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ABSTRACT 

White mold (Sclerotinia sclerotiorum Lib. de Bary) is one of the most important diseases 

of common bean in the U.S. with seed yield losses up to 100%. White mold resistance is hard to 

incorporate into breeding materials because of low heritability, cumbersome screening methods, 

and few sources of resistance.  A Multi-parent Advanced Generation Inter-Crosses population was 

created to develop resistant germplasm and map the genetics factors controlling the resistance. A 

seedling straw test method was used to identify resistant lines. Nineteen genotypes were found to 

be resistant based on its response when inoculated with isolate 1980 of white mold. GWAS using 

quantitative, polynomial and binomial phenotypic distribution data, identified 30 genomic regions 

associated with resistance on Pv01, Pv02, Pv04, Pv05, Pv07, Pv08, Pv10 and Pv11. Cumulative 

R2 values were 57% for binomial distribution using 13 genomic intervals, 41% for polynomial 

using 8 intervals, and 40% for quantitative using 11 intervals.  
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INTRODUCTION 

Common bean (Phaseolus vulgaris L.) is the term used to include both dry beans and 

green/snap beans. The former is harvested when seed is dry while the latter is harvested and con-

sumed as fresh product. This crop is one of the most important and ancient crops cultivated around 

the world (Broughton et al., 2003; Akibode and Maredia, 2011). Its importance lies in the amount 

of protein, vitamins and minerals it provides to humans (Miklas et al., 2006b). Common bean, as 

many others crops, faces both abiotic and biotic stresses during crop establishment, vegetative 

growth, and the reproductive cycle (Fageria and Santos, 2008). Regarding biotic stress, white mold 

(Sclerotinia sclerotiorum Lib de Bary) is considered one of the most important diseases for dry 

bean in the U.S. When susceptible varieties are planted in historically infected fields, seed yield 

losses can be up to 100% (Schwartz et al., 2007; Schwartz and Singh, 2013).  

White mold is an Ascomycete with the ability to survive in many environments such as 

low or high temperatures, dried or flooded soils. Once the environment changes in favor of the 

pathogen, ascospores will germinate and infect new plants (Steadman, 1983). With more than 600 

plant species as hosts and its aggressiveness to colonize host tissue, white mold is categorized as 

one of the most non-specific successful plant pathogens (Liang and Rollins, 2018). 

Several practices are recommended to control white mold with chemical control as the 

most common. However, the disadvantages of chemical control include high costs, environmental 

pollution, and variable fungicide efficacy, among others. Therefore, the existence of genetic re-

sistance within dry bean germplasm would be a better option to control white mold (Schwartz and 

Singh, 2013) because it provides a more stable and durable resistance.  

White mold resistance is a polygenic trait highly affected by environment (Terpstra and 

Kelly, 2008). Polygenic or quantitative traits present a big challenge in breeding since multiple 



 

2 

genes within the same genotype control the resulting phenotype. Initial efforts to develop lines or 

germplasm with resistance to white mold produced genotypes with improved resistance to white 

mold but they had poor agronomic characteristics. High levels of resistance were found in species 

related to P. vulgaris (Schwartz and Singh, 2013); however, it makes the development of breeder-

friendly genotypes difficult. Because of all the difficulties, only commercial varieties with inter-

mediate levels of resistance have been released. 

The complexity of white mold resistance makes conventional breeding methods very chal-

lenging and therefore, new strategies to improve the resistance are required. Use of a multi-parent 

advanced generation intercross (MAGIC) population is one of such strategies. It has the potential 

to simplify the search for genes that affect quantitative traits (Pascual et al., 2015) and it offers the 

possibility of combining multiple genetic factors from different lines contributing to resistance. 

The inclusion of multiple parents and intermating among the offspring increases recombination, 

reduces the size of haplotype blocks and increases mapping resolution (Islam et al., 2016).    

The objectives of this research are i) to identify white mold resistant lines from a MAGIC 

population with good agronomic performance and ii) to identify both new and/or previously re-

ported genomic regions associated with white mold resistance, and iii) develop suitable markers 

for Marker-Assisted Breeding (MAB). The results will be significant for breeding programs pur-

suing new materials with a high commercial value and white mold resistance. 
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LITERATURE REVIEW 

Dry bean  

Dry bean is an herbaceous annual plant grown worldwide that belongs to the Leguminosae 

family, the second most important family for crops after cereals/grasses (Smýkal et al., 2015). 

Within the Leguminosae family, the Phaseolus genus is found, which includes edible beans 

(Freytag and Debouck, 2002). The Phaseolus genus is so diverse that includes ~77 species de-

scribed since 1700s. From these species, only P. coccineus, P. dumosus (Syn. P. polyanthus), P. 

acutifolius, P. lunatus and P. vulgaris are domesticated species (Bitocchi et al., 2017). P. vulgaris, 

the most important of the domesticated species, varies from determinate to indeterminate growth 

habit and is usually an annual with either prostrate or climbing vines. It is distributed in the tropics 

and subtropics from North America to Argentina and has been adapted from low to high lands 

(Freytag and Debouck, 2002).  

P. vulgaris has its center of origin in Mesoamerica and based on morphological, phyto-

pathological, biochemical, genetic and adaptive evidence, it was determined that domestication 

occurred between 5,000 and 2,000 years B.C. in two different locations creating the Middle Amer-

ican and Andean gene pools (Gepts, 1988; Hernández-López et al., 2013; Schmutz et al., 2014).  

Three races are found within the Middle American gene pool: Durango-Jalisco, Mesoamerica and 

Guatemala (Singh et al., 1991a; Tobar-Pinon, 2017). Three races are reported for the Andean gene 

pool: Chile, Nueva Granada and Peru (Singh et al., 1991a). The major agronomic and morpholog-

ical features that differentiate Middle American from Andean gene pools include the fifth inter-

node length, leaflet size, number of nodes to first flower, pod beak position and bearing inflo-

rescence, shape of bracteole, seed weight, shape and size, phaseolin seed protein patterns and al-

lozymes, among others (Singh et al., 1991b). 
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Dry bean economic importance  

Dry bean is an important crop due to its nutritional relevance in poor zones around the 

world, its economic value, and the significant contribution of protein and essential nutrients for 

humans. Currently, common bean is the most consumed grain legume worldwide contributing up 

to 15% and 36% of the total daily calories and protein respectively, in the American continent and 

parts of Africa (Schmutz et al., 2014). This crop plays an important role in reducing poverty and 

increasing food security (Rodríguez De Luque and Creamer, 2015). The annual economy of fam-

ilies living in poor zones is closely related to the seed yield obtained from dry bean. A high seed 

yield guarantees food for the entire household, while the excess of production becomes a cash crop 

that can be traded with other products such as corn, flour, meat, vegetables, eggs, dairy, etc.  

Dry bean seed yield and worldwide production is hard to estimate accurately since most of 

the stats used by FAO data include more species than P. vulgaris such as Vigna spp, P. lunatus, P. 

coccineus, P. acutifolius, etc. (Osorno et al., 2017). A more detailed estimate for dry bean includ-

ing only P. vulgaris found that between 2006-2008, 28.2 million hectares were harvested in the 

world with a production of 20.7 million MT giving an average seed yield of 0.73 tons/ha. Brazil, 

Mexico and Tanzania were the top producers with average production of 3.36, 1.17 and 0.85 mil-

lion MT per year, respectively (Akibode and Maredia, 2011). 

In the U.S., the most produced dry edible bean market classes for self-supply and export 

are pinto (35%), black (26%), navy (16%), light and dark red kidney (12%) and great northern 

(5%) (USDA-NASS, 2019). North Dakota is the top-dry bean producer state in U.S. With 32% of 

the total dry bean national production, followed by Michigan (17%) and Nebraska (11%) 

(https://usdrybeans.com/industry/production-facts/ ). Just in North Dakota, approximately 248,000 
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ha were harvested during the same year, representing more than $300 million USD (USDA-NASS, 

2019).   

Dry bean white mold 

In many U.S. states, white mold is considered as the most important disease in dry bean. 

In North Dakota and Minnesota, grower surveys conducted at the beginning of the 2000’s con-

firmed the large risk this pathogen represented at that time for dry bean (del Río et al., 2004). The 

annual surveys conducted by NDSU Extension Service in cooperation with the Northarvest Bean 

Growers Association, have revealed that farmers from North Dakota and Minnesota have ranked 

white mold as the worst disease problem in dry bean during the last 8 years (Knodel et al., 2011, 

2014, 2015, 2016, 2017, 2018, 2019). Many are the factors that favor the presence of white mold 

in these states, such as the conducing weather conditions for its germination and colonization, as 

well as the presence of highly susceptible of crops like canola (Brassica napus L.), sunflower 

(Helianthus annuus L.), soybean (Glycine max L. Merr.), and potatoes (Solanum tuberosum L.), 

among others. White mold infection typically is found after the flowering stage. Flower rudiment 

tissue become the first food source for white mold to start causing the infection. This flowering 

stage match with canopy closure stage creating a cooler and humid micro-environment that pro-

motes white mold germination (Markell, 2018). First symptom is the water-soaked spots in the 

colonized part of the plant. Infected tissue will eventually die giving a dried bleaching appearance 

(Harveson et al., 2013). This pathogen can be transmitted by infected seeds (Schwartz et al., 2006).  

With the lack of genetic resistance, losses can be up to 100% when conditions are favorable for 

pathogen colonization (Schwartz and Singh, 2013).  
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White mold characteristics and epidemiology  

 White mold, caused by the necrotrophic fungus Sclerotinia sclerotiorum Lyb de Bary, 

belongs to the Ascomycota, order Heliotales. The species of Sclerotinia genus in Sclerotiniaceae 

family produces stromata, stipitate apothecia and ellipsoidal ascospores. S. sclerotiorum is as-

sumed to be homothallic due to the lack of conidial anamorph (Hoyte, 2012). This pathogen has 

the unique ability to develop hard and dense mycelial structures named sclerotia. With this struc-

ture, the pathogen survives for long periods in hostile environments such as temperature extremes 

or soil moisture extremes. For apothecia germination, sclerotia need specific conditions such as 

soil moisture for 7 to 14 days and cool temperatures of 11 to 20 °C (Harikrishnan and Del Rio, 

2006). Once germinated, airborne ascospores are the first inoculum agent able to infect plant 

branches and stems. When ascospores make contact with the plant, the fungus starts colonizing 

the tissue and soak-water symptoms become visible. Infected plants die several days post inocula-

tion (del Río et al., 2004). After plant death, white mold lacks of nutrients to feed and sclerotia 

structures are formed again to survive until favorable conditions are present in the environment. 

The ability to survive in extreme conditions and the wide range of host plant that includes more 

than 600 species are the two primary reasons for white mold prevalence worldwide (Miklas et al., 

2013; Liang and Rollins, 2018). Figure 1 represents the life cycle of S. sclerotiorum as described 

in the paragraph. 
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Figure 1. White mold life cycle on bean (Harveson et al., 2013)    
 

White mold management 

Currently, disease/pest management (fungal, bacterial, virus, weeds, insects, etc.) can be 

done using chemical control, biological control, or a series of integrated pest management prac-

tices. 

Regarding chemical control, a research study conducted in Carrington, in 2012 by NDSU 

Carrington Research Extension Center, studied the ideal timing to use fungicides, as well as the 

best rotation and fungicides to apply for better results. Fungicides must be applied before asco-

spores are ready to infect plants. This stage of white mold’s cycle usually corresponds to canopy 

closure and R2 to early R3 growth stages (M. Wunsch Oral Pres). Rotation of either applying 

Boscalid (Endura) (8 oz/ac) at the beginning of canopy closure and Thiophanate – Methyl (Topsin) 

(40 fl oz/ac) 10 to 14 days later, or vice versa is a very effective program for white mold control 
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in the dry bean regions of North Dakota. Dry bean producers usually adopt this combination of 

products and doses due to its effectiveness in controlling white mold (M. Wunsch Pers. Comm,). 

Applying these fungicides at recommended doses cost approximately $30/acre for Endura and 

$16/acre for Topsin representing an important outlay.  

Concerning biological control, results from different studies developed during the last 20 

years report inconsistent information. Research using five isolates of Trichoderma harzianum 

found effectiveness decreasing apothecia of S. sclerotiorum in three of the five isolates reducing 

white mold severity (Carvalho Costa et al., 2015). Another research found that Pseudomonas chlo-

roraphis inhibited the germination of S. sclerotiorum ascospores. The results of this research con-

cluded that P. chlororaphis and Bacillus amyloliquefaciens were comparable with the fungicide 

Iprodione (Rovral) controlling S. sclerotiorum (Fernando et al., 2007). However, Iprodione is 

rarely used by farmers due to its low disease control and high cost. 

Integrated Pest Management (IPM) can be defined as “actions involving a mixture of de-

cisions and practices to optimize the control of any kind of pest in an ecological and economical 

way” (Prokopy, 2003). White mold is a difficult disease to control using only few strategies and 

therefore, IPM is the most effective way to manage it. Seven practices are the most important with 

a direct positive effect (Strausbaugh and Forster, 2003): 1) Knowing the historic effect of white 

mold on a specific field will help determine how drastic and precise practices must be to have the 

disease under control. 2) Rotation of at least 4-cycle crops between each cycle will reduce the 

pressure of the disease in the field. The best crops for rotating are cereals such as wheat (Triticum 

spp.), barley (Hordeum vulgare L.) and maize (Zea mays L.) given the fact that cereal crops are 

not affected by white mold. 3) Selecting a good variety is one of the most important and determi-
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nant factors. A variety with upright architecture, determinate growth habit and small pods is im-

portant to create a microclimate less conducive for the disease. This plant structure helps in avoid-

ance (Kolkman and Kelly, 2002; Ender and Kelly, 2005). 4) The management of nutrients is im-

portant to develop a well-compensated plant. The excess of nitrogen will increase the plants ability 

to produce large biomass, creating an appropriate microclimate for white mold growth and increas-

ing disease pressure. 5) Wide row spacing helps circulation of air and also plant canopy and soil 

surface will get drier faster, reducing appropriate microclimate for white mold. It is important to 

use a row spacing that maximizes disease avoidance and seed yield. 6) In irrigation systems, timing 

is important to avoid the disease. Irrigation must be applied only when needed.   

Breeding dry bean for white mold resistance 

The use of resistant varieties is the most effective strategy to fight field diseases (Schwartz 

and Singh, 2013). Due to its quantitative nature, this trait is complexly inherited and highly influ-

enced by environment making selection for resistance difficult (Terpstra and Kelly, 2008). Previ-

ous research found a correlation confirming the importance of traits such as lodging, architecture 

and canopy height in disease avoidance (Ender and Kelly, 2005).  

When breeding for resistance to white mold, two mechanisms need to be considered: phys-

iological and avoidance (Miklas et al., 2001). The former produces more durable and stable re-

sistance. Straw test method developed by Petzoldt and Dickson (1996) and the seedling straw test 

method developed by Arkwazee and Myers (2017) have been reliable measurements for physio-

logical resistance. Recent studies shows that this unique physiological response includes a reduc-

tion in photosynthesis and the maintenance of a high pH on the leaf surface during the infection 

that interacts with oxalic acid secreted by pathogen to degrade cell wall (Robison et al., 2018). On 

the other hand, avoidance is related to escape mechanisms associated to plant architecture and 
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biomass production. The pathogen do not easily get ideal conditions for its development, drasti-

cally reducing the infection severity. Field test is the best measure of plant avoidance by determin-

ing the ability of plants to escape from white mold infection (Myers et al., 1998; Carneiro et al., 

2011). Thereby, the more adequate way for breeding programs to succeed working with white 

mold is trying to get both, physiological and avoidance mechanisms in its genetic materials. 

Germplasm accessions, cultivars and breeding lines have been subjected to a breeding pro-

cess with the purpose of obtaining highly resistant cultivars. Breeding efforts have allowed the 

development of commercial varieties of beans with moderate to low levels of white mold re-

sistance (physiological and/or avoidance), as well as improved germplasm (physiological re-

sistance) (Schwartz and Singh, 2013). Some examples of commercial varieties are: El Dorado 

pinto bean that combines good disease avoidance in field and an intermediate physiological re-

sistance evaluated through straw test (Kelly et al., 2012). Powderhorn great northern bean with 

good field avoidance which exhibited high seed yield under high disease pressure (Kelly et al., 

2013). Lariat pinto bean, one of the most cultivated varieties in North Dakota and Minnesota also 

presents good disease avoidance in field (Osorno et al., 2010). La Paz pinto bean (ProVita Inc.) is 

another important cultivated variety in North Dakota and Minnesota with good disease avoidance 

and NY 6020-4, a snap bean which was reported with good avoidance in field and intermediate 

physiological resistance (Miklas and Delorme, 2003).  

On the other hand, some examples of germplasm developed and currently used for research 

purpose are PC-50, an Andean dry bean that showed in previous research excellent physiological 

resistance tested using straw test and an excellent resistance in field. This genotype is nowadays 

used as a very resistant check for white mold studies (Park et al., 2001). USPT-WM-1 (Miklas et 

al., 2006a) and USPT-WM-12 (Miklas et al., 2014) are lines developed for its use in breeding 
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programs with the purpose of incorporating their resistance in new commercial lines. USPT-WM-

12 is considered to have partial resistance to white mold based on straw and field resistance tests 

where the performance of the genotype is acceptable. Another important characteristic of USPT-

WM-12 is its ability to produce high seed yield even under white mold pressure.   

A195 (Singh et al., 2007), CO 16079, ID 14-4 and ICA Bunsi better known as Ex Rico 23 

(Tu and Beversdorf, 1982) are more examples of either commercial lines or research purpose 

germplasm developed for white mold resistance. The last one has significantly contributed to par-

tial levels of resistance currently used in commercial varieties.  

Crosses between common bean and Phaseolus species from the secondary gene pool have 

been made (Schwartz and Singh, 2013). White mold resistance was successfully introgressed from 

P. coccineus and P. costaricensis into VCW 54, VCW 55 and VRW 32 interspecific breeding lines 

with the idea to introgress these sources of resistance to common bean cultivars (Singh et al., 

2009). Interspecific crosses between P. coccineus resistant accessions PI 433246 and PI 439534, 

with P. vulgaris commercial varieties, Othello and UI 320, exhibited that resistance to white mold 

from PI 433246 and PI 439534 lines is controlled by a single dominant gene (Schwartz et al., 

2006). Unfortunately, agronomic performance of these improved germplasm is very low, which 

has made very difficult to transfer the high levels of resistance obtained due to linkage drag  

Although there are germplasm and varieties with some level of physiological resistance 

and avoidance, studies have identified only quantitative trait loci (QTL) with minor effects on 

resistance to white mold and they are also highly affected by environment (Ender and Kelly, 2005). 

Many QTLs with minor effect need to be included in the same genotype to enhance the resistance, 

a challenge that becomes complicated due to the difficulty to successfully introgress those QTLs 

in genotypes with agronomic traits required to develop a competitive variety (Miklas, 2007). Lack 
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of molecular markers reliable for its use in breeding programs and the absence of desirable QTLs 

coinciding in the same genotype complicates breeding for this resistance and is the main reason of 

the non-existence of highly resistant varieties. 

Vasconcellos et al. (2017) described nine meta-QTL that are known to contribute on white 

mold resistance in common bean. A meta-QTL is an analysis tool used to identify “repeated” QTL 

already reported in different studies, environments, genotypes and with different approaches and 

pair them to give robustness to those regions by finding a common location in the genome. For 

example, WM1.1 was found in at least four different populations and it was related to physiological 

resistance and avoidance in field. At least two candidate genes were proposed to be in WM1.1 

whose homologues are related to wall receptor kinase and jasmonate receptor. Another meta-QTL 

(WM2.2), reported in six populations, was recently discovered to be two regions instead of one 

and was split in WM2.2a and WM2.2b. Candidate genes for WM2.2a involve Pentatricopeptide, 

Gibberellin and heat shock related proteins and for WM2.2b, TIR-NBS-LRR protein and EF-TU 

receptor were selected as potential candidate genes (A. Oladzad. Pers. Comm.). The third meta-

QTL, WM3.1, is more related to disease avoidance rather than physiological resistance. Population 

Aztec/ND88-106-04 is one of the three populations that helped validate this meta-QTL and is also 

the population that gave origin to USPT-WM-1. In turn, USPT-WM-1 is one of the parents of 

USPT-WM-12 (Miklas et al., 2006a, 2014). USPT-WM-12 is the best genotype available that pos-

sess good agronomic performance together with partial resistance to white mold. The fourth meta-

QTL WM5.4 was found in three populations and is believed to be derived from P. coccineus since 

resistant parents used (I9365-25 and I9365-31) were selected from an interspecific population be-

tween P. coccineus and P. vulgaris. The candidate gene proposed for this QTL is a homologue to 

MYB domain protein in Arabidopsis involved in the response of biotic and abiotic stresses. 
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WM6.2 is one of the two meta-QTL related only to physiological resistance since they were found 

in straw test method but not in field test in two populations. Chromosome Pv07 is harboring three 

of the nine meta-QTL, WM7.1, WM7.4 and WM7.5. The first meta-QTL was found in four pop-

ulations evaluated with either the straw test or field test. WM7.4 is the second meta-QTL identified 

only with straw test in three populations and WM7.5, detected in both straw test and field test was 

found in three populations. The last of the nine important QTLs known is WM8.3 reported in three 

different populations located in the heterochromatic region of the chromosome. This region was 

later narrowed using sequence based introgression mapping approach and a common bean recep-

tor-like protein gene was suggested as candidate gene (Mamidi et al., 2016)  

Multi-parent Advanced Generation Inter-Cross (MAGIC) population 

Plant breeders and geneticists commonly use bi-parental crosses to develop new varieties 

and to perform genetic mapping studies for traits of interest and, rarely develop multi-parental 

crosses due to limitations, such as intensive labor of crossing and large populations size (Bandillo 

et al., 2013). The success of breeding programs and genetic analysis lies on the ability to create 

populations and the well-use of genomics tools (Huang et al., 2015). The use of at least eight 

parents with a fixed population of 1000 individuals is one of the most effective methods for plant 

genetic research to access a larger genetic variation in germplasm (Rakshit et al., 2012) but it 

demands more resources to develop populations of this size. 

With the introduction of new genetic tools and improvement of statistical analysis, com-

plex populations can be used as a tool for searching QTLs associated with desirable traits. MAGIC 

is one of the populations benefited with these genetic advances. It was proposed to increase re-

combination and mapping resolution (Cavanagh et al., 2008) in a population. Its concept comes 

from the Advance Inter-crossed Lines (AILs) (Davarsi and Soller, 1995) where the population is 
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subjected to a series of randomly and sequentially inter-crossing. Davarsi and Soller (1995) pro-

posed this type of population to “stretch” the genome by increasing the probability of recombina-

tion events to occur allowing a better mapping resolution. The main difference is that AILs comes 

originally from a bi-parental cross, while MAGIC has the contribution of multiple founder lines 

(Bandillo et al., 2013). 

Fundamental things to understand the difference between MAGIC populations and other 

mapping populations are 1) the higher genetic diversity compared to AILs, bi-parental, backcross-

ing (BC) and F2 since contribution of more founders is present.  2) Higher recombination, 3) 

smaller haplotype blocks due to the multiple generations of random mating making a considerable 

reduction of linkage disequilibrium (LD) (Rockman and Kruglyak, 2008), 4) better mapping res-

olution and 5) the possibility of mapping every single loci (Cavanagh et al., 2008). 

 In order to create MAGIC populations, they are first cycled through several generations 

of crosses, mixing and combining the allelic contributions of each of the founder lines, allowing 

the location of associations in a more precise way, even in chromosome regions with lower recom-

bination rates (Osorno et al., 2017). Structure of the population in use requires much care to dis-

tinguish between true QTL and false positives when the association mapping study is being carried 

out with populations such as diverse panels, which presents a more complex population structure. 

MAGIC population has a relatively simple population structure and the verification of common 

variants between the MAGIC population and natural accessions can be easily done by using the 

former group material (parentals) to verify the QTL (Osorno and McClean, 2014).  

 MAGIC populations carry important advantages for further research as well as the need 

to improve statistical methods to analyze and interpret data obtained, and develop new technolo-

gies for QTL mapping on this populations (Wei and Xu, 2016). Undoubtedly, MAGIC populations 
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will become a popular and important tool for plant breeding and genetics in a near future (Varshney 

and Dubey, 2009). Rakshit et al. (2012) described MAGIC populations as “second generation 

mapping resources” 

  The first MAGIC population developed for plants studies was done in Arabidopsis thali-

ana finding novel QTLs for germination data and bolting time (Kover et al., 2009). This study 

demonstrated the utility of MAGIC population in plant studies. Since the demonstration of its use 

and application for genetic studies, many MAGIC populations have been developed. Bandillo et 

al., (2013) developed four MAGIC populations in rice (Oryza sativa L.) searching for blast blight 

(Magnaporthe oryzae (T.T. Hebert) M.E. Barr) and bacterial blight (Xanthomonas oryzae pv. ory-

zae (Ishiyama) Swings) resistance, salinity and submergence tolerance and grain quality. In wheat, 

a genetic analysis using a MAGIC population was developed targeting plant height and hectoliter 

weight, which the authors describe as complex traits when working with common bi-parental pop-

ulations (Huang et al., 2012). Another MAGIC population was generated in cotton (Gossypium 

hirsutum L.). The authors worked with fiber quality, a trait that has a negative correlation with 

fiber yield. In this case, the MAGIC population helped identify a reliable fiber quality QTL and 

associated markers for its use in MAS or Genomic Selection (GS)(Islam et al., 2016). More re-

cently, a MAGIC population in sorghum (Sorghum bicolor (L.) Moenich) was developed which 

includes 19 diverse founders with the main purpose of germplasm development (Ongom and Ejeta, 

2018), a cowpea (Vigna unguiculata (L.) Walp) MAGIC population using eight diverse parents 

also for germplasm development (Huynh et al., 2019) and a second MAGIC population in cotton 

using 11 parents to improve and map the genetic factors involved in the resistance to Verticilium 

dahlia Kleb. (Zhang et al., 2020). Two examples of MAGIC populations, already developed and 

being evaluated, are a soybean MAGIC population to test yield potential under changing climatic 
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conditions (Shivakumar et al., 2018) and a dry bean MAGIC population developed by CIAT and 

UC Davis to increase levels of tolerance to drought and heat stress (P. Gepts, Pers. Comm.).     

Common bean genome 

The existence of reference genomes in species facilitates genetics research and allows de-

velopment of more reliable results. Schmutz et al. (2014) used the inbred Peruvian landrace 

“Chaucha Chuga” (G19833) to develop a reference genome for the diploid species common bean. 

It was confirmed that P. vulgaris possess 11 chromosomes with a genome size of approximately 

587 Mb pairs. A total of 27,197 coding-protein genes were found, and 376 resistant-associated 

genes were also found with the majority of them located at the end of the chromosomes in complex 

clusters. 

The existence of a genome sequence allows researchers the access to the entire genome 

and perform proteins or nucleotides Blast searches, find candidate genes based on names using the 

genome annotation, accurate gene mapping, obtain protein and multigene family information 

among others (Schwartz and Singh, 2013), hence improving the efficiency and accuracy of genet-

ics studies. 

Genotyping-by-sequencing 

Genotyping-by-sequencing (GBS) is a tool used to develop single nucleotide polymor-

phism (SNP) that is possible thanks to the introduction of next-generation sequencing (NGS) tech-

nologies (Deschamps et al., 2012). It was first described and tested by Elshire et al. (2011) in 

recombinant inbred lines populations of maize and barley. This method allows the reduction in the 

complexity of genomes by dissecting them using restriction enzymes with a relatively inexpensive 

cost (He et al., 2014). 
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 Schröeder et al. (2016) developed an optimized GBS method for common bean. This pro-

tocol uses two restriction enzymes (MseI and TaqαI) which allows the identification of more SNPs 

including low copy regions of the genome by making a more even coverage of the genome. Using 

this GBS method, Tobar-Pinon et al. (2017) developed around 134K SNPs in the Guatemalan 

diversity panel. Oladzad et al. (2019a) re-sequenced Middle American and Andean diversity pan-

els with this protocol having an increased SNPs number in Middle America from 160k to 205k 

and Andean from 6k (from the BARCBean 6K_3 BeadChip) to 260k. This allowed the enrichment 

of SNPs throughout the genome particularly in heterochromatin regions of the genome.        

 GBS libraries can be sequenced nowadays in various platforms. One of them is Illumina 

Genome Analyzer, which is based on the concept of sequencing by synthesis (Mardis, 2008). With 

populations sequenced, studies like association mapping can be conducted in a more precise way 

in many different traits.  

Association mapping and linkage disequilibrium 

Association mapping and linkage disequilibrium (LD) are concepts that sometimes gener-

ate confusion. Association mapping can be described as a significant association of a molecular 

marker to a specific phenotype while linkage disequilibrium refers to the non-random association 

that occurs between two genes, two markers or two QTLs within a population (Gupta et al., 2005). 

LD is useful in revealing domestication, evolution and breeding steps of humans, plants and ani-

mals (Amaral et al., 2008). Some factors that promote LD are genetic drift, population structure, 

bottleneck and epistatic selection (Rossi et al., 2009). LD is important when performing associa-

tion-mapping studies since it will determine the number and density of markers (Flint-Garcia et 

al., 2003). A decay in LD is required to improve mapping resolution and it can be achieved by 

successive round of recombination (intermating) (Mackay and Powell, 2006).  
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Genome wide association study (GWAS) has become a reliable tool for association map-

ping, first in humans and animals, and more recent in plants (Begum et al., 2015). It is a suitable 

tool when identifying genes interacting for the expression of a specific trait in larger populations 

(germplasm or multi-parental populations) compared with bi-parental populations where lower 

diversification and recombination occurs (Stanton-Geddes et al., 2013). Potential of GWAS for 

genetic studies has been demonstrated in humans and crops. Successful examples in humans in-

cludes a better understanding of Type 2 diabetes factors and the identification of over 100 risk loci 

in schizophrenia (Visscher et al., 2017). Examples in crops includes the identification of significant 

SNPs associated with resistance of soybean to bacterial, fungal, nematodes and viral diseases 

(Chang et al., 2016) and the identification of QTLs conferring partial resistance of pea (Pisum 

sativum L.) to Aphanomyces euteiches (Desgroux et al., 2016).   

In common bean, GWAS have led to the identification of QTLs associated with resistance 

to important diseases and abiotic stresses and QTLs related to agronomic traits. Examples include 

the identification of GBS SNPs strongly associated with resistance to Bean yellow mosaic virus 

(BYMV) in chromosome Pv02 were the By-2 allele conferring resistance to this virus is located 

(Hart and Griffiths, 2015). The identification of regions harboring candidate genes conferring re-

sistance to soybean cyst nematode (Heterodera glycines Ichinohe) in chromosome Pv07 and Pv11 

for Middle American population and  in chromosomes Pv07, Pv08, Pv09 and Pv11 in Andean 

population (Jain et al., 2019). More recently, Oladzad et al. (2019b) identified evidence of the 

existence of major and minor genes conferring resistance to Rhizoctonia solani. A better under-

standing of the genetic architecture involved in flooding tolerance in common bean was also pos-

sible using GWAS (Soltani et al., 2017) and the detection of around 30 candidate genes associated 

with traits of agronomic interest (days to flower, growth habit, seed weight among others) using 
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GWAS (Moghaddam et al., 2016) are some of the multiple examples. Most of these studies apply-

ing GWAS in common bean have been done in diverse panels. To our knowledge, this study is 

providing the first GWAS in a MAGIC population in common bean for biotic stress.  

 So far, studies to identify white mold resistance genes in common bean have been con-

ducted mostly in bi-parental and backcross populations (Soule et al., 2011; Hoyos-Villegas et al., 

2015; Mamidi et al., 2016). It led to the identification of new QTLs with minor allele effect but in 

different genotypes. This complicates the enhancement of the resistance to white mold in dry bean. 

With the availability of genotypes with intermediate physiological resistance and avoidance har-

boring different QTLs, a MAGIC population becomes an interesting tool to pyramid different 

QTLs identified in different studies into the same population. Combining these tools with the ad-

vantage that GWAS provides on identifying genomic regions with genes of interest (Moghaddam 

et al., 2016) could be the solution to create enhanced resistant germplasm and to identify molecular 

markers associated with the resistance that can be used in breeding programs.  

Applying these genotypic and phenotypic genetic tools allowed this research to i) identify 

resistant lines from this MAGIC population and to ii) identify new genetic factors that could be 

involved in the response of dry bean to white mold and to validate genomic regions discovered in 

previous years.  
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MATERIALS AND METHODS 

MAGIC population development 

Development of the White Mold MAGIC population (WM-MAGIC) that was used in this 

study was done with two purposes: gene mapping and production of inbred lines with combined 

resistance to white mold and good agronomic performance. The founders of this MAGIC popula-

tion are all from race Durango of the Middle American gene pool for two reasons: to avoid genetic 

incompatibility that occurs when inter-gene pool crosses are made (Borel et al., 2016) and to obtain 

breeder-friendly genotypes with acceptable agronomic performance that could be used in breeding 

programs. One goal of the development of this WM-MAGIC population was to generate lines of 

the pinto market class since it is the most produced and consumed market class in the U.S., and 

one of the most susceptible market classes to white mold. Almost all of the lines have high seed 

yield, have either good or acceptable seed quality, and express upright plant architecture because 

most of the founders are either improved germplasm or cultivars released by different breeding 

programs across the U.S. that require these features. Initial crosses to start developing this WM-

MAGIC population were made in 2014 and 2015 at the NDSU AES-Research Greenhouse Com-

plex in Fargo, ND.  

After extensive analysis, discussion and consultation among bean breeders from both pub-

lic and private sectors, the following eight founder parents (Table 1) were selected to develop the 

WM-MAGIC population: 
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Table 1. MAGIC population founders background information 

Genotype Origin Market Class Straw Test Field Test 

USPT-WM-12 USDA-ARS Pinto Good Good 

PT 7-2 USDA-ARS Pinto Susceptible Susceptible 

El Dorado MSU Pinto Intermediate Very Good 

CO16079 CSU Pinto Good No Data 

ID14-4 Univ. of ID Pinto Good No Data 

La Paz Provita Pinto Susceptible Good Avoidance 

Lariat NDSU Pinto Susceptible Some Avoidance 

Powderhorn MSU Great Northern No Data Good Avoidance 

(Osorno et al., 2010; Kelly et al., 2012, 2013; Miklas et al., 2014) 

 

The crosses between the eight founder lines were performed as shown in Figure 2. F1 seed 

of each initial cross were planted again and each F1 plant was tested with a polymorphic subset of 

InDel markers evenly distributed across all chromosomes (Moghaddam et al., 2014) in order to 

confirm they were true hybrids. Selfed plants were discarded, and true F1 hybrid from each cross 

were crossed again (Figure 2). The final 4-way cross was done and plants went through three 

rounds of single seed descent from F2 to F5 to increase homozygosity levels and develop inbred 

lines. Reciprocal crosses were done within each round to include/account for potential maternal 

effects and/or maternal inheritance. A total of 1,050 F2:F5 inbred lines were developed and later 

increased to have at least 30 seeds from each line. 
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Figure 2. Crossing plan for MAGIC population development 
 
Phenotypic evaluation of WM-MAGIC population in greenhouse for reaction to White 

Mold  

A subset of 500 lines were selected out of the original 1,050 lines from WM-MAGIC pop-

ulation, making sure each cross and gamete was equally represented in within this subset selecting 

four or five genotypes of each crossing way. Maternal effects and maternal inheritance were in-

cluded in case they could be important factors as well. Selected lines were screened with S. scle-

rotiorum (Lib) de Bary (ATCC® 18683D2™) better known as “strain 1980”. Strain 1980 was 

used since is the most used strain for white mold studies in common bean (Mamidi et al., 2016), 

and this allows consistent results, especially in the checks. In addition, this particular strain of S. 

sclerotiorum was selected for whole genome sequencing (Derbyshire et al., 2017) .  

The evaluation of WM-MAGIC population lines to white mold was conducted at the 

NDSU AES-Research Greenhouse Complex. The experimental design used was an augmented, 
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randomized block design with four replications and two samples (plants within each replication). 

Two susceptible checks (Beryl and Othello), two resistant checks (USPT-WM-12 and PC-50) and 

50 genotypes of the MAGIC population were included within each incomplete block. Plants were 

grown in plastic trays (10 cm x 25 cm) with Promix® substrate. The greenhouse temperature was 

set at 24 ± 2°C during the day and 16 ± 2°C during the night. 

 To prepare the inoculum, white mold was first grown directly from sclerotia in agar media 

in a 100 x 20 mm petri dish at 23 °C for three days. Then, mycelia from the most external part of 

the growth was transferred to a new petri dish with agar. The new plates with the mycelia were 

placed in a dark environment at room temperature for two days. After that time, mycelia was cov-

ering 75% of the petri dish (Petzoldt and Dickson, 1996; Arkwazee and Myers, 2017). 

The seedling straw test method proposed by Arkwazee and Myers (2017) was used in this 

study to screen the selected lines under white mold pressure. In this method, 10-day old seedlings 

were inoculated. By that time, the apical meristem had grown at least 2 cm above primary leaves. 

Stems were cut 2 to 3 cm above primary leaves. Then, a straw of approximately 5 mm diameter 

and 1 to 2 cm length was sealed on one end and plugged with one plug of agar in the other end. 

The plug was collected from the outer side of the mycelia where the fungus was growing in the 

petri dish. The straw with the plug was placed on the decapitated part of the stem. The plants were 

scored four days after inoculation using the disease severity scale described in Table 2. 
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Table 2. Rating score for seedling straw test. 

Score Description 

1 No symptoms beyond cut stem 
2 Lesion to a point midway between the cut stem and the primary leaf node. 
3 The lesion reaches the primary leaf node 
4 The lesion passes the primary leaf node (within the first quarter of the distance between 

the primary leaf node and the cotyledonary node). 
5 The lesion reaches the half-way point between the primary leaf node and the cotyledo-

nary node. 
6 The lesion passes the half-way point between the primary leaf node and the cotyledo-

nary node. 
7 The lesion reaches the cotyledonary node. 
8 The lesion passes the cotyledonary node, the first half between the cotyledonary node 

and the soil surface. 
9 The seedling completely collapses and dies. 

(Arkwazee and Myers, 2017) 

Statistical analysis was performed using SAS (version 9.4) software. Least Square (LS) 

Means were calculated using the phenotypic data obtained from the four replications to determine 

the resistance score of each line. Depending on score average, lines were considered as resistant 

with values from 1 to 3, intermediate with a value of 4 and susceptible with values from 5 to 9. 

The phenotypic data was used for association mapping using a GWAS pipeline commonly used at 

the NDSU Bean Genomics Lab described in the GWAS section. 

Tissue collection and DNA extraction 

For all the 500 selected lines from the WM-MAGIC population, tissue was collected from 

the first replication sown for screening purposes. The first trifoliate leaf was harvested and placed 

in a single deep well of a 96 well plate. The tissue was immediately frozen with liquid nitrogen 

and freeze dried. Mag MaxTM plant kit from Applied Biosystems was used to extract total DNA 

following the manufacturer’s protocol. Extracted DNA was quantified using a Nanodrop from 

Thermo Scientific and diluted to 25 ng/µl. Diluted DNA was visually assessed for quality and 
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quantity on a 1% agarose gel. Lines with low DNA or no DNA were diluted again to 25 ng/µl from 

the plate with the concentrated DNA to ensure same amount of DNA from each genotype for 

libraries preparation.   

Sequencing library development 

Genotyping-by-sequencing was used to generate single nucleotide polymorphism (SNP) 

data for the WM-MAGIC population using the optimized protocol that uses two restriction en-

zymes (Schröder et al., 2016). Eight µl (200 ng of DNA) of diluted DNA were transferred to a new 

plate. DNA was restricted with TaqαI and MseI restriction enzymes (37°C for two hours, 65°C for 

two hours, 80 °C for 20 minutes and hold at 8°C). A unique barcode varying from 5 to 10 bp, was 

assigned to each genotype within a single 96 well plate. DNA ligase, ATP and a common adaptor 

together with the barcode adaptor where added for the ligation step (22 °C for four hours, 65 °C 

for 20 minutes and hold at 10 °C overnight). With the barcodes added, DNA fragments were 

cleaned using beads that eliminated fragments <300 bp. Success of digestion and ligation was 

tested to ensure equivalent amounts of DNA for each genotype using PCR. Two µl of cleaned 

DNA, PCR 5x Master Mix, and primers for the barcoded adaptors were used for PCR test (95 °C 

for 30 seconds, 36 cycles of 95 °C for 30 seconds, 62 °C for 20 seconds and 68 °C for 17 seconds). 

Results were checked by screening the samples on a 1% gel. For each 96-well plate 38 µl of solu-

tion from each genotype was pooled and amplified using PCR (95 °C for 30 seconds, 16 cycles of 

95 °C for 30 seconds, 62 °C for 20 seconds and 68 °C for 15 seconds, 72 °C  for 5 minutes once 

and hold at 8 °C ) to generate one cleaned sequencing library. DNA from PCR was cleaned again 

using beads and evaluated on a 1% gel using a 1000 bp ladder to compare. A total of 6 libraries 

were sent for sequencing to Hudson Alpha Institute for Biotechnology, Huntsville Alabama, USA.   
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Barcodes separation, trimming and quality control of sequencing reads 

Sequencing data was received as compressed files from HudsonAlpha Institute for Bio-

technology. Sequences for each genotype were separated based on the barcode information using 

FastX toolkit barcode splitter (http://hannonlab.cshl.edu/fastx_toolkit/). After obtaining unique 

fastq file for each genotype, barcodes were trimmed from the sequences using FastA/Q Trimmer 

from the FastX toolkit. Low quality bases were trimmed using SICKLE software developed by 

Joshi and Fass in 2011 in UC Davis. With this software, reads with less than 80bp length were 

discarded, and a default quality threshold of 20 was used. 

Mapping, group information, SNP calling and data imputation 

The Burrows-Wheeler Alignment Tool (BWA-mem) (Li and Durbin, 2009) and SAMtools 

(Li et al., 2009) were used respectively to map and sort the reads against the reference genome 

available for common bean (Schmutz et al., 2014; https://phytozome.jgi.doe.gov/pz/portal.html# 

!info?alias=Org_Pvulgaris). Read group information for each genotype including library, platform 

and platform unit, provided by HudsonAlpha Institute, were added prior to SNP calling using Pi-

card tools.  (http://broadinstitute.github.io/picard).  

UnifiedGenotyper from Genome Analysis Toolkit v3.3 (GATK) (Mckenna et al., 2010) 

was used for calling SNPs. One VCF file for each chromosome of common bean was generated. 

Initially, these VCF files were filtered for the minimum read depth of two using the GATK variant 

filtration algorithm. Then using an in-house script, markers with 25% missing data were removed. 

Finally, genotypes missing more than 90% of genetic information were discarded using R software 

(R Core Team, 2015; www.R-project.org). FastPHASE (Scheet and Stephens, 2006) was used for 

imputing SNPs with missing data. The final HapMap was generated from SNPs with a minor allele 
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frequency (MAF) >0.01. This MAF was used instead of standard MAF >0.05 since only 4% of the 

population was found to be resistant.   

Genome-Wide Association Study (GWAS) 

Phenotypic screenings results obtained using the seedling straw test data and sequencing 

data obtained from GBS and SNP calling were used to perform the GWAS. The quantitative (1-9) 

visual scale data from resistance/susceptibility screening was used as the phenotypic data for the 

GWAS. The data was also transformed into polynomial and binomial distributions (Oladzad et al., 

2019b). For polynomial, genotypes with a white mold response of 1, 2 and 3 were grouped in the 

same category (resistant), genotypes with mean score of 4 where grouped in a second category 

(intermediate resistance) and genotypes with a white mold response from 5 to 9 were grouped in 

a third category (susceptible). For binomial, genotypes with mean score of 1, 2 and 3 were grouped 

together (resistant) and the rest of genotypes were grouped in a second category (susceptible).  This 

transformation was done with the purpose of finding alleles with minor and major effect on the 

disease reaction. When GWAS is performed using two categories (binomial), the identification of 

markers associated with the trait is done under a more rigorous criteria compared to multi-classes 

distributions (polynomial and quantitative). It allows a better identification of genomic regions 

having a major effect in the trait but underrates alleles that have minor influence in the effect of 

white mold to dry bean. Thus, the three phenotypic classes would bring complementary results in 

the search of genetic factors involved in this trait. Genome-wide Efficient Mixed Model Analysis 

(GEMMA) (Zhou and Stephens, 2013) was used to perform the association mapping. Principal 

component analysis (PCA; Price et al., 2006) was used to estimate population structure. Population 

relatedness was calculated using the GEMMA algorithm for centered relatedness. Bootstrapping 

was performed 10,000 times on empirical distribution of P-wald values, and the SNPs in the lower 
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than 0.01% and 0.1% of the distribution were considered significant (Oladzad et al., 2019b).  Two 

models were tested using GEMMA in each phenotypic distribution. The first model was a mixed 

model (MM) that includes population structure and relatedness (2PCA + kinship matrix), and the 

second is EMMA model that only accounted for relatedness. The model that presented the lower 

MSD was used for further analysis.  Phenotypic variation explained by the most significant mark-

ers and the cumulative effect was calculated using the likelihood-ratio-based R2 (Sun et al., 2010) 

using the genABEL package available in R (Aulchenko et al., 2007). Finally, Manhattan plots were 

developed using the mhplot() function available in R (Zhao, 2007) to visualize the distribution of 

SNP p-values in the genome.       

Candidate gene selection 

To identify possible candidate genes associated with white mold disease reaction, genes in 

the genomic regions ± 50 Kb from the significant peak SNPs were identified using the genome 

annotation of the V2.1 assembly of the P. vulgaris reference genome. Genes located in those re-

gions were further investigated by undergoing literature searches. Genes were selected as potential 

candidate genes based on its function related to disease resistance metabolic pathways.  
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RESULTS 

Selection of resistant genotypes to white mold 

The white mold scoring data for the 500 lines screened from the WM-MAGIC population 

was normally distributed (Figure 3) as expected for traits controlled by multiple genes. Based on 

the disease rating scale (Arkwazee and Myers, 2017), genotypes with scores from 1-3 were cata-

loged as resistant since they showed the ability to continue growing despite infection. Genotypes 

with value of 4 were selected as intermediate resistance due to its low chances of surviving when 

infected with white mold, and genotypes with ratings from 5-9 were selected as susceptible since 

they were already dead by the day of evaluation or will eventually die (Figure 4). Resistant checks 

PC-50 showed strong resistance with a score of 3 while the response of USPT-WM-12 was scored 

as 5. The mean of both susceptible checks was 6.   

Only 4% of the population (19 lines) was scored as resistant with ratings equal to or less 

than three. From these genotypes, 4 belong to the great northern and 15 belong to the pinto market 

classes (Table 3). The founder lines of this MAGIC population were confirmed to be distributed 

between intermediate resistance to susceptible and some breeding lines had lower disease scores 

than any of the parentals/founders.  This implies that the WM-MAGIC population was expressing 

transgressive segregation. CO16079 and ID-14-4 expressed intermediate resistance with average 

value of four while El Dorado, La Paz, Lariat, USPT-WM-12 and Powderhorn had susceptible 

scores of five. PT7-2 was the more susceptible founder line with an average score of six.  

Although consistency in results is a concern with white mold screening, no significant dif-

ferences were found in the sampling within the same genotype (F value = 0.85; P>F = 0.2231) in 
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the replication. Also, no significant differences were observed among genotypes across replica-

tions using this new scoring procedure (F value = 0.68; P>F = 1.0000) implying the greenhouse 

protocol was repeatable across genotypes and replications.  

 

 

 

Figure 3. Distribution of 500 MAGIC lines, 8 founder parents and 4 checks evaluated for their 
reaction to white mold in the greenhouse using seedling straw test (Arkwazee and Myers, 2017).  
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Table 3.  White mold response of the resistant genotypes and founder parents of the WM-
MAGIC population and the checks with its market class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genotype Market Class Score 
WMM-68 Pinto 3 
WMM-109 Great Northern 3 
WMM-165 Pinto 3 
WMM-166 Pinto 3 
WMM-185 Pinto 3 
WMM-190 Pinto 3 
WMM-214 Great Northern 2 
WMM-219 Pinto 3 
WMM-299 Pinto 2 
WMM-300 Pinto 3 
WMM-483 Pinto 3 
WMM-506 Great Northern 3 
WMM-541 Pinto 3 
WMM-580 Pinto 3 
WMM-739 Great Northern 3 
WMM-820 Pinto 3 
WMM-851 Pinto 3 
WMM-922 Pinto 3 
WMM-1043 Pinto 3 
ID14-4 Pinto 4 
CO16079 Pinto 4 
El Dorado Pinto 5 
La Paz Pinto 5 
Lariat Pinto 5 
Powderhorn Great Northern 5 
PT7-2 Pinto 6 
USPT-WM-12 Pinto 5 
PC-50 Cranberry 3 
Othello Pinto 6 
Beryl Great Northern 6 
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Figure 4. A) Example of one genotype from the WM-MAGIC population with a response to 
white mold of 1. B) Example of one genotype from the WM-MAGIC population with response 
to white mold of 8. 
 
GWAS 

After filtering sequencing data based on read depth, SNP missing data, low quality reads, 

polymorphic level, heterozygosity, missing genotypes sequence, and minor allele frequency, 428 

genotypes were used to perform GWAS with a total of 52,201 SNPs out of the original 2,210,742 

SNPs. From the two models tested for each of the phenotypic distributions, the mixed linear model 

had the lowest MSD value (0.0002 for quantitative, 0.0003 for polynomial and 0.0015 for bino-

mial) for all of the phenotypic distributions evaluated. Therefore, only the results for this model 

will be presented for all the GWAS (Figure 5). 

 

A B 
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Figure 5. QQ-plots with its MSD developed from the association of phenotypic and genotypic 
data of WM-MAGIC population. A) MM of quantitative phenotypic distribution B) EMMA of 
quantitative phenotypic distribution C) MM from polynomial phenotypic distribution D) EMMA 
from polynomial phenotypic distribution E) MM from binomial phenotypic distribution F) 
EMMA from binomial phenotypic distribution. 
 

Using the three phenotypic distributions, 30 significant genomic intervals (-log 10 (p-wald) 

≥ 3.0) were identified as associated with resistance of dry bean to white mold (Table 4, Table 5, 

Table 6 and Figure 6). The quantitative phenotypic distribution identified 11 intervals with a cu-

mulative phenotypic variation of markers of 40% (Table 4). The polynomial distribution identified 



 

34 

eight intervals in the genome that explained 41% of the cumulative phenotypic variation (Table 

5), and the binomial distribution identified 13 intervals that explained 57% of the phenotypic var-

iation (Table 6). From the 30 genomic regions identified, one region was found in common in the 

three phenotypic classes and one region was found in common between polynomial and binomial 

distributions. In addition, at least two genomic regions of the 30 identified in this research were 

previously reported and these results help validating those regions.   

Within all the intervals identified, two were found in more than one phenotypic class. Re-

gion Pv11:17.24 Mb was identified with the same peak SNP (S11_17248499) with both the poly-

nomial and binomial data. This interval is located 8 Kb upstream from gene model 

Phvul.011G117400 annotated as an Ankyrin repeat family protein. This SNP is the most signifi-

cant in binomial distribution, and it alone explains 17.7% of the phenotypic variation. The second 

region is common within the three phenotypic distributions and is located at Pv11:25.67 Mb. Gene 

model Phvul.011G123500 was found in that region and is annotated as a receptor-like-protein-

kinase HAESA.  

In addition, one cluster of resistance-related genes was identified with the quantitative data 

distribution and one in binomial distribution. For quantitative, region Pv07:30.81–30.82 Mb with 

peak SNP S07_30821924 (-log 10 (P-wald) = 3.50) was identified harboring gene models 

Phvul.007G187700, Phvul.007G188100, Phvul.007G188300 and Phvul.007G188900 annotated 

as pathogenesis-related-4, prenylated RAB acceptor 1.E, Malectin/receptor-like protein kinase 

family protein, and Pentatricopeptide repeat (PPR) superfamily protein, respectively. For the bi-

nomial data, the region at Pv11:52.88 with peak SNP S11_52882970 (-log 10 (P-wald) = 3.87) was 

identified in binomial distribution with gene models Phvul.011G209000, Phvul.011G208900, 



 

35 

Phvul.011G208800, Phvul.011G208700, Phvul.011G208400, Phvul.011G208100,  

Phvul.011G208000 annotated as Eukaryotic aspartyl protease family protein. 

Table 4. Peak SNPs (0.1%) associated with white mold resistance in WM-MAGIC population 
using the quantitative phenotypic distribution     

Type of 

phenotype 
Chr. 

Genomic in-

terval or po-

sition(Mb) 

SNP 
-

Log10(P) 

% Varia-

tion 

% Cumula-

tive varia-

tion  

Quantitative 4 26.44 S04_26441542 3.59 6.20 

40 

 5 27.36 S05_27362293 3.06 1.70 

 7 24.05 S07_24051914 3.04 4.70 

 7 30.81-30.82 S07_30821924 3.50 6.00 

 8 40.19-50.52 S08_40526382 3.20 4.80 

 8 63.04 S08_63046675 3.20 5.1 

 11 25.67** S11_25670846 3.50 6.60 

 11 34.17 S11_34170894 3.22 5.00 

 11 36.35 S11_36353491 3.12 4.80 
 11 39.84-39.90 S11_39903426 3.55 6.30 

  11 52.40 S11_52401988 3.22 6.10 
** Region was found in common in the three different phenotypic classes 
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Table 5. Peak SNPs (0.1%) associated with white mold resistance in WM-MAGIC population 
using the polynomial phenotypic distribution     

Type of 

phenotype 
Chr. 

Genomic in-

terval or posi-

tion(Mb) 

SNP 
-

Log10(P) 

% Varia-

tion 

% Cumula-

tive varia-

tion for sig. 

SNP  

Polynomial 2 47.80-47.91 S02_47914415 4.50 7.80 

41 

 4 22.62 S04_22625095 3.44 5.90 

 4 47.08 S04_47083551 3.28 5.30 

 11 17.24* S11_17248499 4.11 7.2 

 11 23.53 S11_23535005 3.65 6.30 

 11 25.67** S11_25670803 4.57 7.81 

 11 37.03 S11_37039553 3.44 5.50 

  11 44.61 S11_44618477 3.13 4.90 
* Region was found in common in binomial and polynomial phenotypic distributions 
** Region was found in common in the three different phenotypic classes 
 

Table 6. Peak SNPs (0.1%) associated with white mold resistance in WM-MAGIC population 
using the binomial phenotypic distribution     

Type of 

phenotype 
Chr. 

Genomic in-

terval or posi-

tion(Mb) 

SNP 
-

Log10(P) 

% Varia-

tion 

% Cumula-

tive varia-

tion for sig. 

SNP  

Binomial 1 24.24 S01_24248170 4.25 7.80 

57 

 4 13.33 S04_13332737 3.97 6.30 

 5 18.11 S05_18115593 3.92 7.80 

 5 22.99 S05_22999183 4.40 8.30 

 7 29.30 S07_29300748 4.09 6.00 

 8 27.80 S08_27805286 5.83 10.20 

 8 31.13 S08_31137455 3.89 7.30 

 10 24.58 S10_24587949 3.84 7.18 

 11 17.24* S11_17248499 9.60 17.70 

 11 25.67** S11_25671010 3.63 7.10 

 11 34.38 S11_34384862 5.35 10.40 

 11 48.13 S11_48139011 3.89 5.80 

  11 52.88 S11_52882970 3.87 7.60 
* Region was found in common in binomial and polynomial phenotypic distributions 
** Region was found in common in the three different phenotypic classes 
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Figure 6.  Manhattan plots of A) quantitative data B) polynomial data and C) binomial data Mixed 
Model for WM-MAGIC population resistance to white mold. Green lines represent cutoff of 0.01 
and 0.1. Markers red-colored passed cutoff value of .01 and blue-colored markers only passed 
cutoff value of 0.1.  
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DISCUSSION 

The success of studies with the aim of discovering genetic factors controlling quantitatively 

inherited disease resistance requires tools that provide consistent phenotypic and genotypic data. 

The response to the white mold pathogen is highly affected by the environment making it a chal-

lenging disease to study. Among the commonly used protocols to evaluate resistance of common 

bean to white mold, the conventional straw test method (Petzoldt and Dickson, 1996) is been the 

most important. Cons of this protocol is the age of the plant required for screening increasing the 

demand of space and time. The seedling straw test method (Arkwazee and Myers, 2017) over-

comes this limitations. However, in this study, it showed to be effective in providing repeatable 

white mold infection response data. This seedling protocol takes 21 days from the day of sowing 

seed to the day of scoring, representing a reduction of 15 to 22 days when compared to the con-

ventional straw test method (Petzoldt and Dickson, 1996). This allows for an efficient use of time, 

space, and experimental resources. While this protocol is suitable to identify resistant genotypes, 

it is more challenging to identify intermediate resistance because the defense response of young 

seedling with this type of resistance may not be robust enough to combat the aggressive growth of 

the pathogen. Based on that, we considered genotypes as resistant when they present values from 

1 to 3. Genotypes with these scores were able to continue growing despite infection since primary 

leaves were still healthy. Genotypes with a score of 4 were considered to have an intermediate 

resistance since they had low chances to survive and genotypes with values from 5 to 9 are con-

sidered as susceptible since they were dead by the day they are scored. Therefore, intermediate 

genotypes should be further evaluated using the conventional straw test method to get better dif-

ferentiation within this group. 
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The complex nature in which white mold resistance is controlled genetically (Miklas et al., 

2001, 2006b; Soule et al., 2011) complicates the introgression of resistance from genotypes of one 

gene pool to another or between landraces, accessions or market classes. This makes it difficult to 

introgress resistance into dry bean genotypes with desirable agronomic traits such as: proper size 

and shape of the seed, desirable flowering and maturity intervals, upright plant architecture, and 

seed yield for the various bean market classes. In the past, highly white mold resistant genotypes 

were developed (Tu and Beversdorf, 1982; Singh et al., 2007; Saladin et al., 2000) but that re-

sistance has not been successfully integrated into pinto bean cultivars, the most important market 

class in U.S. So far, USPT-WM-12 (Miklas et al., 2014) has been the only pinto bean improved 

germplasm that has provided a mixture of intermediate physiological resistance with plant avoid-

ance mechanisms and good agronomic traits that can be exploited by breeders. The WM-MAGIC 

population contains 19 resistant lines (15 pinto and 4 great northern), and the 15 pinto lines surpass 

the physiological resistance of USPT-WM-12.  These lines are new resistance sources that are now 

available for breeding programs. The four great northern resistant lines can also be utilized for 

breeding purposes. Powderhorn is the only reported great northern genotype with good field avoid-

ance and physiological resistance (Kelly et al., 2013), but the resistance to white mold is not strong 

enough to be considered resistant.  

This improvement in the resistance of dry bean to white mold is not surprising even though 

none of the parents used to develop the WM-MAGIC population expressed this high level of re-

sistance. The improvement observed in the offspring is likely due to the pyramiding of major and 

minor effect resistance alleles from the founders via recombination during the development of the 

MAGIC population. 
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The effectiveness in phenotyping is the first step to conduct association mapping. The sec-

ond step involves the genotyping of the population. With the development of GBS by Elshire et 

al. (2011) and later improved for its use in common bean by Schröeder et al. (2016), GBS is an 

effective method to generate SNP variant data and incorporate it into a HapMap for genetic anal-

ysis.  By conducting association mapping using the phenotypic results and coupling that data with 

>52k SNP HapMap, genetic factors associated with the resistance of dry bean to white mold were 

found. Although resistance of dry beans to white mold is a polygenic trait, and therefore, it is 

evaluated in a 1 to 9 scale or other categorical scales (Petzoldt and Dickson, 1996; Teran and 

Singh, 2009; Bastien et al., 2012; Arkwazee and Myers, 2017), for breeders, this scale is not prac-

tical and it may be cumbersome to use in some cases. For this reason, the phenotypic data was 

reimagined as three different phenotypic distributions (quantitative, polynomial and binomial) for 

the GWAS analysis. The GEMMA software (Zhou and Stephens, 2013) is especially useful when 

data is viewed as different distributions because it determines the distributions and then selects the 

appropriate statistic method to protect the model against errors (Zhou and Stephens, 2013). 

By applying the three phenotypic distribution approach, Oladzad et al. (2019b) identified 

SNPs/intervals with major and minor effect for resistance in common bean to Rhizoctonia solani, 

another trait controlled by multiple genes. For this research, the significant SNPs identified with 

binomial phenotypic distribution had the highest phenotypic variation, and the peak SNPs were 

the most significant based on the P-values when compared with the other phenotypic distributions. 

The binary distribution data also identified more regions associated with white mold resistance. 

As suggested by (Oladzad et al., 2019b), the binary distribution data was expected to identify genes 

conferring major effects on the disease reaction because of the strict classification of the disease 

response as either resistant or susceptible. The advantage of the aggressive seedling straw test 
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method is that it easily distinguishes genotypes with the strong resistance response at the sensitive 

young seedling stage from those with an intermediate resistance response that does appear to be 

active at that growth stage. This probably makes the young seedling phenotypic data set ideal for 

the binomial GWAS methodology.  

The GWAS detected genotype-phenotype associations for all three phenotypic distribu-

tions on chromosomes Pv07 and Pv11 that had not been reported before. The peak located in 

Pv11:25.67 Mb was common across all the phenotypic distributions. Gene model 

Phvul.011G123500  was located as potential candidate gene and is ortholog of gene HSL1, a leu-

cine-rich-repeat receptor kinase (LRR-RK) (Jinn et al., 2000) in Arabidopsis (www.uniprot.org). 

LRR-RKs have various functions in plant immunity including acting as a detection system for the 

presence of pathogens in external layers of the plant (Tang et al., 2017). The percentage of varia-

tion explained by this genomic region was the highest in the polynomial and quantitative ap-

proaches with 7.81 % and 6.60% respectively. A second shared region was also found on the same 

chromosome at position. Pv11:17.24 Mb with the binomial and polynomial data. Gene model 

Phvul.011G117400, annotated as ankyrin repeat protein family, was located at 8 Kb downstream 

from the most significant SNP. This protein family has been well studied in many different crops, 

and its role in plant resistance against pathogens has been identified multiple times. It was demon-

strated that one ankyrin repeat-containing protein in rice serves as a positive regulator in basal 

defense against Magnaphorte oryzae and is activated by the jasmonite and salicylic acid-signaling 

pathways (Mou et al., 2013). In Arabidopsis, a gene related to an ankyrin repeat protein plays an 

important role as a signaling element of a receptor-like proteins (RLP) gene that regulates immun-

ity against bacterial pathogens (Yang et al., 2012). Ankyrin repeat genes were identified in past 

studies as candidate genes for salt and drought stress in soybean and common bean (Zhang et al., 
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2016; Cortés and Blair, 2018). The peak SNP used for the detection of this region in the binomial 

distribution explains 17.7% of the variation, and it has the highest p-wald value in this study. 

Besides these shared regions, two clusters of genes were also identified, one on Pv11 with 

the binomial approach and one on Pv07 with the quantitative approach. In Pv11:52.88 Mb, a family 

of seven genes, annotated as members of the eukaryotic aspartyl protease protein family were 

identified ±50 Kb of the peak SNP. Overall, proteases are implicated in host-parasite interactions. 

They are found in both the plants and their pathogens and are involved in defending plants from 

pathogens and also in camouflaging pathogens from plant proteases and receptors of pathogens 

effectors (Hou et al., 2018). Gene models identified in this cluster are orthologs to the CDR1 gene 

from Arabidposis. The CDR1 gene is involved in the induction of local and systemic defense re-

sponses (Xia et al., 2004). In addition, another study found the importance of aspartyl protease in 

promoting the activation of BAG6-mediated basal resistance gene (Li and Dickman, 2016). The 

BAG6 gene in Arabidopsis helps enhance the resistance against Botrytis cinerea (de Bary) (Li and 

Dickman, 2016) which is a pathogen that shares features with S. sclerotiorum due to its necrot-

rophic behavior.       

The second cluster of genes identified with quantitative distribution was located in Pv07: 

30.81–30.82 Mb. Here, four gene models were selected due to their involvement in different host-

parasite interactions. The first gene model was annotated as a pathogenesis-related-4 (PR4) protein 

that are commonly involved in the plant systemic acquired response (SAR) against pathogens dur-

ing the infection stage (Durrant and Dong, 2004; van Loon et al., 2006; Seo et al., 2008). Interest-

ingly, a study conducted with the purpose of identifying genes involved in the S. sclerotiorum-P. 

vulgaris interaction found: 1) pathogenesis-related genes (PR1, PR2 and PR3) interacting in the 
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resistance of dry bean to white mold in early stages of inoculation, while 2) a gene encoding as-

partyl protease increased its activity in later stages, when the pathogen is spreading necrosis 

(Oliveira et al., 2015). Although PR proteins found in that research varies from the one found here, 

it supports the role of aspartyl proteases in resistance found in the first cluster of genes identified 

with binomial data. 

The second gene model in this cluster is annotated as prenylated RAB acceptor 1.E. This 

type of proteins has been recently proposed to be involved in intracellular trafficking, signaling 

and degradation pathways of specific receptor-like proteins (RLP) and pattern recognition recep-

tors (PRR) directly affecting the immune response in tomato (Solanum lycopersicum L.) (Pizarro 

et al., 2018). Intracellular trafficking appears to be an essential pathway for the stimulation of 

microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) and pathogen-associ-

ated molecular pattern (PAMP)-triggered immunity (PTI) required to activate PRR (Žarsky, 2016; 

Gu et al., 2017).  It also serves as a PRR transport from the endoplasmic reticulum to the plasma 

membrane (Choi et al., 2013).  

 The third gene model in this Pv07 cluster, annotated as a malectin/receptor-like protein 

kinase family, was confirmed to be involved in sexual reproduction and plant immunity (Mang et 

al., 2017). In common bean, malectin/receptor protein kinases are part of the cluster where the Co-

4 anthracnose-resistance gene is located and is associated with plant basal immunity (Oblessuc et 

al., 2015). The last two gene models found in this cluster are annotated as a pentatricopeptide 

repeat (PPR) superfamily protein. PPR are part of one of the largest protein families in plants and 

are involved in multiple plant biological processes like organelle biogenesis and also function in 

photosynthesis, respiration, plant development, and the biotic and abiotic stress response (Barkan 

and Small, 2014). The importance of PPR proteins in plant defense has been well documented. For 
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example, when two PPR genes were knocked out in Arabidopsis, an increased susceptibility to 

Pseudomonas syringae pv. tomato and Botrytis cinerea was observed (Park et al., 2014). 

 From this research, we have identified four new novel QTLs involved in common bean 

resistance to white mold. We are proposing Pv07:30.81–30.82 Mb as WM7.7 and Pv11:17.24 Mb, 

Pv11:25.67 Mb and Pv11:52.88 Mb as WM11.2, WM11.3 and WM11.4, respectively. 

Besides the identification of new novel regions, this research is also validating QTLs iden-

tified previously. With peak SNP S07_24051914, this research confirmed WM7.4 that was iden-

tified in three different populations (Perez-Vega et al., 2012; Miklas et al., 2013). One of those 

three bi-parental populations shares USPT-WM-12 (Vasconcellos et al., 2017) as a common parent 

with this WM-MAGIC population. The second region targeted that was previously reported is 

WM8.3 (Miklas and Delorme, 2003; Maxwell et al., 2007; Soule et al., 2011). WM8.3 was already 

mapped and pyramid with WM 7.1 (Mamidi et al., 2016). This research found marker 

S08_40526382 to be significant and close to this region.  

Based on its significance and disease related genes located in the genomic region targeted, 

markers S11_25670846, S11_17248499, S07_24051914 and S11_52882970 are promising mark-

ers to be useful for breeding purposes. Those markers presented significant P-wald values and at 

least one gene related to biotic stress were found in a window of 50 Kb upstream and downstream. 

Regarding to new resistant germplasm identified, dry bean breeding programs around U.S. are 

using some of the lines found to be resistant in future crosses for varieties development. 

The WM-MAGIC population has the potential to be used with the purpose of identifying 

new sources of variation and new genomic regions associated to other traits of interest as long as 

the founder parents presents polymorphism for the phenotype of interest. As an example, the 8 
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founder parents of the WM-MAGIC were found to be polymorphic for the resistance to race 20-3 

of Uromyces appendiculattus, the causal agent of bean rust (E. Ixcotoyac Pers. Comm.) 

Future research will be testing the 19 resistant lines for agronomic traits in field and also 

they will be tested in the white mold nurseries available across the U.S. This will help to test the 

avoidance mechanism that is also involved in white mold resistance, in addition to the agronomic 

performance of these resistant lines. The genotypic and phenotypic data obtained from this re-

search will be used to perform genomic prediction studies and the remaining genotypes from this 

WM-MAGIC population (n=550) will serve for validation. The remaining lines of the WM-

MAGIC population have been recently screened in greenhouse for physiological resistance and 

genomic libraries are being developed to sequence the genotypes using the same protocols as in 

this study. With it, we would expect to identify more genotypes with a resistant response to white 

mold that could be used for breeding programs and also to give strengthens to the molecular results. 

Two major contributions of this research to the scientific community is i) the identification 

of pinto and great northern lines with improved resistance to white mold and ii) the validation of 

previously reported and identification of new potential genomic regions associated with the re-

sponse of dry bean to white mold.    

Finally, the re-screening of lines that showed an intermediate degree of resistance to white 

mold using the conventional straw test could do a better differentiation of genotypes. Some of 

those lines could have mechanisms of resistance that can be of the interest of breeders and geneti-

cists but the seedling straw test method was perhaps not suitable to dissect them in a proper man-

ner. 
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APPENDIX  

Table A1. Significant SNPs associated with resistance to white mold in the WM-MAGIC popu-
lation using Mixed Model, sorted first by chromosome and second by position  

Phenotypic 
Class SNP 

Chromo-
some Position P. Value MAF 

Binomial S01_24248170 1 24248170 0.0000556 0.013 
Polynomial S02_47914415 2 47914415 0.0000185 0.07 
Binomial S04_13332737 4 13332737 0.000106 0.028 
Polynomial S04_22625095 4 22625095 0.000325 0.237 
Quantitative S04_26441542 4 26441542 0.000255 0.063 
Polynomial S04_47083551 4 47083551 0.000654 0.123 
Binomial S05_18115593 5 18115593 0.000118 0.039 
Binomial S05_22999183 5 22999183 0.0000393 0.083 
Quantitative S05_27362293 5 27362293 0.000859 0.194 
Quantitative S07_24051914 7 24051914 0.000903 0.158 
Binomial S07_29300748 7 29300748 0.0000799 0.197 
Quantitative S07_30821924 7 30821924 0.000314 0.466 
Binomial S08_27805286 8 27805286 0.00000147 0.034 
Binomial S08_31137455 8 31137455 0.000126 0.065 
Quantitative S08_40526382 8 40526382 0.0006 0.215 
Quantitative S08_63046675 8 63046675 0.000566 0.328 
Binomial S10_24587949 10 24587949 0.000143 0.182 
Polynomial S11_17248499 11 17248499 0.00011 0.464 
Binomial S11_17248499 11 17248499 2.5E-10 0.464 
Polynomial S11_23535005 11 23535005 0.000219 0.284 
Polynomial S11_25670803 11 25670803 0.0000302 0.509 
Quantitative S11_25670846 11 25670846 0.000264 0.506 
Binomial S11_25671010 11 25671010 0.00023 0.245 
Quantitative S11_34170894 11 34170894 0.000603 0.124 
Binomial S11_34384862 11 34384862 0.00000438 0.458 
Quantitative S11_36353491 11 36353491 0.000752 0.202 
Polynomial S11_37039553 11 37039553 0.00083 0.053 
Quantitative S11_39903426 11 39903426 0.00028 0.262 
Polynomial S11_44618477 11 44618477 0.00204 0.453 
Binomial S11_48139011 11 48139011 0.000128 0.55 
Quantitative S11_52401988 11 52401988 0.000599 0.132 

Binomial S11_52882970 11 52882970 0.000133 0.049 
*MAF: Minor allele frequency 


