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Transportation agencies report that millions of crashes are caused by poor road conditions every 
year, which makes the localization of roadway anomalies extremely important. Common methods of 
road condition evaluation require special types of equipment that are usually expensive and time-
consuming. Therefore, the use of smartphones has become a potential alternative. However, 
differences in the sensitivity of their inertial sensors and their sample rate can result in measurement 
inconsistencies. This study validated those inconsistencies by using three different types of 
smartphones to collect data from the traversal of both a paved and an unpaved road. Three 
calibration methods were used including the reference-mean, reference-maximum, and reference-
road-type methods. Statistical testing under identical conditions of device mounting using the same 
vehicle revealed that the roughness indices derived from each device and road type are normally 
distributed with unequal means. Consequently, applying a calibration coefficient to equalize the 
means of the distributions of roughness indices produced from any device using the reference mean 
method resulted in consistent measurements for both road types. 
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ABSTRACT 

There are more than four million miles of the highway within 
the United States (NTSB 2018), all of which carry 58.8% of the 
total travel through roadways. There is risk associated with 
road travel due to severe road roughness from excessive 
loading, chemical reactivity, traffic abrasion, aging, and others 
(Agbovi 2012, Cebon 1998). Rougher roadways may lead to 
vehicle delays, potential accidents, and injuries resulting in 
death. Among twenty two different influencing factors such as 
congestion, traffic density, super-elevation, insufficient sight, 
water, icy conditions, narrow shoulder or road, and ramp speed, 
the poor road surface condition (ride quality) was ranked as the 
major contributor for car crashes (Zaloshnja and Miller 2009). 
Therefore, it is essential for state agencies to assess the road 
quality and fix road anomalies. 

Agencies use different devices to measure the road 
r~ughness, ~uch_ as the level pavement profiler, profilograph, 
h1g~-speed mert1al profilers, lightweight inertial profilers, and 
vehicles equipped with smartphones sensors (Smith and Ram 
2016). An associated pavement management system (PMS) 
~Golabi and Way 1982, Chan et al. 2010) stores a roughness 
mdex such as the international roughness index (IRl) (Paterson 
1986, Park et al. 2007, Pawar et al. 2018 2017) and the 
profilograph index (Prl) 2015, Leverett 2008). These 
roughness indices provide important indicators of road surface 
performance in terms of their ride-quality (Brown et al. 2010). 
H~~ever, deriving those indices requires particular equipment 
drivmg at a fixed speed and trained staff, resulting in high cost 
and long labor time. 

Therefore, using smartphones onboard of conventional 
vehicles ~as ~ecome a potential alternative. In recent years, 
technologies m smartphones are developing very rapidly. 
Sensors are commonly embedded inside smartphones, such as 
accelerometer, gyroscope, magnetometer, microphone, and 
camera. Many sensing-based applications based on embedded 
~ensors inside smartphones become available not only to 
improve the conveniences of lives but also to provide various 

possibilities for research (Liu 2013). Assessing road condition 
using smartphones is one among these researches. The use of 
smartphones can detect or localize the road surface anomalies 
such as potholes, bumps, braking, and honking (Ghose et al. 
2012, Lekshmipathy et al. 2020, Mednis et al. 2011, Mukherjee 
et al. 2016, Seraj et al. 2015). For example, the Pothole Patrol 
system was developed to monitor road surface anomalies with 
accelerometers and GPS sensors embedded in the smartphone, it 
tackled the challenge oflocalizing the potholes and differentiates 
potholes from other road anomalies (Eriksson et al. 2008). On 
the other hand, smartphones can also be used to evaluate the road 
roughness (Aleadelat et al. 2018, Alessandroni et al. 2015, 
Buttl3: and Islam 2014, Douangphachanh and Oneyama 2016, 
Janam et al. 2020, Kumar et al. 2017). For example, the Neri Cell 
system focused on monitoring road roughness and traffic 
conditions using smartphones with data from the accelerometer 
microphone, GSM Radio, and GPS sensors (Mohan et al. 2008)'. 

More recently, to assess the road using smartphones more 
effectively, a Road Impact Factor (RIF) was developed to 
correlate the inertial and geospatial position data collected from 
smartphones to the common road roughness factor IRI under 
identical measurement conditions, (Bridgelall 2013, '2017). 
When using smartphones for roughness measurements the 
detecti~n and isolation of the sensor fault is extremely imp~rtant 
to avoid the unacceptable deviations between the real and 
predicted sensor output values (Bhushan and Rengaswamy 2020, 
Huang et al. 2017a, Huang et al. 2017b, I-Iarte et al. 2005, Krunic 
et al. 2007). In between smartphones from different models or 
brands, the sensing characteristics of embedded inside 
smartphones, such as resolution, sampling frequency, and 
accuracy, vary significantly. Therefore, even for the same road 
segments, the roughness detected from the use of different 
uncalibrated smartphone models will result in measurement 
discrepancies and inconsistencies (Darawade et al. 2016). 
Calibr~tions between smartphone models are necessary before 
the wide-spread use of smartphones in road roughness 
measurements. 

Statistically, calibration can be performed through either the 



   II. Road impact factor and calibration methods 

RΔL[w]

w
(ΔL) integrates a product of the nth vertical acceleration signal 
az[n] v[n]

RΔL[w]=�
1

ΔL[w]
∑ �g

z
[n]v[n]�

2
Δt[n]

Nw-1
n=0

�z[n] = az[n]/�

m∙s-2

Within each window (ΔL), n is the sampling instant. The 
Nw-1

Nw

D

RΔL

RΔL=
1

Nw
∑ RΔL[w]

Nw
w=1

az[n]
�z[n] v[n]
RΔL[w] RΔL

����� =

∑ �������,�,�
�
�

�

∑ �������,���,�
�
�

�

�������,�,�

�������,���,�

�������,�,���� =
�������,�,������

�����

�������,�,����

univariate or the multivariate methods. The commonly used 
univariate calibration methods include the classical, inverse, 
Bayesian, and non-parametric approaches together with the 
approaches via tolerance regions. For multivariate calibration, 
it considers multiple linear regression, the ridge regression, 
partial least squares regression, and other Bayesian and profile 
likelihood approaches (Osborne 1991). For whichever 
calibration methods used, the key for a model calibration is to 
adjust the parameters to obtain appropriate calibration 
constants either univariate or multivariate based on natural state 
and historical data to improve the model prediction in between 
measurements from different devices (O'Sullivan and 
O'Sullivan 2016). There are a variety of methods to calculate 
the calibration constants depending on the study fields and 
objectives. For an effective calibration, the calibration 
constants can also be compared for its correlate and 
transferability of measures from various equipment with the 
standards and guidelines if available (Sayers 1986, Ghasemi et 
al. 2014). The calibrations between various smartphone models 
for road roughness measurement are needed but not yet 
developed. 

To provide guidance on calibration in between different 
smartphones with various embedded sensors for road 
roughness measurements and address the inconsistency from 
different smartphones, this study investigates the discrepancies 
and evaluates the effects of using three different univariate 
calibration methods, including formulating calibration 
constants from reference smartphones using the average mean 
road roughness, the maximum road roughness, and roughness 
from different road surface types. Field experiments were 
performed to validate the effectiveness of the three calibration 
methods using three different smartphones with two different 
operation considered including the iOS® for iPhones and the 
Android system for Google Pixel, which have three different 
sensing specifications for accelerometers in road roughness 
measurements. The statistical testing demonstrated that the 
accelerometers in the three different smartphones yield very 
different sensitivities for roughness measurement. With 
calibrations using either of the calibration methods, the 
smartphones can be an effective tool that produces consistent 
results in the analysis of ride-quality indices for both paved and 
unpaved roads. 

The organization of the remainder of this paper is as follows: 
Section II introduces the road impact factor RIF-index and the 
applied three approaches to calibration; Section III describes 
the experimental design, the method of data collection, and 
signal processing; Section N evaluates each calibration 
method to determine the best approach; Section V concludes 
the work and suggests future applications. 

This study quantified the ride quality of either paved or 
unpaved roads by applying a Road Impact Factor (RIF) 
transform to the inertial and geospatial position data collected 
and the RIP-transform produces RIP-indices, which is linearly 
proportional to the common road roughness factor, IRI, under 
identical measurement conditions (Bridgelall 2013, 2017). 
With a smartphone mounted onboard of a regular vehicle, the 
Road Impact factor (RIF) transform ( ) for a certain 

distance window ( ) along the traversal path and window size 

and longitudinal velocity measured from the 
smartphone as follows (Bridgelall 2013): 

where 

and g is the earth-gravity factor equal to 9.81 

(1) 

(2) 

index of the first and last samples of each window is 0 and 
respectively, and is the number of samples in window w. 
Since the smartphones do not sample the signals at a uniform 
rate, the sampling time, T, varies with each sample. The RIF­
index is interpreted as the average g-force magnitude 
experienced per unit of distance L traveled. The segment RIF­
index, , is the mean of the RIP-indices across all windows of 
the entire section, which can be given as: 

(3) 

Since different smartphones have various sensitivity and 
sampling frequency on the vertical acceleration signal or 

and longitudinal velocity , the measured RIF-index 
and the resulted mean RIP-indices ( ) will vary 

between smartphones with different operation systems. These 
variances are the source of the inconsistency of measured road 
roughness RIF-index induced in between different smartphones. 

To calibrate different smartphones for a consistent RIF -index, 
this study evaluated three calibration methodologies, including 
1) the reference mean method which calibrates smartphone 
signals toward the mean RIF, 2) the reference max method which 
calibrates the smartphone signals toward the maximum RIF, and 
3) the reference road type method which uses the calibration 
coefficient determined for the paved road as the calibration 
coefficient for unpaved roads. The details of each calibration 
method are as follows: 

A. Reference Mean 

This method calculates the calibration constant from the mean of 
the segment RIP-indices (Cmean) across all traversals of a 
reference phone as: 

(4) 

in which is the mean RIF from the ith smartphone 
from the nth traversal and is the mean RIF from the 
reference smartphone from the nth traversal. N is the number of 
traversals of field calibration test and 0<n<N. Subsequently, 
scaling the segment RIP-indices from the other phones by the 
ratio of its mean segment RIF -index and the calibration constant, 
Cmean, to perform the calibration as: 

(5) 

where, is the calibrated RIF from ith smartphone 
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    III. EXPERIMENT METHODS 

the Bosch’s BMI160
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Table 1 Sensing specification of the embedded accelerometers in the 
selected smart phones (estimated from app data) 

Smartphone 
Model 

Sampling 
Frequency (Hz) Accuracy 

Resolution 
(mm/s2) 

i8 125 96% ±1 
iX 125 96% ±1 
GP 400 95% ±10 

using the Ref-mean method and 
uncalibrated RIF from ith smartphone. 

1s the A. Experimental Design 

B. Reference Max 

This method calculates the calibration constant from the 
maximum segment RIF (Crnax) across all traversals of a 
reference phone as: 

(6) 

in which, 1s the maximum RIF from the ith 

smartphone from the nth traversal and is the 
maximum RIF from the reference smartphone from the nth 

traversal. Subsequently, scaling the segment RIF-indices from 
the other phones by the ratio of its maximum segment RIF­
index and the calibration constant, Cmax, to achieve the 
calibration as: 

(7) 

C. Reference Road Type 

Since the paved roads are generally much smoother than 
unpaved roads and the larger vibrations from unpaved roads 
will likely emphasize any non-linearities in the sensing system, 
the use of a calibration constant from paved roads may produce 
a normalizing effect across all road types. Hence, the third 
calibration method used the calibration coefficient from the 
paved road as: 

(8) 

in which, is the mean RIF from the ith 

smartphone from the unpaved road from the nth traversal, and 
is the mean RIF from the reference 

smartphone from the nth traversal measured from the paved 
road. Then the calibration of smartphones for road roughness 
on unpaved roads can be performed as: 

(9) 

From Equation ( 4, 6, 8), it can be seen that for any of the 
three calibration methods, a reference phone which was pre­
calibrated with known road roughness indexes such as IRI or 
other indexes is required. 

To investigate the performances of different calibration 
methods, both laboratory tests and field testing are good 
approaches. Since the laboratory tests are set up in a controlled 
environment, various practical factors may be ignored, such as 
the noise generated by different road type, mounting of the 
smartphones, and driving speed variances, etc. Performing field 
tests would increase the confidence of the practical application 
of the investigated calibration methods. Therefore, in this 
study, field testing was conducted to evaluate the performances 
of various calibration methods. 

Most smartphones currently available in market embed micro­
electromechanical systems inertial motion unit (MEMS IMU) to 
measure accelerations. The embedded MEMS IMU in different 
smartphone models is expected to have different responses since 
they use different hardware, antenna size, and installation 
locations (Martin et al. 2016). More specifically, differences in 
smartphone responses to acceleration can be introduced by 
variations in their mechanical construction, materials used, 
internal construction, mount, and the internal location of the 
sensor. Such differences can result in variations in the 
mechanical damping effects. Differences in the maximum 
sampling rate and the distribution of the sample rate also plays a 
role. A sampling frequency of 100 Hz or more could also 
improve the quality of the recorded signal. The resolution of the 
embedded accelerometers in smartphones is another crucial 
factor for their applicability in vehicles to measure ride quality. 
Accelerometers with resolution of 10 mm/s2 introduces inherent 
noise in the range of 100 mm/s2 and that of 1 mm/s2 yields half 
the noise (Feldbusch et al 2017). 

In this study, three different smartphones were selected to 
perform the field experiments. They were the iPhone® 8 (i8), 
iPhone 10® (iX), and Google Pixel (GP). The selection includes 
two most popular operational systems in smart phones, the iOS® 
for iPhones and the Android system for Google Pixel. Within the 
same iOS® operational system, two different generations of 
smart phones, iPhone® 8 and 10 were selected to see the impact 
of different versions of the same operational system. Both iPhone 
8 and iPhone X implemented the customized Bosch's 6-Axis 
IMU accelerometer (Bosch Sensortec, Gerlingen, Germany) 
which are made specifically for Apple . The Google Pixel 
installed IMU (Bosch Sensortec, 
Gerlingen, Germany). The iPhone customized 6-Axis IMU has a 
thin profile, resulting in a different packaging structure compared 
with the BMil 60 IMU used in the Google Pixel phones 
(Odenwald and Bailey 2019). 

Table 1 shows the estimated sensing characteristics of 
sampling frequency, accuracy, and resolution from the 
accelerometers embedded on the three selected smart phones 
from the app data. Table 1 indicates that there is a significant 
difference on the acceleration sensing characteristics between the 
apps on the iPhones and the GP. Among the three phones, the i8 
was selected as the reference phone since it had a high resolution 
and it was also previously used to measure RIF for paved roads 
which was calibrated with the IRI using a traditional inertial road 
profiler (Bridgelall et al. 2016). The i8 measured the 

in Equations (4, 6, 8). 

A regular passenger vehicle, 2015 Volkswagen Jetta, was 
selected to perform the field testing to collect the data, as 
illustrated in Figure 1 ( a). The vehicle was selected not only based 
on availability and convenience but also to show that 
smartphones and their calibration can be used on commonly 



(c) shows the user’s interface for PAVVET and RIVET.

 
 
Figure 1. (a) Smartphones were mounted on the front seat floor of the 
vehicle, (b) Vehicle for road test, and (c) PAVVET and RIVET’ interface. 

 
Figure 2. (a) Satellite view and (b) street view of the paved road 
segment; (c) Satellite view and (d) Street view of the unpaved road 
segment. Source: Google Maps (2019). 

available passenger vehicles instead of specially instrumented 
trucks or pickups. Although the smartphones can be mounted 
on various locations on the vehicle for acceleration 
measurements such as on the dashboard, windshields, or the 
floor of the vehicle, to reduce the potential measurement noise 
introduced by the distance between the car body and 
smartphones, the front seat floor was selected to mount the 
smartphones. The smartphones were mounted flat on the floor 
of the front passenger seat of the vehicle using industrial clear 
tape as seen in Figure l(b). The tape ensured that the 
smartphones coherently sampled accelerations in the vertical 
direction while providing both good GPS reception and stable 
vibration coupling for acceleration measurements. Each 
smartphone accelerometer axes were oriented the same 
direction with respect to the axes of the vehicle. As seen in 
Figure l(b ), the longitudinal direction of all the smartphones 
were aligned with the longitudinal direction of the car to ensure 
that the z-axis is in the vertical direction for vertical 
acceleration measurements. 

It is also worth noting that there were four smartphones as 
shown in Figure l(b). In addition to the i8, iX, and GP, there 
was one HTC smartphone with the Android system, mounted 
in the same location. However, due to a failure of the GPS 
receiver in HTC smartphone, the data was excluded from the 
analysis. 

The experiments used a data collection app called PA VVET 
(Bridgelall 2013) for the iOS® devices and another called 
RIVET (Lu et al. 2019) for the Android operating the GP. Fig. 
I To 
ensure that the acceleration sensors inside all the three 
smartphones in this experiment performed in the expected 
manner, the data collected from the first run in the experiment 
for each road type from the iPhone 1 0® (iX), and Google Pixel 
(GP) was used to compare the calibrated iPhone® 8 (i8) for 
validation, before the testing of other runs for statistical 
analysis. 

The data was collected by traversing the same segment for 
35 times each of both the paved road as shown in Figure 2 (a, 
b) and unpaved road as shown in Figs. 2( c, d) . As shown in Fig. 
2, the two road segments, selected in Fargo, North Dakota, was 
a 400-meter section of the paved road on 9th St NE, and a 300-
meter section of the unpaved road on 57th St N. Since there is 
a railroad grade crossing in each road, the speed limit for the 
paved road is 25mph and that for the paved road is 15mph. To 
ensure the driving safety and to easily maintained the same 
speed for all 35 runs on the unpaved and paved roads with N=35 
in Equations (4, 6, 8), the driving speed of the testing vehicle 
was set to approximately 11.5 mis for all the test runs. To 
ensure that the car suspension would not increase the variance 
of the results measured among smartphones, the test setup used 
identical test conditions for every run on each pavement 
segment, including the use of the same vehicle, the same 

mounting and orientation of all the smartphones, and the same 
traversal speed. 

A previously reported technique (Bridgelall 2013) was used 
to align the spatial positions of each signal by using a known 
ground truth, which is a rail-grade crossing bump on each road 
type. Figs. 3(a, b) shows a satellite view of the two rail-grade 
crossings. As shown in Figs. 2 and Figs. 3, the paved road 
segment has a road width of 8m, and that for the unpaved road is 
6m. The railroad grade crossing for the paved road as the 
maximum bump has a length of 3 m and a width of 10 m, and 
that for the unpaved road is 2.5 min length and 6.7 min width. 
The paved road segment for testing has a length of 5 80 m, while 
the unpaved road is 620 m. For the paved road, the railroad 
crossing is 420 m away from the beginning point, and that for the 
unpaved road is 280 m. With the known locations of the railroad 
crossing and using the signal peak produced from traversing the 
railroad as a reference for GPS locating, the distances can be 
interpolated outwards, and then all traversals can be truncated to 
approximately the same length to produce aligned signals for 
further processing. 



 
Figure 3. Satellite view of the rail-grade crossings of (a) the paved road 
segment and (b) the unpaved road segment. Source: Google Maps 
(2019). 

iPhone® device as an example of data. The column ‘Time’ 

time stamp encoded in the filename. ‘Lat’ and 
‘Lon’ stored the GPS coordinates 
in decimal degrees, ‘ ’ stored the ground speed of the vehicle. 

m·s-2.

study). The column ‘Time’ stored the epoch time of the 
sampling instant in milliseconds. The columns labeled ‘Lat’ and 
‘Lon’ stored the GPS coordinate
decimal degrees. The ‘ ’ column stored the ground speed of the 

m·s-1

m·s-2

μT

B. Data Collection 

The PA VVET and RIVET apps collected the data uploaded 
wirelessly to a remote database for post-analysis. Table 2 show 
a portion of the data collected using the PA VVET app with the 

stored the time of the data sample in milliseconds (ms) offset 
from a date-

of latitude and longitudinal 
V 

Pitch, Roll, and Yaw stored the sensor orientation angles in 
degrees. The variables gx, gy, g, stored the g-forces sensed in 
the lateral, longitudinal, and vertical directions in units of 
From Equations (1) and (2), it can be seen that the calculations 
of the ride quality indices, RIF, used only the time (t), the g­
force (g,), and the vehicle speed (v). The PAVVET app 
integrated Equation (2) and calculated the g-force at each time 
instant, which can be easily used to estimate RIF using 
Equation (1) for post data analysis. 

Table 3 shows part of the data collected using the RIVET app 
on the Android phone operating system (Google Pixel in this 

s oflatitude and longitudinal in 
V 

vehicle speed in units of . The variables ax, ay, a, stored the 
accelerometer lateral, longitudinal, and vertical accelerations in 
units of . Yaw, Pitch, and Roll stored the azimuth, pitch, 
and roll angles, respectively, recorded from the gyroscope in 
decimal degrees. Rx, Ry, Rz stored the rotation rates around the 
x-axis, y-axis, and z-axis, respectively. Mx, My, Mz stored the 
magnetic field strength along the x-, y-, z-axis, respectively, in 
units of micro-Tesla ( ). The RIVET app directly collected the 
accelerations of the smartphones without using Equation (2). 
Thus, in the post data analysis, Equation (2) needs to be applied 
to compute the g-force (gz) before estimating RIF using 
Equation (1 ). 

C. Ride Quality Index 

As shown in Table 1, the sampling frequency of each phone 
was different. Attempts had been made to adjust the sampling 
frequency of the sensors on each smartphone to be identical. 
However, the sampling frequency was integrated into each 
device and users have no access to change it. Thus, the default 

maximum sampling frequency of the iOS® and Android systems 
of 125 Hz and 400 Hz was used on the iPhones and the Google 
phone, respectively. To ensure the data from each phone is 
compatible with different sampling frequency, a low-pass filter, 
the Wavelet Filter (Lane 2005), was used to normalize the effect 
of sampling at different rates by removing energy above the same 
frequency (Bridgelall and Tolliver 2020). The Wavelet Filter 
also can reduce the noise before feature extraction. Figs. 4 (a, c, 
e ). Figs.4 (b, d, t) show the filtered gz signal and the extracted 
RIF-indices for a feature extraction window size of 15 meters, 
for the first traversal of the paved and unpaved roads from the 
data of the i8, iX, and GP smartphones, respectively. 

Each RIF spike computed from the collected data in Figure 4 
(a-t) indicates a rougher road surface feature compare to the 
average road conditions on both the paved and unpaved roads. 
As in Figure 4 (a, c, e), from the first run on the paved road, the 
biggest RIF spike had a RIF value of0.963 for i8, 1.063 for iX, 
and 0.955 for GP, demonstrating the RIF responses across the 
rail-grade crossing on the paved road for the three smartphones. 
Figure 4 (a, c, e) also indicated that for a regular paved road 
segment with smooth road surface, the measured RIF is smooth 
as well with a RIF value of approximately 0.10 for iPhones and 
0.20 for GP. For small local road surface cracks or variances, 
there were small spikes with RIF values between 0.20 to 0.40 for 
all three smartphones. Compared to the regular smooth paved 
surface and small surface variances, the railroad crossing 
introduced significant roughness changes to the acceleration 
measurements. The start and end of the railroad grade crossing 
can be identified from Figure 4 ( a, c, e) using all three 
smartphones. 

Different from the smooth R1F measured from the paved road, 
due to the rough surface condition of unpaved roads, the 
measured RIF for the unpaved road had a much larger noise 
level, resulting in large variances in RIF values as shown in 
Figure 4 (b, d, f). Small local road surface variances for unpaved 
roads are not so obvious in RIF changes compared to paved road. 
The roughness changes of the unpaved road can be tracked by 
the RIF change trends. Figure 4 (b, d, f) show that the tested 
unpaved road segment had a regular RIF value changing from 
0.25 to 0.50 for iPhones and from 0.40 to 0.60 for GP. As also 
shown in Figure 4 (b, d, f), from the first run on the unpaved 
road, the biggest RIF spike had a RIF value of0.949 for i8, 0.909 
for iX, and 0.862 for GP, demonstrating the RIF responses across 
the rail-grade crossing on the unpaved road for the three 
smartphones. The start and end of the railroad crossing position 
is also indicated in the data from all three smartphones. 

Comparing Figure 4 (a, c, e), it can be seen that the three 
smartphones had small variations for RIF measurements from 
paved roads and the comparison between Figure 4 (b, d, t) shows 
that the smartphones had relatively larger variations for RIF 
measurements for unpaved roads. The differences in segment 
RIF-indices for the same road from three smartphones highlight 
the differences of the sensing characteristics of the 
accelerometers embedded in each smartphone. This result points 
to the need for calibration when using different smartphones to 
measure the ride quality of a roadway segment even under 
identical test conditions of the same vehicle, mounting, 
orientation, and traversal speed. Using different vehicles with 
the same smartphone and mount will also produce similar 
differences in the segment RIF-indices because of differences in 



 
Table 2. PAVVET data format

Time 
(ms) 

Lat 
(°) 

Lon 
(°) 

v 
(m·s-1) 

gx 
(g-force) 

gy 
(g-force) 

gz 
(g-force) 

Pitch 
(°) 

Roll 
(°) 

Yaw 
(°) 

RotX 
(°) 

RotY 
(°) 

RotZ 
(°) 

34986.615 46.899 -96.883 11.569 0.045 -0.058 -0.989 3.001 1.950 6.180 -0.712 -1.237 -0.250 
34994.377 46.899 -96.883 11.569 0.049 -0.061 -0.969 3.003 1.944 6.181 -0.712 -1.237 -0.250 
35002.688 46.899 -96.883 11.569 0.046 -0.059 -0.943 3.003 1.934 6.180 -1.080 -0.933 -0.374 
35010.222 46.899 -96.883 11.569 0.060 -0.065 -0.936 3.003 1.934 6.180 -1.080 -0.933 -0.374 
35018.392 46.899 -96.883 11.569 0.051 -0.058 -0.943 3.002 1.927 6.179 -1.141 -0.811 -0.496 

 
Table 3. RIVET data format

Time 
(ms) 

Lat 
(°) 

Lon 
(°) 

v 
(m·s-1) 

ax 
(m·s-2) 

ay 
(m·s-2) 

az 
(m·s-2) 

Yaw 
(°) 

Pitch 
(°) 

Roll 
(°) 

�� 
(r·s-1) 

�� 

(r·s-1) 
�� 

(r·s-1) 
�� 

(��) 

�� 

(��) 
�� 

(��) 

34985.49 46.90 -96.88 11.58 -0.42 0.32 10.16 56.76 1.56 2.26 -0.014 -0.018 -0.002 -64.65 42.45 21.00 
34988.05 46.90 -96.88 11.58 -0.58 0.39 9.94 56.76 1.56 2.26 -0.015 -0.007 -0.001 -64.65 42.45 21.00 
34990.48 46.90 -96.88 11.58 -0.58 0.39 9.94 56.76 1.56 2.26 -0.015 -0.007 -0.001 -64.65 42.45 21.00 
34993.16 46.90 -96.88 11.58 -0.58 0.39 9.94 56.66 2.23 3.34 -0.015 -0.007 -0.001 -64.35 42.45 21.45 
34995.67 46.90 -96.88 11.58 -0.46 0.22 10.01 56.38 1.72 4.11 -0.012 -0.004 -0.001 -64.35 42.45 21.45 

Figure 4. Collected g-force data and windowed calculated RIF-indices using i8 for (a) the paved road segment and for (b) the unpaved road segment; 
using iX for (c) the paved road segment and (d) the unpaved road segment; using GP for (e) the paved road segment and (f) the unpaved road 
segment. 

suspension systems and vehicle loading conditions which 
increase the variance of the results measured among 
smartphones. 

Based on the RIP-index measured from each run (35 runs in 
total), the mean and peak RIP of each run of the road tests can 
be computed. The calibration can then be performed on iX and 
GP smartphones using the i8 phone as a reference since it was 
previously calibrated with commercially available road 
profiler. Three calibration methods are used to calibrate the 
measured data from the paved and unpaved roads including the 
reference mean (R-Mean), max (R-Max), and road type (R­
Road) methods as mentioned in Section II. The effectiveness of 

the three different calibration approaches is then evaluated by 
conducting statistical tests for equal means. The unpaired two­
tailed t-test determines if the means of two independent sample 
sets are significantly different. The test assumes that the two 
populations follow a normal distribution. Evaluating the 
skewness and kurtosis of a distribution is a simple test to gauge 
the amount of departure from normality. The two-tailed P-test 
for equal variances determines the type oft-test to use. The t-test 
rejects the null hypothesis that the means are equal if the p value 
is less than the traditional threshold of 0.05 . The standard t-test 
assumes that the variances of the two population are equal. A 
variant of the t test that does not assume equal variances is also 
available. 
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D. Mean and Max RIF-Index 

Pig.5 (a, b) show the measured mean RIP-indices from the three 
smartphones for all the 35 runs for paved and unpaved road 
segments, respectively. Pig.5 (c, d) illustrates the measured 
maximum RIP-indices from the three smartphones for all 35 
runs on the paved and unpaved road segments, respectively. 
When comparing Pig.5 (a) and (b), and Pig.5 (c) and (d), it is 
observed that the unpaved road had a higher variance in RIP 
from all three smartphones. Table 4 and Pig.6 show the average 
mean and maximum (railroad crossing location) RIP calculated 
from all the 35 runs of the road tests on the paved and unpaved 

roads for the three smartphones, respectively. As shown by the 
standard deviation in between three smartphones, the measured 
average mean and maximum RIP of35 runs for the iPhones and 
Android phones vary from each other significantly since they 
have different sensitivities for g-force measurements. In general, 
the i8 and iX show smaller differences since they shared the same 
type of accelerometer and resulted in similar measurement 
accuracy. 

Table 5 shows the calibration constants from the three 
different calibration methods. Since the i8 was previously 
calibrated using traditional RIP-indices, it was used as the 
reference smartphone for calibration by both Ref-mean and Ref-



Table 4. Original average mean and peak RIF of all the 35 runs of road 
tests for paved and unpaved roads

Road 
type  i8 iX GP 

Standard Deviation 
between Phones 

Paved 
Road 

Mean 0.202 0.207 0.190 0.0087 
Max 0.935 0.996 0.826 0.0861 

Unpaved 
Road 

Mean 0.527 0.481 0.464 0.0326 
Max 1.109 1.030 0.905 0.1029 

 
Table 5. Calibration constants from different calibration methods 

Road Type Phone Type 
Ref-Mean 

(CMean) 
Ref-Max 

(CMax) 

Ref-Paved 
(CPaved) 

Paved i8 1.000 1.000 - 

 iX 1.026 1.065 - 

 GP 0.940 0.883 - 

Unpaved i8 1.000 1.000 1.000 

 iX 0.913 0.929 1.026 

 GP 0.881 0.816 0.940 

Figure 5. Measured mean RIF-indices for all 35 runs using the three 
smartphones (a) for the paved road segment, (b) for the unpaved road 
segment, and measured Maximum RIF -indices for all 35 runs using the 
three smartphones (c) for the paved road segment; and (d) for the 
unpaved road segment. 

Figure 6. Comparison of original average mean and peak RIF from three 
smartphones 

TABLE 6.

Road 
Type Calibration Methods  i8 iX GP 

Paved R-Mean Average 0.202 0.202 0.202 

  SD 0.0090 0.0080 0.0071 

 R-Max Average 0.202 0.195 0.215 

  SD 0.0090 0.0077 0.0070 

Unpaved R-Mean Average 0.527 0.527 0.527 

  SD 0.0309 0.0294 0.0162 

 R-Max Average 0.527 0.518 0.569 

  SD 0.0308 0.0290 0.0175 

 R-Road Average 0.527 0.469 0.494 

  SD 0.0309 0.0262 0.0152 

max methods. The calibration constant for i8 was 1.0 as 
expected. For iX, the calibration constants from both Ref-mean 
and Ref-max methods were slightly above 1.0 for paved road 
segments and below 1.0 for unpaved road segments. For GP, 
the calibration constant varied significantly between paved and 
unpaved road surface types, in addition to large variances 
between Ref-mean and Ref-max for GP. 
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E. Calibration Effectiveness 

Paved Max 
RIF 

Unpaved 
MaxRIF 

Based on the average mean and max RIF in Table 5, calibrations 
following the three calibration methods were performed. Table 6 
shows the calibrated average mean RIF and their standard 
deviation (SD) after calibration using the three calibration 
methods calculated from 3 5 runs of the road tests on the paved 
and unpaved roads for the three smartphones, respectively. 
Based on Table 6, for paved road, R-mean and R-max methods 
yield a standard deviation of around 0.008 for 35 runs, and the 
standard deviation for 35 runs varies from 0.015 to 0.03 m 
between the three calibration methods for unpaved road. 

Average mean RIF of the 35 runs ofroad tests for paved and 
unpaved roads after calibration 

Table 7 analyzed the standard deviation of the average mean 
RIF of 35 runs in between three smartphones after calibration 
using the three different calibration methods. For both the paved 
and unpaved roads, the R-mean method has a standard deviation 
of0 in between three phones which is expected since the average 
mean was used to calibrate each run. For the R-max method, the 
standard deviation in between three smartphones are 0.0101 for 
paved road and 0.0272 for unpaved road. Compared to the 
original data before calibration in Table 5, the R-max calibration 
method did not effectively reduce the standard deviation of mean 
RIF in between phones. Table 7 also shows that the reference 
road type method can effectively reduce the variation in between 
phones for unpaved roads. To further evaluate which calibration 
method would perform best, T-tests are needed. 



Table 7. Standard deviation of average mean RIF of 35 runs in 
between three smartphones for paved and unpaved roads after 
calibration

Road type  Standard Deviation between Phones 

Paved Road 
R-Mean 0.0000 
R-Max 0.0101 

Unpaved Road 

R-Mean 0.0000 
R-Max 0.0272 
R-Road 0.0293 

Table 8. Kurtosis and skewness of paved and unpaved road 

Road type  i8 iX GP 

Paved Road 
Skewness -0.647 0.641 0.330 
Kurtosis 2.015 -0.062 -0.654 

Unpaved 
Road 

Skewness 0.444 0.576 0.414 

Kurtosis -0.184 -0.273 -0.371 

Table 9. F-Value and P-Value (paved road) 

  i8+iX i8+GP iX+GP 

Original 

F-Statistic 1.206 1.856 1.541 
P-Value 

(Two-Tailed) 0.589 0.076 0.213 

R-Mean 

F-Statistic 1.269 1.638 1.291 
P-Value 

(Two-Tailed) 0.491 0.155 0.461 

R-Max 

F-Statistic 1.368 1.446 1.057 
P-Value 

(Two-Tailed) 0.366 0.287 0.872 

 
Table 10. F-Value and P Value (unpaved road) 

  i8+iX i8+GP iX+GP 

Original 

F-Statistic 1.313 4.816 3.559 

P-Value 
(Two-Tailed) 0.431 2.0E-05 0.0004 

R-Mean 

F-Statistic 1.094 3.312 3.312 

P-Value 
(Two-Tailed) 0.795 0.0003 0.001 

R-Max 

F-Statistic 1.132 3.112 2.748 

P-Value 
(Two-Tailed) 0.719 0.001 0.004 

R-Road 

F-Statistic 1.383 4.126 2.984 

P-Value 
(Two-Tailed) 0.349 7.9E-05 0.002 

Table 11. T-Statistic and P-Value (paved road) 

  i8+iX i8+GP iX+GP 

Original

T-Statistic -2.547 6.470 9.807 
T-Critical 1.995 1.999 1.995 

P-Value (Two-Tails) 0.013 1.759E-08 1.21E-14

R-Mean

T-Statistic 2.9E-08 3.29E-08 2.35E-09
T-Critical 1.995 1.995 1.995 

P-Value (Two-Tails) 1 1 1 

R-Max 

T-Statistic 3.709 -6.552 -11.236 
T-Critical 1.995 1.995 1.995 

P-Value (Two-Tails) 0.001 8.99E-09 3.76E-17

Table 12. T-Statistic and P-Value (unpaved road) 

  i8+iX i8+GP iX+GP 

Original 

T-Statistic 6.668 10.997 3.307 
T-Critical 1.995 2.011 2.007 
P-Value 

(Two-Tails) 5.59E-09 1.03E-14 0.002 

R-Mean 

T-Statistic 3.6E-08 3.6E-08 -4.4E-08 
T-Critical 1.995 2.008 2.006 
P-Value 

(Two-Tails) 1 1 1 

R-Max 

T-Statistic 1.271 -6.961 -8.881 
T-Critical 1.995 2.005 2.003 
P-Value 

(Two-Tails) 0.208 4.8E-09 2.8E-12 

R-Road 

T-Statistic 8.524 5.715 -4.906 
T-Critical 1.995 2.009 2.005 
P-Value 

(Two-Tails) 2.4E-12 6.0E-07 8.9E-06 

    IV. CONCLUSIONS AND FUTURE WORK 

F. Normality Tests 

A skewness of zero means that distribution is symmetrical, and 
an absolute value of less than 2.1 indicates that there is no 
significant departure from normality (West 1995). Similarly, an 
absolute value of kurtosis less than 7. I indicates no significant 
departure from normality (West 1995). Table 8 summarizes the 
skewness and kurtosis for the distribution of segment RIF­
indices from each smartphone for the paved and unpaved roads 
based on the original data. Table 8 suggests that the distribution 
of segment RIF-indices measured by each smartphone does not 
deviate significantly from the normal distribution. 

G. F-test for Equal Variances 

The upper and lower bounds of the F-statistic within a 95% 
confidence interval is 1.981 and 0.505 based on the degrees-of­
freedom from the 35 samples of each smartphone. Table 9 and 
Table IO summarize the F-statistic and their p-values for the 
paved and unpaved roads, respectively. The results suggest that 
before and after calibration, the variances of segment RIF­
indices from the paved road are equal. However, for data from 
the unpaved road, only the variances of segment RIF-indices 
measured with the i8 and iX before and after calibration are 
equal. This result informs the appropriate type oft-test to use. 

H T-test for Equal Means 

The null hypothesis of the t-test is that the mean of the two 
variables is equal, and the null hypothesis can be rejected only 
if the probability value (P-Value) is greater than 0.05. Table 11 
and Table 12 summarize the results of the t-tests for the paved 
and unpaved roads, respectively. For the paved road, Table 11 
shows that the P-value of all three smartphone from original and 
reference maximum calibration method is smaller than O 05 
indicating an unequal mean among the three smartpho~es'. 
However, the P-value of all three smartphones equals to one for 
the reference mean calibration method, which is larger than 
0.05. Thus, for paved roads, the reference mean calibration 
method would result in equal means for all three smartphones. 
For unpaved roads, Table 11 shows that both original and 
reference road type calibration method have P-value smaller 
than 0.05 and yield unequal means among the three 
smartphones. The reference maximum calibration method has a 
P-value larger than 0.05 in between i8 and iX, but smaller than 
0.05 in between iPhone and GP, indicating that the two iPhone 
share the same mean but the iPhone and the Google phone have 
different means after using the reference maximum calibration 
method. On the other hand, the reference mean calibration 
method also resulted in a P-value larger than 0.05 among the 
three smartphones, thus, equal means among the three 
smartphones for unpaved road. 

This study evaluated three calibration methods for calibrating the 
road roughness measurements using different smartphones for 
both paved and unpaved roads. The findings from this study can 
be summarized as below: 
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