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Railroad Accident Analysis Using Extreme Gradient Boosting 14 

Abstract 15 

Railroads are critical to the economic health of a nation. Unfortunately, railroads lose hundreds 16 

of millions of dollars from accidents each year. Trends reveal that derailments consistently 17 

account for more than 70% of the U.S. railroad industry’s average annual accident cost. Hence, 18 

knowledge of explanatory factors that distinguish derailments from other accident types can 19 

inform more cost-effective and impactful railroad risk management strategies. Five feature 20 

scoring methods, including ANOVA and Gini, agreed that the top four explanatory factors in 21 

accident type prediction were track class, type of movement authority, excess speed, and territory 22 

signalization. Among 11 different types of machine learning algorithms, the extreme gradient 23 

boosting method was most effective at predicting the accident type with an area under the 24 

receiver operating curve (AUC) metric of 89%. Principle component analysis revealed that 25 

relative to other accident types, derailments were more strongly associated with lower track 26 

classes, non-signalized territories, and movement authorizations within restricted limits. On 27 

average, derailments occurred at 16 kph below the speed limit for the track class whereas other 28 

accident types occurred at 32 kph below the speed limit. Railroads can use the integrated data 29 

preparation, machine learning, and feature ranking framework presented to gain additional 30 

insights for managing risk, based on their unique operating environments. 31 

Keywords: data cleaning; feature engineering; financial loss; machine learning; principle 32 

component analysis; risk management 33 
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1 Introduction 35 

U.S. railroads have been an important driver of economic progress for more than 150 years. 36 

Today, U.S. railroads carry approximately one-third of the nation’s exports [1]. Therefore, the 37 

safe and efficient operation of railroads is crucial to the nation’s economic health. Unfortunately, 38 

railroads lose hundreds of millions of dollars from accidents each year. Analysis of the Federal 39 

Railroad Administration (FRA) Rail Equipment Accident database revealed that human-factors 40 

was consistently the dominant cause of railroad accidents [2]. Hence, the federal government 41 

mandated that railroads deploy a positive train control (PTC) system by 2018 to help prevent 42 

accidents caused by human errors [3]. With PTC now in place, it is important for analysts to 43 

study other common causes of accidents. 44 

The goal of this research is to identify factors associated with the most frequent and 45 

expensive types of accidents that are not attributable to human error. Data mining of FRA 46 

accident records from January 1, 2009, to June 30, 2020, revealed that derailment accidents 47 

accounted for 70.9% of the average annual financial loss (Figure 1). The trend showed that 48 

derailment accidents maintained a steady rate each year. Therefore, the ability to identify and 49 

rank features that increase the risk of derailments over other accident types can inform more 50 

cost-effective and impactful risk management strategies. 51 

An objective of this research is to build a supervised machine learning (ML) model that can 52 

predict derailments from other accident types and to rank the importance of those features that 53 

contribute towards the classification accuracy. However, no single type of ML model performs 54 

best on all types of datasets. Therefore, another objective is to compare the classification 55 

performance of various types of ML models on the same dataset. 56 
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 57 
Figure 1: Annual financial loss reported for different accident types. 58 

One of the main challenges in data science is to effectively clean datasets before using them 59 

to train ML models. Studies estimate that dirty data costs the U.S. economy trillion of dollars 60 

each year [4]. A survey of data cleaning for ML found that the failure to discover and repair dirty 61 

data can weaken data analysis techniques [5]. Although a few approaches to data cleaning are 62 

common, every dataset poses unique challenges [6]. Hence, data scientists spend an average of 63 

60% of their time cleaning and organizing data [4]. 64 

Although the importance of using clean data is well-known, the research community has paid 65 

little attention to the advancement of data cleaning techniques [7]. The most commonly used 66 

techniques  are those that detect and remove outliers and duplicate records [4]. Even so, those 67 

techniques alone cannot effectively clean all types of datasets. Other techniques that can find 68 

data entry errors use customized rules to detect violations, for example, house prices exceeding 69 

an expected range for a given neighborhood. Custom techniques tend to be heuristic, so they 70 

require good familiarity with the data and its meaning. Considering the challenges outlined 71 

above, the following are contributions of this research: 72 



Page 5 of 44 

 

• A customized framework to clean a relevant subset of the FRA database and to fill 100% 73 

of missing values for the important attributes (Section 3.1). 74 

• Brief explanations of how each ML method works to gain understanding about the 75 

impact of their hyperparameter tuning (Section 3.2). 76 

• Importance ranking of the feature relevance in predicting accident type (Section 3.3). 77 

• Visualizing and interpreting the classification power of each attribute by principle 78 

component analysis (PCA) to gain insights about the performance differences among the 79 

ML models evaluated (Section 3.4). 80 

The next section (Section 2) reviews related works and their findings in relation to the 81 

contributions of this research. Section 4 mirrors the methods section to present the results. 82 

Section 5 discusses the significance and interprets the outcome. Section 6 recaps the findings and 83 

concludes with how future research can leverage the methods of this research to further the 84 

agenda in accident analysis. 85 

2 Related Works 86 

Studies that use ML methods to analyze accidents are more common for roadways than for 87 

railroads. For example, Iranitalab and Khattak (2017) compared the performance of Multinomial 88 

Logit (MNL), k-Nearest Neighbor (kNN), Support Vector Machines (SVM) and Random Forests 89 

(RF) in predicting the crash severity of two-vehicle roadway crashes [8]. They found that kNN 90 

and MNL had the best and worst performance, respectively, when applied to crash data from 91 

Nebraska, United States. A recent survey of big data analytics applied to railroads found that of 92 

115 journal articles reviewed from 2003 to 2017, only 22% covered railroad safety whereas 49% 93 

and 29% covered maintenance and operations, respectively [9]. This imbalance suggests that the 94 
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research community and the railroad industry can benefit from additional analysis of railroad 95 

accident risks.  96 

Several studies used ML techniques to analyze highway-rail grade crossing (HRGC) 97 

accidents. Dabbour et al. (2017) applied ordered regression models to HRGC crash data and 98 

found that higher train and vehicle speeds were positively correlated with driver injury severity 99 

[10]. Liu and Khattak (2017) applied geospatial modeling to HRGC crash data and found that 100 

gate violations were more highly associated with two-quadrant than four-quadrant gates [11]. 101 

Karamati et al. (2020) applied random survival forest to HRGC crash data and found that adding 102 

audible alarm devices to crossings that already have gates and flashing lights can decrease crash 103 

likelihood by approximately 50% [12]. Soleimani et al. (2019) used extreme gradient boosting to 104 

identify HRGCs that should be closed to prevent accidents [13]. Wali et al. (2021) applied text 105 

mining to crash narrative data of railroad trespassing incidents and found that confirmed suicide 106 

attempts and the use of headphones or cellphones were more likely to result in fatal injuries [14]. 107 

Only a few studies focused on derailment-type accidents. Liu et al. (2017) found that 108 

derailment rates on Class 1 railroad mainlines were lower for signalized tracks with higher FRA 109 

track class and higher traffic density [15]. Wang et al. (2020) found that most derailment type 110 

accidents declined with the greatest reductions in broken rails, irregular track geometry, and 111 

wheel-related equipment defects [16]. Iranitalab and Khatta (2020) found that the random forest 112 

method of ML outperformed the logistic regression, Naïve Bayes, and support vector machine 113 

(SVM) methods in classifying train-level hazmat releases with an AUC score of 87% [17].  114 

The survey of Ghofrani (2018) demonstrated that researchers have also use ML methods to 115 

analyze other aspects of railroad operations besides safety [9]. For example, Li et al. (2014) used 116 

ML to learn rules from historical and real-time data to predict railroad maintenance needs [18]. 117 
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Lasisi and Attoh-Okine (2019) proposed a combination of ensemble tree-based ML models to 118 

predict rail fatigue defects and achieved an AUC score of 0.783 [19]. 119 

3 Methodology 120 

Figure 2 shows the methodological framework developed to prepare the data, apply the machine 121 

learning methods, rank the features, and to interpret the results. 122 

 123 
Figure 2: The methodological framework. 124 

The next two subsections cover each procedure shown in the input, processing, and output layers 125 

of the framework. The input layer gathers the datasets and prepares the combined data by 126 

applying various methods to reduce noise, repair data entry errors, and fill in missing values. The 127 

processing layer prepares relevant attributes to train and tune the ML models. The ML process 128 

itself resulted in the discovery of additional errors that the data preparation layer subsequently 129 

addressed. The looping converged after the ML performance stabilized. The final layer ranked 130 

the importance of attributes in classification performance and used PCA to visualize the results 131 

for interpretation. 132 
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3.1 Data Preparation 133 

Erroneous data or attributes that have no influence in deciding the target class (derailment versus 134 

non-derailment) become noise and diminish the predictive performance of ML models. Missing 135 

or low dispersion data can increase model bias. The next subsections describe some customized 136 

data cleaning and imputation methods that this research developed for the FRA dataset. 137 

3.1.1 Data Filtering 138 

“Big data” is often associated with what the literature calls a “curse of dimensionality” where 139 

each additional attribute exponentially increases the volume of the feature space to a point where 140 

the data becomes too sparse to be statistically significant or to have any structure [20]. Therefore, 141 

methods to identify and remove irrelevant attributes or features can increase the cohesiveness 142 

and quality of the dataset. Table 1 describes criteria used to eliminate irrelevant attributes or 143 

features. 144 

Table 1: Criteria for Attribute or Feature Elimination 145 

Criteria Description 

Sparsity Attribute is missing more than 85% of the values. 

Duplication Attribute contains the same information as other attributes. 

Sparsity More than 85% of the attribute contain zeros. 

Correlated Attribute is more than 90% correlated with another. 

Redundancy Attribute contains information that is inherent in other attributes. 

Noise Attribute is not relevant to the target class. 

Dispersion Attribute has low variance or carries little or no information. 

Combinable Attribute that can combine with others without losing information. 

 146 

3.1.2 Feature Engineering 147 

The manipulation of features to improve ML model performance is more art than science 148 

because there are no automated or standardized techniques for all types of datasets [20]. The 149 

effectiveness of feature engineering requires in-depth knowledge of the dataset, its structure, and 150 

the meaning and significance of each attribute. The empirical feature engineering was conducted 151 

as follows: 152 
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1) Packaged similar features of an attribute to simplify the categories. 153 

2) Converted categorical attributes that have some ranking to ordinal attributes. 154 

3) Binarized categorical attributes that contained only two values by replacing one value 155 

with zero and the other with one. 156 

4) Replaced nominal values with a single word label to enhance the ease of interpreting 157 

trends with more descriptive legends. 158 

3.1.3 Data Imputation 159 

A few methods such as decision trees and Bayesian classifiers can work with missing data, but 160 

most cannot [21]. Therefore, data scientists developed a few methods to impute or guess missing 161 

values. Common approaches are to replace missing values with the mean, median, most frequent, 162 

random, or zero value. More intelligent approaches use tree-based ML techniques to fill missing 163 

values with those of their nearest neighbors. This research developed a new method, dubbed 164 

local association pivot (LAP), to replace missing values. The LAP method first creates a pivot 165 

table that aggregates non-missing values by a location identifier and by sub-location identifiers if 166 

available. The method then merges the pivot table with the dataset by using the main location 167 

identifier as the unique merge key. The aggregation method for the pivot depends on the type of 168 

missing data. For example, for numerical values such as track density, the method used the 169 

maximum of the aggregated value for a location. The method did not use the average value 170 

because zero or missing values created an undesirable bias in the aggregation. A fringe benefit of 171 

using the LAP method is that it is easy to spot data entry or spelling errors by examining a sorted 172 

list of the unique location keys. 173 
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3.1.4 Geospatial Cleaning 174 

Missing or erroneous geospatial coordinates are impossible to impute or correct if no other 175 

spatial information is available in the dataset. The state or county name provides a coarse 176 

location identifier that can be helpful for visualizing data on maps. However, a coarse location 177 

such as a large state may introduce bias in the ML process. Fortunately, the FRA database 178 

contains the station name that is closest to the accident location, so its location can be a surrogate 179 

for missing geospatial coordinates. 180 

Aside from missing geospatial coordinates, data entry errors may result in erroneous or 181 

highly skewed geospatial locations. Figure 3 shows the positions of the recorded geospatial 182 

coordinates relative to a map of the continental United States. There is an observable systematic 183 

skew towards the southeast. This skew suggests that there was a lack of resolution for those 184 

coordinates because in North America, lower resolution latitude and longitude coordinates would 185 

bias towards the south and east, respectively. 186 

 187 
Figure 3: Positions of the recorded geospatial coordinates in the FRA database. 188 

The procedure to clean the geospatial coordinates filled missing values in two stages. First, the 189 

LAP method averaged the non-missing geospatial coordinates for accidents that occurred on a 190 

given track type near a given station. Second, the procedure merged the records with a map file 191 
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from the U.S. Census Bureau TIGER® database that contained the geospatial centroid of each 192 

county in the United States. A geographic information system (GIS) spatial join method then 193 

replaced erroneous geospatial coordinates as follows: 194 

1. Spatially join the TIGER county polygons to the FRA geospatial coordinates using one-195 

to-many mapping. This procedure added the county FIPS code from the TIGER database. 196 

2. Flag any mismatch between the reported FRA county FIPS code and the spatially joined 197 

county FIPS code by a Boolean flag MATCH. This flag identified geospatial coordinates 198 

that were not located within the FRA county recorded for the accident. 199 

3. Replace the geospatial coordinates of the flagged records with the geospatial centroid of 200 

the FRA reported county. 201 

A clear limitation of the LAP method is that it reduces the geospatial error by a small amount. 202 

However, the error reduction helps the ML performance without forcing data elimination. 203 

3.1.5 Data Extraction 204 

A consistent dataset improves ML performance [20]. The FRA dataset contained records of both 205 

passenger and freight train accidents. Passenger trains operate in environments and 206 

circumstances that are often different from those of freight trains. For example, passenger 207 

terminals and stations are different from freight and transshipment terminals. Hence, equipment 208 

and operations are different for the two types of service. Passenger trains accounted for a small 209 

portion 8.03% (2,354) of accidents from 2009 to July 31, 2020. Removing those records not only 210 

enhanced the consistency of the dataset, but also removed a few attributes that were associated 211 

with passenger trains only. 212 

The FRA database codes the cause of an accident in the “ACCAUSE” attribute and cross-213 

referenced the description in Appendix C of the accident dictionary [22]. The document lists 389 214 
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accident-cause codes. The first character of the code indicates the accident cause category as “E” 215 

for “Mechanical and Electrical Failures, “T” for “Rack, Roadbed and Structures,” “S” for 216 

“Signal and Communication,” “H” for “Train operation – Human Factors,” and “M” for 217 

miscellaneous causes that do not fit into any of the other categories. Therefore, the procedure 218 

removed records for accidents due to human factors by extracting those where the first character 219 

in the cause-code was not “H.” 220 

3.1.6 Attribute Transformation 221 

ML algorithms tend to perform poorly on data with attributes that have a highly skewed 222 

distribution because the model could treat data in long tails as outliers or because extreme values 223 

provide insufficient examples [23]. This phenomenon is common, for example, in the 224 

distribution of annual income (right skew) and the distribution of age at natural demise (left 225 

skew). A standard technique is to log transform continuous attributes with highly skewed 226 

distributions, including the target attribute if applicable. Using the shifted natural logarithm 227 

LN(1 + x) prevents an undefined number if attribute value x is zero. 228 

Another transformation that can help to reduce the dimension of a dataset is to replace a set 229 

of related attributes with proportions of a base attribute. The advantage of a proportion 230 

transformation is that it retains information about the relative relationship among attributes while 231 

normalizing the values within the [0, 1] range. The attributes selected for this transformation 232 

were the proportion of cars that contained freight (LOADF1), and the proportion of loaded cars 233 

that contained hazardous materials (CARS). 234 

It is also possible to increase the information of an attribute by making explicit some 235 

knowledge that is within context of another attribute. For example, transforming the absolute 236 

train speed with the excess speed, relative to the speed limit for the track class, increases 237 
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information for that attribute. Finally, attributes that are irrelevant but provide descriptive value 238 

can store metadata instead of features to enhance further exploratory data analysis. 239 

3.1.7 Feature Selection 240 

Predictive modeling should not contain attributes where values are known only after the 241 

outcome. Therefore, the cleaning procedure must eliminate post-event attributes such as the 242 

number of people injured, killed, or evacuated. Other post-event attributes include the position of 243 

involved equipment, the number of damaged vehicles, and the cause of the accident. 244 

3.1.8 Attribute Normalization 245 

Most ML algorithms work only with numerical data. Categorical attributes contain a finite 246 

number of unique labels that have no numeric value, nor do they represent an ordering or 247 

ranking. Therefore, the framework applies one-hot-encoding to create new binary attributes that 248 

represent each category or feature of the attribute where “1” and “0” denotes presence or 249 

absence, respectively. Unfortunately, one-hot-encoding grows the dimension of the ML dataset. 250 

Therefore, any opportunity to reduce the number of categories in an attribute can alleviate the 251 

curse of dimensionality. In this analysis, domain knowledge about the meaning behind the data 252 

helped with packaging some of the categories of a few attributes into fewer groups that were also 253 

more meaningful. 254 

The performance of many ML algorithms improves when attributes become comparable by 255 

normalization, which is to scale them to the same value range. The ML framework uses [0, 1] 256 

normalization to make the magnitude of continuous variables comparable with one-hot encoded 257 

categorical features. The transformation is 258 

�̂� =
𝑥 − min 𝑥

max 𝑥 − min 𝑥
 (1) 

where �̂� is the transformation of attribute vale x. 259 
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3.1.9 Outlier Removal 260 

Sacrificing a few outlier data points to reduce bias can improve the generalization of a model. 261 

Outlier data instances are few and different from the bulk of the dataset [24]. They could 262 

represent noisy data entries or rare events that can bias the training of an ML model, resulting in 263 

poor predictive performance. Several outlier detection methods are available. The framework 264 

used four methods to compare their effect on the model performance: 265 

• One class SVM (OCS) with a radial basis function (RBF) kernel (OCS-RBF) 266 

• Covariance estimator (CE) [25] 267 

• Local outlier factor (LOF) [26] 268 

• Isolation forest (IF) [24] 269 

OCS-RBF applies support vector machine (SVM) classification to assess the similarity of a data 270 

instance to the core class. Consequently, OCS-RBF performs well on data that is not Gaussian 271 

distributed because it does not assume normally distribute attributes. The CE method fits ellipsis 272 

to clusters with central points to identify data instances that are far away, based on the 273 

Mahalanobis distance measure. However, CE requires data with a Gaussian distribution. LOF 274 

measures the local density of a data instance with respect to the local densities of its k-nearest 275 

neighbors. A large deviation of the two local densities indicates that the data instance is isolated. 276 

LOF works well with moderately high-dimension datasets because the distance computation 277 

scales linearly. The method of IF uses the random forest classification algorithm to detect data 278 

instances that are different from most of the data [24]. Outlier removal occurs after one-hot-279 

encoding because some of the algorithms utilize ML methods that work with numerical variables 280 

only. 281 
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3.2 Machine Learning 282 

Many different types of ML models emerged over the years, and each tend to behave differently 283 

on different types of datasets [27]. The next subsections describe the different types of models 284 

and their hyperparameter tuning to optimize performance on the FRA dataset. 285 

3.2.1 Supervised Classification Models 286 

Table 2 summarizes the 11 different types of ML models used in this analysis. The table 287 

provides a brief description of how each algorithm works, their most important hyperparameters 288 

(HP), their overall advantages (A) and disadvantages (D). The table groups the models into four 289 

broader categories based on their underlying theory of operation: tree-based methods, statistical 290 

models, decision boundaries, and learned functions. Numerous excellent books describe the 291 

mathematics and theory of operations for each model; they are incorporated here by reference. 292 

Géron (2017) discusses both the theory and practical implementation of decision tree (DT), 293 

random forest (RF), AdaBoost (AB), logistic regression (LR), support vector machine (SVM), 294 

stochastic gradient descent (SGD), and artificial neural network methods [28]. Jame et al. (2013) 295 

discusses both the theory and practical implementation of Naïve Bayes (NB), k-nearest-296 

neighbors (kNN), and tree-based boosting methods [27]. Hastie et al. (2016) provides similar 297 

coverage for all the models used in this analysis, including some key ML concepts such as 298 

bootstrapping, boosting, bagging, and ensemble learning [29]. Murphy (2012) covers the various 299 

methods from a more theoretical and probabilistic perspective [20]. 300 

 301 
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Table 2: ML Models Compared 302 

Type Model Algorithm & Hyperparameters Advantages and Disadvantages 

T
re

e-
B

a
se

d
 M

et
h

o
d

s 

Decision 

Tree (DT) 

Recursive tree node splitting to 

maximize the purity of sub-trees. HP: 

Minimum number of instances in leaves 

(N), and minimum size of subsets (S). 

A: Simple to interpret and to visualize. Works 

with non-numerical categorical attributes. D: 

Tends to overfit, resulting in low predictive power 

on new data. 

Random 

Forest 

(RF) 

Build many full trees for voting. Each 

tree grows from a bootstrapped dataset 

and a random subset of attributes. HP: 

Number of trees (N) and minimum size 

of subsets (S). 

A: Offers the simplicity and intuition of decision 

trees but with less tendency to overfit, therefore, 

improves generalization on unseen data. D: 

Incomplete trees diminish insights that full trees 

might otherwise provide. 

AdaBoost 

(AB) 

Sequentially build improved shallow 

trees for voting. HP: Number of 

estimators (N), learning rate (R), 

boosting algorithm, and regression loss 

function. 

A: Selects only those features that improve 

predictive power, hence, reducing the 

computational burden for datasets with very large 

dimensionality. Less sensitive to overfitting. D: 

Sensitive to the presence of outliers and data with 

high incoherence. 

Extreme 

Gradient 

Boost 

(XGB) 

A highly configurable version of 

gradient boosting. HP: Number of 

estimators (N), learning rate (R), 

maximum tree depth (S), loss function. 

A: Improved performance over gradient boosting 

and more efficient. D: Sensitive to 

hyperparameter selection; requires manual 

intervention to achieve the best configuration for 

a given dataset. 

Gradient 

Boost 

(GB) 

Sequentially build improved models that 

fit the errors of previous models. HP: 

Number of estimators (N), learning rate 

(R), maximum tree depth (S), loss 

function. 

A: Efficient and good performance on large 

datasets; inherently supports missing values. D: 

Sensitive to hyperparameter selection but has 

fewer to tune than extreme gradient boosting. 

S
ta

ti
st

ic
a

l 
M

o
d

el
s k-Nearest 

Neighbors 

(k-NN) 

Determine the class of an instance based 

on the majority class of its k nearest 

neighbors. HP: Number of neighbors (k), 

distance method. 

A: Method simplicity. D: Sensitive to a skewed 

class distribution. The computational intensity 

grows exponentially with the number of instances 

and attributes. 

Naïve 

Bayes 

(NB) 

Applies Bayes theorem to determine the 

class probability, given probabilities of 

the observations. HP: None 

A: Fast and simple method. D: Poor performance 

when attributes are not independent. 

D
ec

is
io

n
 B

o
u

n
d

a
ri

es
 

Logistic 

Regression 

(LR) 

Establish a decision boundary by using a 

logistic function to maximally separate 

classes. HP: Regularization function and 

strength (C), and probability threshold. 

A: Inherits many of the advantages of linear 

regression; precisions are easy to make. D: 

Sensitive to noise in the data such as outliers and 

incorrectly classified instances. Model fitting may 

fail to converge if there are many highly 

correlated features. 

Support 

Vector 

Machine 

(SVM) 

Establish a decision boundary by finding 

a multidimensional hyperplane to 

maximally separate classes. HP: Kernel 

type, cost (C), and regression loss (ε) 

A: High accuracy with low computational 

complexity. D: Sensitive to noisy data and 

multidimensional planes that lack clear 

boundaries. 

L
ea

rn
ed

 F
u

n
ct

io
n

s 

Stochastic 

Gradient 

Descent 

(SGD) 

An optimization technique that fits a 

linear multivariate function to the data. It 

works best when all features are scaled. 

HP: Loss function, learning rate method 

and parameters. 

A: An efficient technique on large datasets. 

D: Sensitive to feature scaling; many 

hyperparameters; and the true minima may not be 

achieved because the gradient is only an 

approximation. 

Artificial 

Neural 

Network 

(ANN) 

A weighted multilayer linear network 

that represents a function. HP: Hidden 

layer neurons (N), solver type, 

regularization parameter (α), number of 

iterations (I). 

A: Accuracy improves with use and feedback 

about classification accuracy. D: Requires many 

training examples to improve classification 

accuracy. 

 303 
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3.2.2 Hyperparameter Tuning 304 

Each model requires that the user select values for key parameters (hyperparameters) that affect 305 

their performance. Tuning hyperparameters require incremental adjustments while observing a 306 

performance metric. The optimization loop uses k-fold cross validation to maximize the model 307 

generalization on the entire dataset while reducing any tendency towards overfitting or 308 

underfitting. Models that have regularization parameters provide a means to balance the 309 

unavoidable tradeoff between bias and variance, which improves generalization on unseen data. 310 

James et al. (2013) provides an excellent description of the above ML terminologies and 311 

concepts, so the book is incorporated here by reference [27]. 312 

The performance evaluation metric used was the area under the curve (AUC) of the receiver 313 

operating characteristic (ROC). The AUC trends with hyperparameter value adjustments show 314 

where each model achieved its best regularized performance. The ROC plots the true positive 315 

(TP) rate against the false positive (FP) rate as a function of the class membership probability 316 

[30]. Intuitively, AUC measures the power of a model to distinguish among classes in the target 317 

attribute. An AUC score of 0.5 indicates that the model has no ability to distinguish among 318 

classes of the target whereas a value approaching 1.0 indicates that the model offers a large 319 

increase in TP rate for a small price of slightly increasing the FP rate. 320 

The performance evaluation procedure also monitored the classification accuracy (CA), 321 

precision (Pc), recall (Rc), and F1 scores. Table 3 describes each metric and summarizes their 322 

advantages and disadvantages. All performance metric except the AUC was sensitive to class 323 

imbalance in the dataset. 324 
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Table 3: Classifier Performance Metric 325 

Metric Description Advantages Disadvantages 

CA The proportion of predictions 

that were correct. 

Simply calculation. Sensitive to data imbalance where a no-skill 

classifier can appear to provide better 

performance by predicting the dominant class 

every time. For example, a no-skill classifier 

will score CA at 90% if the database labels 

90% of the accidents as derailments. 

 

Pc The proportion of observations 

correctly predicted as positives 

(TP) to the total number of 

observations predicted as 

positives (TP + FP). 

Measures the 

probability of 

mislabeling a negative 

sample as positive. 

A bias towards the majority class can be 

misleading. 

Rc Measures the proportion of 

positive predictions (TP) to the 

total number of positive 

observations (TP + FN) 

Measures the 

probability of correctly 

labeling all the positive 

observations. 

A bias towards the majority class can be 

misleading. 

F1 The harmonic mean of Pc and 

Rc, scaled from 0 to 1. 

Measures the balance 

between precision and 

recall. 

Less bias but as a function of Pc and Rc will 

retain some bias. 

AUC Area under the ROC curve that 

plots TP against FP as a 

function of class membership 

probability. 

Removes biased scores 

for imbalanced datasets. 

More complex calculation than a simple ratio. 

Requires the class membership probability for 

every prediction, which may not be inherently 

available from a model. 

 326 

CA is one of the most often cited performance metric for ML classifiers. However, a high 327 

CA score can be misleading if the dataset has high class imbalanced. For example, a no-skill 328 

algorithm applied to a dataset with only 5% of the instances from one class and the rest from the 329 

other class will appear to have a 95% accuracy if it picks the dominant class for every prediction. 330 

Stratified sampling of both the training and testing datasets helps to reduce the imbalance [31]. 331 

3.3 Feature Ranking 332 

Attributes that contain noisy, irrelevant, or redundant information can diminish the performance 333 

of ML methods [32]. Hence, data scientists developed various methods to score features based 334 

on the amount of information they contribute towards distinguishing the target classes. This 335 

section compares five methods that rank features based on the strength of their association with 336 

the classes in the target attribute. Table 11 provides a short description of each method and a 337 
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reference that provides details about their theory of operations. All methods work best with 338 

normalized attributes because their magnitudes become comparable. The diversity of methods 339 

result in some compensating for the weaknesses of the other; therefore, they do not provide 340 

identical rankings [33]. However, a strong correlation among rankings indicates that the top-341 

ranking attributes do contribute most towards ML classification performance. 342 

Table 11. Feature Ranking by Scoring Methods 343 

Method Description Reference 

ANOVA Analysis of Variance (ANOVA) measures the difference between 

average values of a feature in different classes of the target, based on the 

F distribution. 

Agresti (2018) [34] 

Chi-Squared Measures a dependency or association between the feature and the 

target class by using a chi-square statistic. 

Wang et al. (2010) [33] 

Information 

Gain 

The expected amount of entropy reduction. A decrease in entropy 

(uncertainty) based on the presence of other features will increase 

information. 

Yu and Liu (2003) [32] 

Gain Ratio Reduces the bias of Information Gain towards features that have many 

values by taking the ratio of Information Gain to the intrinsic 

information (entropy) of the feature. 

Quinlan (1986) [35] 

Gini 

Decrease 

A measure of the inequality among values of a frequency distribution 

based on their statistical dispersion. A value of zero and one represents 

perfect equality and inequality, respectively, of the distribution of a 

feature within each target class. 

Han et al. (2016) [36] 

 344 

3.4 Principle Component Analysis 345 

The method of principle component analysis (PCA) creates a set of new orthogonal basis 346 

vectors, each maximally spanning the dimensions of feature space, in the order of the data 347 

variance [37]. Each principle component (PC) is a linear combination of all numerical features in 348 

the dataset. Intuitively, the first two principle components form a plane in feature space that is 349 

closest to all the data instances, as measured by the Euclidean distance. Data clusters tend to 350 

form along the directions of maximum variance. Hence, attributes that most influence the 351 

formation of data clusters contribute to inherent structure in the data. The terminology used in 352 

the literature is that each PC “explains” some proportion of the total variance (information) in the 353 
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dataset. Features that are weak components of most PCs tend to be associated with noise in the 354 

data. The framework evaluates the trend in proportion of the variance that each PC explains to 355 

provide insights about the amount and location of noise in the dataset. 356 

4 Results 357 

The subsections of this section mirror those of the methodology to organize the presentation of 358 

the results from applying the analytical framework described previously. The main procedures 359 

are data preparation, machine learning, attribute ranking, and PCA. 360 

4.1 Data Preparation 361 

The following subsections describe the data filtering, feature engineering, data imputation, 362 

geospatial data cleaning, data extraction, attribute transformation, feature selection, and outlier 363 

removal. 364 

4.1.1 Data Filtering 365 

Some of the data schema became inconsistent after the FRA changed reporting requirements for 366 

a few of the fields starting June 1, 2011. For example, the report added a field to indicate if the 367 

accident occurred in a signalized territory. Hence, there was no entry for the “SIGNAL” field 368 

prior to the switchover date. Similarly, a field indicating the method of operation (“MOPERA”) 369 

replaced the “METHOD” field that encoded similar information. Consequently, 22% and 79% of 370 

the data was missing in the “MOPERA” and “METHOD” fields, respectively. The accident 371 

reporting form also added a field “SSB1” to indicate if the track was a continuously welded 372 

(CWR) or other. Hence, the “SSB1” field was mostly empty prior to June 1, 2011. Merging 373 

8,055 records from 2009 to 2011 with 21,242 records from 2012 to June 2020 produced a total of 374 

29,297 records with 145 attributes. Table 4 chronicles each criterion used to reduce the number 375 

of fields from 145 to 52. 376 
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Table 4: Chronicle of Dimension Reduction for 29,297 Records 377 

Criteria Attributes Removed Count 

Sparsity 19 with > 85% missing data (e.g. DUMMY1-DUMMY7). 145 - 19 = 126 

Duplication 8 with duplicated information (e.g. IMO, IYR, MONTH, YEAR). 126 - 8 = 118  

Sparsity 16 with > 90% zero-filled (e.g. CABOOSE1, EVACATE, MIDREM1) 118 - 16 = 102 

Correlated 12 with > 90% correlation with other attributes (e.g. PASSINJ, PASSKLD) 102 - 12 = 90 

Redundancy 7 that were redundant with others (e.g. CNTYCD, STATE, COUNTY) 90 - 7 = 83 

Noise 6 with no relevance to the target (e.g. train number, car number) 83 - 6 = 77 

Noise 6 with > 20% missing or no relevance to the target (e.g. ADJUNCT1, DIV) 77 - 6 = 71 

Combinable HUMANS = (engineers + firemen + conductor + brakemen), drop 4. 71 – 4 + 1 = 68 

Correlated EQATT (equipment attended) correlates with HUMANS, drop 1 68 – 1 = 67 

Combinable Combine 15 narrative fields into a single field (NARR), drop original 15. 67 – 15 + 1 = 53 

Combinable Fill missing MOPERA (method of operation) data with METHOD, drop 1. 53 – 1 = 52 

 378 

4.1.2 Feature Engineering 379 

Several categorical attributes contained labels that resulted in fewer stratifications when 380 

combined. For example, the type of consist (“TYPEQ”) contained 14 different labels to describe 381 

sub-categories of the following 6 equipment categories: a “Freight” train, any type of 382 

“Passenger” train, any type of “Locomotive,” any set of cars without locomotives (“Cars”), any 383 

type of equipment used for maintenance and other non-revenue service work (“Work”), and any 384 

type of equipment used to manage yard movements (“Yard”). Similarly, MOPERA (method of 385 

operation or movement authorization) contained 21 categories that were simplified into the 386 

following 5 broader categories of movement authorization: signaling (“Signal”), direct control 387 

(“Control”), restricted limit of movements (“Restrict”), block control for track segments 388 

(“Blocks”), and other types of movement authorization (“Not Main”) that were not on the main 389 

tracks. 390 

The feature engineering procedure converted track class (“TRKCLAS”) to an ordinal 391 

attribute because it encodes speed limits. The FRA track class designation increases the speed 392 

limit for both freight and passenger trains in a non-linearly manner from Class 1 (10 mph) 393 

through Class 9 (200 mph), which the ordinal encoding from 1 through 9 reflected. The FRA 394 

track class designation of “X” for “excepted” has a speed limit of 10 miles-per-hour (mph) but 395 
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excludes the exclusion of passenger trains. Therefore, an ordinal value of 0 replaced the “X” 396 

track class. 397 

The railroad class (“CLASS_RR”) attribute encoded inconsistent values for “Class 1” where 398 

some labels were “1” and others were “1L” so the cleaning procedure ensured that attribute 399 

values ranged from 1 to 6. The railroad class is a ranking based on their annual operating revenue 400 

[1]. Therefore, the procedure re-interpreted the railroad class as an ordinal attribute. Table 5 401 

summarizes the results of the feature engineering procedure. 402 

Table 5: Summary of Feature Engineering 403 

Attribute Procedure 

CWR Renamed SSB1 to CWR (continuously welded rail); binarized as “1” = “CWR” and “0” otherwise. 

LOADED1 Binarized as “1” = “Y” (first involved car loaded?) and “0” = “N” for non-empty values. 

WEATHER Recoded nominal values in WEATHER as labels {Clear, Cloudy, Rain, Fog, Sleet, Snow} 

TRK_TYP Renamed TYPTRK (track type) and labeled nominal codes as {Main, Yard, Siding, Industry} 

VISION Renamed VISIBLTY and replaced nominal codes as descriptive {Dawn, Day, Dusk, Dark} 

CLASS_RR Renamed TYPRR (railroad class) and cleaned to contain only values from 1 to 6. 

CLASS_TRK Renamed TRKCLAS (track class) and cleaned to contain ordinal values from 0 to 9 (X → 0) 

CONSIST Renamed TYPEQ (consist type); repackaged as {freight, passenger, locomotive, cars, work, yard}. 

{1} → “Freight”, {2, 3, B, C} → “Passenger”, {8, D, E} → “Locomotive”, 

{5, 6} → “Cars”, {4, 9, A} → “Work”, {7} → “Yard” 

ACC_TYPE Renamed TYPE (accident type); repackaged as category labels: 

{1} → “Derail”, {2, 3, 6} → “Collide”, {4} → “Collide (Side)”, {5} → “Collide (Rake)”, 

{7, 8} → “RGC”, {9} → “Obstruct”, {10, 11} → “Fire”, {12, 13} → “Other” 

MOVEx Renamed MOPERA; repackaged as labels {signal, control, restrict, blocks, not main} 

{1, D} → “Signal”, {2, A, B, C, P} → “Control”, {3, L, M, I} → “Restrict”, 

{4, E, F, G, H, J, K} → “Blocks”, {5, N, O} → “Not Main” 

 404 

4.1.3 Data Imputation 405 

Table 6 summarizes the results of the imputing missing values and the impact of each method. 406 
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Table 6: Summary of Data Imputation 407 

Attribute Missing 

Before 

Missing 

After 

Procedure (N = 29,297, V = 49, M = 3) 

TRK_DEN 51% (15,176) 0% (0) Pivot STATION by TRK_TYP, aggregated as maximum 

TRK_DNSTY (track density). Fill missing data associated with 

the track type if defined, otherwise use the maximum value. 

SIG 22% (6,473) 0%, 0 Pivot STATION by TRK_TYP, aggregated as net count SIGNAL 

(signalized territory). Fill missing data as “1” if net count 

associated with the track type is greater than 0, otherwise fill with 

“0” 

CONSIST 39% (11,537) 

 

 

8% (2,605) 

 

 

2% (844) 

 

1% (377) 

 

8% (2,605) 

 

 

2% (844) 

 

 

1% (377) 

 

0% (0) 

Layer 1: Fill missing CONSIST with: 

 “Freight” if (LOADF1 + EMPTYF1) > 0 otherwise 

 “Passenger” if (LOADP1 + EMPTYP1) > 0 or PASSTRN is “Y” 

Layer 2: Fill missing CONSIST with: 

 “Freight” if CLASS_RR is “1” (except “Amtrak”) otherwise 

 “Passenger” if RAILROAD (reporting railroad) is “Amtrak” 

Layer 3: Fill missing CONSIST with: 

 “Work Train” if TRK_TYP is not “Main” 

Layer 4: Fill missing CONSIST with: 

 “Work Train” if TONS (gross tons, excluding locomotives) is 0 

 otherwise fill missing CONSIST with “Freight” if TONS > 0 

CWR 21% (6,378) 0% (0) Fill missing values with “1” if TRK_TYP is “main” and “0” 

otherwise. 

MOVEx 0% (518) 0% (0) Fill missing MOVEx based on SIGNAL or TRK_TYP. 

PASSTRN 6%, (2,049) 0% (0) Fill missing PASSTRN based on CONSIST. Check original flag 

for consistency with the type CONSIST and the sum of freight 

and passenger cars (loaded or empty). Flip the flag accordingly. 

CLASS_RR 0%, (37) 0% (0) Fill missing CLASS_RR (railroad class) by internet search: 

BLF → 2, {DD, METC} → 3, CN → 1  

TRK_TYP 0%, (15) 0% (0) Fill missing TRK_TYP (track type) by inference from the 

metadata. 

CLASS_TRK 0%, (25) 0% (0) Fill missing CLASS_TRK (track class) by inference from the 

metadata. 

 408 

For track density (TRK_DEN), the LAP method used the nearest station (STATION) as the 409 

location attribute and track type (TRK_TYP) as the sub-location attribute. There were 4,722 410 

unique station names that served as keys for data merging. For the signal (“SIG”) attribute, the 411 

LAP method counted the net presence of signalized territories for each track type near the station 412 

and assigned “1” if the value was greater than 0 and “0” otherwise. That is, the LAP method 413 

voted for the likelihood that the territory near the station used signaling to control movements. 414 

The imputation technique for the type of “CONSIST” attribute used four layers of rule-based 415 

inference to fill in missing values. The first layer inferred freight or passenger consist based on 416 
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the number of freight and passenger cars, respectively, resulting in a reduction of missing values 417 

from 39% to only 8%. The next layer inferred freight or passenger consist based on the railroad 418 

class, resulting in a further reduction of missing values to only 2%. The next two layers imputed 419 

the remaining missing values by inferring the type of consist from the railroad class, the tonnage 420 

hauled, and the track type. 421 

Imputing missing values for the type of rail (“CWR”) used the probability that “main” track 422 

types were continuously welded. A distribution of track type by CWR revealed that “main” track 423 

types were more likely to be CWR than other track types. The probabilistic inference method 424 

also filled the remaining movement type (“MOVEx”) and flag for passenger train 425 

(“PASSTRN”). Evaluation of the metadata and an internet search filled the few remaining 426 

missing values for track type and track class. Finally, there were no missing values. 427 

4.1.4 Geospatial Cleaning 428 

Table 7 chronicles the progress of filling missing geospatial coordinates in each step of the 429 

procedure. The LAP method filled missing values with the mean value of the non-zero latitude 430 

and longitude values for that track type near the station, otherwise the method used the maximum 431 

value. Subsequently a GIS spatial join revealed that 21.8% of the records had erroneous 432 

geospatial coordinates because their locations on the map did not match the counties reported for 433 

the accidents. Hence, the procedure replaced their geospatial coordinates with those of the 434 

centroid for the FRA recorded county. There were a few missing county codes that the procedure 435 

could not merge, so an internet search filled those missing values based on the station name. 436 
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Table 7: Chronicle of Geospatial Coordinate Cleaning 437 

Attribute Missing 

Before 

Missing 

After 

Procedure (N = 29,297 records) 

Latitude 21% (6,415) 2% (817) Treat zero-filled values as missing. Pivot STATION by TRK_TYP, 

aggregated as the average geospatial coordinate. Fill missing data with 

the mean value associated with the track type if available, otherwise fill 

with the maximum value. 

Longitude 21% (6,415) 2% (820) Treat zero-filled values as missing. Pivot STATION by TRK_TYP, 

aggregated as the average geospatial coordinate. Fill missing data with 

the mean value associated with the track type if available, otherwise fill 

with the minimum value (Longitude is negative in U.S.) 

REC_ID 100% 0% (0) Add a record identifier as the row index. V: 49+1=50 M: 3. 

Latitude 

Longitude 

2% (817) 

2% (820) 

0% (6) 

0% (6) 

Merge the FRA records with the TIGER® county shapefile by the FIPS5 

code. Retain the geospatial centroid coordinates for each county. Add the 

state name abbreviation and flag (MATCH) to the attributes. V: 50+2=52. 

Add the county name and state name strings to the metadata. M: 3+2=5. 

Fill missing FRA geospatial coordinates with the county centroid 

coordinates.  

Latitude 

Longitude 

0% (6) 

0% (6) 

0% (0) 

0% (0) 

Manually fill missing geospatial coordinates for counties in Alaska and 

Florida. 

FIPS5 0% (4) 0% (0) Fill in missing FIPS5 codes for “Baltimore” and “Skagway” stations. 

LAT 

LON 

0% (0) 

0% (0) 

0% (0) 

0% (0) 

Rename Latitude to LAT and Longitude to LON after the geospatial 

cleaning procedure. 

 438 

4.1.5 Data Extraction 439 

Table 8 chronicles the reduction of data and attributes after the data extraction process. 440 

Table 8: Chronicle of Data Reduction after Data Extraction 441 

Attribute Statistic Procedure 

ACC_CAT N: 29,297 

V: 52+1=53 

M: 5 

Add accident category: 

{Track, Equipment, Human, Signal, Miscellaneous}. 

PASSTRN N: 26,943 (92%) 

V: 53-4 = 49 

M: 5 

Dropped accidents involving passenger type trains. 

Dropped associated attributes: 

LOADP1, LOADP2, EMPTYP1, EMPTYP2. 

DERAILED N: 26,943 (92%) 

V: 49+1 = 50 

M: 5 

Added “Derailed” as the target attribute. 

 N: 25,035 Dropped records where the accident cause was missing, 7% (1908) 

 N: 15,088 Dropped records where human factors were a cause, 39.7% (9947) 

 N: 15,087 Dropped 1 record with a missing value for WEATHER. 

 442 

The statistics shown in the table are the number of records (N), number of attributes or variables 443 

(V), and number of metadata fields (M). The algorithm used the “PASSTRN” as a flag to drop 444 
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records of accidents involving only passenger trains. Adding an accident category 445 

(“ACC_CAT”) flag helped the data extraction code to drop records of accidents caused by 446 

human factors. Adding the target attribute “DERAILED” indicated if the accident was a 447 

derailment type or not, and it became the label for supervised ML. 448 

4.1.6 Attribute Transformation 449 

Table 9 chronicles the transformation of attributes and their effect on feature reduction.  450 

Table 9: Chronicle of the Transformed and Derived Attributes 451 

Attribute Reduction Procedure 

HR24 50–3+1 = 48 Combined TIMEHR, TIMEMIN, AMPM to 24-hour continuous, then drop old. 

TRK_DEN_LG 48-1+1 = 48 Log Transform: TRK_DEN, then drop old. 

TRNSPD_LG 48-1+1 = 48 Log Transform:  TRNSPD, then drop old. 

TONS_LG 48-1+1 = 48 Log Transform:  TONS, then drop old. 

POS_CAR 48+1-1 = 48 Rename and recode POSITON1 (position of first involved car) as the fractional 

position relative to the number of cars. 0 is front, 1 is back. 

N_CARS 48+1 = 49 Add N_CARS as the sum of loaded and empty cars. 

CARS_LD 49+1-4 = 46 Add CARS_LD as proportion of N_CARS loaded. Drop: LOADF1, 

EMPTYF1, POSITON1, PASSTRN 

CARS_HZMT 46+1-1 = 46 Add CARS_HZMT as proportion of CARS_LD that carry Hazmat. Drop CARS 

(number of cars carrying hazmat) 

SPD_OVR 46+1–1 = 46 Add to capture difference in train speed and speed limit for CLASS_TRK. 

Dropped field HIGHSPD. 

Metadata 46-6= 40 Converted 6 attributes (REC_ID, SC, STATION, RAILROAD, RR3, IYR) to 

metadata: 5+6=11. 

 452 

The procedure combined the three attributes related to time into a single attribute (HR24) that 453 

represented the hour as a continuous value within the range [0, 24). The combined attributes 454 

were hour (“TIMEHR”), minute (“TIMEMIN”), and AM flag (“AMPM”). The shifted log 455 

transformations reduced the skew of the track density (“TRK_DEN”), train speed (“TRNSPD”), 456 

and tonnage hauled (“TONS”) attributes. The three proportional transformations were relative to 457 

the number of cars (N_CARS), derived from the sum of loaded and empty cars. The 458 

“SPD_OVR” attribute was the excess train speed relative to the speed limit for the track class 459 

operated on. Hence, the value was negative for trains that were operating below the speed limit. 460 

Finally, the transformation procedure identified six attributes as irrelevant to the target and 461 

converted them to metadata. Examples were the state code (“SC”), station name (“STATION”), 462 
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railroad name (“RAILROAD”), track maintenance organization (“RR3”), and the incident year 463 

(“IYR”). 464 

4.1.7 Feature Selection 465 

Table 10 chronicles the feature reduction after eliminating post-event attributes. Table 11 466 

summarizes the final set of 25 attributes used to build the ML models. The ML did not use the 11 467 

metadata fields, but they supported further descriptive analysis. One-hot-encoding the categorical 468 

attributes increased the number of features from 25 to 51. The dispersion indicates the amount of 469 

variability in the distribution of each attribute. The dispersion measure is the entropy and 470 

coefficient of variation (CV) for categorical and numerical attributes, respectively. The entropy 471 

of an attribute is 472 

𝐻(𝑋) = −∑𝑃(𝑥𝑖)

𝑁

𝑖=1

log 𝑃(𝑥𝑖) (2) 

where xi is the ith category value and P(xi) is a probability estimate based on their frequency of 473 

occurrence in the dataset. For numerical attributes, the CV was the ratio of the standard deviation 474 

to the mean value. 475 

 476 
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Table 10: Chronicle of the Eliminated Attributes 477 

Attribute Reduction Process 

POSCAR 40-1 = 39 Relative position of the first involved car in the train. 

LOADED_1 39-1 = 38 Boolean: Is first involved car loaded? Missing (22%, 6568) 

ACCDMG 38-1 = 37 Total reported damage in U.S. dollars. 

CASKLD 37-1 = 36 Total killed for all involved railroads. 

CASINJ 36-1 = 35 Total injured for all involved railroads. 

CARSHZD 35-1 = 34 Number of cars that released hazardous materials. 

CARSDMG 34-1 = 33 Number of cars damaged or derailed. 

POSITON2 33-1 = 32 Position of car on the train that caused the accident. 

EMPTYF2 32-1 = 31 Number of empty freight cars that derailed. 

LOADF2 31-1 = 30 Number of loaded freight cars that derailed. 

HEADEND2 30-1 = 29 Number of headend locomotives that derailed. 

ACC_TYPE 29-1 = 28 Type of accident. Missing (0%, 83). 

ACC_CAT 28-1 = 27 Accident cause category. 

CAUSE 27-1 = 26 Accident cause code. 

MATCH 26-1 = 25 Temporary geospatial filter flag for county mismatch. 

 478 

Table 11: Summary of the ML Attributes, their Dispersion, and Type 479 

Attribute Dispersion Type Description (N=15,087, V=25, T=1) 

DERAILED 0.631 Categorical Target attribute: 1 if the accident type was derailment. 

REGION 0.400 Categorical Cleaned FRA region code for accident location. 

LAT 0.133 Continuous Cleaned latitude coordinate 

LON -0.126 Continuous Cleaned longitude coordinate 

CLASS_RR 0.796 Ordinal Cleaned railroad class. 

MONTH 0.549 Ordinal Incident month. 

DAY 0.561 Ordinal Incident day. 

HR24 0.541 Continuous Transformed time to fractional 24-hour. 

TEMP 0.391 Continuous Temperature (degrees Fahrenheit) 

VISION 1.110 Categorical Visibility: {Dawn, Day, Dusk, Dark} 

WEATHER 0.977 Categorical Weather: {Clear, Cloudy, Rain, Fog, Sleet, Snow} 

TRK_TYP 1.050 Categorical Track Type: {Main, Yard, Siding, Industry} 

TRK_CL 0.753 Ordinal Track Class: {X as 0, 1 through 9} 

CWR 0.685 Binary 1 if the rail type was continuously welded, 0 otherwise. 

MOVEx 1.250 Categorical Movement: {Blocks, Control, Signal, Not Main, Restrict} 

TRK_DEN_LG 0.972 Continuous log(1+x) of annual track density in millions of gross tons. 

SIG 0.590 Binary 1 if used signals to control train movements, 0 otherwise. 

TRNSPD_LG 0.589 Continuous log(1+x) of train speed in miles per hour (mph). 

SPD_OVR -1.304 Continuous Difference between train speed and limit for track class. 

CONSIST 0.950 Categorical Consist: {Freight, Locomotive, Cars, Work, Yard} 

TONS_LG 0.757 Continuous log(1+x) of gross tonnage, excluding power units. 

LOCOS 0.704 Ordinal Number of headend locomotives. 

N_CARS 0.915 Ordinal Total number of cars. 

CARS_LD 0.704 Continuous Proportion of the number of cars that were loaded (0 to 1) 

CARS_HZMT 2.800 Continuous Proportion of loaded cars carrying hazardous materials (0 

to 1) 

HUMANS 0.562 Continuous Number of humans present on the train. 

 480 
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4.1.8 Outlier Removal 481 

Table 12 summarizes the AUC performance metric for a random forest classifier after removing 482 

outliers using each of the four methods, with the various hyperparameter selections shown. All 483 

algorithm and parameter selection produced similar performance. The framework used the LOF 484 

algorithm with 20 nearest neighbors and 1% outliers because of its slight AUC performance 485 

edge. The method removed 126 outliers to result in 15,087 – 126 = 14,961 records used to train 486 

and evaluate the ML models. 487 

Table 12: Outlier Algorithm Performance Evaluation 488 

Algorithm Hyperparameters AUC 

One class SVM Nu: 1%, Kernel Coefficient: 0.01 0.881 

One class SVM Nu: 1%, Kernel Coefficient: 0.1 0.878 

One class SVM Nu: 10%, Kernel Coefficient: 0.01 0.879 

Local Outlier Factor C: 1%, Neighbors: 10, Euclidean 0.879 

Local Outlier Factor C: 1%, Neighbors: 20, Euclidean 0.882 

Local Outlier Factor C: 1%, Neighbors: 50, Euclidean 0.880 

Isolation Forest C: 0% 0.881 

Isolation Forest C: 1% 0.880 

Isolation Forest C: 5% 0.880 

Covariance Estimator C: 1% 0.817 

 489 

4.2 Machine Learning 490 

Table 13 summarizes the stabilized performance of each ML algorithm, sorted by the AUC 491 

metric. The null model is a no-skill model that predicts the dominant class each time. It provided 492 

a baseline to compare the performance score of skilled classifiers. As expected, the CA score for 493 

the no-skill classifier reflected the class imbalance of 67.42% for derailment type accidents 494 

versus non-derailment type accidents. However, the AUC performance of the null classifier was 495 

lowest as expected. 496 

Tracking the AUC trend with 10-fold cross validation and stratified sampling produced the 497 

optimum hyperparameter values shown in the table. Hyperparameters with common names 498 



Page 30 of 44 

 

across some models were the learning rate (L), loss function (LF), regularization (R) parameters, 499 

and optimizer algorithm (OA). 500 

Table 13: Model Performance and Optimum Hyperparameter Settings 501 

Model AUC CA F1 PR RC Optimum Hyperparameters 

XGB 0.888 0.828 0.875 0.859 0.892 γ:0, Max Depth: 6, Min Child Weight: 1, R:1, w:1, L:0.2, 

GB 0.884 0.824 0.872 0.854 0.891 LF: LR, Trees (N): 100, L: 0.2, Min Samples Leaf: 1 

RF 0.882 0.821 0.817 0.817 0.821 Trees (N): 60, Attributes/Split: 5, Min Subset: 5 

DT 0.854 0.803 0.801 0.800 0.803 Max Depth: 10, Min Samples Leaf (N): 90, Min Subset: 5 

ANN 0.838 0.786 0.785 0.784 0.786 Hidden Nodes: 100, Activation: ReLu, OA: Adam (α:10-4) 

LR 0.832 0.783 0.777 0.777 0.783 R (L2, C:5) 

SGD 0.828 0.783 0.776 0.776 0.783 LF: (LR, ε:1), R: E.Net (α:10-5, 0.15), L: IVS (η0:10-2, t:0.25) 

kNN 0.803 0.765 0.759 0.758 0.764 N: 30, Distance (Euclidean, Weights: Uniform) 

NB 0.794 0.725 0.730 0.740 0.725 No parameters to tune 

ADB 0.713 0.746 0.746 0.747 0.746 Trees (N): 50, LF: Linear, OA: SAMME.R, LR: 1.0 

SVM 0.626 0.654 0.639 0.633 0.654 Kernel: Sigmoid, R (C:0.2, ε:1.0) 

Null 0.500 0.674 0.543 0.455 0.674 No parameters to tune 

 502 

To demonstrate the effect of hyperparameter tuning, Figure 4 plots the AUC score for a range of 503 

hyperparameter N associated with RF, kNN, and DT. 504 

 505 
Figure 4: AUC score as a function of hyperparameter N. 506 

As noted in Table 13, the hyperparameter N represents the number of trees of a RF, the minimum 507 

number of samples to retain in the leaves of a DT, and the number of nearest neighbors for the 508 

kNN algorithm. The asymptotic trend was similar for all hyperparameters tuned. 509 
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4.3 Feature Ranking 510 

Table 14 shows the importance ranking of the first 30 features in their strength of association 511 

with the target class. The rank by each of the five scoring methods are correlated as indicated by 512 

their pairwise correlation coefficients listed in Table 15. The correlation ranges from 84.2% for 513 

the gini and chi-squared methods to 94.5% for the ANOVA and chi-squared methods. 514 

Table 14: Feature Importance Ranking 515 

Feature ANOVA χ2 Info. Gain Gain Ratio Gini 

TRK_CL 1 2 4 3 2 

MOVEx=Signal 2 3 3 1 4 

SPD_OVR 3 1 7 11 3 

SIG 4 4 5 2 5 

HUMANS 5 7 6 10 6 

TRK_TYP=Main 6 5 9 6 7 

CWR 7 6 1 8 8 

MOVEx=Not Main 8 11 11 9 11 

LOCOS 9 9 10 12 9 

CONSIST=Cars 10 8 14 4 12 

TRK_TYP=Industry 11 10 12 7 14 

TRK_TYP=Yard 12 16 2 18 16 

TONS_LG 13 14 15 20 17 

CARS_LD 14 18 13 19 13 

CONSIST=Yard 15 15 18 17 19 

N_CARS 16 12 28 16 10 

MOVEx=Restrict 17 17 26 15 20 

LAT 18 20 22 32 22 

TEMP 19 22 24 30 21 

TRK_TYP=Siding 20 21 25 13 24 

VISION=Dark 21 24 21 24 25 

CLASS_RR 22 13 30 14 15 

TRK_DEN_LG 23 19 20 22 18 

REGION=7.0 24 23 19 21 26 

VISION=Day 25 31 29 35 27 

REGION=8.0 26 26 27 23 28 

REGION=6.0 27 27 23 28 29 

REGION=2.0 28 28 33 25 30 

TRNSPD_LG 29 25 37 5 1 

REGION=3.0 30 29 31 31 31 

 516 

Figure 5 shows the probability distribution of derailment and non-derailment type accidents for 517 

the top two attributes (track class, movement authorization) and the fourth ranking attribute 518 

(signalized territory). 519 
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Table 15: Correlation of Ranking Methods 520 

Method A Method B Correlation 

ANOVA Chi-Squared 0.945 

ANOVA Info. Gain 0.897 

Gain Ratio Gini 0.843 

Gini Chi-Squared 0.842 

 521 

 522 
Figure 5: Class probability for the top two and fourth ranking attributes. 523 

The distributions show that these attributes have some power to separate derailment from non-524 

derailment type accidents, but with uncertainty based on the amount of overlap in their class 525 

distributions. For example, the class probability was higher for derailment type accidents on 526 
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class 0, 1, 2, 7, 8, and 9 tracks (Figure 5a). The distinction is significant for class 1 tracks 527 

because it has the highest frequency of occurrence (Figure 5b). Similarly, the class probability 528 

was higher for derailment type accidents where movement authority was within restricted limits 529 

(restricted) or where movement was not on main tracks (Figure 5c). Similarly, the class 530 

probability was higher for derailment type accidents in non-signalized territories (Figure 5d). 531 

The probability difference was much lower for the lower ranking attributes, but taken together, 532 

they improve the ML classification performance. 533 

Figure 6 is a box plot that shows the distribution and statistics of excess speed for derailment 534 

and non-derailment type accidents. 535 

 536 
Figure 6: Distribution and statistics for excess speed. 537 

All accidents tended to occur below the speed limit for the track class on which they operated. 538 

However, derailment type accidents tended to occur closer to the speed limit than non-derailment 539 

type accidents. A student’s t-test shows that the p-value was near zero, which indicated that the 540 

mean difference of 10 mph (16 kph) was statistically significant. The highlighted boxes in the 541 

figure indicates the values of the first quartile (25%) through the third quartile (75%) of the 542 
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dataset. The solid vertical and horizontal lines indicate the mean and standard deviation, 543 

respectively. The lighter solid vertical lines indicate the median values. 544 

4.4 Principle Component Analysis 545 

Figure 7 plots the proportion of variance in the data that each PC explained. The top and bottom 546 

curves show the cumulative variance and component variance explained, respectively, as a 547 

function of each addition PC in their ranked order. This analysis indicated that the first six PCs 548 

explained just over half of the variance in the dataset. Each of the remaining 45 of 51 total PCs 549 

incrementally explain less than 4% of the variance each, but together account for the remaining 550 

half of the variance explained. 551 

 552 

 553 
Figure 7: The proportion of variance in the data that each PC explains. 554 

Figure 8 and Figure 9 are visualizations of the PC clusters that suggest structure and noise in the 555 

dataset.556 
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 557 
Figure 8: Data clusters for attributes with high power to distinguish among the target classes. 558 
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 559 
Figure 9: Data clusters for attributes with low power to distinguish among the target classes. 560 
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Figure 8 shows that PC1 and PC4 form elongated elliptical clusters for the top ranking attributes 561 

of track class (Figure 8a), movement authority (Figure 8b), and track type (Figure 8c). Figure 8d 562 

shows the distribution of the target class in the same PC feature space, where the color shading 563 

indicates a bias towards the left clusters with negative PC1 values. 564 

Figure 9 shows that PC2 and PC3 form nine distinct clusters for visibility (Figure 9a), hour 565 

(Figure 9b), and weather (Figure 9c). Figure 9d shows the distribution of the target class across 566 

each cluster. The clusters of the higher-ranking attributes (Figure 8) are less distinct than those of 567 

the lower ranking attributes (Figure 9), which is further discussed for interpretation in the next 568 

section. 569 

5 Discussion 570 

The overall good performance of the top four ML methods supported the effectiveness of the 571 

custom data cleaning procedures, including the LAP technique introduced for imputing missing 572 

values. The LAP method was most effective in filling missing values for track density, but that 573 

attribute ranked low in importance for classification. Although effective, one limitation of the 574 

LAP technique is that it provided a course imputation of the geospatial coordinates, based on an 575 

aggregation of entries from other records where a value was present for the track type near that 576 

station. However, in lieu of an alternative, the LAP imputed values to enable the operation of all 577 

ML methods. The geospatial join method provided the next best alternative to replace erroneous 578 

or low-resolution geospatial data. The distinctive southeast skew pattern revealed those records 579 

with low-resolution data entry. 580 

The top four algorithms of XGB, GB, RF, and DT were all based on the theories of decision 581 

trees. They all achieved an AUC score greater than 85%. The highest AUC score of nearly 89% 582 

for XGB was associated with a classification accuracy and balanced precision-recall scores (F1) 583 
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of nearly 83% and 88%, respectively. All methods were sensitive to hyperparameter tuning as 584 

demonstrated in the performance improvement trends of Figure 4. The hyperparameter tuning 585 

sensitivity cautions against using the default values suggested for each method. 586 

All feature ranking methods and PCA pointed to track class (TRK_CL), signalized 587 

movement authority (MOVEx = Signal), speed excess, and signalized territory (SIG) as the most 588 

important features in ML classifier performance. The interpretation of an attribute rank is its 589 

relative power to separate the distributions of the categories in the target class. That is, an 590 

exceptionally high overlap of the two class distributions ranked the attribute exceptionally low in 591 

importance towards classifier performance. It is rare that any one attribute can completely 592 

distinguish among class members with 100% accuracy, otherwise there would be no need to use 593 

additional attributes as explanatory factors for classification. Rather, a combination of attributes 594 

contributes their ability to help determine the probability of class membership. Poor 595 

classification results with all types of classification models may indicate that all attributes have a 596 

high degree of overlap in their class probability distributions. 597 

The PCA result (Figure 7) shows that the first 6 PCs explain more than half the variance in 598 

the dataset but that it takes the remaining PCs, which accounted for 88% of the PCs, to explain 599 

the remaining half of the variance in the data set. This outcome indicates that the first six PCs 600 

represented the bulk of the information in the dataset. By extension, the remaining PCs likely 601 

account for noise in the dataset based on the slow accumulation of the variance they explained. 602 

This result suggests that just under half of the variance in the dataset lack structure and, 603 

therefore, constitutes the noise in the dataset. 604 

Figure 8 further illustrates structure in the dataset by clusters formed from PC1 and PC4 for 605 

the top-ranking features of track class, movement authority, and track type. One can visualize the 606 
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amount of noise by the amount of attribute contamination of clusters and isolation from clusters. 607 

Even though the target class was spread across all clusters (Figure 8d) there was an observable 608 

bias of derailment type accidents towards clusters on the left. The bias corresponds to clusters of 609 

class 1 tracks (Figure 8a), movement authorities not on the mainline (Figure 8b), and non-main 610 

track types (Figure 8c). This result suggests that features that align with the cluster where the 611 

derailment class is biased associates more with derailment than non-derailment type accidents. 612 

Figure 9 shows that PC2 and PC3 form clusters for the attributes of visibility (Figure 9a), 613 

hour (Figure 9b), and weather (Figure 9c), which are low-ranking. The even distribution of each 614 

target class across each cluster (Figure 9d) agreed with their low importance ranking. 615 

Interestingly, the level of isolation noise was much lower for those lower-ranking attributes. The 616 

contamination noise in the center column of the cluster grid (Figure 9a) suggest similarities in 617 

the visibility at dawn and dusk, as expected. Those similarities also corresponded to the 618 

separation of “Hour 24” (Figure 9b) where day, night, and visibility transition times 619 

corresponded to the expected hour ranges. The contamination in the center row of clusters of the 620 

cluster grid (Figure 9c) suggest similarities in weather conditions like snow, sleet, rain, and fog. 621 

Hence, the clustering results were as expected. The low level of isolation noise observed for the 622 

clusters of the low-ranking features would have helped the ML performance more had the 623 

situation occurred for the clusters of the highest-ranking features. 624 

The above insights about the location of structure and noise in the dataset provided clues to 625 

understand the reason for the performance differences of each ML method. Randomized tree-626 

based methods tend to train on various cross-sections of a dataset and use voting to determine the 627 

class likelihood. In contrast, the other methods tend to leverage structure in the dataset. Hence, 628 

the randomized tree-based methods such as XGB, GB, and RF performed better by discovering 629 
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patterns across noisy neighborhoods in dataset. On the other hand, kNN seeks local 630 

neighborhoods to predict class membership based on attribute similarity. Consequently, noisy 631 

neighborhoods can hamper classification performance as evidenced by the low performance rank 632 

of kNN. Methods such as SVM and LR seek clear decision boundaries in multidimensional 633 

feature space. Hence, the lack of clear hyperplanes between the target classes hampered their 634 

performance. In fact, SVM achieved the lowest performance. 635 

One limitation of the railroad accident database is that it does not necessarily list accidents 636 

where the financial loss was below $10,500 because the FRA does not require railroads to report 637 

those. A second limitation is that the financial loss includes only the costs of repairing 638 

equipment, signal systems, and infrastructure structures. Losses do not include costs associated 639 

with cleanup, lost freight, societal damages, fatalities, injuries, and line closures. Nevertheless, 640 

financial loss was not a pre-incident explanatory variable, but any future analysis that uses it 641 

should be aware of this limitation in the dataset. 642 

6 Conclusions 643 

Railroads have been one of the most important modes of transport for more than a century. 644 

Unfortunately, accidents continue to plague their operating safety and efficiency. Derailments 645 

have consistently dominated other accident types and resulted in the greatest financial loss. 646 

Therefore, gaining insights into factors that are more strongly associated with derailments than 647 

other accident types can inform more cost-effective and impactful risk management strategies. 648 

Recent advancements in computing capacity and their cost reduction has enabled machine 649 

learning (ML) methods to uncover patterns in large multidimensional datasets that are difficult to 650 

analyze with common rule-based and statistical methods. However, there are many types of ML 651 

techniques, and no single method works best for all types of datasets. Therefore, this work 652 
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applied 11 different types of ML models to a large multidimensional dataset of railroad accidents 653 

to compare their performance in predicting derailments from other accident types. The extreme 654 

gradient boosting (XGB) classifier provided the best predictive performance with an AUC score 655 

of 89%. The model could distinguish accident type with an accuracy of 83%. Principle 656 

component analysis (PCA) revealed that high feature contamination noise and isolation noise 657 

would prevent significant further gains in classification accuracy by any algorithm. 658 

The good ML performance affirmed the relevance and sufficiency of the attributes in their 659 

contribution towards distinguishing derailments from other accident types. Hence, knowing the 660 

relative importance of those attributes towards classification accuracy can lead to insights for 661 

decision-making in railroad risk management. The importance ranking used five different 662 

methods that agreed on the ranking with correlations ranging from 84.2% to 94.5%. The 663 

ANOVA and chi-squared methods agreed with the highest correlation that the top four attributes 664 

were track class, the type of movement authority, the excess speed, and the presence of 665 

signalization in the territory. The feature distribution for each target class and the PCA agreed 666 

that relative to non-derailment type accidents, derailments were more strongly associated with 667 

lower track classes, non-signalized territories, and movement authorizations with restricted 668 

limits. Derailments also tended to occur at 10 mph (16 kph) below the speed limit of the track 669 

class whereas non-derailment type accidents tended to occur at 20 mph (32 kph) below the limit. 670 

The good ML performance also suggests that the custom data imputation techniques 671 

presented were effective in filling missing values. The data-cleaning framework also 672 

demonstrated a spatial join technique that addressed 21.8% of the geospatial data entry errors. 673 

The detailed chronicle of the cleaning procedures will help other researchers save a substantial 674 

amount of time in data preparation when using the same dataset. Future work will leverage the 675 
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framework to examine trends in accidents caused by human error to determine the effectiveness 676 

of PTC deployments relative to historic accident rates. 677 
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