set of training data points along with

associated training labels, determine the class label for an unlabeled test instance”. Classification
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algorithms typically contain two phases namely training and testing. In the training phase, a

model is constructed from the training instances while in the testing phase, the model is used to

assign a label to an unlabeled test instance. The different techniques that are commonly used for

classification are tree based, rule-based methods, probabilistic methods, SVM methods, instance-

based methods, neural networks, and so forth [17].

Decision trees (DT) create hierarchical partitioning of the data, which relates the different

partitions at the leaf level to the different classes. Some of the methods for decision tree construction

include c4.5, C5.0, ID3, and CART [18], [19] [20], [21]. Rule-based methods are closely related to

decision trees, except they do not create a strict hierarchical partitioning of the training data. Here,

overlaps are allowed in order to create greater robustness for the training model.

Probabilistic methods are the most fundamental among all data classification methods

that use statistical inference to find the best class for a given example. In addition to simply

assigning the best class, probabilistic classification algorithms will output a corresponding posterior

probability of the test instance for each of the possible classes. Example of probabilistic algorithms

for classification include Naive Bayes, logistic regression, Bayesian network construction [22], [23].

Instance-based learning [24], the training phase is omitted entirely, and the classification

is performed directly from the relationship of the training instances and the test instances. This

method also refereed as lazy learning because the knowledge of the test instance is acquired first

in order to create a locally optimized model, which is specific to the test instance. An example of

a very simple instance-based method is the nearest neighbor classifier.

The SVM (Support Vector Machine) classifier uses linear conditions in order to separate

out the classes from one another. The idea is to use a linear condition that separates the two

classes from each other as far as possible [25]. Neural Networks (NN) [17] attempt to simulate

biological systems, corresponding to the human brain. In the human brain, neurons are connected

to one another via points, which are referred to as synapses. In biological systems, learning is

performed by changing the strength of the synaptic connections, in response to impulses. This

biological analogy is retained in an artificial neural network (ANN). The basic computation unit

in an ANN is a neuron or unit. These units can be arranged in different kinds of architectures by

connections between them. The most basic architecture of a NN is a perceptron, which contains a
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set of input nodes and an output node. Other variations of NN are multi-layer feed-forward NN,

back-propagation, deep neural network (DNN) [26], and so forth.

Another classifier named ensemble learning generates multiple models for robustness, or

combining the results of the same algorithm with different parts of the data. The general goal

of the algorithm is to obtain more robust results by combining the results from multiple training

models either sequentially or independently. Examples of ensemble classifiers are Bagging, Boosting,

Random Forests, stacking, and so forth [27], [28], [29], [30].

Researchers are using these classification models or learning algorithms in various fields

such as healthcare, network security, business, and so on. Researchers are trying to find which

algorithm will perform well for a particular research problem and the available data at hand.

1.4. Machine Learning and Data Mining Techniques in Healthcare

As stated above, cancer has become one of the most devastating diseases worldwide, with

more than 10 million new cases every year, according to WHO [2]. In general, healthcare institutions

are becoming more and more dependent on advances in technology, and the use of DM and ML

techniques can provide useful support to assist physicians. In the last decade, ML contributed to

healthcare by improving not only service quality and care but also saving human lives by detecting

diseases/cancer cases early.

In the healthcare and bio-medical domain, current technologies are generating and collecting

large volumes of data and extracting useful information from these huge data sets is the key. Rules

are very natural for knowledge representation since people can understand and interpret them easily.

In several studies, knowledge in the form of rules has been extracted from the medical domain [11],

[12], [13], [14].

In addition, in most cases the data sets that are available for analysis contain irrelevant

features, noise in the data, imbalance characteristics, that makes the data too complex to be

analyzed using traditional methods. In some cases, particularly in the healthcare and bio-medical

domain, the lack of qualitative training data is also a common problem in ML since the training

data is a critical resource to build classifiers. As a result, the scarcity of qualitative training data

is also the most common problems which leads to poor classification accuracy. For that reason,

proper data analysis is necessary before applying a classification model to enhance the model’s

performance.
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In ML, classification is applied to most of the application areas. ML approaches have been

widely applied in many domains including healthcare. Several prediction models have been exten-

sively investigated and have been successfully deployed in clinical practice [26]. Clinical data refers

to a broad category of a patient’s pathological, behavioral, demographic, familial, environmental,

medication history, and so forth. The choice of the model to be used for a particular healthcare

problem primarily depends on the outcomes to be predicted. In addition, understanding the prob-

lem clearly and the domain knowledge is the key of selecting the best algorithm by which better

performance of the classification model can be obtained.

Human diseases are inherently complex in nature and are usually governed by a complicated

interplay of several diverse underlying factors, including different genomic, clinical, behavioral, and

environmental factors. It is essential to build integrative models considering both genomic and

clinical data simultaneously so that they can combine the vital information that is present in both

clinical and genomic data [31]. Such models can help in the design of effective diagnostics, new ther-

apeutics, and novel drugs, which will most likely lead us one step closer to personalized medicine.

This opportunity has led to an emerging area of integrative predictive models that can be built

by combining clinical and genomic data, which is called clinico–genomic data integration. Clinical

data refers to a broad category of a patient’s pathological, behavioral, demographic, familial, en-

vironmental and medication history, while genomic data refers to a patient’s genomic information

including SNPs (single nucleotide polymorphisms), gene expression, protein and metabolite pro-

files. In most of the cases, the goal of the integrative study is biomarker discovery which is to find

the clinical and genomic factors related to a particular disease phenotype such as cancer vs. no

cancer, tumor vs. normal tissue samples, etc.

1.5. Motivation and Problem Definition

Prevention of major types of cancer through a quantified assessment of risk is a major

concern in order to decrease its impact on our society. Identifying risk factors of various cancers is

important whereby physicians can inform the patients about the potential cancer risks from the risk

factors and suggest preventive measures. It is also more important to extract important knowledge

from these available risk factors in the form of rules.These rules could be useful for better healthcare

as medical professionals or other health related organizations can develop policies to identify and

prevent its impact in early stage.
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In the field of ML, classification is a common problem and has been widely applied to

various application domains including healthcare, cyber-security, geographic information system,

businesses, and so forth. However, the performance of learning algorithms strongly depend on

sufficient qualitative training data to build an accurate model and make prediction on future or

unseen data. Nonetheless, in real-life settings, particularly in the healthcare and bio-medical do-

main, obtaining useful training data (as generally data contains missing values, irrelevant feature,

and so forth) has been a major bottleneck of making effective prediction models that can be ap-

plied in practice. To overcome these issues, it is more important to understand each problem

carefully and select the appropriate technique accordingly. In addition to selecting the appropriate

model, searching/choosing the best hyper-parameter setting for a particular problem is the key for

achieving better performance.

Another challenge of obtaining better classification performance is the imbalance character-

istics of data, meaning that there are significantly more samples for one category than the other.

For that, data needs to be analyzed and preprocessed correctly before appropriate ML algorithms

can be applied for better performance. Finally, building integrative models considering both clinical

and genomic data simultaneously can provide vital information that is present in both data sets, is

a challenging task. These models can help in the design of effective diagnostics, and novel drugs,

which can lead us one step closer to personalized medicine. For that, a prediction model of survival

for prostate cancer patients is proposed, thus, the findings of this study can be used to determine

predictors of survival outcomes for other cancer types.

The main motivations of this research can be summarized as follows.

� Discovery of association rules is an important component of data mining. Association Rule

Mining (ARM) has been widely used by the retail industry under the name “market-basket

analysis”. However, the concept of association rules is general and has wide applicability also

in the medical domain [11], [12], [13], [14].Rules provide a concise statement of potentially

important information that is easily understood by end users. By using these rules medical

professionals or other health related organizations can develop strategies to identify and pre-

vent its impact in the early stage. For this purpose, rule discovery from breast cancer risk

7



factors using association rule mining is developed. The techniques can be used to find rules

for other cancer types.

� Predicting the risk of breast cancer occurrence is an important challenge for clinical oncologists

as this has direct influence in their daily practice and clinical service. A reliable prediction

will help oncologists and other clinicians in their decision-making process and allow clinicians

in choosing the most reliable and evidence-based treatment and prevention strategies for

their patients. The data set for this study has imbalance characteristics, meaning there

are significantly more samples for one category than the other. For this purpose, several

resampling techniques were used before developing a classification model of breast cancer risk

factors to obtain better performance.

� Achieving better performance for a ML model on the available data sets is the key and

researchers are generally using appropriate single classifiers.However, selecting the best data

mining or machine learning model for a specific problem is complex. Due to this, researchers

are also using multiple different models for a particular problem to obtain better performance.

Super learning or stacked ensemble is a ML technique that finds the optimal weighted average

of diverse learning models and generally provides better performance compared to individual

base learners. For this reason, enhancing the performance of classification using super learning

is developed.

� Early detection of cancer produces an increase in survival rate, and consideration of clinical

variables along with RNA-Sequencing data can be utilized to increase efforts at the early

detection of cancer. The genes with the greatest survival correlation can be useful for analysis.

The main motivation is to determine which clinical variables and RNA-Sequencing expression

levels predict clinical outcomes, such as survival for various types of cancer. This study focused

on prostate cancer patients, but the findings of this study have implications for determining

predictors of survival outcomes for various cancer types.

1.6. Contributions

This dissertation makes several contributions towards better healthcare using data mining,

and machine learning techniques. Useful knowledge in a form of rules using DM techniques has
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been discovered from healthcare and medical data. Building predictive models using several ML

techniques has been proposed to enhance the performance of classification models. Finally, extract-

ing knowledge from bio-medical data and building predictive models is proposed. The contributions

can be summarized as follows:

1. Hidden but important rules from a breast cancer risk factors data set was discovered using an

association rule mining technique. In addition, the logit model was used to check the statistical

significance of all risk factors or predictors. Rules or knowledge for both breast cancer and

non-breast cancer patients were discovered to understand and compare the characteristics of

both groups. These rules can be useful for developing strategies to prevent its impact in the

early stages. Details of this work is discussed in Chapter 2.

2. Three different classification techniques were applied to a breast cancer risk factors data set

to attain better performance. The data set is highly imbalanced meaning that the data has

an unequal distribution between the classes. For this purpose, several resampling methods

were used before applying different classifiers to achieve better performance. Details of this

work is discussed in Chapter 3.

3. To enhance the performance of a classification model super learning (SL) or stacked-ensemble

technique was used on four benchmark data sets that are related to healthcare. SL uses two

or more machine learning algorithms as base learners that finds the optimal combination of

a collection of prediction algorithms. Three supervised learning algorithms were selected as

base learners and a meta learner was used. The performance of the proposed technique was

compared to the individual base learners and the baseline ensemble. Details of this work is

discussed in Chapter 4.

4. Cancer relevant genes of prostate cancer with the most significant correlations with the clinical

outcome of the sample type (cancer / non-cancer) and the overall survival (OS) were assessed.

Rules from the RNA-sequencing of prostate cancer patients was discovered from a decision

tree classifier. Moreover, the regression model was built using a decision tree regressor and

from the model rules for predicting or estimating the survival time of patients were generated.

Details of this work is described in Chapter 5.
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1.7. Dissertation Overview

This dissertation is a paper-based version, where each chapter has been derived from the

papers published during the Ph.D. work. This is an overview of the remaining chapters of this

dissertation.

In Chapter 2, rule discovery from breast cancer risk factors using association rule mining is

discussed. The chapter is derived from the publication:

� Md Faisal Kabir, Simone A. Ludwig, and Abu Saleh Abdullah. “Rule Discovery from Breast

Cancer Risk Factors using Association Rule Mining.” IEEE International Conference on Big

Data (Big Data), 2018.

In Chapter 3, the classification of breast cancer risk factors using several resampling ap-

proaches is described. The chapter is derived from the publication:

� Md Faisal Kabir and Simone A. Ludwig. “Classification of Breast Cancer Risk Factors Using

Several Resampling Approaches.” 17th IEEE International Conference on Machine Learning

and Applications (ICMLA), 2018.

In Chapter 4, enhancing the performance of classification using super learning is discussed.

The chapter is derived from the publication:

� Md Faisal Kabir and Simone A. Ludwig. “Enhancing the Performance of Classification Using

Super Learning.” Data-Enabled Discovery and Applications 3.1 (2019):5, Springer Interna-

tional Publishing.

In Chapter 5, the classification models and survival analysis for prostate cancer using RNA

sequencing and clinical data is discussed. The chapter is derived from the publication:

� Md Faisal Kabir and Simone A. Ludwig. “Classification Models and Survival Analysis for

Prostate Cancer Using RNA Sequencing and Clinical Data.” IEEE International Conference

on Big Data (Big Data), 2019.

In Chapter 6, the conclusion and future research is presented.

10



2. RULE DISCOVERY FROM BREAST CANCER RISK

FACTORS USING ASSOCIATION RULE MINING

Breast cancer is the most common cancer in women worldwide. Prevention of breast cancer

through risk factors reduction is a significant concern to decrease its impact on the population.

Attaining or detecting significant information in the form of rules is the key to prevent breast

cancer. Our objective is to find hidden but important knowledge of the form of rules from the

risk factors data set of breast cancer. Mining rules is one of the vital tasks of data mining as

rules provide concise statement of potentially important information that is easily understood by

end users. In this chapter, we use association rule mining, a data mining technique to attain

information in the form of rules from breast cancer risk factors data that could be useful to initiate

prevention strategies. We discovered rules of both breast cancer and non-breast cancer patients

so that we can understand and compare the characteristics of both breast cancer and non-breast

cancer individuals. The experimental results show that generated or mined rules hold the highest

confidence level.

The rest of the chapter is structured as follows. The related work is discussed in Section

2.1. The preliminaries including data description, data pre-processing, and the problem statement

are described in Section 2.2. The analytical workflow are discussed in Section 2.3. In this section,

the binary logit model and association rule mining is discussed. In Section 2.4, experiments and

results are shown. The outputs obtained from the logit model is discussed and presented. Also, the

rule generation using the association rule mining technique is also shown in this section. Moreover,

important rules along with their interpretation are listed in this section. In Section 2.5, discussion

is presented. Finally, summary and possible future directions are discussed in Section 2.6.

2.1. Related Work

Researchers have developed different models for breast cancer risk prediction and associa-

tion between risk factors [32], [33], [34], [35]. In [32], authors applied statistical methods to show

a positive association between Hormone Replacement Therapy (HRT) and breast cancer risk, al-

though this relationship varies according to race/ethnicity, BMI (Body Mass Index), and breast
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density. The Gali model is used to estimate the number of expected breast cancers for white females

who are examined annually [33]. In [34], the authors used commonly identified risk factors such as

race/ethnicity, breast density, BMI, and use of hormone therapy, type of menopause, and previous

mammographic results to improve the model. In [35], the Breast cancer risk score is determined

using a data mining approach called k-nearest-neighbor (KNN) to improve readability for physician

and patients. In addition, authors [35] tried to get higher risk detection performances and impact

levels of each risk factor.

Association rule mining has been used in the medical domain to find useful information

from the data. In [11], authors used the ARM technique for generating the rules for heart disease

patients. Based on the rules they discovered the factors which cause heart problems in men and

women. In [12], the authors implemented the ARM based concept for finding co-occurrences of

diseases carried by a patient using a healthcare repository. The authors extracted data from a

patients’ healthcare database and from that they generated association rules. Class association

rule mining has also been used in the literature to discover the characteristics features [36]. A class

association rule set is a subset of association rules with the specified classes as their consequents

[37]. In traditional association rule mining, if the support value is kept too low, the class association

rule mining will generate overfitting rules for frequent or majority classes; while keeping support

value high will not generate sufficient rules for infrequent or minority classes. In class association

rule mining this is not the case since mining is done according to the class, the algorithm is not

influenced by the unequal distribution between the classes (imbalanced class).

In this research, we used a risk factors data set from the Breast Cancer Surveillance Con-

sortium (BCSC) [38] to examine significant rules of breast cancer and non-breast cancer patients.

Rules of breast cancer patients can be useful for physicians to make informed decision as they

have to inform patients about risk factors and alert patients about the potential risks of developing

breast cancer (if any). This way, a prevention program or process can be initiated in the early

stage of disease progression.

2.2. Preliminaries

2.2.1. Data Description

The data set includes information from 6, 318, 638 mammography examinations obtained

from the Breast Cancer Surveillance Consortium (BCSC) database collected from January 2000 to
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December 2009 [38]. Data for this study was obtained from the BCSC Data Resource and more

information is available at http://www.bcsc-research.org.

2.2.2. Data Pre-processing

The data is aggregated such that the total number of instances or records is 1, 144, 565, with

13 attributes or columns. The data set also contains missing or unknown values denoted by 9. To

build a reliable model, we discarded the records containing at least one missing or unknown value.

We also removed the attribute year that represents the calendar year of the observation. After

discarding these records and one attribute, there are 219, 524 available records with 12 attributes.

In the data set, there is an attribute named count, representing the number of records that have the

combination of variable-values shown in the row. For instance, the value of the count column for

the particular row is 12. It indicates that there were 12 similar records; the same as that particular

row in the original data. For that reason, we created the number of rows or records the same

as the count value in the original data set, and discarded the count column after that. Finally,

there are a total of 1, 015, 583 records with 11 attributes for building the model. Among 1, 015, 583

records, 60, 800 individuals have prior breast cancer, and 954, 783 are non-breast cancer individuals.

Among the 11 attributes, “prior breast cancer” values yes or no is considered as response or class

variable and the remaining 10 attributes are considered as explanatory or predictors or independent

variables. The distribution of all features are shown in Table 2.1 through Table 2.10. Bar plots of

the age group, age first birth, BMI group, and breast cancer history are shown in Fig. 2.1, Fig.

2.2, Fig. 2.3, and Fig. 2.4 respectively.

Table 2.1. Distribution of race/ethnicity.

Race/Ethnicity Count

Non-Hispanic-White 902736

Asian or Pacific Islander 39139

Hispanic 35451

Other or Mixed 20972

Non-Hispanic-Black 14389

Native American 2896
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Table 2.2. Distribution of hormone replacement therapy (HRT)

HRT Count

No 849225

Yes 166358

Table 2.3. Distribution of age group

Age group range Count

age 55 59 168659

age 50 54 168158

age 45 49 146665

age 60 64 127459

age 40 44 115237

age 65 69 93919

age 70 74 72315

age 75 79 53983

age 80 84 29750

age 35 39 21841

age greater equal 85 12557

age 30 34 4113

age 18 29 927

Table 2.4. Distribution of menopausal status

Menopaus Count

Post menopausal 687566

Pre or peri menopausal 292699

Surgical menopause 35318

Table 2.5. Distribution of body mass index (BMI)

BMI range Count

10-to-lessThan 25 430102

25-to-lessThan 30 310555

30-to-lessThan 35 161785

35-or-above+ 113141
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Table 2.6. Distribution of BI-RADS breast density

BIRADS breast density Count

Scattered fibroglandular densities 429488

Heterogeneously dense 414732

Almost entirely fat 90005

Extremly dense 81358

Table 2.7. Distribution of age first birth

Age first birth Count

Age 20 24 331615

Age 25 29 216877

Nulliparous 166180

Age less 20 157723

Age greater equal 30 143188

Table 2.8. Distribution of first degree relative

First degree relative Count

No 824472

Yes 191111

Table 2.9. Distribution of previous breast biopsy

biopsy Count

No 724364

Yes 291219

Table 2.10. Distribution of prior breast cancer diagnosis

breast cancer history Count

No 724364

Yes 291219
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Figure 2.1. Bar graph of age group for BCSC risk factors data.

Figure 2.2. Bar graph of age first birth for BCSC risk factors data.
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Figure 2.3. Bar graph of BMI group for BCSC risk factors data.

Figure 2.4. Bar graph of prior breast cancer for BCSC risk factors data.
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2.2.3. Conversion of Data Set into Transaction-like Database

For association and class rule mining, the data set has been converted into transactions.

For instance, for feature such as race or ethnicity there were a total of six values namely non-

Hispanic white, non-Hispanic black, Asian, native American, Hispanic, and mixed/other; for that

six columns have been created accordingly with values Yes or No. For example, if an individual is

a Native American, then Yes or 1 would be in the corresponding column and the remainder would

be No or 0. This way, a total of 46 columns have been created. So, in total there were 1015583

records and 46 items or columns.

2.2.4. Problem Statement

Let, P = {p1,p2,p3,...,pn} be the set of n patients and D = {d1,d2,d3,...,dm} be the charac-

teristics of patients, where m is the number of attributes of the patients. We define, C = {c1,c2}

be the class information or the breast cancer history (yes or no) of patients. In this research, we

are interested in finding the relationships among breast cancer risk factors. More specifically, we

are interested to find the characteristics or rules in terms of risk factors of both the breast cancer

and non-breast cancer individuals (i.e. {d1, d3, d6} ⇒ c1 and {d2, d5, d7} ⇒ c2).

2.3. Analytical Workflow

In this section, we provide an overview of our framework. First, we used the logit model on

the Breast Cancer Surveillance Consortium (BCSC) data set to identify appropriate factors that

may affect the likelihood of breast cancer. After that we applied association rule mining and class

association rule mining on these risk factors to find significant rules of both non-breast cancer and

breast cancer patients.

2.3.1. Logit Model

In the current study, the dependent attribute of breast cancer (Yes or 1) or no breast

cancer (No or 0) is dichotomous and thus represented as a binary variable. The binary logit model

is extensively used in breast cancer investigations where the response variable is binary [39]. The

model takes the natural logarithm of the likelihood ratio such that the dependent variable is 1

(breast cancer) as opposed to 0 (no breast cancer). Let, p1 and p0 represents the probabilities of
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the response to variable categories breast cancer and no breast cancer, respectively. The binary

logit model is given as:

Y = log
[p0
p1

]
= α+ βiXi (2.1)

where Y is the Binary response or class variable; α is the intercept to be calculated; βi is the

estimated vector of parameters, and Xi is the vector of independent variables.

In Equation (1), the maximum likelihood estimation technique is used to estimate the

parameters. The unit increase in the independent variables Xi, while keeping all the remaining

factors constant, will result in the increase of the likelihood ratio by exp(βi). This states that the

relative magnitude by which the response outcome (breast cancer) will increase or decrease, while

considering a one-unit increase in the explanatory variable. The probability of breast cancer (p1)

is given by:

p1 =
exp(α+ βiXi)

1 + exp(α+ βiXi))
(2.2)

Similarly, the probability of no breast cancer (p0) is given by:

p0 =
1

1 + exp(α+ βiXi)
(2.3)

We used the logit model to identify and select appropriate factors that may affect the likelihood of

breast cancer.

2.3.2. Association Rule Mining

Association Rule Mining (ARM) is one of the key techniques to discover and extract useful

information from a large data set. Mining association rules [7] can formally be defined as: Let

I = {i1, i2, i3, ..., in}, be a set of n binary attributes called items, and Let, D = {t1, t2, t3, ..., tm}

be a set of transactions called the database. Each transaction in D has a unique transaction ID

and contains a subset of items in I. A rule is defined as an implication of the form X ⇒ Y where

X,Y ⊆ I. The sets of items or item sets X and Y are called antecedent (left-hand-side or LHS)

and consequent (right-hand-side or RHS) of the rule, respectively. Often rules are restricted to only

a single item in the consequent.
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Association rules are rules which surpass a user-specified minimum support and minimum

confidence threshold. The support supp (X) of an item set X is defined as the proportion of

transactions in the data set, which contain the item set and confidence of a rule as defined as:

conf(X → Y ) =
supp(X ∪ Y )

supp(X)
(2.4)

Therefore, an association rule X → Y will satisfy supp(X ∪ Y ) ≥ φ and conf(X → Y ) ≥ δ,

which are the minimum support and minimum confidence, respectively. Minimum confidence can

be interpreted as the threshold on the estimated conditional probability, the probability of finding

the RHS of the rule in the transactions under the condition that these transactions also contain

the LHS. Another popular measure for association rules used throughout this research is lift [40].

The lift of a rule is defined as:

lift(X → Y ) =
supp(X ∪ Y )

supp(X)supp(Y )
(2.5)

It can be interpreted as the deviation of the support of the whole rule from the support

expected under independence given the support of both sides of the rule. Greater lift values

(>> 1) indicate stronger associations. Measures like support, confidence, and lift are generally

called interest measures because they help with focusing on potentially more interesting rules. For

example, consider a rule such as {milk, sugar} ⇒ {bread} with support of 0.1, confidence of 0.9,

and lift of 2. Now, we know that 10% of all transactions contain all three items together, thus

the estimated conditional probability of seeing bread in a transaction under the condition that the

transaction also contains milk and sugar is 0.9; and we see the items together in transactions at

double the rate we would expect under independence between the item sets milk, sugar and bread

[41].

Rules can be generated from data sets having specified classes as their consequences under

the name of class association rule mining. These rules have the form {A1, A2, A3, ..., An ⇒ class}.

The objective here is to focus on using exhaustive search techniques to find all rules with the

specified classes as their consequences that satisfy support and confidence [37]. Appropriate values

of support and confidence is the key for generating rules since keeping a very low support value

will generate large rules and if the support value is too high, we may lose rare but important
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rules. In this research, we generated rules from the data set having specified classes such as rules

or characteristics of patients who have prior breast cancer. We also generated or mined rules for

non-breast cancer individuals. Our goal is to find rules or characteristics rules for these two groups.

2.4. Experiments and Results

Results of the logit model and association rule mining are discussed in this section. Associ-

ation rule mining and class association rule mining has been applied on the data set. By selecting

the optimum value of support and confidence, we mined strong rules for both breast cancer, and

non-breast cancer patients. In this section, we also interpret few strong rules for both groups.

2.4.1. Output of Logit Model

The binary logit regression model was used to estimate the coefficients of significant explana-

tory variables in the final model. The software package SAS was used for the model development.

For the model, all attributes were used as input for the likelihood of breast cancer. Interestingly,

all explanatory variables turned out to be statistically insignificant (p < 0.0001). Table 2.11 shows

the predictor variables which are significant at the corresponding significance levels in the binary

logit model, which can contribute to the likelihood of breast cancer.

Table 2.11. Predictor variables with corresponding p values.

Parameter DF Estimate Standard Error ChiSq Pr >ChiSq

Intercept 1 -9.1986 0.0544 28589 <.0001

Age group 1 0.223 0.00228 9580 <.0001

Race eth 1 0.0376 0.00463 66 <.0001

First degree
relative 1 0.1068 0.0109 95 <.0001

Age menarche 1 0.0259 0.00651 16 <.0001

Age first birth 1 0.0729 0.00375 377 <.0001

BIRADS breast
density 1 -0.1035 0. 00682 230 <.0001

HRT 1 -1.9993 0.0238 7052 <.0001

Menopaus 1 0.4206 0.0132 1009 <.0001

BMI group 1 -0.0164 0.00512 10 0.0014

biopsy 1 5.511 0.0386 20417 <.0001
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Figure 2.5. Scatter plot of 25 rules with minimum support, and confidence of 30% and 80%,
respectively.

Positive values of coefficients express that the probability of breast cancer will increase by

a certain amount for the specific predictor variables. Interestingly, all explanatory variables are

significant at p < .0001 except the BMI group which is significant at .0014. From the table it can be

referred that age group, race, first degree relatives, age menarche, age first birth, menopause, and

biopsy has a positive relationship with previous breast cancer history. However, BIRADS breast

density, HRT, and BMI group have negative relationship with breast cancer history.

2.4.2. Rules Generation from BCSC Risk Factors Data Set

Our goal is to extract characteristics of patients who have prior breast cancer and who

do not have breast cancer. For that, we generated rules using the association rule technique

with the specified support and confidence. We defined the consequent of a rule so that we can

get our target rules that represent the characteristics of the patients who have breast cancer

(Breast cancer history = Y es) or who do not have breast cancer (Breast cancer history = No).

Support and confidence play an important role in rule generation. Initially, we set the minimum

values of support and confidence to 30% and 80%, respectively. Also, we set the minimum length to

3, which means that the generated rules should have at least three items including the consequent.

With these specified parameters the algorithm generated 37 rules and after pruning redundant rules

we got 25 rules. The scatter plot of these 25 rules are shown in Fig. 2.5. From these 25 rules, 11

rules whose lift values are greater than or equal to one are shown in Table 2.12 sorted by higher lift

value with corresponding support, and confidence. The software R was used for the experiments.
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Table 2.12. Rules generated using the association rule technique with minimum support, and
confidence value 30% and 80%, respectively.

SL Rules Supp. (%) Conf. (%) Lift

1 {Race=Non-Hispanic-White, First degree relative 52 99 1.06
=No, biopsy=No} =>{breast cancer history= No}

2 {Age menarche=Age 12 13, biopsy=No} 31 99 1.06
=>{breast cancer history=No}

3 {First degree relative=No, biopsy=No} 59 99 1.06
=>{breast cancer history=No}

4 {Race=Non-Hispanic-White, 63 99 1.06
biopsy=No}

=>{breast cancer history=No}

5 {HRT=No, biopsy=No} 60 99 1.06
=>{breast cancer history=No}

6 {BIRADS breast density= 31 99 1.06
scattered fibroglandular densities, biopsy=No}

=>{breast cancer history=No}

7 {Menopaus=post menopausal, biopsy=No} 45 99 1.06
=>{breast cancer history=No}

8 {First degree relative=No, BIRADS breast density 31 95 1.01
= Heterogeneously dense}

=>{breast cancer history=No}

9 {First degree relative=No, BMI group= 33 95 1.01
10-to-lessThan 25} =>{breast cancer history=No}

10 {First degree relative=No, Age menarche= 33 95 1.01
Age 12 13} =>{breast cancer history=No}

11 {Race=Non-Hispanic-White, First degree relative 68 95 1.01
=No} =>{breast cancer history=No}
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Figure 2.6. Scatter plot of 165 rules with minimum support and confidence of 10% and 80%,
respectively.

It is worth to mention that we did not obtain any rules of patients who have prior breast

cancer (Breast cancer history = Y es) for the specified support and confidence. This is due to the

given values of support, and confidence; also a very small number of instances in which patients

have breast cancer compared to their counterpart (ratio is about 1:16).

To obtain the rules of patients having breast cancer we set support to 10% and keep the

confidence the same as before (80%). After pruning the redundant rules, we have 165 rules. The

scatter plot of these rules is shown in Fig. 2.6. We still did not obtain any rules having the

consequent equals to Yes, which means rules of breast cancer patients.

After several experiments, we assigned the value of support to 0.001% but a high confi-

dence value of 90%, and obtained 67 rules. Here, we set the consequent or class value to Yes

(breast cancer history = Y es) so that we can get the rules of breast cancer patients only. The

scatter plot of these 67 rules is shown in Fig. 2.7. And from these 67 rules, the top 10 rules sorted

by lift are shown in Table 2.13.

2.4.3. Generating Strong Rules

We obtained many rules using our methods described earlier. Here, we show a few rules

for both breast cancer and non-breast cancer patients that are strong or important as they have

higher confidence and lift values. Strong rules of both non-breast cancer patients and breast cancer

patients are shown in Table 2.14 and Table 2.15, respectively.
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Table 2.13. Rules generated using association rule technique with minimum support and confidence
of 0.001% and 90%, respectively and consequent fixed for breast cancer patients only.

Rules Supp.
(%)

Conf.
(%)

Lift

{Age group=age greater equal 85, Race=Hispanic,
Age first birth=Age less 20, BIRADS breast density 0.001 100 16.7
= Almost entirely fat, biopsy=Yes}
=>{breast cancer history=Yes}
{Age group=age 75 79, Race=Non-Hispanic-Black, 0.001 99 16.7
Age first birth =Age 20 24, BMI group=35-or-above+,
biopsy=Yes} =>{breast cancer history=Yes}
{Age group=age greater equal 85, Race=Non-Hispanic-White, 0.001 99 16.7
First degree relative=No, Age first birth=Nulliparous,
BMI group=35-or-above+, biopsy=Yes}
=>{breast cancer history=Yes}
{Age group=age 75 79, First degree relative=Yes, 0.001 99 16.7
Age first birth=Nulliparous, BIRADS breast density=
Almost entirely fat,BMI group=25-to-lessThan 30,
biopsy=Yes} =>{breast cancer history=Yes}
{Age group=age 75 79, Race=Asian or Pacific Islander, 0.001 99 16.7
First degree relative=Yes, Age menarche=Age greaterEqual 14,
BIRADS breast density=Heterogeneously dense, HRT=No,
biopsy=Yes} =>{breast cancer history=Yes}
{Race=Asian or Pacific Islander, First degree relative=Yes, 0.001 99 16.7
Age menarche=Age greaterEqual 14, Age first birth=
Age less 20, BIRADS breast density=
scattered fibroglandular densities, HRT=No, biopsy=Yes}
=>{breast cancer history=Yes}
{Race=Asian or Pacific Islander, First degree relative=Yes, 0.001 99 16.7
Age first birth=Age less 20, BIRADS breast density=
scattered fibroglandular densities, HRT=No, BMI group=
25-to-lessThan 30, biopsy=Yes} =>{breast cancer history=Yes}
{Race=Hispanic, First degree relative=Yes, Age menarche= 0.001 95 16.7
Age greaterEqual 14, Age first birth=Nulliparous,
BIRADS breast density= Heterogeneously dense, HRT=No,
Menopaus=post menopausal, BMI group=10-to-lessThan 25,
biopsy=Yes} =>{breast cancer history=Yes}
{Age group=age 80 84, First degree relative=Yes, 0.002 95 15.66
Age first birth=Age 25 29, BIRADS breast density=
scattered fibroglandular densities, BMI group=35-or-above+,
biopsy=Yes} =>{breast cancer history=Yes}
{Age group=age 80 84, First degree relative=Yes,
Age menarche=Age greaterEqual 14, Age first birth=
Age less 20, BIRADS breast density=
scattered fibroglandular densities, BMI group=25-to- 0.002 95 15.66
lessThan 30, biopsy=Yes} =>{breast cancer history=Yes
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Figure 2.7. Scatter plot of 67 rules with minimum support (0.001%) and confidence (90%) when
the consequent is fixed for breast cancer patients only (breast cancer history = Y es).

Table 2.14. Strong rules for non-breast cancer patients with corresponding support, confidence,
and lift values.

SL Rules Supp. (%) Conf. (%) Lift

1 {Race=Non-Hispanic-White, First degree relative 52 99 1.062
=No, biopsy=No} =>{breast cancer history=No}

2 {Race=Non-Hispanic-White, First degree relative 68 95 1.005
=No} =>{breast cancer history=No}

3 {Age menarche=Age 12 13, biopsy=No} 31 99 1.063
=>{breast cancer history=No}

4 {First degree relative=No, BMI group=10-to- 33 95 1.007
lessThan 25} =>{breast cancer history=No}
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2.4.4. Interpreting Strong Rules

Rule 1 of Table 2.14 can be interpreted as “If a person is a non-Hispanic white with no

breast cancer of first degree relatives, and has not had a previous breast biopsy then the individual

is a non-breast cancer patient”. Rule 4 can be interpreted as “If a person’s first-degree relatives

do not have breast cancer, and a person’s BMI range is between 10 and 25 then the individual is a

non-breast cancer patient”.

Table 2.15. Strong rules for breast cancer patients with corresponding support, confidence, and lift
values.

Rules Supp. (%) Conf. (%) Lift

{Age group=age greater equal 85, Race=Hispanic, 0.001 100 16.70
Age first birth=Age less 20, BIRADS breast density
=Almost entirely fat, biopsy=Yes}
=>{breast cancer history=Yes}

{Age group=age 75 79, Race=Non-Hispanic-Black, 0.001 100 16.70
Age first birth=Age 20 24, BMI group=
35-or-above+, biopsy=Yes}
=>{breast cancer history=Yes}

{Age group=age greater equal 85, Race 0.001 100 16.70
=Non-Hispanic-White, First degree relative=No,
Age first birth=Nulliparous, BMI group
=35-or-above+, biopsy=Yes}
=>{breast cancer history=Yes}

{Age group=age 75 79, First degree relative=Yes, 0.002 100 16.70
Age first birth=Nulliparous, BIRADS breast density

= Almost entirely fat, BMI group=25-to-lessThan 30,
biopsy=Yes}=>{breast cancer history=Yes}

{Race=Asian or Pacific Islander, First degree relative 0.002 100 16.70
=Yes, Age menarche=Age greaterEqual 14,
Age first birth= Age less 20, BIRADS breast density=
scattered fibrogland ular densities, HRT=No,
biopsy=Yes} =>{breast cancer history=Yes}

We can interpret Rule 1 of Table 2.15 as “If a patient’s race is a Hispanic with age greater

or equal to 85 and having had the first birth less than 20 years ago, with a BIRADS breast density
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being almost entirely fat, and had a previous breast biopsy then the person is a breast cancer

patient”. Likewise, Rule 2 can be interpreted as “If a person is a non-Hispanic black with an age

between 75 and 79 years, the first birth age range between 20 to 24 years, BMI value 35 or above,

and had a previous breast biopsy then the individual is a breast cancer patient”.

2.4.5. Interpreting Rules based on Support, Confidence, and Lift

If we consider the rules of both breast cancer and non-breast cancer individuals we can see

the significant differences. For both non-breast cancer and breast cancer individuals, its observed

confidence, which indicates how often the rule has been found to be true in the data set, is very

high (close to 100 %). In case of support, which demonstrates how frequently the item set or factors

appear in the data set, it is high (more than 30%) for non-breast cancer patients. However, for

breast cancer patients support value is very low (about 0.001%).

For both groups, if we look at the lift value that measures the degree of dependence be-

tween the antecedent and the consequent value, we can see the differences. For non-breast cancer

individual, lift value is just above 1.0 that means the relationship between factors of these rules

(antecedent part) and consequent (non-breast cancer patients) are very low. On the other hand,

for the breast cancer patients’ lift value is very high (more than 16.0) that indicates a greater

association between factors in the antecedent and the consequent (breast cancer patients).

2.5. Discussion

Predicting the risk of breast cancer occurrence is an important challenge for clinical oncol-

ogists as this has direct influence in their daily practice and clinical service. A reliable prediction

will help oncologists and other clinicians in their decision-making process and allow clinicians in

choosing the most reliable and evidence-based treatment and prevention strategies for their pa-

tients. Although, recent research has looked into various data mining techniques to aid clinicians in

the diagnosis of breast cancer, however, there still remain gaps in suggesting an accurate prediction

model. Our research explores association rules for breast cancer and non-breast cancer patients by

data mining of the BCSC risk factors data set. Our findings suggest association rules that could be

used to predict breast cancer risks among the target population. The data-driven approach that we

used in this research can guide the efficient process of clinical data set to discover behavioral risk

factor patterns and reveal hidden information for early detection and initiate prevention efforts as
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well as treatment strategies of at risk breast cancer patients. However, any prediction should be

combined with clinical judgment and individual patient circumstances.

There are several limitations of the current research. First, we used the BCSC data set

which is robust, however, we did not have any control of the overall quality of the data collected.

Second, in our data set there are a small number of instances in which patients have breast cancer

compared to non-breast cancer patients. In our approach, we specified different support values for

both target populations; for breast cancer patients we set a very low support value. In literature[42],

we found that researchers used multiple support value for rare item problems and by using a low

support value we attained rules of breast cancer patients that are rare in our cases. Although we

used a low support value for breast cancer patients, however we set a high confidence value that

represents the predictive strength of the rules.

2.6. Summary

Extracting useful rules has been generated from a breast cancer risk factor data set using

association rule mining. Before applying association rule mining, we used the logit model to check

the statistical significance of all predictors. We mined rules for both breast cancer and non-breast

cancer patients with specified support and confidence. The experimental results showed that the

generated rules hold the highest confidence level for both groups. However, in case of breast cancer

patients we have to set a very low support value due to the imbalance of the data (small number

of instances of patients having breast cancer compared to non-breast cancer individuals). We also

mined strong rules from a huge set of generated rules and interpreted those rules accordingly. This

research is an important step in improving risk prediction for people with potential risks for breast

cancer.

We intend to extend this research by considering more risk factors to extract more useful

and significant rules not only for breast cancer but also other cancer types using the association

rule mining algorithm. Furthermore, we plan to build a predictive model using machine learning

techniques for the breast cancer data set.
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3. CLASSIFICATION OF BREAST CANCER RISK FACTORS

USING SEVERAL RE-SAMPLING APPROACHES

Breast cancer is the most common cancer in women worldwide and the second most common

cancer overall. Predicting the risk of breast cancer occurrence is an important challenge for clinical

oncologists as it has direct influence in daily practice and clinical service. Classification is one of

the supervised learning models that is applied in medical domains. Achieving better performance

on real data that contains imbalance characteristics is a very challenging task. Machine learning

researchers have been using various techniques to obtain higher accuracy, generally by correctly

identifying majority class samples while ignoring the instances of the minority class. However, in

most of the cases the concept of the minority class instances usually is of higher interest than the

majority class. In this research, we applied three different classification techniques on a real world

breast cancer risk factors data set. First, we applied specified classification techniques on breast

cancer data without applying any re-sampling technique. Second, since the data is imbalanced

meaning data has an unequal distribution between the classes, we applied several re-sampling

methods to get better performance before applying the classifiers. The experimental results show

significant improvement on using a re-sampling method as compared to applying no re-sampling

technique, particularly for the minority class.

The remainder of the chapter is organized as follows. Related work is discussed in Section

3.1. Methodology of the proposed classification model to handle imbalance data is discussed in

Section 3.2. Section 3.3 shows the experimental results; the proposed techniques were evaluated

using breast cancer risk factors data and their results are presented. Section 3.4 is the summary

section; we conclude the chapter and suggest possible future research directions.

3.1. Related Work

Researchers have developed different models for breast cancer risk prediction, and asso-

ciation between risk factors [32]–[35]. In [32], the authors applied statistical methods to show a

positive association between Hormone Replacement Therapy (HRT) and breast cancer risk, al-

though this relationship varies according to race/ethnicity, BMI (Body Mass Index), and breast

30



density. The Gali model is used to estimate the number of expected breast cancers for white fe-

males who are examined annually [33]. In [34], the authors used commonly identified risk factors

such as race/ethnicity, breast density, BMI, and the use of hormone therapy, type of menopause,

and previous mammographic results to improve the model using logistic regression. In [35], the

Breast cancer risk score is determined using k-nearest-neighbor (KNN) to improve readability for

physician and patients.

Machine Learning (ML) or Data Mining (DM) algorithms are applied in the medical domain

in order to assist with the decision-making process, for example, for the prediction of cancer risk.

ML and DM algorithms [2], [7], [32] can be classified into supervised or unsupervised learning

depending on the goal of the data mining task. Classification is a supervised learning techniques

and the goal of the classification model is to predict qualitative or categorical outputs which assume

values in a finite set of classes (e.g. Yes/No or Benign-cancer/Malignant-cancer, etc.) without an

explicit order [34]. The primary objective of traditional classifiers is to get higher accuracy by

reducing the overall classification error [35]. However, the overall classification error is biased

towards the majority class for imbalanced data problems.

The problem of class imbalance is common that affects ML or classification models due

to having a disproportionate number of different class instances in practice [43]. There are many

approaches that deal with this problem such as cost function based, and sampling based solutions.

In this research, we focused on sampling based approaches that can be classified into three major

categories - random under-sampling, random over-sampling, and hybrid of over-sampling and under-

sampling.

Sampling methods modify the data set to balance the class distribution before using the

data set to train the classifier. Random under-sampling is the process of removing some of instances

of the majority class whereas over-sampling is the process of adding more samples of the minority

class so it has a larger effect on the ML algorithm. Although the methods are simple, however,

both of these techniques have some shortcomings. The random under-sampling technique has the

potential to lose information as it removes instances from the major class. On the other hand, over-

sampling generates instances from the minority class that creates the potential risk of over-fitting.

The hybrid method is a mix of the oversampling and under-sampling technique.
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The Synthetic Minority Over-sampling Technique (SMOTE) generates synthetic minor-

ity instances to balance the class distribution [44] and has been widely used. SMOTE produces

synthetic minority instances by linear interpolation between neighbors in the input space. ENN

(Edited Nearest Neighbor) is a technique of under-sampling of the majority class. It removes points

or instances whose class labels differ from the majority of its k nearest neighbors [44]. Tomek Link

[45] is a method of under-sampling which is used as a method of guided under-sampling where the

observations from the majority class are removed. The combinations of these techniques are also

applied in the literature to achieve better performance.

In this research, we applied three different classification algorithms on breast cancer risk

factors data, and calculated the predicted performance on a test set. Since the data is imbalanced,

we also applied various resampling techniques on the training data and applied classifiers on the

‘modified’ training data. Performance comparisons on the test data based on the all classification

models were also conducted.

3.2. Methodology

3.2.1. Classification Phase

We used three different classifiers namely Decision Tree (DT), Random Forest (RF), and

Extreme Gradient Boosting (XGBoost) to train the breast cancer data set of imbalanced data

(original data) as well as modified training data obtained by using different resampling methods.

These trained models were used to predict the target class for the test data set. The three classifiers

that are used in this research are briefly described below.

3.2.1.1. Decision Tree (DT)

DT is a supervised learning approach that learns from class-labeled instances. It works very

well with different types of data and results are easy to interpret. In addition, building a model

using decision tree is comparatively easy, and data can be represented in a visualizing form. The

decision tree model generation is however sensitive to overfitting and may get stuck in local minima.

When the number of dimensions gets too high, the decision tree model generation may fail. The

decision tree classifier has been widely applied to solving many real world problems including in

areas of healthcare, medicine, business, education, and so on [6] [21], [46]. A standard decision tree

algorithm for classification problems is the C4.5 decision tree algorithm that was initially developed
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by Ross Quinlan [21]. The C4.5 algorithm extends Quinlan’s earlier ID3 tree algorithm to address

certain practical issues such as over-fitting and the type of variables accepted in the input.

3.2.1.2. Random Forest (RF)

RF is a powerful classification and regression tool that generates a forest of classification

trees, rather than a single classification tree [47]. RF creates decision trees on randomly selected

data samples, obtains the prediction from each tree and selects the best solution by means of voting.

There are two stages in the RF algorithm, the first one is RF building, and the second stage is

to make a prediction from the RF classifier created during the first stage. RF is considered as a

highly accurate and robust method because of the number of decision trees participating in the

process. In addition, if there are more trees in the forest, the RF classifier will avoid the over-fitting

problem. RF is slow in generating predictions because it has multiple decision trees. Whenever it

makes a prediction, all the trees in the forest have to make a prediction for the same given input

and then voting is performed on all predictions. This whole process is time-consuming. However,

RF is widely used to various problems for its good performance and it does not overfit. RF has

been used extisively in the area of medical and bioinformatics [29].

3.2.1.3. Extreme Gradient Boosting (XGBoost)

XGBoost [29] is an implementation of gradient boosted decision trees designed for speed

and performance. XGBoost provides a wrapper class to allow models to be treated like a classifier

or a regressor in the scikit-learn framework. The XGBoost model for classification is called XGB-

Classifier. XGBoost is a scalable and accurate implementation of the gradient boosting machines

and it has proven to push the limits of computing power for boosted trees algorithms as it was built

and developed for the sole purpose of model performance and computational speed. Specifically,

it was engineered to exploit every bit of memory and hardware resources available for the tree

boosting algorithm.

Boosting is an ensemble method that aims to create a strong classifier based on several

weak classifiers. By adding models on top of each other iteratively, the errors of the previous model

are corrected by the next predictor, until the training data is accurately predicted by the overall

model. Gradient boosting also comprises an ensemble method that sequentially adds predictors

and collects previous models. However, instead of assigning different weights to the classifiers after

every iteration, this method fits the new model to new residuals of the previous prediction and
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then minimizes the loss when adding the latest prediction. Thus, in the final model it actually uses

gradient descent and hence the name gradient boosting. XGBoost specifically, implements this

algorithm for decision tree boosting with an additional custom regularization term in the objective

function.

XGBoost has been widely used in a number of machine learning and data mining challenges.

For example, in Kaggle, which is a ML competetion site; among the 29 challenge winning solutions

published on the Kaggle site during 2015, 17 solutions used XGBoost. The second most popular

method was deep neural network and was used in 11 solutions [48]. Examples of the problems in

these winning solutions include: store sales prediction; web text classification; customer behavior

prediction; motion detection; ad click through rate prediction; malware classification; hazard risk

prediction; massive online course dropout rate prediction, and so on. The most significant fac-

tor behind the success of XGBoost is its scalability in all scenarios. The system runs more than

ten times faster than existing popular solutions on a single machine and scales billions of exam-

ples in distributed or memory-limited settings. More importantly, XGBoost exploits out-of-core

computation and enables data scientists to process hundred millions of instances on a desktop.

3.2.2. Resampling Phase

The data set that we used in this research is imbalanced data, meaning there are significantly

more samples for one category than the other. For that reason, different resampling techniques were

applied to the training data set (imbalanced) and thus the training data is modified accordingly.

The resampling techniques that were used in this work are briefly discussed below.

3.2.2.1. Random under-sampling (RUS) of majority class

is a form of data sampling that randomly picks majority class instances and removes them

from the dataset until the desired class distribution is achieved [49]. This means that for a dataset

containing 100 positive and 500 negative instances, RUS removes 400 negative instances in order

to achieve a 50:50 post-sampling positive:negative class ratio.

3.2.2.2. Random over-sampling (ROS) of minority class

is a form of data sampling that randomly picks minority class instances with replacement

until the desired class distribution is achieved [49]. This means that for a dataset containing 100

positive and 500 negative instances, ROS adds 400 positive instances in order to achieve a 50:50

post-sampling positive:negative class ratio.
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3.2.2.3. SMOTE

works by creating synthetic observations based upon the existing minority instances [44],[50].

For each minority instance, SMOTE calculates the k nearest neighbors. Depending upon the

amount of oversampling needed, one or more of the k-nearest neighbors are selected to create

synthetic examples.

3.2.2.4. Edited Nearest Neighbor (ENN)

is the technique of under-sampling of the majority class [44]. It removes points or instances

whose class label differs from a majority of its k-nearest neighbors.

3.2.2.5. SMOTE + ENN

combines the over-sampling and under-sampling techniques [44]. It performs over-sampling

using SMOTE and under-sampling or cleaning using ENN. Thus, instead of removing only the

majority class examples, instances from both classes are removed. ENN tends to remove more

instances than Tomek links do, so it is expected that it will provide more in-depth data cleaning.

3.2.2.6. SMOTE + Tomek Link

also combines over-sampling and under-sampling techniques. It performs over-sampling us-

ing SMOTE and under-sampling or cleaning using Tomek links [44],[45]. Thus, instead of removing

only the majority class examples, instances from both classes are removed. Tomek links remove

less instances compared to ENN.

3.2.3. Proposed Approach

To obtain a better classification performance, we used specified classifiers to train the model

using the original training data. We also used various types of resampling methods on the training

data to train the model using specified classifiers with the modified training data. We then used

all the trained models to obtain class information on the test data. The diagram of our proposed

approach is shown in Fig. 3.1 consisting of the following main steps:

3.2.3.1. Step 1

This step includes obtaining the classification model data and test data for classification;

we constructed the classification model data, or training data, and sample, or test data, for classi-

fication. The training set contains 80% of the data while the test set contains the remaining 20%.

The stratified shuffle split technique was used since it preserves the percentage of samples for each

35



Figure 3.1. Proposed model to handle imbalanced data.

class which is important for imbalanced data. The Stratified shuffle split technique available in

scikit-learn (sklearn), a machine learning library for the Python programming language, was used

since it preserves the percentage of samples for each class which is important for imbalance data.

Dmax is the number of instances belonging to the negative class, or majority class, while Dmin is

the number of instances of the positive, or minority class.

3.2.3.2. Step 2

This step resamples the training data. Several resampling techniques were used on training

data that changed the number of instances of the training data. Based on the techniques of the

resampling methods, the instances of the majority class were removed and/or instances of the

minority class were added. The test data was kept unchanged.

3.2.3.3. Step 3

In this step, the classification model data was trained with the specified classifiers. First,

we used the original training data without using any sampling methods, and built models using

the specified classifiers. Second, for the training we used the modified training data obtained by

applying the different sampling techniques. Each of these training data sets were used to train all

three classifiers. All of the above models were saved for the prediction on the test data.
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3.2.3.4. Step 4

The last step was to apply test data on the saved models obtained in Step 3 to generate

predictions on the test data.

3.3. Experiments and Results

Detailed data description and pre-processing is discussed in this section. This section also

presents the experimental results and performance evaluation of the different models.

3.3.1. Data Description and Pre-processing

The dataset includes information from 6,318,638 mammography examinations obtained

from the Breast Cancer Surveillance Consortium (BCSC) database collected from January 2000 to

December 2009 [38]. Data for this study was obtained from the BCSC Data Resource and more

information is available at http://www.bcsc-research.org.

The data is aggregated such that the total number of instances or records is 1,144,565, with

13 attributes or columns. The dataset also contains missing or unknown values denoted by 9. To

build a reliable model, we discarded the records containing at least one missing or unknown value.

We also removed the attribute year that represents the calendar year of the observation. After

discarding these records and one attribute, there are 219,524 available records with 12 attributes.

In the dataset, there is an attribute named count, representing the number of records that have the

combination of variable-values shown in the row. For instance, the value of the count column for

the particular row is 12. It indicates that there were 12 similar records, the same as that particular

row in the original data. For that reason, we created the number of rows or records the same as the

count value in the original dataset, and discarded the count column after that. Finally, there are

a total of 1,015,583 records with 11 attributes for building the model. Among 1,015,583 records,

60,800 individuals have prior breast cancer, and 954,783 are non-breast cancer individuals. Among

the 11 attributes, “prior breast cancer” values yes or no is considered as the response or dependent

variable and the remaining 10 attributes are considered as explanatory or predictors or independent

variables.

The summary of the BCSC data along with train/test split are shown in Table 3.1.

We used different resampling methods on the training data. The distribution of the training

data after applying different resampling techniques is shown in Table 3.2.
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Table 3.1. Summary of BCSC data with train/test spilt.

Types Class = yes Class = no Total

BCSC data 60,800 954,783 1,015,583

Training (80 %) 48,640 763,826 812,466

Test (20%) 12,160 190,957 203,117

Table 3.2. Distribution of modified training data after applying different resampling methods.

Resampling type Class = yes Class = no Total

Random under-sample 48,640 48,640 97,280

Random over-sample 763,826 763,826 1,527,652

SMOTE 763,826 763,826 1,527,652

ENN 48,640 685,963 734,603

SMOTE + ENN 437,256 658,167 1,095,423

SMOTE + Tomek link 763,825 763,825 1,527,650

3.3.2. Evaluation Measures

To measure the performance of our model, several evaluation measures were used such as

accuracy, recall, precision, area under the Receiver Operating Characteristic curve (ROC) or AUC,

and F-measure [51]. These were derived from the confusion matrix, and applied to the classifier

evaluation.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3.1)

Recall = TP/(TP + FN) (3.2)

Precision = TP/(TP + FP ) (3.3)

where Y is the binary response or class variable; α is the intercept to be calculated; βi is the

estimated vector of parameters, and Xi is the vector of independent variables. Here, TP denotes

the number of positive examples correctly classified, TN denotes the number of negative samples

correctly classified, FN represents the number of positive observations incorrectly classified, and

FP indicates the number of negative samples incorrectly classified by the estimator.
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The ROC curve is a representation of the best decision boundaries for the cost between the

True Positive Rate (TPR), and the False Positive Rate (FPR). The ROC curve plots TPR against

FPR. TPR, and FPR are defined as follows.

TPR = TP/(TP + FN) (3.4)

FPR = FP/(FP + TN) (3.5)

The area below the ROC curve is called AUC and is widely utilized for weighing classifier perfor-

mance. The value of AUC ranges from 0.0 to 1.0, where a value of AUC equals 1.0 means perfect

prediction, a value of 0.5 means random prediction, and a value less than 0.5 is considered as a

poor prediction.

If only the performance of the positive class in this case the minority class is considered,

two measures namely recall, and precision are important. Recall or true positive rate denoting

the percentage of retrieved objects that are relevant, while precision or positive predictive value

denoting the percentage of relevant objects that are identified for retrieval. The F-measure or F1

score is a measure of a test’s accuracy and is defined as the weighted harmonic mean of the precision

and recall of the test, which is defined as follows:

F −measure = 2 ∗ precision ∗ recall
precision+ recall

(3.6)

The harmonic mean of two numbers tends to be closer to the smaller of the two. Hence, a high

F-measure value ensures that both precision and recall are reasonably high.

It is to be noted that for balanced class F1 score can effectively be ignored, the accuracy is

key. For the imbalance class, if the class distribution is highly skewed, then the classifier can have a

higher accuracy simply by choosing the majority class. In such a situation, the classifier that gets a

high F1 score on both classes, as well as high accuracy should be selected. However, if a particular

class generally the minority class is more important than the other then it is more important to

correctly classify instances for the minority or important class as opposed to the majority class. In

this case, the classifier that has a good F1 score only on the important class should be considered.
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3.3.3. Results

In this research, we applied three different classifier models on the original training data

(imbalanced), and the modified training data sets. We compared the performance of the trained

models on the test data. The overall performance of the classification models (built based on the

original training data) on test data are shown in Table 3.3 whereas the performance of the minority

class is shown in Table 3.4, respectively.

Table 3.3. Overall performance of specified classifiers on test data (trained with the original training
data).

Methods Precision Recall F1-score Accuracy AUC

DT 0.92 0.94 0.92 0.9406 0.9272

RF 0.92 0.94 0.92 0.9399 0.9164

XGBoost 0.92 0.94 0.91 0.9404 0.9287

Table 3.4. Performance of minority class on test data.

Methods Precision Recall F1-score

DT without sampling 0.54 0.05 0.10

RF without sampling 0.49 0.11 0.18

XGBoost without sampling 0.54 0.03 0.05

Although, the performance of these classifiers seem very good (according to Table 3.3) when

no resampling techniques were used, however, the performance of classifying the instances of the

minority class was very low. For the minority class, maximum recall, and F1-score were reported

as 0.11 and 0.18, respectively for the RF classifier.

Different resampling methods on the training data were used to modify the training data

accordingly. The modified training data sets were used for the training of the specified classifiers.

Results were obtained from the models applied to the test data. Table 3.5 shows the overall

performance of the DT classification models (built based on the modified training data) on test
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data for all the different training data sets, whereas Table 3.6 shows the performance of the minority

class for the DT classifier, respectively.

Table 3.5. Overall performance of DT classifier (model built on modified training data) on test
data.

Methods Precision Recall F1-score Accuracy AUC

DT with 0.95 0.82 0.86 0.8171 0.9255
RUS

DT with 0.95 0.82 0.86 0.8157 0.9263
ROS

DT with 0.95 0.82 0.87 0.8244 0.9266
SMOTE

DT with 0.93 0.91 0.92 0.9069 0.9249
ENN

DT with 0.94 0.87 0.90 0.8722 0.9207
SMOTE
+ ENN

DT with 0.95 0.82 0.86 0.8208 0.9270
SMOTE +
Tomek link

Table 3.6. Performance of minority class on test data based on DT classifier.

Methods Precision Recall F1-score

DT with RUS 0.24 0.96 0.39

DT with ROS 0.24 0.97 0.39

DT with SMOTE 0.25 0.95 0.39

DT with ENN 0.33 0.56 0.42

DT with SMOTE + ENN 0.29 0.80 0.43

DT with SMOTE + Tomek link 0.24 0.96 0.39

For DT, the best accuracy obtained was 90.69% when sampling method ENN was applied,

but the AUC value was little (0.0021) less than the highest AUC value of 0.9270. For the minority

class, The best recall (0.80) and the best F1-score (0.43) values were obtained when the resampling

technique SMOTE and ENN were applied.
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Table 3.7 shows the overall performance of the RF classification models (built based on the

modified training data) on test data for all the different training data sets whereas Table 3.8 shows

the performance of the minority class, respectively.

Table 3.7. Overall performance of RF classifier on test data.

Methods Precision Recall F1-score Accuracy AUC

RF with 0.95 0.82 0.87 0.8219 0.9180
RUS

RF with 0.95 0.84 0.87 0.8356 0.9145
ROS

RF with 0.95 0.85 0.89 0.8540 0.9140
SMOTE

RF with 0.93 0.88 0.90 0.8820 0.9039
ENN

RF with 0.94 0.88 0.91 0.8855 0.8606
SMOTE
+ ENN

RF with 0.95 0.85 0.89 0.8532 0.9135
SMOTE +
Tomek link

Table 3.8. Performance of minority class on test data based on RF classifier.

Methods Precision Recall F1-score

RF with RUS 0.24 0.94 0.39

RF with ROS 0.26 0.91 0.40

RF with SMOTE 0.27 0.85 0.41

RF with ENN 0.28 0.63 0.39

RF with SMOTE + ENN 0.31 0.74 0.44

RF with SMOTE + Tomek link 0.27 0.85 0.41

For RF, the best accuracy obtained was 88.55% when sampling method SMOTE followed

by ENN was applied. But in case of SMOTE followed by ENN, the AUC value (0.8606) was the

lowest among all other sampling methods. The maximum AUC (0.9180) for RF was reported when
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RUS used. For the minority class, the best recall (0.94) was found when RUS was applied and the

highest F1-score (0.44) was obtained when resampling technique SMOTE and ENN were applied.

Table 3.9 shows the overall performance of XGBoost classification models (built based on

the modified training data) on test data for all the different training data sets whereas Table 3.10

shows the performance of the minority class, respectively.

Table 3.9. Overall performance of XGBOOST classifier on test data.

Methods Precision Recall F1-score Accuracy AUC

XGBoost with 0.95 0.81 0.86 0.8118 0.9287
RUS

XGBoost with 0.95 0.81 0.86 0.8128 0.9288
ROS

XGBoost with 0.95 0.82 0.87 0.8218 0.9284
SMOTE

XGBoost with 0.93 0.91 0.92 0.9149 0.9281
ENN

XGBoost with 0.95 0.86 0.89 0.8626 0.9270
SMOTE
+ ENN

XGBoost with 0.95 0.82 0.86 0.8210 0.9282
SMOTE +
Tomek link

Table 3.10. Performance of minority class on test data based on XGBOOST classifier.

Methods Precision Recall F1-score

XGBoost with RUS 0.24 0.97 0.38

XGBoost with ROS 0.24 0.97 0.38

XGBoost with SMOTE 0.25 0.96 0.39

XGBoost with ENN 0.35 0.52 0.42

XGBoost with SMOTE + ENN 0.29 0.87 0.43

XGBoost with SMOTE + Tomek 0.25 0.96 0.39

For XGBoost, the best accuracy obtained was 91.49% when the sampling method ENN

was used. Surprisingly, the AUC value (close to 0.93) remained almost same for all the resampling
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techniques. For the minority class, the best recall (0.97) was found when both RUS and ROS were

applied, and the highest F1-score (0.43) was obtained when the resampling technique SMOTE and

ENN were applied.

3.3.4. Performance Comparison

Although we obtained the best overall performance for all the classifiers when no resampling

methods were used for the training phase, however, for minority class performance was very low.

The accuracy for all three classifiers were about 94% when no resampling methods were applied

which is about 3% more than the best accuracy obtained when the resampling techniques were

used.

However, for the minority class, the performance was not better when no resampling meth-

ods were used. For instance, the best recall and F1 score for the minority class for RF were reported

as 0.11 and 0.18, respectively when no resampling was used on the training data. Yet, the best recall

and F1 score for the minority class were reported as 0.87 and 0.43, respectively for the XGBoost

classifier when the resampling method SMOTE and ENN was used. It is also worth to mention

that the overall performance for the same combination was also good (not best). For example, the

accuracy and AUC score for this combination were reported as 86.26% and 92.70%, respectively.

The performance for the minority class was far better when applying all the specified resampling

methods as compared to not applying any resampling method. Thus, it is important to consider

all the factors when dealing with imbalanced data such as if both classes are important or only

the minority class is significant. Therefore, the appropriate model should be selected based on the

objective.

3.4. Summary

Predicting the risk of breast cancer occurrence is an important challenge for clinical oncol-

ogists as this has direct influence in their daily practice as well as their clinical service. In this

research, we explored breast cancer risk factors data and applied different resampling techniques

before applying machine learning methods. The data that we used in this research was severely

imbalanced (60,800 versus 954,7834). Our main objective was to improve the classification per-

formance of the standard machine learning algorithms towards the prediction of the important or

minority class. We compared the impact of using several resampling techniques on the training

data before using the specified classifiers in terms of the overall performance and the performance
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of the minority class. Experimental results show that the performance improves particularly for the

minority class when the resampling techniques were used as compared to applying the classification

techniques without using any resampling techniques.

We intend to extend this research by considering more risk factors not only for breast cancer

but also for other cancer types. Furthermore, we plan to build more accurate predictive models

that could provide better performance for both the minority and the majority class.
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4. ENHANCING THE PERFORMANCE OF

CLASSIFICATION USING SUPER LEARNING

Classification is one of the supervised learning models, and enhancing the performance of

a classification model has been a challenging research problem in the fields of Machine Learning

(ML) and data mining. The goal of ML is to produce or build a model that can be used to perform

classification. It is important to achieve superior performance of the classification model. Obtaining

a better performance is important for almost all fields including healthcare. Researchers have been

using different ML techniques to obtain better performance of their models; ensemble techniques

are also used to combine multiple base learner models. The ML technique called super learning or

stacked-ensemble is an ensemble method that finds the optimal weighted average of diverse learning

models. In this chapter, we presented two different forms of super learner or stacked ensemble. First

one uses two base learners namely Gradient Boosting Machine (GBM) and Random Forest (RF),

and the second one uses three base learners namely GBM, RF and Deep Neural Network (DNN);

and for both cases a meta-learner called Generalized Linear Model (GLM) is used [26], [47]. We used

four well-known benchmark data sets related to the healthcare area and compare the performance

of both super learners with the individual base learners, baseline ensemble and the state-of-the-art

classifiers. Our evaluations confirm that the super learner method has the ability to perform better

compared to individual base learners, baseline ensemble approach, and some of the state-of-the-art

techniques on four benchmark data sets.

The rest of the chapter is organized as follows. Section 4.1 describes state-of-the-art tech-

niques; Section 4.2 presents methodology where proposed solution is discussed. Section 4.3 shows

the experimental results; the proposed techniques are evaluated using four benchmark data sets

and their results are presented. Section 4.4 is the summary section; we conclude the chapter and

suggest possible future research directions.

4.1. Related Work

In this research, a ML technique called super learning or stacked ensemble [52], [53], [54]

has been used to improve the performance of four benchmark data sets related to healthcare.
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Stacked generalization in the context of neural net ensembles used leave-one-out Cross-Validation

(CV) to generate level-one data [55], which is the cross-validated predicted values generated from

cross-validating base learners on the training data. The authors extended the previous stacking

framework [55] to regression problems [30] and proposed to use k-fold CV to generate level-one data.

In this work, the authors also suggested non-negativity constraints for the meta-learner. It was

proposed combining estimates in regression and classification that provided a general framework for

stacking and compared CV-generated level-one data to bootstrapped level-one data [56]. Ensemble

or combining learners in various methods showed better performance over a single candidate learner,

but there is a concern that these methods may over-fit the data and may not be the optimal way

to combine the candidate learners [52]. Researchers suggest a solution to this problem in the form

of a new learner and named it super learner. In the context of prediction, a super learner is itself

a prediction algorithm, which applies a set of candidate learners to observed or training data,

and chooses the optimal learner for a given prediction problem based on the cross-validated risk.

Theoretical results show that the super learner will perform asymptotically as well as or better

than any other candidate learners [52], [57].

Using super learning for dynamic accuracy prediction in various domains is becoming pop-

ular. Researchers have used a super learning model to enhance anomaly detection in cellular

networks [58]. It was also used in predicting violence among inmates from the 2005 census of state

and federal adult correctional facilities [59]. Researchers investigated different ensemble learning

methods including super learning for network security and anomaly detection. In their research,

they showed that the super learner provides better results than any of the single models like Näıve

Bayes (NB), Decision Tree (DT), Neural Network (NN), Support Vector Machine (SVM), K-nearest

Neighbors (KNN) and RF [60].

Different ML and DM techniques have been developed and used in various data sets in

healthcare. Researcher used ensemble-based techniques with 10 fold cross-validation on Messidor

data for enhancing the performance [61]. Classifier methods like multi-layer perceptron (MLP),

and NB have been used to assess the performance of the Wisconsin breast cancer (WBC) data

sets [62]. Sequential minimal optimization (SMO) technique, which is an optimization algorithm

widely used for training SVM, has also been used to assess the performance of the WBC data set

[62]. In addition, bagging and boosting methods have been used to compare the performance of the

47



WBC data set [3]. The NB classifier has been used on the Pima Indian Diabetes Dataset (PIDD).

In order to get superior performance over the NB classifier, researchers used a Genetic Algorithm

(GA) approach for attribute or feature selection [63]. For the Indian Liver Patient Dataset (ILPD)

data set, authors used an ensemble classifier with 5 fold cross-validation and obtained acceptable

results [64]. Researchers showed the comparative analysis of diverse ML algorithms like NB, SVM,

MLP, random forest (RF) for various data sets including ILPD with the best accuracy for ILPD

using SVM [65].

In this research, we used the super learner or stacked ensemble approach that is discussed

in the following section applied to the four benchmark data sets.

4.2. Methodology

Super learning or stacked ensemble is a ML method that uses two or more learning al-

gorithms. It is a loss-based supervised learning method that finds the optimal combination of a

collection of prediction algorithms. It is a cross-validation-based approach for combining machine

learning algorithms that produce predictions that are at least as good as those of the best input

algorithm [52], [60].

4.2.1. Super Learning or Stacking

Stacking is a broad class of algorithms that involves training a second-level meta-learner

of an ensemble. Super learning or stacking [52] is a procedure for ensemble learning in which a

meta-learner is trained on the output of a collection of base learners. The output from the base

learners, also called the level-one data, can be generated using cross-validation. Construction of

level-one data is discussed in the following section. The original training data set is often referred

to as the level-zero data. The pseudo-code of the super learning or stacking is shown in Algorithm

1 [53], [54], and the concept diagram of the super learning method is illustrated in Fig. 4.1.

4.2.1.1. Constructing level-one data

The super learner theory requires cross-validation to generate the level-one data. Assume

that the training set is comprised of n independent, and identical distributed observations, {O1,

O2, O3} where Oi = (Xi, Yi) here Xi is the feature value, and Yi is the outcome or class value

[53] [54]. Consider an ensemble comprised of a set of L base learning algorithms, {B1, B2, ..., BL}

each of which is indexed by an algorithm class, and a specific set of model parameters. Then, the
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Algorithm 1 Super learning algorithm

1: Input: data set D with set of X examples, and response column Y .
2: Output: ensemble-model.

3: Set up the ensemble

� Specify a list of L base algorithms (with a specific set of model parameters).

� Specify a meta-learning algorithm.

4: Train the ensemble.

� Train each of the L base algorithms on the training set.

� Perform k-fold cross-validation on each of the L learners, and collect the cross-validated
predicted values from k-fold CV that was performed on each of the L base learners.

� The N cross-validated predicted values from each of the L algorithms can be combined to
form a new matrix, Z(NXL). This matrix Z, along with the original response vector is
called the “level-one” data (N = number of instances in the training set).

� Train the meta-learning algorithm on the level-one data (Z,Y ). The ensemble model
consists of the L base learning models, and the meta-learning model, which can then be
used to generate predictions on a test set.

5: Predict new data.

� To generate ensemble predictions, first generate predictions from the base learners.

� Feed those predictions into the meta-learner to generate the ensemble predictions.

Figure 4.1. Concept diagram of super learner
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process of constructing the level-one data will involve generating a n× L matrix, referred to as Z

of the k-fold cross-validated predicted values as follows:

1. The original training set X is divided at random into k = V roughly-equal pieces

X(1), X(2), ..., X(V ).

2. For each base learner in the ensemble, BL V-fold cross-validation is used to generate n cross-

validated predicted values associated with the lth learner. These n-dimensional vectors of

cross-validated predicted values become the L columns of Z.

The level-one data set Z, along with the original outcome vector {Y1, Y2, ..., Yn}, is used to

train the meta-learning algorithm. Finally, each of the L base learners are fitted to the full training

set and these fits are saved. The final ensemble fit is comprised of the L base learner fits, along with

the meta-learner fit. To generate a prediction for new data using the ensemble, the algorithm first

generates the predicted values from each of the L base learner fits, and then passes those predicted

values as input to the meta-learner fit, which returns the final predicted value for the ensemble.

4.2.1.2. Base Learners

It is recommended that the base learners should include a diverse set of learners, for example,

linear model, SVM, RF, GBM, Neural Net, etc., however, the super learner theory does not require

any specific level of diversity among the set of base learners [53], [54]. It is also allowable to include

the same algorithm multiple times as a base learner by different sets of parameters. For example,

the user could specify multiple Distributed Random Forest (DRF) method, each with a different

splitting criterion, tree depth, number of folds, or number of trees. Typically, in stacking-based

ensemble methods, the prediction functions are fit by training each base learning algorithm on

the whole training data set and then combining these fits using a meta-learning algorithm. In this

research, we first used two base learners namely Gradient Boosting Machine (GBM) and Distributed

Random Forest (RF). In addition, we used another base learner called Deep Neural Network (DNN)

with GBM and RF that are briefly discussed below.

Gradient Boosting Machine (GBM) [47] produces a prediction model in the form

of an ensemble of weak prediction models. It builds the model in a stage-wise fashion and is

generalized by allowing an arbitrary differentiable loss function. It is one of the most powerful

methods available today. GBM for regression and classification is a forward learning ensemble
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method. The guiding heuristic is that good predictive results can be obtained through increasingly

refined approximations. H2O is an open source, in-memory, ML, and predictive analytics platform

[47] which is used in this work. GBM is available in H2O, which is built upon the distributed, open

source, Java-based machine learning platform for big data [47]. H2O’s GBM sequentially builds

regression trees on all the features of the data set in a fully distributed way - each tree is built

in parallel. Additional features have been incorporated into the new version of H2O like the per-

row observation weights, per-row offsets, N-fold cross-validation, and support for more distribution

functions (such as Gamma, Poisson, and Tweedie).

Distributed Random Forest (DRF) [47] is a powerful classification and regression tool.

When given a set of data, Random Forest (RF) generates a forest of classification (or regression)

trees, rather than a single classification (or regression) tree. Each of these trees is a weak learner

built on a subset of rows and columns. More trees will reduce the variance. Both classification and

regression take the average prediction over all of their trees to make a final prediction, whether

predicting a class or numeric value. For a categorical response column, DRF maps factors (e.g.

‘dog’, ‘cat’, ‘mouse’) in lexicographic order to a name lookup array with integer indices (e.g. ‘cat’

- 0, ‘dog’ - 1, ‘mouse’ - 2).

Deep Neural Network (DNN) [26] is an architecture of deep learning based on an Ar-

tificial Neural Network (ANN) that is inspired by biological neural networks. A DNN has basically

many connected units arranged in layers of varying sizes with information being fed forward through

the network. DNNs have been successfully applied to fields such as computer vision and natural

language processing system and achieved better or similar accuracy rates compared to humans in

classification tasks[66]. H2O’s deep learning is based on a multi-layer feedforward ANN that is

trained with stochastic gradient descent using back-propagation. The network can contain a large

number of hidden layers consisting of neurons with activation functions such as tanh, rectifier, and

maxout. Advanced features such as dropout, L1 or L2 regularization, grid search, etc. enable high

predictive accuracy.

4.2.1.3. Meta-learning algorithm

The meta-learner is used to find the optimal combination of the L base learners. The Z

matrix of cross-validated predicted values, described previously, is used as the input for the meta-

learning algorithm along with the original outcome from level-zero training data {Y1, Y2, ..., Yn}. In
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the super learning algorithm, the meta-learning method is specified as the minimizer of the cross-

validated risk of a loss function of interest, such as squared error loss or rank loss. Historically,

in stacking implementations, the meta-learning algorithm is often some sort of regularized linear

model, however, a variety of parametric and non-parametric methods can be used as a meta-learner

to combine the output from the base fits [53] [54]. For this research, we used Generalized Linear

Models (GLM) as the meta-learner, which is described briefly as follows.

Generalized Linear Models (GLMs) are an extension of traditional linear models.

They have gained popularity in statistical data analysis due to the following three characteristics

[26]. Firstly, the flexibility of the model structure unifying the typical regression methods (such as

linear regression, and logistic regression for binary classification). Secondly, the recent availability

of model-fitting software, and finally, the ability to scale well with large data sets.

GLM provides flexible generalization of ordinary linear regression for response variables

with error distribution models other than a Gaussian (normal) distribution. GLM’s estimate re-

gression models for outcomes follow exponential distributions. In addition to the Gaussian (i.e.

normal) distribution, these include Poisson, binomial, and gamma distributions. Each serves a

different purpose, and depending on the distribution and link function choice, either can be used

for prediction or classification [47].

4.2.2. Proposed Approach

To obtain better performance, we selected three base learners from H2O namely Gradient

Boosting Machine (GBM), Random Forest (RF), and Deep Neural Network (DNN) [47]. For the

meta-learner, we used Generalized Linear Model (GLM) [26], [47]. It is a particular implementation

of the Super Learner, using a probability-based weighting function to combine the outputs of

the first level learners. In a nutshell, we used the probabilities of success of each class to build

exponentially decayed weighting functions, adding a control variable to reduce the overall influence

of low accuracy models in the final prediction.

Our proposed method has the following main steps:

1. Classification Model Data and Sample Data for Classification

� We construct the classification model data and sample data for classification whereby

for the training data set the class information is known whereas the class information is
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Figure 4.2. Level-0 data

unknown for the testing data set. The data sets are referred to as level-0 data, which

is shown in Fig. 4.2 where X is the training data set with n rows, and m columns; the

class value column is separated from the training data, which is referred to as Y .

2. Classifiers and Model Selection

� To set up the stacked ensemble or super learner, we need to specify the base learners and

a meta-learner algorithm. For this research, we first selected two base learners namely

GBM and RF. We also selected another base learner DNN with the previous two base

learners and for the meta-learner we specified GLM.

For the model selection process, we used the cartesian grid search and specified a set of

values for particular parameters to search over each base learner. The parameters that

underwent a model selection phase in the grid search are shown in Table 4.1 with the

corresponding range of values. If a hyper-parameter of a learner is not listed in the Table

4.1, default values of the implementation of the algorithm were used. Best parameters

for all three base learners of the four specified data sets using grid search were listed in

Table 4.2. For the meta learner algorithm, we used the default parameters available in

H2O. The training of the ensemble has the following two steps:

(a) Base learners

– We trained GBM, RF, and DNN individually on the training data set with

the specific parameters obtained using the grid search. Here, 10-fold cross-
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Table 4.1. Classifiers with the corresponding hyper-parameter values in grid search.

Classification algorithm
Hyper parameters in grid search with

corresponding range of values

learn rate: [0.01, 0.03, 0.05, 0.1]
sample rate: [0.6, 0.7, 0.8,0.9]

GBM col sample rate per tree:[.7, .8, .9]
ntrees:[50, 80, 100,120]

max depth:[6,8,10,12,15]

sample rate: [0.6, 0.7, 0.8,0.9]
RF col sample rate per tree:[.7, .8, .9]

ntrees:[50, 80, 100,120]
max depth:[6,8,10,12,15]

activation: [tanh, rectifier, maxout]
hidden layers: [[30], [50],[30,30],[50,50]]

DNN epochs:[10, 15, 20, 30]
l1:[0,1e-3, 1e-5]
l2:[0,1e-3, 1e-5]

validation is performed on each of these learners and we kept the cross-validation

prediction parameter specified as True. For all three base learners, the Bernoulli

distribution was specified since the response column is of type categorical with

two classes. In addition, for the base learners the fold-assignment modulo was

selected which is a simple deterministic way to evenly split the data set into the

folds. It is important to note that in our experiments we first used two base

learners (GBM and RF) and then three base learners (GBM, RF, and DNN).

The N cross-validated predicted values of the three base learners GBM, RF, and

DNN are defined as P1, P2, and P3 respectively. For the ensemble consisting of

two base learners (GBM and RF), the predicted values P1 and P2 are combined

to form a n×2 matrix. This matrix along with the class value (Y ) of the training

data is called the level-1 data for the ensemble having two base learners, which

is shown in Fig. 4.3.

For the stacked ensemble consisting of three base learners, level-1 data is con-

structed similarly. However, instead of using the cross-validated predicted values

P1 and P2, we used P1, P2, and P3, which are combined to form a n×3 matrix.

This matrix along with the class value (Y ) of the training data is called the
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Table 4.2. Classifiers with the corresponding hyper-parameter best values from grid search for the
specified data sets.

Classifiers /
Data set

GBM RF DNN

learn rate: 0.03 sample rate: 0.7 activation: rectifier
sample rate: 0.6 col sample rate per tree: hidden layer: [30]

0.9
Messidor col sample rate per tree: ntrees: 80 epochs: 30

0.8
ntrees: 120 max depth: 15 l1: 0.001

max depth: 6 l2: 0.0

learn rate: 0.03 sample rate: 0.8 activation: rectifier
sample rate: 0.6 col sample rate per tree: hidden layer: [50,50]

0.8
WBC col sample rate per tree: ntrees: 50 epochs: 20

0.7
ntrees: 120 max depth: 6 l1: 1e-5

max depth: 8 l2: 0.0

learn rate: 0.03 sample rate: 0.8 activation: tanh
sample rate: 0.7 col sample rate per tree: hidden layer: [50]

0.8
PIDD col sample rate per tree: ntrees: 80 epochs: 20

0.9
ntrees: 100 max depth: 6 l1: 1e-5

max depth: 6 l2: 0.001

learn rate: 0.03 sample rate: 0.6 activation: rectifier
sample rate: 0.7 col sample rate per tree: hidden layer: [50]

0.9
ILPD col sample rate per tree: 0.8 ntrees: 120 epochs: 30

0.8
ntrees: 50 max depth: 8 l1: 0.0

max depth: 8 l2: 0.01
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Figure 4.3. Level-1 data for two base learners (GBM and RF).

Figure 4.4. Level-1 data for three base learners (GBM, RF, and DNN).

level-1 data for the ensemble having three base learners, which is shown in Fig.

4.4.

Please note that for each of the base learners the best model was selected based

on the mean squared error (MSE) which is the average squared difference be-

tween the estimated values and the actual values. This was done once the grid

search on the training data was complete, and then we queried the grid object

and sorted the models by the performance metric MSE. Finally, for each base

learner the model having the minimum MSE was selected.

(b) Meta-learner
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– In the stacked ensemble, for the meta-learner we have used GLM available in

H2O. We trained the level-1 data using GLM with default parameters to get

the prediction values for the training data set. Firstly, for the stacked ensemble

having two base learners GBM and RF were used for the parameter named

base model with the other specified default parameters discussed in Step (a).

Secondly, for the stacked ensemble having three base learners GBM, RF and

DNN were used for the parameter named as base model.

It is important for the stacked ensemble that all base models must have been

cross-validated and they all must use the same cross-validation folds. Also,

a parameter named ‘keep cross-validation prediction’ was set to True. In our

case, we considered that by using 10 fold cross-validation and setting the ‘keep

cross-validation prediction’ parameter as True for all the base learners.

3. Output generation / results stage

� The last part of our approach was to use the super learner or ensemble-model to generate

predictions on the test data.

4.3. Experiments and Results

This section presents the experimental results and performance evaluation of our model.

For our experiment we used H2O. We chose Python as the programming language for the imple-

mentation using H2O.

4.3.1. Benchmark Data Sets

To evaluate the performance of our model, we used four benchmark data sets related to

healthcare. The data sets were chosen from the UCI Machine Learning repository [61], [67]. The

first data set named Diabetic Retinopathy Debrecen data, also called Messidor data set, contains

features extracted from the Messidor image set to predict whether an image contains signs of

Diabetic Retinopathy (DR) or not. It has a total of 1151 instances, 19 attributes, and a class label

with binary outcome 1 or 0, where 1 represents ‘sign of DR’ and 0 represents ‘no sign of DR’. The

second data set that we used is the original Wisconsin Breast Cancer (WBC) data set. The goal

of this data set is to predict breast cancer. There are 699 records in this database. Each record in

the database has nine attributes. In this database, there are a total of 699 instances, among them
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241 (65.5%) records are malignant and 458 (34.5%) records are benign. We also used the Pima

Indian Diabetes Database (PIDD) and the objective of this data set is to predict whether or not a

patient has diabetes, based on certain diagnostic measurements included in the data set. Various

constraints were placed on the selection of these instances from a large database. For example, all

patients should include female patients who are at least 21 years old and of Pima Indian heritage.

There is a total of 768 records with 268 (34.9%) diabetes patients and 500 (65.1%) non-diabetes

patients. The final data set that we used in our evaluation process is the Indian Liver Patient data

set (ILPD) that contains 10 variables and a binary variable as output (liver patients or not). The

data set contains 441 male and 142 female patient records. There are a total of 583 records with

416 (71.4%) liver patients and 167 (28.6%) non-liver patients. The summary of these four data sets

is shown in Table 4.3.

Table 4.3. Data sets description.

Name
Number of
instances

Number of
attributes

Class label

Messidor 1151 9 Class 0: no sign of DR (540)
Class 1: contains sign of DR (611)

WBC 699 19 Class 2: benign (458)
Class 4: malignant (241)

PIDD 768 8 Class 0: non-diabetes patients (500)
Class 1: diabetes patients (268)

ILPD 583 10 Class 1: liver patients (416)
Class 2: non-liver patients (167)

We constructed the training data and the test data for all the data sets that we used in this

research. The training set contains 80% of the data while the test set contains the remaining 20%.

The Stratified shuffle split technique available in scikit-learn (sklearn), a machine learning library

for the Python programming language, was used since it preserves the percentage of samples for

each class.
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4.3.2. Evaluation Measures

To measure the performance of our model, several evaluation measures were used such as

Sensitivity, Specificity, and Accuracy [51]. These were derived from the confusion matrix, and

applied to the classifier evaluation, and are shown in Equation (1) through (3).

Accuracy = (TP + TN)/(TP + FP + TN + FN) (4.1)

Sensitivity = TP/(TP + FN) (4.2)

Specificity = TN/(TN + FP ) (4.3)

where TP is the number of positive examples correctly classified; TN is the number of negative

samples correctly classified; FN is the number of positive observations incorrectly classified and FP

is the number of negative samples incorrectly classified.

In addition, the Area under the Receiver Operating Characteristic curve (ROC) were also

measured [51]. This is because almost all data sets used in this research can be considered as

imbalanced data sets. This metric has been widely used as the standard measure for comparison

of the performance. The ROC curve is a representation of the best decision boundaries for the

cost between the True Positive Rate (TPR), and the False Positive Rate (FPR) that are defined in

Equation (4) and (5). The ROC curve plots TPR against FPR.

TPR = TP/(TP + FN) (4.4)

FPR = FP/(FP + TN) (4.5)

The area below the ROC curve is called AUC and is widely utilized for weighing classifier

performance. The value of AUC ranges from 0.0 to 1.0, where a value of AUC equals 1.0 means

perfect prediction, a value of 0.5 means random prediction, and a value less than 0.5 is considered

as a poor prediction.
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4.3.3. Results

In this research, we compared the performance of our method with the individual base

learners used in this research, baseline ensemble, and best results available so far in the literature.

We applied the stacked ensemble or super learner (SL) methods on the training data. For the

evaluation of the model, we used the test data set. Table 4.4 shows the performance (different

evaluation metrics) of the proposed technique (SL having two base learners - GBM and RF) on the

test data for the different data sets while Table 4.5 shows the performance of SL having three base

learners namely GBM, RF, and DNN on test data for all the data sets used in this research.

Table 4.4. Performance of the proposed techniques on test data (SL consisting of two base learners
- GBM and RF).

Data sets Sensitivity (%) Specificity (%) Accuracy (%) AUC

Messidor 90.24 45.37 69.26 0.806

WBC 100.00 97.83 98.57 0.997

PIDD 90.74 76.00 81.17 0.882

ILPD 94.12 51.81 64.10 0.733

Table 4.5. Performance of the proposed techniques on test data (SL consisting of three base learners
- GBM, RF and DNN).

Data sets Sensitivity (%) Specificity (%) Accuracy (%) AUC

Messidor 78.86 79.63 79.22 0.847

WBC 100.00 98.91 99.29 0.998

PIDD 96.30 73.00 81.17 0.886

ILPD 70.59 72.29 71.80 0.730

Comparing Table 4.4 and Table 4.5, for all the data sets used in this research, best results

(based on test data) were obtained using the super learner methods (either SL consisting of two

base learners or SL consisting of three base learners). For the Messidor data, best AUC, specificity,
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and accuracy were obtained when SL consisting of three base learners applied on the test data and

for sensitivity best results were reported using SL with two base learners. Interestingly, for WBC

the best performance was obtained when SL consisting of three base learners applied on the test

data for all the performance measures considered in this research. For the PIDD data set, best

AUC, sensitivity and accuracy were obtained when SL consisting of three base learners applied

on the test data and for specificity best results were reported SL with two base learners. For the

ILPD, best AUC and sensitivity were obtained with SL consisting of three base learners and for

accuracy and specificity best results were achieved SL consisting of two base learners.

In addition, the accuracy comparison using single base learners, baseline ensemble, the SL

consisting of two base learners (GBM and RF), and the SL having three base learners (GBM, RF,

and DNN) on test data are presented in Table 4.6. We also compare AUC using single base learners,

baseline ensemble, SL consisting of two base learners (GBM and RF), and the SL that consist of

three base learners (GBM, RF, and DNN) on the test data set are shown in Table 4.7.

Table 4.6. Accuracy comparison using single base learners, baseline ensemble, and super learner
consisting of two base learners (BLs) and three BLs on test data (bold indicates the best value).

Data set
Accuracy

(%)
(GBM)

Accuracy
(%)
(RF)

Accuracy
(%)

(DNN)

Accuracy
(%)

(ensemble)

Accuracy
(%)

(SL - 2 BLs)

Accuracy
(%)

(SL - 3 BLs)

Messidor 71.86 67.53 77.92 69.86 69.26 79.22

WBC 99.29 98.57 99.29 97.90 98.57 99.29

PIDD 79.22 81.17 74.68 75.33 81.17 81.17

ILPD 63.32 64.10 65.81 70.16 64.10 71.80

Table 4.7. AUC comparison using single base learners, baseline ensemble, and super learner of
having two base learners (BLs) and three base learners (bold indicates the best value).

Data set
AUC

(GBM)
AUC
(RF)

AUC
(DNN)

AUC
(ensemble)

AUC
(SL - 2 BLs)

AUC
(SL - 3 BLs)

Messidor 0.815 0.765 0.838 0.740 0.806 0.847

WBC 0.997 0.997 0.998 0.996 0.998 0.998

PIDD 0.876 0.882 0.872 0.808 0.882 0.886

ILPD 0.718 0.727 0.733 0.730 0.727 0.734
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From the Table 4.6, it is explicit that our proposed method SL having three base learners

performs slightly better (or equal in few cases) than other methods for all the data sets used

in this research. For the Messidor data set, SL with three base learners has the best accuracy

(79.22%) followed by the individual learner DNN (77.92%). For PIDD, the best accuracy (81.17%)

was obtained with both SL methods (having two and three base learners) and with an individual

learner named RF. For ILPD, the best accuracy (71.80%) was obtained when the SL method with

three base learners was applied on the test data followed by the baseline ensemble (70.16%).

Similar trends are also observed in Table 4.7, the best AUC value was obtained using the

super learner having three base learners for all the data sets used in this research. For the Messidor

data set, the best AUC value (0.847) was reported with SL consisting of three base learners followed

by individual base learner DNN (0.838). For WBC, the best AUC score (0.998) was reported with

both SL methods (using two and three base learners) and an individual learner named DNN. For

PIDD, the best AUC (0.886) was attained with the SL method consisting of three base learners

followed by SL with two base learners and an individual learner RF (0.882). For ILPD, the best

AUC (0.734) was obtained with the SL method having three base learners followed by an individual

learner named DNN (0.733).

We also present the ROC analysis for all data sets that have been used in this research

using all the base learners and the super learner. The ROC plots using the base learners namely

GBM, RF, and DNN for all data sets (test) are shown in Figure 4.5, Figure 4.6, and Figure 4.7,

whereas the ROC plots using the super learner or stacked-ensemble for the data sets are shown in

Figure 4.8.

4.3.4. Performance comparison of four benchmark data sets with other methods

Several ML techniques have been used for the four benchmark data sets that we used for the

evaluation of the performance. Authors in [61] used an ensemble-based technique on the Messidor

data set with 10-fold cross validation; they obtained 90% sensitivity, 91% specificity, 90% accuracy,

and 0.989 AUC. Authors in [62] showed the comparison of five different classifiers based on 10-fold

cross validation on the WBC data sets. Among these classifiers, the best accuracy (about 97%) was

obtained by SMO. The authors also used feature selection method named Principal Component

Analysis (PCA) on the WBC data set with the J48, an open source java implementation of the

C4.5 decision tree algorithm and MLP classifiers, and the best accuracy achieved was 97.57%.
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Figure 4.5. ROC analysis using GBM for different data sets used: (a) messidor / diabetic retinopa-
thy (DR), (b) wisconsin breast cancer diagnostics, (c) pima indian diabetes, and (d) ILPD (indian
liver patient data set).

Figure 4.6. ROC analysis using RF for different data sets used: (a) messidor / diabetic retinopathy
(DR), (b) wisconsin breast cancer diagnostics, (c) pima indian diabetes, and (d) ILPD (indian liver
patient data set).
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Figure 4.7. ROC analysis using DNN for different data sets used: (a) messidor / diabetic retinopa-
thy (DR), (b) wisconsin breast cancer diagnostics, (c) pima indian diabetes, and (d) ILPD (indian
liver patient data set).

In [3], authors compared the performance in terms of accuracy of bagging, and boosting with a

hybrid approach of a Hierarchical and Progressive Combination of Classifiers (HPCC). They found

a 83.34% accuracy for HPCC, and 82.39% for bagging with GLM. The authors did not explicitly

mention the number of cross-validation they used in their experiments. In [63], the authors used

GA for attribute or feature selection methods, and a NB classifier has been used for classification

on PIDD. For PIDD, the authors partitioned the data set with a split of 70% / 30% for training and

testing, respectively. They obtained an accuracy of 77.3%, and 76.95% for training and testing, and

an AUC of 0.816 and 0.846, respectively. For the ILPD data set, the best accuracy (79.38%) was

found using an ensemble classifier with 5 fold cross-validation [64]. In [65], the authors provided a

comparative analysis of different ML algorithms for the diagnosis of different data sets. For ILPD,

the best accuracy (79.66%) was obtained by SVM.

We summarized and compared the results that we obtained using the SL methods with

the state-of-the-art (SA) best results based on the four benchmark data sets outlined in Table 4.8.

From the table, for the SL methods all the values were obtained using three base learners except

the sensitivity for the Messidor data (indicated in italics), which were achieved using two base
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learners. It is important to note that in our experiments, we used 80% for training and 20% for

testing for all data sets used and the results were evaluated on the test data.

Figure 4.8. ROC analysis using the super learner (using three base learners) for different data sets
used: (a) messidor / diabetic retinopathy (DR), (b) wisconsin breast cancer diagnostics, (c) pima
indian diabetes, and (d) ILPD data sets.

Table 4.8. Comparison of super learner (SL) methods, and state-of-the-art (SA) best results for
the four benchmark data sets (italics indicates that the result is obtained using the SL method
consisting of two base learners).

Data set
Sensitivity (%) Specificity (%) Accuracy (%) AUC
SA SL SA SL SA SL SA SL

Messidor 90.00 90.24 91.00 79.63 90.00 79.22 0.990 0.847

WBC - 100.00 - 98.91 97.57 99.29 - 0.998

PIDD - 96.30 - 76.00 76.95 81.17 0.846 0.886

ILPD - 94.12 - 72.29 79.66 71.80 - 0.733

4.4. Summary

Classification is one of the important tasks of machine learning that predicts the target

class for each example in the data. To achieve good performance on the available data sets,
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researchers are using appropriate single classifiers. However, selecting the best data mining or

machine learning model for a specific problem is complex. Due to this researchers are using multiple

different models for a particular problem to obtain good performance. In this chapter, we focused

on the improvement of the classification performance in terms of sensitivity, specificity, accuracy,

and AUC for four benchmark data sets related to healthcare. To do so, we used the super learning

or stacked-ensemble method that finds the optimal weighted average of diverse learning models.

For the base learners we first used GBM and RF and then used another base learner DNN along

with the previous two - GBM and RF. To find the optimal combination of the base learner models

used in this research, Generalized Linear Models (GLM) was used as the meta-learner.

From our experimental results, we showed that super learning has a better performance

compared to individual base learners, baseline ensemble approach, and some of the state-of-the-art

techniques for these four benchmark data sets.Using the stacked ensemble or super learner methods

(using two base learners or three base learners), we achieved better or equal performance compared

to the individual base learners and the baseline ensemble for all the evaluation metrics considered

in this research.

In our future work, we plan to apply this technique to other health related big data problems.

In addition, we will investigate research problems by including more diverse base learners and other

meta-learner. Finally, this technique could be applied to other real world problem domains such as

cyber security, Geographic Information System, transportation, and agriculture.
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5. CLASSIFICATION MODELS AND SURVIVAL ANALYSIS

FOR PROSTATE CANCER USING RNA SEQUENCING

AND CLINICAL DATA

Early detection of cancer can significantly increase the chance of successful treatment. This

research performs a study on early cancer detection for prostate cancer patients from whom cancer

tissue was analyzed with Illumina Hi-Seq ribonucleic acid (RNA) Sequencing (RNA-Seq). Cancer

relevant genes with the most significant correlations with the clinical outcome of the sample type

(cancer / non-cancer) and the overall survival (OS) were assessed. Traditional cancer diagnosis

primarily depends on physicians’ experience to identify morphological abnormalities. Gene expres-

sion level data can assist physicians in detecting cancer cases at a much earlier stage and thus

can significantly improve the potential of patient treatment. In this research, for the classification

task, we applied machine learning and data mining approaches to detect cancer versus non-cancer

based on gene expression data. Our goal was to detect cancer at the earliest stage. Besides, for

the regression task, survival outcomes in prostate cancer patients were performed. Regression trees

were built using cancer-sensitive genes along with clinical attribute ‘Gleason score’ as predictors,

and the clinical variable ‘overall survival’ as the target variable. Knowledge in the form of rules

is one of the vital tasks in data mining as it provides concise statements of easily understandable

and potentially valuable information. For the classification model, we derived rules from a decision

tree and interpreted these rules for cancer and non-cancer patients. For the regression or survival

model, we generated rules for predicting or estimating the survival time of cancer patients. In

this study, cancer-relevant genes were analyzed as predictors, although various genes may interact

with genes currently known to contribute to cancer. These findings have implications for assessing

gene-gene interactions and gene-environment interactions of prostate cancer as well as for other

types of cancer.

In this chapter, for detecting cancer different classification models were built and for the

prediction or estimation of survival time several regression models were presented. Gene expression

of prostate data of cancer-relevant genes along with the clinical variable ‘Gleason score’ were used
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as predictors. For the classification task, sample type (cancer / non-cancer) was used as the target

variable while for regression or survival prediction the overall survival (OS) was used as the target

variable.

The rest of the chapter is organized as follows. Section 5.1 describes state-of-the-art tech-

niques; Section 5.2 presents methodology including data characteristics, feature selection techniques

for both classification and survival analysis. Also, model building along with brief descriptions of

the algorithms are provided. Section 5.3 illustrates the experimental results where the results ob-

tained from various feature selection models are provided and discussed. Also, the rule generation

from both decision tree and regression tree are shown in this section. Section 5.4 is our discussion

section. Section 5.5 is the summary section; we conclude the chapter and suggest possible future

research directions.

5.1. Related Work

In machine learning or data mining, classification is an example of supervised learning

techniques. The goal of classification training a classification model is to predict qualitative or

categorical outputs which assume values in a finite set of classes without an explicit order [16].

Regression models are used to predict one variable from one or more variables. Regression learns

a function that maps a data item to a real-valued prediction variable. Many regression methods

exist in mathematics, such as linear, non-linear, logistic, and multi-linear regression. Regression

models provide the data miner with a powerful tool, allowing predictions about past, present, or

future events to be made with information about past or present events [16]. Data mining is often

referred to as knowledge discovery in databases and describes the process of nontrivial extraction of

implicit, previously unknown and potentially valuable information from a large amount of data[7].

The mined information is referred to as knowledge provided in the form of rules, constraints,

and regularities. In data mining, rule mining is one of the vital tasks since rules provide concise

statements of potentially valuable information that can be easily understood by end users[10].

Researchers have developed different statistical, data mining, and machine learning models

for various cancers detection and estimation of survival time. In most of the cases, the researchers

used clinical or patient data. However, gene expression abnormalities always appear before mor-

phological changes can be observed. Therefore, in this research we build the model by investigating

gene expression data along with the clinical data.
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Next-generation sequencing has revolutionized the field by not only increasing the sequenc-

ing depths and accuracy but also reducing the time and cost to an affordable level for individual

cancer patients. Therefore, gene expression profiling has become a feasible cancer diagnosis and

prognosis. Researchers have developed various models with promising results. Authors in [68]

investigated six different machine learning techniques on publicly available datasets of predicting

cancer outcome. Besides, the authors also used different feature selection approaches of identifying

relevant genes for maximizing predictive information. In [69], the early diagnosis of breast cancer

is done using genetic algorithms (GA) along with artificial neural networks (ANN). The authors

used GA for feature extraction and parameter optimization of the ANN. Rule generation is one of

the vital tasks since rules provide concise statements of potentially relevant information that can

be easily understood by end users[10]. The authors in [70], discovered useful rules of breast cancer

and non-breast cancer patients from risk factors data using association rule mining techniques.

In this research, we used the gene expression of prostate data of cancer-relevant genes

along with a clinical variable ‘Gleason score’ as predictors. For the classification task, sample type

(cancer / non-cancer) was used as the target variable, while for regression or survival prediction the

overall survival (OS) was used as the target variable. Furthermore, knowledge in the form of rules

was generated from both the classification and regression models. These rules can be useful for

physicians or biologists to investigate i) the relationship between the overall survival and specific

gene expression levels, and ii) the association between sample type and specific gene expression

levels in prostate cancer.

5.2. Methods

5.2.1. Data Characteristics

RNA-seq and clinical variables available from the National Cancer Institute Genomic Data

Commons (GDC) were investigated in this research. These variables were integrated in order to

detect cancer cases and survival predictions based on the level of individual variables as well as

the interaction of these variables, including RNA-Seq and clinical predictors. Illumina Hi-Seq RNA

sequencing log2(x+1) normalized data was merged with clinical variables accessible from the GDC.

There were a total of 550 instances in the prostate cancer data set. Among them, 497 were

primary tumor samples (cancer patients), and 52 were solid tissue standard samples (non-cancer

individuals). There was only one sample named as metastatic tumor, which has been considered
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Figure 5.1. Distributions of clinical variable overall survival (OS).

as a primary tumor. So, total primary tumor or cancer samples counted were 498, and normal or

non-cancer samples were 52. There were more than twenty thousand (20,000) genes, however, in

this research we only consider 36 common genes that are associated with cancer (according to the

National Cancer Institute Genomic Data Commons [71]).

Thirty-six (36) cancer-relevant genes (AR, BRCA1, BRCA2, CD82, CDH1, CHEK2, EHBP1,

ELAC2, EP300, EPHB2, EZH2, FGFR2, FGFR4, GNMT, HNF1B, HOXB13, IGF2, ITGA6,

KLF6, LRP2, MAD1L1, MED12, MSBM, MSR1, MXI1, NBN, PCNT, PLXNB1, PTEN, RNASEL,

SRD5A2, STAT3, TGFBR1, WRN, WT1, and ZFHX3) and clinical variable ‘Gleason score’ (an

index of cancer stage) of prostate cancer were assessed as predictors of tissue type (cancer or

non-cancer).

Besides, these cancer-sensitive genes, along with clinical variable ‘Gleason score’ of prostate

cancer were assessed as predictors in survival analysis to predict overall survival (OS). The goal of

the survival analysis is to increase the ability to predict survival time based on the expression level

of predictors genes and the clinical variable ‘Gleason score’. The distribution of overall survival is

shown in Fig. 5.1.
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5.2.2. Feature Selection Approaches

A multivariate correlation analysis was performed to observe the correlation of predictor

variables with the target variable. Predictors were filtered and sorted with the absolute correlation

coefficient value. A value closer to 0 implies a weaker relationship, and a value closer to 1 means a

stronger correlation with the target. For the classification model, a multivariate correlation analysis

was performed to observe the association of predictor variables with the target variable named as

sample type (cancer or non-cancer). For survival prediction, the correlation was done with the

target variable named as overall survival (OS). Predictors or genes were filtered and sorted with

the absolute correlation coefficient value with cancer/sample type and then with OS, respectively.

The area of feature selection in machine learning has become quite robust. There are

numerous feature selection algorithms which identify the features from given data that contributes

the most to the target variable [72]. An extra-trees classifier and select-K-best approaches were

investigated to obtain relevant or essential features for building the classification models. An extra-

tree or extremely randomized trees classifier [73] implements a meta-estimator that fits several

randomized decision trees named as extra-trees on various sub-samples of the data set. It is very

similar to a Random Forest Classifier and only differs in the way the construction of the decision

trees is done using the forest. In the feature selection process, the Gini index is used in the creation

of the forest. Each feature is ordered in descending order according to the Gini importance of

each feature, and the user can select the top K features accordingly. The Select-K-best algorithm

extracts features according to the highest scores. It calculates a chi-square statistic between each

feature and the target variable. The implementation of these algorithms was performed using the

Scikit-learn python package [74].

The Cox (proportional hazards or PH) model is the most commonly used multivariate ap-

proach for analyzing survival time data in medical research [75]. The Cox regression model extends

survival analysis methods to assess the effect of several risk factors on survival time simultaneously.

The model is used to identify the impact of predictors on the survival of cancer patients. This

model makes it possible to isolate variables that have little effect on survival. Furthermore, the

model allows estimating the risk or danger of death for an individual based on the prognostic (good

for survival) variables. The output of the Cox (ph) regression model, along with the hazard ratio,
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was investigated to select a good predictor (good prognostic factor) for survival. The Hazard Ratio

(hr) assesses the overall survival or the risk of death by the predictors. Generally, the value of

hazard ratio less than 1.0 is considered a good predictor (good prognostic factor) for survival, while

the value of hr greater than 1.0 is considered not good for survival (bad prognostic factor).

5.2.3. Classification and Regression Techniques

The classification techniques that we investigated in this paper are decision tree (DT),

random forest (RF), and multi-layered neural network (MLP or NN). Besides, for the survival

analysis, the decision tree regressor was investigated.

Decision tree induction is the learning of decision trees from class-labeled training tuples. A

decision tree is a flowchart-like tree structure, where each internal node (non-leaf node) denotes a

test on an attribute, each branch represents an outcome of the test, and each leaf node (or terminal

node) holds a class label [76], [77]. It works very well with different types of data, and results

are easy to understand. The process of model building is comparatively easy compared to other

algorithms, and data can be represented in a visual form (tree-like form). From the tree, we can

generate or form rules that can be used to classify unknown values. The decision tree classifier has

been widely applied to solve many real-world problems in different fields [78], [79].

Random forest is a robust classification and regression technique that generates a forest of

classification trees, rather than a single classification tree. RF creates trees on randomly selected

data instances and obtains the prediction from each tree to choose the best solution through voting.

RF is considered as a highly accurate and robust technique because it generates many trees in the

process [78], [79].

A neural network is a set of connected input/output units in which each connection has

a weight associated with it [16]. During the learning phase, the network learns by adjusting the

weights to be able to predict the correct class label of the input tuples. Neural networks involve

long training times and are therefore more suitable for applications where this is feasible. The

most popular neural network algorithm is back-propagation – Multilayer feed-forward networks. A

multilayer feed-forward neural network consists of an input layer, one or more hidden layers, and

an output layer.

A regression tree is similar to a classification tree, except that the target variable is contin-

uous, and a regression model is fitted to each node to return the prediction value of target variable
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[80]. Here, the tree is used to predict the value for unknown cases. For regression, the prediction

error is typically measured by the squared difference between the observed and predicted values.

5.2.4. Building Models

For cancer detection, we built classifier models with 36 cancer-sensitive genes and the clinical

variable ‘Gleason score’. The target variable is tissue or sample type (cancer or non-cancer). A

decision tree, a random forest, and multi-layer neural networks were selected as classifiers. The

default parameter values were used for the random forest algorithm. For the decision tree algorithm,

the maximum depth of the tree was specified as six, and for the multi-layered neural network two

hidden layers with 25 and 12 nodes were used. The same procedure was followed with predictors

or genes that were considered or selected using the feature selection approaches.

For building the classification models and the prediction (survival) model, we split the data

into 70 % training set, and 30 % test set with stratified train test split.

5.2.5. Rule Generation from Tree

From the built trees, we generated knowledge in the form of rules. For the classification

model, a decision tree was built, and from the tree, rules were generated for both cancer and non-

cancer patients. For the regression model, we created rules for the estimation of survival time. To

obtain a rule, we need to follow the tree down from the root to the leaf nodes.

5.3. Experiments and Results

Results of the feature extraction for both the classification models and survival prediction

are discussed in this section. Moreover, the performance measure of the classifiers and both clas-

sification (decision) tree and regression tree are shown here. Finally, knowledge discovery in the

form of rules from both decision tree (cancer detection) and regression tree (survival prediction)

are shown and elaborated.

5.3.1. Output of Feature Selection for Classification Model

Genes correlated with sample or cancer type were determined. Correlations of selected

cancer-relevant genes with a clinical variable named as sample type were represented in heat maps

and genes in the order of those with the highest absolute value of association with cancer type are

EZH2, HOXB13, RNASEL, FGFR2, SRD5A2, CD82, MXI1, MAD1L1, IGF2, ITGA6, PTEN.

The important genes with clinical variable sample type that were obtained using the extra

tree classifier are shown as a bar graph in Fig. 5.2. The genes are given in the order of the

73



Figure 5.2. Important features that were obtained using extra tree classifier.

Figure 5.3. Feature selection using K best features.

importance, which are EZH2, FGFR2, HOXB13, CD82, RNASEL, SRD5A2, MAD1L1, PCNT,

MSMB, WRN, WT1, LRP2, MXI1, FGFR4, PLXNB1.

The SelectKBest technique selects K best features according to the highest scores. Fifteen

(K = 15) predictors or genes according to the highest score are: SRD5A2, FGFR2, EZH2, LRP2,

HOXB13, IGF2, CD82, WT1, RNASEL, HNF1B, GNMT, PTEN, EPHB2, KLF6, MSR1 are shown

in Fig. 5.3.

5.3.2. Selected Predictors for Classification Model

The three aforementioned feature extraction approaches were applied. Most essential pre-

dictors that were common in all three techniques are EZH2, HOXB13, RNASEL, FGFR2, SRD5A2,

and CD82. We also selected more features (MXI1, MAD1L1, IGF2, PTEN, WT1, and LRP2) that

were common in any two techniques.
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5.3.3. Performance Measure of Classifiers

To evaluate the performance, several measures were used such as accuracy, recall, precision,

area under the Receiver Operating Characteristic curve (ROC) or AUC, and F-measure [78], [79],

[51]. These were derived from the confusion matrix and applied to the classifier evaluation.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (5.1)

recall = TP/(TP + FN) (5.2)

precision = TP/(TP + FP ) (5.3)

Here, TP denotes the number of positive examples correctly classified, TN denotes the number of

negative samples correctly classified, FN represents the number of positive observations incorrectly

classified, and FP indicates the number of negative samples incorrectly classified by the estimator.

The ROC curve is a representation of the best decision boundaries for the cost between the True

Positive Rate (TPR) and the False Positive Rate (FPR). The ROC curve plots TPR against FPR.

TPR and FPR are defined as follows:

TPR = TP/(TP + FN) (5.4)

FPR = FP/(FP + TN) (5.5)

The F-measure or F1 score is a measure of a test’s accuracy and is defined as the weighted harmonic

mean of the precision and recall of the test, which is defined as follows:

F −measure = 2 ∗ precision ∗ recall
precision+ recall

(5.6)

Detailed information about these measures can be found in [78], [79].
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Figure 5.4. ROC curve for three specified classifiers.

5.3.4. Results of Classifiers

In this paper, we applied three different classifier models on the training data and compared

the performance of the trained models on the test data. The overall performance of the classification

models is shown in Table 5.1. Results were evaluated on the test data.

Table 5.1. Overall performance based on test data.

Methods Precision Recall F1-score Accuracy (%) AUC

DT 0.92 0.92 0.92 92.1212 0.7611

RF 0.96 0.96 0.96 95.7576 0.8920

MLP 0.94 0.94 0.94 93.9393 0.9421

Area under the Receiver Operating Characteristic curve (ROC) or AUC for these three

classifiers are shown in Fig. 5.4.
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In the second step of our classification technique, we trained data that were obtained using

feature selection approaches (discussed in Section 5.3.2). The overall performance of classifiers are

shown in Table 5.2.

Table 5.2. Overall performance based on test data (classifiers trained with selected features).

Methods Precision Recall F1-score Accuracy (%) AUC

DT 0.91 0.91 0.91 90.9090 0.89052

RF 0.96 0.93 0.93 93.3333 0.8744

MLP 0.93 0.93 0.93 93.9393 0.90772

Comparing both tables, we can see that in general multi-layered neural networks (MLP)

performs better when we trained the model without the feature selection approach. If we look at the

F1 measure, which is the weighted harmonic mean of the precision and recall, the classifiers trained

with all features (without feature selection) perform well compared to the trained models with the

selected predictors (important features). The reason for this is that all the features contribute to

the detection of prostate cancer rather than using fewer predictors.

5.3.5. Generated Rules from Decision Tree

In Fig. 5.5, a tree was shown that was built by applying the decision tree classifier with

all 36 genes and the Gleason score as predictors. The root node, with the most information gain

indicates the significant gene in determining cancer or non-cancer for prostate data, which is EZH2.

The impurity is the measure as given at the top by the Gini score. Samples show the number of

instances available to classify, and the value indicates how many samples are in class 0 (non-cancer)

and how many samples are in class 1 (cancer).

If we follow the tree down from the root to the leaf nodes, we can find a rule. From the

tree, we generated some rules for both cancer (Rules 1 through 5) and non-cancer (rules 6 through

8) patients that are shown as follows:

Rule 1: If the gene expression level of EZH2 is less than or equal 5.494, and the gene

expression level of CD82 is less or equal 9.51, then there is a chance that individual will be a cancer

patient.
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Figure 5.5. A decision tree that was built by using cancer-sensitive genes (without feature selection).

Rule 2: If the gene expression level of EZH2 is less than or equal 5.494 and the gene

expression level of CD82 is higher than 9.51, and the gene expression value for CHEK2 is less or

equal 5.567, and EHBP1 is less or equal 9.982 then there is a chance that individual will be a cancer

patient.

Rule 3: If the gene expression level of EZH2 is less than or equal 5.494 and the gene

expression level of CD82 is higher than 9.51, and the gene expression value for CHEK2 is greater

than 5.567, and TGFBR1 is less or equal 9.605 then there is a chance that individual will be a

cancer patient.

Rule 4: If the gene expression level of EZH2 is less than or equal 5.494 and the gene

expression level of CD82 is higher than 9.51, and the gene expression value for CHEK2 is more

than 5.567, and TGFBR1 is more than 9.605, and MED12 is less or equal 10.765 then there is a

high chance that individual will be a cancer patient.

Rule 5: If the gene expression level of EZH2 is less than or equal 5.494 and the gene

expression level of CD82 is higher than 9.51 and the gene expression value for CHEK2 is more than

5.567 and TGFBR1 is more than 9.605 and MED12 is higher than 10.765, and the gene expression

level of EZH2 is less than 3.918 then there is a chance that individual will be a cancer patient.

78



Rule 6: If the gene expression level of EZH2 is less than or equal 5.494 and the gene

expression level of CD82 is higher than 9.51, and the gene expression value for CHEK2 is less or

equal to 5.567, and EHBP1 is more than 9.982 then an individual will not be a cancer patient.

Rule 7: If the gene expression level of EZH2 is less than or equal 5.494 and the gene

expression level of CD82 is higher than 9.51 and the gene expression value for CHEK2 is greater

than 5.567 and TGFBR1 is more than 9.605 and MED12 is higher than 10.765, and the gene

expression level of EZH2 is more than 3.918 then there is a chance that individual will be a non-

cancer patient.

Rule 8: If the gene expression level of EZH2 is higher than 5.494 and the gene expression

level of RNASEL is more than 8.938, and the gene expression value for IGF2 is less than 8.601 then

there is a chance that individual will be a non-cancer patient.

5.3.6. Results of Feature Selection for Survival Prediction

Genes correlated with a clinical variable overall survival (OS) were determined. Correlations

of selected genes with clinical variable overall survival are represented in a heat map that is shown

in Fig. 5.6. Genes are given in the order of those with the greatest absolute value of correlation

with overall survival (OS): AR, BRCA2, CD82 , CDH1, EPHB2, FGFR2, FGFR4, IGF2, ITGA6,

LRP2, MAD1L1, MED12, MSMB, MSR1, PLXNB1, RNASEL, ZFHX3.

In the Cox (ph) regression model, the p-value for all three tests – likelihood ratio test (p

= 0.008), Wald test (p= 0.02), and Score (log-rank) test (p= 0.02) are significant, indicating that

the model is significant. Also, in the multivariate Cox analysis, the covariates BRCA1, EZH2, and

MED12 remain significant. However, other covariates fail to be significant. The output of the Cox

(ph) regression model along with the hazard ratio are shown in Fig. 5.7. The hazard ratio (HR)

assesses the overall survival or the risk of death by predictors. Good predictors or good prognostic

factors that were obtained by applying multivariate Cox (proportional hazards) regression based

on hazard ration are BRCA1, CHEK2, EHBP1, EP300, EPHB2, GNMT, HNF1B, IGF2, ITGA6,

MAD1L1, MSR1, MXI1, NBN, PCNT, PLXNB1, SRD5A2, WRN, gleason score.

5.3.7. Decision Tree Regressor for Survival Predictions

We build three regression models by applying the decision tree regressor. In the first model,

all cancer sensitive genes along with the clinical variable gleason score were used as the predictor

for predicting the survival time (overall survival - OS). In the second model, variables that had a
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Figure 5.6. Heat map of correlations of cancer-relevant genes with a clinical variable overall survival
(OS).
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Figure 5.7. The output of cox (ph) regression model along with hazard ratio.
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Figure 5.8. A regressor tree that was built by using higher correlation genes with overall survival
(OS).

higher correlation with the overall survival were considered. In the final model, variables that were

obtained from the Cox (ph) regression model based on the hazard ratio were used for predictors.

For the performance evaluation, mean square error (MSE) was considered for the test data. Among

these three models, the second model was selected for further study as it has a lower MSE value

than the other models.

In Fig. 5.8, a tree was shown that was built by applying the decision tree regressor on

higher correlation genes with overall survival (OS). The root node can be considered as the most

informative feature or gene for survival prediction. In our cases, MED12 is the most informative

gene and then LRP2 or BRCA2 based on the expression value of MED12.

5.3.7.1. Predictions of Survival Time from Decision Tree Regressor

The root node MED12 can be considered as the most important gene for overall survival

prediction. If we visit from the root node to a particular leaf node, we can find a rule for survival

time prediction. From the regression tree, we can generate the number of rules or knowledge that

will be helpful to predict patients’ survival time. Some of the rules generated from the regression

tree are shown as follows:

Rule 1: If the gene expression level of MED12 is less than or equal 8.818 and the gene

expression level of LRP2 is less or equal 1.247 and expression level of CD82 is less or equal to 9.142,

and the gene expression level of ITGA6 is less or equal to 10.307 then there is a chance that the

patient will survive about 3502 days.
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Rule 2: If the gene expression level of MED12 is less than or equal 8.818 and the gene

expression level of LRP2 is less or equal 1.247 and expression level of CD82 is less or equal to 9.142,

and the gene expression level of ITGA6 is higher than 10.307 then there is a chance that the patient

will survive about 3440 days.

Rule 3: If the gene expression level of MED12 is less than or equal 8.818 and the gene

expression level of LRP2 is less or equal 1.247 and expression level of CD82 is higher than 9.142

then there is a likelihood that the patient will survive about 2850 days.

Rule 4: If the gene expression level of MED12 is higher than 8.818, and the gene expression

level of BRCA2 is less or equal 0.363, then there is a chance that the patient will survive about

4264 days.

Rule 5: If the gene expression level of MED12 is higher than 8.818 and the gene expression

level of BRCA2 is more than 0.363 and IGF2 is less or equal 5.238 then there is a possibility that

the patient will survive about 3467 days.

Rule 6: If the gene expression level of MED12 is higher than 8.818, and the gene expression

level of BRCA2 is more than 0.363, and IGF2 is greater than 5.238, and the gene expression level of

FGFR4 is more abundant than 6.644 and MSR1 is less or equal to 7.161 then there is a possibility

that the patient will survive about 971 days.

Rule 7: If the gene expression level of MED12 is higher than 8.818 and the gene expression

level of BRCA2 is greater than 0.363 and IGF2 is larger than 5.238 and the gene expression level

of FGFR4 is greater than 6.644 and MSR1 is higher than 7.161 then there is a chance that the

patient will survive about 1682 days.

From the regressor tree, we can generate rules as discussed above and can estimate or

predict the survival time or overall survival for a particular patient.

5.4. Discussion

The National Institutes of Health Genomic Data Commons may be utilized to determine

which clinical variables and RNA-Seq expression levels detect clinical outcomes, such as sample

types and overall survival. In this research, in order to get a clear understanding of RNA-Sequencing

and clinical data, we investigated 36 cancer-sensitive genes and few clinical variables. Based on

the classification models for cancer detection, we see that the model performs better for unseen

cases when we applied all 36 genes and the clinical variable ‘Gleason score’ as predictors; instead
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of applying only a few predictors (obtained by using feature selection approaches). This has im-

plications that for predicting cancer cases, almost all features contribute rather than the selected

features. It also implies that for building classification models in cancer detection, all genes (about

twenty-thousand) along with other clinical variables should be investigated further.

Furthermore, in survival prediction or estimation, we see the model that uses higher cor-

related features with overall survival (OS) performs better than the other models. Overall, the

correlation of features with overall survival (OS) was very low, which also implies that all genes

contribute to the overall survival. This means that for our further studies in survival prediction we

should use all the predictors.

In this research, we also generated rules from the decision tree and the regression tree. By

looking at the rules, we can see that the level of gene expression plays a vital role in determining

if an individual could be a cancer patient or non-cancer patient. For instance, have a look at the

rule (Fig. 5.5 - part of the right subtree), if the level of expression of the gene EZH2 is greater than

5.494, and the expression level of gene RNASEL is larger than 8.938 then the gene expression level

of IGF2 plays a key function in determining cancer or non-cancer for a particular patient. If the

gene expression level IGF2 is less or equal to 8.601, then there is a possibility that an individual will

not have cancer; otherwise, there is a high chance that the patient will have cancer. These types of

relationships among various genes with corresponding expression levels and clinical variables can

be further investigated for personalized medicine research. These type of associations can be found

from the regression tree as well.

5.5. Summary

RNA-seq and clinical variables available on the National Cancer Institute Genomic Data

Commons (GDC) were investigated in this research. For detecting clinical variable cancer type,

we built three different classification models based on decision tree (DT), random forest (RF),

and multi-layered neural networks (MLP) using gene expression data. Different feature selection

techniques were also investigated to find the most predictive genes, and we developed models using

the three aforementioned classification methods on these selected genes. The results showed that

MLP performs better on test data when we built the model without applying any feature selection

approach.
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Also, the prediction of the clinical variable ‘overall survival’ in prostate cancer was performed

by applying i) all 36 genes and the clinical variable ‘Gleason score’ as predictors, and ii) genes

obtained from the feature selection approach. Furthermore, rule generation was performed from a

selected decision tree classifier for both cancer and non-cancer patients. Rules discovery was also

performed from a selected regression tree for estimating survival outcome.

In this research, we utilized 36 cancer-sensitive genes along with few clinical variables.

Future studies will assess all genes (about twenty-thousand) along with more clinical variables.
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6. CONCLUSION AND FUTURE WORK

Machine Learning (ML) and data mining (DM) have become an integrative part of con-

temporary scientific methodology, providing insights about data and offering prediction based on

historical observations. The use of DM and ML techniques requires a reasonable understanding

of their mechanisms, properties, and constraints in order to understand them better and interpret

their outcomes.

In this dissertation, we investigated DM methods on healthcare and medical data to find

important information in the form of rules. The aim was to utilize these rules for improving public

awareness of different cancer symptoms that could also initiate prevention strategies. Furthermore,

we designed and implemented different ML techniques and applied these models in healthcare,

medical, and RNA-Sequencing data having imbalanced and high-dimensional characteristics. The

intention was to enhance the performance of the model for the unseen data.

In this dissertation, we first investigated class association rule mining, a variant of asso-

ciation rule mining, on healthcare data. These rules can be used to promote public awareness of

different cancer symptoms and could also be useful to initiate prevention strategies.

Secondly, ML techniques have been applied in healthcare or medical data with imbalanced

characteristics to build a predictive model. Three different classification techniques have been

examined. Various resampling approaches have been employed before applying the classifiers.

We showed that there was a significant improvement in performance when applying a resampling

technique as compared to applying no resampling technique.

Thirdly, super learning techniques that utilize multiple base learners have been studied to

boost the performance of classification models. We applied two different forms of super learners -

the first one used two base learners, while the second one used three base learners. For evaluating

the models, we used four well-known benchmark data sets related to the healthcare domain. The

results confirmed that the SL model performs better than the individual classifier and the baseline

ensemble.

Finally, we assessed cancer-relevant genes of prostate cancer with the most significant corre-

lations with the clinical outcome of the sample type and the overall survival. For detecting cancer,
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we built different classification models, including a decision tree model, and for the estimation of

survival time, we constructed a decision tree regressor model. Finally, we generated rules from both

the decision tree and the regressor tree models.

Our future work aims to apply these techniques to other real-world healthcare problems.

Moreover, the techniques that we applied in this research can be utilized in different domains, such

as cybersecurity, business intelligence, and geographic information systems.

One of our immediate future work is to continue analyzing biomedical data to automate the

early detection of prostate cancer based on gene expression levels. In our previous research [81],

we considered a few number of genes along with few clinical variables. Future studies will assess

all genes (about twenty-thousand) along with more clinical variables. The biggest challenge in this

research is the imbalanced and high dimensionality of the gene expression data. To handle the

imbalance issue, in addition to data-level approaches like the resampling technique that we applied

in our previous research [78], we also plan to investigate cost-sensitive methods. To overcome the

curse of dimensionality, we plan to use different deep neural network (DNN) architectures to build

a model for early detection of prostate cancer patients. Applying DNN in gene expression profiling

is worthwhile as it perfectly fits the need for high dimensional data processing and capturing gene-

gene interactions. Moreover, we plan to use feature selection or dimensionality reduction techniques

to examine if it can further improve the model.
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