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ABSTRACT

Formal verification methods have been shown to be very effective in finding corner-case

bugs and ensuring the safety of embedded software systems. The use of formal verification requires

a specification, which is typically a high-level mathematical model that defines the correct behavior

of the system to be verified. However, embedded software requirements are typically described

in natural language. Transforming these requirements into formal specifications is currently a big

gap. While there is some work in this area, we proposed solutions to address this gap in the con-

text of refinement-based verification, a class of formal methods that have shown to be effective

for embedded object code verification. The proposed approach also addresses both functional and

timing requirements and has been demonstrated in the context of safety requirements for software

control of infusion pumps. The next step in the verification process is to develop the refinement

map, which is a mapping function that can relate an implementation state (in this context, the

state of the object code program to be verified) with the specification state. Actually, construct-

ing refinement maps often requires deep understanding and intuitions about the specification and

implementation, it is shown very difficult to construct refinement maps manually. To go over this

obstacle, the construction of refinement maps should be automated. As a first step toward the

automation process, we manually developed refinement maps for various safety properties concern-

ing the software control operation of infusion pumps. In addition, we identified possible generic

templates for the construction of refinement maps. Recently, synthesizing procedures of refinement

maps for functional and timing specifications are proposed. The proposed work develops a pro-

cess that significantly increases the automation in the generation of these refinement maps. The

refinement maps can then be used for refinement-based verification. This automation procedure

has been successfully applied on the transformed safety requirements in the first part of our work.

This approach is based on the identified generic refinement map templates which can be increased

in the future as the application required.
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1. INTRODUCTION

1.1. Overview

Safety critical device is a device that its failure can cause a big problem such as loose of

money in commercial fields, human health issues or even a death. For example, a medical device

that affects patient’s life is called a safety critical device. A medical device is an instrument or

machine that is used to address, monitor, or control a health situation. It is used for delivering

controlled doses of fluid medications to patients such as infusion pump, controlling some important

functionalities like pacemaker that helps in controlling patient’s heartbeat, or even as simple as

monitoring the vital signs such as a blood pressure monitor. Medical devices like infusion pumps,

pacemaker, etc. must be safe which means that failure is unacceptable. Software development

cycles usually have testing processes to explore expected issues. however, it is not considered to be

a comprehensive technique, it can catch errors but can not prove their absence. A proof of system

correctness becomes essential, this proof can be accomplished by the use of verification processes

such as formal verification, our work presents formal verification processes addressing safety issues

in the safety critical devices.

1.2. Motivation

Ensuring the correctness of control software used in safety-critical devices is still an ongoing

challenge [1]. For example, from 2001 to 2017, the Food and Drug Administration (FDA) has issued

54 Class-1 recalls on infusion pumps (medical devices used to deliver controlled doses of fluid med-

ications to patients intravenously) due to software issues [2]. Class-1 recalls are applied to medical

device models whose use can cause serious adverse health consequences or death. With the advent

of Internet of Things (IoT), such safety-critical embedded devices incorporate a whole slew of ad-

ditional functionality to interface with the network and other components, in addition to their core

control functions. These additional functions significantly exacerbate the challenge of ensuring that

the core functionality of the control software is correct and intact. Critical devices such as insulin

pump still have safeness issues which need valuable software amendments to assure the reliability

on design level, this can be handled by either appending new safety insurance functionalities to

fix existing hazards, or modifying some defined functionalities that cause faulty behaviours. Since
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critical devices are considered as real time systems, most of their functionalities have well defined

timing conditions must be met else wise the system will fail. System functionalities keeping the

system safe are called safety requirements, they are usually written in natural language,therefor,

embedding them into the design is a difficult job. requirements need to be transformed into formal

presentation (specifications). A procedure to address the gap between informal and formal require-

ments is required, this is the first goal of this thesis, we propose a structured method to transform

requirements in natural language into formal presentation. Embedding the safety requirements in

a formal form is not enough to assure the system correctness, critical systems should be checked

before use especially medical devices. Testing is the commonly used process to check the software,

but it is not sufficient because it does not check all system’s functionalities comprehensively, it can

only help in finding some errors but not all of them, it should be complemented or even replaced by

other techniques such as formal methods [3]. Formal verification can provide proofs of correctness

of the system such as model checking, static analysis, and program proof. In our work, we utilize

model checking in verifying the transformation procedure of a case study requirements to make

sure that formal presentation meets safety requirements. In addition, we study refinement based

verification which is a scalable verification technique, actually it is not commonly used because: 1)

It requires formal specifications in transition system forms. 2) It requires to build functions called

refinement maps which is a complex and difficult mission. We present solutions to address both

obstacles by proposing algorithms for each job. Our proposed algorithms are successfully applied

on safety requirements for infusion pumps proposed by group of researcher with the help of the

FDA [4] [5] as a case study. The existence of safety requirements for infusion pump is considered a

motivation of us, the new proposed safety requirements are based on a comprehensive knowledge of

the common existing hazards. Figure 1.1 illustrates the process of integrating safety requirements

into software development life-cycle, this model needs to be implemented, here our engineering

model takes place.

1.3. Problem Statement

1.3.1. Testing

Testing is a process evaluates if the software meets the desired requirements. Despite the fact

that testing is the dominant verification technique currently used in commercial design cycles [6],

testing can only show the presence of faults, but it never proves their absence [7]. Although it

2



Figure 1.1. Integrating safety requirements into software development life cycle [4].

checks the system functionalities, this process is time consuming because each function should be

tested individually. Large systems might have millions of functions, this makes testing insufficient.

Alternate verification processes should be applied to the software design in conjunction with testing

to assure system correctness and reliability. Formal verification can address testing limitations by

providing proofs of correctness for software safety. Intel [8], Microsoft [9] and [10], and Airbus [11]

have successfully applied formal verification processes.

1.3.2. Formal Verification

Formal verification is a proofing process of the correctness of system properties, it shows

if the system is acting as specified by its requirements or not [12]. it is considered as the only

way guarantees that the system is free from errors [13]. This verification method uses the system

mathematical model to assure its correctability [12]. In this thesis, we study two verification process;

model checking and refinement based verification as explained below.

1.3.2.1. Model Checking

To reduce the reliance on testing, model checking technique is used to check the correctness

of software designs. This verification system can be applied early on a design cycle, or even late on

3



the final design [14]. A model checker is a tool that can check if a model satisfies a set of properties.

The properties have to be expressed in a temporal logic. NuSMV is a well structured, flexible,

robust, open and documented tool for model checking [15]. NUSMV allows for the representation

of synchronous and asynchronous finite state systems, in additional to analyzing of specifications

expressed in Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) [16]. In our work,

we perform evaluations of transition systems using the NuSMV model checker. Another model

checker called UUPPAL is specifically designed for verifying real-time systems. It is based on the

timed automata theory [17]. Our work uses UUPPAL to verify resulting transition systems with

timing constraints.

1.3.2.2. Refinement Based Verification

Refinement-based verification [18] is a formal verification technology that has been demon-

strated to be applicable to the verification of embedded control software at the object-code level

[19]. In formal verification and refinement-based verification, typically the design artifact to be ver-

ified is called the implementation and the specification is a formal model that captures the correct

functionality of the implementation. The goal of refinement-based verification is to mathematically

prove that the implementation behaves correctly as defined by the specification. In refinement-

based verification, both the implementation and specification are modeled as transition systems

and timed transition systems if timing specifications are existed. Our verification process is based

on the theory of Well-Founded Equivalence Bisimulation refinement. A detailed description of this

theory can be found in [18]. Here, we give a very high-level overview of the key concepts. As stated

earlier, WEB refinement provides a notion of correctness that can be used to check an implemen-

tation TS against a specification TS. One of the key features is that WEB refinement accounts for

stuttering, which is the phenomenon where multiple but finite transitions of the implementation

can match a single transition of the specification. This is a very key feature because the control

code implements many functions and only some of these functions may be relevant to the safety

property being verified. Therefore, the code may be doing a number of things that do not relate

to the property and will therefore be stuttering a lot w.r.t. the specification. Another key feature

of WEB refinement is refinement maps, which is the focus of this work. Refinement maps are

functions that map implementation states to specification states. There is a lot of flexibility in how

4



Requirement 1.1.1: The pump shall
suspend all active basal delivery and
stop any active bolus during a pump
prime or refill. It shall prohibit any in-
sulin administration during the prim-
ing process and resume the suspended
basal delivery, either a basal profile or
a temporary basal, after the prime or
refill is successfully completed. [4]

(a) Safety requirement 1.1.1 in natural
language.

P

BO BA

R

(b) Formal specification representation of
requirement 1.1.1.

Figure 1.2. Requirement 1.1.1 in both natural language and formal forms.

refinement maps can be defined. This allows for low-level implementations to be verified against

high-level specifications.

Definition 1 (WEB Refinement): Let M = 〈S,R,L〉, M ′ = 〈S′, R′, L′〉, and r: S → S’. M is

a WEB refinement of M ′ with respect to refinement map r, written M ≈ r M ′, if there exists a

relation, B, such that 〈 ∀ s ∈ S :: sB(r.s)〉 and B is a WEB on the TS 〈 S ] S’, R ] R’, L 〉, where

L.s = L’(s) for s and S’ state and L.s = L’(r.s) otherwise.

Sections 1.3.2.3 and 1.3.2.4 explains the main obstacles of applying refinement based verification.

1.3.2.3. Formal Specifications

Formal specification is a mathematical presentation of system requirements. One of the

crucial challenges in applying refinement-based verification to commercial devices is the availability

of formal specifications. For commercial devices, typically, the specification of a device is given as

natural language requirements. There are many approaches towards transforming natural language

requirements to formal specifications, however none targeted towards refinement-based verification.

This work presents a novel methodology to transform natural language requirements into formal

specifications to be used in the context of refinement based verification. The new methodology is

applied on insulin pump safety requirements which were proposed to solve the common hazards

of insulin pump models in the market. Figure 1.2 shows an example of an insulin pump safety

requirement (Requirement 1.1.1). Figure 1.2a shows the requirement in natural language, while

Figure 1.2b shows the resulting formal specification after applying our methodology.
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1.3.2.4. Refinement Maps

One of the key features of refinement-based verification is the use of refinement maps, which

are functions that map implementation states to specification states. In practice, these refinement

maps have a very favorable property in that they abstract out behaviors of the implementation

not relevant to the specification, but only after determining that these additional behaviors do not

actually impact the behaviors of the implementation relevant to the specification. This property

of refinement maps makes the refinement-based verification very suitable for the verification of

control software used in IoT devices as refinement maps can be used to abstract out the additional

functionality of software in IoT devices; again, only after determining that these additional func-

tionality are not impacting the behavior of the core functionality of the implementation as defined

by the specification. Historically, one of the reasons that refinement-based verification is much less

explored than other formal verification paradigms such as model checking is that the construction

of refinement maps often requires deep understanding and intuitions about the specification and

implementation [20]. However, once a refinement map is constructed, the benefit is that refinement-

based verification is a very scalable approach for dealing with low-level artifacts such as real-time

object code verification. We build refinement maps corresponding to formal specifications related to

infusion pump safety and we also propose three possible generic refinement map templates, which

is the first step toward automating the construction of refinement maps. Recently, we presents a

synthesising procedure of refinement maps, This is an automation procedure to choose a refine-

ment map template based on heuristic data. This methodology is applied on safety requirements

of insulin pump based on heuristics that are developed based on the output of the Enju parser to

select a refinement map template for each atomic proposition.

1.4. Thesis Outline

The remainder of the thesis consists of the following chapters:

• Chapter 2 presents a novel approach that can synthesize natural language requirements to

formal specifications that are useful for refinement-based verification. The proposed approach

addresses both functional and timing requirements and has been demonstrated in the context

of safety requirements for software control of infusion pumps. The ability to model and

validate the system properties for critical systems at the requirements level supports the
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detection of design errors during the early stages of a software development life cycle and

helps reduce the cost of later redesign activities.

• In Chapter 3, we develop refinement maps for various safety properties concerning the soft-

ware control operation of insulin pumps. We also identify possible generic templates for

construction of refinement maps as a first step towards developing a process to construct

refinement maps in an automated fashion. Finally, we develop a synthesising procedure of

refinement maps. Heuristics are developed based on the output of the Enju parser to select

a refinement map template for each atomic proposition.

• In Chapter 4, we summarize the problems and how our work presents solutions for each issue.

In addition, some suggested future directions are presented.

• Chapter 5 states the safety requirements we work on, they are written as in the main source.

• Chapter 6 is an appendix of parsed trees for all used safety requirements using an English

parser called Enju.

Note that our work studied the correctness of critical systems, transforming natural language

requirements into formal specifications will help the designers to include safety requirements easily

to assure that the studied system is working correctly as specified. however, our work does not

address the reliability issues but it can help indirectly in adding safety requirements that are

proposed specially to solve reliability bugs.
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2. SYNTHESIS OF FORMAL SPECIFICATIONS FROM

REQUIREMENTS FOR REFINEMENT BASED REAL

TIME OBJECT CODE VERIFICATION

2.1. Introduction

Ensuring the correctness of control software used in safety-critical embedded devices is still

an ongoing challenge [1]. For example, from 2001 to 2017, the Food and Drug Administration

(FDA) has issued 54 Class-1 recalls on infusion pumps (medical devices used to deliver controlled

doses of fluid medications to patients intravenously) due to software issues [2]. Class-1 recalls

are applied to medical device models whose use can cause serious adverse health consequences or

death. With the advent of IoT, such safety-critical embedded devices incorporate a whole slew of

additional functionality to interface with the network and other components, in addition to their

core control functions. These additional functions significantly exacerbate the challenge of ensuring

that the core functionality of the control software is correct and intact.

Safety critical devices such as insulin pump still have safety issues which need valuable soft-

ware amendments to assure the reliability on design level, this can be handled by either appending

new safety insurance specifications to fix existing hazards, or modifying some defined specifications

that cause faulty behaviours. Since safety critical devices are considered as real time systems,

most of their specifications have well defined timing constraints must be met else wise the system

will fail. This chapter works with both functional and timing specifications (called functional and

timing requirements), they are basically written in natural language and need to be transformed

into a formal model, then it can be tested using a formal verification method. The use of formal

verification has become an industry standard when addressing software correctness of safety-critical

The content of this chapter has been published in the International Journal on Advances in Internet Tech-
nology 2019. The material in this chapter was co-authored by Eman M. Al-Qtiemat, Sudarshan Srinivasan, Zeyad
Al-Odat, Mohana Asha Latha Dubas,and Sana Shuja. Eman M. Al-Qtiemat had primary responsibility for con-
ducting experiments and collecting results. Eman M. Al-Qtiemat was the primary developer of the conclusions that
are advanced here. Eman M. Al-Qtiemat also drafted and revised all versions of this chapter. Sudarshan Srinivasan
and Mohana Asha Latha Dubas drafted and revised all versions of this chapter. Sudarshan Srinivasan served as
proofreader.
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devices. There are many success stories and commercial adoption of formal verification processes.

Examples include Intel [3], Microsoft [4] and [5], and Airbus [6].

Refinement-based verification [7] is a formal verification technology that has been demon-

strated to be applicable to the verification of embedded control software at the object-code level

[8]. In formal verification and refinement-based verification, typically the design artifact to be ver-

ified is called the implementation and the specification is a formal model that captures the correct

functionality of the implementation. The goal of refinement-based verification is to mathematically

prove that the implementation behaves correctly as defined by the specification. In refinement-

based verification, both the implementation and specification are modeled as transition systems

and timed transition systems if timing specifications are existed.

One of the key features of refinement-based is the use of refinement maps, which are func-

tions that map implementation states to specification states. In practice, these refinement maps

have a very favorable property in that they abstract out behaviors of the implementation not

relevant to the specification, but only after determining that these additional behaviors do not

actually impact the behaviors of the implementation relevant to the specification. This property of

refinement maps makes the refinement-based verification very suitable for the verification of control

software used in Internet of Things (IoT) devices as refinement maps can be used to abstract out

the additional functionality of software in IoT devices; again, only after determining that these ad-

ditional functionality are not impacting the behavior of the core functionality of the implementation

as defined by the specification.

One of the crucial challenges in applying refinement-based verification to commercial devices

is the availability of formal specifications. For commercial devices, typically, the specification of a

device is given as natural language requirements. There are many approaches towards transforming

natural language requirements to formal specifications, however none targeted towards refinement-

based verification. In this chapter, we present methodologies for transforming natural language

requirements (both functional and timing) into formal specifications that can be used in the context

of refinement-based verification.

The rest of the chapter is organized as follows. An overview of the background is presented in

Section 2.2. Section 2.3 details the related work. A formal model describing the synthesis procedure

of functional requirements is presented in Section 2.4, while Section 2.5 presents a different formal
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model describing the synthesis procedure of timing requirements. Section 2.6 details the case study.

Section 2.7 gives the verification results for the proposed formal model. Conclusions and direction

for future work are noted in Section 2.8.

2.2. Background

This section explores the parsing tree, the definition of transition systems and the definition

of timed transition systems as key terms related to our work.

2.2.1. Parsing Tree

A parse tree is an ordered tree that pictorially represents how words in a sentence are

connected to each other. The connection between each word in the sentence gives the syntactic

categories for the sentence. The parsing process represents the syntactic analysis of a sentence

in natural language. For example, when the parsing process is applied on a simple sentence like

”Adam eats banana”, the parse tree categorizes the two parts of speech: N for nouns (Adam,

banana) and V for the verb (eats). Here N, V are the syntactic categories. The parsing process

is considered to be a preprocessing step for some applications, where natural language should be

converted into other forms. Usually, the system requirements are written in natural language, which

needs to be converted into a structural form that can then be used to create the transition system(s)

(explained in Section 2.2.2). Enju [9] is an English consistency-based parser, which can process very

long complex sentences like system requirements using an accurate analysis (the accuracy relation

is around 90 percent of news articles and bio-medical papers). Besides, Enju is a high-speed parser

with less than 500 msec per sentence. The output is the resulting tree in an XML format which is

considered to be one of the commonly used formats by various applications. As will be described

later, the case study used to describe the proposed methodology is from the bio-medical area, Enju

was the perfect tool as the natural language processing (NLP) parser.

Figure 2.1 shows a simple tree example using Enju. Here, Enju distinguishes between

terminal nodes (John is a terminal node) and non-terminal nodes (VP is a verb phrase). The

abbreviations of the syntactic categories of Figure 2.1 are: S stands for sentence (the head of the

tree), N stands for noun, VP stands for verb phrase (which is a subtree), NP stands for noun phrase,

V stands for verb, and finally D stands for determiner (comes with noun phrases). Using these

syntactic categories, we have developed an extraction technique that would help in translating the

natural language to a formal model of the requirements.
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VP

NP

N

ball

D

the

V

hit

N

John

Figure 2.1. A simple example of a parsing tree using Enju parser[10].

2.2.2. Transition Systems

The implementation and specification in refinement-based verification are represented using

Transition Systems (TSs) [7, 8]. The definition of a TS is given below:

Definition 2 A TS M = 〈S,R,L〉 is a three tuple in which S denotes the set of states, R ⊆ SXS

is the transition relation that provides the transition between states, and L is a labeling function

that describes what is visible at each state.

INDV

IBO SPM

SY NC

Figure 2.2. An example of a transition system (TS).

An Atomic Proposition (AP) is a statement that can be evaluated to be either true or

false. The labeling function maps state to the APs that are true in every state. An example of

a TS is shown in Figure 2.2. Here S = {IBO, SPM, SYNC, INDV}, R = {(IBO, SPM), (SPM,

SYNC), (SYNC, INDV), (INDV, SYNC), (INDV, SPM), (IBO, INDV)} and, L(SPM) represents

the atomic propositions that are true for the SPM state. Similarly, labeling function can be applied

to all the states in this TS.
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2.2.3. Timed Transition Systems

Some applications have requirements with timing conditions on the state’s transitions called

as timing requirements. Timing requirements explain the system behaviour under some timing

constraints. Timing constraints are very important especially if we deal with a critical real time

systems. As mentioned in the previous section (Sec 2.2.2), transition systems are used to represent

the implementation and specification in refinement-based verification, however they do not contain

timing requirements. Hence, in the verification of real time systems that contain timing constraints,

timed transition systems (TTSs) [8] are used to represent the implementation and specification.

S1

S2 S3

〈1, 4〉

〈0, 0〉

〈3,∞〉

Figure 2.3. An example of a timed transition system (TTS)

Definition 3 A TTS Mt = 〈S,Rt, L〉 is a three tuple in which S denotes the set of states and L is

a labeling function that describes what is visible at each state. The state transition Rt has the form

of 〈x, y, lt, ut〉 where x, y ∈ S and lt, ut ∈ N represents the lower and upper bounds as the timing

condition for the transition.

Figure 2.3 shows an example of a timed transition system that consists of three states
{

S1,

S2, S3
}

, for instance; if the system is in state S1 it can go to state S2 only between 1 and 4 units

of time, while going from S2 to S3 the time is zero meaning that it should happen immediately,

and so on.

2.3. Related Work

In the last few years, there has been a tremendous growth in finding the optimal technique

of requirement transformation into a formal model. While most of them proposed system-driven

models, our approach is user-driven to ensure a safe product.

Automatic Requirements Specification Extraction from Natural Language (ARSENAL) [11]

is a system based framework that applies some semantic parsers in multi-level to get the grammatical
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relations between words in the requirement. ARSENAL transforms natural language requirements

into formal and logical forms expressed in Symbolic Analysis Laboratory (SAL) (a formal language

to describe concurrent systems), and Linear Temporal Logic (LTL) (a mathematical language that

describes linear time properties) respectively. The LTL formulas are then used to build the SAL

model. Multiple validation checks are applied on Natural Language Processing (NLP) stage and

LTL formulas to check for their correctness. However, ARSENAL records some inaccuracies in

NLP stage that need a user intervention.

Aceituna et al. [12] have proposed a front end framework that builds a model to exhibit

the system behavior (for synchronous systems only) and help in creating temporal logic properties

automatically. This framework can be used before applying the model checking technique, it

exposes accidental scenarios in the requirements. The framework is designed in a manner that

helps in understanding the errors in a non-technical manner for users who do not have a formal

background. In contrast, our work does not need the temporal logic in defining the specifications

for a model.

A semantic parser has been developed by Harris [13] to extract a formal behavioral descrip-

tion from natural language specifications. The proposed semantic parser was employed to extract

key information describing bus transactions. The natural language descriptions are then converted

to verilog (a hardware description language) tasks.

Kress-Gazit et al. [14] have proposed a human-robot interface to translate natural language

specification into motions. This interface allows a user to instruct the robot using a controller. LTL

formulas are employed to formalize the desired behavior requested by the user.

An approach supporting property elucidation (called PROPEL) has been introduced by

Smith et al. [15], it provides templates that capture properties for creating property pattern. Nat-

ural language and finite state automation are used to represent the templates.

Two approaches have been proposed by Shimizu [16] to solve the ambiguity of natural

language specifications using formal specification. The first approach simplifies the formal speci-

fication development for the popular PCI bus protocol and the Intel Itanium bus protocol. The

second approach explains how formal specifications can help in automating many processes that

are now done manually.
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A natural language parsing technique has been used with the default reasoning, which

is a requirement formalism to support requirement development, this work helps stakeholders to

easily deal with requirements in a formal manner, in addition, a method has been proposed for

discovering any existed requirement’s inconsistencies. A prototype tool called CARL was used for

implementation and verification by Zowghi et al. [17].

Gervasi et al. [18] have also worked on solving the requirement’s inconsistencies issues by

using a well-known formalism called monotonic logic, it has been used especially for requirement’s

transformation. Multiple natural language processing tools [19–22] in additional to grammatical

analysis methodologies for requirement’s development have been done to get requirements in a

formal manner.

Bouyer et al. [23] have recently presented a survey on timed automata and how it can be

applied for model checking of real-time systems. This survey has summarized the work that has

been done since the inception of timed automata in the early 1990s till now. The timing information

in real-time models is expressed as temporal logic. However, the survey does not specify gathering

timing information from natural language requirements, which has been the focus of our work.

Knorreck et al. [24] have presented a graphical tool called AVATAR-TEPE (Automated

Verification of reAl Time softwARe - TEmporal Property Expression Language), in which the

logical and temporal properties are expressed in formal language. This tool can perform all tasks

from requirement capture to verification in one language and in one environment. However, the

tool requires the knowledge of logical and temporal properties to verify the application. The tool

is heavily based on property modeling.

A standardized testing method for distributed real-time cyber-physical systems (CPS) has

been proposed by Shrivastava et al. [25]. Temporal properties have been used to express the timing

constraints. Peters et al. [26] have proposed a new language that considers timing requirement

and checks for errors in the description of the timing constraints. Kang et al. [27] have presented a

model-driven approach to verify the timing requirements for automotive systems at the design level.

However, in all these works, gathering the timing constraints from natural language requirements,

which has been the focus of this paper, has not been addressed.

Carvalho et al. [28] have proposed a symbolic model for translating natural language re-

quirements to a formal model which consider time. Model-based testing techniques are then applied
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to these formal models. Hassine [29] has presented a formal framework to describe, simulate and

analyze real-time systems. This framework considers timing requirements. However, this proposed

framework is yet to be applied on large scale industrial projects. In these works, even though

the timing requirements are considered, none of the these works are targeted at refinement based

verification.

The main advantages of our work over prior algorithms in requirements engineering is its

ability to generate a full formal model directly from natural language requirements by an expert

supervision to emphasis on the safety transformation. Also, our work does not require that the

expert user know any temporal logic languages which has been case for most of the current literature.

2.4. Formal Model Synthesis Procedure for Functional Requirements

The first step of computing the TSs is to extract the APs from the requirements. We have

developed three Atomic Proposition Extraction Rules (APERs) that work on the parse tree of

the requirement obtained from Enju. The resulting APs are then used to compute the states and

transitions. The APERs are described next.

2.4.1. Atomic Proposition Extraction Rule 1 (APER 1)

APER 1 is based on the hypothesis that noun phrases in a requirement correspond to APs.

Each subtree of the parse tree with an NX root (called an NX head) corresponds to a noun phrase

and hence an AP. Therefore, APER 1 computes the subtrees corresponding to NX heads. If NX

heads are nested, then the highest-level NX head is used to compute the AP. The terminal nodes

of the subtree are conjoined together to form the noun phrase. APER 1 returns AP-list, which is

the set of APs corresponding to a parse tree.

Procedure 1 APER1

Require: Parse-tree
1: AP-list ← ∅ ;
2: for each n ∈ TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));
4: if Start-cat = NX then
5: X = Sub-tree(Start-cat);
6: while (head(X) = NX ) ∨ (head(X) = COOD)

∨ (head(X) =NX-COOD ) do
7: X = Sub-tree(head(X));

8: AP-list ← AP-list ∪ TerminalNodes(X) ;
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Figure 2.4. An Enju parsing tree portion shows some resulting APs by applying APER 1.

We now describe the procedure corresponding to APER 1 in detail. Firstly, AP-List is

initialized to the empty set (line 1). The procedure then iterates through each terminal node n

(line 2). The head of a node is its parent. If a terminal node is part of an NX subtree, its level

two head will be marked as NX, which is checked in line 3. The level-two NX node of the terminal

node is stored in variable State-cat. If the Start-cat is of NX category (line 4), a function called

Sub-tree is used to get the resulting subtree (line 5), which is stored in variable X. A while loop is

used to traverse the tree of X upwards checking if the head syntactic category is NX or COOD or

NX-COOD (line 6). Only when one of the conditions is satisfied the subtree is stored in X (line 7).

The terminal nodes of the resulting sub tree ’X’ will be added to AP-List as a new suggested AP

(line 8). Figure 2.4 gives a sub tree example for APER 1.

Note that APER 1 may result in the same AP being duplicated. Duplicates are checked

and removed from the AP list in the overall approach.
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Figure 2.5. An Enju parsing tree portion of requirement 2.2.2 shows some resulting APs by ap-
plying APER 1.

As shown in Figure 2.4, the terminal nodes ’the’ and ’priming’ does not have head(head(n))

= NX. The first terminal node that has the NX category is ’process’. Traversing upwards, the NX

related categories gives us the subtree which contains ’priming process’. This now constitutes the

first AP for this part of requirement. Applying the APER 1 rule on the visible part of the sentence

in Figure 2.4 gives us the following APs: ’priming process’, ’suspended basal profile’, ’basal profile’,

and ’temporary basal’. Also, Figure 2.6 and Figure 2.5 show some resulting APs by applying APER

1 on requirement 1.8.2 and 2.2.2 respectively from [30].

2.4.2. Atomic Proposition Extraction Rule 2 (APER 2)

APER 2 and APER 3 correspond to the two other parse tree patterns that also lead to

noun phrases. APER 2 examines the parse tree for noun categories along with its upper verb head.

APs will be the conjoined terminal nodes of the resulting sub tree. APER 2 states that APs are the

terminal nodes under the head VP passing through NX (or its related phrases such as NX-COOD,

COOD), NP (or its related phrases NP-COOD, COOD), and VX phrase.

APER 2 is built on top of APER 1 to get atomic propositions for requirements that APER

1 is not able to collect. While APER 1 looks only for APs that are noun phrases, APER 2 looks

for noun phrases that are further characterized by verb phrases. For example, if APER 1 finds the

AP ”suspended basal delivery,” APER 2 will find ”resume the suspended basal delivery.”
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Figure 2.6. An Enju parsing tree portion of requirement 1.8.2 shows some resulting APs by ap-
plying APER 1.

Procedure 2 APER 2

Require: Parse-tree
1: AP-list ← ∅ ;
2: for each n ∈ TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));
4: X1 ← ∅;
5: if Start-cat = NX then
6: X = Sub-tree(Start-cat);
7: while (head(X) = NX ) ∨ (head(X) = COOD)

∨ (head(X) =NX-COOD ) do
8: X= Sub-tree(head(X));

9: while (head(X) = NP) ∨ (head(X) = COOD)
∨ (head(X) = NP-COOD) do

10: X1 = Sub-tree(head(X));

11: if (head(X1) = VX) ∧ (head(head(X1)) = VP) then
12: X = Sub-tree(head(head(X1));
13: else
14: if (head(X1) = VP) then
15: X = Sub-tree(head(X1);

16: AP-list ← AP-list ∪ TerminalNodes(X);
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Figure 2.7. An Enju parsing tree portion of requirement 1.2.6 shows some resulting APs by ap-
plying APER 2.

APER 1 and APER 2 have the same algorithmic flow until finding the sub tree of X that

is the top NX head (line 8). However, APER 2 does not consider the resulting X to be an AP like

APER 1 does. Instead, X is the input of the next step. A while loop is used to search if the head

category of X is in NP category or one of its related phrases (line 9). Only when the while loop

condition is true, the new sub-tree is stored temporarily in the variable X1 (line 10), where X1 is

a temporary variable initialized to null (line 4). This ensures that X does not change in this step

for future use. The search for VX and VP categories is to be performed only when X1 is not null.

On the successful completion of NP category search, the search for VX category followed by

VP categories is performed (line 11). When the if condition is satisfied, X is updated with the new

sub-tree (line 12). In the case of failure of the if condition in line 11, a new search for VP category

is performed on the head of NP category sub-tree (line 14). On success, X is updated with the

new sub-tree (line 15). If either of the if conditions (line 11 and line 14) fail, then X will remain as

the sub-tree of NX category. The terminal nodes of the resulting subtree in X is appended to the

AP-list (line 16). Figure 2.8 and Figure 2.7 show resulting sub tree examples by applying APER 2.

Figure 2.8 shows that the procedure starts from left to right looking for level two NX nodes

and traversing upward until higher NX nodes are accounted for. NP phrases are selected to expand

the tree. Then choosing the upper level which is VP in this particular case (sometimes its VX

→ VP). The output of APER 2 for this tree portion is ’override the current basal delivery with a
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Figure 2.8. An Enju parsing tree portion shows some resulting APs by applying APER 2.

temporary basal’, and ’changing existing basal profiles’. Also, Figure 2.9 shows some resulting APs

by applying APER 2 on requirement 1.1.3 from [30].

2.4.3. Atomic Proposition Extraction Rule 3 (APER 3)

APER 3 is built on top of APER 2, it explores the verb head levels in the parse tree like

APER 2, but APER 3 eliminates some verb phrases that is not part of APs. This elimination is

done based on the head of the VP category as illustrated in Procedure 3 below.

APER 3 and APER 2 have the same stream up to line 10. The algorithm starts with

initializing temporary variables X1 and Y to null (line 4). The search for syntactic categories start

with the top NX phrase (line 7) and the resultant sub tree is stored in X (line 8). Then, the search

begins for the top NP phrase (line 9) and the resultant sub tree is stored in X1 (line 10) since the

sub tree in X is needed for future use. As in APER2, the search for either VX phrase followed by

VP phrase or just VP phrase is performed on X1 and the resultant sub tree is stored in Y (lines

11-15). If and only if Y is not empty then the check on the head syntactic category is performed to

ensure that it does not contain CP or COOD categories. In this case, X gets only the right child

(line 16-18) i.e. the left child of Y is pruned. On the other hand, if Y has a CP or COOD head, X
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Figure 2.9. An Enju parsing tree portion shows some resulting APs by applying APER 2 on re-
quirement 1.1.3.

value will be updated to be equal to Y (line 20). Finally, terminal nodes of the resulting sub tree

X will be saved in the AP-list as a new AP. The pruning process (line 18) is done to remove some

action verbs which are not part of an AP.

Like APER2, APER3 also works on verb head categories. However, APER3 has some

pruning techniques to remove parts of the sentence that should not be part of an AP. Consider the

snippet in Figure 2.10, the sub tree ”issue an alert” is subjected to left branch pruning to remove

the verb ’issue’ since such verbs do not add value in the AP. According to the algorithm, since the

head node of VP is COOD, only the terminal nodes of the right child are considered as an AP.

Applying APER 3 on the visible part of the requirement in Figure 2.10 gives the following APs:

’pump’, ’an alert’, and ’deny the request’. Also, Figure 2.11 shows some resulting APs by applying

APER 3 on requirement 3.2.5 from [30].

The proposed APERs may be used individually or in combination depending on the system

requirement and model functionally. However, no one rule is considered to be the best for all models

because of the natural language structure.
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Procedure 3 APER 3

Require: Parse-tree
1: AP-list ← ∅ ;
2: for each n ∈ TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));
4: X1 ← ∅ , Y ← ∅;
5: if Start-cat = NX then
6: X = Sub-tree(Start-cat);
7: while (head(X) = NX) ∨ (head(X) = COOD)

∨ (head(X) =NX-COOD ) do
8: X = Sub-tree(head(X));

9: while (head(X) = NP) ∨ (head(X) = COOD)
∨ (head(X) = NP-COOD) do

10: X1 = Sub-tree(head(X));

11: if (head(X1) = VX) ∧ (head(head(X1)) = VP) then
12: Y = Sub-tree(head(head(X1));
13: else
14: if (head(X1) = VP) then
15: Y = Sub-tree(head(X1);

16: if (Y 6= ∅) then
17: if head(Y ) 6= CP) ∧ (head(Y ) 6= COOD) then
18: X = Sub-tree(RightChild(Y ));
19: else
20: X = Y ;

21: AP-list ← AP-list ∪ TerminalNodes(X);

2.4.4. High-Level Procedure for Specification Transition System Synthesis

Procedure 4 shows the overall flow for computing the TSs. A set of system requirements

in natural language are fed as input to the procedure. TS-set is the output of the procedure and

will contain the set of transition systems that capture the input requirements as a formal model.

TS-set is initialized to null (line 1). Each requirement is input to the Enju parser. The parser

gives an xml file as output. A function called Get is used to obtain the xml file into the variable

Parse-tree (line 3). The xml output in Parse-tree is subjected to the proposed APERs, which give

the atomic propositions (APs) as output. APs are stored in the AP-list (line 4). Each requirement

is subject to all APERs and the AP-list obtained is the union of the APs produced by each of the

rules. The output obtained by using the APERs may contain duplicates, which are eliminated by

using the function Eliminate Dup (line 5). AP-list is then subjected to an expert user check, where
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Figure 2.10. An Enju parsing tree portion shows some resulting APs using APER 3.

the AP(s) might be appended, eliminated or revised based on the expert user’s domain knowledge

(line 6). Some of the APs maybe expressible as a Boolean function of other APs.

Therefore, next, a truth table (AP-truth-table) is created, where each row corresponds to

an AP from AP-list and each column also corresponds to an AP from AP-list (line 7). Each entry in

the table is a Boolean value (true or false). Completing the truth table determines the relationship

of each AP with the other APs in the AP-list. The truth table is completed by the expert user (line

8). The list of states for the input requirements are stored in the variable S-list. S-list is initialized

to null (line 9). o07 This heuristic has worked well in practice. S-list is subjected to expert user

input (line 12).

The transitions of the TS are computed next. The list of transitions (T) is initialized

to a transition between every two states using function ’CreateT’ (line 13). The transition list

is subjected to expert user input (line 14). A transition system (TS) is constructed using the

CreateTS function, which takes the transitions (T) and the list of states (S-list) as input (line 15).

This transition system (TS) is then added to the transition system set (TS-set) (line 16). The

procedure finally returns a set of transition systems for all the requirements in an application (line

17).
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Figure 2.11. An Enju parsing tree portion shows some resulting APs by applying APER 3 on
requirement 3.2.5.

2.5. Formal Model Synthesis Procedure for Timing Requirements

In this section, the approach is extended to deal with timing requirements. When synthe-

sizing transition systems (TSs), the core activity was the extraction of APs. For synthesizing timed

transition system, the core activity is the extraction of APs and TCs. An additional extraction rule

is developed, that can be applied on timed requirements not only to get APs but also to extract

the timing constraints (TCs) on each state transition.

2.5.1. Atomic Proposition and Timing Constrains Extraction Rule (APTCER) for

Timed Transition System

This section explains a new proposed rule that analyzes timing requirements to get APs

with their corresponding TCs as a base for building TTSs. This rule called Atomic Proposition and

Timing Constrains Extraction Rule (APTCER) is specified as Procedure 5 and works as follows.

First, the timing requirement is split into smaller phrases that are individually analyzed (lines 1-14

of Procedure 5). These phrases are called Timed Based Sentences (TBSs). Each resulting phrase
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Procedure 4 Procedure for synthesizing TSs from system requirements

Require: set of requirements (System-requirements)
1: TS-set ← ∅ ;
2: for each Req ∈ System-requirements do
3: Parse-tree ← Get(Req tree.xml);
4: AP-list ← APER(Parse-tree);
5: AP-list ← Eliminate Dup(AP-list);
6: AP-list ← USR IN(AP-List);
7: AP-truth-table ← Relation(AP-list);
8: AP-truth-table ← USR IN(AP-truth-table);
9: S-list ← ∅;

10: for each A ∈ AP-truth-table do
11: S-list[i] = Ai ;

12: S-list ← USR IN(S-list);
13: T ← CreateT(S-list);
14: T ← USR IN(T);
15: TS ← CreateTS(T, S-list);
16: TS-set ← TS-set U TS;
17: return TS-set;

is then analyzed to extract the APs and TCs in that phrase (lines 15-38 of Procedure 5). The list

of APs and TSs are stored in 〈AP − list, TC − list〉.

APTCER takes the parse tree of the timing requirement as input. The parse tree is obtained

by applying the Enju parser on the timing requirement. APTCER initilizes the list of TBSs (TBS-

list) to the empty list (line 1). APTCER then searches for sub-trees with root as ”S” and with left

child of ”NP” and right child as ”VP” (lines 2-5). Each such sub-tree is a TBS.

Note that TBSs can be nested in that there can be a TBS inside of a TBS. The nested

TBSs need to partitioned and analyzed individually. This is done by searching for sub-trees inside

the TBS with ”SCP” or ”S” roots. Such sub trees are cut out and the resulting TBS is returned

(lines 7-13).

Next, the TBSs are analyzed to extract the APs and TCs. The extraction is performed

by analyzing both the left child and the right child of the TBS. The left and right sub-trees are

assigned to variables A and B, respectively (lines 19 and 23). Then APER 1 is used to analyze

both A and B. Through empirical observation, it has been determined that the APs extracted by

APER 1 from sub-tree A (line 21, 22) corresponds to APs but the APs extracted by APER 1 from
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sub-tree B (line 25, 26) corresponds to TCs. The resulting AP-list and TC-list are corresponds to

one TBS (line 27), the TBS’s pair is saved in the final TBS-list (line 28).

Applying lines 1-14 of APTCER on the requirement in Figure 2.12 gives three TBSs, they

are shown in separate red boxes. While the rest of the algorithm (lines 15-38) works on each TBS

to find it’s AP-list and TC-list. The left sentence has one AP which is ”air-line-alarm” and one

TC which is ”maximum delay time of x minutes”. The resulting AP and TC will be saved as a

pair. This helps in identify that the AP and TC are correlated, which is used to determine the

transition for which the TC should be applied. More specifically, the TC will be applied to a

transition from a state in which the corresponding AP is true. Overall the three TBS from Figure

2.12 give the following. AP-list is: ’air-in-line alarm’, ’air bubbles larger than y μL’, and ’insulin

administrations’. TC-list will have one TC: maximum delay time of x seconds which related to the

AP of ’air-in-line alarm’ as one pair.

Note that a TBS can correspond to more than one AP and more than one TC. For example,

Figure 2.13 shows a TBS that has two APs (in red boxes) and one TC (in a green box).

2.5.2. High-Level Procedure for Specification Timed Transition System Synthesis

Procedure 6 shows the overall flow for computing the TTSs. A set of natural language

timing requirements are input to the procedure. TTS-set is the output of the procedure and will

contain the set of timed transition systems that capture the input requirements as a formal model.

TTS-set is initialized to null (line 1). Each timing requirement is input to the Enju parser.

The parser gives an xml file as output. A function called Get is used to obtain the xml file into the

variable Parse-tree (line 3). The xml output in Parse-tree is subjected to our proposed APTCER,

which gives the TBS-list that are pairs of atomic propositions and their related timing constrains

lists (line 4). The synthesizing procedure then iterates through all TBSs (line 5) to get thier

corresponding pair of APs and TCs (line 6).

AP-lists is subjected to an expert user check, where the APs might be appended, eliminated

or revised based on the expert user’s domain knowledge (line 7). Some of the APs maybe expressible

as a Boolean function of other APs. Therefore, next, a truth table (AP-truth-table) is created,

where each row corresponds to an AP from AP-lists and each column also corresponds to an AP

from AP-lists (line 8). Each entry in the table is a Boolean value (true or false). Completing the

truth table determines the relationship of each AP with the other APs in the AP-lists. The truth
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table is completed by the expert user (line 9). TC-list is then checked by the expert user, where

some TCs might be appended, eliminated or revised based on the expert user’s domain knowledge

(line 10).

Procedure 5 APTCER

Require: Parse-tree
1: TBS-list ← ∅ ;
2: for each Head− Cat ∈ Head(Parse-tree) do
3: if Head-Cat = S then
4: if (Left-Child (S)= NP ∨ NP-COOD ) ∧

(Right-Child (S)= VP) then
5: TBS = Sub-tree (S);
6: for each Child-Head (TBS) do
7: if Child-Head (TBS) = SCP then
8: Cut-Sub-tree (SCP);
9: return TBS;

10: else
11: if Child-Head (TBS) = S then
12: Cut-Sub-tree (S);
13: return TBS;

14: TBS-list ← TBS-list ∪ TBS;

15: k ← ∅;
16: for each TBS ∈ TBS-list) do
17: K = k + 1;
18: A ← ∅ , B ← ∅;
19: A = Sub-tree (left-Child (TBS));
20: AP − listk ← ∅;
21: APER 1 (A) → AP-list;
22: AP − listk ← AP-list ;
23: B = Sub-tree (Right-Child (TBS));
24: TC − listk ← ∅;
25: APER 1 (B) → AP-list;
26: TC − listk ← AP-list ;
27: TBSk = 〈AP − listk, TC − listk〉;
28: TBS-list ← TBS-list ∪ TBSk;

Next, the states and transitions of the TTS are computed. S-list variable (list of states) is

initialized to null (line 11). Each truth table entry (A) (line 12) is defined to be a single state in the

transition system (line 13). S-list is subjected to expert user input (line 14). The transitions of the

TTS are computed next. The list of transitions (T) is initialized to a transition between every two

states using function ’CreateT’ (line 15). The transition list is subjected to expert user input (line
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16) where some transitions might be pruned. A function called ’Apply-TC-list’ is applied to link

each TC to all transitions emanating from states in which the corresponding APs are true, based

on the TBS pair → TBS 〈AP − list, TC − list〉 (line 17). The expert user will confirm, modify, or

apply the TC on specific transition/s based on his domain knowledge (line 18). For the remaining

transitions that do not have any timing bounds, the timing bounds are open from zero to infinity

〈0,∞〉. For this reason a new function called ’Apply-TC-bounds’ is applied on each transition that

has no TC (line 19).

A timed transition system (TTS) is constructed using the CreateTS function as in procedure

4, this function takes the transitions (T) linked with their timing conditions and the list of states

(S-list) as input (line 20) to create a TTS. The resulting TTS is then added to the timing transition

system set (TTS-set) (line 21). The procedure finally returns a set of timing transition systems for

all timing requirements that have been fed to the algorithm (line 22).

Procedure 6 Procedure for synthesizing TTSs from timing requirements

Require: set of requirements (Timed-requirements)
1: TTS-set ← ∅ ;
2: for each Req ∈ Timed-requirements do
3: Parse-tree ← Get(Req tree.xml);
4: TBS-list ← APTCER(Parse-tree);
5: for each TBS ∈ TBS-list do
6: Get (〈AP − list, TC − list〉);
7: AP-list ← USR IN(AP-list);
8: AP-truth-table ← Relation(AP-list);
9: AP-truth-table ← USR IN(AP-truth-table);

10: TC-list ← USR IN(TC-list);
11: S-list ← ∅;
12: for each A ∈ AP-truth-table do
13: S-list[i] = Ai ;

14: S-list ← USR IN(S-list);
15: T ← CreateT(S-list);
16: T ← USR IN(T);
17: T ← Apply-TC-list ;
18: T ← USR IN(TC);
19: T ← Apply-TC-bounds 〈0,∞〉;
20: TTS ← CreateTS(T, S-list);
21: TTS-set ← TTS-set U TTS;
22: return TTS-set;
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2.6. Case Study: Generic Insulin Infusion Pump (GIIP)

Insulin pump is a medical device that delivers doses of insulin 24 hours a day to patients

with diabetes. It is typically used to keep the blood glucose level in an acceptable range. Overdose

of insulin can lead to low blood sugar that can lead to coma/death. Therefore, the insulin pump is

a safety-critical device.

The Generic Insulin Infusion Pump (GIIP) has been proposed [30], which lists a set of safety

requirements for insulin pumps. We use these safety requirements to explain our approach. GIIP

has proposed a list of both functional and timing requirements, examples will be given about both

cases.

2.6.1. Functional Requirements of GIIP

GIIP model abstracts requirements that explains how specific critical behaviour of the

system can be controlled, functional requirements are introduced to solve common hazards in the

insulin pump’s market that might happen during insulin administration and not related to specific

timing constraints.

As an example, consider requirement 1.8.2 (from [30]) which is needed to address a hazard

that may happen in the suspension mode of the pump. Suspension mode can occur when the pump

may be in refill or priming or insulin delivery processes. The insulin pump has two type of insulin

deliveries: bolus and basal. Bolus is a high insulin rate that is recommended in case of low blood

glucose level.

Requirement 1.8.2: When the pump is in suspension mode, insulin deliveries shall be prohibited.

Any incomplete bolus delivery shall be stopped and shall not be resumed after the suspension.

From safety requirement 1.8.2, it is clear that the pump should not resume a suspended

bolus automatically after returning from suspension since they would be an unexpected amount of

insulin.

Requirement 1.8.5: When the pump resumes from suspension, calculations shall be performed to

synchronize insulin used and remaining reservoir volume.

Requirement 1.8.5 is an extension of how the pump should function after returning from the

suspension mode. Here two requirements are needed to address one safety hazard. When algorithm

4 is applied on these two requirements, the first step is collecting the APs by using the extraction
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Table 2.1. AP-Truth table for requirements 1.8.2 and 1.8.5 from AP-list

APs → SPM INDV IBO SYNC

↓
SPM T F F F

INDV F T F F

IBO F T T F

SYNC F F F T

rules. Applying APER 2 on 1.8.2 gives: ”pump”, ”suspension mode”, ”insulin deliveries”, ”incom-

plete bolus delivery”, and ”suspension”. Applying APER 2 on 1.8.5 gives: ”pump”, ”suspension”,

”calculations”, and ”synchronize insulin used and remaining reservoir volume”. Next, duplicate

APs are to be removed. This eliminates ’pump’ and ’suspension’ from the AP-list. Now, the

expert user intervenes for manipulating the AP-list, where APs can be deleted, modified or even

inserted based on the expert user’s domain knowledge. This yields the final AP-list as ”suspension

mode” (SPM), ”insulin deliveries” (INDV), ”incomplete bolus delivery” (IBO) and ”synchronize

insulin used and remaining reservoir volume” (SYNC). Next, the AP-truth-table to define relations

between APs is constructed as shown in Table 2.1.

Here, each row represents a state. For example, SPM represents a state where suspension

mode is true, IBO is false, INDV is false, and SYNC is also false; which emphasizes that insulin

bolus should not be active during suspension.

Finally, Procedure 4 applies transitions between every two states as shown in Figure 2.14a.

The expert user will approve or remove some unacceptable transitions. Figure 2.14b shows the

final transition system.

2.6.2. Timing Requirements of GIIP

The application of APTCER to some timing requirements of GIIP are described next.

Timing requirements are also critical to be preserved. In GIIP, a motor controls the fluid injection

and therefore the fluid flow rate and dosage. The motor is in turn controlled by software and

the speed of the motor is time controlled by the software. The timing requirements of GIIP are

also safety-critical because if the software violates these requirements, the dosage can be affected.

Overdose or under dose of medicines can be very harmful or even fatal to the patient.
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Figure 2.12. An Enju parsing tree shows three resulting TBSs after applying APTCER.
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Figure 2.13. An Enju parsing tree portion shows the resulting TBS 〈AP − list, TC − list〉) after applying APTCER.
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Table 2.2. Resulting transition systems by applying procedure 4 and APERS on a set of system requirements

Req. NO. APER
Total No.

of APs
No. of APs
Without DP

User input Final
AP added AP removed AP modified APs states transitions

1 10 10 0 6 0
1.1.1 2 10 10 0 5 0 5 4 5

3 10 10 0 6 0

1 7 7 0 3 2
1.1.3 2 7 7 0 3 2 4 4 4

3 7 7 0 3 1

1 24 12 3 5 1
1.2.4 , 1.2.6, 1.2.7 2 24 18 0 8 0 10 10 14

3 24 16 2 8 0

1 11 6 1 3 0
1.3.5 2 11 8 0 4 1 4 4 4

3 11 8 1 5 0

1 9 7 1 3 1
1.8.2, 1.8.5 2 9 7 0 3 0 4 4 5

3 9 7 0 3 0

1 6 6 0 3 1
2.2.2, 2.2.3 2 7 6 0 3 1 3 3 4

3 7 6 0 3 2

1 15 14 0 9 0
3.1.1 2 14 12 0 7 0 5 3 3

3 14 13 0 8 0

1 10 9 0 7 2
3.2.5 2 7 7 0 4 1 3 3 3

3 7 7 0 4 1

1 4 4 0 1 0
3.2.7 2 4 4 0 1 1 3 3 3

3 4 4 0 1 0
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As an example, consider requirement 1.6.1 (from [30]) which helps patients to be aware of

the occurrence of an air in line hazard. Air in line hazard is the presence of air bubbles in the pump

above the acceptable range. The requirement states that if the air in line problem occurred during

insulin delivery, an air in line alarm should start in a time not more than x minutes, in addition,

every ongoing insulin delivery must be stopped. The alarm will give the patient a warning that

a problem is going to happen, so the patient will interact with the pump and solve the issue to

prevent incorrect insulin doses or other problems.

Requirement 1.6.1: An air-in-line alarm shall be triggered within a maximum delay time of x

seconds if air bubbles larger than y µL are detected, and all insulin administrations shall be stopped.

When procedure 6 is applied to this requirement, the first step is collecting the lists of TBS

by applying APTCER, which gives three separate TBSs. TBS1 is ”An air-in-line alarm shall be

triggered within a maximum delay time of x seconds”, while TBS2 is ”air bubbles larger than y µL

are detected”, and TBS3 is ”all insulin administrations shall be stopped”.

Next, the AP-list and TC-list for each TBS is computed. AP-list contains: ”air-in-line

alarm”, ”air bubbles larger than y µL”, and ”insulin administrations”. TC-list contains: ”maximum

delay time of x seconds” which is related to the AP: ”air-in-line alarm” in TBS1.

Now, the expert user intervenes to manipulate the AP-list, where APs can be deleted,

modified or even inserted based on the expert user’s domain knowledge. This yields the final AP-list

as ”air-in-line alarm” (ALRM), ”air bubbles larger than y µL” (AIRB), ”insulin administrations”

(INSAD). Next, the AP-truth-table to define relations between APs is constructed as shown in

Table 2.3.

Table 2.3. AP-truth-table for timing requirement 1.6.1 from AP-list

APs AIRB INAD ALRM

AIRB T T F

INAD F T F

ALRM F F T
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INDV

IBO SPM

SY NC

(a) TS with all suggested transitions.

INDV

IBO SPM

SY NC

(b) TS after removing some transitions.

Figure 2.14. Finite state machine for suspension mode requirements (1.8.1 and 1.8.5).

As in Table 2.1, each row in the Table 2.3 represents a state. For example, AIRB represents

a state where AIRB is true, INAD is also true, while ALRM is false; which explains the problem

of having air bubbles while an insulin administration is given to the patient. Now, the user can

make changes to the TC-list which may have a TC that corresponds to one or more APs. After

the states are computed, the expert user can add or modify any of the states if needed.

Then, Procedure 6 applies transitions between every two states, the expert user will approve

or remove some unacceptable transitions as shown in Figure 2.15a. After following Procedure 6,

the final TTS is shown in Figure 2.15b.

2.7. Results Analysis

An evaluation process is applied on the resulting TSs and TTSs by using NuSMV and UP-

PAAL model checkers respectively. Firslty, evaluation of the first approach (APERs and Procedure

4) for TSs is performed using the NuSMV model checker. A model checker is a tool that can check
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AIRB

ALRM INAD

(a) TTS with all suggested transitions.

AIRB

ALRM INAD

〈0, x〉

〈0,∞〉

〈0,∞〉

(b) TTS after applying the TCs and removing some transitions.

Figure 2.15. Timed finite state machine for air-in-line requirement (1.6.1).

if a TS or a TTS satisfies a set of properties. The properties have to be expressed in a temporal

logic. Here, we have used CTL to express the properties. The CTL properties are written manually

for each of the requirements that are subjected to our approach. Firstly, NuSMV is used to check

if the TSs synthesized by the first approach satisfied the CTL properties corresponding to each

functional requirement.

Secondly, UPPAAL is used to verify the resulting TTSs by applying APTCER and Proce-

dure 6 (the second approach). UPPAAL is a tool that can verify real time systems and is based on

the timed automata theory [31]. UPPAAL is used to check if the TTSs synthesized by the second

approach satisfied the CTL properties corresponding to each timing requirement.

Table 2.2 shows the results of applying Procedure 4 on a number of GIIP requirements.

The requirement numbers in the table are from [30]. All the final TSs satisfied their corresponding

CTL properties. Each requirement or set of requirements (listed in column 1) have been subjected

to the extraction rules (column 2), where column 3 shows the total number of APs resulting from

each extraction rule. Column 4 gives the number of APs after removing the duplicate APs. In

addition, a record of the suggested expert user intervention for adding, removing or modifying the

APs is shown in column 5. The final number of APs, states, and transitions are shown in column 6.
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Table 2.4. Resulting timed transition systems by applying procedure 6 and APTCER on a set of timing requirements

Req. NO.
Total No.
of TBSs

Total No.
of APs

Total No.
of TCs

(AP,TC)
User input Final

AP added AP removed AP modified APs states transitions

〈2, 1〉
1.2.8 2 3 3 〈1, 2〉 1 0 1 4 3 4

1.6.1 3 3 1 〈1, 1〉 0 0 0 3 3 7

〈1, 1〉
1.8.4 2 3 2 〈1, 1〉 1 1 2 3 3 4

2.2.1 4 6 1 〈4, 1〉 0 0 1 6 3 4
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As shown in Table 2.2, when a requirement is subjected to the APERs, the resultant output

from each APER may be different even though the number of APs is the same. For requirements

1.8.2 and 1.8.5, although applying APER1, APER2, and APER3 give the same number of APs,

APER1 gives different list of APs from APER2 and APER3.

Table 2.4 presents the results of applying Procedure 6 on a number of GIIP timing re-

quirements from [30]. All applied CTL properties are satisfied by the resulting TTSs. The listed

requirements (column 1) are subjected to the APTCER which gives list of TBSs for each require-

ment (column 2). column 3 and 4 show the number of the resulting APs and TCs respectively.

Column 5 shows the pair of AP-list and TC-list. As in Table 2.2, column 6 has the user interven-

tions of appending, deleting, or modifying the AP-lists. The final TTS’s components are shown in

column 7: the number of APs, the number of states, and finally the number of transitions between

states.

2.8. Conclusion

The key ideas of our approach for transforming requirements into transition systems and

timed transitions systems are the following. The extraction rules work on the parse tree to get

an initial list of APs and TCs. The AP truth table is used to establish relationships between the

initial list of APs. For example, an AP may be expressible as a conjunction of two other APs. The

initial expert user pruned list of APs gives insight into the states of the transition system. We

have found empirically that having one state for this initial pruned AP list is a good heuristic to

compute the states of the transition system. Transitions are applied between every two states and

then pruned by the expert user. TCs are paired with APs and this information is used to assign

TCs to transitions.

Transforming natural language requirements into formal models is quite a hard problem

and hard to get right without input from domain expert. Our approach sets up a very structured

process, where the tool does lot of the work in analyzing and synthesizing TSs and TTSs, but also

allows for input from domain expert. The proposed methodology has worked very well in practice

for the GIIP requirements. All the TSs and TTSs computed for the requirements satisfied their

corresponding CTL properties.
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3. SYNTHESIS OF REFINEMENT MAPS FOR REAL-TIME

OBJECT CODE VERIFICATION

3.1. Introduction

Software safety is one of the key challenges facing the design process [1] of safety-critical

embedded systems such as medical devices [2]. For example, infusion pump (a medical device

that delivers medication such as pain medication, insulin, cancer drugs etc., in controlled doses to

patients intravenously) has 54 class 1 recalls related to software issued by the US Food and Drug

Administration (FDA) [3]. Class 1 means that the use of the medical device can cause serious

adverse health consequences or death.

Despite the fact that testing is the dominant verification technique currently used in com-

mercial design cycles [4], testing can only show the presence of faults, but it never proves their

absence [5]. Alternate verification processes should be applied to the software design in conjunc-

tion with testing to assure system correctness and reliability. Formal verification can address testing

limitations by providing proofs of correctness for software safety. Intel [6], Microsoft [7] and [8],

and Airbus [9] have successfully applied formal verification processes.

Refinement-based verification [10] is a formal verification technique that has been demon-

strated to be effective for verification of software correctness at the object code level [11]. To

apply refinement-based verification, software requirements should be expressed as a formal model.

Previously, we have proposed a novel approach to synthesize formal specifications from natural

language requirements [12], and in a later work, we have also addressed timing requirements and

specifications [13].

Our verification approach is based on the theory of Well-Founded Equivalence Bisimulation

(WEB) refinement [10]. In the context of WEB refinement, both the implementation and specifica-

tion are treated as Transition Systems (TSs). If every behavior of the implementation is matched

The content of this chapter has been submitted to the International Journal On Advances in Life Sciences
2020. The material in this chapter was co-authored by Eman M. Al-Qtiemat, Sudarshan Srinivasan, Zeyad Al-
Odat, Mohana Asha Latha Dubas,and Sana Shuja. Eman M. Al-Qtiemat had primary responsibility for conducting
experiments and collecting results. Eman M. Al-Qtiemat was the primary developer of the conclusions that are
advanced here. Eman M. Al-Qtiemat also drafted and revised all versions of this chapter. Sudarshan Srinivasan
drafted and revised all versions of this chapter. Sudarshan Srinivasan served as proofreader.
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by a behavior of the specification and vice versa, then the implementation behaves correctly as

prescribed by the specification. However, this is not easy to check in practice as the implementa-

tion TS and specification TS can look very different. The specification states obtained from the

software requirements are marked with atomic propositions (predicates that are true or false in

a given state). The implementation states are states of the microcontroller that the object code

program modifies. As such, the microcontroller states includes registers, flags, and memory. The

various possible values that these components can have during the execution of the object code

program gives rise to the many millions of states of the implementation. To overcome this differ-

ence, WEB refinement uses the concept of a refinement map, which is a function that provided an

implementation state, gives the corresponding specification state. Historically, one of the reasons

that refinement-based verification is much less explored than other formal verification paradigms

such as model checking is that the construction of refinement maps often requires deep understand-

ing and intuitions about the specification and implementation [14]. However, once a refinement

map is constructed, the benefit is that refinement-based verification is a very scalable approach

for dealing with low-level artifacts such as real-time object code verification. We build refinement

maps corresponding to formal specifications related to infusion pump safety and we also propose

three possible generic refinement map templates, which is the first step toward automating the

construction of refinement maps. Finally, we propose synthesising procedures of refinement maps

for both functional and timing requirements, the new procedure allow an expert user intervention

to assure the correctness of the system. The remainder of this chapter is organized as follows. Sec-

tion 3.2 summarizes background information. Section 3.3 details related work. Section 3.4 presents

the refinement maps and refinement map templates. Section 3.5 shows the proposed synthesis of

refinement maps for system requirement. Conclusions and direction for future work are noted in

Section 3.6.

3.2. Background

This section explores the definition of transition systems, the definition of refinement-based

verification, and the synthesis of formal specifications as key terms related to our work.

3.2.1. Transition Systems

As stated earlier, transition systems (TSs) are used to model both specification and imple-

mentation in refinement-based verification. TSs are defined below.
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Definition 4 A TS M = 〈S,R,L〉 is a three tuple in which S denotes the set of states, R ⊆ SXS

is the transition relation that provides the transition between states, and L is a labeling function

that describes what is visible at each state.

States are marked with Atomic Propositions (APs), which are predicates that are true or

false in each state. The labeling function maps states to the APs that are true in every state. An

example TS is shown in Figure 3.1. Here S = {S1, S2, S3, S4}, R = {(S1, S2), (S2, S4), (S4, S3),

(S3, S4), (S3, S2), (S1, S3)} and, L(S2) represents the atomic propositions that are true for the S2

state.

S1

S3 S2

S4

Figure 3.1. An example of a transition system (TS).

3.2.2. Timing Transition Systems

Some applications have requirements with timing conditions on the state’s transitions called

as timing requirements. Timing requirements explain the system behaviour under some timing

constraints. Timing constraints are very important especially if we deal with a critical real time

systems. As mentioned in the previous section (Section 3.2.1), transition systems are used to

represent the implementation and specification in refinement-based verification, however they do

not contain timing requirements. Hence, in the verification of real time systems that contain timing

constraints, timing transition systems (TTSs) [11] are used to represent the implementation and

specification.

Definition 5 A TTS Mt = 〈S,Rt, L〉 is a three tuple in which S denotes the set of states and L is

a labeling function that describes what is visible at each state. The state transition Rt has the form

of 〈x, y, lt, ut〉 where x, y ∈ S and lt, ut ∈ N represents the lower and upper bounds as the timing

condition for the transition.
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S0

S1 S2
〈2, 5〉

〈0,∞〉

〈0, 0〉

〈0,∞〉

Figure 3.2. An example of a timing transition system (TTS).

Figure 3.2 shows an example of a timing transition system that consists of three states { S0,

S1, S2 }, for instance; if the system is in state S0 it can go to state S1 only between 2 and 5 units

of time, while going from S1 to S2 the time is zero meaning that it should happen immediately,

going from S2 to S1 the time is zero to infinity which means that it can happen any point of time,

and so on.

3.2.3. Refinement-Based Verification

Our verification process is based on the theory of Well-Founded Equivalence Bisimulation

refinement. A detailed description of this theory can be found in [10]. Here, we give a very high-level

overview of the key concepts. As stated earlier, WEB refinement provides a notion of correctness

that can be used to check an implementation TS against a specification TS. One of the key features

is that WEB refinement accounts for stuttering, which is the phenomenon where multiple but

finite transitions of the implementation can match a single transition of the specification. This is

a very key feature because the control code implements many functions and only some of these

functions maybe relevant to the safety property being verified. Therefore, the code maybe doing

a number of things that do not relate to the property and will therefore be stuttering a lot w.r.t.

the specification. Another key feature of WEB refinement is refinement maps, which is the focus

of this work. Refinement maps are functions that map implementation states to specification

states. There is a lot of flexibility in how refinement maps can be defined. This allows for low-level

implementations to be verified against high-level specifications.

Definition 6 (WEB Refinement): Let M = 〈S,R,L〉, M ′ = 〈S′, R′, L′〉, and r: S → S’. M is

a WEB refinement of M ′ with respect to refinement map r, written M ≈ r M ′, if there exists a

relation, B, such that 〈 ∀ s ∈ S :: sB(r.s)〉 and B is a WEB on the TS 〈 S ] S’, R ] R’, L 〉, where

L.s = L’(s) for s and S’ state and L.s = L’(r.s) otherwise.
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3.2.4. Synthesis of Functional Formal Specifications

Our approach for development and study of refinement maps is based on the formal TS

specifications. We have developed a previous approach to transform functional requirements into

formal specifications [11]. Since this work is closely tied to the prior work, we briefly review it

here. Figure 3.3 summarizes the transformation procedure, the main steps are explained as follows:

functional requirement is fed as an input, an English parser called Enju was used to get the parse

tree the requirement. The first step of computing the TSs is to apply Atomic Proposition Extraction

Rule (APER) extract the APs from the requirements. We have developed three Atomic Proposition

Extraction Rules (APERs) that work on the parse tree of the requirement to get an initial list of

APs. The resulting list is subjected to an expert user check (User Input), where the APs might

be appended, eliminated or revised based on the expert users domain knowledge. A high-level

procedure for specification transition system synthesis has been proposed to compute the states

and transitions using the resulting list of APs under expert user supervision. Finally, the transition

system is created using the resulting list of states and transitions. The output of the procedure is

a formal specification in a TS form.

3.2.5. Synthesis of Timing Formal Specifications

Some system requirements have timing constraints, they are called timing requirements.

We have proposed a previous approach that working on transforming timing requirements into

formal specifications [13]. Figure 3.4 shows the main steps of the synthesising procedure. A

brief description of this approach is explained as follow: Timing requirement is fed an an input

of the procedure. As in the previous procedure, Enju parser is used to get the parse tree that

corresponds to the entered requirement. An Atomic Proposition and Timing Constrains Extraction

Rule (APTCER) has been applied on the resulted parse tree to get an initial list of APs and Timing

Constrains (TCs). APs and TCs are paired together and they are considered the base of a TTS.

Then, set of states are defined based on the resulting list of APs. Transitions are applied between

every two states. TCs are assigned to the transitions. This procedure allows input from domain

expert as shown in Figure 3.4. Finally, the TTS is created. The output of this procedure is a formal

specification with timing constraints as a TTS.
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Start

Functional 

Requirement/s

Formal Specification

TS

Apply Enju Parser

        Apply APER

List of APs

      User Input

Create a TS

List of States & 

Transitions

      User Input

Stop

Figure 3.3. Flowchart of formal model synthesis procedure for Functional Requirements.
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Start

Timing Requirement/s

Formal Specification

TTS

Apply Enju Parser

    Apply APTCER

List of APs & TCs

      User Input

Apply TCs

List of States & 

Transitions

      User Input

Create a TTS

      User Input

Stop

Figure 3.4. Flowchart of formal model synthesis procedure for Timing Requirements.
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3.3. Related Work

This section summarizes a few works on applying refinement processes to get more concrete

specifications and refinement-based verification. None of these works are applied to insulin pump

formal specifications as our work. To the best of our knowledge, these are the most related state

of art in this area of study.

Dubasi et al. [15] presented a formal verification technique based on the theory of Well-

Founded Simulation (WFS) refinement in which the correctness of low-level real-time interrupt-

driven object code programs is automated. The main difference between this work and our work

is that our work automates the refinement map construction while Dubasi’s work constructed the

refinement maps manually and automated the refinement verification process. Klein et al. [16]

introduced a new technique called State Transition Diagrams (STD). It is a graphical specification

technique that provides refinement rules, each rule defines an implementation relation on STD spec-

ification. The proposed approach was applied to the feature interaction problem. The refinement

relation was utilized to add a feature or to define the notion of conflicting features.

Rabiah et al. [17] developed a reliable autonomous robot system by addressing A* path

planning algorithm reliability issue. A refinement process was used to capture more concrete speci-

fications by transforming High-Level specification into equivalent executable program. Traditional

mathematical concepts were used to capture formal descriptions.Then, Z specification language

was employed to transform mathematical description to Z schemas to get formal specifications. Z

formal refinement theory was used to obtain the implementation specification.

Spichkova [18] proposed a refinement-based verification scheme for interactive real time

systems. The proposed work solves the mistakes that rise from the specification problems by

integrating the formal specifications with the verification system. The proposed scheme translates

the specifications to a higher-order logic, and then uses the theorem prover (Isabelle) to prove

the specifications. Using the refinement-based verification, this scheme validates the refinement

relations between two different systems. The proposed design was tested and verified using a case

study of electronic data transmission gateway.

A new approach that focuses on the refinement verification using state flow charts has

been presented by Miyazawa et al.[19]. They proposed a refinement strategy that supports the
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sequential C implementations of the state flow charts. The proposed design benefited from the

architectural features of model to allow a higher level of automation by retrieving the data relation

in a calculation style and rendering the data into an automated system. The proposed design was

tested and verified using Matlab Simulink SDK. Through the provided case study, the scheme was

able to be scaled to different state charts problems.

Cimatti et al. proposed a contract-refinement scheme for embedded systems [20]. The

contract-refinement provides interactive composition reasoning, step-wise refinement, and princi-

pled reuse refinements for components for the already designed or independently designed com-

ponents. The proposed design addresses the problem of architectural decomposition of embedded

systems based on the principles of temporal logic to generate a set of proof obligations. The testing

and verification of the Wheel Braking System (WBS) case study show that the proposed design

can detect the problems in the architectural design of the WBS.

Bibighaus [21] employed the Doubly Labeled Transition Systems (DLTS) to reason about

possibilities security properties and refinement. This work was compared with three different

security frameworks when applied to large class systems. The refinement framework in this work

preserves and guarantees the liveness of the model by verifying the timing parameter of the model.

The analysis results show that the proposed design preserves the security properties to a series of

availability requirements.

A novel approach has been presented [22] to formally specify and analyze the certification

process of Partitioning Operating Systems (POSs) by integrating refinement and ontology. An

ontology of POSs was developed as an intermediate model between informal descriptions of ARINC

653 and the formal specification in Event-B. A semiautomatic translation has been implemented

from the ontology and ARINC 653 into Event-B. Six hidden failures in ARINC were happened and

fixed during the formal analysis in the Event-B specification. The existence of these errors has been

validated in two open-source POSs: XtratuM and POK. The degree of automatic verification of

the Event-B specification reached a higher level because of the ontology. By validation, they have

also noticed some errors in open-source POSs. The proposed methodology has shown capability to

to formalize and verify systems according to system’s informal standards and requirements.

Human factors consider as the most obvious cause of failures especially when a human

deals with critical systems such as nuclear and medical systems. A new methodology for develop-
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ing a Human-Machine Interface (HMI) has been proposed [23], it uses a correct by construction

approach. A HMI was developed independently using incremental refinement. Human interactions

is dependent on testing, which can not guarantee the absence of failures. Formal method was used

to assure the correctness of the human interactions. Even-B modeling language has been used to

formalize the internal consistency with respect to the safety properties and events. This generic

refinement strategy supports a development of the Model-View-Controller (MVC) architecture.

A specification development method and a generic security model were proposed based on

refinement for ARINC Separation Kernels (KSs) [24]. A step-wise refinement framework was pre-

sented. Two levels of functional specification are developed by the refinement. Kernel initialization,

inter-partition communication, two-level scheduling, and partition and process management were

modeled. Isabelle/HOL theorem prover was used to carry out the formal specification and its

security proofs. Mechanical check proofs were given to solve convert channels in separation kernels.

Fayolle et al. joined Algebraic State-Transition Diagrams (ASTD) with an Event-B spec-

ification for better understanding of the system behaviour [25]. They proposed an approach that

works on incrementally refine the specification couplings, it takes the new refinement relations

and consistency into consideration between data and control system specifications. This work had

shown how to use two complementary languages for formal modeling, a railway CBTC-like case

study were used. In addition, the principle of complementarity and consistency was explored be-

tween ASTD and B-like refinements. Separation between data and behavioural system’s aspects

were accomplished.

The issues of validating formal models were studied and executed using Event-B method

[26]. Firstly, new techniques were created and discussed which allow model execution to be at

all abstraction levels. To overcome barriers comes form non-deterministic features, users interven-

tion such as modifying the model or providing ad hoc implementations were needed. Secondly, a

new formal definition of the notion of fidelity was given, this definition assures specifying all the

observable behaviors of the executable models by the non-deterministic models.

Smith et al. in [27] provided formal link between trace refinement and linearizability, a

comparison between these correctness conditions were explored. The main conclusion of this work

is generally that trace refinement reveals linearizability, but linearizabilit does not reveals trace

refinement. However, linearizability can reveal trace refinement but under specific conditions.
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P

BO BA

R

• BO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• P = P ∧ (Pc < Pm)

• R = R ∧ (Rc < Rm)

• BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧ (BPnc <
BPnm)] ∨ [TB ∧ (TBc < TBm)]

Figure 3.5. A formal presentation of requirement 1.1.1 and the suggested refinement maps.

Firstly, trace refinement can prove both safety and liveness properties, while linearizability can

only prove safety properties. Secondly, the fact that trace refinement based on the identification of

when the implementation operations are noticed to happen. They also studied these differences in

the verification context of concurrent objects. Many other papers discussed and analyzed refinement

concepts in the context of verifying concurrent objects [28–38].

3.4. Refinement Maps and Refinement Map Templates

Figures 3.5-3.11 show the formal specification TS for 8 insulin pump safety requirements.

In this section, formal specification TTS corresponding to 4 insulin pump timing requirements are

added in Figures 3.12-3.15. The figures show the refinement map we have developed corresponding

to each specification. The formal specifications TSs [12] and TTSs [13] were developed as part of

our previous work in this area. As can be seen from the figures, each TS or TTS consists of a

set of states and the transitions between the states. Also, each state is marked with the atomic

propositions that are true in the state. For TTSs in Figures 3.12-3.15, time bounds conditions

are added on each transition. Our strategy for constructing the refinement maps is as follows. A

specification state can be constructed from an implementation state by determining the APs that
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AI

RTV R

UR

CDTC

• AI = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧ (BPnc <
BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• CDTC = (DT 6= HDT) ∧ (CDTCc < CDTCm)

• UR = FLAG

• RTVR = (CRV 6= HRV) ∧ (RTV Rc < RTV Rm)

Figure 3.6. A formal presentation of requirement 1.1.3 and the suggested refinement maps.

IBO

INDV

SPM

SY NC

• IBO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• INDV = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧ (BPnc <
BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• SPM = [P ∧ (Pc < Pm)] ∨ [R ∧ (Rc < Rm)]

• SYNC = INCAL ∧ (INCALc < INCALm)

Figure 3.7. A formal presentation of requirement 1.8.2 and 1.8.5 and the suggested refinement
maps.
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NB

REQ

ALRT

DNY

• NB = NB ∧ (NBc < NBm)

• REQ = REQ-FLAG

• ALRT = ALRT-FLAG

• DNY = CALL-FUNCT

Figure 3.8. A formal presentation of requirement 1.3.5 and the suggested refinement maps.

SET UCNF CONC

• SET = CLRS ∨ [CHNS ∧ (CHNSc < CHNSm)] ∨ RESS

• UCNF = FLAG

• CONC = [SETT ∧ (SETTc < SETTm)] ∨ [CHNC ∧ (CHNCc < CHNCm)]

Figure 3.9. A formal presentation of requirement 2.2.2 and 2.2.3 and the suggested refinement
maps.
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UIP WAR ACT

• UIP = BG ∨ TBG ∨ INCR ∨ CORF

• WAR = FLAG

• ACT = CNFI ∨ [CHNI ∧ (CHNIc < CHNIm)]

Figure 3.10. A formal presentation of requirement 3.2.5 followed by the suggested refinement
maps.

ELR ELRF FWAR

• ELR = [EL ∧ (ELc < ELm)] ∨ [LR ∧ (LRc < LRm)]

• ELRF = ELF ∨ LRF

• FWAR = FLAG

Figure 3.11. A formal presentation of requirement 3.2.7 followed by the suggested refinement
maps.
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NBA

BA

NABA

ALRM

〈0,∞〉 〈x,∞〉

〈0,∞〉

〈0,∞〉

〈Z,∞〉

〈y,∞〉

• BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧ (BPnc <
BPnm)] ∨ [TB ∧ (TBc < TBm)]

• NBA = ¬ BA

• ALRM = ALRM-FLAG

• NABA = NBA ∧ NA

Figure 3.12. A formal presentation of the timing requirement 1.2.8 and the suggested refinement
maps.

AIRB

ALRM INAD

〈0, x〉

〈0,∞〉

〈0,∞〉

• AIRB = AIRB > Y

• ALRM = ALRM-FLAG

• INAD = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧ (BPnc <
BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

Figure 3.13. A formal presentation of the timing requirement 1.6.1 followed by the suggested re-
finement maps.
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DLM

NDLM ALRM

〈0,∞〉

〈0,∞〉

〈x,∞〉

〈0,∞〉

• DLM = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧ (BPnc <
BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• NDLM = ¬ DLM

• ALRM = ALRM-FLAG

Figure 3.14. A formal presentation of the timing requirement 1.8.4 followed by the suggested re-
finement maps.

ALRM

UIR UIP

〈x,∞〉 〈0,∞〉

〈x,∞〉

〈0,∞〉

• ALRM = ALRM-FLAG

• UIR = RTD ∨ RDC ∨ RRDV ∨ . . .

• UIP = STD ∨ SDC ∨ RDV ∨ . . .

Figure 3.15. A formal presentation of the timing requirement 2.2.1 followed by the suggested re-
finement maps.
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are true in the implementation state. If a specification has n APs, then we construct one predicate

function for each AP. The predicate functions take the implementation state as input and output

a predicate value that indicates if the AP is true in that state or not. Thus, the collection of such

predicate functions is the refinement map.

We next discuss the refinement map for the specification in Figure 3.5. The safety specifica-

tion from [39] is as follows: ”The pump shall suspend all active basal delivery and stop any active

bolus during a pump prime or refill. It shall prohibit any insulin administration during the priming

process and resume the suspended basal delivery, either a basal profile or a temporary basal, after

the prime or refill is successfully completed.” The APs corresponding to this safety requirement are

(1) BO: active bolus delivery; (2) BA: active basal delivery; (3) P: priming process; and (4) R: refill

process. The refinement map however has to account for what is happening in the implementation

code and relate that to the atomic propositions.

The predicate function for BO uses several variables from the code including NB: Normal

Bolus and EB: Extended Bolus as there are more than one type of Bolus dose supported by the

system. So the AP BO should be true if there is a NB or an EB. NB is only a flag that indicates

that a normal bolus should be in progress. The actual bolus itself will continue to occur as long as

a counter that keeps track of the bolus has not reached its maximum value. Therefore, for example

for a normal bolus, we use a conjunction of NB and the condition that the NB counter (NBc) is less

than its possible maximum value (NBm). We use a similar strategy for the extended bolus as well.

This refinement map template works for all processes similar to a Bolus dosage delivery, such as

basal dosage delivery, priming process, and refill process. Therefore, we term this refinement map

template as ”process template.” For the basal dosage (BA AP) a number of basal profiles (BPs)

are possible that accounts for BP1 thru BPn. TB stands for temporary basal. As can be noted

from Figures 3.6-3.15, the process template accounts for a large number of predicate functions

corresponding to APs.

The second refinement map template is a simple one called the ”projection template,” which

is used when the AP in the specification TS corresponds directly to a variable in the code. An

example of the projection template can be found in Figure 3.6, where the User Reminder (UR)

AP is mapped directly from a flag variable in the code that corresponds to the user reminder. A
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variation of this template is a boolean expression of Boolean variables in the code. An example of

such an AP is the UIP AP in Figure 3.10.

The third refinement map template is called the ”value change template,” which is used

when the AP is true only when a value has changed. An example use of this template can be found

in Figure 3.6 for the CDTC AP. CDTC corresponds to the change in drug type and concentration

and is true when the drug type or concentration is changed. For the drug type change, DT is

the variable that corresponds to the drug type. The question here is how to track that a value

has changed. The idea is to use history variables. HDT is a history variable that corresponds

to the history of the drug type, i.e., the value of the drug type in the previous cycle. If HDT

is not equal to DT in a code state, then we know the drug type has changed. The inequality of

HDT and DT is used to construct the predicate function. For all the safety requirements analyzed,

these three refinement map templates cover all the APs. For timed specifications, we next discuss

the refinement map for the specification in Figure 3.13. The safety specification from [39] is as

follows: ”An air-in-line alarm shall be triggered within a maximum delay time of x seconds if air

bubbles larger than y µL are detected, and all insulin administrations shall be stopped.” The APs

corresponding to this safety requirement are (1) AIRB: air bubbles; (2) ALRM: air-in-line alarm;

(3) INAD: insulin administration. The predicate function for INAD uses several variables from

the code including BPs; TB; NB; and EB as explained above. The AP INAD should be true if

one of these variables is true and its counter variable is less than the maximum value. This AP is

considered as an example use of the process template. For the ALRM AP, it is a simple example

of the projection template, it should be true if its corresponding flag is true. The AIRB AP shows

another variation of the value change template, which is depends on the changing value of the

Air Bubbles (AB) variable. If the AB variable value is greater than Y (Y is a predefined value of

the number of bubbles and it is based on the pump model), the AirB AP will be true. Table 3.1

gives the expansions for all the abbreviations used in Figures 3.6-3.15, so that the corresponding

refinement maps can be comprehended by the reader.

3.5. Synthesis of Refinement Maps for System Requirements

This section explains new automation procedures for constructing refinement maps for both

functional and timing system requirements from [39]. The first part of this work uses our previously
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proposed algorithms for synthesising formal specifications from natural language requirements [12]

[13].

Procedure 7 shows the overall flow for computing the refinement map template for each AP

in a functional requirement. A set of functional requirements in natural language form are fed as

input to the procedure. Three templates lists are the output of the procedure, each list will contain

set of APs based on the heuristic data from the parsed trees belong to every input requirement.

Procedure 7 Procedure for synthesizing Refinement Maps for functional requirements

Require: Set of Functional Requirements
1: Projection-Temp-list ← ∅ ;
2: Process-Temp-list ← ∅ ;
3: Value-Temp-list ← ∅ ;
4: APf -list ← ∅ ;
5: for each Reqf ∈ Functional Requirements do
6: Apply SPFR(Reqf );
7: APf -list ← Get AP-list(SPFR);
8: for each APf ∈ APf -list do
9: Sub-tree ← Get Sub-tree (APf );

10: X = Head(Sub-tree);
11: if [(X = NX) ∧ (RightChild(X) = PP) ∧

(LeftChild(X) = NX)] ∨ [(X = VP) ∧
(RightChild(X) = NP) ∧ (LeftChild(X)

= VX)] then
12: Projection-Temp-list ← Projection-Temp-list

∪ APf ;
13: else
14: if [(X = NX) ∧ (LeftChild(X) = VP)] ∨ [(X

= VP) ∧ (RightChild(X) = CP) ∧
(LeftChild(X) = VX)] then

15: Value-Temp-list ← Value-Temp-list ∪
APf ;

16: else
17: Process-Temp-list ← Process-Temp-list ∪

APf ;

18: Projection-Temp-list ← USR IN(Projection-Temp-
list);

19: Value-Temp-list ← USR IN(Value-Temp-list);
20: Process-Temp-list ← USR IN(Process-Temp-list);

Three empty template lists are defined; projection template list (line 1), process template

list (line 2), and value template list (line 3). A list for functional requirement’s APs (APf -list) is
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initialized to null (line 4). Each requirement is input to the Synthesising Procedure for Functional

Requirements (SPFR) (line 6) which comes up with formal specifications (explained in Section

3.2.4). A function called Get AP-list is used to obtain the resulting AP-list from the SPFR into

the APf -list (line 7). A function called Get Sub-tree is applied to each entry (APf ) in the APf -list,

this function returns the sub tree that corresponds to the APf from Enju parsed tree (line 9). A

function is called Head stores the head category of the sub tree in variable X (line 10). Check if X

is of NX category, right child of X is PP, and left child of X is NX (line 11), then AP is added to the

projection template list (line 12). Also if X is of VP category, right child of X is NP, and left child

of X is VX (line 11), so AP is added to the projection template list too. For the AP to be stored

in the value change template (line 15), there are two cases; case 1: If X is of NX category, and left

child of X is VP (line 14). Case 2: if X is of VP category, right child of X is CP, and left child of

X is VX (line 14). If the sub tree of AP does not meet any of the previous mentioned conditions,

then AP will be stored in the process template list (line 17). The procedure allows an expert user

input to the final template lists (lines 18-20), the user can modify, delete, add or exchange APs

from any list if any AP is classified in the wrong list.

Procedure 8 shows the overall flow for computing the refinement map template for each AP

in a timing requirement. A set of timing requirements in natural language form are fed as input to

the procedure. Three templates lists are the output of the procedure as in procedure I, each list will

contain set of APs based on the heuristic data from the parsed trees belong to input requirements.

Three empty template lists are defined; projection template list (line 1), process template list (line

2), and value template list (line 3). A list for functional requirement’s APs (APt-list) is initialized

to null (line 4). Each requirement is input to the Synthesising Procedure for Timing Requirements

(SPTR) (line 6) which comes up with formal specifications (explained in 3.2.5). A function called

Get AP-list is used to obtain the resulting AP-list from the SPTR into the APt-list (line 7). A

function called Get Sub-tree is applied to each entry (APt) in the APt-list, this function returns

the sub tree that corresponds to the APt from Enju parsed tree (line 9). A function is called Head

stores the head category of the sub tree in variable X1 (line 10). Check if X1 is of VP category,

right child of X1 is NP, and left child of X1 is VX (line 11), then AP is added to the projection

template list (line 12). Also if X1 is of VX category, right child of X1 is NP, and left child of X1

is VX (line 11), so AP is added to the projection template list too. For the AP to be stored in the
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Table 3.1. List of abbreviations for Figures 3.6-3.15

Abbreviation Meaning

AI Active Infusion

CDTC Change Drug Type and Concentration

DT Data Type

HDT Historical Data Type

UR User Reminder

RTVR Reservoir Time and Volume Recomputed

CRV Current Reservoir Volume

HRV Historical Reservoir Volume

IBO Incomplete Bolus

INDV Insulin Delivery

SPM Suspension Mode

SYNC Synchronization

INCAL Insulin Calculations

REQ-FLAG Request Flag

CALL-FUNCT Call-Function for Calculation

SET Settings

CLRS Clear Settings

CHNS Change Settings

RESS Reset Settings

UCNF User Confirmation

SETT Setting the concentration

CHNC Changing the Concentration

BG Blood Glucose

TBG Targeted Blood Glucose

INCR Insulin to Carbohydrate ratio

CORF Correction Factor

ACT User Action

CNFI Confirm Input

CHNI Change Input

ELR Event or Log Retrieving

EL Event Logging

LR Log Retrieving

ELRF Event Logging or Logging Retrieving Failure

ELF Event Logging Failure

LRF Logging Retrieving Failure

ELF Event Logging Failure

FWAR Failure Warning

NBA NO Basal delivery

NABA No Alarm or Basal delivery

NA No Alarm

AIRB Air Bubbles

DLM Delivery Mode

NDLM Non-Delivery Mode

UIR User Input Requested

RTD Requested Time and Date

RDC Requested Drug type and Concentration

RRDV Requested Reloading Drug reservoir

UIP User Input Provided

STD Setting Time and Date

SDC Setting Drug type and Concentration

RDV Reloading Drug reservoir
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value change template (line 15), there is only one case; If X1 is of NX category, right child of X1

is of ADJ category and left child of X1 is also NX (line 14). If the sub tree of AP does not meet

any of the previous mentioned conditions, then it will be stored in the process template list (line

17). As in procedure I, this procedure allows an expert user input to the final template lists (lines

18-20), the user can modify, delete, add or exchange APs from any list if any AP is classified in the

wrong list.

Procedure 8 Procedure for synthesizing Refinement Maps for timing requirements

Require: Set of Timing Requirements
1: Projection-Temp-list ← ∅ ;
2: Process-Temp-list ← ∅ ;
3: Value-Temp-list ← ∅ ;
4: APt-list ← ∅ ;
5: for each Reqt ∈ Timing Requirements do
6: Apply SPTR(Reqt);
7: APt-list ← Get AP-list (SPTR);
8: for each APt ∈ APt-list do
9: Sub-tree ← Get Sub-tree (APt);

10: X1 = Head(Sub-tree);
11: if [(X1 = VP) ∧ (RightChild(X1) = NP)

∧ (LeftChild(X1) = VX)]∨ [(X1 = VX)
∧ (RightChild(X1) = NP) ∧ (LeftChild(X1)

= VX)] then
12: Projection-Temp-list ← Projection-Temp-

list ∪ APt;
13: else
14: if [(X1 = NX) ∧ (RightChild(X1) = ADJ) ∧

(LeftChild(X1) = NX)] then
15: Value-Temp-list ← Value-Temp-list ∪

APt;
16: else
17: Process-Temp-list ← Process-Temp-list

∪ APt;

18: Projection-Temp-list ← USR IN(Projection-Temp-
list);

19: Value-Temp-list ← USR IN(Value-Temp-list);
20: Process-Temp-list ← USR IN(Process-Temp-list); =0
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3.6. Conclusion and Future Work

In this chapter, we have developed a process for refinement maps construction. Heuristics

have been developed based on the output of the Enju parser to select a refinement map template

for each atomic proposition. The key ideas of our approach for synthesising refinement maps are

the following. The system requirement is fed as an input, then the previously proposed synthesising

procedure of formal specification is applied on the input requirement, the heuristic data from the

requirement’s parse tree is used to select the suitable refinement map template which are either

process template, projection template or changing value template. The development and testing of

this process is part of future work.
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4. CONCLUSIONS AND FUTURE WORK

4.1. Conclusions

This thesis focused on formal verification techniques and their role in assuring system cor-

rectness. Formal verification has become the bedrock for ensuring software correctness when dealing

with safety-critical systems. One of the biggest obstacles in applying formal techniques to com-

mercial systems is the lack of formal specifications. Software requirements are expressed only in

natural language.

In Chapter 2 we proposed novel methodologies for transforming natural language require-

ments into formal specifications. The key ideas of our approach for transforming functional require-

ments into transition systems are the following. The key ideas of our approach for transforming

requirements into transition systems are the following. The extraction rules work on the parse tree

to get an initial list of APs. The AP truth table is used to establish relationships between the initial

list of APs. For example, an AP may be expressible as a conjunction of two other APs. The initial

expert user pruned list of APs gives insight into the states of the transition system. We found

empirically that having one state for this initial pruned AP list is a good heuristic to compute the

states of the transition system. Transitions are applied between every two states and then pruned

by the expert user. Transforming natural language requirements into formal models is quite a hard

problem and hard to get right without input from domain expert. Our approach sets up a very

structured process, where the tool does lot of the work in analyzing and synthesizing TSs, but also

allows for input from domain expert. The proposed methodology worked very well in practice for

the GIIP requirements. All the TSs computed for the requirements satisfied their corresponding

CTL properties.

The key ideas of our approach for transforming timing requirements into timed transition

systems are the following. The extraction rules work on the parse tree to get an initial list of

APs and TCs. The AP truth table is used to establish relationships between the initial list of

APs. For example, an AP may be expressible as a conjunction of two other APs. The initial

expert user pruned list of APs gives insight into the states of the transition system. We have found

empirically that having one state for this initial pruned AP list is a good heuristic to compute
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the states of the transition system. Transitions are applied between every two states and then

pruned by the expert user. TCs are paired with APs and this information is used to assign TCs to

transitions.Transforming natural language requirements into formal models is quite a hard problem

and hard to get right without input from domain expert. Our approach sets up a very structured

process, where the tool does lot of the work in analyzing and synthesizing TTSs, but also allows

for input from domain expert. The proposed methodology worked very well in practice for the

GIIP requirements. All the TTSs computed for the requirements satisfied their corresponding

CTL properties.

In Chapter 3 two main objectives accomplished. First, we developed refinement maps for

various safety properties concerning the software control operation of insulin pumps. We then

identified possible generic templates for construction of refinement maps as a first step towards

developing a process to construct refinement maps in an automated fashion.

Second, we developed a process for synthesising refinement maps. Heuristics were developed

based on the output of the Enju parser to select a refinement map template for each atomic

proposition. The key ideas of our approach are the following. Firstly, the system requirement is

fed as an input. Secondly, the previously proposed synthesising procedure of formal specification

is applied on the input requirement. Finally, the heuristic data from the requirement’s parsed

tree is utilized to select the suitable refinement map template. The identified refinement map

templates are the process template, the projection template or changing value template. our work

is considered to be a key solution for the complication of the construction of refinement maps, The

advantage of this work is that it can be generalized and used for any critical device, this allows

application of the refinement based verification to be expanded and more common to use because

of its scalability and ability to assure systems correctness.

4.2. Directions for Future Research

The scope of research is still open in the area of ensuring the safety of critical devices.

Formal verification techniques can be utilized in assuring the correctness of critical systems. In this

thesis, first, we offered a methodology that synthesis formal specifications from natural language

requirements. The new methodology is successfully applied on safety requirements of insulin pump.

Our approach sets up a very structured process, where the tool does lot of the work in analyzing

and synthesizing TSs and TTSs, but also allows for input from domain expert. The proposed
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methodology has worked very well in practice for the GIIP requirements. All the TSs and TTSs

computed for the requirements satisfied their corresponding CTL properties. In this section we

offer some directions for future researches:

1. The synthesising procedure of formal specification is presented in Chapter 2. This novel

approach is based on the proposed extraction rules (APER1,2, and 3 are for functional re-

quirements, while APTCER is for timing requirements). This approach can be extended to

include more atomic proposition extraction rules, also, an umbrella rule can be proposed that

works on the resulting AP lists of all rules.

2. Our work is successfully applied on safety requirements of insulin pump, so it can be applied

on other infusion pumps or even any critical device that has safety requirements. This work

also can be build as a frame work where new options can be added or modified.

3. Automation procedure of refinement maps construction and some generic refinement map

templates are presented in Chapter 3. As our work can be applied on any critical device

that has safety requirements, more generic refinement map templates can be identified, in

addition, the level of automation can be increased by improving the synthesis procedure.
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APPENDIX A. INSULIN PUMP SAFETY REQUIREMENTS

All below stated safety requirements are taken from [1].

• Requirement 1.1.1: ”The pump shall suspend all active basal delivery and stop any active

bolus during a pump prime or refill. It shall prohibit any insulin administration during the

priming process and resume the suspended basal delivery, either a basal profile or a temporary

basal, after the prime or refill is successfully completed.”

• Requirement 1.1.1: ”The pump shall suspend all active basal delivery and stop any active

bolus during a pump prime or refill. It shall prohibit any insulin administration during the

priming process and resume the suspended basal delivery, either a basal profile or a temporary

basal, after the prime or refill is successfully completed.”

• Requirement 1.1.3: ”If the pump allows administering multiple types of insulin, changing

drug types and concentrations shall stop any active infusion, remind the user to validate the

basal profiles and related parameters, and force the reservoir time and volume to be recom-

puted.”

• Requirement 1.1.3: ”If the pump allows administering multiple types of insulin, changing

drug types and concentrations shall stop any active infusion, remind the user to validate the

basal profiles and related parameters, and force the reservoir time and volume to be recom-

puted.”

• Requirement 1.2.4: ”The pump shall allow the user to temporarily override the current

basal delivery with a temporary basal without changing existing basal profiles, provided that

no normal bolus or other temporary basal is in progress. The user shall be required to specify

the duration and rate of the temporary basal being programmed.”

• Requirement 1.2.6: ”The pump shall start to administer a temporary basal immediately

after the user confirms it, and resume the previously active basal profile after the temporary

basal is finished.”

75



• Requirement 1.2.6: ”The pump shall start to administer a temporary basal immediately

after the user confirms it, and resume the previously active basal profile after the temporary

basal is finished.”

• Requirement 1.2.7: ”The pump shall allow the user to stop a temporary basal while it is

being administered. When the user chooses to stop a temporary basal, the pump shall either

resume the active basal profile prior to the temporary basal or require the user to activate a

predefined basal profile.”

• Requirement 1.3.5: ”The pump shall not allow a normal bolus to start when another

normal bolus is in progress. If the user requests a normal bolus when another normal bolus is

in progress, the pump shall issue an alert and deny the request.”

• Requirement 1.8.2: ”When the pump is in suspension mode, insulin deliveries shall be

prohibited. Any incomplete bolus delivery shall be stopped and shall not be resumed after the

suspension.”

• Requirement 1.8.5: ”When the pump resumes from suspension, calculations shall be per-

formed to synchronize insulin used and remaining reservoir volume.”

• Requirement 2.2.2: ”Clearing, changing or resetting the pump settings shall require the

user’s confirmation.”

• Requirement 2.2.3: ”Setting and changing the concentration and activity duration of the

currently loaded insulin shall require the user’s confirmation.”

• Requirement 3.1.1: ”The pump and its accessories shall be designed to maintain a fail-safe

state in the presence of a single fault condition that results in the inability of the pump to

ensure the integrity of the pump’s operation. When in a fail-safe state, the pump shall neither

deliver insulin nor generate energy or substances that could affect the user’s safety.”

• Requirement 3.2.5: ”When the user inputs a BG reading, target BG level, insulin-to-

carbohydrate ratio, or correction factor that is out of manufacture- or user-defined ranges,

the pump shall generate a warning and require the user to confirm or change the input.”
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• Requirement 3.2.7: ”The pump shall issue a warning whenever there is a failure in event

logging or log retrieving.”

• Timing Requirement 1.2.8: ”If the currently activated basal profile or the currently ongo-

ing temporary basal has been paused for more than x minutes, it shall signal an audible alarm

every y minutes up to z hours.”

• Timing Requirement 1.6.1: ”An air-in-line alarm shall be triggered within a maximum de-

lay time of x seconds if air bubbles larger than y L are detected, and all insulin administrations

shall be stopped.”

• Timing Requirement 1.8.4: ”If the pump has been put in a non-delivery mode for more

than x minutes, it shall signal an audible alarm for every x minutes up to y hours.”

• Timing Requirement 2.2.1: ”If the pump is in a state in which user input is required, e.g.,

setting time and date, setting drug type, and concentration after reloading the drug reservoir,

the pump shall issue periodic alerts/indications every x minutes until the required input is

provided.”
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APPENDIX B. PARSED TREES OF INSULIN PUMP SAFETY

REQUIREMENTS

This appendix illustrates the resulting parsed trees from applying Enju parser on insulin

pump safety requirements. Enju 2.4 online demo has been used to get the trees, Table1 B.1 shows

some symbols of syntactic categories used in forming the trees.

Table B.1. The main syntactic categories used by Enju trees

ADJ Adjective

ADV Adverb

CONJ Coordination conjunction

C Complementizer

D Determiner

N Noun

P Preposition

SC Subordination conjunction

V Verb

1This table is taken from the main web page of Enju ”https://mynlp.is.s.u-tokyo.ac.jp/enju/”.
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Figure B.1. Enju parsed tree for requirement 1.1.1.
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Figure B.2. Enju parsed tree for requirement 1.1.3.
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Figure B.3. Enju parsed tree for requirement 1.2.4.
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Figure B.4. Enju parsed tree for requirement 1.2.6.

82



Figure B.5. Enju parsed tree for requirement 1.2.7.

83



Figure B.6. Enju parsed tree for requirement 1.3.5.
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Figure B.7. Enju parsed tree for requirement 3.1.1 (part one).
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Figure B.8. Enju parsed tree for requirement 3.1.1 (part two).
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Figure B.9. Enju parsed tree for requirement 1.8.2.
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Figure B.10. Enju parsed tree for requirement 1.8.5.
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Figure B.11. Enju parsed tree for requirement 2.2.2.
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Figure B.12. Enju parsed tree for requirement 2.2.3.
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Figure B.13. Enju parsed tree for requirement 3.2.5.
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Figure B.14. Enju parsed tree for requirement 3.2.7.
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Figure B.15. Enju parsed tree for requirement 1.2.8.
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Figure B.16. Enju parsed tree for requirement 1.6.1.
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Figure B.17. Enju parsed tree for requirement 1.8.4.
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Figure B.18. Enju parsed tree for requirement 2.2.1.
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