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ABSTRACT

Cryptographic hash functions are one of the widely used cryptographic primitives with a

purpose to ensure the integrity of the system or data. Hash functions are also utilized in conjunc-

tion with digital signatures to provide authentication and non-repudiation services. Secure Hash

Algorithms are developed over time by the National Institute of Standards and Technology (NIST)

for security, optimal performance, and robustness. The most known hash standards are SHA-1,

SHA-2, and SHA-3.

The secure hash algorithms are considered weak if security requirements have been broken.

The main security attacks that threaten the secure hash standards are collision and length extension

attacks. The collision attack works by finding two different messages that lead to the same hash.

The length extension attack extends the message payload to produce an eligible hash digest. Both

attacks already broke some hash standards that follow the Merkle-Damg̊ard construction.

This dissertation proposes methodologies to improve and strengthen weak hash standards

against collision and length extension attacks. We propose collision-detection approaches that help

to detect the collision attack before it takes place. Besides, a proper replacement, which is supported

by a proper construction, is proposed. The collision detection methodology helps to protect weak

primitives from any possible collision attack using two approaches. The first approach employs a

near-collision detection mechanism that was proposed by Marc Stevens. The second approach is

our proposal. Moreover, this dissertation proposes a model that protects the secure hash functions

from collision and length extension attacks. The model employs the sponge structure to construct

a hash function. The resulting function is strong against collision and length extension attacks.

Furthermore, to keep the general structure of the Merkle-Damg̊ard functions, we propose a model

that replaces the SHA-1 and SHA-2 hash standards using the Merkle-Damg̊ard construction. This

model employs the compression function of the SHA-1, the function manipulators of the SHA-2, and

the 10 ∗ 1 padding method. In the case of big data over the cloud, this dissertation presents several

schemes to ensure data security and authenticity. The schemes include secure storage, anonymous

privacy-preserving, and auditing of the big data over the cloud.
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1. INTRODUCTION

1.1. Overview

Authenticity and confidentiality are big concerns for a long time. One of the first used

methods for confidentiality sending a message as a tattoo on the shaved head of a trusted slave.

Then, when the hair grows, the slave is sent with the instruction to shave the head to read the

message. This example shows the historical use of security paradigms.

In cryptography, there is a type of one-way function that is important. A one-way function

maps a large message (from different domains) into a finite range of output. The term one-way

means that the function is easy to compute but difficult to invert, i.e., for a given output it is

difficult to find an input that maps to the given output. This property depends on the security

framework of a given function and its hardness against inversion. However, an adversary with

unlimited computing power can test every possible input that may map to the given output.

All proposed one-way functions were established based on well-defined assumptions. For

cryptography, the class of one-way function is considered as an important class, which is represented

by hash functions. Hash functions operate on bit strings, where they map arbitrary length bit

strings to a fixed length. This fixed-length bit string is called the hash.

In the last decades of the 20th century, we witnessed Message Digest 4 (MD4) developed

by Ronald Rivest, for the provision of integrity [1]. The MD4 provided the basis for MD5, which

is a strengthened version of MD4 [2]. Both the MD4 and the MD5 worked to compute 128 bits

digest. However, weakness in aforesaid algorithms resulted in the development of the Secure Hash

Algorithm (SHA-0) by the National Institute of Standards and Technology (NIST) in 1993. The

SHA-0 was followed by SHA-1 in 1995 with the hash size of 160 bits. The SHA-1 replaced MD5

that was exposed to collision attacks by then [3]. As with all of the security protocols, the SHA-1

was also under constant scrutiny by the security experts. Wang et al. [4] claimed that collisions in

SHA-1 can be found with complexity less than 280 compression function calculations. Recently the

claim of Wang et al. was validated by Marc et al. [5] by finding hash collisions for different files.

Hash functions have a variety of applications including, data integrity, verification, and

authorization. Fig 1.1 shows the process of verifying a message (M), that is sent over an insecure
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medium. The message hash is computed by a hash function in the source side and appended to the

end of the message. At the destination side, the message hash is computed and compared with the

appended hash value. If both hashes are equal, then the received message at the destination side

is unaltered. The hash functions also assist in the digital signature that is part of authorization

and validation. Moreover, hash functions are also used for the generation of random numbers and

password protection [6].

M

SHA

Insecure Medium

Hash

Source Destination

SHA M HM H

M HM H

?

Figure 1.1. Application of secure hash algorithm comparing the hash value of the message sent
over insecure channel

1.2. Cryptographic Hash Functions

1.2.1. Cryptographic Requirements of Hash Functions

One of the major applications of the hash functions is the construction of an efficient digital

signature. The signature is computed by applying a set of compression operations to produce a

fixed-length hash. Breaking the signature requires finding a message M ' that has the same hash

as a different message M . Therefore, if either M or M ' is signed, the corresponding signature is

valid to the other message, resulting in a successful forgery.

For cryptography, a set of properties are taken into consideration at the time of design.

These properties comprise Pre-image, Sec-Pre-image, Collision, MAC, and PRF. For more details

about these properties, we refer to [7, 8, 9].
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1. Pre-image: Which is based on the problem of finding a pre-image M for a given hash h. Pre,

which stands for pre-image resistance, requires that given a randomly chosen hash function

f and a uniformly randomly chosen hash h it is hard to find a pre-image M ∈ f−1(h), as

shown in Figure 1.2.

m

h(m)given

find

Figure 1.2. Pre-image

2. Sec-Pre-image: Which is based on the problem of finding another message M ' that has the

same hash h as a given message M . Sec-Pre-image requires that the function f and message

M to be uniformly and randomly chosen, as shown in Figure 1.3.

m1given m2

h(m1) h(m2)=

find

Figure 1.3. Second Pre-image

3. Collision: Which is the property that finding two messages M and M ' that have the same

hash h for the same chosen f . The hash function f must be strong enough to resist any

possibility of a collision. Unfortunately, this property was the first to be broken, as shown in

Figure 1.4.

4. MAC: Which stands for Message Authentication Code, is the property that canvasses the

hash function f as a keyed hash function (fk) where k is a randomly chosen secret key that is

associated with f . The MAC property requires that the dilemma of finding a message M and

the hash h with the presence of secret key k, is difficult to achieve, as shown in Figure 1.5.
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m1find m2and

h(m)such that

Figure 1.4. Collision

5. PRF: Which stands for Pseudo-Random Function, is the property that the problem of deter-

mining the actual function fk for a randomly chosen k with a randomly chosen hash h must

be difficult, as shown in Figure 1.5.

X1 X2 Xn

Ek Ek Ek

f f f

Y

Figure 1.5. Message Authentication Code (MAC) and Pseudo Random Function (PRF).

In the case of fixed-length hash functions, only three properties are considered: pre-image

resistance, 2nd-pre-image resistance, and collision resistance. The other two properties, MAC and

PRF, are considered when the Hashed Message Authentication Code (HMAC) is present, where

the hash function is employed with the secret key.

1.2.2. Attacks on Hash Functions

There exists a general attack that breaks a security requirement of the secure hash functions.

A hash function is considered as broken when there is an explicit attack that is faster than the

general attack for one of the security requirements of a hash function. With the increase of the

computational power, all secure hash functions are vulnerable to the general attack due to the small

bit length that is generated by the hash functions.
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1.2.2.1. Brute Force Attack

The most known general attack to break the security requirements (Pre and 2nd-Pre) is a

brute force attack. The brute force attack is applied to Pre and 2nd-Pre by computing f(M ') for a

randomly chosen message M ' until M ' is found and M ' 6= M . In this case, this attack is considered

as infeasible in reality because it requires massive hash computations (≈ 2100 hash computations).

1.2.2.2. Birthday Paradox

For collision, a general attack based on the birthday paradox is better than the brute

force attack. The birthday paradox is based on a counter-intuitive basis, where for groups of

as less as 23 people there exists a chance of one half to find two people that were born on the

same day [10]. Assuming that all birthdays are equally likely and neglecting leap years, for 23

independent possibilities the success probability is 23
365 ≈ 0.06, where there are 23×22

2 = 263 pairs

of people. Then the overall success probability is 0.5 ( noting that the pairs are not independently

distributed, therefore 0.5 doesn’t equal 253
365 ≈ 0.7). For a hash function of hash size N , the birthday

paradox attack succeeds after
√
π/2 × 2N/2 computations of the hash function [11]. For instance,

for a hash size of N = 128 bits, which is the hash size of the MD5 hash function, a collision can be

found with approximately 264 ≈ 22 × 1018 computations, which is in reach of a high-performance

computer.

1.2.2.3. Differential Attack

The most successful attack on the Merkle-Damg̊ard hash functions is the differential attack.

The other two properties, MAC and PRF, are considered when the Hashed Message Authentication

Code (HMAC) is present, where the hash function is employed with the secret key. The differential

attack works by looking at two different evaluations of a hash function. These evaluations are

examined at the same time by computing the difference between them and analyzes the relationship

between the difference and the next evaluations’ differences. This attack is used to generate a

successful collision attack. The differential attack was first used against Data Encryption Standard

(DES) [12, 13] based on the XOR difference. Then it was generalized to be used with the modular

difference to break many hash standards. Wang et al. were able to break several hash standards

(MD4, MD5, SHA-0, HAVAL-128, and RIPEMD) using the modular differential attack [3, 14, 4].

Because of the collision attack against Merkle-Damg̊ard hash functions, the National Institute of
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Standards and Technology (NIST) held a competition to find a new hash function SHA-3 that

will be used in the future. This competition concluded by announcing Keccak as the new SHA-3

standard [15].

1.2.2.4. Same-Prefix Collision Attack

The collision attack targets the Merkle-Damg̊ard hash functions. Particularly, the hash

standards before the SHA-2. Due to the iterative nature of the Merkle-Damg̊ard construction

and the fixed size output hash, the collision attack can be structured according to predefined

inputs. Figure 1.6 shows the structure of the same-prefix collision attack. Two different mes-

sages (Message1, Message2) have the same prefix (P ), suffix (S) and initialized with the same

Initial Hash Value (IHV). Then a pair of two different blocks (C, C∗) can be computed such that

SHA(P‖C‖S) = SHA(P‖C∗‖S), where IHVn is the Intermediate Hash Value after processing the

messages.

P P

C C*

SS

IHVi

IHVi+k

=

=

IHVn = SHA(P||C||S) = SHA(P||C*||S)

≠ 

Message 1 Message 2

Figure 1.6. Same prefix collision attack
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1.2.2.5. Chosen-Prefix Collision Attack

Stevens et al. improved the same-prefix collision attack into a chosen-prefix by formulating

two different prefixes with two different messages. However, this approach requires more internal

blocks to produce successful collision [16].

P P*

NC NC*

SS

IHVi*

IHVi+k

=

≠ 

IHVn = SHA(P||A||B||S) = SHA(P*||A*||B*||S)

≠ 

Message 1 Message 2

A

B

A*

B*

IHVi ≠ 

Figure 1.7. Chosen-Prefix collision attack

Figure 1.7 shows the structure of the Chosen-Prefix collision attack. This attack succeeds

because of the iterative nature of the Merkle-Damg̊ard construction. Two different messages (Mes-

sage1, Message2) started with two different prefixes (P , P ∗). These prefixes may contain different

length strings, then both messages are padded using blocks A and A∗ to make them equal in size.

According to predefined conditions, a birthday search is applied to find two blocks B and B∗ such

that P‖A‖B and P ∗‖A∗‖B∗ have the same size and produce two different intermediate hash values

(IHVi and IHV ∗i ) that have predefined structures. Finding the proper predefined structures leads

7



to generate two near-collision blocks (NC and NC∗) that produce the same IHVi+k. This attack

requires that both messages have the same suffix (S). Finally, the successful chosen-prefix collision

attack maintains SHA(P‖A‖B‖S) = SHA(P ∗‖A∗‖B∗‖S).

1.2.3. Constructions of Hash Functions

1.2.3.1. The Merkle-Damg̊ard Construction

The need for a structured model for use in the digital signature formulation was needed.

The Merkle-Damg̊ard construction (which takes the name of two authors of two different works [17,

18], in 1989) describes constructing a hash primitive based on a compression function F . Figure 1.8

shows the general structure of the Merkle-Damg̊ard construction, where a message (M) is divided

into blocks and processed sequentially using a compression function (F ). This structure requires

initial values (IV) that are used to process the first block. Then, the output of each block is used to

process the next block. The final output is produced after processing the last block of the message.

IV F F F Output

Message (M)

M1 M2 Mn

Figure 1.8. The general structure of the Merkle-Damg̊ard construction

Based on the idea that was presented by Merkle and Damg̊ard [19], Rivest, in 1990, was

the first to present the MD4 hash function based on the Merkle-Damg̊ard construction [1, 20]. Due

to security issues, MD4 was repudiated by MD5 in 1992 [2]. MD4 and MD5 formed the base for

the following hash functions that come after, which have the same Merkle-Damg̊ard construction.

We list examples of these functions as follows:

• SHA-0: Which was designed by the National Security Agency (NSA), in 1993 [21].
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• SHA-1: Which was placed as a replacement to the SHA-0 after undisclosed security concerns,

in 1995 [22].

• SHA-2: Which was designed starting from 2002 with four different flavors SHA-224, SHA-

256, SHA-384, and SHA-512 [23, 24, 25].

• RIPEMD: Which stands for RACE Integrity Primitives Evaluation Message Digest, which

was published in 1995 [26].

• RIPEMD-160: RIPEMD-160 is a strengthened version of RIPEMD with a 160-bit hash

result. Which was published in 1996 [27].

Each of Merkle-Damg̊ard hash functions has a distinct compression function that runs

repeatedly for several steps. Besides, each standard has a distinct number of working state variables

that differ from the other. For instance, the SHA-1 hash function uses five working state variables

which seen as 32-bit strings. The SHA-1 compression function processes each block through 80

steps, where the working state variables are updated after every step. After processing all blocks

of a message, the final hash is formulated by the concatenation of the working state variables.

1.2.3.2. The Sponge Construction

The SHA-3 was published in 2012, after a competition that was held by the NIST. The

competition was divided into three rounds, the first round includes 51 candidates, the second round

includes 14 candidates, and the final round includes five candidates (Keccak, Grøstl, BLAKE,

JH, and Skien). Keccak won the competition as the next standard for the SHA-3 [25]. Unlike

the previous standards (SHA-1 and SHA-2), the SHA-3 relies mainly on absorbing and squeeze

structure [28, 29], where the data are absorbed in and squeezed out to generate the hash output. The

Sponge construction comprises two phases, absorb and squeeze. After a message is preprocessed,

it is divided into equal size of blocks (pi). The values bit-rate (r) and capacity (c) reflect the

permutation level that the function f will perform. Given an input length N and an output length

d, the output Z = sponge[f, r](N, d) is generated with d bit length. The permutation function f is

applied to the output Z until the required number of bits for the d output is produced, as shown

in Figure 1.9.
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Fig. 1. Sponge Construction [4]

are xored with the first r bits of the state, interleaved with applications of
the function f (called Keccak-f in the specification). The absorbing phase is
finished when all message blocks have been processed. In the second phase (also
called the squeezing phase), the first r bits of the state are returned as part of
the output bits, interleaved with applications of the function f . The squeezing
phase is finished after the desired length of output digest has been produced.

The default values for Keccak are r = 1024, c = 576, which gives 1600-
bit state. Keccak can also operate on smaller states but through the whole
paper we always refer to the default variant with 1600-bit state. The state can
be visualised as an array of 5×5 lanes, each lane is 64-bit long. The state size
determines the number of rounds in Keccak-f function. For the default 1600-
bit state there are 24 rounds. All rounds are the same except for constants which
are different for each round.

Below there is a pseudo-code of the single round. In the latter part of the
paper, we often refer to the algorithm steps (denoted by Greek letters) described
in the following pseudo-code.

Round(A,RC) {

θ step

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor A[x,4], forall x in (0...4)

D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)

A[x,y] = A[x,y] xor D[x], forall (x,y) in (0...4,0...4)

ρ and π steps forall (x,y) in (0...4,0...4)

Figure 1.9. Sponge construction

1.2.3.3. HAIFA Construction

The HAsh Iterative FrAmework (HAIFA) construction was developed in 2006 by Biham

et al.[30]. The construction of HAIFA is depicted in Figure 1.10. An optional Salt is added to

the iterative computations of the classical Merkle-Damg̊ard construction. Moreover, HIAFA keeps

track of the number of hashed bits after each block computation. Researchers proved the strength of

HAIFA construction against 2nd-preimage and collision attacks if the compression function performs

optimally, as shown in [31].

f HIV

Message Padding

f f f f f f

Salt

#bits 
hashed
So far

#bits 
hashed
So far

#bits 
hashed
So far

#bits 
hashed
So far

#bits 
hashed
So far

#bits 
hashed
So far

#bits 
hashed
So far

Figure 1.10. HAIFA construction
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1.2.3.4. Wide-Pipe Construction

The Wide-Pipe construction behaves as the HAIFA construction without the Salt variables.

The Wide-Pipe construction maintains two levels of compression function computations, as shown in

Figure 1.11. The message compression function (f1) that processes the message blocks. The second

level performs the output compression function (f2) to produce the output hash. The resulting hash

(H) is produced after the transformation of f1 compression function using f2 compression function.

f1 f1 f1 f1 f1 f1 f2 HIV

Message Padding

Message compression function Output compression 
function

Figure 1.11. Wide-Pipe construction

1.2.3.5. Parallel-Tree Construction

The Parallel-Tree construction works by processing message blocks in parallel and performs

a reduction algorithm to the generated output, as shown in Figure 1.12. A message with a long

length takes time to be processed using the iterative structure. In this model, the message is

processed in parallel with reduced time compared to other structures. However, vulnerabilities of

this model have not been studied, which makes this model away from attentions [32].

1.3. Motivation

Secure Hash Algorithms are the most popular cryptography primitives. All hash functions

are used to ensure data integrity and authenticity. However, particular attacks on the hash functions

make them weak and vulnerable. The most popular attack on the hash functions is the collision

attack. This attack broke Merkle-Damg̊ard structure hash functions including MD4, MD5, and

SHA-1. Part of these functions was dropped from being used anymore, but the MD5 and SHA-1
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Message Padding

f f f f f f

Parallel Tree

H

Figure 1.12. Parallel-Tree construction

are still used by entities and applications. This is because migrating from hash standard to another

requires time and money. The length extension attack represents a serious threat to the hash

functions. It is targeted to the Merkle-Damg̊ard structure standards including the MD5, SHA-1,

and SHA-2.

One of the hash functions’ duties is to generate a secure digital signature for data. The

security of the hash functions reflects the security of the data, particularly, the sensitive data.

For instance, an electronic bank check that uses the digital signature can be forged using the

collision attack. The forgery includes changing the withdrawal value and the name of the recipient

while keeping the same signature. Moreover, the length extension attack can intercept a money

transaction between two parties and generate a valid signature. These attacks also target big data

applications over the cloud.

In the case of attacks on big data, an attacker tries to tamper the big data contents using

the collision attack. On the cloud, data are not only stored on multiple locations, but also shared

across multiple users. The integrity of data on the cloud is subject to doubt due to cloud failures.

Therefore, many techniques are available to verify the existence of data on the cloud without

retrieving the entire file. However, the data auditing techniques reveal confidential information to

the designated verifier, which breaches the identity of the data uploaders.

This dissertation proposes methodologies to improve and strengthen weak hash standards

from collision and length extension attacks. We propose a collision detection approaches that help

to detect the collision attack before it takes place. Moreover, in case of a successful attack, our

approach can determine a document is constructed with a collision attack or not. Proper replace-
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ments are proposed with different constructions and designs. The collision detection methodology

helps to protect weak primitives from any possible collision attack using two approaches. The first

approach employs a near-collision detection mechanism that was proposed by Marc Stevens. The

second approach is the proposed work that employs two blocks calculation scheme. Moreover, this

dissertation proposes a model that protects the secure hash functions from collision and length

attack. The model employs the sponge structure to construct a hash. The resulting function is

strong against the attacks and replaces the weak hash standards. Furthermore, to keep the gen-

eral structure of the Merkle-Damg̊ard functions, we propose a model that replaces the SHA-1 and

SHA-2 hash standards using the Merkle-Damg̊ard structure.

1.4. Contributions

In this thesis, we were able to show several contributions. First, we present a methodology

to detect the collision attack. Then we present the proposed improvements that we applied to the

hash function to circumvents collision and length extension attacks. Next, we show the application

of used secure hash algorithms in the big data over the cloud.

1.4.1. Collision Detection of the SHA-1 Hash Function

We present two approaches to detect the collision attack before it takes place. We introduce

a collision detection methodology and an improved version of the Secure Hash Algorithm (SHA-

1). The proposed work helps to protect weak primitives from any possible collision attack. Two

designs are implemented to help protect and improve the SHA-1 standard. The first design employs

a near-collision detection approach that was proposed by Marc Stevens. The second design is the

proposed work that employs the two-block calculation scheme. Both designs are tested and verified

for examples of collided messages. The designs can detect collision probability and produce different

hashes for weak messages.

1.4.2. Improving the Merkle-Damg̊ard Hash Functions to Overcome Security Issues

We present a Sponge structure modulation of the MD5 and SHA-1 hash functions. The

work employs the Keccak permutation functions to build the proposed scheme. The work discusses

the main two security breaches that threaten the cryptography hash standards, which are collision

and length extension attacks. Through analyzing several examples of collided messages of both

algorithms (SHA-1 and MD5), we describe the potentials to overcome the collision and length

extension attacks. Moreover, a proper replacement technique to avoid such attacks is discussed.
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Moreover, we introduce an improved version of the secure hash algorithms, SHA-1 and SHA-

2. The proposed work produces a strengthened secure hash function using the fusion between SHA-1

and SHA-2 hash standards. This design helps to protect the SHA-1 and SHA-2 against collision

and length extension attacks. The fusion process is incorporated in the round steps of the hash

functions using the function manipulators of the SHA-1 and SHA-2 algorithms. The proposed design

is verified by the official test vectors that were confirmed by the National Institute of Standard and

Technology. Moreover, the avalanche effect, hamming distance, and bit-hit properties were studied

using different samples that were generated randomly. The proposed design gives over 52 percent

of the avalanche effect and over 84 hamming distance. The proposed design was tested against

collision attack and produced unique hash values for real collided examples and shows resistance

against length extension attack.

1.4.3. Randomness Analyses of the Secure Hash Algorithms

We present a security analysis scheme for the most famous secure hash algorithms SHA-1

and SHA-2. Both algorithms follow Merkle-Damg̊ard structure to compute the corresponding hash

function. The randomness of the output hash reflects the strength and security of the generated

hash. Therefore, the randomness of the internal rounds of the SHA-1 and SHA-2 hash functions is

analyzed using Bayesian and odd ratio tests. Moreover, a proper replacement for both algorithms

is proposed, which produces a hash output with more randomness level. The experiments were

conducted using a high-performance computing testbed and CUDA parallel computing platform.

1.4.4. Big Data Applications Using Secure Hash Algorithms

On the cloud, data are not only stored on multiple locations, but also shared across multiple

users. The integrity of data on the cloud is subject to doubt due to cloud failures. Therefore, many

techniques are available to verify the existence of data on the cloud without retrieving the entire file.

However, the data auditing techniques reveal confidential information to the designated verifier,

which breaches the identity of the data uploaders. We introduce a privacy-preserving scheme

for multiple data uploaders over the cloud. In the proposed design, the identities of the data

block signers are hidden from a Third Party Auditor (TPA). A Secure Hash Algorithm (SHA) is

also employed to provide an integral auditing report between the data owner(s) and the TPA. The

proposed design is tested and verified mathematically and experimentally using a set of synthesized

data.
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The computational cost of data encryption and decryption grows with the increase of data

on the cloud. The enhancements on the data processing techniques may affect data privacy. We

introduce an anonymous privacy-preserving scheme for Big Data over the cloud. The proposed

design helps to enhance the encryption/decryption time of Big Data by utilizing the MapReduce

framework. The Hadoop distributed file system and the secure hash algorithm is employed to

provide the anonymity, security and efficiency requirements for the proposed scheme. The experi-

mental results show a significant enhancement in the computational time of data encryption and

decryption.

We introduce a secured and distributed Big Data storage scheme with multiple authoriza-

tions. It divides the Big Data into small chunks and distributes them through multiple Cloud

locations. The Shamir’s Secret Sharing and Secure Hash Algorithm are employed to provide the

security and authenticity of this work. The proposed methodology consists of two phases: the

distribution and retrieving phases. The distribution phase comprises three operations of dividing,

encrypting, and distribution. The retrieving phase performs collecting and verifying operations.

To increase the security level, the encryption key is divided into secret shares using Shamir’s Algo-

rithm. Moreover, the Secure Hash Algorithm is used to verify the Big Data after retrieving from

the Cloud. The experimental results show that the proposed design can reconstruct a distributed

Big Data with good speed while conserving the security and authenticity properties.

1.5. Thesis Outline

The remainder of the thesis consists of the following chapters: Chapter 2 presents the main

three secure hash algorithms and the corresponding Field Programmable Gate Arrays (FPGA)

design. In particular, it provides background information about the SHA-1, SHA-2, and SHA-3

and their constructions. Moreover, the FPGA design comparison, between the three standards, is

conducted.

In Chapter 3, we introduce the collision detection method based on two approaches. This

chapter shows the ability to detect the collision attack before it takes place by applying Marc

Stevens approach and our approach. Both approaches were able to detect the collision attack, but

our design got the upper hand in terms of speed.
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Chapter 4 presents a modification to the MD5 and SHA-1 hash standards. In this chapter,

we show the implementation of both functions using Sponge Construction. The results show that

the modification is helpful against the collision attack.

Chapter 5 presents a modified version of the SHA-1 and SHA-2 hash functions to circumvent

collision and length extension attacks. In this chapter, we show the fusion between both algorithms

can strengthen them. Moreover, we used a different padding method to prepare a message before

compression.

Chapter 6 introduces a security analysis scheme for the most famous secure hash algorithms

SHA-1 and SHA-2. Both algorithms follow Merkle-Damg̊ard structure to compute the correspond-

ing hash function. The randomness of the output hash reflects the strength and security of the

generated hash. Therefore, the randomness of the internal rounds of the SHA-1 and SHA-2 hash

functions is analyzed using Bayesian and odd ratio tests. Moreover, a proper replacement for both

algorithms is proposed, which produces a hash output with more randomness level. The experi-

ments were conducted using a high-performance computing testbed and CUDA parallel computing

platform.

Chapter 7 introduces a secured and distributed Big Data storage scheme with multiple

authorizations. It divides the Big Data into small chunks and distributes them through multiple

Cloud locations. Shamir’s Secret Sharing and Secure Hash Algorithm are employed to provide

security and authenticity. The proposed methodology consists of two phases: the distribution and

retrieving phases. The distribution phase comprises three operations of dividing, encrypting, and

distribution. The retrieving phase performs collecting and verifying operations.

Chapter 8 introduces an anonymous privacy-preserving scheme for Big Data over the cloud.

The proposed design helps to enhance the encryption/decryption time of Big Data by utilizing the

MapReduce framework. The Hadoop distributed file system and the secure hash algorithm is em-

ployed to provide the anonymity, security and efficiency requirements for the proposed scheme. The

experimental results show a significant enhancement in the computational time of data encryption

and decryption.

Chapter 9 introduces a privacy-preserving scheme for multiple data uploaders over the

cloud. In the proposed design, the identities of the data block signers are hidden from a Third

Party Auditor (TPA). A Secure Hash Algorithm (SHA) is also employed to provide an integral
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auditing report between the data owner(s) and the TPA. The proposed design is tested and verified

mathematically and experimentally using a set of synthesized data.

Chapter 10 concludes the dissertation and provides future guidelines for possible research

in this area of study.
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2. BACKGROUND

2.1. Overview

In cryptography, integrity is provided with the hash functions. The hash functions compress

the message to assist the process of the digital signatures. In the last decades of the 20th century,

we witnessed Message Digest 4 (MD4) developed by Ronald Rivest, for the provision of integrity

[1]. The MD4 provided the basis for MD5, that is a strengthened version of MD4 [2]. Both the

MD4 and the MD5 worked to compute 128 bits digest. However, weakness in aforesaid algorithms

resulted in the development of the Secure Hash Algorithm (SHA-0) by the National Institute of

Standards and Technology (NIST) in 1993. The SHA-0 was followed by SHA-1 in 1995 with the

hash size of 160 bits. The SHA-1 replaced MD5 that was exposed to collision attacks by then [3].

As with all of the security protocols, the SHA-1 was also under constant scrutiny by the security

experts. Wang et al. [4] claimed that collisions in SHA-1 can be found with complexity less than

280 compression function calculations. Recently the claim of Wang et al. was validated by Marc et

al. [5] by finding hash collisions for different files. Because SHA-1 was prone to the collision attack,

theoretically (as shown by Wang et al.), development of SHA-2 started in 2001. The SHA-2 has

different flavors, such as SHA-256, SHA-384, and SHA-512 with hash values of 256, 384, and 512

bits, respectively [6]. Later on, SHA-224 was also introduced in 2004 to provide security strength

of 3DES. The FIPS-180-3 defines the aforementioned four algorithms to be the part of SHA-2

standard [7].

The SHA-1 and SHA-2 follow Merkle Damgard (MD) structure. The MD structure takes

the message of pre-defined size and subsequently divides it into equal size blocks. The final hash

is computed using the dedicated compression function [8]. As well as SHA-1 and SHA-2 followed

the same structure model, this created a fear among the experts that SHA-2 will also be exposed

to the same kind of attacks. Therefore, NIST held a competition for the selection of a new hash

standard (SHA-3). There were 64 submissions in the competition. Round 1 reduced the number

The content of this chapter has been submitted to the ACM Computing Surveys. The material in this chapter
was co-authored by Zeyad Al-Odat, Mazhar Ali, Assad Abbas, and Samee Khan. Zeyad Al-Odat had primary
responsibility for conducting experiments and collecting results. Zeyad Al-Odat was the primary developer of the
conclusions that are advanced here. Zeyad Al-Odat also drafted and revised all versions of this chapter. Mazhar Ali
and Assad Abbas drafted and revised all versions of this chapter. Samee U. Khan served as proofreader.
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of algorithms to 51. The second round of filtration selected 14 candidate algorithms. Finally, there

were five algorithms (Grostl, BLAKE, JH, Keccak, and Skein) in the decisive round. In October

2012, Keccak was announced as a new standard becoming SHA-3 [9, 10, 11, 12].

The SHA-3 was different from the rest of the SHA family in a sense that it follows a

sponge construction instead of Merkle-Damg̊ardṠponge construction follows an absorbing squeezing

structure where data is read in and processed in the absorbing phase followed by squeezing phase

that gives the output. Besides the working model, SHA-3 also differs in the length of message

size and hash length. More details for each of the aforementioned standards will be discussed in

Section 2.2.

To distinguish between different hash standards, a fair comparison need to be applied.

Therefore, hardware was one choice to implement and compare different hash standards. Field

Programmable Gate Array (FPGA) is the best choice for hardware implementation of hash algo-

rithms due to flexibility and adaptability [13]. Moreover, the FPGA is faster than the Central

Processing Unit (CPU) and Graphic Processing Unit (GPU) [14]. FPGA is usually part of the

Application Specific Integrated Circuit (ASIC), which implement a predefined function(s). ASIC

is used when the speed matters most [15]. For instance, hardware security modules commonly

use ASICs to accelerate the execution of cryptographic operations (like AES) [16]. Besides CPUs,

GPUs, and ASICs, Hybrid Hardware System (HHS) which is a combination of different types of

aforementioned hardware, can also be utilized. However, HHS tends to increase the price of the

resulting modules. More details will be discussed in Section 2.3.

Unlike other works, [17, 18, 19, 20], this chapter not only discusses SHA families but also

focuses on FPGA optimization techniques for implementing the SHA. In this survey special atten-

tion is paid to the FPGA optimization techniques of three hash standards (SHA-1, SHA-2, SHA-3).

The study covers several types of optimization techniques and highlights their contributions to the

performance metrics of FPGAs. Moreover, this survey discusses the pros and cons of each of the

optimization methods and investigates their effects on the performance. Furthermore, the chapter

outlines various methods of optimization and organizes them according to their contribution to the

SHA design.

On the other hand, previous surveys on the same area provide a specific explanation about

the SHA standards and provide concepts of deploying SHA standards using the FPGA. The work
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presented in [17] provides a survey and analysis of the hash functions as a combination between

stream cipher and hash function. Their work focuses on the Linear Feedback Shift Register (LFSR)

hash block. Jarvinen et al. conducted a comparative survey of high-performance cryptography al-

gorithms [18]. This study analyzes the FPGA-based implementations of the most widely used

cryptography implementations (AES, IDEA, DES, and SHA). However, the hash algorithm’s anal-

yses were minor and only includes MD5, SHA-1, and part of the SHA-2. A theoretical survey on the

secure hash algorithms is presented in [19]. The work shows the different kind of hash algorithms

and their applications. Chaves et al. presented a work that analyzes the implementations of the

secure hash algorithms SHA-1 and SHA-2 on FPGA [20]. The work studied the possibilities to

improve the SHA-1 and SHA-2 hash functions by properly explore the data dependencies and the

hardware reuse. Moreover, the study compares between the FPGA implementations of the SHA-3

finalist (Blake, JH, Skein, Gr�stl, and Keccak). The study showed that the Keccak outperforms

the other candidates in term of throughput and area. In this survey, a comprehensive study of

FPGA-based implementation of the secure hash algorithms (SHA-1, SHA-2, and SHA-3) family is

carried out. Besides, we discuss the design parameters and optimization techniques in more detail.

The rest of chapter is organized as follows: Section 2.2 describes SHA standards and their

functions. The hardware implementation of SHA and FPGA’s performance metrics are discussed

in Section 2.3. A literature review of different optimization techniques is presented in Section 2.4.

Chapter discussion and analysis are carried out in Section 2.5.

2.2. Secure Hash Algorithm Families

SHA takes a message with an arbitrary size, then through some calculations produces the

message hash1 [21]. The process is defined in Eq. (2.1).

h = H(M), (2.1)

where M is the input message, and h is the generated digest using the hash algorithm H.

Different parameters of the SHA family are compared in Table 2.1. SHA-1 accepts messages

of size less than 264, divides it into equal size blocks of 512-bit each, processes it through 80 steps

round computations and provides the final hash of 160 bits. The SHA-2 follows the same structure

1Some references use the phrase ”digest”.
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as SHA-1, but it differs in the diversity of the output. The SHA-2 has four different output options

(number beside the hash represents the output length), with extra two options that take the

truncated value of SHA-2/512. On the other hand, the SHA-3 follows a different structure model

but has the same options for the output hash as the SHA-2 standard with extra two extensible

output functions. The number beside each standard reflects the output hash, but for SHAKE-128

and SHAKE-256 the number reflects the security level that each one of them supports against brute

force attack.

Table 2.1. The secure hash algorithms SHA-1, SHA-2, and SHA-3 and their corresponding param-
eters

SHA Family

Algorithm Output Block Size (bit) Max Msg Size (bit) Internal Round

SHA-1 160 512 264 − 1[22] 80

SHA2

224 224 512 264 − 1[6] 64

256 256 512 264 − 1[6] 64

384 384 1024 2128 − 1[6] 80

512 512 1024 2128 − 1[6] 80

512/224 224 1024 2128 − 1[6] 80

512/256 256 1024 2128 − 1[6] 80

SHA3

224 224 1152 unlimited 24

256 256 1088 unlimited 24

384 384 832 unlimited 24

512 512 576 unlimited 24

SHAKE-128 Arbitrary[12] 1344 unlimited 24

SHAKE-256 Arbitrary[12] 1088 unlimited 24

For any hash algorithm, the following properties must hold to consider it as secure:

(a) Preimage resistance: a property of easily get the hash from a given message but difficult to

extract the message back from a given hash.

(b) 2nd preimage resistance: means that it is difficult to find two messages that both generate

the same hash.

(c) Collision resistance: the property of resisting the probability to generate the same hash for

two different messages or more.
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2.2.1. SHA-1

The SHA-1 was proposed after MD5 hash algorithm. Despite the collision attack announced

in 2017 by Stevens et al. [5], it is convenient to look into the details of SHA-1 because SHA-1 is still

used by many entities and applications. The SHA-1 follows Merkle Damgard (MD) structure model.

With 160 bits output hash, the SHA-1 goes through several steps and compression operations before

the output hash is produced. [8]. Details about SHA-1 will be explored in the following text.

(a) Message Padding: In this step a ’1’ is appended at the end of input message and followed

by least number of 0’s until it congruents to (448 mod 512). The size of the original message

M is appended as big-endian 64-bits, as seen in Fig. 2.1. The resulting message becomes:

M̂ = N × 512, for real N > 1.

M 1 0's Msg size 64-bit

512-bit

Figure 2.1. Message padding mechanism of the Merkle-Damg̊ard functions

(b) Message divide: in this step, the padded message M̂ is divided into N 512-bit blocks (M0,

M1,...., MN−1).

(c) Initial Hash Values (IHV): SHA-1 needs five 32-bits Initial Hash Values (IHV s) H0,

H1, H2, H3 and H4, initialized with fixed values (6745230116, EFCDAB8916, 98BADCFE16,

1032547616, C3D2E1F016), respectively. Moreover, five 32-bit working state variables (A, B,

C, D, E) initialized with the values of IHV s, accordingly.

(d) Processing: To compute the hash value of N blocks message, the process goes through

SHA-1 compression function for N + 1 states (state for each block plus the initial state).

Eq. 2.2 shows that the IHV s, of the current message block, are used to compute the IHV s

for next block2.

IHVi = SHA1 Compress(IHVi−1,Mi−1), (2.2)

2In case of the current message block is the last block then the resulting IHV a conform the final hash value.
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where SHA1 Compress(IHV,M) is the compression function with inputs of 32-bit words,

IHVi are the intermediate hash values (A,B,C,D,E), and M is the 512-bits message block

(B).

The compression function consists of 80 steps (0 to 79), divided into four consecutive rounds

of 20 steps each. Every step t uses modular addition, left rotation, round function Ft, and

round constant Kt, as shown in Table 2.2. The message Block B is partitioned into sixteen

consecutive words (m0,m1.....m15), then expanded to 80 words Wt, according to Eq. 2.3.

Wt =


Mt , 0 ≤ t ≤ 15

(Wt−16 ⊕Wt−14 ⊕Wt−8 ⊕Wt−3⊕)≪1 , 16 ≤ t,≤ 79,

(2.3)

where (⊕) is logic XOR operation, and (≪) is the cyclic shift left operation.

The working state variables (A,B,C,D,E) change after each step according to (2.4), (2.5),

(2.6), (2.7), and (2.8).

At = RL5(At−1)� Ft(Bt−1,Ct−1,Dt−1)� Et−1 �Wt �Kt, (2.4)

Bt = At−1, (2.5)

Ct = RL30(Bt−1), (2.6)

Dt = Ct−1, (2.7)

Et = Dt−1, (2.8)

where (�) represents modular addition, and (RLn(X)) is the left rotation of variable (X) by

(n) bits.

(e) The output hash: after all steps are computed, the resulting working state values are added

to the intermediate hash values before processing according to (2.9),(2.10),(2.11),(2.12), and

(2.13).

A = A0 +At, (2.9)

B = B0 +Bt, (2.10)
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C = C0 + Ct, (2.11)

D = D0 +Dt, (2.12)

E = E0 + Et (2.13)

Table 2.2. The SHA-1 round functions and constants

Round and Steps Round Function F (B,C,D) Round Constant (kt)

Round1 (0-19) (B ∧ C) ∨ (¬B ∧D) 0x5A827999

Round2 (20-39) (B
⊕
C
⊕
D) 0x6ED9EBA1

Round3 (40-59) (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) 0x8F1BBCDC

Round4 (60-79) (B
⊕
C
⊕
D) 0xCA62C1D6

For the last block, the output hash is the concatenation (A ‖ B ‖ C ‖ D ‖ E) of the five

hash values together to form 160-bit hash [7]. Alternatively, the new IHV s will be fed as

new IHV s for the next block calculation.

2.2.2. SHA-2

The SHA-2 has four fixed output standards (224, 256, 384, 512), and two truncated ver-

sions (SHA-512/224, SHA-512/256). The SHA-224 and SHA-256 work on 512-bit block size, with

16-words of 32-bit each. While SHA-384 and SHA-512 (and the truncated versions) work on

a 1024-bit block with 16-words of 64-bit words size. The SHA-2 has 8 working state variables

(a, b, c, d, e, f, g, h), each of size equal to the word size of respective flavor [6].

Like SHA-1, SHA-2 performs padding process first by adding 1 and 0’s to the end of the

message followed by the message size. Then divides it into 16 equal size blocks according to the

desired output hash as depicted in Table 2.1. Afterward, expands the message into 64 blocks using
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SHA-2 expansion equations (2.14), (2.15), and (2.16), for t = 16 to n,

σ0 = ROTRr1(Wt−15)⊕ROTRr2(Wt−15)⊕ SHRr3(Wt−15) (2.14)

σ1 = ROTRq1(Wt−2)⊕ROTRq2(Wt−2)⊕ SHRq3(Wt−2) (2.15)

Wt = Wt−16 + σ0 +Wt−7 + σ1, 16 ≤ t ≤ n (2.16)

where ROTRn(X) rotates word X to the right by n bits, and SHRn(X) shift right word X by n

bits. For SHA-224 and SHA-256 n = 63, r1 = 7, r2 = 18, r3 = 3, q1 = 7, q2 = 19, and q3 = 10,

while n = 79, r1 = 1, r2 = 8, r3 = 7, q1 = 19, q2 = 61, and q3 = 6 for SHA-384 and SHA-512.

The eight working state variables (a, b, c, d, e, f, g, h) are initialized with fixed hexadeci-

mal values defined by the SHA-2 definition3[10]. Two common functions called Choose (Ch) and

Majority (Maj), which are the SHA-2 manipulator equations (2.17) and (2.18),

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z), (2.17)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z), (2.18)

where symbols: ⊕, ∧ and ¬: are the logical XOR, AND, and NOT operations, respectively.

To further strengthen the SHA-2 hash function, two more functions are used Sum0(
∑

0)

and Sum1(
∑

1) as depicted in (2.19) and (2.20),

∑
0
(x) = ROTRr1(x)⊕ROTRr2(x)⊕ROTRr3(x), (2.19)∑

1
(x) = ROTRq1(x)⊕ROTRq2(x)⊕ROTRq3(x), (2.20)

where r1 = 2, r2 = 13, r3 = 22, q1 = 6, q2 = 11, and q3 = 25 for SHA-224 and SHA-256, while

r1 = 28, r2 = 34, r3 = 39, q1 = 14, q2 = 18, and q3 = 41 for SHA-384 and SHA-512.

Algorithm 1 shows the full SHA-2 computations. The eight working state variables4 Wt (a,

b, c, d, e, f , g, h) change after each step as can be seen in the Algorithm 1. The longest data path

is the one corresponding to the a value as it contains seven terms to be modified after each step.

3Each flavor of SHA-2 has designated IHVs differ from other
4T1 and T2 are temporary variables used to calculate the value of a.
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Moreover, round constant Kt appears at the same step5. The value of j corresponds to the number

of iterations (rounds) performed by the algorithm. For SHA-224 and SHA-256 j=64, whereas for

SHA-384 and SHA-512 j=80. After processing all n blocks of message M , the final message digest

is obtained by concatenating all or parts of hash values H i
0, .....,H

i
7. The message digest for each

version of SHA-2 algorithm is given by the concatenation symbol (||).

2.2.3. SHA-3

The SHA-3 was published in 2012, after a competition that was held by the NIST. Five

candidates were selected for the final round (Keccak, Grøstl, BLAKE, JH, and Skien). Keccak won

the competition as the next standard for the SHA-3 [10]. Unlike the previous standards (SHA-1

and SHA-2), the SHA-3 relies mainly on absorb and squeeze structure [23, 24], as shown in Fig.

2.2.
Fig. 1. Sponge Construction [4]

are xored with the first r bits of the state, interleaved with applications of
the function f (called Keccak-f in the specification). The absorbing phase is
finished when all message blocks have been processed. In the second phase (also
called the squeezing phase), the first r bits of the state are returned as part of
the output bits, interleaved with applications of the function f . The squeezing
phase is finished after the desired length of output digest has been produced.

The default values for Keccak are r = 1024, c = 576, which gives 1600-
bit state. Keccak can also operate on smaller states but through the whole
paper we always refer to the default variant with 1600-bit state. The state can
be visualised as an array of 5×5 lanes, each lane is 64-bit long. The state size
determines the number of rounds in Keccak-f function. For the default 1600-
bit state there are 24 rounds. All rounds are the same except for constants which
are different for each round.

Below there is a pseudo-code of the single round. In the latter part of the
paper, we often refer to the algorithm steps (denoted by Greek letters) described
in the following pseudo-code.

Round(A,RC) {

θ step

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor A[x,4], forall x in (0...4)

D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)

A[x,y] = A[x,y] xor D[x], forall (x,y) in (0...4,0...4)

ρ and π steps forall (x,y) in (0...4,0...4)

Figure 2.2. General structure of the sponge construction.

A preprocessing phase is accomplished before starting with the sponge operations. The

message is padded first, then divided into equal size blocks (Pi) each of r bits size [11]. In the

absorbing phase, the state of b-bit is initialized with 0’s. Each state is represented by two values,

bit-rate (r) and capacity (c), where, r is the block size Pi, and c complete the state size to the

desired permutation level. The XOR operations are carried out for the message blocks Pi with r

bits of the state. A permutation function f is applied to get next state value [23]. In the squeezing

5Round constant Kt represents a fixed value, defined by SHA-2 definition. Each flavor of SHA-2 has its own Kt

as described in [10].
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Algorithm 1: SHA-2 compression function

Input: Padded Message M = {M0,M1 . . . ,Mn} Blocks
Output: Output Hash (224 or 256 or 384 or 512)

1 Initialize IHV :=

a = H
(i−1)
0 b = H

(i−1)
1 c = H

(i−1)
2 d = H

(i−1)
3

e = H
(i−1)
4 f = H

(i−1)
5 g = H

(i−1)
6 h = H

(i−1)
7

2 for t← 0 to n do
3 if t < 16 then
4 Wt ←Mt

5 else
6 Wt ← σ1(Wt−2) +Wt−7 + σ0(Wt−15) +Wt−16

7 for t← 0 to j − 1 do
8 T1 = h+

∑
1(e) + Ch(e, f, g) +Kt +Wt

9 T2 =
∑

0(a) +Maj(a, b, c)
10 h = g
11 g = f
12 f = e
13 e = d+ T1

14 d = c
15 c = b
16 b = a
17 a = T1 + T2

18 for t← 0 to n do

19 H
(t)
0 = a+H

(t−1)
0

20 H
(t)
1 = b+H

(t−1)
1

21 H
(t)
2 = c+H

(t−1)
2

22 H
(t)
3 = d+H

(t−1)
3

23 H
(t)
4 = e+H

(t−1)
4

24 H
(t)
5 = f +H

(t−1)
5

25 H
(t)
6 = g +H

(t−1)
6

26 H
(t)
7 = h+H

(t−1)
7

27 return Hash

28 SHA-224 ← H
(n)
0 ‖H

(n)
1 ‖H

(n)
2 ‖H

(n)
3 ‖H

(n)
4 ‖H

(n)
5 ‖H

(n)
6

29 SHA-256,512 ← H
(n)
0 ‖H

(n)
1 ‖H

(n)
2 ‖H

(n)
3 ‖H

(n)
4 ‖H

(n)
5 ‖H

(n)
6 ‖H

(n)
7

30 SHA-384← H
(n)
0 ‖H

(n)
1 ‖H

(n)
2 ‖H

(n)
3 ‖H

(n)
4 ‖H

(n)
5
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phase, the output hash (z) is taken from z0 for the fixed size hashes (224, 256, 384 and 512). An

extra permutation is applied in case of arbitrary length as in (SHAKE128 and SHAKE256).

The SHA-3 Keccak supports two modes of operations. A fixed output hash mode support

hashes (224, 256, 384, 512), and a variable-length hash mode (SHAKE128 and SHAKE256) pro-

duces an output of variable length according to the desired application6. In Keccak, b represents the

permutation function’s level (25, 50, 100, 200, 400, 800, 1600). Yet, the most common permutation

is (b = 1600, l = 6), where b is computed using Eq. (2.21).

b = 25 ∗ 2l , l = 0, 1, 2, 3, 4, 5, 6 (2.21)

In the fixed mode operation, two groups are allowed. Group-1 (r = 1344,c = 256) is used to

compute hash values of length 224 and 256, while group-2 (r = 1088,c = 512) is used to calculate

the hashes of length 384 and 512 [25].

The fixed-size output hash is taken from the first step of the squeezing phase (z0) by

selecting the least significant bits (according to the desired hash output 224, 256, 384 and 512).

When variable length hash is required, all bits of Z can be used according to the desired output.

Moreover, the output can be taken from any Zi [10].

The function of Keccak is depicted in Fig.2.3. The state b = r + c is initialized with 0’s.

The length of b depends on the level of the permutation selected. As mentioned earlier, b = 1600

is the most commonly used permutation. Each block is processed through several rounds that are

determined by the l value, according to Eq. (2.22).

Rounds = 12 + 2l, l = (0, 1, 2, 3, 4, 5, 6) (2.22)

Keccak handles the state b as a 3D-Matrix (A×B × C), which is shown in Fig. 2.4. Each

of Keccak’s rounds has distinct constant RC[i] used inside permutation function. Fig 2.3, shows

that each round consists of five steps denoted by Greek letters, theta(θ), rho(ρ), pi(π), chi(χ) and

iota(ι). Each step manipulates the state matrix (A×B × C). The values of A and B are fixed to

6The number (128 and 256) reflects the security strength of each one of them.
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5, while the value of C is represented by w according to Eq. (2.23).

w = 2l, l = (0, 1, 2, 3, 4, 5, 6) (2.23)

The resultant b Matrix: b = 5 × 5 × w bits. If l chosen to be 6, then the matrix becomes

5× 5× 64 = 1600 bits, consequently number of rounds will be 24.

r+c Round1/b

θ ρ π χ ι 

Round n

/b/b

/b r+c

/r

/c

/r

/c

Figure 2.3. Keccak round steps theta (θ), rho (ρ), pi (π), chi (χ), and iota (ι)

• Theta (θ) step: which operates on a 2D-Array (5x5), where each element contains w bits. a

single 5× 5 array can be seen as a slice, where the 1D-array of w bits is a lane, as shown in

Fig. 2.4. Theta step manipulates the state array according to Eq. (2.24). Where C[x] and

D[x] represent lanes and A[x, y] represents slice. Theta computes the parity of each column,

then combines them with the XOR operator using Eq. (2.24).

Figure 2.4. Keccak state matrix (A × B × C), represented as 3D-Matrix. Each square represents
one bit, A)slice, B)sheet, C)plane, d)column, e)row, f)lane.
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step(θ) =


C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4] , x = 0, 1, 2, 3, 4

D[x] = C[x− 1]⊕ROT (C[X + 1], 1) , x = 0, 1, 2, 3, 4

A[x, y] = A[x, y]⊕D[x] , x = 0, 1, 2, 3, 4

(2.24)

• Rho (ρ) step, this step rotates one element (lane) of the state matrix A[x, y] (which is 5× 5)

by i bits, as seen in Eq. (2.25). The rotation offset value denoted by r[x, y] is a constant value

assigned according to Table 2.3.

step(ρ) = ROT (A[x, y], r[x, y]), (x, y) = 0, 1, 2, 3, 4 (2.25)

Table 2.3. Values of the ρ step constants r[x,y] of the Keccak

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 13
y = 1 55 20 36 44 6
y = 0 28 27 0 1 62
y = 4 56 14 18 2 61
y = 3 21 8 41 54 15

• Pi (π) step: is a complement step to rho, as it takes the rotated lanes from rho step and

put them in different positions in the array matrix (B[x, y]), without modifying any value. It

only permutes the matrix according to Eq. (2.26),

step(π)⇒ B[y, 2x+ 3y] = ROT (A[x, y], r[x, y]), (2.26)

where x, y = 0, 1, 2, 3, 4.

• Chi (χ) step: in this step the B matrix, which was generated from the previous step, is

manipulated according to Eq. (2.26) and put the result back in array matrix A according to

Eq. (2.27).

step(χ)⇒ A[x, y] = B[x, y]⊕ ((B̄[x+ 1, y]) ∧B[x+ 2, y]), (2.27)

where x, y = 0, 1, 2, 3, 4, ∧ bit-wise AND operation, and B̄[] is the bit-wise complement of B.
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• Iota (ι) step: adds the round constant RC[i] to the state matrix A at location A[0, 0], where

each round has a distinct 64-bit round constant. Iota step represented by Eq. (2.28).

step(ι)⇒ A[0, 0] = A[0, 0]⊕RC[i], (2.28)

where RC[i] are 24 different 64-bit round constants, they were depicted from reference [26].

2.3. Hardware Implementations of the SHA Standards

Hash algorithms can be implemented in software and hardware. However, performance

in hardware becomes an important criterion for breaking a tie between algorithms; when all the

security-related parameters are equally good. In the subsequent text, a discussion about different

hardware that are used to implement SHA standards will be presented.

2.3.1. Choice of Hardware to Implement SHA

Different factors are taken into consideration to choose hardware for implementation. Ta-

ble 2.4 provides a summary of different choices to implement cryptography protocols along with

their advantages and disadvantages.

Table 2.4. Different choices for hardware implementations of secure hash algorithms

Hardware Integration Property Advantage Disadvantage

CPU Desktop or laptop computers Number of Cores Testing Using Software
Side Channel Attack

General Purpose

GPU
Desktop ,Laptop or Accelerated

Supercomputer
Number of Cores

Parallel computing and tested
using software

Difficult Programming

FPGA Stand alone part of ASIC Application Specific Easy to optimize , Reconfigurable Experience in HDL

ASIC Stand alone Application Specific low price, reconfigurable Pre-planning before Design

HSS Stand-alone or embedded combined design chose the advantage of the best hardware price and integration.

Central Processing Unit (CPU) is used in desktop and laptop computers. The main prop-

erty of CPUs is the number of cores inside the processor. As CPUs are general purpose units,

cryptography applications share the CPU resources with other applications. Graphics Processing

Unit (GPU) is part of general-purpose units that can be found in desktop, laptop, or accelerated

supercomputers. The GPUs run algorithms in parallel, thus giving more computation power than

CPUs. Field Programmable Gate Arrays (FPGAs) are part of Applications Specific Integrated

Circuit (ASIC). The FPGAs are used to implement a predefined function. Moreover, the FPGA is
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considered as reconfigurable hardware that is configured at the end-user by changing the layout of

implementations. Application Specific Integrated circuit (ASIC) is manufactured to run exactly one

application. Because ASIC is small in size it is used when processing speed is important. Hybrid

Hardware System (HHS) is the composition of different types of aforesaid hardware, and integrate

them to work together to form one powerful cryptographic system. The HHS gives better results

in term of performance but increases the price consequently [27, 28, 16, 29].

Different factors need to be considered when choosing any hardware; security, speed, and

price. The security represents the resistant of a hardware against any kind of attacks. CPUs and

GPUs are vulnerable for channel side attacks, while the FPGAs are more secure because they

run for a specified process as ASIC. The second factor is the speed where it measures the time

needed to finish the job. CPUs are capable of performing several operations and so can’t be too

much optimized in one direction. The FPGAs are faster than CPUs and GPUs because they are

dedicated to a specific task. ASICs are the best in term of speed as they are flexible for design,

however, the small area limits it from being used for bigger tasks. The third factor is the price.

CPUs are easy to obtain, cheap to be programmed, and get the programs run quickly. The GPUs

are also quite easy to obtain, a bit more expensive to effectively program and capable of efficient

execution of programs. The FPGAs are more expensive and require the design of algorithm using

hardware description language (VHDL, Verilog), but once programmed they are easily reconfigured.

The ASICs have a long design cycle, but once completed they can be manufactured easily and for

a low price [30, 14]. The choice of FPGAs arises from the fact that they support different type

of design methodologies namely: software design methodology, hardware design methodology, and

software with hardware design methodology. The software design methodology is supported using

the Environment Development Kit (EDK) tool that comes with the FPGA hardware. The hardware

design methodology is the ability of FPGA to support different level of programming languages

(e.g., VHDL, C++). While software with hardware methodology is the ability of FPGA to integrate

software and hardware. Because FPGA is reconfigurable, the designer can reuse it and makes fast

prototyping, which reflected to cost-free mistakes [31]. According to the aforementioned factors,

the FPGA is the best choice for implementing and optimizing the SHA.
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2.3.2. FPGA Performance Metrics

The FPGAs can be as simple as a logic gate or complicated architecture as a microprocessor.

The FPGA architecture is based on one of five components: transistors, logic gates, multiplexers,

lookup tables (LUTs), and wide-fanin (AND-OR) structure. To explore more about FPGA the

reader advised reading [32].

With the increased usage of FPGA, optimizing the FPGA is crucial and the newly published

SHA standards require speed and memory [33]. Therefore, to measure the performance of FPGA,

the following metrics need to be taken into consideration:

1. Area: Reflects the total number of Configurable Logic Block (CLB) or Look Up Tables (LUTs)

used for any design implementation. However, in some cases, the area comparison might be

an unfair factor, because of the differences in placements methodology of different FPGA

manufacturers. Therefore, to compare area requirements, the same FPGA’s manufacturer is

recommended[33].

2. Frequency: The operational clock frequency that a given FPGA can run.

3. Throughput: Used to measure the speed of hardware implementation, which represents the

number of bits processed in a given time. Throughput defined by Eq. (2.29),

Throughput =
Block Size

T ∗Nclk
, (2.29)

where Block Size is the total number of bits processed, T is the time needed to process a

block, and Nclk is the number of clock cycles.

4. Throughput to Area ratio: The comparison between performance metrics is recommended

according to a fair factor. Taking the ratio of throughput to the area requirements can provide

a fair comparison between different kinds of FPGAs. [34].

5. Power Consumption: Reflects the total amount of power consumed by the hardware when

applying a specific design. Conventionally, this property is defined by the frequency level.
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The leading manufacturers of FPGA market are Xilinx and Altera (now Intel). Nowadays,

both of them control more than 90% of the FPGA market [35]. Therefore, the majority of hardware

implementations of secure hash algorithms are deployed using Xilinx and Altera FPGAs.

SHA hash standards were discussed in different works. Some of these works were dedicated

to specific SHA standards [36, 37, 38, 39], while the other compare more than one standard in their

works [20]. In the next section, we categorize all optimization techniques of different hash standards

on FPGA according to their influence on the optimization metrics. For each hash standard, the

effects of optimizations will be addressed comprehensively.

2.4. Optimization Techniques

The equations and structures of the SHA algorithms showed that all operations were based

on mathematical and logical functions. Therefore, improving these operations will enhance the

computational resources that are used during the hardware deployment. For instance, addition

is the core math operation in the SHA-1 and SHA-2, so enhancing the adder units will lead to

a significant enhancement to the system [40]. This survey categorizes the FPGA optimization

techniques of SHA algorithms according to the type of optimization. The optimization techniques

of FPGAs are laid in one of the following categories:

1. Carry Save Adder (CSA): is a small and fast digital adder, used in implementations to compute

the sum operation of binary digits. CSA produces an output of size same as the size of input

words [41]. CSA enhances the area and maintains throughput in some cases.

2. Pipelining: is a data processing technique, that process a series of connected elements in

parallel on a timed fashion [42]. Pipelining combines multiple steps into one step unless

they have data dependency between them. Pipelining can be used with all hash standard’s

optimization methods. It provides significant improvements in term of throughput along with

maintaining area requirements in some cases.

3. Unrolling (Unfolding): is a loop transformation method that attempts to optimize the pro-

gram execution speed. The speed optimization is accomplished by eliminating some loop

control statements from programs [43].
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4. FPGA Resources: which are predefined blocks that are built inside the FPGA. Moreover,

FPGAs support the option of using extra or external resources. These resources include

Block RAM (BRAM), Digital Signal Processing (DSP) unit, and Shift Register Look-up

table (SRL) [44]. The purpose of BRAM is to store constants and move the combinational

logic block burden to BRAM burden. The DSP unit is used to perform part of the logical

and mathematical calculations. While the SRL is used to reduce time and area requirement.

5. Iterative Method: is a mathematical operation that tries to get the solution according to a

series of improved approximations[45].

6. Mixed Optimization: where two or more optimizations are combined to form an extra opti-

mized version.

All SHA hash standards are bounded by the dependencies between internal rounds. Through

several types of optimizations, the most significant techniques were those provided a good enhance-

ment in the performance metrics, particularly, Throughput (Tp), Area (A), and Throughput/Area

(Tp/A) ratio. In this section, we will discuss previous works and their contributions in this field.

2.4.1. FPGA Implementation of the SHA-1

This section presents the various FPGA design implementations of the SHA-1 hash stan-

dard. SHA-1 has a data dependency between internal steps, so that, any improvement to SHA-1 is

relevant to this property. SHA-1 compression function has a critical path equation7, which relies

mainly on add operation. Carry Save Adder (CSA) is used in hardware optimization to enhance

the performance of add operation. The CSA is small and fast, because it separates the addition and

carry-operations, thereby minimizing the delay time caused by the carry. Optimization through

the CSA is frequently used in the implementation of SHA-1 and SHA-2 standards, as both of them

rely mainly on addition inside critical path [20]. CSA is used along with Carry Look-ahead Adder

(CLA) in some optimization to pre-compute the critical path, which in turn reduces the addition

operations and CSA units. The combination of CSA and CLA reduces the computation delay,

and save more area resources. This scheme was adopted by Makkad et al., where CSA and CLA

were used to optimize the implementations of unfolded, pre-computation and 4 stages pipeline [46].

CSA is used to compute the intermediate values between steps, and reduce the computation delay.

7The critical path, is the longest equation of the compression function. Return to SHA-1 and SHA-2 definitions.
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The proposed designs were tested and verified using Xilinx Virtex-6 (LX240T) FPGA, and Xilinx

ISE 13.2 Design suit. The results showed that the 4-stages pipeline design with CSA gave a good

result in term of Throughput with 8607.6 Mbps. While, pre-computation, unfold, and CSA-basic

architectures gave 2596.2 Mbps, 1927.5 Mbps, and 1347.2 Mbps, respectively. Contrarily, the re-

sults showed that CSA-basic design gave the best figures in term of area requirements, as depicted

in Table 2.5. Another work that conducted a comparison between different optimization methods

including CSA was presented in [46]. The authors used CSA, loop unfolding (two operations),

pre-computation, and pipelining technique. The proposed work showed that 4-stages pipeline ex-

ceeded the others by throughput but preceded them in term of area requirements. While, CSA

optimization gave significant figures in term of area, but the increased operational frequency was

obvious which in turn increases the power consumption.

The pipelining method gives an enhanced performance in term of throughput, but influ-

ences the area requirements. Authors in [47] proposed a targeted design approach, focusing on

the increase of operating frequency (f -operation) and throughput. They focused on maintaining

the area requirements without introducing a significant area penalty. The proposed methodology

employed hardware reuse and pipelining techniques. The hardware reuse got benefited from the

predefined units without creating a new one for different operations. Moreover, the proposed design

used multiplexing to control the flow of data and manage the units’ usage. The proposed design

curtailed the critical path of the SHA-1 algorithm into two stages (addition and multiplexing). The

authors tested their design on Xilinx Virtex FPGA. The results showed an improvement in term of

speed without significant effect on area requirements. The speed of optimization exceeded 2.5 Gbps

throughput with an increased percentage by 37% over the basic structure, and 950 slices of the area.

Sometimes, the throughput requirements are much more important than area requirements, thus

the designers focus only on optimizing the throughput. Pipelining can also be used jointly with

other optimization methods to further improve the overall performance requirements of the system.

Suhili et al. in [48] proposed high speed and throughput design for the SHA-1 using pipelining

with unfolding technique. Five evaluation designs were tested using Xilinx Virtex-5 and Altera

Arria-2 FPGAs. The designs used iterative, inner-round pipelining, 4-stage pipelining, 40-stage

pipelining and 40-stage pipelining with two times unrolling (40PPL + 2X-Unroll). Pipelining is

used to maintain the data dependency between internal steps of the compression function, while
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the unrolling expand the internal loops of function. Then, the combination will give the pipelining

more space to manage the data dependencies. However, this kind of combination will dramatically

increases the area requirements. The proposed designs gave the best results for 40-stage pipelining

combined with two times unrolling design, with a claimed throughput of 150.269 Gbps and 223.618

Gbps for Altera and Xilinx FPGAs, respectively.

One of the key enhancement to reduce the critical path of the SHA-1 is the unrolling (un-

folding) method. Loop Unrolling increases the number of instructions, but increases the parallelism

level. In [49], the authors proposed an architecture to achieve higher parallelism and minimize the

critical path. The proposed design employed two unfolded architectures, a pre-computation and

hash core. The pre-computation architecture of the SHA-1 used newly defined parameters that

are pre-computed before other parameters. The hash-core architecture is used to compute the nth

hash operation of the internal hash computation steps. Both designs were tested and verified using

Xilinx Virtex-2 (xc2v1000) FPGA with 5.9 Gbps throughput and 2894 of area slices. On the other

hand, the work presented in [50] tested unfolding architecture up to eight stages. Authors applied

their work for the SHA-1 and combined their work with the pipelining method. Their work was

tested and verified using Xilinx Virtex-2 FPGA. The results showed a significant improvement in

using unfolding along with pipelining better than using unfolding alone. The better results were

achieved by using unfolding that reduced the number of required clock cycles to 12 for unpipelined

version and 24 cycles for pipelined version. The results gave 3.541 Gbps throughput and 4258 area

slices using 4-stages unfolding with pipelining. While 893 Mbps throughput and 2394 area slices

were achieved without pipelining. As shown in Table 2.5, The enhancements are not guaranteed

with the unrolling method, unless they are used with a predefined criterion.

Since the SHA-1 and SHA-2 follow the same construction model. Both can be combined in

one system as presented by Michail et al. [51]. The proposed work was based on a pipelined design

for area-throughput trade-offs for SHA-1 and SHA-256. The work compared between the optimized

and non-optimized pipelined designs. The optimized version employed a loop unrolling technique,

which unrolled two iterations with one mega step using pre-computation and CSA units. Both of

the designs were implemented using four FPGAs: Virtex (xcv1000-6FG680), Virtex-E (xcv3200e-

8FG1156), Virtex-II(xc2v6000-6FF1517), and Virtex-4 (xc4vlx100). The speed was used as an

optimization goal for both base and optimized versions. The authors claimed that the best results
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for base architecture, were those produced by Xilinx Virtex-4 FPGA, with 66.36 Gbps and 56.93

Gbps for SHA-1 (80PPL) and SHA-256 (64PPL), respectively. While the best throughput of the

optimized versions were 88.37 Gbps with 40-stages PPL, and 69.27 Gbps with 32-stages PPL, on

the same FPGA.

As well, the need for low power designs is crucial in case of big data processing. Isobe et al.

in [52], implemented all processes of TLS/SSL into one FPGA. Low power consumption and high

speed were gained by dividing processes into three phases. Phase one was a design of the RSA unit

using parallel processing. Phase two included shared key cryptography and hash function unit for

sending and receiving. While, phase three employed a protocol processing block, cipher processing

block, and data exchange block. The proposed work gave enhanced throughput figures without

increasing the power consumption factor. Their work maintained the operating frequency of 65nm

FPGA to the same levels of non-optimized version, as shown in Table 2.5.

Many designs were used to evaluate and validate SHA standards on Computer-Aided Design

(CAD) tools [53, 54]. The work performed by Iyer et al. [53] introduced three modules (initial,

round and top) to model the SHA-1 algorithm using FPGA. The evaluation and synthesis of the

SHA-1 algorithm were applied using the Xilinx Software Development Kit (SDK) toward Virtex-5

FPGA. The CAD tool was used to accelerate the calculation of the SHA-1. Results gave a better

speed than the regular processor and comparable figures with high-level synthesis (HLS), in term

of throughput. Janik et al. in [54], used HLS tools for Altera OpenCL (AOCL) to accelerate the

computations of SHA-1. The design was tested and verified using Quartux SDK toward Altera

Stratix-5 FPGA. The results showed an enhancement in the system speed over CPU and GPU.

As mentioned before, the SHA-1 and SHA-2 follow the same construction model, therefore,

both of them can be combined on the same FPGA implementation. Michail et al. [55] proposed a

high throughput and area-efficient multi-mode secure hash algorithm using the FPGA. Their work

supported the SHA-1 and SHA-2 (256, 512) output hashes. The system was able to produce hash

according to the user selection of the SHA-1 or SHA-2. The design was tested and verified using

different FPGAs (Virtex-4, 5, 6, and 7). The proposed architecture employed pre-computation and

pipelining to optimize the resulting design. The experiments were carried out, for the base and

optimized structures, and proved the progression of the optimized architecture.
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Table 2.5. Comparison of FPGA optimization methods for the SHA-1 hash function

Work Opt-Techc FPGAb Tp/Gbps Area/slice Freq/Mhz Mbps/Slice

[46]
CSA

Virtex-6
1.3472 449 213.13 3.0004

Unfold 1.9275 518 154.35 3.721
4PPL 8.6076 1230 172.32 6.998

[47] PPL Virtex 2.5267 950 98.7 2.659

[51]

Basic with
(4,8,10,20,40)a

PPL

Virtex (1.18, 2.35, 2.85, 5.73,-) (2070, 3920, 4950, 9570, -) (45.9, 45.9, 44.6, 44.8, -) (0.57, 0.60, 0.57, 0.59, -)
Virtex-E (1.46, 2.93, 3.53, 6.76, 13.08) (2140, 4030, 5060, 9430, 17690) (57.0, 57.3, 55.2, 52.8, 51.1) (0.68, 0.73, 0.69, 0.72, 0.74)
Virtex-2 (1.82, 3.65, 4.12, 9.09, 17.92) (2000, 3820, 4800, 9860, 18650) (71.1, 71.2, 64.3, 71.0, 70.0) (0.91, 0.95, 0.86, 0.92, 0.96)
Virtex-4 (3.09, 6.19, 7.01, 14.18, 28.24) (1990, 3930, 4750, 9000, 17560) (120.7, 120.9, 109.6, 110.8, 110.3) (1.55, 1.57, 1.48, 1.57, 1.61)

Opt
(4,8,10,20,40)

PPL

Virtex (3.05, 6.09, 7.46, 14.47,-) (2490, 4750, 5940, 11060,-) (59.3, 59.5, 58.3, 56.9, -) (1.19, 1.28, 1.26, 1.31, -)
Virtex-E (3.79, 7.59, 9.23, 17.95, 38.35) (2560, 4840, 6070, 11310, 20170) (74.1, 74.1, 72.1, 70.1, 74.9) (1.48, 1.57, 1.52, 1.59, 1.90)
Virtex-2 (2.0, 3.97, 7.92, 15.87, 39.07) (2410, 4590, 5770, 11860, 22000) (92.4, 92.4, 83.5, 92.3, 95.5) (0.83, 0.86, 1.37, 1.33, 1.77)
Virtex-4 (8.05, 16.10, 18.21, 36.89, 88.37 ) (2390, 4560, 5740, 10830, 20190) (157.2, 157.2, 142.3, 144.1, 172.6) (3.37, 3.53, 3.17, 3.41, 4.37)

[49] Unfold Virtex-2 5.9 2894 118 2.038

[50]
4x-Unfold

Virtex 2
0.983 2394 20.9 0.41

4x-Unfold+4PPL 3.541 4258 41.5 0.83

[48]
(1, 4, 40)-PPL

Arria II (1.746, 7.911, 80.306) (402, 976, 6715) (279.64, 316.76, 321.54) (4.343, 8.11, 11.96)
Virtex-5 (1.46, 10.740, 10.67) (897, 1332, 6465) (233.899, 430.024, 427.54) (1.628, 8.06, 16.51)

2x-Unfold+40PPL
Arria II 150.269 9799 308.17 15.335
Virtex-5 223.618 11994 458.593 18.644

[52] Parallel process 65nm FPGA 14.9 3986 236 3.74

[53] Three module + SDK Virtex-5 0.786 1351 124.502 0.58

[54] HLS for AOCL Stratix-5 3.033 - - -

[46] Pre-Computation Virtex-6 2.596 546 207.90 4.75

[55]
Basic

Virtex(4,5,6,7)
(4.0, 5.0, 5.1, 5.9) (7737, 3899, 3787, 3743) (77.9, 98.3, 99.8, 115.6) (0.52, 1.28, 1.35, 1.58)

Opt (9.2, 11.9, 12.8, 14.3) (9623, 4275, 4129, 4133) (90, 116.3, 124.7, 139.6) (0.96, 2.78, 3.10, 3.46)

a Each value in parenthesis refers to its Pipelining level. The (Tp, Area, Freq and Mbps/Slice) for each level represented in parenthesis in the same order at the same raw.
b Virtex refers to Xilinx, while Arria refers to Altera.
c Basic: Implementation without optimization. CSA: Carry Safe Adder. xPPL: Pipelining to x level. Nx-Unfold: Unfolding method with N unrolled loops.
- Refers to a non reported results.
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2.4.2. FPGA Implementations of the SHA-2

The data dependency, between internal steps of SHA-1 and SHA-2, plays a key role in

performance improvements. The SHA-2 follows the same construction model as the SHA-1, so

any improvement to the SHA-1 is naturally applicable to the SHA-2 [55]. The CSA is used in the

SHA-1 to speed up the calculation of the critical path. Similarly, the CSA was adopted by different

works to optimize the FPGA implementation of the SHA-2 [56, 57, 58]. Sun et al. proposed an

architecture to optimize critical path calculation using the CSA [56]. The proposed design supports

different SHA-2 flavors (256, 384, and 512) using the control-selection unit. The architecture was

tested using ModelSim6.0a, and targeted to Xilinx Virtex-2. The results showed improvements in

term of throughput and area comparing with the SHA-1, as shown in Table 2.6.

To overcome the overhead of add operations, Mohamed et al. in [57] used Carry Propaga-

tion Adder (CPA) with CSA. The longest critical data paths contain six and seven add operations,

whereby the CPA is used to overcome the overhead of the modular addition computations. The

optimization was performed on two levels, the Look-Up Table (LUT) level, and the CSA level. The

methodology was tested using Xilinx Virtex-5 FPGA (xc5vlx330t-2ff1738). The results showed

that, in term of delay, the optimization on LUT level gave better results than the CSA level. The

same throughput of 1359.6 Mbps was observed for both designs. While Algredo et al. in [58]

proposed two hardware architectures to compute the inner loop of the SHA-2 using the CSA. The

first architecture was based on re-arranging the data-flow of the critical path equations. The second

architecture was based on two pre-computations instead of one. The proposed approaches relied

mainly on the use of the CSA that was used for balancing data paths, and a state buffer. The

systems were tested and verified using Xilinx Virtex-2 (XC2VP-7) FPGA. Both designs gave the

same figures in all terms, as shown in Table 2.6.

To take advantage of the pipeline method, which is used to optimize the speed and through-

put, authors in [37] proposed a pipelined architecture to optimize the SHA-2 in term of throughput

and area. To achieve the goal, a set of optimization techniques were applied, systematically, ac-

cording to two levels. The first one is the algorithmic level, that includes loop unrolling and

pre-computation. The second level involves circuit level technique, that includes resource re-

arrangement and use of special circuit resources such as CSA. Both levels were combined with
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thoroughly applied stage pipelining. The designs were tested and verified using Xilinx Virtex-(2,

E, 6, and 7) FPGAs. The proposed techniques showed the best results with the 5-stage pipeline in

term of throughput and throughput/area.

Loop Unrolling (Unfolding) method is also adopted to optimize the SHA-2 hash standard.

Multiple rounds of the compression function are unrolled and processed in combinational logic

components, which reduces the clock cycles required to compute hash function [36]. However, Loop

Unrolling method gives no significant results in some cases, unless it is used with other optimization

methods. For instance, unroll internal loops of compression function for multiple times will cause

an extra area penalty. So the better use of loop unrolling is to combine it with other methods.

Authors in [59] proposed a design that combines unrolling optimization with pipelining. a new VLSI

architecture was presented, that combines a fast quasi-pipelined design with unrolling. The authors

tested their architecture to find the best pipeline-unroll combination. The design was tested and

verified using FPGA Xilinx Virtex-2 FPGA. The results showed that SHA-256 pipelined without

unrolling gave the best throughput (1.009 Gbps). While the best result for SHA-512 was the

unrolled two times with pipelining (1.466 Gbps).

According to the similarity of the internal construction of the SHA-1 and SHA-2, any

optimization or implementation toward SHA-1 will work with the SHA-2 [55]. Some designs employ

a hardware unit to optimize and validate SHA-2 hash function [60, 61]. In [60], the authors proposed

an efficient hardware implementation for the SHA-256 and SHA-512 using Xilinx Virtex-5. The

proposed work employs a control unit to manage the flow of data from the padding unit, and

passes the padded data to the hash computation unit. The process speeds up the hash production

and yields better efficiency. On the other hand, a compact FPGA implementation for the SHA-2

hash function was proposed in [61]. The work designed a customized processor based on FPGA.

The design relied on the data reuse to minimize memory access with the help of cache memory.

The results showed an improvement in the critical path calculations and good figures in term of

throughput.

To support all flavors of the SHA-2 standards along with optimizing them, Rote et al.

in [62] proposed a performance-enhanced architecture for the SHA-2. The authors introduced a

pipelined-round and fully iterative technique for the SHA-2 standard (224, 256, 384 and 512).

The design was implemented using Xilinx Virtex-6 FPGA. Results showed that the round pipeline
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architecture gives better results in term of throughput and comparable figures in term of area,

concerning iterative architecture.

Power consumption is also considered when deploying the SHA-2, Thakur et al. in [63].

proposed a low Power and simple implementation of the SHA-2. Their work employed a control sys-

tem to pass the message blocks without waiting for the synchronization signal. The proposed work

decreases the operating frequency of the implementation, hence lowering the power consumption

factor.

SHA-2 can be enhanced when careful analyses are made. All aforesaid works showed that

SHA-2’s figures are versatile depending on the kind of optimization. For instance, throughput gives

good results in some cases, and moderate in others.

2.4.3. FPGA Implementations of the SHA-3

Keccak or SHA-3 (officially) is the latest hash function announced by the NIST. Keccak

competition has taken three rounds of selection to choose the winning competitor. Particularly,

the final round that comprises five algorithms. The selection process relied mainly on the hardware

deployment of the competitors. Because of that, we observed many FPGA implementations toward

the SHA-3. For instance, a comparison between the final five candidates was investigated by

Gaj et al.[64]. The work compared design implementations of each candidate. The deployments

were tested on both Altera and Xilinx FPGAs. The results showed that Keccak outperformed the

other algorithms in both area and speed requirements. Moreover, an experimental bench-marking

for different SHA-3 candidates was proposed in [65], where a new Xilinx Zynq board was used

with high performance and flexibility. The new board gave a more accurate comparison between

the candidates. They are verified using Vivado studio development tool. The results showed that

Keccak performed the best among the algorithms in terms of throughput and frequency.

The authors of Keccak claimed that it fully supports hardware implementations [66]. Among

all implementations and optimizations of SHA-38, we selected the most interesting works in the

SHA-3 (Keccak) area that provided the best performance of Keccak FPGA deployment. To follow

the same event-listing fashion, we present the optimization methods in the same order they appeared

in the previous two sections.

8When SHA-3 is mentioned, it explicitly means Keccak.
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Keccak follows sponge structure model, which is different from the SHA-1 and SHA-2, as

discussed in Section 2.2. However, the CSA can also be used to optimize Keccak standard, jointly

with other methods like unfolding, loop unrolling, and pipelining. Authors in [67] proposed a

compact FPGA implementation for Keccak function. The design focused on area optimization by

merging rho, pi, and chi steps. The area reduction is accomplished by using the same processing

units for the three steps, accordingly reduces the number of units used for the FPGA deployments,

and consequently reduces the area requirements. The CSA was employed between the three merged

steps to speed up the hash computation process. The proposed design was tested and verified using

Xilinx Virtex-5 (xc5vlx330t) FPGA. Results showed that the area requirements have decreased to

240 slices with a significant throughput of 7.224 Gbps. In essence, the CSA reduces the cycles used

to compute the final hash value, besides increasing the throughput of the overall design.

To achieve higher throughput, the pipeline method is used in Keccak FPGA designs. To give

a good implication of this property, authors in [68] proposed a pipelined architecture to implement

Keccak hash function. The proposed design consists of 4 units (control unit, input/output buffer,

padder unit, and Keccak round). The control unit is used for the synchronization of data flow

between units. The input/output buffer is used to communicate with external modules. Padder

unit is used for padding operation of the input. While the Keccak rounds involve the main data

path for the Keccak computations and include the round’s constants, the main optimization of

the proposed design was on the Keccak rounds by putting the pre-calculated round’s constants in

registers. Later, all constants are fed to iota step one per a round. The system was tested and

verified using Xilinx Virtex-5 (XC5VFX70T) FPGA with a throughput of 12.68 Gbps. However,

the area requirement was increased Successively, as shown in Table 2.7.

To maintain the area requirements of the pipelined-optimized architecture. Authors in [39].

proposed an area-efficient design for the final five candidates of the SHA-3 competitors (BLAKE,

Grøstl, JH, Keccak, and Skein). The candidates were implemented using the pipelining method.

All rounds of the proposed designs were kept unchanged, but a 1-stage pipeline is applied. The pro-

posed architectures were tested and verified using Xilinx Virtex-5 and Virtex-6 FPGAs. The results

showed that Keccak gave the best figures in term of throughput/area. However, the throughput

of the proposed design is significantly low with 864 Mbps for Virtex-5 and 145 Mbps for Virtex-

6. Despite the area requirements were low for both FPGAs. However, to maintain the area and
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throughput requirements of FPGA designs. Michail et al. in [69] proposed a pipelined architec-

ture for SHA-3 Keccak hash function. Several pipeline stages were tested to determine the most

appropriate number of pipeline stages. The design was tested and verified using Xilinx Virtex-4,

Virtex-5, and Virtex-6 FPGAs. Experiments showed that the most appropriate number of pipeline

stages were four, which produced the best results in term of throughput, area, and throughput/area

requirements. The best results of 37.63 Gbps, 4117 slices, and 9.14 Tp/A were produced by the

Virtex-6 FPGA.

Two stages of pipelined design for the SHA-3 hash function was proposed in [70]. The

proposed work relies on four components: transformation round, registers, Version Selection initial

XORing (VSX) module, zero state register, and control unit. Transformation round combines

Keccak round functions (theta, rho, pi, chi and iota) which in turn cuts the critical path to half.

The VSX module responsible for selecting the appropriate Keccak state ([1152, 448],[1088, 832],[832,

768], [576,1024] and [1024,576])9. While zero state register is used to initialize the state with 0’s.

The control unit uses a finite state machine (FSM) to employ five states, S1 for version selection,

(S2, S3) for computations, and (S4, S5) for final hash computation. The designs were tested and

verified in term of area, frequency and throughput using Xilinx Virtex-5, Virtex-6, and Virtex-7,

FPGAs. All results are converged around the same value in all terms, as shown in Table 2.7.

To build a system that supports multi-messages block, the authors in [71] proposed a

high-performance FPGA implementation of the SHA-3 hash function. The proposed design used a

pipelined multi blocks message architecture that supports all SHA-3 flavors (224, 256, 384 and 512).

The architecture employs a software scheduler that performs three functions. The first one process

the input message (pad and divide into blocks of 1600 bits). The second function truncates the

512-bits output to the desired hash (224, 256, 284, and 512). The third function updates the state

matrix in case of the multi-block message. The design was tested and verified on Xilinx Virtex-4

(XC4VLX200), Virtex-5 (XC5VLX330T), and Virtex-6 (XC6VLX760) FPGAs. The results showed

an optimized throughput of two stages pipeline with the increased area used for the three selected

FPGAs, as shown in Table 2.7.

The influence of the pipeline method on the unrolled architecture was also studied for Kec-

cak. Suigar et al. in [72], presented a low cost and high speed implementation of the SHA-3 hash

9Return to Keccak definition in section 3 for details.
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Table 2.6. Comparison of FPGA optimization methods for the SHA-2 hash function

Work Hash Opt-Tech FPGA Tp/Gbps Area(A)/slice Freq/Mhz Tp/A

[60] 256 Conrol-Unit Virtex-5 1.58 Gbps 387 202.54 4.08

[56]
256

CSA Virtex
0.291

2207 74
0.132

384 0.250 0.113
512 0.467 0.212

[51] 256

Basic with
(2,4,8,16,32, 64)

PPL

Virtex (0.75, 1.50, 2.91, 5.70, -, -) (1330, 2390, 4580, 8990, -, -) (46.2, 46.9, 45.4, 44.5, -, -) (0.56, 0.63, 0.64, 0.63, -, -)
Virtex-E (0.83, 1.66, 3.25, 6.35, 12.83, 29.85) (1360, 2400, 4790, 9090, 17810, 29990) (51.8, 51.8, 50.8, 49.6, 50.1, 58.3) (0.61, 0.69, 0.68, 0.70, 0.72, 0.99)
Virtex-2 (1.00, 2.00, 3.97, 7.92, 15.87, 39.07) (1440, 2600, 5290, 10660, 18980, 27610) (62.4, 62.4, 62.1, 61.9, 62.0, 76.3) (0.69, 0.77, 0.75, 0.74, 0.84, 1.42)
Virtex-4 (1.74, 3.48, 6.93, 13.82, 27.65, 56.93) (1580, 2970, 6290, 12120, 23520, 31420) (108.7, 108.8, 108.3, 108.0, 108.0, 111.2) (1.10, 1.17, 1.10, 1.14, 1.18, 1.81 )

Opt with
(2,4,8,16,32)

PPL

Virtex (1.83, 3.67, 6.95, 13.67, -) (1720, 3100, 5770, 11900, -) (57.3, 57.3, 57.3, 54.3, 53.4) (1.06, 1.16, 1.20, 1.15, - )
Virtex-E (1.98, 3.97, 7.81, 14.98, 32.36) (1770, 3160, 5890, 12160, 19410) (62.0, 62.0, 61.0, 58.5, 63.2) (1.12, 1.25, 1.33, 1.23, 1.67)
Virtex-2 (2.38, 4.77, 9.51, 18.97, 40.50) (1940, 3500, 6620, 13780, 20960) (74.5, 74.5, 74.3, 74.1, 79.1) (1.23, 1.36, 1.44, 1.38, 1.93)
Virtex-4 (4.16, 8.33, 16.64, 33.20, 69.27) (2060, 3960, 7780, 15260, 26340) (130.1, 130.1, 130.0, 129.7, 135.3) (2.02, 2.10, 2.14, 2.18, 2.63)

[57] 256 CSA Virtex-5 1.3596 1203 170 1.13

[58] 256
CSA

Virtex-2
0.86772 1187 110.10 0.731

CSA+ Pre-Comp 0.909 1274 115.46 0.713

[37] 512 5PPL

Virtex-2 6.989 7012 54.6 2.659
Virtex-E 9.126 7151 63.4 1.276
Virtex-6 9.126 7151 71.3 1.276
Virtex-7 11.674 7219 91.2 1.617

[73] 256 DSP+BRAM Stratix-3 1.621 795 205.8 2.03

[59]

256
Basic+PPL

Virtex-2

1.009 1373 133.06 0.735
2x-unfold+PPL 0.997 2032 73.975 0.491
4x-unfold+PPL 0.909 2898 40.833 0.314

512
Basic+PPL 1.329 2726 109.03 0.488

2x-unfold+PPL 1.466 4107 65.89 0.357
4x-unfold+PPL 1.364 5807 35.97 0.235

[55]
256

and 512
Basic

Virtex(4,5,6,7)
(4.0, 5.0, 5.1, 5.9) (7737, 3899, 3787, 3743) (77.9, 98.3, 99.8, 115.6) (0.52, 1.28, 1.35, 1.58)

Opt (9.2, 11.9, 12.8, 14.3) (9623, 4275, 4129, 4133) (90, 116.3, 124.7, 139.6) (0.96, 2.78, 3.10, 3.46)

[61] 256 Data Reuse
Virtex 0.649 431 35.5 1.5

Virtex-4 0.915 422 50.06 2.17
Virtex-5 1.18 139 64.45 8.49

[62]
All

Flavors

Iterative

Virtex-6

1.063 766 132.91 1.38
PPL 2.047 871 271.96 2.35

Iterative 1.081 736 135.14 1.47
PPL 2.040 905 271 2.25

Iterative 1.496 1651 116.9 0.91
PPL 2.445 1724 200.64 1.42

Iterative 1.428 1613 111.56 0.89
PPL 2.348 1811 192.57 1.31

* Please refer to the definitions in the bottom of Table 2.5.
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function. Comprehensive implementations of Keccak were employed using loop unrolling with and

without pipelining. Seven architectures were tested and verified using Xilinx Spartan-3E FPGA.

The architectures were, the basic Keccak, (1x, 2x, 3x)-unrolled architecture, and (1x, 2x, 3x) un-

rolled architecture with (2,3,4)-stage pipelining. The unrolled architectures with pipelining showed

the best results in term of throughput and area. The drawn implication after the incorporated

experiments showed the defectiveness of unrolling in optimizing the design of Keccak.

FPGA resources are used to make a fair comparison between the SHA algorithms. The

FPGA resources include BlockRAM, DSP and, SRL. The authors in [73] proposed an optimization

technique for the FPGA implementation of 14 selected hash functions from round two of the

selection competition of the SHA-3. The optimization approach was concentrated on the use of

the FPGA resources DSP and Block memory (BRAM) units. The proposed system was tested and

evaluated for 256-bits output hash. The implementations were tested on Altera Stratix-3 FPGA.

The authors divided the functions of the algorithms into categories according to the potential use

of the FPGA resources. The testing results for the throughput showed an improvement concerning

the throughput /combinational logic block (#CLB) ratio. On the other hand, some works relied

on the use of SRL. In [74], the authors designed an FPGA implementation of Keccak using SRL.

The SRL register was used in the rho step. The results showed a reduced usage of the FPGA

resources due to the reduction in LUTs usage. The proposed work outperformed other designs

in term of area requirement. The design was tested and verified on Xilinx Virtex-5 FPGA with

156 Mbps throughput. Other architectures were benefited from the use of the FPGA resources

that are designated for the individual logic operations. Provelengios et al. in [75] proposed an

optimization technique using the DSP unit (DSP48E). The proposed work employed the DSP

unit to compute the logic functions (AND, NOT and XOR) that appear in theta and chi steps.

The design was tested and verified using Xilinx Virtex-5 FPGA. The result showed that using DSP

unit was inefficient in low complexity demand applications.

However, to test the efficiency of the DSP units with other optimization methods, Ayuzawa

et al. in [76] proposed an FPGA implementation for Keccak hash function using the DSP unit and

pipelining. The authors employed an advanced DSP unit to optimize the overall throughput to

area ratio. In their work, pipeline registers were inserted between steps of Keccak operations. All

registers were used to support multi-message hashing. The proposed work was tested and verified
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using Xilinx Virtex-5 FPGA. Results showed a significant enhancement of 50% in term of through-

put to area ratio. In some cases, FPGA resources are used to reduce the power consumption of the

FPGA designs. Aziz et al. [77] proposed a new approach in designing a low power consumption for

Keccak FPGA design. The work was benefited from the full capability of DSP48 unit that is widely

available in Xilinx FPGAs. The authors presented two designs: one for area distribution, and the

other for speed reservation. The DSP48 unit was employed for the calculation of the Keccak hash

function. The proposed design was tested using Xilinx Virtex-6 FPGA. The low-frequency figures

of 451 MHz were observed, which lower the amount of consumed power to 130 mW .

The flexibility of the SHA-3 Keccak function influenced the researchers to widen their ideas

and exploit the FPGA resources. The hardware convenience made the enhancement techniques of

Keccak outperform SHA-1 and SHA-2 [78, 79, 80, 81, 82]. Chandran et al. in [78] proposed a

design using special logic gates. The work supported Keccak calculation in two ways. The first

one was step by step algorithm that got benefited from the fact that Keccak runs the five steps 24

times. The second way was to design the algorithm using a multiplexer (MUX) that connects two

blocks of Keccak function. The proposed designs were tested and verified using Xilinx Spartan-6

FPGA. The results showed reduced area requirements for the final implementations. Moreover, Rao

et al. in [79], proposed an architecture to enhance the implementation of the SHA-3 Keccak on

FPGA. The work was performed through two phases. In the first phase, the algorithm steps were

logically combined to get a total of 25 equations. The second phase includes the hardware design

of the algorithm. Manual fulfilling was applied to phase one, then forming the 1600-bit state. The

resultant equations were fed to the proposed hardware architecture in phase two, that processed

on LUT level. The architecture was tested and verified using Xilinx Virtex-5, Virtex-6 FPGAs.

The authors got a throughput of 17.132 Gbps for Virtex-5 FPGA and 19.241 Gbps for Virtex-6

FPGA. The area requirement optimizations were also studied by kahari et al. [83]. A high-speed

implementation of SHA-3 Keccak hash function in terms of area and frequency was proposed. The

proposed work divided the Keccak hash calculation into two parts namely, the sponge and round

functions. The sponge part performs message initialization along with state matrix padding. While

the squeeze phase performs the compression calculation and hash production. The proposed design

was tested and verified using Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGAs. Virtex-6 FPGA gave
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the best results in term of area and efficiency, while Virtex-7 was the best in term of throughput,

as shown in Table 2.7.

As Keccak hash function supports variable length hashes (SHAke128, SHAke256). Previous

works also investigated the deployments of Keccak toward variable-length output [81, 82]. A

compact FPGA implementation is presented in [81]. The authors designed a 1024 hash output of

SHA-3 using Xilinx Virtex FPGA. While Sravani et al. in [82] supported variable length SHA-3 by

combining Rho , Pi, and Chi steps into one step, as discussed before.

In general, optimization methods, either, are dedicated to a specific secure hash algorithm

(SHA) or focus on optimizing the architecture toward specific metric(s) (area, speed, throughput,

power consumption). The resulting designs help to test any system in a predefined area of interest.

Tables 2.5, 2.6 and 2.7 show the three SHA standards along with their FPGA devices that were

used. The optimization methods that were used are listed in the tables. Moreover, the results

of the area, throughput, frequency, and throughput/area ratio are depicted in the same tables.

As a matter of observation, some designers use BlockRAM metric to calculate area requirements.

Therefore, we used the method listed in [84] that stated ”each BlockRAM equal to 128 slices”.

Then the overall area will be calculated according to Eq. (2.30).

Area = slices+ (128×BlockRAMs) (2.30)

Another important area we need to give insight to is error detection and correction schemes.

Any design that relies on hardware may be affected by errors that arise during the computations.

The error detection (fault detection) schemes for SHA hardware implementations were studied in

different literature [85, 40, 86, 87]. A brief description of this area is discussed in the next text.

2.4.4. Error Detection and Correction

FPGA is used to implement Hash algorithms, but the complexity of the SHA implementa-

tions increases the probability to cause faults in the hardware design. Any single error in any round

causes an error for the final generated hash, because each round depends on the previous round

(inheritance property)[40]. Therefore, any hardware design and implementation for hash functions

need to be reliable and authentic. In general, there are three methods to provide a digital design

with a fault detection paradigm:

51



Table 2.7. Comparison of FPGA optimization methods for the SHA-3 (Keccak) hash function

Work Opt-Tech FPGA Tp/Gbps Area/slice Freq/Mhz Mbps / Slice

[68] PPL Xilinx -Virtex-5XC5VFX70T 12.68 4793 317.11 2.71

[39] PPL
Virtex-5 0.864 393 159 2.19
Virtex-6 0.145 188 285 0.77

[70] PPL
Virtex-5 18.7 1702 389 10.98
Virtex-6 19.1 1649 397 11.6
Virtex-7 20.8 1618 434 12.9

[71] 2PPL
Virtex-4 12.912 5,494 269 2.350
Virtex-5 16.896 2,652 352 6.371
Virtex-6 18.768 2,296 391 8.174

[73] DSP+BRAM Stratix III 13.913 4277 306.9 3.25

[76] DSP+PPL Spartan-6 9.00 4865 - 1.85

[74] SRL Virtex-5 0.156 134 248 1.16

[72]
Basic

Spartan-3
4.65 4443 102.6 1.05

Unfold (x2, x3, x4) (4.13, 3.42, 2.86) (6988, 8665, 11173) (45.6, 25.2, 15.8) (0.59, 0.39, 0.26)
(x2-PPL2, x3-PPL3, x4-PPL4) (8.23, 9.09, 10.11) (6409, 8463, 10226) (90.8, 66.8, 55.8) (1.28, 1.07, 0.99)

[69] (1, 2, 3, 4)PPL
Virtex 4 (6.55, 12.91, 20.95, 27.07) (2365, 5494, 8647, 12870) (273, 269, 291, 282) (2.77, 2.35, 2.42, 2.10)
Virtex 5 (9.17, 16.90, 25.34, 34.27) (1581, 2652, 3197, 4632) (382, 352, 352, 357) (5.80, 6.37, 7.93, 7.40)
Virtex 6 (9.89, 18.77, 28.15, 37.63) (1115, 2296, 3965, 4117) (412, 391, 391, 392) (8.87, 8.17, 7.10, 9.14)

[75] DSP Virtex-5 5.70 2573 285 2.215

[67] Merg (rho, pi , chi) Virtex-5 7.224 240 301.02 30.1

[77] DSP Virtex-6 4.091 208 451.26 19.66

[79] Merg 5-states Virtex-5 17.132 1291 377.86 13.27

[64]

Unfold,+PPL
and

circuit duplication
(x1, x1-PPL2, x2-PPL2, x2PPL4)

Virtex-5 (7.18, 7.38, 7.13, 13.55) (1283, 1774, 1996, 3428) (-, -, -, -) (5.60, 4.16, 3.57, 3.95)
Virtex-6 (7.47, 8.11, -, 13.64) (1052,1263, -, 2550) (-, -, -, -) (7.10, 6.42, -, 5.35)
Stratix-3 (8.03, 8.55, 13.09, 17.06) (3734, 4484, 6617, 8934) (-, -, -, -) (2.15, 1.91, 1.98, 1.91)
Stratix-4 (7.61, 8.96, 12.49, 17.33) (3723, 4481, 6580, 8934) (-, -, -, -) (2.04, 2.00, 1.90, 1.94)

[83] 2-Parts
Virtex-5 11.50 1388 278.39 8.48
Virtex-6 15.76 1167 394.01 13.83
Virtex-7 16.58 1418 414.54 11.97

[82]
Iterative

and merge (ρ, π, χ)
Virtex-5 7.22 240 301.02 30.1
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• Hardware Redundancy. Different hardware are used to perform design implementations, sep-

arately. Afterward, the final outputs are compared to check and detect errors. However, the

process consumes more resources (duplication of all hardware) and consequently an expensive

scheme.

• Time Redundancy. A single hardware is used to perform the design at different times. Time

redundancy method is less expensive because it uses the same hardware but the task of

checking final architecture is expensive in terms of time consumption.

• Information Redundancy. Uses additional information to check the integrity of data (i.e parity

bit). For instance, information can be appended to the end of data processed or injected into

the system in a predefined time.

The faults that appear during computations are divided into two categories [40]. First one

is the permanent category, where the faults appear all the time during the calculation. The second

category is the transient faults, that appear in some time slots and disappears for others. In general,

faults affect the overall performance of the system.

The ability of the system to detect and recover from any error was taken into consideration

by the authors in [40, 86, 85, 88, 87]. Bahram et al. in [40]. proposed a time redundancy technique

to detect the faults in the design of the SHA-512 algorithm. The final design is free from both

permanent and transient faults. The authors in [86] introduced a Totally Self Checking (TSC)

design for SHA-256 hash function. The work concentrates on the faults that appear in a harmful

environment, such as high computation situations or physical situation as temperature increase.

The proposed work relied on Concurrent Error Detection (CED) and uses the TSC design. The

results showed that the design can fully recover to 100% error-free system. The Proposed TSC SHA-

256 scheme was tested and verified on Xilinx Virtex-5 (XC5VLX330) FPGA, with a throughput of

3.88 Gbps.

The SHA-1 was also studied for faults detection. In [85], a totally self-checking (TSC)

architecture for fault detection of SHA-1 and SHA-256 hash functions was proposed. The authors

compared TSC design with hardware duplication method. The design can detect and recover with

100% for odd erroneous and appropriately spread even erroneous. Results showed that the TSC

53



architecture was better than the Duplicate With Checking (DWC) design in terms of area and

efficiency.

Informational redundancy is used in reference [88]. The authors used the technique of errors

injecting to the system and checked the ability to detect errors and recover. The scheme injected

errors in different stages of the SHA-2 hash and investigated the error at the output stage. They

were able to detect and recover from the injected error inside the hash computation process. Time

and hardware redundancy is also investigated in [87]. The authors introduced two designs for

efficient fault detection of the SHA-2. The first design relies on time redundancy block to detect

any transient error in the internal calculation of the round operation. The second design used the

hardware redundancy scheme with 100% of hardware overhead. The comparison between both

designs was obvious, inasmuch, the first one is a time-consuming approach and the second one is

expensive.

Regarding the SHA-3 (Keccak), fault detection schemes were also discussed in different

publications [89, 90]. Chandran et al. in [89] proposed a performance analysis of modified SHA-

3. The work employed an error-tolerant unit for SHA-3 calculation to provide a reliable SHA-3

architecture. Moreover, a multiplexer was used in the round function to calculate the output digest

of the full Keccak standard. The results showed a reduced area and high throughput architecture.

However, the design has a disadvantage of the time delay. The downside came from the operation

of error tolerance that was performed in the same unit. The system was tested and verified using

Xilinx Spartan FPGA. Error detection and correction scheme was explored in [90] by Mestiri et al.

The authors focused on predefined method and applied it to the hardware implementation of secure

hash algorithms. The authors proposed a fault detection scheme for SHA-3 Keccak using scramble

technique. The authors compared between the protected and unprotected version of Keccak. The

results were approximately equal in case of frequency and throughput but the area was increased

with 63% for the protected Keccak concerning unprotected version.

In essence, to make the FPGA design of the SHA complete, an error detection and correction

mechanisms need to be supported because any single bit error will be reflected to the whole output.

There are no limits to the ways that might be risen for optimizing any hardware implementation.

FPGA is reconfigurable hardware that gives us total control of all resources [21]. The usage of

Application Programming Interface (API) tools like FPGA is useful in the process of testing and
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evaluating the secure hash algorithms and ease comparison between them [13]. In the next section,

a discussion of different FPGA designs of the SHA will be carried out.

2.5. Discussion

In this work, we have presented the hardware implementation and optimization of the pop-

ular cryptography hash algorithms SHA-1, SHA-2, and SHA-3. The majority of the FPGA imple-

mentations are established on both Xilinx and Altera manufacturers. In this study, Xilinx FPGAs

are represented by Virtex, Virtex-2, Virtex-4, Virtex-5, Virtex-6, Virtex-7, Virtex-E, Spartan-3, and

Spartan-6 FPGAs. While Altera FPGAs are represented by Altera Arria-2, Stratix-3, Stratix-4,

and Stratix-5 FPGAs.

Fig.2.5 shows the count of the usage of different FPGAs to implement the SHA standards.

The figure comprises all aforesaid Tables 2.5, 2.6, and 2.7 that were discussed in Section 2.4. The

figure shows that some FPGAs were not used for some hash standard, i.e., Xilinx Virtex-2 FPGA

was not used for any of SHA-3 designs. However, Xilinx Spartan-3 FPGA was only used for the

SHA-3 implementation. Moreover, some FPGAs were suitable for the three hash standards like

Xilinx Virtex-4, Virtex-5, and Virtex-6. As depicted in Fig. 2.6.
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Figure 2.5. Count of different FPGAs’ optimizations that were used to implement SHA standards.
The figure comprises tables 2.5, 2.6, and 2.7.

Figures 2.7, 2.8, and 2.9 show different graphs for throughput and area with respect to the

main optimization methods listed in Tables 2.5, 2.6, and 2.7. The figures depict the influence of
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Figure 2.6. Count of optimization regarding each type of FPGAs

optimization techniques on throughput and area requirements for the three hash standards. Each

figure contains two graphs, the top graph represents the throughput and area comparison from the

FPGAs perspective, while the bottom graph represents the throughput and area comparison from

the optimization methods perspective. The x-axis of all figures represents the Area per slices, while

the y-axis the throughput per Gbps. To help read the figures, pick any point from the top graph

and join it with the same point-position at the bottom graph. Then you will get the Throughput

and Area requirements of the point which is implemented using the selected FPGA from the top

graph and optimized with the corresponding optimization method from the bottom graph.

Fig.2.7 represents the throughput and area relationship regarding different FPGAs’ imple-

mentations for the SHA-1 hash standard. Even though the authors in [51] claimed that FPGAs

have an upper limit for each optimization methods in which any pipeline optimization higher than

eight will give unrealistic results. In spite of that, the designs of the SHA-1 on Xilinx Virtex-5

and Altera Arria-2 proved that pipelining higher than 8-stages can be used for optimization with a

high throughput performance. Virtex-5 gives the best throughput among the other when used with

two times unfold and 40-stage pipeline (2x-unfold+40PPL) optimization method. Altera Arria-2

comes after for the same design [48]. In the same figure, we can see how the CSA affects area

requirements. Moreover, area slices will increase by the use of the CSA along with the pipelining
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(PPL) method. Loop-Unrolling shows a better throughput performance when used with pipelining,

but the augmented area slices are significant.
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Figure 2.7. Throughput (Gbps) and Area (slice) comparison of the SHA-1 standard using the four
main optimization methods

Fig.2.8 shows that the majority of the SHA-2 implementations and optimizations were

carried out using Xilinx Virtex-2, Virtex-4, and Virtex-E FPGAs. The figure depicts Throughput

and Area comparison of the SHA-2 hash standard regarding different optimization methods. The

best results for throughput is the optimized 32-stages pipelined architecture. On another hand,

the area requirements for 64-stages pipeline got more area slices than the other. In essence, the

area requirements are increasing with the increase of the applied pipeline stage. Carry Save Adder

(CSA) optimization shows more enhancements for the FPGA implementations of both SHA-1 and

SHA-2 standards. The fact that SHA-1 and SHA-2 rely mainly on addition equations, CSA has a

salient effect on their throughput. The SHA-3 benefited from the CSA on designs that relied on
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the loop unfolding. Where, after unrolling (unfolding) the addition process appeared number of

times, and therefore necessitates the need for the CSA. On the other hand, Loop-Unfold (Unroll)

method does not show any enhancement unless it is combined with other methods.
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Figure 2.8. Throughput (Gbps) and Area (slice) comparison of the SHA-2 standard regarding the
four main optimization methods

The SHA-3 hash standard is compared regarding throughput and area for different opti-

mization methods, as shown in Fig.2.9. The first insight is the majority of the SHA-3 designs relied

on the Xilinx Spartan-3, Virtex-4, Virtex-5, and Virtex-6 FPGAs. For throughput optimization,

the best results were those of Xilinx Virtex-6 FPGA while regarding area, Virtex-5 got better re-

sults than the others. The figure shows the upper hand of the pipelining method over the other

optimization techniques, in term of throughput. But, the abundant increase of area requirements

comes along with the increase in the number of pipeline stages. On another hand, the FPGA re-

sources give good results in term of throughput and significant enhancements of area requirements.
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For instance, DSP+BRAM optimization method provides a moderate throughput value and good

area figures but on different FPGA (Altera Stratix-3). The results show that some optimization

methods are better to be implemented on specific hardware to achieve the required outcomes.

Loop-Unfold optimization reflects the need to be combined with other optimization methods for a

better performance.

SHA3 Throughput and Area

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2000  4000  6000  8000  10000  12000  14000

T
hr

ou
gh

pu
t/G

bp
s

Spartan-3
Virtex-4

Virtex-E
Stratix-3

Virtex-7
Virtex-5

Virtex-6
Spartan-6

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2000  4000  6000  8000  10000  12000  14000

T
hr

ou
gh

pu
t/G

bp
s

Area/Slice

PPL
2PPL

DSP+BRAM
DSP+PPL

SRL
Base

2x-Unrolled
3x-Unrolled

4x-Unrolled
2x-Unrolled+2PPL
3x-Unrolled+3PPL
4x-Unrolled+4PPl

4PPL
3PPL
DSP
CSA

Figure 2.9. Throughput (Gbps) comparison of the SHA-3 standard regarding the four main opti-
mization methods

In the case of other optimization methods, Fig.2.10 shows the optimization methods that

are not using the main four components (CSA, PPL, Unfold, and FPGA-Resources). The bottom

graph shows that some optimizations combine the SHA-1 and SHA-2 standard, which represented

by the numbers 1 and 2. SHA-3 retains the upper hand over SHA-1 and SHA-2 as shown in the

figure. The majority of the optimizations were implemented using Virtex-5, Virtex-6, and Stratix-
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3 FPGAs. SHA-1 gives a comparable result when optimized using one time unrolling with the

hardware duplication.

Different SHA standard optimization methods
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Figure 2.10. Throughput (Gbps) and Area (slice) comparison of All SHA standards regarding
different optimization methods

Pipelining is used to optimize SHA-1 and SHA-2. A max of 4-stages pipelined architecture

was adopted because of the nonlinear nature of SHA-1 and SHA-2 in the early steps, as discussed

earlier. Without any proved optimum pipeline studies, the best of use the pipeline architecture is

to increase the operating frequency, hence increasing the throughput but it augmented the area

requirements. The authors of Keccak provided a prototype to support hardware implementation so

that Keccak outperforms the others in the terms of Throughput and Area. However, the majority

of Keccak implementations operate on a higher frequency than the SHA-1 and SHA-2, which in

turn reflected on the increase of power consumption.
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The hardware implementations of both SHA-1 and SHA-2 were not taken into consideration

at the time of their design. The SHA-1 and the SHA-2 standards have non-linear equations on the

early steps of calculations. The non-linearity of the equations opposed the hardware deployment

methodologies, that affects the overall FPGA designs. The limited hardware support of Merkle-

Damgard (MD) construction model diminishes the ability to exploit the FPGA hardware during

the deployment of SHA-1 and SHA-2 standards. However, Keccak hash function, that won the

selection competition of SHA-3 hash standard fully supports hardware deployment. Moreover, the

authors of Keccak provided a prototype for implementing their winning algorithm [91].

There is a trade-off between different FPGA optimization methods. Some designs affect one

requirement positively but make a negative impact on others. Therefore, in the case of negative

impact, the combination of two or more optimization methods is reflected in the overall performance

of a design. For instance, the loop unrolling method decreases the number of clock cycles needed

for calculations, but it makes a negative impact on the throughput, as shown in Figures 2.7, 2.8,

and 2.9. Combining the loop unrolling with the pipelining method produces a good enhancement

in term of throughput with increased area requirements.

Figure 2.11 shows the relationships between the throughput and frequency for the three hash

standards (SHA-1, SHA-2, and SHA-3). The x-axis represents the frequency and y-axis represents

the throughput. The top part of each sub-figure represents the throughput with respect to the

FPGA type, while the bottom part represents the throughput with respect to the optimization

technique. The figure shows that the frequency and throughput have a proportional relationship,

i.e., for a high throughput there is a higher frequency and vice versa.

The power consumption of an FPGA is determined by the sum of total static and dynamic

power. The static power reflects the consumed power by the FPGA design and routing technology,

and the dynamic power reflects the consumed power that is driven by the resource utilization of a

design [92, 93]. The general power consumption equation is represented by (2.31).

P =
∑
i

Ci.V
2
i .f, (2.31)

where, for a resource i, Ci is the capacitance, Vi is the voltage, and f is the frequency. According

to Figure 2.11, the frequencies of the SHA-1 hash standard are in the middle, and the frequencies
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Figure 2.11. Throughput and Frequency relationships for SHA-1, SHA-2, and SHA-3 hash func-
tions.

of the SHA-2 are to the left. This shows the lower frequencies that the SHA-1 and SHA-2 run,

which in turn reflected on the total power consumption, as depicted in Equation (2.31). However,

the SHA-3 frequencies are biased to the right, which infers that SHA-3 run higher frequencies than

SHA-1 and SHA-2, and consequently, reflected to the total consumed power.
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3. MITIGATION AND IMPROVING SHA-1 STANDARD

USING COLLISION DETECTION APPROACH

3.1. Introduction

Secure Hash Algorithms (SHAs) started in 1991 with the first MD4 hash function by

Rivest[1]. An optimized version (MD5) was released two years later[2]. An improved version with

longer hash length (SHA-0) was developed in 1993, and for security issues, SHA-1 was announced

as the official standard in 1995 by the National Institute of Standards and Technology (NIST) [3].

Cryptographic hash functions are widely used in applications, starting from simple password

implementation to message authentication over unsecure network. The cryptanalyst tries to verify

the strength of hash functions by many tools and techniques. Three challenges exist to verify

the completeness of any hash standard: preimage, 2nd preimage and collision resistance properties.

Preimage resistance means to easily obtain the hash from a given message, but difficult to extract it

back from the computed hash of the message. Second preimage resistance means that it is difficult

to find two messages M1 and M2 generating the same digest (Hash). While collision resistance

property means that a hash function resists any possibility to generate the same output hash for

two different messages or more [4].

SHA-1 is still being used by many entities for data authentication and integrity, e.g., digital

signature verification. However, many researches proved that the SHA-1 is exposed to a collision

attack through thoroughly efforts to find any hiatus lead to break the hash system[5, 6, 7]. For

instance, the collision attack against the SHA-1 hash standard has gradually been obtained, such

as 40-steps collision [8], 53-steps [9], 64-steps [10], 76-steps [7], and 80-steps full collision attacks as

presented by Wang et al. in [11].

However, in the situation of weak messages, the old hash case appears. As some old hashes

are not replaceable to new standards. Moreover, the data verifiers continue to accept weak and

The content of this chapter has been published in the IEEE 16th International Conference on Frontiers of
Information Technology (FIT2018). The material in this chapter was co-authored by Zeyad Al-Odat, Mazhar Ali and
Samee Khan. Zeyad Al-Odat had primary responsibility for conducting experiments and collecting results. Zeyad
Al-Odat was the primary developer of the conclusions that are advanced here. Zeyad Al-Odat also drafted and revised
all versions of this chapter. Mazhar Ali drafted and revised all versions of this chapter. Samee U. Khan revised the
material and served as proofreader.
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malicious messages for long time to come [12]. Therefore, the need for an improved version of

the SHA-1 or a counter collision method arose to protect primitives that are still using the SHA-1

standard.

In this chapter, we are proposing a counter cryptanalyst technique to help protect the

SHA-1 standard against the collision attack. The rest of chapter is organized as follows. Section 2

gives brief descriptions about the SHA-1 and collision attack. In Section 3, the literature review of

previous works is discussed. The proposed designs are presented in Section 4. Section 5 concludes

the chapter.

3.2. Preliminaries

Some preliminaries need to be addressed to better understand the proposed system. In the

subsequent text brief descriptions about the SHA-1 standard, the collision attack, and threat model

are presented.

3.2.1. Brief Description about the SHA-1

The SHA-1 standard follows Merkle-Damg̊ard construction [13]. The SHA-1 takes a message

of length less than 264, divides it into equal blocks, and processes it sequentially to produce 160-bit

hash output. The SHA-1 produces 160-bit output digest, to do so the message goes through several

steps and compression operations before the output hash is produced, as depicted in Fig. 3.1.

The SHA-1 processes a given message according to the following steps:

1. Message padding: In this step, ”1” is appended at the end of the input message M and

followed by least number of 0’s until it congruent to 448 Mod 512. The size of the original

message M is appended as big-endian 64-bit, as seen in Fig. 3.2. Then the resulting padded

message becomes M̂ = N ∗ 512, for real N > 1.

2. Message divide: In this step, the padded message is divided into equal size blocks (M̂ into

N 512-bit blocks M0,M1, ....,MN−1).

3. Initial Hash Values: The SHA-1 maintains five 32 bits IHVs (H0, H1, H2, H3 and

H4) initialized with fixed hexadecimal values (6745230116, EFCDAB8916, 98BADCFE16,

1032547616, C3D2E1F016), respectively. Moreover five 32 bits working state variables (A,B,C,D

and E ) initialized with the values of IHVs accordingly.
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Figure 3.1. SHA-1 general structure, takes message of length < 264, padd it, then divide it into
equal size blocks.

Figure 3.2. Message padding mechanism

4. Processing: To compute the hash value of N blocks message, the process goes through

the SHA-1 compression function for N+1 states (state for each block plus the initial state),

starting with IHVs.

5. Message Expansion and Working State Variables: Each block is divided into 16 32-bit

words. Then, these words are expanded into 80 32-bit words using the message expansion

equation, as shown in (3.1). The 16 message block words are initialized with the messages

block, then they are used to calculate the rest of expansion equation to get words W[17] to

W[79].

Wj =


M

(j)
i , 0 ≤ j ≤ 15

(Wj−16 ⊕Wj−16 ⊕Wj−16 ⊕Wj−16⊕)≪1 , 16 ≤ j ≤ 79

. (3.1)
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Where, M j
i is the jth word of block i, ⊕ logical XOR, and ≪n left rotation by n-bit.

6. Internal Process: The compression function consists of 80 steps. Each 20 steps conform a

round, and each round has distinct round function and constant Ki, as depicted in Table 3.1.

Besides, each group has a distinct round constant (Ki) and manipulator function (f) are

used to calculate the output hash. The working state variables change after each step of the

80-steps according to the values below.

At = RL5(At−1) + Ft(Bt−1,Ct−1,Dt−1) + Et−1 + Wt + Kt

Bt = At−1

Ct = RL30(Bt−1)

Dt = Ct−1

Et = Dt−1.

Where, RLn(x) is a left rotation of word x by n-bits, and F (B,C,D) is the logical function

equation.

7. Hash Output: The output hash is calculated by adding the output of the last step to the

initial hash values (H0, H1, H2, H3 and H4). If the current block is the last block, then the

output hash is the concatenation of the five hash values together. Otherwise, the new IHV

will be fed as an initial value for the next block calculation. The output hash is represented

as:

H0 ‖ H1 ‖ H2 ‖ H3 ‖ H4.

3.2.2. SHA-1 Differential Attack

The main goal of the SHA-1 collision attack is to find two or more messages that lead to

the same output hash. All current researches on finding the collision are basically built upon the

methodology described by Wang et al. [11]. Wang’s finding drew the road to the real collision

project that is recently announced by the collaboration of Marc et. al. and Google [6]. The

aforesaid project found the first real collision attack that broke the SHA-1 hash function [6, 7, 14].
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Table 3.1. SHA-1 round functions and constants

Round and Steps
Round Function

F (B,C,D)
Round Constant

(Ki)

Round1 (0-19) (B ∧ C) ∨ (¬B ∧D) 0x5A827999

Round2 (20-39) (B
⊕
C
⊕
D) 0x6ED9EBA1

Round3 (40-59) (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) 0x8F1BBCDC

Round4 (60-79) (B
⊕
C
⊕
D) 0xCA62C1D6

IHV0 P

Block 1

Block 1

Message M

Message M”

Block 2

Block 2

Output Hash

Col

Col

δIHV1 δIHV2 

Figure 3.3. Two blocks collision attack.

The procedure depends on finding a disturbance vector which includes a real path among

compression operations that lead to a collision. Disturbance vector is an (80 × 32) vector that

contains the modular differences between Message M and M̂ (so that it called differential attack).

Fig. 3.3 gives an explanation of two blocks collision attack. For both messages (M and M̂), the

differences are calculated after each step. These differences are constructed from the internal block

differences after each step computation. Each difference must meet predefined conditions, once met

the block difference is added to the disturbance vector. For more details about disturbance vector

and differential attack, we refer to [11, 5, 15].

3.2.3. Threat Model

The threat model is the general data flow from attacker perspective. Fig. 3.4 shows a

general thread model for a document that contains essential information. A user, through operating

system process, digitally signs a document. This signature is the SHA-1 hash of the document.

The document is sent through Internet to a third party. The attacker in the middle crafted a
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Figure 3.4. Threat model of the proposed system

message to produce the same hash value with different information than the original owner. The

third-party user receives the document for verification. The document from the attacker is verified

and authorized as it contains a valid hash value.

3.3. Literature Review

The first differential attack was proposed by Chabaud and Joux [16]. They were the first

to introduce the idea of differential path taking the XOR differences between messages, as seen in

Fig. 3.5. Their work was applied on two message’s blocks, and the XOR difference is calculated

after each round of computations. The messages were prone to collision by reducing the XOR

difference, ∆2 = 0. Another convenient approach, was the work presented by Wang et al. [17].

Wang presented an attack on different hash functions (MD4, MD5, HAVAL, RIPEMD and SHA-

0), they were able to break all of them. The attack was basically dependent on modular difference

(not the XOR difference previously proposed in [16]). Also, using message modification techniques,

these differences were made equal to zero. The result was a feasible attack on all aforesaid hash

functions. On the other hand, in [5] Wang et al. proposed an improved version of the previously

proposed attack on the SHA-0 by building the differential path according to pre-specified conditions.

Manuel et al. in [18] proposed an attack on the SHA-0 within one hour. The work relied

on the same concept of differential attack from [17]. The author got benefited from the Boomerang

Attack by finding optimal differential vector rather than the one used by Wang et al. The proposed

work found an attack with a claimed complexity of 233.5, and one hour of operation to get the final
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Figure 3.5. The general concept of the differential attack.

hashes, neglecting the time used to compute the optimal differential vector. Following the same

approach, Wang et al. in [11] announced a new collision attack on full SHA-1 with complexity of

269. Their approach depends on the previous research on the SHA-0 and MD5, which uses the

differential path of modular differences to construct a disturbance vector.

The big contribution on this area was the work done by Marc et al. [19]. Their work lead

to the real collision attack on the SHA-1. The work was the base for the collision attack on the

SHA-1 that has been lately published [6]. The attack generates two different pdf files that have

the same hash.

The efforts to counter the collision attack were discussed in few literature [20, 12, 21]. In [20]

a method for detecting and preventing collision of hashes during data transmission was presented.

The authors registered their findings as a patent with number: US8, 086, 860−B2. The proposed

work comprises four steps: shuffling of bits, compression, T-functioning, and linear feedback shift

registration (LFSR). The framework adds more haphazardness to the produced hash information

to avoid collision. Notwithstanding, the produced hashes differ from if they were generated from

the original SHA-1, regardless of whether the original hash out of collision-suspicious. Stevens et

al. in [12] proposed an algorithm to detect the occurrence of collision for the Flame attack. Flame

attack is a kind of collision that is used to breach windows update patch. Their work depends on

previous published disturbance vectors that leads to a collision attack. The authors used the top

published disturbance vectors to detect the collision before it takes place and invalidates the output

hash once the message is marked as a suspicious one. The proposed work is compatible with the
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MD5 and SHA-1 hash standards. lately, Stevens et al. in [21] proposed a speedup mechanism to

detect the collision attack on the SHA-1 based on unavoidable bit condition. Their work leads to

a significant speedup over the previous proposed work [12]. The claimed speed is 1.96 times slower

than the original SHA-1 compression function.

The main goal of our work is to protect the entities that still use the SHA-1 hash function in

their architectures. For backward compatibility there is a need to detect collisions for the SHA-1.

3.4. Proposed Methodology

The idea of counter collision attack is depicted in Fig. 3.6. The input message is processed

and checked using collision detection mechanism, which we will be discuss later in this section. Once

the algorithm returns true, then the output hash will be the truncated SHA-512/160, otherwise

the regular SHA-1 hash will be passed to the output.

M

Collision 

Detection

SHA-1SHA-512/160

NoYes

Figure 3.6. General architecture for the improved SHA-1

Collision detection algorithm returns True if a collision attack is detected, and false oth-

erwise. Once a message that crafted using a collision attack is detected, then the algorithm will

decline the hash output from the regular SHA-1. In our design, we chose the SHA2-512 to replace

the hash calculation of the weak messages, because the SHA2-512 is the strongest version of SHA-2

standard. Moreover, the SHA-2 standard follows the same construction model as the SHA-1 [22].

3.4.1. Proposed Work

We are presenting two approaches for counter collision attack. The first one relies on Marc

Stevens approach, which presented in [12]. The second design is our proposal. But before we
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go through the details of both approaches, an important insights about the backward expansion

equation needs to be addressed. The backward expansion equation plays a major rule in both

approaches.

3.4.1.1. Backward Expansion Equation

The backward expansion equation was defined by Manuel et al. in [23]. The expansion of a

message can be calculated by either side (forward or backward), and the initial hash value (IHV) can

be extracted if sufficient working state variables are available. Equation (3.2) shows the backward

expansion equation, it uses the same number of terms as the forward expansion equation (3.1), as

described in Section 2. The backward expansion equation expands in backward direction to obtain

W−64,...,W−1 .

Wi−16 = RR(Wt, 1)⊕Wt−3 ⊕Wt−8 ⊕Wt−14. (3.2)

Where t takes the values between 16 6 t 6 79.

When both expansion equations (backward and forward) combined together, 144 words of

32-bit are constructed as follow:

W−64, ...,W−1,W0, ...,W15,W16, ...,W79.

According to the aforesaid combination, any sequence, of eighty consecutive 32-bit words, is a valid

expansion vector [23].

3.4.1.2. First Approach (Employing Marc Stevens’s Mechanism)

The first design, we employ the approach presented by Marc et al. in [12]. Fig. 3.7 shows the

general structure of the Marc Stevens Mechanism. The process starts with any IHVk (no need to

be the first one). IHVk is passed to the working state variable1. After processing the working state

variables of the corresponding round, the IHVk+1 is obtained. Processing steps include: message

expansion, 80-steps compression function calculation and message differences comparison. After

each step, the value WSi is used alongside with the values of tuple ((δBi, δWSi, i)) to generate the

sibling message M̂ . Where δBi is the block difference in step i, δWSi is the working state difference

, i is the current step. For each possible combination of triples (δB, i, δWSi), the sibling message

M̂i is extracted. From the extracted sibling message M̂i, the compression function calculations are

1Marc et. al. called them WSs, and we pointed to them with letters A, B, C, D, and E

81



carried out to compute IHVk+1'. Then, both values IHVk+1' and IHVk+1 are compared together

for equality. Once the two values of IHVk+1 and IHVk+1' are equal, then the original message is

crafted with a collision attack and the output hash will be declined. After that, for the messages

that give a match possibility for their hashes, the SHA-512 truncated to 160 is computed for both

messages to get different hash values.

IHVk

WS0

WSi

WSs

IHVk+1

Check

(ΔBi , ΔWSi , i)

M

IHV'k

WS'i

WS's

IHV'k+1

M' 

Figure 3.7. First approach: Marc Stevens collision detection mechanism.

3.4.1.3. Second Approach (Our Proposal)

According to Wang et al., all disturbance vectors were built on the two blocks near col-

lision [11]. We can get benefited from this idea and instead of comparing the block differences
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after each step in the compression calculation (as stated by Marc Stevens), we propose the idea in

Fig. 3.8. The methodology goes through the compression calculations for two blocks. The process

starts with IHV0, through 80-steps calculation compression function, to calculate IHV1. IHV1 is

used as an input to the second block calculation to get IHV2. For messages that were crafted with

a collision attack, the backward computation of IHV2' = δIHV + IHV2 produces IHV0' equal to

IHV0. Therefore, for all previously published disturbances, the output values of the second block

are added to the values of each disturbance vector (δIHV ), one at a time. Then calculate the

backward expansion equation as depicted in (3.3). Applying backward expansion equation gives us

the new value IHV0' that is compared with the original IHV0. If both values (IHV0 and IHV0')

are equal, then a collision is detected. Instead of declining the output, the truncated SHA-512/160

is calculated to replace the hash value of the weak message.

Wi−16 = RR(Wt, 1)⊕Wt−3 ⊕Wt−8 ⊕Wt−14 (3.3)

In the second approach, instead of reproducing the message M ', we only generate the initial

hash value of the sibling message without any need to have the message itself or having the IHVk+1.

This saves time and can be used to search for message siblings that might collide with the original

one.

3.5. Results and Discussions

Both of the above-mentioned approaches were tested and verified for part of published

disturbance vectors. Regarding the disturbance vectors that previously published by Wang et. al.

[11], both algorithms work and produce a hash value SHA-512/160 for the the messages that were

crafted using the selected disturbance vectors.

Table 3.2 represents two messages that collide and produce the same output hash after

58-steps of calculations. Our proposed designs can be applied for the shown messages. After

applying the collision detection approaches, we were able to detect the collision possibility between

the two messages. In spite of the two input messages look close to each other with minor changes.

Tables 3.3 and 3.4 represent the hash values for the two PDF files that were reported by Marc et

al. as an example of real SHA-1 collision. The two files are available for open access in [24], and

the result of computing the SHA-1 hash for both of them leads to the same output. After applying
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Figure 3.8. The proposed collision detection approach.

the collision detection mechanisms for the two files, a collision warning is generated for the regular

hash calculation. Then, the truncated SHA-512 to 160 hash value will be produced instead the

SHA-1 value.

For the proposed schemes, it is possible to add more disturbance vectors to the detection

algorithms whenever any new published vector leads to a collision. Moreover, each disturbance

vector has a probability of order 2−70 false positive occurrence [12], where a message is considered

a weak while it is not. But, with such probability, the false positive occurrence is negligible. The

designs were tested on laptop computer with Intel(R) Core (TM) i7-2640M CPU @ 2.80GHz and

8GB of RAM Under Linux (Ubuntu 18.04 LTS) platform. The testing codes were written under C
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Table 3.2. Example of two messages that collide at step 58 (all values are in Hexadecimal format)

Message Hexadecimal representation

M :

132b5ab6 a115775f 5bfddd6b 4dc470eb

0637938a 6cceb733 0c86a386 68080139

534047a4 a42fc29a 06085121 a3131f73

ad5da5cf 13375402 40bdc7c2 d5a839e2

M
′
:

332b5ab6 c115776d 3bfddd28 6dc470ab

e63793c8 0cceb731 8c86a387 68080119

534047a7 e42fc2c8 46085161 43131f21

0d5da5cf 93375442 60bdc7c3 f5a83982

Hash : 9768e739 b662af82 a0137d3e 918747cf c8ceb7d4

Table 3.3. SHA-1 values of two pdf files reported by Marc. et. al.

File name Hash value

shattered-1.pdf : 38762cf7 f55934b3 4d179ae6 a4c80cad ccbb7f0a

shattered-2.pdf : 38762cf7 f55934b3 4d179ae6 a4c80cad ccbb7f0a

programming language. To validate our scheme an example with a real collided messages that were

built with collision attacks are fed to the designs to test the validity of the system. We were able

to detect the collision and produce collision-free hash values for the weak messages, as depicted in

Tables 3.2, 3.3, and 3.4.

3.6. Conclusions

In this chapter, we presented two methods to improve the SHA-1 standard against colli-

sion attack. The first design relies on Stevens’s approach for detecting the SHA-1 collision at-

tack, in which the input message is checked against collision possibility according to three values

(δWs, δBi, i). These values belong to the previously published works of disturbance vectors that

lead to a collision. After each round, the system is checked for the aforesaid three values that are

used to extract the sibling message from a given one. Finally, compares IHVk+1 ,IHVk+1' of both

messages, if they were equal then the original message is crafted with collision forgery. The second

approach is based on two blocks collision and the backward expansion equation. The initial hash

value (IHV0) is processed using 80 steps compression function. Then applying backward expansion

equation to get the IHV0'. For the messages that are crafted with collision attack, both IHV0

85



Table 3.4. SHA-1 (SHA-512/160) using the proposed design

File name Hash value

shattered-1.pdf : 42180282 5d3587fe 185abf70 9669bb96 93f6b416

shattered-2.pdf : 1af8b65d 6a0c1032 e00e48ac e0b4705e edcc1bab

and IHV0' will be equal. The truncated SHA-512/160 is suggested to replace suspicious message’s

hashes.
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4. THE SPONGE STRUCTURE MODULATION

APPLICATION TO OVERCOME THE SECURITY

BREACHES FOR THE MD5 AND SHA-1 HASH

FUNCTIONS

4.1. Introduction

Secure Hash Algorithm (SHA) is the most popular cryptography technique for message

authentication and verification. The SHA functions were standardized by the National Institute of

Standards and Technology (NIST). SHA standards follow different structure models to construct the

compression function. The most popular hash standards follow Merckle-Damgard (MD) and Sponge

structure models. Where, MD4, MD5, SHA-1, and SHA-2 standards follow the MD structure, While

SHA-3 hash standard follows Sponge structure model.

MD4 developed by Rivest in 1990 [1], then it was replaced by MD5 in 1991 [2]. Both MD4

and MD5 maintain 128-bit hash output with 512-bit block size. For security issues and early signs

of collision attack, MD5 was replaced by the SHA-1 in 1993 with 160-bit hash and 512-bit block

size [3].

In 2001 SHA-2 was developed and standardized by the NIST as the next version of the se-

cure hash algorithm that follows the same structure model (MD). SHA-2 has six different flavours

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 [4]. Then in 2012, NIST

announced the next SHA-3 standard Keccak, which was selected by a competition between 63 com-

petitors through three rounds of selection. Keccak was standardized as the SHA-3 hash standard

comprises six flavors, four fixed and two extensible size hashes [5].

Three challenges exist to verify the completeness of any hash standard: preimage, 2nd

preimage and collision resistance. Preimage resistance property means to easily obtain the hash

from a given message, but difficult to extract it back from a given hash. 2nd preimage resistance

The content of this chapter has been published in the IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC2019). The material in this chapter was co-authored by Zeyad Al-Odat and Samee Khan.
Zeyad Al-Odat had primary responsibility for conducting experiments and collecting results. Zeyad Al-Odat was the
primary developer of the conclusions that are advanced here. Zeyad Al-Odat also drafted and revised all versions of
this chapter. Samee Khan drafted, revised all versions of this chapter, and served as proofreader.

89



means that it is difficult to find two messages M1 and M2 generate the same Hash. While collision

resistance property means the resistant of the probability to generate the same output hash for two

messages or more, even though they are different or equal [6].

All secure hash algorithms were tested toward security properties of hash standards, es-

pecially collision resistance property. MD5 hash standard was fully exposed to collision attack in

2005 by Wang et al. [7]. their work was the first published work that provided a collision example

of full MD5. In their work, they used the modular difference technique to construct their attack.

More details will be presented in Section 4.3.

The security analysis of the SHA-1 hash standard, against collision attack, was also explored

by different publications [8, 9]. Using the concept of modular difference to construct collision path,

Wang et al. in [8], theoretically, succeeded to find collision attack on full SHA-1. Recently, in 2017,

Stevens et al. found the first real example of messages that collided when processed using SHA-1

compression function.

However, the secure hash algorithms (MD5 and SHA-1) are still be used by different entities,

particularly the SHA-1. Therefore, the efforts of researchers and developers were employed to

overcome the collision dilemma which prone systems and applications into a serious security breach.

This chapter analyzes the collision and length extension attacks of the secure hash al-

gorithms, MD5 and SHA-1. The analysis is carried out by testing several examples of collided

messages that were generated by the help of ChameleonCloud which is a configurable experimental

environment for large-scale cloud research [10]. This chapter presents a versatile modification to

the compression functions of MD5 and SHA-1 to counter the collision and length extension attacks.

The modification employs the internal round functions of the Keccak hash standard. Yet, Keccak

is the most secure hash standard against security breaches. The strength of Keccak comes from

the sturdiness of the compression function of Keccak standard [11].

The rest of chapter is organized as follows: Section 2 presents background information

related to the subject of the chapter. Section 3 presents the literature review of the previous works.

Section 4 shows the proposed work. results and discussions are presented in section 5. Section 6

concludes the chapter.
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4.2. Background

Before going through the details of our proposal, a brief description of secure hash algorithm

standards and collision attack will be presented. In addition, we collected all notations that are

used in this chapter in Table. 4.1.

Table 4.1. Notations of the modified MD5 and SHA-1 structure

Symbols Meaning

IHV Initial Hash Value

WS Working State Variables

⊕,≪ XOR, Shift left

[x, y] state matrix parameters. Take values 0,1,2,3,4

ROT Rotate left operation

f Permutation function

θ Theta step of the SHA-3 compression function

ρ Rho step of the SHA-3 compression function

π Pi step of the SHA-3 compression function

χ Chi step of the SHA-3 compression function

ι Iota step of the SHA-3 compression function

b State matrix size

r Bit rate which equal to the message block size

c Capacity, where b = r + c.

4.2.1. Brief Description of Secure Hash Algorithms

Secure hash algorithms accept a message of predefined size, then through several steps of

compression function calculations, the output hash is produced. Table 4.2 shows different hash

standards and their corresponding parameters.

For MD hash standards, the maximum message size that each algorithm accepts is depend-

ing on the block size, where the 512-bit block size accepts messages of size less than 264, while

the others accept a message size of 2128-bit. However, the SHA-3 (Keccak) hash standard accepts

messages of unlimited (UL) size. The Table shows that SHA-3 supports the same hash lengths

that SHA-2 supports beside to two extensible output hashes SHAKE-128 and SHAKE-256. But,
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Table 4.2. The MD5, SHA-1, SHA-2, and SHA-3 corresponding parameters

SHA Family

Algorithm Hash Size/bit Block Size/bit Msg Size/bit #Round

MD5 128 512 < 264 64

SHA-1 160 512 < 264 80

SHA2

224 224 512 < 264 64

256 256 512 < 264 64

384 384 1024 < 2128 80

512 512 1024 < 2128 80

512/224 224 1024 < 2128 80

512/256 256 1024 < 2128 80

SHA3

224 224 1152 UL 24

256 256 1088 UL 24

384 384 832 UL 24

512 512 576 UL 24

SHAKE-128 Arbitrary 1344 UL 24

SHAKE-256 Arbitrary 1088 UL 24

the block sizes that SHA-3 incorporate are different from the block sizes that SHA-2 incorporated.

Moreover, the number of internal rounds of SHA-3 is different from the MD hash standards rounds,

this is because of the difference in the nature between the MD and Sponge structures. The Only

hash standard that provides a variable hash output is the SHA-31.

All hash standards perform pre-processing steps before starting the compression function

calculations. These pre-processing steps summarized as follows:

• Message padding. In this phase, the message is padded with a sufficient number of zeros to

make the message size divisible by the message’s block-size. However, in the case of Sponge

structure, the padding process is carried out according to the state size. where the state size

is equal 1600-bit for the 24 rounds.

1Whenever we mention SHA-3 in this chapter, it implicitly means Keccak.
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• Message divide. After the message padding phase, the message is divided into equal size

blocks, each of size equal to block size. However, in the case of SHA-3, the message is divided

according to the state size (b).

• Compression function calculation. The message’s blocks are processed sequentially, one at

a time, using the round compression functions according to the used hash. Each block is

processed a number of times equal to the number of rounds according to the desired hash

function. The output of each block is fed as an input to the second block, after finishing all

blocks.

• Output hash generation. After processing all message’s blocks, the output hash is taken the

concatenation of part or all of the output of the last block calculation round. However, the

SHA-3 provides diversity to select the output hash, where the output of each block can be

squeezed more time during the same round.

For more details about secure hash algorithms and their compression functions, the reader is referred

to [5].

4.2.2. Sponge Structure Model

In Sponge structure model, the data are absorbed in and squeezed out using permutation

function. Each block is processed as state matrix and divided into two parts, the bit rate part which

denoted by r, and the capacity part which denoted by c. The sum of the two values r+c = b, where

r is equal to the block size. The state matrix is initialized with zeros then the message blocks (pi)

are processed sequentially as shown in Fig. 4.1. After processing all steps the output hash is taken

from any output zi, according to the desired hash.

4.3. Related Work

Because the MD structure model was prone to security breaches, the researches try to

protect hash standards that follow MD structure, particularly MD5 and SHA-1. For instance,

collision attack and length extension attack are considered as main security issues that threaten

the MD hash standards (MD4, MD5, SHA-1, and SHA-2).

MD5 and SHA-1 hash standards were exposed to collision attack by Wang et al. [12, 8].

They presented a novel technique to construct the first collision attack of MD5 and SHA-1. They

used a modular difference technique to build a disturbance vector that leads to a path for collision.

93



Fig. 1. Sponge Construction [4]

are xored with the first r bits of the state, interleaved with applications of
the function f (called Keccak-f in the specification). The absorbing phase is
finished when all message blocks have been processed. In the second phase (also
called the squeezing phase), the first r bits of the state are returned as part of
the output bits, interleaved with applications of the function f . The squeezing
phase is finished after the desired length of output digest has been produced.

The default values for Keccak are r = 1024, c = 576, which gives 1600-
bit state. Keccak can also operate on smaller states but through the whole
paper we always refer to the default variant with 1600-bit state. The state can
be visualised as an array of 5×5 lanes, each lane is 64-bit long. The state size
determines the number of rounds in Keccak-f function. For the default 1600-
bit state there are 24 rounds. All rounds are the same except for constants which
are different for each round.

Below there is a pseudo-code of the single round. In the latter part of the
paper, we often refer to the algorithm steps (denoted by Greek letters) described
in the following pseudo-code.

Round(A,RC) {

θ step

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor A[x,4], forall x in (0...4)

D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)

A[x,y] = A[x,y] xor D[x], forall (x,y) in (0...4,0...4)

ρ and π steps forall (x,y) in (0...4,0...4)

Figure 4.1. Sponge structure

Their work was supported with examples of two blocks messages that have the same hash value.

Then in 2017, Stevens et al. presented the first real example of collided messages that have the

same SHA-1 value [9]. Their work built upon the idea of the differential attack that Wang et al.

came up with. After the announcement of the first real example of collision attack, many entities

dropped SHA-1 from their systems, and they tried to find the best replacement to the SHA-1.

However, The SHA-1 and MD5 are still be used by some entities.

To support the entities that still using the weak hash standards, many researchers suggest

different replacements and modifications to overcome the collision issue. Two approaches were

adopted by the researches. The first approach detects the possibility of a collision before it takes

place. While the second approach improves the weak hash standards. The first approach was

presented by different publications [13, 14, 6]. Stevens et al. developed a novel technique to

detect the possibility of a collision attack toward the SHA-1. They got benefited from different

disturbance vectors that are used to build a collision attack. The proposed technique was able

to detect the occurrence of collision among the used disturbance vectors. The authors used the

top 32 vectors that have a high possibility to establish a collision when they are employed [13].

The authors in [14] used the technique of unavoidable bit conditions to speed up the detection of

collision attack. They built upon the work of Stevens et al., and they were able to get better speed

than the previous technique. Both of the aforesaid techniques build a sibling message from a given

message and carry out the calculations for both massages for all possibilities. However Alodat et al.

in [6] proposed a new technique to detect the collision attack using the idea of two block collision.
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Authors claimed that any collision attack built upon two block collision attack, and if we are able

to detect the collision of the first two blocks then we will save time and efforts. Then to speed up

the detection process the authors constructed their design without any need to build the sibling of

a given message.

On another hand, the second approach was adopted by many publications [15, 16, 17,

18]. Instead of detecting the collision attack the researchers of the second approach worked on

improving the weak hash functions. Hakim et al. in [15] proposed improvement for the MD hash

standards. They worked on combining the MD5 and SHA-256 hash functions in one design. The

authors changed the expansion equation of the SHA-256 to add more randomness to the proposed

scheme. In their work, the structure of MD5 standards was used twice and fed back as an input

to the SHA-256 function. Rogel et al. proposed a modified version of the SHA-1 by changing

adding multiplexer box in the internal calculation of the intermediate hash value [17]. Moreover,

Authors in [18] presented a new architecture that used the Sponge structure model to construct a

secure hash standard. The proposed design (Titanium) was able to produce a 576-bit hash, which

considered as a new hash length that the other hash standards do not have.

The other threat that makes the MD structure model vulnerable is the length extension at-

tacks. This attack exposed many hash standards including MD5, SHA-1, SHA-256, and SHA-512.

This kind of attack threatens the Message Authentication Code (MAC) with the hash standards

by generating a valid hash value without any need to know the secret code [19]. Some published

and online publications proved the inability of the MD structure model against length extension at-

tack [20, 21]. Where the attacker intercepts the sender message and makes the proper modifications

without the receiver notice of that modifications even though using the hash function.

In this chapter, we used the Sponge structure model to construct the MD5 and SHA-1 hash

functions. Moreover, the internal structure of the Keccak hash function will be employed in our

scheme.

4.4. Proposed Methodology

We propose a Sponge structure implementation for the MD5 and SHA-1 hash functions. A

pre-processing is accomplished before starting with the Sponge operations (absorb and squeeze).

The message is padded first using 10 ∗ 1 technique, where 1 is added at the end of the message

and followed by a sufficient number of zeros then ended with 1. The final message size needs to
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be multiple of block size Pi. Afterward, the message is divided into equal size blocks (Pi) each of

r bits [5]. Notice that, the padding technique here is different from the technique used in the MD

structure.

According to the Sponge structure, the message goes into two phases, the absorb and

squeeze phases. In the absorbing phase, the state of b-bit is initialized with 0’s, where each state

is represented by two values, bit-rate (r) and capacity (c), where, r is the block size Pi, and c

complete the state size to 1600-bit. The XOR operations are carried out for the message blocks Pi

with r bits of the state. A permutation function f is applied to get next state value [11]. For our

proposal, we set r = 576 and c = 1024. In the squeezing phase, the output hash (z) is taken from

the least significant bits of z0 according to the corresponding hash size (128, 160). Where 128 is

the MD5 digest and 160 is the SHA-1 digest.

The permutation function consists of five steps represented by Greek symbols, Theta (θ),

Rho (ρ), Pi (π), Chi (χ), and Iota (ι).

Theta (θ) step.

This step operates on a 3D-Array (5× 5× 64) as shown in Fig. 4.2. A single 5× 5 array is

a slice, where the 1D-array, toward z axis, of 64 bits is a lane. Theta step manipulates the state

array according to 4.1, 4.2, and 4.3. Where C[x] and D[x] represent lanes and A[x, y] represents

slice. Theta computes the parity of each column, then combines them with the XOR operator.

C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4], (4.1)

D[x] = C[x− 1]⊕ROT (C[X + 1], 1), (4.2)

A[x, y] = A[x, y]⊕D[x], (4.3)

where x = 0, 1, 2, 3, 4 for all cases.
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Figure 4.2. Theta step

Rho (ρ) step

In this step, one element (lane) of the state matrix A[x, y] is rotated by i-bit, as seen in

Eq. 4.4. The rotation offset value denoted by r[x, y] is a constant value assigned according to

Table 4.3.

step(ρ) = ROT (A[x, y], r[x, y]) (4.4)

Table 4.3. Values of constants r[x,y] in the Rho step

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 13
y = 1 55 20 36 44 6
y = 0 28 27 0 1 62
y = 4 56 14 18 2 61
y = 3 21 8 41 54 15

Pi (π) Step

Pi step is a complement to rho step, where it takes the rotated lanes from rho step and

put them in different positions in the array matrix (B[x, y]), without modifying any value. It only

permutes the matrix according to 4.5,

B[y, 2x+ 3y] = ROT (A[x, y], r[x, y]), (4.5)
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where x, y = 0, 1, 2, 3, 4.

Chi (χ) Step

In this step the B matrix, that was generated from the previous step, is manipulated and

put the result back in array matrix A according to Eq. 4.6.

A[x, y] = B[x, y]⊕ ((B̄[x+ 1, y]) ∧B[x+ 2, y]), (4.6)

where x, y = 0, 1, 2, 3, 4, ∧ bit-wise AND operation, and B̄[] is the bit-wise NEGATION of lane.

Iota (ι) Step

Iota step adds the round constant RC[i] to the state matrix A at location A[0, 0] according

to 4.7, where each round has a distinct 64-bit round constant.

A[0, 0] = A[0, 0]⊕RC[i], (4.7)

where RC[i] is a round constant.

The above permutation steps (θ, ρ, π, χ, and ι) are carried out for 24 rounds. Each round

has a distinct round constant RC[i] and their values are assigned according to Table 4.4.

Table 4.4. Iota step round constants

RC[i] starting from RC[0] to RC[23] from left to right top to down.

0x0000000000000001 0x000000008000808B
0x0000000000008082 0x800000000000008B
0x800000000000808A 0x8000000000008089
0x8000000080008000 0x8000000000008003
0x000000000000808B 0x8000000000008002
0x0000000080000001 0x8000000000000080
0x8000000080008081 0x000000000000800A
0x8000000000008009 0x800000008000000A
0x000000000000008A 0x8000000080008081
0x0000000000000088 0x8000000000008080
0x0000000080008009 0x0000000080000001
0x000000008000000A 0x8000000080008008
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Figure 4.3. Internal round of the compression function.

Fig 4.3 shows the integration between the five permutation steps and the compression components.

The input state consists of r and c values which together conform the b = 1600 value. The input

message’s block pi is processed using the permutation functions for 24 times. Afterward, the output

b value is fed as IHV to the next state calculations.

4.5. Results and Discussions

The Sponge structure modulation helps to protect the MD5 and SHA-1 hash standards.

Two main security breaches are considered for analysis, collision and length-extension attacks.

The experiments were tested using a configurable experimental environment for large-scale cloud

research, Chameleon [22]. Where all message samples and testing results were generated on the

Chameleon environment. Readers can access all codes, datasets, and other artifacts by referring

to [23].

4.5.1. Collision Attack

To test the validity of the proposed scheme, we prepared real examples of collided messages

that produce the same hash value. Fig. 4.4 shows two examples of collided messages. Fig. 4.4-a and

Fig. 4.4-b are two bank checks that have different information and produce the same SHA-1 value.

While, Fig. 4.4-c and Fig. 4.4-d are two different text with the same MD5 hash. Table 4.5 shows

the corresponding hash values for each figure. The SHA-1 value for Fig. 4.4-a and Fig. 4.4-b are

equal, but when we applied our proposal we were able to produce different hash values. Moreover,

the MD5 hash values for Fig. 4.4-c and Fig. 4.4-d are the same, but with our proposal the MD5

values are different.
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Table 4.5. Two examples of PDF files that have the same SHA-1 value.

SHA-1

Fig.4.4-a
SHA-1: eda6de91-e04bcf93-342c63ee-c7de45b4-720e4a9e

proposed: e4667d12-70318267-b8612f69-1100285e-f5fbbd29

Fig.4.4-b
SHA-1: eda6de91-e04bcf93-342c63ee-c7de45b4-720e4a9e

proposed: a6f02b7a-b36964ae-664d5676-70eb1492-f93fcaa4

MD5

Fig.4.4-c
MD5: 39885429-fe2761b1-0b263b34-8dfdd1b2

Proposed: 75a40711-19b15b99-6eaca068-4d57341b

Fig.4.4-d
MD5: 39885429-fe2761b1-0b263b34-8dfdd1b2

Proposed: 288eb391-cb79b77e-c97a0ea9-f3c78274

4.5.2. Length Extension Attack

Length extension attack not only targeted MD5 and SHA-1 hash functions but all MD

structure hashes. One of the main contributions of the proposed scheme is to protect the MD5 and

SHA-1 against length extension attack by modulates both functions using Sponge structure.

The attacker uses the padding technique of MD structure models to produce a successful

length extension attack. Where the MD-structure padding ends with the message length, the

attacker starts from where the padding has ended and continues to add more zeros and the modified

information then append the new hash value. Because the receiver deals with payload and hash,

he is unable to detect the alteration, because the received information matches the received hash.

Table 4.6 shows example of money transactions between client and server. The hash value

has three phases: the client hash phase which represented by MD5 1 and SHA1 1, the after-

attack hash phase which represented by MD5 2 and SHA1 2, and the server hash phase which

represented by MD5 3 and SHA1 3. The hash value in the client side is computed by hashing

the concatenation of account from ‖ account to ‖ amount values. The attacker intercepts the

transaction and performs the length extension attack by appending 5 to the transaction to make

the amount equal to 105. The new hash is appended to the modified message and resent to the

server. At the server side, the received message is hashed and compared with the new hash value.

Then the transaction is approved by the server and the process completed.
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(a) (b)

(c)Tue Feb 12 19:48:11 2019 1

00000000: 4b48 414e f37e 2764 2643 5c93 fb5c 0341  KHAN.˜’d&C\..\.A

00000010: c362 cdc0 849c 7796 0753 5858 ebc2 e4ba  .b....w..SXX....

00000020: 1852 e7e5 42b2 c0f5 84ec 7890 bd58 f540  .R..B.....x..X.@

00000030: 6095 2f99 9a52 bbe1 a9fa 1c5a d678 eaa0  ‘./..R.....Z.x..

00000040: 4c20 f77f d070 dacd 0f42 e71f 3dc1 7232  L ...p...B..=.r2

00000050: e618 51fa 2247 2c56 a1ec 2e3f 4a80 c914  ..Q."G,V...?J...

00000060: 416b 8cf0 a78c bb56 8823 024d d577 59cc  Ak.....V.#.M.wY.

00000070: 01c4 8d10 f142 1387 c26e c4f4 d673 4c02  .....B...n...sL.

(d)Tue Feb 12 19:48:01 2019 1

00000000: 4b48 41ce f37e 2764 2643 5c93 fb5c 0341  KHA..˜’d&C\..\.A

00000010: c362 cdc0 849c 7796 0753 58d8 ebc2 e4ba  .b....w..SX.....

00000020: 1852 e7e5 42b2 c0f5 84ec 7890 bd58 f540  .R..B.....x..X.@

00000030: 6095 2f99 9a52 bbe9 a9fa 1c5a d678 eaa0  ‘./..R.....Z.x..

00000040: 4c20 f7ff d070 dacd 0f42 e71f 3dc1 7232  L ...p...B..=.r2

00000050: e618 51fa 2247 2c56 a1ec 2ebf 4a80 c914  ..Q."G,V....J...

00000060: 416b 8cf0 a78c bb56 8823 024d d577 59cc  Ak.....V.#.M.wY.

00000070: 01c4 8d10 f142 137f c26e c4f4 d673 4c02  .....B...n...sL.

Figure 4.4. Two examples of collided real examples. (a) and (b) belong to SHA-1 collision. (c)
and (d) belong to MD5 collision, where to the left of each text is the corresponding Hexadecimal
equivalent.

Table 4.6. Length extension attack bank transaction example

account from account to amount append

Digest 123456 112233 100 5

MD5 1 6036708eba0d11f6ef52ad44e8b74d5b

MD5 2 8c792805248678cfd72c2a99298748d1

MD5 3 8c792805248678cfd72c2a99298748d1

SHA1 1 a65181853e5a1b94b4c7a84b7fc561bdcb9b75e8

SHA1 2 281385ea5e434561b439dbe4e2417d83fac16833

SHA1 3 281385ea5e434561b439dbe4e2417d83fac16833

However, this kind of attack is weak against of Sponge structure model. The message size

is not appended to the end of the message in the padding phase, so that, the attacker has no clue

about the message size or the amount of extension needed. Our design is strong against length

extension attack because we used the Sponge structure. Moreover, different padding technique in

the prepossessing phase was carried out.
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4.6. Conclusions

In this chapter, a Sponge structure modulation for the MD5 and SHA-1 is presented. The

proposed design helps to solve the weaknesses of the MD5 and SHA-1 against security breaches.

We investigated our proposal toward collision and length extension attacks. The results showed

that the proposed design is resistant to the aforesaid attacks. The strength of our design comes

from the strength of the Sponge structure, where the internal permutation function manipulates

the data many times with five different steps (θ, ρ, π, χ, ι).
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5. A MODIFIED SECURE HASH ALGORITHM

ARCHITECTURE TO CIRCUMVENT COLLISION AND

LENGTH EXTENSION ATTACKS

5.1. Introduction

Secure Hash Algorithm (SHA) is one of the most used cryptography primitives. The SHA

is used for the digital signature authentication. SHA was incorporated into National Institute of

Standard and Technology (NIST) since 1991. Thereafter, to give the hash standards a formal form,

all SHAs were standardized by the NIST [1, 2, 3]. Hash standards began their construction by

following Merckle-Damgard (MD) structure-model. In the MD model, the message is divided into

blocks, compressed with compression function, and represented by a fixed size output digest [4].

MD4, MD5, SHA-1, and SHA-2 hash standards follow the MD model[4]. However, each one of them

has its compression functions and variables. Due to the collision attack threat, NIST decided to

hold a competition to find a successor hash standard. After three stages of the competition, Keccak

won the competition and was announced as the new SHA-3 standard [5]. Keccak follows sponge

(absorb-squeeze) structure model, where the data are absorbed in and squeezed out. The authors

of the Keccak added two variable-length hash flavors, which are not available before, SHAKE-128

and SHAKE-256. Also, Keccak supports fixed-size hashes (224, 256, 384 and 512) as SHA-2 [6].

Different publications proved that MD4, MD5, and SHA-1 hash standards were exposed to

collision attack [7, 8, 9, 10, 11]. Wang et al. in [8]. proved that SHA-1 is mathematically exposed

to a collision attack. Recently, Stevens et al. have built upon the arguments of Wang et al., and

found the first real example of two PDF files that collide to the same SHA-1 value [12]. Despite

that, SHA-1 is still used by different entities and applications (software and hardware). Therefore,

the need for an improved and mitigated version of the SHA-1 hash function is crucial, because,

The content of this chapter has been submitted to the IEEE Transactions on Information Forensics and Security.
The material in this chapter was co-authored by Zeyad Al-Odat and Samee Khan. Zeyad Al-Odat had primary
responsibility for conducting experiments and collecting results. Zeyad Al-Odat was the primary developer of the
conclusions that are advanced here. Zeyad Al-Odat also drafted and revised all versions of this chapter. Samee Khan
drafted, revised all versions of this chapter, and served as proofreader.
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replacing SHA-1 cost money and time, in addition to the hardware limitations to conform with new

hashes. So that we present this work to support entities that still using the SHA-1 in their system.

Because the SHA-1 and the SHA-2 standards are following the same construction model

(MD), and SHA-2 is strong against collision attack (no collision attack has announced for it). Then

modifying the SHA-1 with the principles of the SHA-2 will consolidate the SHA-1 against collision

attack either. Furthermore, the consolidation of the SHA-1 using the SHA-2 hash function will

strengthen the SHA-1 and preserve the general properties of the SHA-1, e.g., preserve the length of

the SHA-1 output to 160-bit. However, the length extension attack threats all MD structure hash

standards, including SHA-2. Therefore, a strong replacement that preserves the general structure

of the MD hash standards needs to be available.

This chapter presents an improvement for the SHA-1 and SHA-2 hash algorithms. This

improvement concentrates on the fusion between the SHA-1 and SHA-2. The main contributions

of this work are: outperform the SHA-1 and SHA-2 in term of performance metrics and produce

a strong version hash function that is strong against collision and length extension attacks. The

rest of chapter is organized as follows: Section 2 gives basic preliminaries related to our proposal.

Section 3 presents the literature review of the previous works. Section 4 shows the proposed work.

results and discussion in section 5. Section 6 concludes the chapter.

5.2. Preliminaries

Before going through the details of our proposal. The SHA-1, SHA-2, and testing methods

need to be addressed first. Brief descriptions about SHA-1, SHA-2, and testing metrics are carried

out in the subsequent text.

5.2.1. Brief Description of SHA-1

SHA-1 accepts a message of size less than 264. Before the message is processed, it needs to

be prepared first with padding. This includes adding ”1” at the end of the message, then appends

the least number of zeros until message size is congruent to 448/512. Then the message size is

appended at the end of the message as 64-bits. The input message is divided into equal size blocks,

each block size is 512-bit. Five working state variables (A,B,C,D,E) are initialized with fixed

Intermediate Hash Values (IHV 0). Each block is divided into 16 32-bit words, (m0,m1,...,m15).
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Then the message words are expanded using 5.1: for i = 16 to 79,

mi = (mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16)≪ 1, (5.1)

where ⊕ is the logical XOR operation, and ≪ 1 is the cyclic shift rotation to the left by 1-bit.

The expanded message words are processed as four groups. Each group consists of 20-steps,

round constant ki, and compression function f , as illustrated in Table 5.1.

Table 5.1. SHA-1 round functions and constants

Round and Steps
Round Function

f (B,C,D)
Round Constant

(ki)

Round1 (0-19) (B ∧ C) ∨ (¬B ∧D) 0x5A827999

Round2 (20-39) (B
⊕
C
⊕
D) 0x6ED9EBA1

Round3 (40-59) (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) 0x8F1BBCDC

Round4 (60-79) (B
⊕
C
⊕
D) 0xCA62C1D6

Figure 5.2 shows the block diagram of the SHA-1, where the working state variables change after

every step as follows:

For i = 1 to 80,

Ai = RL5(Ai−1)� Fi(Bi−1,Ci−1,Di−1)� Ei−1 �Wi �Ki

Bi = Ai−1

Ci = RL30(Bi−1)

Di = Ci−1

Ei = Di−1,

where A80||B80||C80||D80||E80, formulate the final hash value.

5.2.2. Brief Description of SHA-2

SHA-2 follows the same construction model as SHA-1. However, the message scheduler and

compression functions are different. Furthermore, SHA-2 supports four different flavors (224, 256,

384 and 512) in addition to two truncated versions of SHA-2/512. The SHA-2 employs 8 working
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state variables (A,B,C,D,E, F,G,H) each of size of 512-bit for 224 and 256 flavors, and 1024-bits

for 384 and 512 flavors. SHA-2 maintains 64 steps for 224 and 256 versions and 80 steps for the

others. Each step of the SHA-2 has a distinct constant value ki. After the message is divided into

equal size blocks, the expansion process takes place according to 5.2, 5.3, and 5.4.

σ0 = RRr1(Wt−15)⊕RRr2(Wt−15)⊕ SRr3(Wt−15), (5.2)

σ1 = RRq1(Wt−2)⊕RRq2(Wt−2)⊕ SRq3(Wt−2), (5.3)

Wt = Wt−16 + σ0 +Wt−7 + σ1 16 ≤ t ≤ n, (5.4)

where RRn(X) rotates word X to the right by n bits, and SRn(X) shift right word X by n bits.

For SHA-224 and SHA-256 n = 63, r1 = 7, r2 = 18, r3 = 3, q1 = 7, q2 = 19, and q3 = 10, while

n = 79, r1 = 1, r2 = 8, r3 = 7, q1 = 19, q2 = 61, and q3 = 6 for SHA-384 and SHA-512.

The compression function of the SHA-2 is computed according to 5.5, 5.6, 5.7, and 5.8.

These equations are applied for n times, according to the desired SHA-2 flavor.

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z), (5.5)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z), (5.6)∑
0
(x) = RRr1(x)⊕RRr2(x)⊕RRr3(x), (5.7)∑

1
(x) = RRq1(x)⊕RRq2(x)⊕RRq3(x), (5.8)

where σ0 and σ1 are the message expansion equations,
∑

0 and
∑

1 are the message manipulators

that are used inside the compression function. The values r1 = 2, r2 = 13, r3 = 22, q1 = 6,

q2 = 11, and q3 = 25 are for SHA-224 and SHA-256, while r1 = 28, r2 = 34, r3 = 39, q1 = 14,

q2 = 18, and q3 = 41 are for SHA-384 and SHA-512.

The working state variables (A,B,C,D,E, F,G,H) change after each step accordingly until

all steps have completed, as depicted in Figure 5.2. The figure shows the block diagram of the SHA-

2 hash standard and the working state variables chain-modification. After processing all blocks,
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the final hash is extracted from the concatenation of part or all working state variables, according

to the desired hash size [3].

5.2.3. Threat Model

Two main threats are related to our work, the collision attack and length extension attack.

The collision attack broke the MD5 and the SHA-1 hash functions, and the researches are going on

for the SHA-2 hash function and its corresponding flavors. The length extension attack exposes the

MD structures hash functions, e.g., the SHA-1 and SHA-2. This attack is directed to the Hashed

Message Authentication Code (HMAC) that is built upon the hash functions.

5.2.3.1. Collision Attack

IHV0 P

Block 1

Block 1

Message M

Message M”

Block 2

Block 2

Output Hash

Col

Col

δIHV1 δIHV2 

Figure 5.1. Collision attack of two different messages (M and M”)
.

Collision resistance is one of the secure hash algorithms properties [13]. If this property

is breached, then the corresponding hash function is exposed to a collision attack. This attack

is implemented to find two different messages that lead to the same output hash when they are

processed using the same hash function [14]. The first successful collision attack is the one that

was proposed by Wang et al. [8].

The implemented design was built upon the idea of modular differences of the internal

blocks of hash functions. Through these differences, the collision path is constructed in one vector

called the disturbance vector [8]. Figure 5.1 shows the construction of a disturbance vector from

the modular differences between two messages (M ,M”) where each one of them consists of two
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blocks (Block1, Block2). Both messages started with the same prefix (p) and Initial Hash Value

(IHV0). Then, the differences between the first block and the second block lead to construct the

differential path. Once the two messages lead to the same output hash, then the corresponding

differential path is considered as a successful disturbance vector.

5.2.3.2. Length Extension Attack

The other threat that makes the MD structure model vulnerable is the length extension

attack. This attack exposed many hash standards including MD5, SHA-1, SHA-256, and SHA-512.

This kind of attack threatens the Message Authentication Code (MAC) with the hash standards

by generating a valid hash value without any need to know the secret code [15]. Some published

and online publications proved the inability of the MD structure model against length extension at-

tack [16, 17]. Where the attacker intercepts the sender message and makes the proper modifications

without the receiver notice of that modifications.

5.2.4. Metrics

The secure hash algorithms need to pass the performance and accuracy tests to be vali-

dated [18]. These tests include the following:

• Test Vectors: which are predefined test samples that were standardized by the NIST to test

the validity of hash standards [19].

• Avalanche Effect: Avalanche is an enviable property of the cryptography algorithms. This

property measures the strength of the cryptography algorithms against bit change. It imposes

that any small change (at least 1-bit) of the plain text produces a radical change to the output

hash of the same text before the change. For cryptography algorithms, the output hash of the

changed text needs to be at least 50% different from the hash value of the same text before

change [20].

• Hamming Distance: which is the measure of the number of bit differences between two dif-

ferent bit strings, of the same size. In our case, Hamming distance is used to measure the

number of bit difference between the hash value of one message, and the hash value of the

same message with a small bit(s) change [21].
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• Bit-Hit: which counts the number of bits, between two hashes, that have the same state (0,

1) and bit-position.

• Test Hashed Message Authentication Code (HMAC).

In our design, we use the aforesaid metrics to test the validity and efficiency of the proposed

scheme. In the subsequent text, a literature review of the state of art in this field will be presented.

5.3. Related Work

Because the SHA-1 hash standard showed weakness against collision attack, developers and

applications are migrating to the SHA-2 hash standard. However, SHA-1 is still being used by some

entities and applications. The researchers have worked to improve the SHA-1 to more strengthened

version [22, 23, 24, 13, 25, 26].

The improvement of the SHA-1 focused on the randomness diversity of the hash computation

process. This is achieved by modifying the compression function f , as represented by Rogel et al.

in [24]. They proposed a modified version for the SHA-1 hash function. The proposed modification

maintains 192-bit hash, rather than 160-bit of the regular SHA-1. The authors claimed that

increasing the size of the SHA-1 hash will strengthen the SHA-1 and add more hash choices. Their

design employed a mixer box to mix the working state variables a, b, c, d, e after each step, before

forwarding the IHV to the next step. This operation adds more randomness to the generated

hash. Furthermore, the bits organization were changed in the modified version. The proposed

design was tested using different samples of messages with small bit change. The results showed

that the proposed SHA-1 gave good figures in term of avalanches effect better than the SHA-1.

The change of the SHA-1 hash length also inspired Rao et al. in [23]. They proposed an

advanced version of the SHA-1 with 320-bit hash length. The proposed work changes the SHA-1

block size from 32-bit to 64-bit, which in turn changes the block size to 1024-bit. The extended

length SHA-1 resist the collision probability of k randomly generated values by a factor equal to

k/2 ∗ 2320. The authors succeeded to produce a 320-bit hash value, but they diverge from the

concept of the SHA-1 that need to be 160-bits.

Some other works focus on enhancing the MD hash functions by changing the MD con-

cepts [26, 22]. Tiwari et al. proposed an enhanced version of SHA-1 hash function by changing

the MD paradigm. The proposed work used the dither structure model instead of MD by dividing
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the structure into two stages: preprocessing, and computation stages. The preprocessing stage

includes message padding, dividing, and IHV initialization. While the computation stage involves

the expansion and compression function calculations. An extra dither input is fed to the SHA-1

compression function, which generated using a pseudo-random number generator. The proposed

architecture was tested against the birthday attack, differential attack, side attack, and meet in

the middle attack. The results showed that the proposed scheme outperforms the SHA-1 in term

of security analysis and comparable results in term of speed. However, Alahmad proposed MD

model enhancement without restricting to specific standard [22]. The proposed design introduces

an enhancement to the hash algorithms using the sponge structure paradigm. The author employed

the squeeze and absorb concepts from the SHA-3.

On another hand, other works concentrated on detecting the collision attack before it takes

place [27, 28, 13]. To detect the collision attack using the disturbance vectors of the SHA-1

standard, Stevens in [27] proposed a counter collision attack methodology based on the disturbance

vectors, that are used to create the collision. These vectors were employed to discover any possibility

of a collision before it happens. Then in [28], Stevens et al. enhanced the speed of collision detection

mechanism using an unavoidable bit condition mechanism. The enhancement involves neglecting

the disturbance vectors of less collision probability and consequently speed the detection process.

Accordingly Alodat et al. in [13] proposed a collision detection approach along with a replacement

to the hashes that are weak against collision attack. The proposed design relied on backward

expansion equation, and two blocks collision to detect any colliding possibility. The proposed design

stated that the messages that are weak against collision are replaced with SHA-512 truncated to

160-bit.

However, in the aforesaid works, there is no focus on the length extension attack. The length

extension attack was studied by different researchers using prefix-free computing techniques [29,

30]. But, the prefix-free computing methodology showed weakness against length extension attack,

as presented by Ammour et al. in [31]. They proposed a method to check the randomness of

the MD hash standards using Pseudo Random Oracle (PRO). The proposed design investigates the

resistance of MD hash standard against the length extension attack in case of prefix-free computing.

They were able to find a counter-example that shows no relationship between the prefix-computing

and the length extension attack.

112



In our work, we propose a consolidated version of the SHA-1 hash function. Our proposal

fuses between SHA-1 and SHA-2 standards to produce stronger SHA-1 version against security

attacks.

5.4. Proposed Methodology

To maintain the general structures of the original SHA-1 and SHA-2 standards, we used

the compression function of the SHA-1 hash function and the round constants of the SHA-2 hash

function, as mentioned in Section 2. Eight working state variables A, B, C, D, E, F , G, and H

each of size 64-bit are initialized with the IHV values of the SHA-512, as shown in Table 5.2.

Table 5.2. The initial hash values of the proposed design

H0=6a09e667f3bcc908 H1=bb67ae8584caa73b

H2=3c6ef372fe94f82b H3=a54ff53a5f1d36f1

H4=510e527fade682d1 H5=9b05688c2b3e6c1f

H6=1f83d9abfb41bd6b H7=5be0cd19137e2179

Figure 5.2 shows the block diagram of the proposed scheme, the SHA-1, and the SHA-2.

The figure shows how the fusion between the SHA-1 and the SHA-2 is carried out. The Figure 5.2

shows the function block of the proposed scheme and how the working state variables change inside

the compression function. The proposed design accepts 32-bit and 64-bit block sizes, where the

32-bit block sizes are processed by padding a 32-bit block with 32 zeros. The proposed design

comprises 80 steps, where every 20 steps have a distinct compression function (Fn). This function

is adopted from the definition of the SHA-1 hash function, as shown in Table 5.1.

5.4.1. Padding Method

In our design, we employed the 10∗1 technique for padding. The size of the input message

must be divisible by the block size. In this technique, a ”1” is added to the end of the input

message, then least number of zeros are added to make the message size multiple of block size

minus 1. Then ”1” bit is added at the end, as depicted in Algorithm 2. The number of bits (P),

which are needed to make the message size divisible by block (B) size, is determined first. Then,

two bits are reserved for the two 1’s that will be added at the beginning and end of the padded

message. Finally, the remaining bits are filled with 0’s and produce the padded message M∗.
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Algorithm 2: Padding technique

Input: Message (M )
Block Size (B)
Output: Padded Message (M∗), s.t. length(M∗) is multiple of B

1 P = M mod B
2 ∗ = P − 2
3 M∗ = M‖1‖0∗‖1
4 Return M∗

5.4.2. Fused Compression Function

The function manipulators
∑

0 and
∑

1 are adopted from the SHA-2 definition, where they

add more randomness to the intermediate hash values. Moreover, the message expansion equation

of the SHA-2 is employed to expand the working state variables of the proposed scheme.

Fn

HGFEDCBA HGFEDCBA

HGFEDCBA HGFEDCBA

Ch

∑1

Ma

∑0

Kt

HGFEDCBA

HGFEDCBA

Ch
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∑0

Kt

EDCBA EDCBA

EDCBA EDCBA

Kt

Wt <<<30

 <<<5

Fn

HGFEDCBA HGFEDCBA

HGFEDCBA HGFEDCBA

∑0 

∑1

Fn

Kp

Wp <<<30

W
t

SHA-1/224/256 = 032

SHA-384/512 =
EDCBA EDCBA

HGFEDCBA HGFEDCBA

FEDCBA FEDCBA

SHA-512

SHA-384

A B C D E F G H

SHA-1

GFEDCBA GFEDCBA

HGFEDCBA HGFEDCBA

SHA-224

SHA-256

Figure 5.2. The fusion between SHA-1 and SHA-2 hash standards to produce the proposed design

Algorithm 3 shows the pseudo-code of the proposed scheme. The message is padded first

then divided into equal size blocks (1024-bit each). Then, the Initial Hash Values (IHVs) are

assigned to the working state variables. Afterward, each message block Mi is expanded using the

message expansion equation (5.9).

Wt = σ0(Wt−3)�Wt− 8� σ1(Wt− 14)�Wt− 16, (5.9)
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Algorithm 3: Proposed SHA

Input: Padded Message
M = {M0,M1 . . . ,Mn} Blocks
Output: Output Hash

1 Initialize IHV :=

A = H
(i−1)
0 , B = H

(i−1)
1 , C = H

(i−1)
2 ,

D = H
(i−1)
3 , E = H

(i−1)
4 , F = H

(i−1)
5 ,

G = H
(i−1)
6 , H = H

(i−1)
7

2 for t← 0 to n do
3 if t < 16 then
4 Wt ←Mt

5 else
6 Wt ← σ0(Wt−2) +Wt−7) + σ1(Wt−15) +Wt−16

7 for t← 0 to 79 do
8 H = G
9 G = F

10 F = E
11 E = D
12 D = C
13 C = ROL32(B)
14 B = A
15 A =

∑
0(A) + Fn(B,C,D) +Kpt +Wpt +

∑
1(H) + Fn(E,F,G)

16 for i← 0 to n do

17 H
(i)
0 = a+H

(i−1)
0

18 H
(i)
1 = b+H

(i−1)
1

19 H
(i)
2 = c+H

(i−1)
2

20 H
(i)
3 = d+H

(i−1)
3

21 H
(i)
4 = e+H

(i−1)
4

22 H
(i)
5 = f +H

(i−1)
5

23 H
(i)
6 = g +H

(i−1)
6

24 H
(i)
7 = h+H

(i−1)
7

25 return Hash

26 SHA-1 ← H
(N)
0 ‖H(N)

1 ‖H(N)
2 ‖H(N)

3 ‖H(N)
4

27 SHA-224 ← H
(N)
0 ‖H(N)

1 ‖H(N)
2 ‖H(N)

3 ‖H(N)
4 ‖H(N)

5 ‖H(N)
6

28 SHA-256 ← H
(N)
0 ‖H(N)

1 ‖H(N)
2 ‖H(N)

3 ‖H(N)
4 ‖H(N)

5 ‖H(N)
6 ‖H(N)

7

29 SHA-384*← H
(N)
0 ‖H(N)

1 ‖H(N)
2 ‖H(N)

3 ‖H(N)
4 ‖H(N)

5

30 SHA-512* ← H
(N)
0 ‖H(N)

1 ‖H(N)
2 ‖H(N)

3 ‖H(N)
4 ‖H(N)

5 ‖H(N)
6 ‖H(N)

7
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where σ0, σ1 are Sigma functions adopted from the SHA-2 definition, and � is the modular addition

operation. The σ0 and σ1 equations are defined by 5.10 and 5.11.

σ0 = ROR(X, 7)⊕ROR(X, 18)⊕ SHR(X, 3), (5.10)

σ1 = ROR(X, 17)⊕ROR(X, 19)⊕ SHR(X, 10). (5.11)

The eight working state variables change after each step according to 5.12, 5.13, 5.14, 5.15,

and 5.16, for t = 0 to 79,

A = F (B,C,D) +Kt +Wt +
∑

0
(A)

+
∑

1
(H) + F (E,F,G)

, (5.12)

B = C, (5.13)

C = D, (5.14)

D = E, (5.15)

E = F, (5.16)

F = G, (5.17)

G = H, (5.18)

H = ROL30(A), (5.19)

where ROLn(x) is the left rotation of word X by n-bit, and
∑

0 and
∑

1 are the Sum function

manipulators and represented by 5.20 and 5.21.

∑
0

= ROR(X, 2)⊕ROR(X, 13)⊕ROR(X, 22), (5.20)

∑
1

= ROR(X, 6)⊕ROR(X, 11)⊕ROR(X, 25). (5.21)

The compression function of the proposed scheme continues until all steps and blocks are

processed. The output hash is produced by the concatenating of all or parts of the working state

variables (A,B,C,D,E, F,G,H). For the 512-block hash functions (SHA-1, SHA-224, and SHA-
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256), the hash output is taken from the concatenation of the least significant 32-bit of working state

variables, as seen in Figure 5.2. On the other hand, the SHA-384 and SHA-512 hash functions are

produced using the full block size of working state variables.

In the subsequent section, different test criterion will be used to test our proposal. Then

we will conclude the chapter.

5.5. Verification of the Proposed Design

The formal verification of the functional correctness of the proposed design is presented in

this section. The functional correctness is verified using Coq theorem prover. The Coq is a tool

that is used to write a formal proof. The Coq supports interactive proof style, thus it is called

interactive proof assistant [32]. The functional specifications of the proposed design are verified

using the functional program in Coq. To the best of our knowledge this is the first work that

conducts a formal verification for the secure hash algorithms.

5.5.1. Specifications of the Proposed Design

The proposed design defines several functions (Fn, ROL, ROR,
∑

0,
∑

1, σ0, σ1) and the

constant values (IHVs, Kp). These functions are transformed into Conjunctive Normal Form (CNF)

and fed to Coq for verification.

The transformation of the round function Fn is represented in Listing 1. As mentioned

before, we have four functions that are used in the proposed design. Each function operates for

20 steps of the compression function. For all verification codes in this section, z refers to binary-

encoded integers and nat refers to natural numbers.

1 Definition Fn1−20 (x y z : int) : int := Int.or (Int.and x y)(Int.and

(Int.not x) z).↪→

2 Definition Fn21−40 (x y z : int) : int := Int.xor ((Int.xor y z) x).

3 Definition Fn41−60 (x y z : int) : int := Int.or (Int.or ((Int.and x

y)(Int.and y z)) Int.and y z).↪→

4 Definition Fn61−80 (x y z : int) : int := Int.xor ((Int.xor y z) x).

Listing 1. The transformation of the function Fn into Coq

The function manipulators from equations (5.20), (5.21), (5.10), and (5.11) are transformed

and defined to be used in the verification, as shown in Listing 2.
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1 Definition ROR b x : int := Int.ror x (Int.repr b).

2 Definition ROL b x : int := Int.rol x (Int.repr b).

3 Definition SHR b x : int := Int.shru x (Int.repr b).

4 Definition Sum_0 (x : int) : int := Int.xor (Int.xor (ROR 2 x) (ROR 13 x))

(ROR 22 x).↪→

5 Definition Sum_1 (x : int) : int := Int.xor (Int.xor (ROR 6 x) (ROR 11 x))

(ROR 25 x).↪→

6 Definition Sig_0 (x : int) : int := Int.xor (Int.xor (ROR 7 x) (ROR 18 x))

(SHR 3 x).↪→

7 Definition Sig_1 (x : int) : int := Int.xor (Int.xor (ROR 17 x) (ROR 19 x))

(SHR 10 x).↪→

Listing 2. Transformation of the function manipulators into Coq

The constant values of (Kp) and the Initial Hash Values (IHVs) are processed as a vector

of a series of 64-bit hexadecimal values. These values are written in Coq in the decimal form and

injected to the program using the Int.repr command. Listing 3 shows the code written in Coq

for the Kp constant values and the IHVs of the proposed design. They are mapped into two series

of vectors and defined to be used in the verification process.

1 Definition Kp := map Int.repr [4794697086780616226, 6480981068601479193,

..., 29663049306315912876435].↪→

2 Definition IHV := Map Int.repr [7640891576956012808, 13503953896175478587,

..., 6620516959819538809].↪→

Listing 3. The constant values in Coq

From the definition of the proposed design, the input message (M) needs to be padded

before processing. The padding specification is written in Coq according to Algorithm 2. Listing 4

shows the padding process in Coq. The number 2 comes from 1+1: 1 terminator byte (128) and

1 ending byte (1). These bytes are used to put the padding boarders. Then, the value (−(n + 2)

mod 64) gives the number of required zero bytes between the boarders that makes the message M

multiple of block size. After padding, the message expansion is applied using Equation (5.9). It is

translated into Coq as depicted in Listing 5.
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1 Definition padding M := let n := Zlength M in Zlist_to_intlist (M++[128%Z]
++ list-repeat(Z.nat(-(n+2) mod 64)) 0) ++[1%Z].↪→

Listing 4. The message padding in Coq

1 Function Wp (M: Z-> int) (t: Z){measure Z.nat t}: int :=

2 if zlt t 16 then M t

3 else (Int.add (Int.add (sig_1 (Wp M (t-2))) (Wp M (t-7)))(Int.add (sig_0 (Wp

M (t-15))) (Wp M (t-16)))).↪→

Listing 5. The message expansion equation in Coq

The proofs of the working state variables are conducted in four recursive calls for the message

expansion equation, as shown in Listing 6. The omega function is a tactic in Coq for solving goals

in Presburger arithmetic, and the intros tactic is used to change the variables into hypothesis in

Coq.

1 Proof.

2 intros;

3 apply Z2Nat.inj_lt;omega.(* t-2<t *)

4 intros;

5 apply Z2Nat.inj_lt;omega.(* t-7<t *)

6 intros;

7 apply Z2Nat.inj_lt;omega.(* t-15<t *)

8 intros;

9 apply Z2Nat.inj_lt;omega.(* t-16<t *)

10 Qed.

Listing 6. The message expansion equation in Coq

For each round of the internal compression function, Listing (7) is applied to produce the

intermediate hash value after each step. The function returns the nth element of the Kp list using

the nthi function call. For each function call of the internal rounds, the proof function is applied

to check the validity after each round. The Qed command is used to extract the proof terms from

the proof scripts.
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1 Definition registers := list int

2 Function Round (Wreg: registers) (M: Z→int)(t: Z.nat(t+1)) t} {measure(fun

t⇒)} : registers :=↪→

3 if zlt t 0 then Wreg

4 else match Round Wreg M (t-1) with [a,b,c,d,e,f,g,h] ⇒
5 let T1 := Int.add(Int.add(Int.add(Int.add h (Sum_1 h))(Fn e f g))(nthi Kp

t))(Wp M t) in↪→

6 let T2 := Int.add (Sum_0 a) (Fn b c d) in [Int.add T1 T2, a, b, c, Int.add d

T1, e, f, g]↪→

7 ⇒ nil
8 end.

9 Proof.

10 intros; apply Z2Nat.inj-lt; omega.

11 Qed.

Listing 7. The message expansion equation in Coq

5.5.2. Functional Specification

The functional specifications are proved after the program satisfies the list of specifications

that were listed previously. The expected behaviour of the program represents the functional

specifications that the program intends to produce. Therefore, we wrote the specifications in an

executable form and run it using Coq Integrated Development Environment (Coqide 8.9.1). This

property allows to run and validate the list of specifications and functionalities at the same time,

which represents a powerful property of Coq.

5.6. Results and Discussions

To test the validity of our scheme, we used four different ways. The first one, apply the

official NIST test vectors. Secondly, the Avalanche effect, which measures the effect of bit change on

the produced hash. Thirdly, The hamming distance, which measures the number of bit differences

between two messages, with a predefined bit difference between them. Lastly, the bit-hit property,

which measures the count of bits that have the same values at the same position between two

hashes.

The experiments were tested using a configurable experimental environment for large-scale

cloud research, Chameleon [33]. Where all message samples and testing results were generated on

the Chameleon environment. Readers can access all codes, datasets, and other artifacts used to

produce results from https://github.com/zeyadodat/collision-files.
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5.6.1. Test Vectors

The test vectors, that were approved by the NIST, are used to test the validity of the

proposed scheme. Table 5.3 shows a comparison between the hash values produced by the SHA-1

and the proposed scheme. In our proposal, we preserved the hash length of the SHA-1 and got

different hash values. The table contains six testing vectors, these vectors differ in length to cover

different test cases. Through all cases, our proposal was able to generate a unique hash value. To

save space, we present the hash results of the SHA-1 hash function and our replacement.

Table 5.3. The official NIST test vectors for secure hash algorithms

case1: “abc”

Proposed SHA-1: f17447eb 851879a7 23a0185c a691062f 5092e404

SHA-1: a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d

case2: “ ”

Proposed SHA-1: 63a7110d f5ce8be1 7d1662c8 6d7e95b1 7ecf15e6

SHA-1: da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709

case3: ”abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq”

Proposed SHA-1: 787dcd87 d9fbc0ed 71de8cf6 39b780a3 2b16b546

SHA-1: 84983e44 1c3bd26e baae4aa1 f95129e5 e54670f1

case4: ”abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu”

Proposed SHA-1: 3882860f b6d50182 3457e4e6 9d78ec2d 81a8524d

SHA-1: a49b2446 a02c645b f419f995 b6709125 3a04a259

case5: one million (1,000,000) repetitions of the character “a”

Proposed SHA-1: fc2006d2 e9f5cf5a dae2cf05 4a1b2c07 93b02edd

SHA-1: 34aa973c d4c4daa4 f61eeb2b dbad2731 6534016f

case6: “abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno” repeated 16,777,216 times

Proposed SHA-1: 5a9458d1 b0e2fa7e 21b8d5b3 df562d13 06e8c1f8

SHA-1: 7789f0c9 ef7bfc40 d9331114 3dfbe69e 2017f592

5.6.2. Avalanche Effect

For the cryptography algorithms, the avalanche effect property holds if the output hash

of a message is 50% different from the hash value of the same message with 1-bit change. Two

approaches were used to test the avalanche effect. The first one compares the proposed scheme with

existing works using the same set of messages. The second approach relies on generating random

messages with random lengths.

121



5.6.2.1. Predefined Messages Set

In the first test, we used predefined messages and compared them with the SHA-1, SHA-

256, SHA-512 and the latest existing work of modifying the SHA-1. Table 5.4 shows the avalanche

test results compared to our proposal.

Table 5.4. Comparison of avalanche test

Test Sample
Avalanche (%)

SHA-1 SHA-256 SHA-512 Work[24] Proposed

Test1 46.25 49.03 51.2 56.77 57.5

Test2 50.09 51.02 50.8 48.37 56.875

Test3 50.00 49.35 49.75 38.75 50.2

Test4 51.13 52.1 52.5 49.76 55

The algorithms were tested on the same message samples. Where ”Test1” examines two mes-

sages with 1-bit change, ”Test2” examines two messages with difference in only few bits, ”Test3” ex-

amines two words with values: ”abc123 owlstead 1255” and ”abc123 owlstead 59131”, and ”Test4”

examines two messages with different length where the first message is ”b b”, and the second mes-

sage is ”b b b”. For the fourth test cases, our proposal outperforms the others in term of avalanche

effect. Which supports the validity and distinction of the proposed scheme.

5.6.2.2. Random Messages Set

For proof of concept, we extended the test to include different cases with different messages’

lengths. Ten categories were used, where each category comprises 1000 randomly generated mes-

sages with random lengths. The first category contains 1-bit change messages, where each message

is generated randomly and regenerated with 1-bit change. The hash value is computed for both

generated and regenerated messages of each category. Then we compute the avalanche effect be-

tween the hashes of the generated and regenerated versions of each message. The same procedure is

carried out for all categories. Where, the categories are (2, 3,..., 10)-bit changes. After processing

all categories we computed the average avalanche effects as shown in Figure 5.3.

The x−axis represents the number of samples while the y−axis is the average avalanche

effects of all samples. The figure shows that our proposal gives an avalanche effect above 50%
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Figure 5.3. Average of the avalanche effect of all testing samples for the ten categories.

for all samples. The avalanche effect has a Mean value above 52% for all 1-Million samples of all

categories. Mean value proves the validity of our proposal. Where the avalanche effect needs to be

above 50% for the cryptography algorithms.

5.6.3. Hamming Distance

To test the hamming distance, we take the same ten categories and samples that were

used to test the avalanche effect. The Average Hamming distance between the hash values of the

generated and regenerated messages of the same category can be depicted in Figure 5.4. The figure

shows the Mean value of hamming distances for all samples of all categories.

The average Hamming distance value is above 84, which is greater than half of the total

bits of the produced hash. These values (avalanche effect and hamming distance) prove that our

design is a good choice to replace the SHA-1 and SHA-2 functions.
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Figure 5.4. Average of the hamming distance of all testing samples for the ten categories.

5.6.4. Bit-Hit

To further test our design, we check the bit-hit property, which counts the total number of

bits at the same position that have the same bit state. The same categories and samples that were

used for avalanche effect and hamming distance were used. Table 5.5 shows the average number

of bits that are at the same position between generated and regenerated message when applying

our design on SHA-1, SHA-256, and SHA-512. All values give a constant average for the three

algorithms SHA-1, SHA-256, and SHA-512 with approximately 2.5, 4, and 7.5 bit hit averages,

respectively. This property reflects the ability of our design to resist the possibility of a collision

attack at the bit level.

5.6.5. Counter-Collision Attack

The collision attack is one of the main security issues that threaten the secure hash al-

gorithms. Wherefore, the new hash standards or the modified versions of existing SHAs need
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Table 5.5. Average number of bit change

Bit change Category # of samples
Average of different bits

SHA-1 SHA-256 SHA-512

1-bit change 1000 2.514 3.9 6.5

2-bit change 1000 2.444 4.1 6.85

3-bit change 1000 2.455 3.75 7.25

4-bit change 1000 2.513 4.13 6.95

5-bit change 1000 2.521 4.025 6.75

6-bit change 1000 2.463 3.725 7.33

7-bit change 1000 2.542 4.25 7.5

8-bit change 1000 2.426 4.125 7.65

9-bit change 1000 2.543 3.125 8.125

10-bit change 1000 2.548 3.55 7.513

to circumvent the collision attack. We test the collision resistance on the SHA-1 hash standard

because it is the only hash standard (among our scope) with real colliding examples.

To test the efficiency of our proposal against collision attack, we used real examples of PDF

files. The examples contain four files file1, file2, file3, and file4. The SHA-1 values of file1 and file2

are equal, as well as the SHA-1 values of file3 and file4. Table 5.6 shows the computed hash values

of the four PDF files. Our proposal produces a unique hash value for each file. However, when

using the SHA-1 to compute the hash, the resultant hashes of file1 and file2 are the same. The

PDF files that were used in the experiments can be found in [34].

The above-mentioned tests were used to examine our proposal. The test vector was used to

validate our proposal. The Avalanche effect, hamming distance, and Bit-Hit were used to test the

efficiency and strength of our proposal. While real collided PDF files were tested on our scheme,

and a unique hash value for each file was produced.

5.6.6. Length Extension Attack

Length extension attack not only targeted the MD structure hashes. One of the main

contributions of the proposed scheme is to protect the MD hash functions against length extension

attack by modulates the internal compression functions and using different padding mechanism,

which hides the actual message size from the attacker.
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Table 5.6. Two examples of PDF files that have the same SHA-1 value.

Example1

file1
SHA-1: 38762cf7-f55934b3-4d179ae6-a4c80cad-ccbb7f0a

Proposed: f757b8cf-8eece51a-809b902d-d2d7909f-14b413ff

file2
SHA-1: 38762cf7-f55934b3-4d179ae6-a4c80cad-ccbb7f0a

Poposed: 044be3f9-1f97096a-1c11dd05-89a9f0e9-d59bf674

Example 2

file3
SHA-1: d00bbe65-d80f6d53-d5c15da7-c6b4f0a6-55c5a86a

Proposed: 26d52b64-706ff75c-cb0a2365-de8cfd8d-8c759dd6

file4
SHA-1: d00bbe65-d80f6d53-d5c15da7-c6b4f0a6-55c5a86a

Proposed: 94f3ec17-ccdf9650-ad95d196-c4ceafc4-93bf17de

The attacker uses the padding technique of MD structure models to produce a successful

length extension attack. Where the MD-structure padding ends with the message length, the

attacker starts from where the padding has ended and continues to add more zeros and the modified

information then appends the new hash value. Because the receiver deals with a payload and hash,

there will be an inability to detect the alteration because the received information matches the

received hash.

Table 5.7 shows an example of money transactions between client and server. The hash

value has three phases: the client hash phase which represented by SHA1 1, the after-attack hash

phase which represented by SHA1 2, and the server hash phase which represented by SHA1 3.

The hash value in the client side is computed by hashing the concatenation of account from ‖

account to ‖ amount values. The attacker intercepts the transaction and performs the length

extension attack by appending 5 to the transaction to make the amount equal to 105. The new

hash is appended to the modified message and resent to the server. At the server-side, the received

message is hashed and compared with the new hash value. Then the transaction is approved by

the server and the process completed.

In our proposal, the message size is not appended to the end of the message in the padding

phase, so that, the attacker has no clue about the message size or the amount of extension needed.
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Table 5.7. Length extension attack bank transaction example

account from account to amount append

Digest 123456 112233 100 5

SHA1 1 a65181853e5a1b94b4c7a84b7fc561bdcb9b75e8

SHA1 2 281385ea5e434561b439dbe4e2417d83fac16833

SHA1 3 281385ea5e434561b439dbe4e2417d83fac16833

Moreover, the padding technique that we employed is different from the padding methods of the

SHA-1 and SHA-2 hash functions.

5.7. Conclusions

In this chapter, an improved version of the SHA-1 and SHA-2 hash function is presented.

The proposed design consolidates the SHA-1 and SHA-2 against collision and length extension

attacks. The proposed design preserves the general properties of the SHA-1, SHA-224, SHA-256,

SHA-384, and SHA-512 hash functions., e.g., the hash length. The design employs the function

manipulators of the SHA-1 and SHA-2 hash standards, which add more randomness to the proposed

design and strengthen it against collision and length extension attacks. The testing results proved

the efficiency of our proposal through different factors, which are avalanche effect, testing vectors,

hamming distance, and bit-hit. Moreover, our proposal is effective against collision and length

extension attacks as shown in the provided examples.

The scope still open for the future researches that aim to consolidate the hash standards

against security breaches of the cryptographic hash functions. The security analyses of the SHA-3

hash function will be conducted and compared with the performance of other designs.

5.8. References

[1] Ronald L. Rivest. “The MD4 Message Digest Algorithm”. In: Advances in Cryptology-CRYPTO’

90. Ed. by Alfred J. Menezes and Scott A. Vanstone. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 1991, pp. 303–311. isbn: 978-3-540-38424-3.

[2] Ronald Rivest and S Dusse. The MD5 message-digest algorithm. Tech. rep. MIT Laboratory

for Computer Science, 1992.

[3] FIPS PUB. “Secure hash standard (shs)”. In: FIPS PUB 180 4 (2012), pp. 1–27.

127
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6. RANDOMNESS ANALYSES OF THE SECURE HASH

ALGORITHMS, SHA-1, SHA-2 AND MODIFIED SHA

6.1. Introduction

A powerful tool is needed for message authentication and verification. Secure Hash Al-

gorithm (SHA) is the most popular tool to ensure integrity properties. SHA was developed and

standardized by the National Institute of Standards and Technology (NIST) [1]. SHA was designed

for compression purpose, where a message of any size is compressed to a fixed-length hash. To con-

sider any cryptography hash function as a secure one, three challenges exist preimage, 2ndpreimage,

and collision resistance. The preimage means that the SHA function is a one-way function. The

2ndpreimage means that there are no messages that have the same hash value. The collision re-

sistance means that there is no possibility to generate the same hash from two or more different

messages [2].

The primary hash algorithms follow two types of structures, Merkle-Damg̊ard and Sponge

structures. The hash functions MD5, SHA-1, and SHA-2 follow the Merkle-Damg̊ard , while the

official SHA-3 (Keccak) follows the Sponge structure. The MD5, and SHA-1 produce 128-bit, and

160-bit output hash, respectively. However, these three hash functions were exposed to collision

attack by Wang et al. since 2005 [3]. Since then, the SHA-2 emerged to be the official hash standard

with four different flavors (SHA-224, SHA-256, SHA-384, SHA-512), and extra truncated versions

(SHA-512/224, and SHA-512/256). Even with the existence of the SHA-2, some entities still using

the SHA-1 and MD5 hash functions [4]. Lately, the NIST released the latest hash standard SHA-3

(Keccak) on 2015 after a competition that was held to select the winner among 64 candidates [5].

The designers of the hash functions try to generate a unique output hash for any input and

make it random when compared to another output. To test the randomness property, the Pseudo-

Random Number Generator (PRNG) is used as a statistical test. the NIST uses the statistical

The content of this chapter has been published in the IEEE 17th International Conference on Frontiers of
Information Technology (FIT2019). The material in this chapter was co-authored by Zeyad Al-Odat, Assad Abbas
and Samee Khan. Zeyad Al-Odat had primary responsibility for conducting experiments and collecting results. Zeyad
Al-Odat was the primary developer of the conclusions that are advanced here. Zeyad Al-Odat also drafted and revised
all versions of this chapter. Assad Abbas drafted and revised all versions of this chapter. Samee U. Khan revised the
material and served as proofreader.
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tests to verify the cryptography applications [6, 7]. However, these tests are general and they are

only used to test the randomness of binary sequences from any source. Moreover, the SHAs are

designed to have fixed input parameters, which are nonrandom, and fixed output length. Therefore,

the NIST test suites may not give a fair result for the randomness analysis.

In this chapter, randomness analyses are conducted to examine the secure hash algorithms

(SAH-1 and SHA-2). Moreover, a modified design is proposed to improve the randomness of the

internal rounds of the hash functions. The analyses are based on the Bayes factor and odd ratio

tests. We utilized a large-scale experimental environment testbed and Compute Unified Device

Architecture (CUDA) platform to test the design and compare it with existed hash standards.

The rest of chapter is organized as follows: A background information about the SHA-1,

SHA-2, and Bayesian odd ratio test will be presented in Section 2; Section 3 presents the state of

art in the related field; Section 4 elaborates the randomness test and all related analyses; Sections

5 presents the discussions and analyses; Conclusion will be presented in Section 6.

6.2. Preliminaries

To better understand the proposed randomness analyses scheme, brief descriptions about

SHA-1 and collision attack needs to be addressed. The threat model is also included to describe

the possible security issues that are related to our work.

6.2.1. SHA-1 Standard

SHA-1 was published by the NIST in 1995 after undisclosed security concerns with the

SHA-0 [8]. The SHA-1 maintains 160-bit hash output through 80 steps of compression function

evaluations. The SHA-1 is considered as a part of the Merkle-Damg̊ard functions, where the input

message is divided into number of blocks and processed sequentially.

The SHA-1 takes a message of a predefined size and process it using the SHA-1 round

function F . This includes the preprocessing phase where the message is padded to make its size

divisible by 512 (block size). The message is padded by adding ”1” at the end of the message M ,

least number of 0’s, and the message size as 64-bit integer, as shown in Figure6.1.

After padding, the message is divided into equal size blocks (Bi) each of 512-bit. Each

block is divided into 16 32-bit words and expanded into 80 32-bit words using Equation (6.1),

which produces 2560-bit. These 80 words are represented by the Wt in functional block diagram

of the SHA-1, as shown in Figure6.2. The block words are assigned to the first 16 words of
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Figure 6.1. Padding the message before processing

the Wt and the rest of the expanded words are calculated using these values and the message

expansion equation. The figure shows that five working state variables (A, B, C, D, and E) are

used to evaluate the intermediate hash value after each step. These variables are initialized with

fixed 32-bit hexadecimal values (H0=67452301, H1=EFCDAB89, H2=98BADCFE, H3=10325476, and

H4=C3D2E1F0).

Figure 6.2. Function block of the SHA-1

Wt =


Bt

i , 0 ≤ t ≤ 15

(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)≪ 1, 16 ≤ t ≤ 79,

(6.1)
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where ⊕ is the logical XOR operation, and ≪ 1 is the cyclic shift rotation to the left by 1-bit.

Noting the block Bi is divided into 16 words and these words are assigned to the first 16 values of

the Wt.

The function block of the SHA-1 is processed 80 times (steps), where each 20 steps represent

a group. Each group has a distinct round function f and constant Kt, as represented in Table 6.1.

The expanded message words are processed as four groups. Each group consists of 20-steps,

round constant kt, and compression function f , as illustrated in Table 6.1.

Table 6.1. The groups functions (f) and constants (Kt) of the SHA-1

Round(steps) Function f (B,C,D) Constant (Kt)

1 (0-19) (B ∧ C) ∨ (¬B ∧D) 0x5A827999

2 (20-39) (B
⊕
C
⊕
D) 0x6ED9EBA1

3 (40-59) (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) 0x8F1BBCDC

4 (60-79) (B
⊕
C
⊕
D) 0xCA62C1D6

The intermediate hash values (A,B, C, D, and E) change cyclically every step using (6.2),

(6.3), (6.4), (6.5), (6.6).

For i = 1 to 80,

Ai = ROTL5(Ai−1) + Fi(Bi−1,Ci−1,Di−1) + Ei−1 + Wi + Ki, (6.2)

Bi = Ai−1, (6.3)

Ci = RL30(Bi−1), (6.4)

Di = Ci−1, (6.5)

Ei = Di−1. (6.6)

After processing all blocks, the final hash is represented by the concatenation of the five intermediate

hash values (A, B, C, D, and E).

6.2.2. SHA-2 Standard

SHA-2 follows Merkle-Damg̊ard structure model. Unlike SHA-1, SHA-2 maintains four

different flavors (SHA-224, SHA-256, SHA-384, and SHA-512) that produce different outputs. Each
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flavor of the SHA-2 has a unique compression function and round constants. The SHA-2 uses eight

variables to process the intermediate hash value (A, B, C, D, E, F, G, and H). The size of the

variables depends on the desired flavour. For SHA-224 and SHA-256 flavors, the variable size is

equal to 32-bit and 64-bit for the SHA-384 and SHA-512 flavors. SHA-2 maintains 64 steps for 224

and 256 versions and 80 steps for the others.

Like the SHA-1, the SHA-2 compression function evaluation requires a preprocessing phase.

A message is padded and divided into blocks, as described in the SHA-1 definition. Each block is

expanded using (6.7), then, the expanded values are assigned to Wt.

Wt = Wt−16 + σ0 +Wt−7 + σ1 16 ≤ t ≤ n, (6.7)

where σ0 and σ1 are represented by (6.8) and (6.9), respectively.

σ0 = RRr1(Wt−15)⊕RRr2(Wt−15)⊕ SRr3(Wt−15), (6.8)

σ1 = RRq1(Wt−2)⊕RRq2(Wt−2)⊕ SRq3(Wt−2), (6.9)

where RRn(X) rotates word X to the right by n bits, and SRn(X) shift right word X by n bits.

For SHA-224 and SHA-256 n = 63, r1 = 7, r2 = 18, r3 = 3, q1 = 7, q2 = 19, and q3 = 10, while

n = 79, r1 = 1, r2 = 8, r3 = 7, q1 = 19, q2 = 61, and q3 = 6 for SHA-384 and SHA-512.

Figure6.3 shows the functional block of the SHA-2 hash function. The intermediate hash

values change, cyclically, after each step according to (6.10), (6.11), (6.12), (6.13), (6.14), (6.15),

(6.16), (6.17), (6.18), (6.19)

T1 = Ht−1 +Wt +Kt + Ch(E,F,G) +
∑

1
(6.10)

T2 = Maj(A,B,C)
∑

0
(6.11)
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H = G, (6.12)

G = F, (6.13)

F = E, (6.14)

E = D + T1, (6.15)

D = C, (6.16)

C = B, (6.17)

B = A, (6.18)

A = T1 + T2, (6.19)

where Ch, Maj,
∑

0, and
∑

1 are represented by (6.20), (6.21), (6.22), and (6.23), respectively.

Ch(E,F,G) = (E ∧ F )⊕ (¬E ∧G), (6.20)

Maj(A,B,C) = (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C), (6.21)∑
0
(V ) = RRr1(V )⊕RRr2(V )⊕RRr3(V ), (6.22)∑

1
(V ) = RRq1(V )⊕RRq2(V )⊕RRq3(V ), (6.23)

where
∑

0 and
∑

1 are the message manipulators that are used inside the compression function.

The values r1 = 2, r2 = 13, r3 = 22, q1 = 6, q2 = 11, and q3 = 25 are for the SHA-224 and

SHA-256, while r1 = 28, r2 = 34, r3 = 39, q1 = 14, q2 = 18, and q3 = 41 are for the SHA-384 and

SHA-512.

After processing all blocks and the corresponding working state variables, the final hash is

produced by the concatenation of part or all of the working state variables (A, B, C, D, E, F, G,

and H), as depicted by (6.24), (6.25), (6.26), and (6.27).

SHA224 → A‖B‖C‖D‖E‖F‖G, (6.24)

SHA256 → A‖B‖C‖D‖E‖F‖G‖H, (6.25)

SHA384 → A‖B‖C‖D‖E‖F, (6.26)

SHA512 → A‖B‖C‖D‖E‖F‖G‖H, (6.27)
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Figure 6.3. Function block of the SHA-2

noting that, the size of each working state variable is 32-bit for the SHA-224 and SHA-256 and

64-bit for the SHA-384 and SHA-512 hash functions.

6.2.3. Bayesian Odd Ratio Test

The purpose of the Bayesian theory is to verify the evidence of the scientific theory that is

applied to binomial distribution [9]. Let Θ denotes a hypothesis, D denotes the observed sample

after running the model, Pr(Θ) the probability of the model, and Pr(D) the probability of the

sample. Then, the Bayesian test states that the conditional probability of the model given the

sample (Pr(Θ|D)) is represented by (6.28)

Pr(Θ|D) =
Pr(D|Θ)Pr(Θ)

Pr(D)
, (6.28)

where it represents the conditional probability of Θ|D.

The odd ratio test assumes that there are two hypotheses Θ1 and Θ2, where Θ1 represents

the model of random population and Θ2 represents the model of nonrandom population [10]. Then
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the odd ratio test is calculated using Equation (6.29).

Pr(Θ1|D)

Pr(Θ2|D)
=
Pr(D|Θ1)

Pr(D|Θ2)
.
P r(Θ1)

Pr(Θ2)
, (6.29)

where Pr(Θ1|D)/Pr(Θ2|D) is the posterior odd ratio, Pr(D|Θ1)/Pr(D|Θ2) is the Bayes

factor, and Pr(Θ1)/Pr(Θ2) is the prior odd ratio.

6.3. Related Work

The randomness of cryptography functions was studied by different researchers. The studies

used the NIST test suites to analyze the randomness of the bit sequences of certain cryptography

functions, e.g., Advanced Encryption Standard (AES) and SHA. Doganaksoy et al. proposed a

cryptographic randomness testing of block ciphers and SHA [11]. The proposed work, employed

Strict Avalanche Criterion (SAC), Linear Span, and Coverage tests. These tests were used to

evaluate the internal blocks of the block ciphers and hash functions. Other researchers employed

the NIST test suite to test the randomness of block cipher functions.

Hellekalk and Wegenkittl proposed a model to test the block cipher applications. They use

the NIST test suite by applying the PRNG [12]. The block ciphers were turned into PRNG and

tested using the NIST suite. The empirical results showed that the AES gave interesting results

regarding nonlinear RNG.

Kaminsky in [13] proposed a Bayesian statistical test for block cipher and message authen-

tication code (MAC). The proposed design employed the Bayesian test factor and odd ratios to

measure the randomness level of block cipher functions. The proposed design was applied to the

PRESENT and IDEA block cipher functions, and SipHash and SQUASH MAC functions. The

randomness test of the functions showed the number of nonrandom rounds of each function and

the ration of nonrandom to the random rounds.

The NIST test suite also employed to test the randomness of the reduced round SHA-3 [14].

The proposed work turned the internal blocks of the SHA-3 reduced round into PRNG then applied

the NIST test suite on them. For the reduced round SHA-3, the randomness ratio was 21.3% for

3 rounds of the Keccak hash function. However, this result implies no significance since it was

applied on 3 rounds instead of full rounds.
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The ALgebric Normal Form (ANF) of random boolean functions to test symmetric ciphers

and hash functions was presented in [15]. The proposed work presents new statistical testing for

AES, SHA-0, MD4, MD5, Ripmid, and SHA-1 functions. The work employed Pseudo-Random Bit

Generator (PRBG) to turn the internal blocks of the functions.

In our work, we analyze the randomness of the SHA functions directly, without turning the

blocks into PRNG. Our work is performed on different SHA standards and a suggested modification

is proposed. The proposed modification produces more randomness to the output hash than any

other flavors of the SHAs.

In the subsequent section, the randomness test, logarithmic Baeyian factor test, and odd

ratio test will be elaborated in details.

6.4. The Randomness Test

6.4.1. Definition of the Randomness Test

The randomness is calculated after each round of the SHA-1 and SHA-2 algorithms. Fig-

ure 6.4 shows the block diagram of the randomness test. The input message (M) is fed to the

compression function of the SHA-1 or SHA-2. After each round of the compression function cal-

culations, the intermediate hash value is divided into small bit groups (G). Then the randomness

test is applied by XORing a certain bit group of the current output (Hi) with the same bit group

of the previous round (Hi−1). Then, the odds ratio is computed by checking whether the output of

the XORing is uniformly distributed. The results of all rounds and bit group categories are stored

to apply the odd ratio equation on them. This will be applied for different bit group sizes (1-bit,

2-bit, 4-bit, and 8-bit groups), where each bit group category has its calculations.

6.4.2. Logarithmic Bayes Factor

The Bayes factor test is performed using the Bernoulli model, where n Bernoulli trials are

performed. The success probability is denoted by χ, which represents the successes number of trials

that follows the binomial distribution.

In our model, the Bayes factor test is performed on two models (Θ1 and Θ2). The probability

of success for the Θ1 and Θ2 models are χ1 and χ2, respectively. Considering that the number of

success of n trials is m. Then the Bayes factor equations for Θ1 and Θ2 are represented by a
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Figure 6.4. The randomness test on the SHA-1 and SHA-2

binomial distribution model, as seen in Equation (6.30).

Pr(D|Θ1)

Pr(D|Θ2)
=

n!

m! (n−m)!
pm(1− p)n−m(n+ 1), (6.30)

where p represents χ1 or χ2.

To avoid the problem of floating point overflow, the logarithm of the Bayes factor is com-

puted instead of the Bayes factor [16]. Moreover, the factorial (n!) is replaced by a gamma function.

According to [17] the gamma function (Υ) of the factorial (n!) is represented by (6.31).

n! = Υ(n+ 1)! (6.31)

After substituting the Υ function the Bayes factor equation becomes:

Pr(D|Θ1)

Pr(D|Θ2)
=

Υ(n+ 1)

Υ(m+ 1) Υ(n−m+ 1)
pm(1− p)n−m(n+ 1). (6.32)

Then after applying the logarithm on Equation 6.32, the logarithmic Bayes factor becomes:

log
Pr(D|Θ1)

Pr(D|Θ2)
= log Υ(n+ 1)− log Υ(m+ 1)

− log Υ(n−m+ 1) +m log p+ (n−m) log(1− p)

+ log(n+ 1).

(6.33)

141



The efficient computing of the Logarithmic Bayes test using computer programming is the

reason for using the logarithmic form [16].

6.4.3. Odd Ratio

The odd ratio represents the ratio between the two hypotheses (Θ1 and Θ2) in the presence

and absence of each one of them toward the other [18]. The odd ratio test is performed according

to the procedure described in Algorithm 4. The algorithm accepts the input message (M ) and the

set of bit group sizes (G); in our work, we set G to have four different bit groups (1, 2, 4, and 8-bit

groups). The algorithm works for both Secure Hash Algorithms (SHA-1 and SHA-2), which must

be determined before the beginning of the test. The bit group categories are processed one after

the other, where for each bit group the corresponding SHA calculations are performed through all

rounds (t). The value of t is determined according to the definition of SHA, as discussed in Section

2. The Intermediate Hash Value (IHVi−1) of the previous round is assigned to the Hi−1 and the

IHVi is assigned to the Hi.

Algorithm 4: Odd Ratio

Input: Message (M); //One Block

Input: G =[ 1, 2, 4, 8]
Output: Odd Ratio

1 Determine(SHA) ; //SHA-1 or SHA-2

2 while g ∈ G do
3 for i← 1 to t− 1 do
4 Hi = IHVi
5 Hi−1 = IHVi−1

6 for j ← 1 to t mod G do

7 Res
Gj

i = Hj
i ⊕H

j
i−1

8 log Pr(D|Θ1)
Pr(D|Θ2) = log[ Υ(n+2)

Υ(k+1)Υ(n−k+1)p
k(1− p)n−k]

9 Odd ratio

The IHV value is divided into groups, which are multiple of G. Then the corresponding

results of XORing the current and previous analogous bit group position are stored in Res
Gj

i array.

After processing all bit groups and all internal rounds of the SHA function, the random selection

of data (D) is performed by performing n Bernoulli trials considering round (i), bit group (g), and

success (k). For each bit group (G), the success probability (p) is equal to 2−g, where g is the
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corresponding bit group size. For each bit group, all k successes are counted and the corresponding

logarithmic Bayes factor is computed for each round (i). Consequently, the odd ratio value for each

round is the accumulated values of logarithmic Bayes factor of the corresponding round and bit

group.

6.4.4. Modified SHA

The modified SHA design that we suggest is working by employing the compassion function

of the SHA-1 standard and the function manipulators of the SHA-2 standard. The proposed SHA

design works as follows:

1. Padding: The message padding technique in our design is different. We follow the 10 ∗ 1

technique where ”1” is appended to the end of message then followed by 0’s and ”1”. In this

padding method, the message size is not added to the end of message, which protects the

message from any targeted attack.

2. Process: After padding, the message is divided into blocks of 64-bit. Then, each block

is expanded using the expansion equation of the SHA-512. The design works on 80 steps.

These steps are divided into four stages, each stage comprises 20 steps. For each stage, the

compression function of the SHA-1 is used, as shown in Table 6.1. Each step maintains a

distinct constant K. The constant values are generated by taking the least 64-bit of the

fractional part of the 3
√
Zp in hexadecimal, where Zp represent the first 80 prime numbers.

3. Output: After processing all blocks, the output hash is produced by the concatenation of

the eight working state variables to form 512-bit hash.

6.5. Results and Discussions

The odd ratio test is performed on the SHA-1, SHA-2, and A modified SHA function. The

modified SHA hash function performs different padding technique by using 10 ∗ 1 method. In this

method, the message size is not added to the end of the message, which excludes the message size

from being processed.

As the test performs a massive number of compression function calculations, the execution

program was tested using GPGPU unit. The experiments were tested using a configurable exper-

imental environment for large-scale cloud research, Chameleon [19]. On Chameleon, we reserved
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a cluster lease with 2-Intel Xeon processors 3.2GHz with 56 threads, 128GB of RAM, and Tesla

P100 GPU with 3584 cores.

Table 6.2. Odd ratio results for the SHA-1, SHA-512 and modified SHA

Round
Odd Ratio

SHA-1 SHA-512 Modified

1 −1.78× 108 −1.177× 107 −1.214× 108

2 −1.62× 108 −1.187× 107 −1.186× 107

3 −1.55× 108 −1.168× 107 −1.159× 107

4 −1.58× 108 −1.59× 107 −1.143× 107

5 −1.43× 108 −1.53× 107 −6.32× 106

17 −8.68× 107 −520 −425

20 −7.43× 106 −65.66 630

21 −6.95× 105 478 648

27 −100.68 520 645

28 −15.68 680 745

29 200.68 598 635

78 578 633 788

79 598 812 596

80 620 599 623

Table 6.2 shows the results of the odd ratio test of the SHA-1, SHA-512, and modified SHA.

For space limitation, we omit the results of some rounds. According to the Bayesian odd ratio,

the number of nonrandom rounds for the SHA-1 is 28. This is because the odd ratio values of the

first 28 rounds of the SHA-1 give negative values. The SHA-512 performs better than the SHA-1

with 20 nonrandom rounds. The modified version performs the best and produces 17 nonrandom

rounds.

Table 6.3 shows the results of performing the odd ratio test on the SHA-1, SHA-2, and

Modified SHA functions. The SHA-1 produces 28 nonrandom rounds among 80 rounds with non-

random percentage of 35%. The SHA-224 and SHA-256 produce approximately the same number
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Table 6.3. The non-random text results compared to the proposed design

Hash Function #Non-Random Rounds Total #Rounds Non-Random%

SHA-1 28 80 35

SHA-224 19 64 29.68

SHA-256 20 64 31.25

SHA-384 19 80 23.75

SHA-512 20 80 25

Modified SHA 17 80 21.25

of nonrandom rounds with 19 and 20, respectively. The modified SHA function shows the best

results in case of nonrandom rounds with 17 non-random rounds.

6.6. Conclusions

This chapter presented a model that examines the randomness of the internal rounds of the

SHA-1 and SHA-2 standards. A modified SHA design was proposed to improve the randomness

of the internal rounds. The Bayesian factor and odd ratio tests were used to evaluate the hash

functions. The CUDA platform was utilized to perform the experimental analyses, which was

implemented with the help of Chameleon large-scale experiments testbed. The results showed that

the Modified SHA produced more random rounds other than the other functions.
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7. A BIG DATA STORAGE SCHEME BASED ON

DISTRIBUTED STORAGE LOCATIONS AND MULTIPLE

AUTHORIZATIONS

7.1. Introduction

Big Data is defined as a huge amount of different data types that are provisioned through

different resources, e.g., social networks, sensor devices, and streaming machines [1]. However, one

storage location is unable to handle the increasing size of data; in addition, it is difficult to process

Big Data using traditional data processing techniques [2][3].

Big Data is an emerging technology depending on cloud computing where a massive amount

of data is processed [4]. The National Institute of Standards and Technology (NIST) defined cloud

computing as a model that enables ubiquitous and convenient network access of a shared pool of

configured computing resources [5]. Due to increase of data size, the burden on cloud computing

sources has increased. An increase demand of cloud computing causes new methods and tools to be

invented. Multiple methods are built for supporting cloud computing in processing the Big Data.

For instance, rapid update methods should exist to address cloud storage congestion.

The cloud computing technology becomes one of the main components of information com-

puting technology including data acquisition and retrieving from the cloud. Studies by Cisco and

IBM show that 2.5 Quintillion Bytes are generated every day and will reach about 40 Yotta Bytes

by 2020 [6][7]. The cloud computing provides the suitable service to process the Big Data such as

Software as Service (SaaS), Platform as Service (PaaS), and Infrastructure as Service (IaaS). All

these services are hired individually or mutually to provide quick and efficient data access [8].

The security of Big Data is crucial because a huge amount of data is stored at the same

pool of storage location which leads to data interference [9]. Big Data security is guaranteed

The content of this chapter has been published in the 2019 IEEE 5th Intl Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE
Intl Conference on Intelligent Data and Security (IDS). The material in this chapter was co-authored by Zeyad Al-
Odat, Eman Al-Qtiemat and Samee Khan. Zeyad Al-Odat had primary responsibility for conducting experiments
and collecting results. Zeyad Al-Odat was the primary developer of the conclusions that are advanced here. Zeyad
Al-Odat also drafted and revised all versions of this chapter. Eman Al-Qtiemat drafted and revised all versions of
this chapter. Samee U. Khan revised the material and served as proofreader.

148



by different technologies, including the following: 1. Encryption, 2. Centralized key management,

3. User access control, 4. Infusion detection and prevention, and 5. Physical security. Moreover,

everyone is responsible for Big Data security, e.g., policies, agreement list, and security software

are guaranteed by the cloud service provider [10].

One of the main procedures to store the Big Data is the distribution technology. It divides

the big data into parts and distributes them over several storage locations [11]. However, many

standards need to be addressed in this scheme including data security and retrieval. The data

need to be secured against unauthorized access and protected from data tampering and alteration.

Data security is achieved using the Encryption techniques, e.g., Advanced Encryption Standard

(AES) while data authenticity is achieved using the Secure Hash Algorithm (SHA). In some

cases, attackers can hack the Encryption key and gain access to sensitive data.

This chapter proposes a secure and authentic Big Data storage scheme using both Shamir’s

Secret Sharing (SSS) and SHA. The SSS is used to divide the secret encryption key into parts,

this prevents attackers from data decryption even if one part of the encryption key has been

obtained. On the other hand, the SHA determines the data integrity through the hash value

which is appended with the original data [12].

The rest of chapter is organized as follows: Section 7.2 provides background demonstrations

about the secure hash algorithm and Shamir’s Secret Sharing; a literature review is presented

in Section 7.3; Sections 7.4 exhibits the proposed methodology; results and discussions are in

Section 7.5; Section 7.6 concludes the chapter.

7.2. Background

Before going through the details of our proposal, brief descriptions about the secure hash

algorithm and Shamir’s Secret Sharing will be presented.

7.2.1. Shamir’s Secret Sharing

SSS is a method to divide Data (D) into a number of pieces (Sn) where D is easily re-

constructable from the minimum number of pieces (Sk) [13]. The SSS is a (k, n) based scheme,

where k is the minimum number of pieces that are needed to reconstruct the Data (D) and n is

the total number of pieces of data (D). However, D is completely undetermined if the number of

knowledgeable pieces is fewer than k − 1. Figure 7.1 shows the general structure of the Shamir’s
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Secret Sharing, where it involves two operations, the divide and reconstruct. More details will be

presented in Section 7.4.

D

S1 S2 S3 Sn. . .

S1 S2 Sk. . .

D

Divide

Reconstruct

Figure 7.1. Shamir’s secret sharing structure

7.2.2. Secure Hash Algorithm

SHA is one of the main cryptography functions. The SHA takes a message (M) of arbitrary

size, then through compression function calculations, produces the message hash (H). SHA is used

to provide the authenticity and integrity of the data, i.e., ensure that the data are not tampered

during transmission or storing.

The secure hash algorithm generates the message hash according to two construction mod-

els. The first construction model is Merkle Damgard (MD), which is used to construct the hash

functions MD4, MD5, SHA − 1, and SHA − 2 [14]. The second one is the Sponge structure

model that constructs the SHA− 3 hash function [15]. In our proposal, we use the MD structure

model to provide data integrity and authenticity. Figure 7.2 shows the function block of the MD

structure model. The message M is preprocessed first by padding the input message to make its

size a multiple of block size (B).
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Figure 7.2. General structure of the secure hash algorithm

In the MD hash standards, the maximum message size that each algorithm accepts is

dependent on the block size, where the 512-bit block size accepts messages of size less than 264-bit,

while the others accept a message size of 2128-bit. All hash standards perform the following steps:

1. Message padding. In this phase, the message is padded with a sufficient number of zeros

to make the message size divisible by the block-size.

2. Message divide. After the padding phase, the message is divided into equal size blocks (B)

where each size is equal to the desired block size, and each hash standard has a specific block

size.

3. Compression function calculation. The message’s blocks are processed sequentially, one

at a time, using the round compression functions according to the selected hash standard.

Each block is processed a number of times equal to the number of rounds according to the

desired hash function. The output of each block is fed as an input to the second block.

4. Output hash generation. After processing all message’s blocks, the output hash is taken

from the output of the last block.

For more details about secure hash algorithms and their compression functions, the reader is referred

to [16].

7.3. Related Work

The distributed environment of data centers puts an extra burden to the cloud computing

technology for processing and retrieving the Big Data. Particularly, the Big Data security is
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considered as an emerging concern in the area of cloud computing because of the distributed nature

of data centers [17]. Cheng et al. proposed a Big Data storage scheme based on dividing the Big

Data into sequenced parts and storing them among multiple cloud storage locations. The proposed

work provides a security protection scheme of mapping between different data elements rather than

protecting the Big Data. A trapdoor function is employed to encrypt the storage path of the Big

Data which in turn protects the data mapping and reduces the encryption time of the Big Data file

[17]. However, the proposed design is vulnerable to cryptography attacks which targets the storage

path rather than the Big Data, and once breached the Big Data is easily accessible.

The sensitive Big Data security is presented in different publications [11, 18, 19, 20], where

the cloud service providers have no chance to access the stored data. Li et al in [11] proposed an

intelligent cryptography approach for secure distributed sensitive Big Data. The proposed work

reduces the chances that cloud operators reach sensitive Big Data. Authors designed a model that

securely distributes the Big Data file over multiple storage locations. The Big Data file is divided

into parts where each part is encrypted using XOR scheme and sent to the storage locations among

the cloud. The proposed design was able to send and retrieve a Big Data file. However, security is

related to the security of the Encryption key, and the Big Data file is vulnerable to data modification.

In addition, A Security-Aware Efficient Distributed Storage (SAEDS) model has been developed

in [18] to prevent cloud operators from reaching sensitive data. The algorithm splits the files and

saves the data separately in the cloud servers which can significantly increase the scalability of

cloud computing in several areas such as the financial industry and governmental agencies. Two

algorithms have been proposed to support the SAEDS model: Secure Efficient Data Distributions

(SED2) is used for data processing prior sending them to the cloud while Efficient Data Conflation

(EDCon) Algorithm allows users to earn the information by rounding up two data components

from distributed cloud servers.

Khan et al. proposed a secured Big Data scheme that divides the Big Data file into cat-

egories [19]. The proposed design categorizes the Big Data according to its importance, normal

and sensitive data. The normal data are stored in the cloud without separation. However, the

sensitive data is divided into multiple parts and distributed over the cloud locations. When data

are requested, the sensitive data are collected from the storage locations and merged to the normal

data and sent to its corresponding user.
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Moreover, Dong et al. proposed a secure platform to store and share the sensitive Big Data

files [20]. The proposed design presents a proxy re-encryption scheme and a process protection

method to develop heterogeneous ciphered system functions. In this proposal, authors adopted a

process protection technology based on virtual machine monitoring. The virtual machine monitor-

ing is a special key management module that is used to store all public keys that are used in the

encryption-decryption process.

A new security framework has been developed in [21] to implement MapReduce tasks on

different clusters. The framework allows only a single-sign-on process for jobs submission to G-

Hadoop (G-Hadoop is an extension of Hadoop which runs MapReduce tasks on multiple clusters).

The proposed model utilizes multiple security solutions such as Secure Sockets Layer (SSL) protocol

and a cryptographic mechanism to prevent aggression and misuse of G-Hadoop. This work keeps

master-slave architecture of the current G-Hadoop and appending a Certification Authority (CA)

server to release proxy and slave credentials.

With the increase of computational power, the Big Data is vulnerable to security breaches,

which are not only related to unauthorized access but includes data tampering and sabotage. In

this chapter, we are presenting a secure Big Data storage scheme based on secret sharing and

modification prevention mechanisms.

7.4. Proposed Methodology

The proposed design is implemented with the aligning to the architecture shown in Fig-

ure 7.3. To better understand the figure, please refer to Table 7.1 that shows the used notations in

this section.

7.4.1. Distribution Phase

In the distribution phase, the Big Data file (D) is hashed using the SHA-512 hash function.

The resulting hash value (H) is appended to the file D, as shown in Figure 7.3. Then, D is divided

into parts (D1, D2, D3, ..., Dn), where each part has a unique identification that is needed to

reconstruct D. Besides, the hash (H) is appended to the last part of D for storage and encryption.

Afterward, the D parts are encrypted using the Encryption key (E) and distributed over multiple

cloud locations.

As the Encryption key (E) plays a major rule in the security of D, E is divided into shares

(E1, E2, ..., Ex−1) using the SSS algorithm and distributed over x authorized entities (AEs).
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Figure 7.3. Schematic diagram of the proposed methodology
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Table 7.1. Notations of the big data storage scheme

Symbols Meaning

D The Big Data

SHA Secure Hash Algorithm (SHA− 512)

H Hash value after applying the SHA− 512

H∗ Hash value after retrieving D

SSS Shamir’s Secret Sharing

Dn n part of Data D

E Encryption Key

Ek k parts of Encryption key E

L(x) Lagrange polynomial to find L(0)

CSP Cloud Service Provider

AE Authorized Entity

SE Service Entity that responsible for Data collection

According to the SSS algorithm, the number of shares (k), which are needed to reconstruct the

secret key, is represented by a polynomial of power (k − 1), as shown in Algorithm 5.

Algorithm 5: SSS

Input: Encryption Key (E)
Output: E0, E1, ..., Ex−1

1 Determine(k) ; //Least number of shares

2 for i← 0 to k − 1 do
3 ai = Rand()

4 f(x) = a0 + a1x+ a2x
2 + ...+ ak−1x

k−1

5 Determine(q) ; //Total number of shares

6 for x← 1 to q − 1 do
7 Ex = (x, f(x))

The algorithm shows the general procedure to divide E into shares (Ex−1). First, the least

number of shares (k) that are needed to reconstruct E is determined. Then, k random numbers (ai)

are generated to construct the polynomial equation (f(x)), where k represents the least number of

needed shares to reconstruct the secret key (E). Afterward, all shares are constructed using the
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polynomial equation (f(x)) by determining the total number of secret shares (q), where each share

(Ex−1) is represented as a pair (x, f(x)).

7.4.2. Retrieving Phase

At the Cloud, the Big Data parts are distributed through multiple Cloud locations where

the CSP unable to access any of the D parts because of the data encryption. Moreover, the

CSP has no access to the Encryption key because it is divided into shares that are distributed to

authorized entities only. In our design, one of the authorized entities (SE) is responsible for the

data collection and decryption. However, a single authorized entity is unable to retrieve D because

SSS algorithm is used in the design.

To retrieve the Big Data file, half of the AEs need to authorize the data access by giving their

Ex where k shares are needed to reconstruct E. Once the least number of Ex shares are collected,

then the SE computes E using Equation 7.1. Afterward, the data parts (Dn) are collected from

the storage locations and assembled according to their identifiers.

Equation 7.1 shows the polynomial calculation procedure to retrieve the Encryption key

(E). The equation is called Lagrange polynomials where each point pair (x, f(xi)) refers to one

share.

L(0) =

k−1∑
j=0

f(xj)

k−1∏
m=0
m6=j

xm
xm − xj

, (7.1)

where L(0) represents the retrieved key (E).

After decryption, one more step is needed to verify the integrity of data. The secure hash

algorithm is used to accomplish the last step, where the SHA-512 is used to compute the hash

value (H∗) of the retrieved data D. Then, the computed hash value (H∗) and the appended hash

value (H) are compared to determine whether they are equal. If D is correctly gathered and not

modified during transmission, the values of H and H∗ are equal. Otherwise, D is corrupted and

contains tampered contents.

7.5. Results and Discussion

The proposed design is tested and verified using sample files of different sizes. The exper-

iments were tested using a configurable experimental environment for large-scale cloud research,

Chameleon [22]. All samples and testing results were generated on the Chameleon environment.
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7.5.1. Experimental Analysis

Figure 7.4 shows the used samples and their corresponding sizes in MegaByte (MB). The

Maximum test file size is ≈ 5.2GB while the minimum test file size is ≈ 110MB.
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Figure 7.4. Size of the sample file measured in MB.

To test the speed of the proposed design, we measured the elapsed time to collect and hash

the test samples, as shown in Figure 7.5. The figure shows that the hashing time is small when

compared to the collection time, which reflects the speed of the hash algorithm in processing the

samples. However, the figure shows that the hash time slightly increases when the size of the test

file is changed. On other hand, the needed time to collect the data parts is relatively related to the

sample size, where they are increasing respectively. Moreover, the increase of data file size affect

on the size of each part of the data, which is reflected to the total time to collect and hash the

sample files.

7.5.2. Security Analysis

We express the security analysis from the Data owner perspective where the security of Big

Data is guaranteed by the proposed scheme according to four definitions.
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Figure 7.5. The time needed to collect and hash the Big Data files.

Definition 1 The Big Data parts (Dn) are stored on multiple cloud locations and they are collected

by the SE.

The first level of security is accomplished by the SE, where the distributed data parts are collected

and combined together. In addition, the SE acquires one share of the Decryption key.

Definition 2 The encryption key (E) is divided into shares, where each share is given to an autho-

rized entity, and at least half of the authorized entities must provide their secret shares to reconstruct

E.

The second level of security is obtained using the SSS algorithm, which keeps the encryption

key secure even if few shares are breached. This property reduces centralized data control by

distributing E over multiple users.

Definition 3 The data integrity and authenticity are conserved by using the SHA hash algorithm.
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The third level of security is achieved by using the SHA, where the SHA-512 is employed to ensure

that the Big Data file is tamper-free during transmission or storage, and the Big Data parts are

reconstructed with the correct order.

Definition 4 The client concerns about data exposure to the CSP is reduced.

The data owner ensures that the CSP has no access to the stored data. This is achieved by the

data encryption and distributed encryption key, where the CSP involvement is only restricted to

provide the storage locations. Moreover, the data parts can be distributed through different CSPs,

where the SE keeps track of each part using the identification number.

The proposed design is compared with other works with respect to data integrity, CSP pre-

vention, centralized control, and average time to retrieve data from the cloud. Table 7.2 shows the

comparison between the proposed design and recent works. The proposed design accomplished the

security requirements of data integrity and CSP prevention. Moreover, the use of SSS consolidates

the proposed design against centralized control.

Table 7.2. Comparison with other works

Work
Data

Integrity
CSP

Prevention
Decentralized

Control

Avg Time/

(s)

[20] 8 " 8 -*

[19] 8 " 8 -*

[18] 8 " 8 35E3

Proposed " " " 3.5E2

* Unreported result.

The proposed design outperforms the other works (the reported results) in term of average

time needed to retrieve data from the cloud. The employment of the SHA and SSS algorithms

consolidates the cloud-based storage system and increases the level of client trust in the CSPs.

7.6. Conclusions

In this chapter, a secure storage scheme for distributed Big Data over the Cloud is presented.

The proposed design employs the SHA-512 and SSS to ensure Big Data integrity and security. The

experimental results show that the proposed design can handle a large data file with a reasonable
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time while preserving the security and authenticity properties. Moreover, the trust level between

the cloud service provider and the client is increasing because of the assured data authorization.

Big Data security is an open scope. In the future, further security analysis will be carried

out, in particular, the deployment of secure hash algorithms in future designs.
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[15] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Sponge functions”.

In: ECRYPT hash workshop. Vol. 2007. 9. Citeseer. 2007.

[16] FIPS PUB. “Secure hash standard (shs)”. In: FIPS PUB 180 4 (2012), pp. 1–27.

[17] Hongbing Cheng, Chunming Rong, Kai Hwang, Weihong Wang, and Yanyan Li. “Secure big

data storage and sharing scheme for cloud tenants”. In: China Communications 12.6 (2015),

pp. 106–115.

[18] Keke Gai, Meikang Qiu, and Hui Zhao. “Security-aware efficient mass distributed storage

approach for cloud systems in big data”. In: 2016 IEEE 2nd International Conference on

Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Per-

formance and Smart Computing (HPSC), and IEEE International Conference on Intelligent

Data and Security (IDS). IEEE. 2016, pp. 140–145.

[19] Sana Khan and Ekta Ukey. “Secure Distributed Big Data Storage Using Cloud Computing

*”. In: IOSR Journal of Computer Engineering (2017), pp. 8–12.

161

https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176


[20] Xinhua Dong et al. “Secure sensitive data sharing on a big data platform”. In: Tsinghua

science and technology 20.1 (2015), pp. 72–80.

[21] Jiaqi Zhao et al. “A security framework in G-Hadoop for big data computing across distributed

Cloud data centres”. In: Journal of Computer and System Sciences 80.5 (2014), pp. 994–1007.

[22] Kate Keahey et al. “Chameleon: a Scalable Production Testbed for Computer Science Re-

search”. In: Contemporary High Performance Computing: From Petascale toward Exascale.

Ed. by Jeffrey Vetter. 1st ed. Vol. 3. Chapman & Hall/CRC Computational Science. Boca

Raton, FL: CRC Press, 2018. Chap. 5.

162



8. ANONYMOUS PRIVACY-PRESERVING SCHEME FOR

BIG DATA OVER THE CLOUD

8.1. Introduction

Both, cloud computing and Big Data, are two emerging trends in the information technology

industries [1]. Cloud computing provides the required services to process and stores the Big Data.

These services encompass, as defined by the National Institute of Standards and Technology (NIST),

Software as Service (SaaS), Infrastructure as Service (IaaS), and Platform as Service (PaaS) [2].

The Big Data files become huge and complex because of the variety and size of the newly uploaded

data to the cloud. For instance, the cloud processes many kinds of data structures from different

sources, e.g., social network data, medical records, and commercial transactions [3].

To process the large and complex Big Data, MapReduce technology is widely used by

different entities to process their data. The MapReduce collaborates with cloud computing to

produce salable and efficient platforms. This collaboration leads to a convenient infrastructure

that helps the entities to process and store their data effectively and rapidly [4].

However, the privacy of the big data over the cloud becomes a concern because the sensitive

information is distributed over various locations and can be retrieved easily. Particularly, when the

Big Data files are not encrypted. This leads to the second issue, which is the encryption and

decryption of Big Data files. It becomes one of the main issues of storing and retrieving of Big

Data file because of the computational time of the encryption and decryption. For instance, a

medical record of a patient inside a big dataset requires the decryption of the whole dataset to

retrieve the designated record.

There are four well-known mechanisms of the privacy-preserving and protection; which are

encryption, access control, auditing, and differential privacy [5]. However, these mechanisms are

still considered as open issues in the area of Big Data and cloud computing [6]. Generally, the

The content of this chapter has been submitted to the 2019 IEEE International Conference on Big Data (IEEE Big
Data 2019). The material in this chapter was co-authored by Zeyad Al-Odat and Samee Khan. Zeyad Al-Odat had
primary responsibility for conducting experiments and collecting results. Zeyad Al-Odat was the primary developer
of the conclusions that are advanced here. Zeyad Al-Odat also drafted and revised all versions of this chapter. Samee
Khan drafted, revised all versions of this chapter, and served as proofreader.
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uploaded data to the cloud are dynamically updated and not only considered for storage, e.g.,

online applications. The traditional way to protect data is encryption, which considered as a

challenging task because the majority of applications run on unencrypted datasets. Moreover, in

most applications, the data owners and users are different entities, which makes the encryption

mechanism inefficient to ensure privacy and high-performance systems [7].

To achieve the goals of privacy, access control, and utility of Big Data, the data anonymiza-

tion is considered as a promising approach. However, the infrastructure of data anonymization

moves to the MapReduce framework to support large-scale datasets. The framework infrastruc-

ture is provided by a Cloud Service Provider (CSP) [8]. The CSP provides the required services

and management protocols to support the uploaded data with effective cost and flexible usage [9].

However, sensitive information is uploaded to the cloud and exponentially increasing. This infor-

mation comes from different sources and structures. Therefore, different data-mining techniques

were proposed to support the process of data extraction while preserving the privacy of the data.

In this chapter, we present an efficient Anonymous Privacy-Preserving Scheme (APPS)

for Big Data over the cloud based on the MapReduce framework. The proposed design helps

to maintain data privacy and integrity before they are accessed by the MapReduce. The SHA-

512 hash function is employed to provide the integrity requirements for the APPS framework.

Moreover, the functional encryption plays a major role in our proposal, because it provides on-

demand encryption/decryption paradigms.

The rest of chapter is organized as follows. Section 2 gives preliminary information related to

our scheme. Section 3 provides a literature review of the related works. The proposed methodology

is presented in section 4. Results and Discussion in section 5. Section 6 concludes the chapter.

8.2. Preliminaries

8.2.1. MapReduce

MapReduce is a large-scale data processing framework that allows handling and process

big data files in parallel [10]. Google introduced the MapReduce framework in 2004, which got

the attention of many researchers from different fields [11]. The MapReduce maintains three fea-

tures, simplicity, scalability, and fault tolerance. Therefore, many entities got benefited from the

MapReduce services.
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Figure 8.1. General structure of the MapReduce functionality

Figure 8.1 shows the general structure of the MapReduce functionality. The MapReduce

consists of two main functions, Map and Reduce. The Map function takes a sequence of values

as input and applies a distinct function on each value, i.e., maps an input pair (k1, v1) to another

pair (k2, v2). The reduce function takes a sequence of elements that are linked to the k2 value

and combines them to produce the output pair (k3, v3). As shown in the figure, the map function

maps the corresponding colors from a big list, then the reduce function combines each color to its

corresponding group. Afterward, the output will show the results according to the user query.

MapReduce can be implemented on different implementations schemes depending on the

environment. For instance, some implementations are suitable for small networks and others are

suitable for large connected machines.

8.2.2. Functional Encryption

The functional encryption (FE) is defined as an encryption methodology that describes the

functions of plain text that can be learned according to a distinct function F [12]. The FE scheme

consists of four algorithms, Setup, Keygen, Enc, and Dec. The details of each algorithm is shown

in Table 8.1. The FE works by generates a pair of public and master keys (Pk, MSk). Then for

each defined functionality (F ), a secret key (Sk) is generated using the MSk key. A message (m)

is encrypted using the public key (Pk) to produce a ciphered message (c). Afterward, if some type
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of information is requested using function (F ), the secret key (Sk) of the function (F ) is used to

reveal the information from c. Noting that, the decryption is applied to a part of the ciphered text,

which saves time in case of big data.

Table 8.1. The four algorithms of the functional encryption

Algorithm Parameters Definition

Setup Pk, MSk Creates public key (Pk) and
master key (MSk)

Keygen MSk, F , Sk Generate secret key (Sk) for
the function F using the MSk

Enc Pk, m, c Encrypts a message (m) using
the Pk to produce encrypted
message (c)

Dec Sk, c, y calculates y = f(m) using the
Sk from ciphered data c

8.2.3. Secure Hash Algorithm (SHA)

SHA is one of the main cryptography functions that compress a message (M) of a predefined

size to a fixed size output hash (H). SHA is used to check the integrity of data, i.e., ensure that

the data are tamper-free during transmission or storing.

The SHA follows two models to construct the internal compression function operations,

Merkle Damgard (MD), and Sponge structures. The MD structure is used to construct the hash

functions MD4, MD5, SHA-1, and SHA-2 [13]. The Sponge structure is used to constructs the

SHA-3 hash function [14]. Because of the compression speed of the MD structure, we adopted the

SHA-2 hash function in our proposal.

In the MD hash standards, the maximum message size that each algorithm accepts is

dependent on the block size, where the 512-bit block size accepts messages of size less than 264-bit,

while the others accept a message size of 2128-bit. Figure 8.2 shows the general operation of the

MD structure model, which is performed according to the following steps:
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Figure 8.2. General structure of the secure hash algorithm

1. Preprocessing. In this phase, the message is padded with a sufficient number of zeros to

make the message size divisible by the block-size (B). The message after preprocessing is

denoted by M∗.

2. Message divide. After padding, the message is divided into equal size blocks (B) to make

them ready for compression.

3. Compression function calculation. The blocks are processed sequentially, one at a time,

using the compression function (F). Each block is processed a number of times equal to the

number of rounds that each function employ. The Initial Hash Value (IHV) is fed as an input

to process the first block. Then, the output of processing each block is fed as input to the

next block calculation. This process continues until all blocks are processed.

4. Output hash generation. After processing all message’s blocks, the hash value is taken

from the output of the last block calculation.

For more details about secure hash algorithms and their compression functions, the reader is referred

to [15].

8.2.4. Threat Model

• Privacy-Preserving. The privacy of the Big Data is considered a crucial issue, particularly,

when all data are stored in the cloud. There should be a high level of trust between the data

owner and the CSP.
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• Integrity Threat. The shared data in the cloud might be corrupted by an adversary or the

CSP loses the stored data due to hardware failure. Moreover, the collision attack forms a

serious threat when a weak secure hash algorithm is used [16].

• Encryption/Decryption Time. The time of encryption and decryption need to be enhanced,

especially, in the big data environment. As the data are increasing over time, then the

encryption will be an obstacle to overcome.

8.3. Literature Review

The privacy of big data files over the cloud is considered as a crucial issue; because of the

amount of sensitive information that might be compromised by adversaries. Many researchers in

the field of big data security focused on the privacy-preserving of sensitive information over the

cloud [17, 18, 19].

A secure privacy-preserving scheme for on-demand cloud service was proposed in [17]. The

proposed work helps to prevent data loss over the cloud and increase the level of trust between

the cloud service provider and the data owners. Moreover, the privacy of the stored information

over the cloud is maintained and the data owners ensure that the CSP is not able to access the

encrypted information on the cloud. the work focuses on the portability of users’ information with

trusted CSP and store them in locations that are ambiguous from the CSP.

Usually, the datasets on the cloud change frequently. Therefore proper privacy-preserving

schemes are needed to support the incremental nature of the data over the cloud. Aldeen et al.

proposed an innovative privacy-preserving scheme for incremental data on the cloud [18]. The

proposed design employs an anonymization technique to attain data privacy over distributed and

incremental big data. The proposed design works by dividing the data into small parts then

stores them on distributed locations over the cloud. The anonymized data are divided according

to a predefined anonymization level (k). Then, any new updates to the data will be handled by

initializing the anonymized datasets. The evaluation of the design showed enhancements in the

execution time of the incremental design over the classical data incremental method.

The privacy of mobile cloud systems is also considered as the same issue as the big data over

the cloud. Lo and Gokay prop a hybrid mobile-cloud model based on the concept of cloudlet [19].

Two models were employed to construct the hybrid model, the cooperative and centralized models.
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One master cloudlet is responsible for the management of the data transfer, ensures the data

privacy, and security of communication channels. The proposed design was tested and verified

using Mobile Cloud Computing Simulator (MCCSIM) to measure the delay time and consumed

power when applying the design.

However, the encryption and decryption operations are considered as part of the dilemma

when dealing with big data. Furthermore, the dilemma will increase when considering secure big

data schemes with efficient cryptography approaches [20]. To enhance the computational cost

of the big data encryption, Li et al. proposed an encryption scheme based on Attribute-Based

Encryption (ABE) [21]. The proposed design combines the ABE with MapReduce functionality.

The encryption of the big data is outsourced to a trusted CSP by maintaining a master node and

several slave nodes. The master node provides a set of available slave nodes to perform a specific

task. Then all involved salve nodes are employed as mappers to get the task completed using the

MapReduce paradigm. The computational cost, using the proposed design, is reduced into four

exponentiations which save more time than the classical encryption method.

The idea of Homomorphic Encryption (HE) for faster encryption of big data was adopted

by Wang et al [22]. They proposed a faster HE scheme for big data over the cloud. A Fully HE

(FHE) along with Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) schemes were employed

to improve the encryption speed. The public key size is reduced using Pseud Random Number

Generator (PRNG) in cubic form rather than linear form. The security of the proposed design was

considered and proved under the error-free approximation problem. Moreover, the system model

of the FHE scheme of big data is illustrated.

The anonymous data distribution of Big Data over the cloud is also adopted by many

researchers [23, 24, 25]. The anonymous data are distributed over the cloud using the MapReduce

framework, where the privacy requirements need to be maintained. Zhang et al. proposed a privacy-

preserving architecture over the cloud using the MapReduce and anonymization functionalities. The

proposed design is built on top of MapReduce framework to achieve the security components of the

design. The design support flexible and dynamical data update, and cost-effective framework [23].

The MapReduce framework for data anonymization is also adopted by Mohammed et al. [24]. They

presented a centralized and distributed anonymization scheme for healthcare data. Through the

design, they propose a new privacy model called LKC-privacy. To further enhance the security of
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anonymized Big Data, An enhanced secured MapReduce design is presented in [25]. They propose

the Secure Map Reduce (SMR) model to guarantee the privacy and security concerns, which is

built as a layer between the MapReduce and Hadoop Distributed File System (HDFS).

In this chapter, we propose an Anonymous Privacy-Preserving Scheme (APPS) based on

the MapReduce framework. This proposal helps to overcome the security and computational issues

that appeared in the area of Big Data processing. In the subsequent text, we present our proposal

and all related design algorithms.

8.4. Proposed Methodology

We present the APPS model based on MapReduce and functional encryption paradigms.

In the APPS, the privacy of big data on the cloud is preserved using the functional encryption

and MapReduce. Moreover, we employed the SHA-512 hash function to preserve the integrity

requirements of the APPS. To save the encryption time, some available nodes on the cloud are

incorporated to achieve the encryption task. Before going through the details of our proposal,

please refer to Table 8.2 to clarify the meanings of the symbols that will be used in the design.

Table 8.2. Notations of the APPS design

Symbols Meaning

FE Functional Encryption

SHA-512 Secure Hash Algorithm (SHA-512 )

CT Ciphered-Text

MEK Mapper Encryption Key

MSk Master key

Pk Public key

Sk Private key

ENC Encryption

DEC Decryption

Ikey policy attributes used to generate private key

Ienc policy attributes to functionally encrypt data

CSP Cloud Service Provider
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8.4.1. General Structure

Figure 8.3 shows the general structure of the proposed scheme. Two levels of MapReduce

were utilized to achieve encryption and decryption tasks. Before uploading data to the cloud, the

user specifies the number of available nodes in the cloud before uploading the data. The big data

file is divided into smaller parts then they are transferred to the predefined nodes (each node is

called a mapper) for encryption. After encryption, the SHA-512 hash function is applied to each

part. After hashing, the Ciphered-Text (CT) of each part is stored in the cloud. On another hand,

the MapReduce task is performed to retrieve the requested information from a data part. The data

part that contains the desired information is determined first. Then, the integrity of the selected

part is examined using the SHA-512 hash function. Afterward, the second level of MapReduce is

applied to the selected part. After determining the part that contains the desired information, the

FE is used to decrypt the information that is requested by a user. The complete operations are

described as follows:

1. Divide Phase. The Big Data file is divided into smaller parts, where each part is signed

using the SHA-512 hash function. The hash value of each part is appended to the end of its

corresponding part.

2. Upload Phase. The data owner uploads the divided data and a set of instructions to the

mappers. Each mapper receives part of the data and the encryption instructions to produce

functionally encrypted ciphered-text. More details about the instructions are coming through

this section.

3. Map Phase. Each mapper takes attribute instructions and Mapper Encryption Key and

produce the functionally encrypted cipher-text (CTi).

4. Reduce Phase. The reduce function is performed when a result is requested. The mappers

work on the reduce phase to bring the result to a user. then the user needs to decrypt the

received result using the associated keys. More details will be elaborated later.

5. Integrity Check. The associated hash value is used to check the integrity of the received

data.
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6. FE phase. The desired part of data is revealed using the FE algorithm.
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Figure 8.3. General structure of the proposed design

8.4.2. System Model

The proposed system comprises the following algorithms:

1. Setup(λ,Ienc): Number of security parameters (S) are taken as input to produce public (Pk)

and Master key (MSk); a security parameter is denoted by λ. According to a set of encryption

policies (Ienc), a set of Mappers Encryption Keys ({MEki}ni=1) for n mappers in the cloud

are produced.

2. KeyGen(Ikey,MSk): The master key (MSk) and a set of attributes (Ikey) are used to generate

a private key (Sk) for these set of attributes.

3. ENC(Ienc, {MEki}ni=1): The encryption policies (Ienc) and the {MECi}ni=1 are used to en-

crypt the message (m). It produces the ciphered-text (CTi).

4. DEC(CT,Sk): The ciphered-text (CT) and the secret key (Sk) are used to decrypt the message

according to the policy attributes identified by the Ikey and Ienc.
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Figure 8.4. APPS framework

8.4.3. Data Management and Anonymization

In our proposal, we used Hadoop data anonymization implementation to deploy our algo-

rithm. Hadoop provides an efficient data anonymization implementation and a reliable infrastruc-

ture that processes the data in parallel. In our proposal, five main properties are maintained:

1. data anonymization,

2. privacy-preserving,

3. data Update,

4. efficient Encryption/Decryption scheme, and

5. data integrity.

The anonymized data are kept hidden from the data owners, and only accessed by the MapReduce

functionality. The privacy of the data owners is preserved using the utilized anonymization tech-

nique, which hides the identity of the data owner. In the case of incremental data, the proposed

design supports the addition of new data, which can be added and retrieved efficiently using the

MapReduce platform. The time of data encryption and decryption is reduced significantly because

the operations of encryption and decryption are delegated to the CSP. The integrity of data is

maintained by using the SHA-512 hash function.

8.4.4. APPS Construction

Our Anonymous Privacy-Preserving Scheme (APPS) utilizes the MapReduce framework to

achieve flexibility and efficiency. To understand the construction model, basic information about

Bilinear Map needs to be addressed.
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Definition 5 Let G1, G2, and G3 be multiplicative cyclic groups of order p. Suppose g1 is the gen-

erator of G1, and g2 is the generator of G2. Then, a bilinear map e is defined as e : G1 ×G2 → G3

and satisfies the bilinearity, non-degeneracy, and computability properties.

Each property is defined as follows:

• Bilinearity: ∀ u ∈ G1, v ∈ G2, and a, b ∈ Zp, then e(ua, vb) = e(u, v)ab.

• Non-degeneracy: ∀ gi ∃ e ⇒ e(g1, g2, ..., gi) 6= 1.

• Computability: ∀ u, v ∈ G1 and G2 respectively, and a, b ∈ Zp. ∃ A s.t A⇒ e

The APPS construction is illustrated as follows:

– Setup: The setup stage is executed by the data owners. A bilinear group G is selected with

order p and a generator g. two integers (a, b ∈ Zp) are randomly selected and a random

oracle is defined using the hash function (H : {0, 1}∗ → G). The public and master keys

are generated according to the aforesaid setup, where Pk = (G, H(.), g, h = gb, e(g, g)a) and

MSk = (b, ga).

– KeyGen(Ikey, MSk). The KeyGen algorithm is run for each group of policy attributes

(Ikey). Two random integers are selected (r, rj) for each attribute j and compute the private

key Sk = g
a+r
b , gr.H(j)rj , grj .

– MEKGen. A randomly, an integer (s) and 1-degree polynomial R(.) are selected, where

R(0) = s. Produces n splits on s by randomly selecting s1, s2, . . . , sn, where s = s1 + s2 +

· · ·+ sn. Then, the values of MEK are assigned to the values of the s splits (MEKi = si, for

i = 1, 2, . . . , n).

– ENC(Ienc,MEK). The encryption is executed by the MapReduce framework. The encryp-

tion policy attributes (Ienc) and MEK are uploaded to the cloud, each to a distinct mapper

node. Each mapper uses the corresponding MEK to generate the CTi. Where, for each data

part the output is Map(Ienc,MEKi) → (Ienc, CTmapperi), which maps between the MEKs

and the CTs.
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– DEC(CT, Sk). When certain data are requested from a user, the desired part of data is

retrieved, i.e., (this is done by the set of attributes and data parts pairs, and examined for

integrity using the SHA-512 hash function. The functional encryption is applied to the data

part, according to the type of requested information, e.g., the user ask only for names and

birthdays. Where the retrieved message is retrieved by computing Equation (8.1),

m =
e(g, g)as

e(hs,g
a+r
b )

e(g,g)rs

. (8.1)

8.5. Results and Discussion

8.5.1. Deployment Environment

We deployed our design based on ChameleonCloud environment [26]. ChameleonCloud is a

configurable experimental environment for large-scale cloud research at the University of Chicago

and the University of Texas at Austin. The structure of the deployment environment is depicted

in Figure 8.5. A Kernal-based Virtual Machine (KVM) virtualization is installed on top of Linux

(Ubuntu LTS 16.0.4) operating system and the reserved hardware. Hadoop is installed via Open-

Stack to facilitate the intensive MapReduce operations.

8.5.2. Experimental Test

To test the validity of our approach, the ChameleonCloud environment is utilized with the

following setup:

1. We generate synthesized datasets with different size.

2. Utilize Hadoop framework by deploying the Hadoop Distributed File System (HDFS) appli-

ance that is provided by the ChameleonCloud environment.

3. The OpenStack environment is used to manage the virtual machine environment and resource

scheduling.

4. The KVM virtualization software is used to provide unified storage resources. This is provided

by deploying the MVAPICH appliance that is provided by Chameleon, which is responsible

for MPI clustering of the KVM virtual machine with InfiniBand enabled.

5. Utilize the Ubuntu 16.04 LTS appliance, which is supported by Chameleon.

175



OpenStack Envieronment

KVM Virtualization

Figure 8.5. Deployment environment structure

6. The size of the synthesized datasets is ranging from 200 MB to 4.0 GB. The execution time

is measured to evaluate system efficiency.

The proposed design is compared with the centralized anonymous approach by Mohammed et

al. and privacy scheme by Zhang et al. Figure 8.6 shows the comparison between our proposal and

the other approaches. In our design, we included higher data sizes than the data presented in the

other works. The centralized approach shows a good start in the execution time with lower size,

but a significant increase in the execution time when the dataset’s size slightly increase. Approxi-

mately, a linear increase in the execution time for our proposal and the work of Zhang et al. with a

noticeable advantage of our work in the analogous range of dataset’s sizes. Furthermore, our work

has been tested on higher synthesized datasets’ size than the other works.

8.5.3. Final Remarks

The security of the proposed scheme is analyzed according to the following threats.
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Figure 8.6. Execution time of the proposed design and other works

1. Data Integrity. The APPS model is secure against data integrity and authenticity issues. The

secure hash algorithm SHA-512 ensures that the data are not tampered or modified during

storage or transmission.

2. Privacy-Preserving. The APPS model guarantees the privacy of the uploaded data. Further-

more, if one of the mapper nodes is curious, the model still able to preserve the privacy of

the uploaded data as well as the data owners identities. This is held according to the Bilinear

maps assumption.

3. The Encryption/Decryption time is reduced significantly, as shown in the experimental re-

sults. Moreover, the FE showed the ability to decrypt part of data in case of a specific type

of information is required.

8.6. Conclusions

This chapter presented an Anonymous Privacy-Preserving Scheme (APPS) for big data over

the cloud. The proposed design employed the SHA-512 hash function, the functional encryption

algorithm, and the MapReduce framework. Through two levels of MapReduce, the proposed design

enhance the encryption/decryption task of big data. The employment of the functional encryption

helped to decrypt the desired part of data rather than all data, which saves time and efforts. The
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Integrity of the data is conserved using the SHA-512 hash function and the privacy of the uploaded

data is conserved using the anonymous MapReduce framework.

In the future, further experiments will be conducted to evaluate the performance of the

proposed scheme. More security issues and threats will be analyzed in the future.
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9. AN EFFICIENT CLOUD AUDITING SCHEME FOR DATA

INTEGRITY AND IDENTITY PRIVACY OF MULTIPLE

UPLOADERS

9.1. Introduction

Cloud computing provides an efficient and wide range of services over scalable storage

locations. These services include data sharing between multiple users, where each user can edit the

existing data or upload a new one.

The data in the cloud are susceptible to lose or damage due to software or hardware failures

of the cloud service provider (CSP) [1]. The traditional way to verify the existence of data is to

retrieve the entire file from the cloud and check the data signature or hash using the conventional

cryptography approaches. However, the verification process becomes harder because retrieving

large data file consumes time and efforts [2].

Provable data possession is the method of verifying that the cloud server still possesses

the stored data [3]. This includes traditional or other verification methods. The need to verify

the integrity of data over the cloud becomes essential because cloud service providers offer the

computation services of cloud data files directly without download. Therefore, many techniques

were proposed to allow the data owners or a hired third party to verify the existence of data without

any need for data download [4].

In some cases, e.g., election and top-secret reports, the data owners delegate the process

of results verification to a Third Party Auditor (TPA). But, when the TPA reveals the identity of

each member of the data owners, then a risk of data confidentiality will arise [5]. Therefore, the

TPA is only allowed to check the correctness and integrity of data without any knowledge about the

identity of the owners. Moreover, the stored data might be lost due to software/hardware failures

or an adversary tries to corrupt users’ data. The CSP tries to deceive the data owners or the TPAs

The content of this chapter has been published in the IEEE Cloud Summit 2019 the 3rd IEEE International
Conference on Cloud and Fog Computing Technologies and Applications. The material in this chapter was co-
authored by Zeyad Al-Odat and Samee Khan. Zeyad Al-Odat had primary responsibility for conducting experiments
and collecting results. Zeyad Al-Odat was the primary developer of the conclusions that are advanced here. Zeyad
Al-Odat also drafted and revised all versions of this chapter. Samee Khan drafted, revised all versions of this chapter,
and served as proofreader.
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by a fake report about the existence of their data [6]. Therefore, a complete auditing scheme has

to be able to limit the TPA privileges and provide an authentic tool to check data integrity.

This chapter provides a Privacy-Preserving scheme of Multiple data Uploaders on the Cloud

(PPMUC). The proposed work presents an efficient data verification scheme to check the integrity

and existence of stored data over the cloud. Moreover, the PPMUC hides the data owners identities

from being revealed to the TPA.

The rest of chapter is organized as follows. Section 2 gives preliminary information related to

our scheme. Section 3 provides a literature review of the related works. The proposed methodology

is presented in section 4. Results and Discussion in section 5. Section 6 concludes the chapter.

9.2. Preliminaries

Before going through the details of our proposal, brief descriptions about the system com-

ponents, the general structure of the TPA model, and the threat model need to be addressed.

9.2.1. System Components

There are three main components in the TPA scheme which construct the verification system

of shared data on the cloud.

1. Cloud Service Provider (CSP). The CSP provides the storage locations for the shared data

files and responds to the TPA queries (challenges). Each data block is stored as a tuple of

three values (index, block (m), and tag). The index represents the message identifier, the

block field represents the block’s content, and tag contains the signature of the block creator.

2. Data Uploader. The uploader is any group member of the data owners that has a secret key

to sign his corresponding block. Then, the corresponding block content, index, and tag are

uploaded to the shared storage location.

3. TPA. The verification of the existence of data in the cloud is given to the TPA. The TPA

performs the verification process by sending a challenging command to the CSP. The validity

of the data integrity is checked according to the received response from the CSP.

9.2.2. General Structure of the TPA

When data owners hire a TPA to audit their data, the general procedure is accomplished

according to Figure 9.1. The figure shows the general structure of TPA scheme. The data owners
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(Alice and Bob) have the same priority to create, upload, and modify the data blocks. Each user

in the group signs the data block when any action is performed. The TPA verifies the existence

of data by sending a challenge command to the CSP. The proof of data existence is determined

according to the CSP response to the TPA challenge [7].

Cloud

A B
TPA

Challenge

Response

Index Block (m) tag

1 m1 σ1

2 m2 σ2

. . .

. . .

s ms σn

Block Signer

1 A

2 B

. .

. .

s A

Figure 9.1. Alice and Bob share their data in the cloud, and the TPA verifies the existence of data.

However, the TPA can determine the identity of each block signer, which leads to the

disclosure of the identity of the data uploaders.

9.2.3. Threat Model

Two major threats are related to this area of study.

1. Integrity Threat. The shared data in the cloud might be corrupted by an adversary, or the

CSP loses the stored data due to software/hardware failure of the cloud system. In such a

case, the CSP will be averse to inform the data owners about the data loss to avoid losing

customers. Therefore, the CSP tries to deceive the TPA by forging the response report to

provide a positive inquiry [8]. Moreover, a collision attack forms a serious threat when a weak

secure hash algorithm is used [9].

2. Uploader Privacy Threat. The identity of the data signer is confidential and only related to

the group of data owners. Therefore, during the verification process, the TPA is only allowed
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to check the data integrity without knowing the identity of each data signer. Once the TPA

reveals the signer of each data block, then it will be easy for the TPA to discriminate between

the high and low-value users. Consequently, determine the high confidential data from the

level of its corresponding signer [10].

9.3. Related Work

The idea of anonymous signature schemes was first introduced by Chaum and Heyst [11].

In their design, a trust group manager creates a group of users and assigns special secret keys

distributed over the group members. Some users can create and sign messages using the secret

keys on behalf of the group. A public verifier is unable to distinguish the identities of data signers.

However, the group manager can revoke the identity of the signers.

In 2001 Rivest et al. came up with a ring signature scheme which generates a group of

multiple users without a manager [12]. In this scheme, each user creates his own secret keys pair

(public-private) and signs a message in such a way that no one in the group can determine his

identity. However, in some cases, when a single user signs a message with his private key —

without declaring a set of possible signers — then his identity might be revealed.

The anonymous signature scheme is applied to shared cloud data when multiple users work

on shared data blocks. Each user has a distinct private-public key pair and the identity of each

block signer (user) is anonymous from the others [13]. The idea of the group signature, where a

group manager can trace the group members actions, was presented in [14]. The proposed work

presents an anonymous and tractable group data sharing over the cloud. The authors employed

the group signature scheme by Chaum and Heyst to implement their design. The experimental

results showed an improvement in the verification time but showed a degradation in time when

user identity is revoked. Using the same group signature approach, Li et al. employed the group

signature for the privacy-preserving of mobile sensing data [15]. The proposed design divides the

regions of cellular infrastructure into groups with each group contains a number of users. The

group signature allows the manager of each group to determine the misbehaving user inside the

group region.

However, the data uploaders over the cloud, in some cases, want to hide their identity

from other users or entities. To hide the signer identities from all users and verifiers, Wang et
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al. proposed a privacy scheme for public data auditing [16]. The proposed design provides a

public data auditing over the cloud with an identity-privacy approach. The identities of the data

uploaders are made hidden from both the group members and the third party auditors. In their

design, they exploit the ring signature scheme to anonymously upload data blocks and verify data

integrity over the cloud. Moreover, Wu et al. in [17] followed the same ring signature approach for

privacy-preserving. An Anonymous Cloud Auditing scheme with Multiple Uploaders (ACAMU)

was presented. The proposed design helps the data owners to hide their identity from a hired

third-party auditor. A mathematical model was studied and prove the efficiency of their proposal.

However, no experiment was conducted to show the applicability of their design. Moreover, to

achieve the privacy-preserving of multiple data uploaders, Cong et al. proposed a scheme that

combines the public key homomorphic authenticator with random masking. The proposed design

achieves the privacy requirements of auditing and identity hiding [18].

In this chapter, we are introducing a Privacy-Preserving model for Multiple data Uploaders

over the Cloud (PPMUC ). In our design, we used a modified ring signature scheme to deploy our

proposal, and the Secure Hash Algorithm (SHA-512) is used to consolidate the proposed design [19].

In the subsequent section, Details about the PPMUC will be presented.

9.4. Proposed Methodology

The PPMUC helps to verify the existence of data over the cloud through a hired TPA.

Brief descriptions about the Bilinear Map and Bilinear Diffie-Hellman (BDH ) are presented before

going through the details of our proposal. The reader is advised to refer to Table 9.1, which lists

the notations that are used in this section. Please refer to the table to clarify the meaning of each

symbol.

9.4.1. Bilinear Map

To understand the PPMUC, the Bilinear Map mathematical notation and definition need

to be addressed. The subsequent definitions identify the meaning and properties of the bilinear

map and BDH. For more details about these definitions, the reader is advised to read [20, 21, 22].

Definition 6 Let G1, G2, and G3 be multiplicative cyclic groups of order p. Suppose g1 is the gen-

erator of G1, and g2 is the generator of G2. Then, a bilinear map e is defined as e : G1 ×G2 → G3

and satisfies the bilinearity, non-degeneracy, and computability properties.
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Table 9.1. Notations of the PPMUC design

Symbols Meaning

A Efficient algorithm A

∀ For all

H Hash value after applying the SHA− 512

∃ Exists

Zp big prime p

G Group

e bilinear map

θ Tag

π message response L(0)

CSP Cloud Service Provider

Pukn public key of user n

Prkn private key of user n

Each property is defined as follows:

• Bilinearity: ∀ u ∈ G1, v ∈ G2, and a, b ∈ Zp, then e(ua, vb) = e(u, v)ab.

• Non-degeneracy: ∀ gi ∃ e ⇒ e(g1, g2, ..., gi) 6= 1.

• Computability: ∀ u, v ∈ G1 and G2 respectively, and a, b ∈ Zp. ∃ A s.t A⇒ e

9.4.2. Bilinear Diffie-Hellman (BDH) Assumption

Definition 7 BDH Problem. The advantage (ε) of Algorithm A in solving Discrete Logarithm

(DL) problem for G1 of the bilinear map e is defined as:

ε ≤ Pr[A(g, ga, gb)← A(g, ga, gb).

Then, with a negligible advantage, A satisfies the BDH assumption.

9.4.3. PPMUC Model

The PPMUC model consists of six functions: create, generate, sign, challenge, response,

and verify. Each function performs designated operations to fulfill the security requirements and

protect the system against any possible threat.
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Figure 9.2. General architecture of the PPMUC scheme

1. Create. This function is responsible for the group creation where n group members are added

to the group.

2. Generate. Each member of the group generates a pair of public and private keys (Pukn, P rkn)

that is assigned to the nth user.

3. Sign. The nth uploader uses his corresponding private key (Prkn) to calculate the tag (θn,m)

of the nth block (Bn), and uploads the tuple (ID,Bn, θn,m) to the cloud.

4. Challenge. When the group members want to audit their data, they send all public keys of

the group members along with randomly picked block indices to the TPA. Then, the TPA

generates the challenge and sends it to the CSP.

5. Response. Once the CSP receives the challenge from the TPA, the response (π, θ) is prepared

and sent back to the TPA.
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6. Verify. The existence of the data is verified by the TPA according to the CSP response.

Then, the TPA prepares the verification report, signs it using the Secure Hash Algorithm

(SHA-512), and sends it back to the Group members.

Figure 9.2 shows the general structure of the proposed scheme. In this design, all group

members have the same priority without group manager. Each user creates his own keys pair

(Pub,Prk), which is used to generate a block tag (θ). Afterward, the tuple (ID,Bn, θn) is uploaded

to the cloud for sharing and storage.

When the group members want to verify their data, they send a ”depute” request to the

TPA which contains all users public keys (Pukn)1 and a subset of randomly picked block indices

(Q). Then, the TPA prepares the ”challenge” order and sends it to the CSP.

The CSP receives the challenge request from the TPA and starts to compute the response

using the blocks (Bn) and their corresponding tags (θn), where n ∈ Q. Once completed, the CSP

sends the response back to the TPA as (π, θ∗) pair, where π refers to the blocks calculations and

θ∗ refers to the tags’ calculations. The TPA verifies the correctness of the received response by

verifying the following:

Result
?←− V erify(π, θ∗, Pukn, Q),

where result is the output of the verification process that is conducted by the TPA.

In case of a collision attack by an adversary (A), the TPA uses the Secure Hash Algorithm

(SHA-512) to sign the result before sending it to the Group. On receiving the result report, the

group members check the correctness of the received report by computing the SHA-512 value of

the report. Once verified, they read the query report about their data integrity and existence.

9.4.3.1. PPMUC Procedure

The PPMUC process is accomplished according to the following setup:

• A user ui, who wants to upload the data block (Bj), selects a random value (xi). This value

is used to generate the public-private pair (Prki, puki), where xi = Prki.

1Public keys give no clue about the identity of their corresponding users.
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• User ui picks a one time random value bt for all group members, where t 6= i, and assigns

θt = gbt1 . Afterward, user Ui signs a message block (Bj) using (9.1).

θintendi,j =

(
Γ∏

t6=i Puk
bt
t

)1/xi

, (9.1)

where Γ = H(j).g
Bj

1 , and H is the secure hash algorithm function. After the completion of

block generation and sign, the index (j), block (Bj), and tag (θi,j) are combined as one tuple

and uploaded to the cloud for sharing.

• To check the integrity and existence of the data, the TPA sends a challenge request to the

CSP. This request contains the public keys of the group members and a set of randomly

picked block indices (Puki, Q).

• At the server side, the CSP computes the response using (9.2) and (9.3).

π =
∑
j∈Q

j.Bj (9.2)

θ∗ =
∏
i,j∈Q

e(θi,j , Puki), (9.3)

where e is the bilinear map between θ and Puk. When the response is ready, the CSP sends

it to the TPA as (θ∗, π).

• The verification process is accomplished by the TPA after receiving the CSP’s response. The

TPA checks the correctness of the received response using (9.4).

θ∗
?
= e(Γ, Pubk). (9.4)

The bilinear map (e) between the Γ and the Pukk must be equal to the θ∗ value.

• The TPA computes the (SHA-512) hash value for the result, appends it to the report, and

sends it back to the client.
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• The client (group) receives the report from the TPA. The report is verified first by computing

the SHA-512 hash value and compare it with the append hash value. Then, if the two hashes

are equal, the report contains the correct auditing information about the data on the cloud.

9.5. Results and Discussion

The proposed design provides a secure infrastructure against three main security threats:

1. a cheat CSP, 2. an eager TPA, and 3. data integrity. The cheat CSP tries to deceive the TPA

or group members about the existence of their data in case of hardware or software failure. An

eager TPA tries to know the identity of each block signer to distinguish the highest value member.

On another hand, the data integrity must be verified even though the existence of data is verified;

because some adversaries want to corrupt the shared or stored data.

9.5.1. Security Model

For each security threat, we built a security model to verify the efficiency of the proposed

design. This model includes mathematical proofs and experimental results. The mathematical

proofs are deduced through the bilinear map, the BDH assumptions, and the results presented

there within [20, 21, 22, 23]. The experiments were conducted to test the speed and efficiency of

the proposed design.

9.5.1.1. Data Integrity

The probability of the adversary (A) to deceive the TPA is negligible according to the BDH

assumption. The adversary (A) tries to win a challenge game according to the following setup:

1. A has all public keys, indices, and blocks (Bn).

2. A receives the set of selected indices query (Q).

3. A responds to the challenge by generating (π, θ∗) pair.

Deduction 1 The PPMUC scheme is strong against CSP deception, because the probability that

a fake response pass the verification process is negligible, s.t.,

PrA


(ID, n,Bn)← A

V erify(π, θ∗, Pukn, Q, S) Q← A

(π, θ∗)← A(challenge)

 = λ,
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where λ is a security parameter with a negligible probability. This is achieved according to the

bilinear map assumptions, where the adversary (A) has a negligible probability (λ) to deceive the

TPA.

9.5.1.2. Privacy-Preserving

The second security issue is the identity of the data uploader. In some cases, an eager TPA

(adversary B) tries to reveal the identity of the data uploader which might contain confidential

information. The probability of B to reveal the identity of block signer is no more than 1/n, for n

group users.

Deduction 2 The PPMUC scheme attains the identity privacy property if for a polynomial-time

adversary (B) the probability of adversary advantage is negligible (no more than 1/n), s.t.,

PrB



(Pukn, Q)← B

n = n
′

(1, 2, .., n)← B

(π, θ∗)← Response

n
′ ← B(π, θ∗)


≤ 1/n

According to this deduction, the probability that an adversary can determine the highest

value group member will not exceed the equally distributed probability (1/n). This property is

guaranteed by the BDH assumption [22].

9.5.1.3. Experimental Results

To test our design, we prepared a set of group users and auditing tasks. The experiments

were conducted on a Linux operating system with 3.4 GHz i7 CPU and 16GB of RAM. We tested

our design on a 3GB of synthesized data for two parameters, key generation time and auditing

time. Figure 9.3 shows the experimental results of creation time after applying our design. The

creation time increases with the number of users in the group. This is because the number of

parameters increases with each new user, which requires more computations every time a key and

tag are created. On the other hand, we prepared different auditing tasks to verify the existence

of the data using the proposed work. Figure 9.4 shows the time needed to verify randomly chosen

blocks of data. During all experiments, the required time for verification stayed approximately the

same, because the number of parameters between the server and the TPA is the same.
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9.5.1.4. Comparison with Other Schemes

The proposed design is compared with other works with respect to speed —which includes

the time needed to create a group and its corresponding signatures— and the time needed to

accomplish auditing tasks. Table 9.2 shows a comparison between our proposal and related work

from the literature; our proposal showed the best results with respect to the creation time and

auditing time. The results in the table correspond to a group of 20 members and 20 auditing tasks.

However, the result of reference [18] is reported for one task.

Table 9.2. Comparison with other works for 20 tasks

Work
Group creation

time (ms)
Auditing time

(ms)

[16] 52 2500

[18] * 430/task

Proposed 30 1000

* Unreported result.
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Moreover, our design produces a small tag size for the uploaded data blocks when compared

with the other works. This will reduce the storage needed for the verification, and consequently

reduces the price of renting a storage from the CSP.

9.6. Conclusions

This chapter introduced a privacy-preserving scheme for multiple data uploaders over the

cloud. The proposed design helps to overcome two security issues of shared data, which are the

data integrity and identity privacy. Using this approach, the public verifiers are not able to revoke

the identity of message block signer, and a CSP is unable to cheat the TPA in the case of data loss

or corruption.

9.7. References

[1] Keiko Hashizume, David G Rosado, Eduardo Fernández-Medina, and Eduardo B Fernandez.

“An analysis of security issues for cloud computing”. In: Journal of internet services and

applications 4.1 (2013), p. 5.

[2] Muhammad Imran et al. “Provenance based data integrity checking and verification in cloud

environments”. In: PloS one 12.5 (2017), e0177576.

193



[3] Giuseppe Ateniese et al. “Remote data checking using provable data possession”. In: ACM

Transactions on Information and System Security (TISSEC) 14.1 (2011), p. 12.

[4] Sura Khalil Abd et al. “Cloud computing security risks with authorization access for secure

multi-tenancy based on AAAS protocol”. In: TENCON 2015-2015 IEEE Region 10 Confer-

ence. IEEE. 2015, pp. 1–5.

[5] Robbie Simpson and Tim Storer. “Third-party verifiable voting systems: Addressing moti-

vation and incentives in e-voting”. In: Journal of information security and applications 38

(2018), pp. 132–138.

[6] Sutirtha Chakraborty, Shubham Singh, and Surmila Thokchom. “Integrity checking using

third party auditor in cloud storage”. In: 2018 Eleventh International Conference on Con-

temporary Computing (IC3). IEEE. 2018, pp. 1–6.

[7] Kochumol Abraham and Win Mathew John. “Proving possession and retrievability within a

cloud environment: A comparative survey”. In: Int. J. Comput. Sci. Inf. Technol. 5.1 (2014),

pp. 478–485.

[8] Yun Xue Yan, Lei Wu, Wen Yu Xu, Hao Wang, and Zhao Man Liu. “Integrity Audit of Shared

Cloud Data with Identity Tracking”. In: Security and Communication Networks 2019 (2019).

doi.org/10.1155/2019/1354346, pp. 1–11.

[9] Zeyad Al-Odat, Mazhar Ali, and Samee U Khan. “Mitigation and Improving SHA-1 Stan-

dard Using Collision Detection Approach”. In: 2018 International Conference on Frontiers

of Information Technology (FIT). IEEE. 2018, pp. 333–338.

[10] Shareeful Islam, Moussa Ouedraogo, Christos Kalloniatis, Haralambos Mouratidis, and Ste-

fanos Gritzalis. “Assurance of security and privacy requirements for cloud deployment mod-

els”. In: IEEE Transactions on Cloud Computing 6.2 (2018), pp. 387–400.

[11] David Chaum and Eugène Van Heyst. “Group signatures”. In: Workshop on the Theory and

Application of of Cryptographic Techniques. Springer. 1991, pp. 257–265.

[12] Ronald L Rivest, Adi Shamir, and Yael Tauman. “How to leak a secret”. In: International

Conference on the Theory and Application of Cryptology and Information Security. Springer.

2001, pp. 552–565.

194



[13] Boyang Wang, Sherman SM Chow, Ming Li, and Hui Li. “Storing shared data on the cloud via

security-mediator”. In: 2013 IEEE 33rd International Conference on Distributed Computing

Systems. IEEE. 2013, pp. 124–133.

[14] Jian Shen, Tianqi Zhou, Xiaofeng Chen, Jin Li, and Willy Susilo. “Anonymous and traceable

group data sharing in cloud computing”. In: IEEE Transactions on Information Forensics

and Security 13.4 (2018), pp. 912–925.

[15] Ya-Cheng Li and Shin-Ming Cheng. “Privacy Preserved Mobile Sensing Using Region-Based

Group Signature”. In: IEEE Access 6 (2018), pp. 61556–61568.

[16] Boyang Wang, Baochun Li, and Hui Li. “Oruta: Privacy-preserving public auditing for shared

data in the cloud”. In: IEEE transactions on cloud computing 2.1 (2014), pp. 43–56.

[17] Ge Wu, Yi Mu, Willy Susilo, and Fuchun Guo. “Privacy-preserving cloud auditing with multi-

ple uploaders”. In: International Conference on Information Security Practice and Experience.

Springer. 2016, pp. 224–237.

[18] C. Wang, Q. Wang, K. Ren, and W. Lou. “Privacy-Preserving Public Auditing for Data

Storage Security in Cloud Computing”. In: 2010 Proceedings IEEE INFOCOM. Mar. 2010,

pp. 1–9. doi: 10.1109/INFCOM.2010.5462173.

[19] Zeyad Al-Odat and Samee Khan. “The Sponge Structure Modulation Application to Over-

come the Security Breaches for the MD5 and SHA-1 Hash Functions”. In: 2019 IEEE 43rd

Annual Computer Software and Applications Conference (COMPSAC). Vol. 1. IEEE. 2019,

pp. 811–816.

[20] Neal Koblitz and Alfred Menezes. “Pairing-based cryptography at high security levels”. In:

IMA International Conference on Cryptography and Coding. Springer. 2005, pp. 13–36.

[21] Bert den Boer. “Diffie-Hellman is as Strong as Discrete Log for Certain Primes”. In: Advances

in Cryptology — CRYPTO’ 88. Ed. by Shafi Goldwasser. New York, NY: Springer New York,

1990, pp. 530–539.

[22] Dan Boneh. “The decision diffie-hellman problem”. In: International Algorithmic Number

Theory Symposium. Springer. 1998, pp. 48–63.

195

https://doi.org/10.1109/INFCOM.2010.5462173


[23] Jan Camenisch and Anna Lysyanskaya. “Signature schemes and anonymous credentials from

bilinear maps”. In: Annual International Cryptology Conference. Springer. 2004, pp. 56–72.

196



10. CONCLUSIONS AND FUTURE WORK

10.1. Conclusions

This thesis focused on secure hash algorithms and their corresponding security issues.

In Chapter 3 we presented two methods to improve the SHA-1 standard against collision

attack. The first design relies on Stevens’s approach for detecting SHA-1 collision attack, in which

the input message is checked against collision possibility according to three values (δWs, δBi, i).

These values belong to the previously published works of disturbance vectors that lead to a collision.

After each round, the system is checked for the aforesaid three values, then they are used to extract

the sibling message from the given one. Finally, compare IHVk+1, IHV
′
k+1 of both messages if they

were equal then the original message is crafted with collision forgery. The second approach is based

on two blocks collision and the backward expansion calculation equation. The initial hash value

(IHV0) is processed using 80 steps SHA-1 function. Then applying backward expansion equation

to get IHV
′

0 . For the messages that crafted with collision attack, both IHV0 and IHV
′

0 will be

equal. The truncated SHA-512/160 is suggested to replace suspicious message’s hash outputs.

Chapter 4 presented a Sponge structure modulation for the MD5 and SHA-1 is presented.

The proposed design helps to solve the weaknesses of the MD5 and SHA-1 against security breaches.

We investigated our proposal toward collision and length extension attacks. The results showed

that the proposed design is resistant to the aforesaid attacks. The strength of our design comes

from the strength of the Sponge structure, where the internal permutation function manipulates

the data many times with five different steps (θ, ρ, π, χ, ι).

In Chapter 5, an improved version of the SHA-1 and SHA-2 hash function is presented.

The proposed design consolidates the SHA-1 and SHA-2 against collision and length extension

attacks. The proposed design preserves the general properties of the SHA-1, SHA-224, SHA-256,

SHA-384, and SHA-512 hash functions., e.g., the hash length. The design employs the function

manipulators of the SHA-1 and SHA-2 hash standards, which add more randomness to the proposed

design and strengthen it against collision and length extension attacks. The testing results proved

the efficiency of our proposal through different factors, which are avalanche effect, testing vectors,
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hamming distance, and bit-hit. Moreover, our proposal is effective against collision and length

extension attacks as shown in the provided examples.

Chapter 6 presented a model that examines the randomness of the internal rounds of the

SHA-1 and SHA-2 standards. A modified SHA design was proposed to improve the randomness

of the internal rounds. The Bayesian factor and odd ratio tests were used to evaluate the hash

functions. The CUDA platform was utilized to perform the experimental analyses, which was

implemented with the help of Chameleon large-scale experiments testbed. The results showed that

the Modified SHA produced more random rounds other than the other functions.

In Chapter 7, a secure storage scheme for distributed Big Data over the Cloud is presented.

The proposed design employs the SHA-512 and SSS to ensure Big Data integrity and security. The

experimental results show that the proposed design can handle a large data file with a reasonable

time while preserving the security and authenticity properties. Moreover, the trust level between

the cloud service provider and the client is increasing because of the assured data authorization.

Big Data security is an open scope. In the future, further security analysis will be carried out, in

particular, the deployment of secure hash algorithms in future designs.

Chapter 8 presented an Anonymous Privacy-Preserving Scheme (APPS) for big data over

the cloud. The proposed design employed the SHA-512 hash function, the functional encryption

algorithm, and the MapReduce framework. Through two levels of MapReduce, the proposed design

enhance the encryption/decryption task of big data. The employment of the functional encryption

helped to decrypt the desired part of data rather than all data, which saves time and effort. The

Integrity of the data is conserved using the SHA-512 hash function and the privacy of the uploaded

data is conserved using the anonymous MapReduce framework.

Chapter 9 introduced a privacy-preserving scheme for multiple data uploaders over the

cloud. The proposed design helps to overcome two security issues of shared data, which are data

integrity and identity privacy. Using this approach, the public verifiers are not able to revoke the

identity of the message block signer, and a CSP is unable to cheat the TPA in the case of data loss

or corruption.

10.2. Directions for Future Research

The scope of research is still open in the area of secure hash algorithms including attacks

and applications. In this thesis, we offered several research topics that analyze security threats,
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proper improvements, and applications related to big data over the cloud. Also, we offer some

directions for future researches:

1. The collision detection scheme presented in Chapter 3. This approach is based on the con-

struction of a differential-path using the main published disturbance vectors. This approach

can be extended to include new disturbance vectors. On another hand, this work is suitable

for the Merkle-Damg̊ard structure hash standards. Therefore, if a new collision attack is

announced for the SHA-2 standard, then the proposed approach is applicable.

2. The Sponge structure model in Chapter 4 can be extended to include other hash or cryptog-

raphy functions because the sponge structure proved its strength against many security bugs

that threaten cryptography functions.

3. The scope still open for future researches that aim to consolidate the hash standards against

security breaches of the cryptographic hash functions. The security analyses of the SHA-3

hash function can be conducted and compared with the performance of other designs, as

shown in Chapter 5.

4. The randomness analyses in Chapter 6 can be applied to the SHA-3 hash function (Keccak).

Moreover, more experiments can be conducted to test the Avalanche and Difference analyses

for the Secure Hash Algorithms.

5. Chapter 7, Chapter 8, and Chapter 9 presented the privacy-preserving scheme for data in-

tegrity and identity privacy. Further experiments need to be conducted to cover other possi-

ble threats. Moreover, an optimization regarding the speed and memory need to be studied.

Moreover, the privacy of data over the cloud needs to be taken into consideration when a

third party auditor present.
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