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ABSTRACT 19 
The widespread availability of connected and autonomous vehicles (CAVs) will likely affect social 20 
change in terms of how people travel. Traditional methods of travel demand and land use modeling 21 
require vast amounts of data that could be expensive to obtain. Such models use complex software 22 
that requires trained professionals to configure and hours to run a single scenario. Alternative closed-23 
form models that can quickly assess trends in potential CAV impact on the regional demand for 24 
shopping, entertainment, or dining land use does not exist. This research developed a closed-form 25 
model that considers the potential mode shift towards CAVs, possible changes in the propensity to 26 
travel, shopping trip avoidance from e-commerce, and greater accessibility for non-drivers. Model 27 
parameter estimation based on statistics from the greater Toronto area found that population growth 28 
from 2017 to 2050 alone could increase the demand for shopping, entertainment, or dining land use 29 
by nearly 60%. However, CAVs could double or triple that demand—implicating dynamic planning 30 
and environmental considerations. 31 
 32 
Keywords: Environmental impact; Intelligent transportation systems; Self-Driving Cars; Travel 33 
Demand; Transportation technology; Urban sprawl  34 
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FORECASTING THE EFFECTS OF AUTONOMOUS VEHICLES ON LAND USE 1 
 2 
1 INTRODUCTION 3 
The deployment of connected and autonomous vehicles (CAVs), also known as self-driving 4 
vehicles, will fundamentally affect travel demand and, consequently, land-use. Nevertheless, there is 5 
high uncertainty about the level of potential impact (Calvert, et al., 2018). Meanwhile, retailers are 6 
blurring the lines between shopping, entertainment, and dining (SED) land use as they shift towards 7 
experiential retail (Henderson & Spencer, 2016). This trend will sustain the use of cars for longer 8 
non-stop trips to suburban SED centers or mixed-use areas (Anderson, et al., 2014). Subsequently, 9 
there is a need to understand how CAVs will affect the demand for SED space to inform planning. 10 

There are few comprehensive reviews of international modeling studies on the impacts of 11 
CAVs on travel behavior and land use. None examine the influence of CAVs on the demand for 12 
SED land use (Soteropoulos, et al., 2019). Although the rise of e-commerce could prevent some of 13 
those trips, research suggest that online shopping is associated with higher in-store shopping (Lee, et 14 
al., 2017). Hence, many retailers are adding an online alternative to their traditional physical stores 15 
(Melis, et al., 2015). 16 

The objective of this paper is to develop a closed-form model that can estimate the 17 
incremental influence that CAVs could have on the demand for SED or mixed-use space in the 18 
future. Model parameter estimation will use data available for the GTA so that the model can 19 
simulate demand sensitivity in the horizon year by sweeping factors that CAV adoption could 20 
influence. The authors selected the GTA because of familiarity with the area and knowledge of data 21 
sources that are unique to the region. The available trip survey data classified trips taken for SED 22 
purposes as discretionary trips to differentiate them from trips taken between home and work, home 23 
and school, and for non-home-based trips. The model focuses on technology adoption with the view 24 
that producers will pursue market growth, thus assuring ample supply. 25 

The development of most models to estimate CAV impacts on travel behavior and land-use 26 
involve complex and expensive software, large datasets, and trained professionals. The results are 27 
very sensitive to model assumptions (Soteropoulos, et al., 2019). The long time taken to run a single 28 
scenario makes it impractical to conduct demand sensitivity analyses for a wide range of parameter 29 
values. Furthermore, the data-driven nature of trip-based, activity-based, and agent-based models 30 
makes it difficult to gain insights about how various factors of adoption interact over time 31 
(Soteropoulos, et al., 2019). 32 

The main contribution of this paper is a closed-form model that would allow users to 33 
quickly examine a range of scenarios to see patterns over time and gain insights. The model will 34 
complement data-driven models that are more complex by providing an aggregate first-order picture 35 
of the travel demand sensitivity to variations in factors that CAVs could influence. Potential users of 36 
the model are urban planners, transport planners, the commercial real estate industry, and the retail 37 
or service industries. The results will implicate dynamic policy considerations. 38 

The organization of the rest of this paper is—Section 2 reviews the literature on CAV 39 
adoption forecasting. Section 3 describes the sub-models used to develop the final closed-form 40 
model. Section 4 describes the model parameters, the values used to estimate them, and the data 41 
sources. Section 5 evaluates the model to obtain trends and horizon year sensitivity to adoption 42 
parameters. Section 6 discusses the findings, utility of the model, and limitations of the work. 43 
Section 7 provides some concluding remarks about the findings, generalizations of the method, and 44 
comments on future work. 45 
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 1 
2 LITERATURE REVIEW 2 
The subsections of this literature review cover existing knowledge about all the main concepts used 3 
to develop the model. They include land use, the propensity to travel, attracting new transportation 4 
users, and models to forecast adoption and population growth. 5 
 6 
2.1 Land Use 7 
There have been some speculations in the literature about projected changes in land use for SED 8 
purposes in urban and suburban areas. The reduced need for CAV parking can stimulate developers 9 
to repurpose urban parking spaces (Wang, et al., 2014). SED land use in those areas will likely 10 
decline to accommodate more pedestrian-friendly and mixed-use areas (Banai & Antipova, 2016). 11 
However, large-format retailers will continue to seek cost reductions and access to more affordable 12 
employees by developing centralized spaces outside of the urban center. For instance, large-format 13 
retailers are planning to build more stores in the greater Toronto area (GTA), which is Canada’s 14 
largest metropolitan market (Webber & Hernandez, 2016).  15 
 16 
2.2 Propensity to Travel 17 
Travel demand is a non-linear and psychological function of cost and other factors (Lam & Liu, 18 
2017). Habit and satisfying behaviors are also factors (Lyons, 2006). Traveling for SED purposes is 19 
one of the most expensive and time-consuming activities in any affluent society (Maat & Konings, 20 
2018). Cost is a dominant factor in the propensity to travel for discretionary purposes (Arabani & 21 
Amani, 2007). Factors driving the reduction of vehicle operating costs include driver cost 22 
elimination, lower insurance fees, less frequent maintenance, and lower fuel costs (Bösch, et al., 23 
2018). Analysts speculate that insurance cost will diminish if the CAV accident rate decreases 24 
(Dedon, et al., 2018). Furthermore, vehicle electrification will reduce refueling costs (Kempton, 25 
2016). Essential trips tend to be price inelastic but discretionary trips are sensitive to price changes 26 
(Oum, et al., 1990). Shopping trips are both essential and non-essential. Many trips are also 27 
multipurpose (Arentze, et al., 2005). An analysis of ride-sharing data from Uber found that a 10% 28 
increase in price is associated with a 10% decrease in ridership (Cohen, et al., 2016). These 29 
evidences suggest that the propensity to travel for SED purposes would increase if CAVs decrease 30 
travel cost and increase the value of travel time. 31 
 32 
2.3 New Users 33 
There is general agreement that CAV fleets will increase accessibility for non-drivers such as the 34 
young, elderly, and disabled (Sivak & Schoettle, 2015). The convenience of on-demand door-to-door 35 
service, privacy, the freedom to use travel time as desired, smoother traffic flows, and more efficient 36 
route selection could influence a mode shift away from passenger trains and buses (Bagloee, et al., 37 
2016). Shorter travel time and competitive pricing for shared mobility services will increase the 38 
propensity to travel longer distances in cars, rather than using public transit services (Zhao & 39 
Kockelman, 2018). There is evidence that more adults are using mobility-on-demand services to 40 
provide trips for their elderly parents and young children (Tussyadiah, et al., 2017). These statistics 41 
and trends suggest that future CAV fleets can fulfill a growing demand from new users. 42 

 43 
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2.4 Adoption Forecast 1 
Predictions of CAV deployment timing varies widely. From 2014 to 2017, technology companies, 2 
vehicle manufacturers, and startup companies around the world have invested more than $80 billion 3 
to develop self-driving vehicles (Hussain, et al., 2018). A highly cited study predicts that CAVs will 4 
account for 40% of all vehicle travel by 2040 (Litman, 2017). A case study of Austin, Texas, 5 
suggests that an annual price drop of 5% and a constant willingness-to-pay (WTP) could result in a 6 
24.8% penetration of CAVs by 2045 (Bansal & Kockelman, 2017). The level of penetration would 7 
increase substantially if price drops further and WTP values increase. The high external costs of 8 
traffic accidents and urban congestion caused a plateauing of personal vehicle ownership in Canada 9 
(Shenstone-Harris, 2016). This evidence suggests that future travel in Canada will shift from private 10 
cars and transit to shared CAVs. 11 

The most popular model of technology adoption forecasting is a logistic growth model 12 
(Rogers Everett, 2003). It is an s-shaped curve that is based on the established theory of technology 13 
diffusion. Diffusion theory speculates that adoption comes in five stages. Innovators (2.5%) are the 14 
first adopters. Early adopters (13.5%), early majority (34%), late majority (34%), and then laggards 15 
(16%) follow. This work uses a classical population growth model that uses an exponential curve 16 
(Pollard, 1973). 17 
 18 
3 METHODS 19 
This section develops the closed-form model as a function of time. Figure 1 shows the model 20 
architecture.  21 
 22 

 23 
Figure 1. Model architecture and variables influenced by CAV adoption. 24 
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The logic flow shows that six key parameters account for trip production for SED purposes. The 1 
parameters not influenced by CAV adoption are population growth, the proportion of trips taken for 2 
SED purposes, and a correction factor for trips done by e-commerce instead. The parameters 3 
influenced by CAV adoption are travel propensity, car proportion, and new users. Estimation of the 4 
model parameters is based on statistics for GTA population growth, the non-driver proportion, trip 5 
rate, travel mode, and the proportion of trips that are discretionary. The change in propensity to 6 
travel based on CAV adoption directly modulates the daily average trip rate per person for trips 7 
taken by car. Hence, the model design establishes the daily average trip rate per person and the 8 
proportion of cars used for discretionary trips as variables to enable demand sensitivity analysis. 9 
 10 
3.1 Trip Production 11 
The Ontario Ministry of Finance projected that the GTA population will grow from 6.9 million in 12 
2017 to 9.7 million by 2041 (MOF, 2018). This growth is equivalent to an annual growth rate of 13 
1.43%. As introduced in the literature review, this work uses a classic compounded population 14 
growth model where 15 

���, �p� = �	�1 + �p�(
�
	)
 (1) 

The parameter αp is the annual growth rate, y is the year variable, and y0 is the base year. The same 16 
exponential model structure can capture a gradual change in average trip rate per capita as 17 
 18 

�c��, �p� = �T�1 + �p�(
�
	)
 (2) 

where a low value for the annual percentage growth, εp, produces the appearance of a linear 19 

relationship with time. The parameter λT is the trip rate of the base year in average trips per person. 20 
This model accounts for the potential elasticity in trip production per capita for discretionary trips to 21 
SED areas. A range of values for εp can simulate scenarios for trip rate changes based on changes in 22 
the propensity to travel. 23 

Equation (3) is logistic model that captures the proportional increase in mobility for new 24 
users, the non-driver population, that can use CAVs in future year y based on an adoption rate kn 25 
such that 26 
 27 

�N(�, �n) = �N0
1 + ����(
�
�) (3) 

The parameter ym is the middle year between the horizon and base years. Figure 1 illustrates the 28 
difference between the exponential and logistic growth curves. 29 
 30 
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 1 
Figure 2. Population growth and the non-driver population proportion adoption CAVs. 2 

 3 
Forecasts in the literature for a given year can provide an estimate for the adoption rate parameter. A 4 
Canadian study found that, based on disabilities alone, approximately 17% of the population is non-5 
drivers (Statistics Canada, 2019). The plot shows a scenario where less than 5% of the non-driver 6 
population becomes new users of CAVs by 2030, and by 2050, the full 17% of the population will 7 
become new users. 8 

The number of trips by CAVs is 9 

�C��, �p, �c� = �c��, �p��(�, �p)�1 + �N(�) �c (4) 

The parameter ρc is proportion of trips by cars. Trips taken by alternative modes is 10 

�a��, �p, �c� = �T�(�, �p)�1 " �c  (5) 

Alternative modes are vehicles that are not cars, such as buses, bicycles, walking, and trains. For 11 
alternative modes, this model uses the trip rate for the base year to simulate the fact that the rate 12 
remained constant from 1986 to 2011 and that it will likely remain inelastic for future discretionary 13 
trips by non-CAV modes. 14 
 15 
3.2 E-commerce Factor 16 
The rise of e-commerce will erode trips made for shopping but not necessarily all discretionary trips 17 
such as those made for dining and entertainment. The model accounts for this erosion by adjusting 18 
the trip rate as  19 

�ts��, �p, �c� = �t(�, �p, �c)�1 " �e �s (6) 

The function Tt is the total trips by cars and alternative modes, ρs is the proportion of trips made for 20 
shopping, and ρe is the proportion of those trips that e-commerce erodes. The s-curve models the 21 
increase in on-line shopping to a saturation point in the future such that 22 

�e(�, �e) = �0s + Δ�	'
1 + ���((
�
�) (7) 
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where ρ0s is the proportion of shopping trips that e-commerce erodes in the base year and ∆ρ0s is the 1 
difference in the erosion at the horizon year. The parameter ke accounts for a rate of change in 2 
shopping trip erosion from e-commerce during the peak adoption years. 3 
 4 
3.3 Propensity to Travel 5 
The literature review suggests that a shift away from vehicle ownership and towards mobility-on-6 
demand services will further reduce travel costs. Consequently, the propensity to travel for 7 
discretionary trips will increase. GTA travelers took most of their discretionary trips by car. The trip 8 
proportion, as either a driver or a passenger ranged from 74% in 1986 to 78% in 2011 (TT2012, 9 
2012). Those trips were by personal vehicles because ride sharing was still in development. The 10 
dominant factors in vehicle operating cost are purchase price, fuel, insurance, maintenance, tires, oil, 11 
and licensing fees. The base-year estimate does not include parking costs because private owners 12 
tend to park in their driveways, on the street, or in the free parking lots of shopping, dining, or 13 
entertainment facilities. The cost does not include tolls because in the GTA, the main freeway 14 
(Highway 401) is toll-free at the time of this writing. However, without knowing how future costs 15 
will influence changes in future trip rates, the strategy was to use trip rate as a variable in the model 16 
to enable demand sensitivity analysis. 17 
 18 
3.4 Land Use 19 
There are many measures of SED business viability. Among them are sales per unit area of land use, 20 
gross margin, walk-in rate, and foot traffic (Daamen, et al., 2005). The latter two are directly 21 
proportional to the number of trips taken for SED purposes. Hence, this metric must be directly 22 
proportional to the number of SED trips per unit area of land use. Therefore, this model uses the 23 
number of trips made for SED purposes per unit of the land area used for SED in the GTA as a 24 
minimum threshold to meet future demand. Subsequently, the demand for future SED land use area 25 
is 26 

)s��, �p, �c� = )r0
�t0

�ts��, �p, �c� (8) 

The parameters Ar0 and Tt0 are the land area and the number of SED trips made in the base year. The 27 
complete model for SED land use demand as a function of future year y is 28 

)s��, �p, �c� = )r0
�t0

× �	�1 + �p�(
�
	) × 

,�T�1 + �p�(
�
	) -1 + �N0
1 + ����(
�
�).�c + �T(1 " �c)/ × 

,1 " �0s " Δ�	'
1 + ���((
�
�)/ �s 

(9) 

The full model expresses the three main factors in SED land use demand, which are population 29 
growth, trip production based on the CAV effect, and an adjustment from the effect of e-commerce. 30 
The second factor expresses the CAV influence on the propensity to travel, the increase in 31 
accessibility for non-drivers, and the potential change in the proportion of discretionary trips made 32 
by cars. 33 
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This general model form supports the simulation of other trip types such as home-based-1 
work (HB-W), home-based-school (HB-S), and non-home-based (N-HB) trips by replacing λT, the 2 
average daily trip rate in the base year (trips/person) for those trip purposes, and ρc, the percentage of 3 
cars used for those purposes. Similarly, the model can account separately for the different types of 4 
discretionary trips by estimating those parameters with data for a local region. 5 
 6 
4 DATA 7 
The data needed to evaluate the model for the GTA is not available in scholarly articles. Hence, this 8 
section uses data from available Canadian sources such as government reports, the websites of 9 
research organizations, and survey results from market research firms. Table 1 summarizes the 10 
model parameters, their values, the year that the value was measured, and the data sources. 11 
 12 
Table 1. Model parameters, values, and data sources. 13 
Var Description  Value Year Data Source 

y0 Analysis base year 2017 2017 - 
yH Analysis horizon year 2050 - - 
P0 Population in base year (million) 6.9 2017 (MOF, 2018) 

αp Population annual growth rate (%) 1.43 2017 Calculated 

ρs Proportion of trips that were discretionary (%) 0.41 2011 (TT2012, 2012) 
(TT2012, 2012) 
(TT2012, 2012) 
(TT2012, 2012) 
- 

ρc Proportion of all trips by car (%) 78 2011 

λT Average daily trip rate in the base year (trips/person) 2.4 2011 

Tt0 Trips made for shopping in 2006 (billion) 2.25 2006 
εp Trip rate annual growth variable  
ρN0 Proportion of population that are non-drivers (%) 17.1 2017 (Statistics Canada, 2019) 
kn Inflection for increase in new users 0.5 - Typical s-curve 
ke Inflection for increase in e-commerce 0.5 - Typical s-curve 
ρ0s Base year e-commerce proportion (%) 9 2017 (Rigby, 2011) 

∆ρ0s Horizon year difference from the base year e-commerce (%) 11% 2011 (Rigby, 2011) 

Ar0 Land used for SED in 2006 (million square-meters) 13.462 2006 (Buliung & Hernández, 2009) 

 14 
4.1 Trip Rates 15 
The literature reviewed above suggests that CAV cost reduction will increase the propensity to travel 16 
for discretionary purposes. The convenience of door-to-door travel will provide greater accessibility 17 
for the non-driver population and increase trip production. These changes will occur gradually over 18 
time as users adopt CAVs. A summary of multiple studies estimated that CAVs would reduce the 19 
cost per kilometer from today’s private vehicles by 45% to 82% (Audenhove, et al., 2018). Based on 20 
the price elasticity of the Uber study (Cohen, et al., 2016), this cost reduction could result in an 21 
increase in future trip rates by the same proportion. Therefore, the analysis will include a range of 22 
future trip rate increases from zero to 100% to cover the potential future scenarios. 23 
 24 
4.2 Land Use 25 
A comprehensive study of land use in the GTA found that in 2006 there were 144.9 million square-26 
feet (13.5 million square-meters) of land used for SED (Buliung & Hernández, 2009). The facilities 27 
comprised of shopping centers, power centers, and strips. The land use distributed across various 28 
center types including super, regional, community, neighborhood, convenience, and freestanding. 29 
The 2011 Canadian survey “Transportation Tomorrow” reported that in 2006, there were 12,244,700 30 
daily trips of which 40% were discretionary (TT2012, 2012). This equated to an average of 31 
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approximately 133 annual trips per square-meter of SED land area in the GTA. The model 1 
development uses this metric as a minimum threshold required to sustain business vitality in the 2 
GTA. This metric is likely to be different for other metropolitan areas. 3 

For the analysis base year, the GTA population was 6.9 million (MOF, 2018). The average 4 
daily trips per person, excluding those younger than 11 years old, remained at 2.4 from 1986 to 5 
2011. Hence, the model parameter estimation uses the same rate of annual trips for the base year. 6 
Sensitivity analysis for the horizon year establishes the average daily trips per person as a variable. 7 
The proportion of trips made by car in the base year was 78%. The sensitivity analysis for the 8 
horizon year used car proportion as a variable and used a range of values below and above the base 9 
year proportion. 10 
 11 
4.3 E-commerce Adjustment 12 
According to the U.S. Census Bureau, online shopping accounted for 9.1% of sales in the analysis 13 
base year (U.S. Census Bureau, 2019). It is difficult to measure e-commerce because many online 14 
purchases result after visiting a store to evaluate an item. Conversely, digital information influences 15 
a significant portion of in-store sales. There is also a bias towards a few dominant online retailers 16 
that heavily drive e-commerce sales. Discretionary trips made for dining and entertainment may 17 
include other forms of shopping. Consequently, analysts forecast that the e-commerce proportion 18 
will plateau at 20% in the horizon year (Rigby, 2011). Model parameter estimation uses this 19 
proportion as a peak in the avoidance of shopping trips. 20 
 21 
4.4 New Users 22 
Historically, the annual population growth rate from 1974 to 2014 ranged from 1.5% to 2.6% with 23 
an average of 1.9% (Wang, et al., 2015). This growth rate correlated with a mean annual urban 24 
expansion rate of 1.6%. The Ministry of Finance forecast of 1.43% mentioned earlier reflects a slight 25 
saturation due to further urbanization and sprawl (Figure 1).  26 

According to Statistics Canada, the country had 6.25 million adults with disabilities in 2017 27 
(Statistics Canada, 2019). This amount is equivalent to 17.1% of the population and does not include 28 
other non-drivers such as people younger than 15 years, the institutionalized population, and those 29 
living in collective dwellings. Other non-drivers who are not disabled include the elderly. For a 30 
conservative estimate, the model parameter estimation uses the base year disabled population 31 
proportion as the maximum level of new users in the horizon year. 32 

 33 
5 RESULTS 34 
The next two sections evaluate the model to reveal annual trends for important variables that CAVs 35 
could influence, and the demand sensitivity to those variables in the horizon year. The variables 36 
simulated are a mode shift towards using cars for shopping, and a change in the propensity to travel 37 
because of door-to-door convenience and a reduction in the value of time. The latter will affect the 38 
average number of daily trips per person. 39 
 40 
5.1 Annual Trend 41 
Figure 2 plots the change in demand for SED land use relative to the base year for three scenarios of 42 
trip rate elasticity while keeping the proportion of cars unchanged from the base year. The model 43 
shows that the demand is non-linear over time, which the straight line (Linear Ref) makes easier to 44 
observe. With no change in trip rate (No CAV), the demand for SED land use in the horizon year 45 
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increases by 59.2% from the base year, reflecting the effect of population growth alone. If CAV use 1 
results in a 50% increase in trip rate (CAVmin), then the demand increases by a factor of 2.24, 2 
which is a 40.6% increase from the demand by population growth alone. If CAV use results in a 3 
100% increase in trip rate (CAVmax), then the incremental increase in demand is 84.7%. If CAV 4 
use results in a further change in the proportion of trips by car to 90%, then the additional increase in 5 
demand is nearly 100% (not shown on the graph). These results suggest that CAVs have the 6 
potential to double the demand for SED land use over that from population growth alone. 7 

Figure 3a includes a range of proportion of trips by car from 50% to 100% and plots the 8 
proportional change in horizon year demand relative to a forecast that maintains the base year values 9 
for those factors (Table 1). The “No CAV” scenario simulates zero elasticity in average daily trip 10 
rate from CAV adoption by maintaining the base year rate. With no elasticity in trip rate, a change in 11 
trip proportion by car from 50% to 100% of the base year value results in a reduction of 4.2% to an 12 
increase of 3.3% in demand for SED land use, respectively. If elasticity from CAVs increases trip 13 
rate by 2.2% annually to result in double the trip rate in the horizon year (CAVmax), the same range 14 
in proportion of trips by car results in a 50% increase to a doubling of demand for SED land use, 15 
respectively. If elasticity increases trip rate by 1.2% annually to result in a 50% increase in the 16 
horizon year trip rate (CAVmin), the change in demand for SED land use is midway between the 17 
two trip rate extremes. This result demonstrates that the average daily trip rate per person modulates 18 
the demand sensitivity to the proportion of trips by car. 19 

 20 

 21 
Figure 2. Relative demand as a function of time for scenarios of trip rate and proportion of trips by 22 
car. 23 
 24 
5.2 Horizon Year Sensitivity 25 
Figure 3 shows the sensitivity of demand for SED land use in the horizon year to the proportion of 26 
trips by car and the average daily trip rate per person. Figure 3b shows the demand sensitivity for 27 
SED land use with trip rate, for three scenarios of proportion of trips by car. If the proportion of cars 28 
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used for SED trips in the horizon year is half that of the base year, then demand for SED land use 1 
will range from a 5.9% reduction to a 36.5% increase from the horizon year nominal, respectively. 2 
For a 100% car use proportion, the range goes from a 3.3% increase to a doubling in demand for 3 
SED land use. This result demonstrates that the proportion of trips by car modulates the demand 4 
sensitivity to the average daily trip rate per person. 5 
 6 
 7 

 8 
Figure 3. a) Demand sensitivity as a function of the proportion of trips by car for three scenarios of 9 
trip rate, and b) demand sensitivity as a function of trip rate for three scenarios of proportion of trips 10 
by car. 11 
 12 
6 DISCUSSION 13 
The model provides a first-order macroscopic view of the possible extent that CAVs might affect the 14 
overall demand for SED land use in a region. More complex geospatial models are necessary to 15 
characterize local and microscopic effects. For example, some areas may have more land available 16 
and higher capacity roadways to accommodate the projected increase in SED land use. Land price 17 
may increase in regions that have less available land and less roadway capacity, which could 18 
stimulate urban sprawl or the development of SED areas away from the central business district. The 19 
closed-form model complements data-driven models that are more complex by enabling rapid 20 
sensitivity analysis for a larger range of scenario variations. Sensitivity analysis reveals important 21 
trends and provides insights on the importance level of various factors in adoption. The interactions 22 
of different forecasting models in the closed-form expression provide additional insights that a more 23 
complex data-driven model might not. 24 

The model is based on the theory that a certain number of trips per unit of SED land use is 25 
necessary to sustain the viability of those businesses. The model uses the metric available for 2006 26 
and assumes that it remains unchanged for the GTA, which is one of the largest metropolitan areas in 27 
North America. However, the high land value, on-going rapid transformations of the city, and 28 
political pressures against urban sprawl may change the metric for SED business viability in the 29 
region. For example, the metric could change if large-scale businesses overpower small businesses 30 
by centralizing in super-centers at the metropolitan fringes to reduce cost and increase the efficiency 31 
of their supply chains. Consequently, a change in the metric could affect the sensitivity of demand to 32 
variables that CAVs influence. 33 
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Differences in the level of CAV adoption over time and other factors such as a fear of riding 1 
in a vehicle driven by artificial intelligence could affect the propensity to travel. Factors other than 2 
cost, convenience, and the value of time may affect the propensity to travel for discretionary trips. 3 
Such factors could include social interaction, multi-purpose trips, the level of congestion, and 4 
weather conditions. Given the uncertainties of how CAVs will affect travel behavior, an effective 5 
strategy is to evaluate demand sensitivity to variables that CAVs can affect for a range of possible 6 
values to identify trends. Such an evaluation would take much longer to accomplish with a data-7 
driven model. 8 

Changes in accessibility for the non-driver population depend on the level of CAV adoption. 9 
The model simulates this interaction by using a theory of technology diffusion that simulates initial 10 
use by first adopters, then ramping adoption to include early adopters, early majority, late majority, 11 
and eventually a plateauing towards full adoption in the horizon year when laggards follow. The 12 
proportion of people considered non-driver will vary across regions, and the proportion of that 13 
population using CAVs will vary. A survey of the region could reveal those proportions to estimate  14 
model parameters. 15 

Shopping trip erosion depends on the saturation year for e-commerce, the interaction effects 16 
from future automated vehicle and drone delivery services, and the reality of how store visits drive 17 
online purchases and vice versa. Hence, the model uses predictions in the literature to estimate the 18 
level of e-commerce saturation in the horizon year. The estimation is a proportion of all 19 
discretionary trips. As discussed in the model development, it is possible to separately model land 20 
use demand for retail, entertainment, and dining trips to more accurately account for the e-commerce 21 
effect. Nevertheless, the results show that the on-line shopping effect is not sufficiently dominant to 22 
temper the demand for SED land use, which has been trending towards mixed-use spaces (Raman & 23 
Roy, 2019). 24 

Without accounting for other CAV deployment effects, it may seem unrealistic that cities 25 
could accommodate the increase in traffic that results from a tripling of the demand for SED land 26 
use over the demand from population growth alone. However, the practicality becomes clear when 27 
considering that studies expect CAVs to increase both traffic throughput and transport efficiency 28 
(Raymond, et al., 2014). For instance, a shift from private car ownership toward the use of shared 29 
CAVs will result in fewer vehicles moving more people. The effective capacity of existing roadways 30 
will increase because CAVs will have the ability to follow more closely, smooth out traffic flows, 31 
coordinate traffic flows through intersections, and minimize incidents that can cause non-recurring 32 
congestion. CAVs will also accommodate geometric modifications to add lanes. Specifically, cities 33 
can repurpose street parking where demand lessens and narrow lanes, medians, and shoulders where 34 
only CAVs travel. All scenarios are predicated on the theory that suppliers of the technology will 35 
continuously pursue market opportunities that balance supply and demand through the adoption 36 
period. 37 
 38 
7 CONCLUSIONS 39 
Population growth alone will drive demand for more shopping, entertainment, or dining (SED) land 40 
use. However, the literature lacks studies about how CAV adoption might influence that demand. 41 
Uncertainties about the timing of CAV deployments and their levels of adoption result in 42 
speculations based on various assumptions. Traditional methods to model travel demand require vast 43 
amounts of data that could be expensive to obtain. Such methods use expensive software and require 44 
trained professionals to configure and calibrate them. Using such models to explore a single future 45 
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scenario can take hours. Alternative closed-form models to quickly assess the potential aggregate 1 
effect that CAVs may have on the regional demand for SED land use does not exist. 2 

This work contributes a closed-form model that enables demand forecast and sensitivity 3 
analysis for a range of factors that CAV adoption could affect. The sensitivity analysis focused on 4 
two important factors, namely the average daily trip rate per person and the proportion of trips taken 5 
by car. A change in the average daily trip rate stems from the notion that CAVs will increase the 6 
propensity to travel because of future cost reduction, on-demand door-to-door convenience, 7 
reduction in the value of time, and more reliable travel time from smoother traffic flows and fewer 8 
incidents. For the same reasons, CAV adoption will also influence a mode shift toward cars. 9 
Regional data for the population size, SED land use, proportion of non-drivers, proportion of trips 10 
taken by car, average trip rate per person, and the proportion of shopping done by e-commerce 11 
estimates model parameters for the base year. Forecasts for population growth and SED trip 12 
avoidance from e-commerce appropriately adjust the trip demand over time. The model accounts for 13 
additional trips taken by the non-driver population based on an estimate for the technology diffusion 14 
rate. 15 

The authors selected the Greater Toronto Area (GTA) for modeling because of familiarity 16 
with the area and knowledge of data sources that are unique to the region. The results revealed that 17 
population growth alone could increase the demand for SED land use by nearly 60% from the base 18 
year of 2017 to the horizon year of 2050. For a scenario where CAVs influence a 100% increase in 19 
the average trip rate per person from 2.7 to 5.4 and increases the use of cars from 78% to 90%, the 20 
demand for SED land use could triple by the horizon year. For a scenario where CAV use results in a 21 
more modest increase in the average trip rate per person by 50%, without a change in the proportion 22 
of cars used for shopping, the demand more than doubles from the base year. Sensitivity analysis for 23 
the horizon year shows that the potential change in demand for SED land use is a strong function of 24 
the influence CAVs could have on both the propensity to travel for discretionary purposes and a 25 
mode shift towards cars. 26 

In future research, the authors will apply traditional travel demand modeling techniques and 27 
use a similar range of scenarios to compare results with the closed-form model. 28 
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