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ABSTRACT 

Particle swarm optimization is a computational algorithm used to optimize a solution 

through sequential processing of particles using a specified estimation of quality. The algorithm is 

inspired by biological systems such as bird and insect swarms. This paper focuses on the 

comparison between Local PSO and Global PSO. We have utilized eight functions to provide 

benchmarks to compare the optimizations provided by the two optimization strategies. This 

resulted in findings that indicate that global optimizations tend to be more effective than local 

optimizations when comparing final costs. Our research indicates that an automated approach to 

particle swarm optimization will benefit from employing a range of benchmark functions and 

implementing both local and global optimizations. Analysis of the various particle topologies are 

discussed, and benchmark functions are selected and analyzed in regard to their final costs, as well 

as the overall particle topologies that they produce. 
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1. INTRODUCTION 

Particle swarm optimization (PSO) is important for the effective use of drones and 

unmanned aerial vehicles. To ensure that drones in a swarm do not crash into one another each, 

drone must know where the others are in a three-dimensional space. Drones also referred to as 

nodes or particles in this paper, can make use of PSO to both prevent collisions and optimize node 

to node communication speeds by finding the optimal positions that give the lowest 

communication latency costs between nodes. Evolutionary algorithms are employed to derive the 

optimal particle placement as the swarm moves through a three-dimensional space. The algorithm 

must properly account for the velocity, placement, and impacts of gravity, wind, and other such 

forces on the particles within the swarm. As particles of a swarm begin to optimize their positions, 

others emulate their movements and derive a global or local optimization with its placement in the 

swarm. The optimization strategies analyzed within this paper will be tested for both global and 

local optimization. PSO was developed by Eberhart and Kennedy in 1995 using a population of 

particles and a stochastic optimization technique named after the behavior of flocks of birds [1]. 

PSO was designed to incorporate swarming behaviors seen in the wild and displayed in the 

murmuration of flocks of birds [1]. These behaviors allow large swarms of birds to fly closely 

together without the risk of collisions. Similar behaviors are seen in swarming insects. Eberhart 

and Kennedy used to simulate these behaviors and the concept of PSO was the result of their 

research. Today there are many optimization problems that can be applied to using PSO and we 

will discuss several of them throughout this paper.  

Swarm intelligence relies on PSO to allow man made devices to replicate natural swarming 

behaviors. With the increasing usage of unmanned arial vehicles both in the military and civilian 

sectors, the roles of swarm intelligence and optimization of these systems continues to become a 
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growing field of research. Not only does optimization allow for faster response times, but it can 

also be used to detect the locations of attackers. For example, a swarm coming under fire can 

triangulate the exact location of an attacker more effectively if each node is aware of its partners 

location and status [2]. PSO can also be utilized in predicting the future location of enemy drones, 

allowing for more effective targeting of enemy units [2]. In PSO each node is normally referred to 

as a particle and functions are utilized to find the optimal results for the particle’s location in regard 

to costs. The main benefits of the PSO model is its fast convergence speeds. PSO is evaluated on 

benchmark functions such as the Rastrigin function, Sphere function, Ackley function, Rosenbrock 

function and so on. All particles’ behavior in a swarm are considered to be affected by each other’s 

particle behavior within the swarm. In real world applications there are other external inputs that 

can also have an effect on the swarm, for example, the location of a power wire, tree branch, bird 

or other physical object or wind speeds. This adds an additional level of complexity to the 

development of effective PSO. In this paper, we will look at two PSO variants, the Local and the 

Global versions.  

1.1. Optimization 

Optimization is a process used to locate and identify the best solutions for a specific set of 

conditions to determine the optimal solution. PSO is a heuristic and metaheuristic optimization 

technique based on those observed in nature [3]. A starling murmuration is an example of such 

natural optimization technique. Starling murmuration refer to the phenomenon that results when 

thousands of starlings fly in swooping, intricately coordinated patterns [3]. The optimization 

shown by the ingrained behaviors ensures that none of the birds ever collide with others in the 

group. Such optimization techniques can be used by humans in the case of swarms of unmanned 

arial vehicles. China, Russia and other nations have conducted experiments using UAVs 
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(Unmanned Air Vehicles) to create massive, coordinated light shows and the PSO technique could 

be employed to optimize such display, creating amazing graphical shows while ensuring that 

particles in this case drones do not interfere with one another [4]. 

1.2. Optimization Problems 

The function to be optimized is referred to as the objective function also known as the 

fitness function. The variables required by the function are its input values. Input variables may be 

constrained by simple bounds or complex constraints. The search space is the set of all possible 

positions within the constraint bounds. The neighborhood is the subset of the search space that 

contains a given position. The objective value is the result obtained by the objective function. All 

together the objective function, its corresponding search space and its constraints all represent an 

optimization problem. 

The current paper will start with the basics of PSO and how it works with regards to Global 

Best PSO and Local Best PSO in Chapter 3. It will then go on to describe the various PSO variants 

that will be discussed as well as their implementation details. We will then analyze the experiments 

and derive some conclusions based on the experiment results in Chapter 4 and 5, respectively. 
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2. RELATED WORK 

There is an extensive collection of work focused on the concept of PSO. The first major 

work relating to PSO was published by Eberhart, Kennedy and Shi in 1995 [1]. This work focused 

on replication social behaviors observed in bird swarms. There are many variations of the PSO 

algorithm that are being evaluated using various benchmark functions such as Sphere, Alpine, 

Rosenbrock, and Rastrigin. There are some similarities between PSO and Genetic Algorithms 

although the methods the algorithms use to traverse the search space are fundamentally unique. 

2.1. Optimization Techniques 

Many optimization techniques have been developed yet none are perfect for every use. 

Optimization techniques fall into a few basic categories. The first being deterministic techniques 

such as: algebraic techniques [5], branch-and-bound [6] and interval optimization techniques [7]. 

Next, we have those that fall into the category of stochastic techniques these include, Monte Carlo 

sampling [8], parallel tempering [9], simulated annealing [10], and stochastic tunneling [11]. There 

are also several heuristic and meta-heuristic optimization techniques, including ant colony 

optimization [12], cuckoo search [13], evolutionary strategies [14], genetic algorithm [15], 

memetic algorithms [16], and of course PSO [1]. Wolpert and Macready introduced the “No free 

lunch” theorem based on research conducted by Wolpert on machine learning [17]. The “No free 

lunch” theorem is an impossibility theorem that states that depending upon the nature of the 

problem there can be no universal approach that will always outperform the others. The theorem 

is as follows: if there exists an optimization technique A that outperforms optimization technique 

B on a given optimization problem X there exists an optimization problem Y in which optimization 

technique B will outperform optimization technique A [17]. This theorem enforces the idea that 

multiple techniques are needed to achieve optimal optimization of a wide range of problems.  
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2.1.1. Local Best Particle Swarm Optimization 

Local best PSO uses the ring network topology and small neighborhoods are defined for 

each particle. Information is exchanged between particles as they interact with each other’s 

neighborhoods. This is local knowledge of the environment and is used to calculate the best local 

position based on the particle’s neighborhood, neighboring particles and velocities.  

Classical PSO formula 

 x(i)(n + 1) = x(i)(n) + v(i)(n + 1), n = 0, 1, 2, ..., N – 1   (1) 

Local best velocity formula 

 vij(n + 1) = vij(n + 1) + c1r1(n) [ yij(n) – xij(n)] + c2r2(n) [y (n) – xij(n)] (2) 

Using the above formulas local best PSO generates Local best values for each particle within the 

swarm. Velocity is calculated using the second formula. 

2.1.2. Global Best Particle Swarm Optimization 

Global best PSO is a standard variation of PSO where the swarm particles are initialized 

randomly with random velocities within the search space. The objective function or fitness 

function is then implemented with the best objective fitness values being those already assigned 

to the particles. With the global best being that of the best particles position and values within the 

entire swarm.  

Global best function 

 vi(n + 1) = wvi(n) + C1r1
i(n)[xp

i(n) – xi(n)] + (n) [xg(n) – xi(n) 

where n = 0,1,2,…,N-1. 

 

(3) 
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The Classical PSO formula function then works on moving the particles and the fitness values are 

evaluated once again and updated with their personal best values. The global best position is then 

updated and replaced by any new best value.  

 

Figure 1. Flow chart of the PSO process. 

 

Figure 1 shows the flowchart representing the logic of the PSO algorithm. Particle positions 

are initialized with random positions and velocities. The evaluation phase uses iteration steps to 

check the fitness of all particles then the update step logs the global and or local best. If the process 

is finished and a suitable solution has been found the result will be printed else the particles’ 

locations are updated and the loop will start once more at the evaluation phase with the particles 

moved into new positions.  

Yes No 
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3. PARTICLE SWARM OPTIMIZATION 

The PSO variants (global and local) will be used with a set of benchmark functions to find 

the optimal solution for each benchmark function. This section will discuss the variants used for 

the benchmark functions and break down their benefits and use cases. As stated earlier the “No 

free lunch” theorem states that there will never be a single algorithm that best optimizes every 

case. Thus, we will explore what use cases are best suited for each PSO variant in terms of 

optimality. 

3.1. Adaptive Particle Swarm Optimization (APSO) 

Adaptive particle swarm optimization (APSO) uses adaptive parameters and a learning 

strategy based on the “evolutionary state estimation” (ESE) resulting in what is called the “elitist 

learning strategy” (ELS). The value of the evolutionary state is developed using an evolutionary 

factor and its relative particle fitness within the population. Each generation goes through a 

classification process to evaluate the fitness of each particle and its attributes. Adaptive control 

strategies are useful in allowing the system to evolve and select the optimal positions and vectors 

using ELS to control the swarm’s evolution.  

The equations used in APSO define a fuzzy classification method. Where f is the 

evolutionary factor and n is the population size for the equations found in Formulas (4) and (5). 

Within the equation, d represents the dimension.  

Step 1: Calculate the mean distance between particle 1 and all other particles using the 

equation in Formula (4). 

 

𝑑𝑖 =  
1

𝑛 − 1
 ∑ √∑(𝑥𝑖

𝑘 − 𝑥𝑗
𝑘)2

𝑑

𝑘=1

𝑛

𝑗=1,𝑗 ≠𝑖

 

(4) 
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Step 2: After the mean distance has been found and assigned to di for each particle then all 

values will be compared to locate the maximum and minimum distance dmax and dmin. The global 

best will then be denoted as dg and the evolutionary factor f is defined using the equation in 

Formula (5), which is initially set to the default value of 1 when the algorithm starts.  

 
𝑓 =  

𝑑𝑔 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 −   𝑑𝑚𝑖𝑛
 𝜖 [0,1] 

(5) 

Step 3: Once the evolutionary factor f has been calculated the evolutionary state is 

divided into four substates: convergence, exploitation, exploration, and jump-out states. Inertia 

weight is used to balance out global and local search abilities and should generally decrease in a 

linear fashion at a rate of 0.9 to 0.4 with each generation. Formula (6) shows the equation used to 

adjust inertial weight, and Formula (7) shows the equation used for acceleration coefficients and 

particle position adjustments. 

 
𝑤(𝑓) =  

1

1 + 1.5𝑒−2.6𝑓
     ∈ [0,1] 

(6) 

 𝑐𝑖 (𝑛 + 1) =  𝑐𝑖 (𝑛) ± ∆ , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2 (7) 

where ∆ represents a value within the range 0.05 to 0.1 which is randomly generated in a uniform 

fashion to ensure against stagnation of the particles.  

Step 4: Select the best position denoted pd. The formula used to find the best position can 

be found in Formula (8).  

 𝑝𝑑 =  𝑝𝑑 +  (𝑥𝑑
𝑚𝑎𝑥 − 𝑥𝑑

𝑚𝑖𝑛)𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇, 𝜎2) (8) 

The Gaussian distribution in Formula (8) uses a mean µ set to 0 with a time varying 

standard deviation where σmin = 0.1 and σmax = 1.0 with g being the local best value and G being 

the global best value. The equation used to derive σ can be seen in Formula (9). 
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 𝜎 = 𝜎𝑚𝑎𝑥 − (𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)(
𝑔

𝐺
) (9) 

Table 1. Strategies used to obtain values for c1 and c2. 

Strategies C1 C2 States 

Option 1 Increase C1 Decrease C2 Exploration 

Option 2 Small increase in C1 Small decrease in C2 Exploitation 

Option 3 Small increase in C1 Small increase in C2 Convergence 

Option 4 Decrease C1 Increase C2 Jump-out 

 

Table 1 shows the particle manipulation strategies that can be used to manipulate the 

particles to better achieve optimal particle placement and avoid particles from being trapped in sub 

optimal local maxima states.  

3.2. Algorithm Aspects 

3.2.1. Particle Initialization 

Particles within a neighborhood are initialized initially at random locations with random 

vectors. Upon each iteration formulas can be used to adjust the particle’s locations with each 

successive iteration producing an evolving swarm topology.  

3.2.2. Fitness Evaluation 

Fitness functions are used to evaluate the fitness of a particle and update its corresponding 

fitness score. Depending upon global or local evaluation these functions can range from simple to 

complex and constraints may be utilized to cull out less fit positions to direct particles to more 

optimal positions. In other cases, as seen with simulated annealing, particles may be allowed to go 

back to less optimal positions at times [10]. 
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3.2.3. Stopping Conditions 

The stop conditions are used to terminate the algorithm after a set number of iterations has 

been executed. Results are then printed, and any relevant information is graphed for future analysis 

or use. Stop conditions can be adjusted as needed to allow for a high degree of optimality or lower 

optimality as required by the specific use case requirements.  



 

11 

4. EXPERIMENTS AND RESULTS 

All benchmarks were conducted using PySwarms and the python programming language 

using both local and global particle swarm optimization techniques on each benchmark function. 

The settings for the number of particles, dimensions, number of iterations and other input variables 

remained consistent for each function tested. Note that in our experiments we used three 

dimensions for all of our benchmarks. 

The program runs both Local Best and Global Best PSO using the benchmark functions 

listed in this chapter. Input variables are used consistently to allow for equal comparison between 

the differing benchmark functions. Inputs include number of iterations, global increment, particle 

increment, particle count, and dimensions. The results were then obtained using the 

pyswarms.single.global_best module and pyswarms.single.local_best module [18].  

4.1.  Pyswarms Module Functionality 

Pyswarms uses two distinct modules and a few different parameters to provide functional 

options. Those functionalities and parameters are discussed below in detail which will be 

performing optimizations of objective functions using the global-best optimizer in 

pyswarms.single.GBestPSO and the local-best optimizer in pyswarms.single.LBestPSO. This 

aims to demonstrate the basic capabilities of the library when applied to benchmark problems [18]. 

4.1.1. Pyswarms.single.global_best Module Functionality 

This function implements a Global-best Particle Swarm Optimization (gbest PSO) 

algorithm. The function takes a set of candidate solutions and attempts to find the best possible 

solution by using a position-velocity update method. The function uses a star topology where each 

particle is drawn to the best performing particle. The position update is defined using the formula 

shown in Formula (10) where the position at a given timestep t is updated using a computed 
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velocity calculated at t + 1. The formula used to calculate the velocity is shown in Formula (11). 

The velocity formula defines c1 and c2 as cognitive and social parameters that control the behavior 

of a given particle given two choices: (1) follow its personal best position, (2) follow the swarm’s 

global best position. The result of this choice determines if the swarm is explorative or exploitative 

with the variable w controlling the inertia of the swarm’s movement. 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 𝑖) (10) 

 𝑣𝑖𝑗(𝑡 + 1) =  𝑤 ∗  𝑣𝑖𝑗(𝑡) +  𝑐1𝑟1𝑗(𝑡)[𝑦𝑖𝑗(𝑡) −  𝑥𝑖𝑗(𝑡)] +  𝑐2𝑟2𝑗(𝑡)[𝑦𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)] (11) 

The global best PSO algorithm was adapted from the works of Kennedy and Eberhart in 

Particle Swarm Optimization [1]. The algorithm used in global best PSO can be seen represented 

using pseudo code in Figure 2. 

 

 

Figure 2. Global best PSO algorithm. 
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4.1.2. Pyswarms.single.local_best Module Functionality 

The Local-best Particle Swarm Optimization (lbest PSO) algorithm is similar to the global-

best PSO algorithm. The Local best algorithm takes a set of candidate solutions, then attempts to 

find the best solution using a position-velocity update method. The local best PSO algorithm uses 

a ring topology, this results in the particles being attracted to its corresponding neighborhood. 

The position update formula can be seen in Formula (12) with t being the timestep being 

updated using the computed velocity at t + 1. The formula used to update the computed velocity 

at t + 1 being the same as that shown in Formula (10). 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (12) 

Local PSO differs from Global PSO in that a given particle does not compare itself to the 

overall swarm’s performance but instead looks at the performance of its closest neighbors and 

makes comparisons with them for optimality. Local best PSO generally takes much more time to 

converge when compared to Global best PSO but offers better explorative features. Pyswarm’s 

implementation of this algorithm uses a k-D tree imported from SciPy to select neighbors and 

distance is computed using either the L1 or L2 distance. The nearest neighbors are then selected 

from the resulting k-D tree and the tree is recomputed with every iteration. The local best PSO 

algorithm was adapted from the works of Kennedy and Eberhart in Particle Swarm Optimization 

[1]. 

4.1.3. Parameters 

• Options 

• Number of iterations 

• Number of particles 

• Bounds 
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The options used were [c1: 0.5, c2: 0.3, w: 0.9] for global optimizations with c1 being the 

cognitive parameter, c2 being the social parameter and w being the inertia parameter. 1,000 

iterations were used in each test with 50 particles. Bounds were set depending on the specific 

function in use ranging from 5.12 to 10 using the negatives as lower bounds. 

4.2. Experiment Goals 

The goals of the experiments included in this paper is to develop effective methods to 

control a swarm’s topology to reduce the communication costs between individual nodes. Thus, 

we are using a series of benchmark functions to find costs and particle positions in both local and 

global PSO. When run together as a single program the optimal solution can be utilized to 

coordinate particle movement and maintain the most efficient topology to reduce the 

communication costs. This can also be combined with the k nearest neighbors’ algorithm to create 

a digital evolving record of particle placement. The various fitness functions used each have their 

own best-case topologies and if combined with machine learning the system could predict what 

fitness function to utilize based on the shape of the swarm’s topology in real time. As of now each 

function will be run sequentially and the best optimization can be analyzed individually to 

determine the best topology and particle placement for optimization. 

4.3. Ackley 

The Ackley test function can have several local optima located at regular intervals. This 

fitness function will produce a single global optima located at the point 0, 0, 0.  The function is 

shown in Formula (13).  

 
𝑓(𝑥) =  −𝑎𝑒

−𝑏√1
𝑑

∑ 𝑥𝑖
2𝑑

𝑖=1 − 𝑒
1
𝑑

∑ 𝑐𝑜𝑠 (𝑐𝑥𝑖)𝑑
𝑖=1 + 𝑎 +  𝑒1 

(13) 
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Figure 3 shows the optimal topology of the Ackley fitness function. The Ackley function 

is a concave function with the optimal point being the center point. The global minima is obtained 

by f(0,0)=0, with a domain of -5 <= x, y <= 5. 

 

Figure 3. Topology of the Ackley function. 

 

 

Figure 4. Global best cost history for the Ackley function. 
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Figure 5. Local best cost history for the Ackley function. 

 

Figure 4 shows the number of iterations needed to find a suitable cost. A suitable cost is 

one that is close to 0. As we can see in Figure 5 an optimal solution can be found in under 50 

iterations. Figure 5 shows a very similar drop in cost from 1.37 to almost 0 around the same number 

of iterations.  

 Table 2. Ackley global fitness function results. 

Global best cost 4.440892098500626e-16 

Global best 

position  

[ 1.45519618e-17, 4.21114928e-16, -1.81346765e-16] 

 

Table 3. Ackley local fitness function results. 

Local best cost 0.05203503379902985 

Local best position [0.00875255, 0.01662873, 0.00552959] 

Local best position 

options 

'c1': 4.002561740255713, 'c2': 6.132272490604348, 'w': 

4.821831298950279, 'k': 13, 'p': 1 
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Table 2 contains data relating to the best costs of global optimization along with the 

corresponding best positions associated with the local optimization in Table 3. As we can see when 

comparing the two the global optimization produced the lowest cost at 4.440892098500626e-16 

compared to 0.05203503379902985. The changes needed to the options in the local best 

optimization are shown in the table as well. 

4.4. Levi 

The Levi fitness function is best for ramp like topologies as we can see in Figure 6. The 

Levi function is as follows:  

 𝑓(𝑥, 𝑦) =  𝑠𝑖𝑛23𝜋 + (𝑥 − 1)2(1 + 𝑠𝑖𝑛23𝜋𝑦) + (𝑦 − 1)2(1 + 𝑠𝑖𝑛22𝜋𝑦) (14) 

 

Figure 6. Topology of the Levi function. 
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Figure 7. Global best cost history for the Levi function. 

 

Optimal solutions are found for the global best position using the Levi function very 

quickly as shown in the cost history graph seen in Figure 7. When we look at the local best cost 

history shown in Figure 8, we see very little difference between the two. We will see more 

change with some of the other fitness functions later in this section. 
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Figure 8. Local best cost history for the Levi function. 

Table 4. Levi global fitness function results. 

Global best cost 1.4997597826618576e-32 

Global best 

position  

[1, 1, 0] 

 

Table 5. Levi local fitness function results. 

Local best cost 2.9034752985917007e-05 

Local best position [0.99997622, 0.97846058, 0] 

Local best position 

options 

{'c1': 2.1724360683338735, 'c2': 9.62486041013009, 'w': 

4.3099398943224365, 'k': 12, 'p': 1} 
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Table 4 shows the results obtained for global optimization using the Levi function and 

Table 5 shows the corresponding results of local optimization using the Levi fitness function. As 

we see the global optimization produces a lower cost than local optimization. 

4.5. Rastrigin 

The Rastrigin function is based on the De Jong function with the addition of Cosine 

modulation to allow the production of frequent local minima. The function is defined using the 

following formula: 

 

𝑓(𝑥) =  ∑[(𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑑

𝑖=1

 

(15) 

where d is the dimension and x is a d-dimensional row vector or 1 by d matrix. An 

orthogonal matrix is also utilized for coordinate rotation to make the function non-separable. The 

number of local optima grows exponentially as the dimensionality is increased. The test area is 

restricted to a hypercube starting at the limit -5.12 to 5.12 with its global minima f(x) = 0 found 

within that range. As we see in Figure 10 the Rastrigin function can take more time compared to 

some of the other fitness functions; this is due to it having many local maxima and local minima.  

 

Figure 9. Topology of the Rastrigin function. 
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Figure 10. Global best cost history for the Rastrigin function. 

 

 

Figure 11. Local best cost history for the Rastrigin function. 
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Rastrigin produced a best cost of 0.00026 with a best position of 0, 0, 0 as seen in Table 6 

for the global optimization where the local optimization produced a cost of 0.9180498767704037 

as seen in Table 7. 

Table 6. Rastrigin global fitness function results. 

Global best cost 0.00026 

Global best 

position  

[0, 0, 0] 

 

Table 7. Rastrigin local fitness function results. 

Local best cost 0.9180498767704037 

Local best position [0.02692257, 0.01383459, 0.06131146] 

Local best position 

options 

{'c1': 1.1452949295076018, 'c2': 1.086624142067919, 'w': 

1.0739533224992848, 'k': 1, 'p': 1} 

 

4.6. Rosenbrock 

The Rosenbrock function is considered a non-convex function, developed by Rosenbrock 

in 1960. The global minimum is inside a long, narrow, parabolic shaped flat valley. The function 

is defined as follows: 

 

𝑓(𝑥) =  ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]

𝑛−1

𝑖=1

 

(16) 

where x = (x1, …, xn) and n = 3. 



 

23 

 

Figure 12. Topology of the Rosenbrock function. 

 

 

Figure 13. Global best cost history for the Rosenbrock function. 
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Figure 14. Local best cost history for the Rosenbrock function. 

 

As we see in Figure 14 the Rosenbrock function produces a local best at around 80 

iterations with a very high initial cost of 50. In Figure 12 we see the overall topology of the function 

with the optimal position being as close to the point (0, 0, 0) as possible. As we see in Figure 13 

depending upon the particles starting positions it may take many iterations for the particles to 

converge. Table 8 contains the resulting cost of global optimization and Table 9 contains the results 

of local optimization using the Rosenbrock fitness function. 

Table 8. Rosenbrock global fitness function results. 

Global best cost 4.3651867427948036e-14 

Global best 

position  

[1.00000012, 1.00000021, 0] 

 

Table 9. Rosenbrock local fitness function results. 

Local best cost 0.04275490910466276 

Local best position [0.91951961 0.83882813 0.69599832] 

Local best position 

options 

{'c1': 2.6197841082614404, 'c2': 8.183208143758625, 'w': 

2.4488263690238306, 'k': 13, 'p': 1} 
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4.7. Schaffer2 

The Schaffer2 fitness function is normally bounded with a domain of -100 to 100. With a 

global minima at f(x) = 0 at x = (0, 0). The functions definition is as follows: 

 
𝑓(𝑥) = 0.5 + 

𝑠𝑖𝑛2(𝑥1
2 − 𝑥2

2) − 0.5

[1 + 0.001(𝑥1
2 − 𝑥2

2]2
 

(17) 

 

Figure 15. Topology of the Schaffer2 function. 
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Figure 16. Global best cost history for the Scaffer2 function. 

 

Figure 17. Local best cost history for the Scaffer2 function. 
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As we see in Figure 16 the initial cost is not terribly high for the Schaffer2 fitness function, 

and it tends to find an optimal solution within a few iterations. Figure 17 contrasts as the local 

optimization takes longer to find a solution.  

The topology as seen in Figure 15 prevents the existence of independent local minima but 

has 4 local maxima. As the algorithm progresses the particles are drawn to the global minima in 

the center quite quickly making it an efficient and effective function. Tables 10 and 11 contain the 

resulting costs of global optimization and local optimization, respectively. 

Table 10. Schaffer2 global fitness function results. 

Global best cost 0.0 

Global best 

position  

[ 3.90009005e-09 -3.20968894e-07, 3.54832001e] 

 

Table 11. Schaffer2 local fitness function results. 

Local best cost 4.7471594005754625e-07 

Local best position [0.01492195, 0.0158504, 0.01532846] 

Local best position 

options 

{'c1': 2.1483513747567646, 'c2': 8.170510960805752, 'w': 

4.475328421750222, 'k': 14, 'p': 1} 

 

4.8. Sphere 

The Sphere function is very useful as many other topologies can be put into a spherical 

topology. The domain for this function is quite extensive: -∞ ≤ xi ≤ ∞, 1 ≤ i ≤ n. 

The function definition is as follows: 

 
𝑓(𝑥) =  ∑ 𝑥𝑖

2

𝑛

𝑖=1

 
(18) 

With a optimal solution at f(x1, … , xn) = 0. 
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Figure 18. Topology of the Sphere function. 
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Figure 19. Global best cost history for the Sphere function. 

 

 

Figure 20. Local best cost history for the Sphere function. 
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As seen in Figures 19 and 20 the optimal solution is found very effectively using the Sphere 

function with no major difference in time taken between global and local optimizations. Figure 18 

shows the basic topology of the function and its global optima at point (0, 0, 0). 

The Sphere function is one of the most effective fitness functions tested and has a broad 

application range. Table 12 contains the functions results for global optimization which are 

obtained very quickly as seen in Figure 19. Table 13 displays the results obtained by local 

optimization using the Sphere function. There are some limitations on the use of this function as 

swarms will seldom completely match a spherical topology although due to the simplicity and 

speed of the algorithm it may be more suitable as a general-purpose fitness function than others 

especially considering that the domain for this function is far more inclusive than many of the 

other functions available. The question here would be if the execution speed is more important 

than a perfect solution as no single function can meet the needs of every possible case. The Sphere 

function can easily serve as a default fitness function. 

Table 12. Sphere global fitness function results. 

Global best cost 0.0 

Global best 

position  

[-1.27259802e-162, -2.48470447e-163, -2.93072783e-163] 

 

Table 13. Sphere local fitness function results. 

Local best cost 0.005153627760837311 

Local best position [0.02606911, 0.06472562, 0.01687078] 

Local best position 

options 

{'c1': 3.225031431243699, 'c2': 6.876527316376868, 'w': 

4.805224838818529, 'k': 12, 'p': 1} 
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4.9. Styblinski / Tang 

The Styblinski – Tang function is usually restricted to the domain: xi in [-5, 5] for all i = 1, 

…, d where d is the dimension and in our case d = 3. The formula is as follows: 

 
𝑓(𝑥) =  

∑ 𝑥𝑖
4 − 16𝑥𝑖

2 + 5𝑥𝑖
𝑛
𝑖=1

2
 

(19) 

 

Figure 21. Topology of the Styblinski-Tang function. 
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Figure 22. Global best cost history for the Styblinski Tang function. 

 

Figure 23. Local best cost history for the Styblinski Tang function. 
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As we see in Figure 22 this function can be exceptionally slower than some of the others 

we have tested and has limited application in swarm topologies. This function performs better 

in local best optimizations as seen when we compare Figures 22 and 23. Figure 21 shows the 

optimal topology of this test function. While this function is much less effective overall 

especially compared to the Sphere function there are times when the swarm’s topology may be 

better served by this fitness function. 

Table 14. Styblinski / Tang global fitness function results. 

Global best cost -1272.781987190529 

Global best 

position  

[-3.80601064, -0.08326784, -129.68240329] 

 

Table 15. Styblinski / Tang local fitness function results. 

Local best cost -1156.6715579144793 

Local best position [2.15530099, 2.13629179, 122.60836240] 

Local best position 

options 

{'c1': 4.439324880921251, 'c2': 7.628149707706805, 'w': 

4.5295616846535305, 'k': 11, 'p': 1} 

 

The results seen in Tables 14 and 15 were derived using the same options input used in 

other local best benchmarks but in this case have produced unsatisfactory results. This could be 

due to the majority of particles being so far from one another making both local and global bests 

difficult to pinpoint. 

4.10. Three Hump 

This function also called the Three humped camel function oddly does not resemble a 

camel when graphed topologically. The recommended input domain of this function is (-5,5) with 

a global minima located at f(x) = 0 with x = (0, 0). The function is defined as follows: 
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𝑓(𝑥) = 2𝑥1

2 − 1.5(𝑥1
4) +

𝑥1
6

6
+ 𝑥1𝑥2 + 𝑥2

2 
(20) 

 

Figure 24. Topology of the Three hump camel function. 
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Figure 25. Global best cost history of the Three hump camel function. 

 

Figure 26. Local best cost history of the Three hump camel function. 
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Figure 25 shows that the Three hump function produced an optimization in approximately 

40 iterations. The results of the optimizations both local and global can be seen in Table 9. 

Table 16. Three hump camel global fitness function results. 

Global best cost 3.573884008253608e-83 

Global best 

position  

[3.91291769e-42, 1.03431390e-42, 2.91372008] 

 

Table 17. Three hump camel local fitness function results. 

Local best cost 3.854168552496155e-05 

Local best position [0.00428496, 0.00038943, 0.00398656] 

Local best position 

options 

{'c1': 1.5674691186475427, 'c2': 1.6810733419712054, 'w': 

1.5794866657386786, 'k': 1, 'p': 1} 

 

Tables 16 and 17 show the corresponding results for global and local optimization. As we 

can see the global optimization produced a much better result with the cost being magnitudes lower 

than the local optimization. The global optimization was also derived in fewer iterations than its 

corresponding local optimization counterpart. 

4.11. Summary of Results 

When we analyze the results shown in Table 18, we can see that with the exception of 

Schaffer2 the global best solution consistently produces a better cost value than the local 

optimization. That is not to say that local optimization does not have a place in a well-rounded 

application of PSO but instead indicates that the optimum result will be acquired using global 

optimization instead of local optimization methods. The results showed a visual range of difference 

in the time taken to execute the various fitness functions. This shows that for example the execution 

time of the Sphere function is much faster than Levi. Further research can be directed into 

increasing the performance of some of the slower functions and using machine learning to 
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determine what cases will benefit from the use of substitute functions when the time taken to 

execute a given function may negate the benefits its optimization may provide. 

Table 18. Global PSO compared to Local PSO. 

Fitness 

function 

Best cost Best position 

Global best 

Ackley 

4.440892098500626e-16 [1.45519618e-17, 4.21114928e-16, -

1.81346765e-16] 

Local best 

Ackley 

0.05203503379902985 [0.00875255, 0.01662873, 0.00552959] 

Global best 

Levi 

1.4997597826618576e-32 [1, 1, 0] 

Local best 

Levi 

2.9034752985917007e-05 [0.99997622, 0.97846058, 0] 

Global best 

Rastrigin 

0.00026 [0, 0, 0] 

Local best 

Rastrigin 

0.9180498767704037 [0.02692257, 0.01383459, 0.06131146] 

Global best 

Rosenbrock 

4.3651867427948036e-14 [1.00000012, 1.00000021, 0] 

Local best 

Rosenbrock 

0.04275490910466276 [0.91951961 0.83882813 0.69599832] 

Global best 

Schaffer2 

0.0 [ 3.90009005e-09 -3.20968894e-07, 

3.54832001e] 

Local best 

Schaffer2 

4.7471594005754625e-07 [0.01492195, 0.0158504, 0.01532846] 

Global best 

Sphere 

0.0 [-1.27259802e-162, -2.48470447e-163, -

2.93072783e-163] 

Local best 

Sphere 

0.005153627760837311 [0.02606911, 0.06472562, 0.01687078] 

Global best 

Styblinski 

-1272.781987190529 [-3.80601064, -0.08326784, -

129.68240329] 

Local best 

Styblinski 

-1156.6715579144793 [2.15530099, 2.13629179, 122.60836240] 

Global best 

Three 

hump 

3.854168552496155e-05 [3.91291769e-42, 1.03431390e-42, 

2.91372008] 

Local best 

Three 

hump 

3.854168552496155e-05 [0.00428496, 0.00038943, 0.00398656] 
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5. CONCLUSION 

In conclusion, swarm optimization can benefit from utilizing different topologies of the 

swarm to minimize communication costs between particles in the network. Of course, the swarms 

intended actions must be able to override optimization behaviors when those behaviors contradict 

with the overall directive of the swarm. Thus, it is important that any automated optimization 

protocol be able to take into account the swarm’s directives and use that information to find the 

best optimization function to produce a good optimization result. Further research and 

development in this field will benefit from the development of a system that is designed to 

recognize and categorize swarm topologies to better enable identification of the best fitness 

function to employ at any given time as there is no single best solution matching the most optimal 

fitness function to any given topology that will result in the most efficient optimization. There may 

also be added benefit from development of transitional fitness functions that bridge the gaps as 

one topology changes into another. The more quickly optimizations can be derived the faster they 

can be utilized, and the benefits can become available to the swarm. Global optimizations 

consistently produced better results overall when compared to local PSO resulting in the best costs. 

This does not mean that in every case global optimization should be used exclusively but that it 

would be beneficial to utilize global optimizations to guide the topology and that local 

optimizations can later be implemented to place particles that may not be able to reach the global 

optimum. Further research is needed to improve the time taken for some of the slower functions 

and to categorize them based on the time they will take to execute and produce an effective result 

to enable a system to utilize them in an effective manner. Another area of future research is the 

identification of swarm topologies and the predictive systems needed to best optimize organically 
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changing topologies for example a swarm in flight avoiding obstacles while also maintaining a set 

formation in real time.  
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