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ABSTRACT 

Palmer amaranth is a troublesome weed in modern day agriculture. Timely identification, 

along with adoption of site-specific weed management practices, will enable farmers to reduce 

Palmer amaranth control costs and improve efficacy. The feasibility of collecting hyperspectral 

imagery to identify Palmer amaranth and soybean was evaluated in the greenhouse and field. 

Hyperspectral images were collected across 224 spectral bands on palmer amaranth and soybean 

twice weekly from the one to three-leaf growth stage in three different runs (28 replications per 

run) temporally separated in a greenhouse. Partial least squares-discriminant analysis and soft 

independent modelling of class analogy models were developed to identify Palmer amaranth and 

soybean plants and had cumulative variations of 60% and 85%, and predictive abilities of 60% 

and 82%, respectively. This study concluded that hyperspectral imaging could be a potential tool 

to decipher Palmer amaranth from soybean plants. 
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1. INTRODUCTION 

Palmer amaranth (Amaranthus palmeri S. Watson) is an invasive weed species and an 

aggressive competitor with crops throughout their growing seasons. Palmer amaranth, a native to 

the Sanoran desert region, was documented in the midwest region of the United States since 

2001 (Ward et al., 2013) and was first confirmed in North Dakota in 2018 (Peters and Jenks, 

2018). Palmer amaranth grows 5 to 8 cm per day to a height over 2 m tall with many branches, 

which is intensely competitive to slow-growing crops, and occupies large field resources by 

dominating the water and fertilizer available to crops (Davis et al., 2015; Horak and Loughin, 

2000). Palmer amaranth populations have evolved resistance to several modes of action of 

herbicides (Ikley and Jenks, 2019). Therefore, Palmer amaranth has become a significant threat 

to crop growth and productivity. 

Palmer amaranth herbicide resistance makes the control of this species challenging, since 

chemical control is the most common and efficient method of weed control in the United States. 

Mechanical weed control is a good alternative for control of herbicide-resistant species; 

nevertheless, it is not a very efficient alternative since it is generally slower. The efficiency of 

mechanical weeding can be improved if the problematic areas in the field can be mapped. 

Precision agriculture techniques associated with imagery processing are capable of identifying 

different weed species, which consequently increases weed control efficiency. 

Hyperspectral imaging technology has been used in multiple areas in agriculture because 

of its plentiful spectral information compared with other imaging technologies. Hyperspectral 

imaging systems can collect broad wavelength reflectance profiles from an object. Many studies 

reported that hyperspectral imaging is a powerful technology for detecting weeds since different 

plant species show different profiles of spectrum reflectance (Farooq et al., 2019; Herrmann et 
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al., 2013; Huang et al., 2016; Matzrafi et al., 2017; Mink et al., 2020; Okamoto et al., 2007; 

Pantazi et al., 2016; Suzuki et al., 2008; Zhang et al., 2019). 

Palmer amaranth is morphologically similar to other pigweed species. In the early growth 

stages, the only differentiating factor is the petiole length, which is usually longer than the leaf 

blade. This characteristic is not present in other pigweeds. Therefore, shape recognition methods 

can not be used to accurately classify this species. Hyperspectral imaging has the advantage of 

providing more information than any other imaging technology. 

This research intends to test if hyperspectral imaging technology is a viable solution to 

identify Palmer amaranth species. The specific objectives included: (1) developing a high-

resolution hyperspectral imaging system to collect hyperspectral imagery; and (2) classifying 

Palmer amaranth and soybean species using a hyperspectral imaging system in greenhouse and 

field conditions. 
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2. LITERATURE REVIEW 

2.1. Palmer amaranth 

Palmer amaranth is an invasive weed species native to the desert regions of the southwest 

United States and northern Mexico (Sauer, 1957). Palmer amaranth is a fast-growing weed and is 

highly competitive with row crops, including corn and soybean. A 1989 survey of agricultural 

professionals by the Southern Weed Science Society identified Palmer amaranth as a 

troublesome weed in crop production in the southern United States (Webster and Coble, 1997). 

By 2009, Palmer amaranth was ranked as the most troublesome cotton weed in nine states and 

the second most problematic weed in soybean production (Webster and Nichols, 2012). By 2014, 

Palmer amaranth had become one of the most concerning and economically important weed 

species in corn, cotton, and soybean in the United States (Norsworthy et al., 2014). Palmer 

amaranth interferes with crop yield, especially in row crops. A density of 10 Palmer amaranth 

plants per 9.1 m2 area reduced cotton yield by 54% (Morgan et al., 2001). Palmer amaranth 

densities of 0.33 to 10 plants m-1 row length can reduce soybean yield by 68% (Klingaman and 

Oliver, 1994). Corn yield is also affected by the presence of Palmer amaranth. Palmer amaranth 

at densities of 1 to 6 plants m-1 row length resulted in a corn grain yield loss of 18% to 38% 

(Liphadzi and Dille, 2006). 

Palmer amaranth was first identified in North Dakota in 2018 (Peters and Jenks, 2018). 

North Dakota had 5.6 million acres of soybean planted in 2019 (USDA National Agricultural 

Statistics Service, 2019); therefore, the spreading of Palmer amaranth may severely impact the 

profitability of North Dakota farms. 
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2.1.1. Biology 

Palmer amaranth is a summer annual pigweed species in the amaranthaceae family. 

Palmer amaranth and its relative, waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer] are 

dioecious species, meaning separate male and female plants. As a dioecious species, Palmer 

amaranth is an obligate outcrosser. Its pollination occurs by wind, leading to increased genetic 

diversity (Franssen et al., 2001). Palmer amaranth is a prolific seed producer, reliably able to 

produce at least 100,000 seeds per plant when it competes with a crop and able to produce nearly 

600,000 seeds per plant in non-competitive scenarios (Sellers et al., 2003). Male plants produce 

many pollen grains capable of traveling 800 m and remaining viable up to 120 h (personal 

communication with Thomas Peters, NDSU). Therefore, this species has a great capability to 

adapt to different environmental conditions and herbicides. 

Palmer amaranth’s emergence period extends throughout the crop season and can occur 

after crop harvest (Webster and Nichols, 2012; Legleiter and Johnson, 2013). For example, 

researchers in Indiana observed Palmer amaranth emergence from early May until mid-

September (Legleiter and Johnson, 2013). This extended emergence period forces producers to 

manage Palmer amaranth throughout the year, unlike other summer annual weeds that are 

typically managed only through early summer. 

Palmer amaranth’s season-long emergence characteristic combined with its rapid growth 

(up to 10 cm per day) and prolific seed production make it a problematic weed in agronomic 

cropping systems. Its photosynthetic capacity and utilization of water and light are greater than 

other C4 plants (Downton, 1975). Palmer amaranth has wider leaves than other pigweed species, 

including waterhemp (Mallard, 2009), which creates a sunlight interception advantage over its 

counterparts. Likewise, Palmer amaranth outcompetes most other plant species for light because 
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its leaves track the sunlight, thereby remaining perpendicular to the direct solar rays (Ehleringer, 

1983). Finally, Palmer amaranth is drought tolerant since it can increase its leaf solute 

concentration, allowing the stoma to remain open longer during a period of drought (Mulroy and 

Rundel, 1977). Palmer amaranth has plant dry weight, leaf area, height, growth rate, and water-

use efficiency greater than other pigweeds, including waterhemp, redroot pigweed, and tumble 

pigweed (Horak and Loughin, 2000). This weed species will compete with the intended crop by 

growing taller than the crop canopy. Palmer amaranth can produce and accumulate large 

quantities of biomass and grow up to 2 m in height. 

2.1.2. Herbicide-resistance in Palmer amaranth 

Palmer amaranth’s reproductive habits also have encouraged herbicide resistance. Palmer 

amaranth populations have evolved resistance to herbicide groups with multiple mechanisms of 

action, including acetolactate synthase inhibitors (Group 2), mitotic inhibitors (Group 3), 

synthetic auxin inhibitors (Group 4), photosystem II inhibitors (Group 6), 5-

enolpyruvylshikimate-3-phosphate synthase inhibitors (Group 9), protoporphyrinogen oxidase 

inhibitors (Group 14), and 4-hydroxyphenylpyruvate dioxygenase inhibitors (Group 27) (Ikley 

and Jenks, 2019). Some Palmer amaranth biotypes have also been found to be resistant to 

multiple modes-of-action herbicides (Heap, 2015). 

2.1.3. Identification 

Palmer amaranth identification can be difficult, especially in early growth stages. 

Misidentification perhaps was one of the reasons for the success of Palmer amaranth spreading 

across the United States. The first, and often critical, step to managing Palmer amaranth (or any 

weed) is to scout and identify the species that exists in each agronomic field. 
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It is easy to misidentify Palmer amaranth because it looks similar to three other common 

amaranth species: redroot pigweed, Powell amaranth, and waterhemp. The resemblance is 

especially strong during the seedling stages of growth. Only redroot and Powell amaranth have 

hairs (pubescence) on their stems and leaf surfaces. The fine hairs will be most noticeable on the 

stems towards the newest growth. Palmer amaranth and common waterhemp do not have hair on 

any surface. Looking for pubescence is a quick and easy way to differentiate redroot and Powell 

amaranth from waterhemp and Palmer amaranth. The leaf shapes of amaranth can vary quite a 

bit within a single species and is subjective; however, there are general shapes that distinguish 

the species. Waterhemp leaves are generally long, linear, and lanceolate, whereas Palmer 

amaranth leaves are wider and ovate to diamond-shaped. Redroot and Powell amaranth leaves 

are similar to Palmer amaranth leaves and have a round to ovate shape; however, they have hairs 

while Palmer amaranth and common waterhemp leaves do not. 

The petiole is the stem-like structure that connects the leaf blade to the main stem. In 

Palmer amaranth, the petioles (especially on older leaves) will be as long (or longer) than the leaf 

blade itself. The petioles of waterhemp, on the other hand, will be shorter than their long, lance-

shaped leaves. An easy way to determine the petiole length is to simply pull a leaf and petiole off 

a plant and bend the petiole back over the leaf blade to compare the petiole and leaf blade 

lengths. This is the most consistent and reliable characteristic that differentiates Palmer amaranth 

from common waterhemp, and it is most evident on the oldest leaves of the plant (lowest on the 

stem). 

The flowering structure/inflorescence is also a differentiating factor. The flowering 

structure in Palmer amaranth plants is open, non-branched, can reach up to 90 cm long, and 

frequently is on the top of the plant, whereas the flowering structure in waterhemp is multi-
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branched and located near the top of the plant and at the tips of branches. The inflorescence of a 

mature female Palmer amaranth plant is sharp and prickly, while the inflorescence of a mature 

female waterhemp plant is soft and smooth to the touch (Ikley and Jenks, 2019). 

2.2. Hyperspectral technology in agriculture 

2.2.1. Hyperspectral imagery 

Camera and imaging developments have improved the quality of imagery used in 

precision agriculture. Today there are cameras with better spatial resolution that can capture 

many bands compare to the standard RGB (red, green, and blue) cameras. Multispectral imaging, 

having capabilities beyond the RGB imaging, provides more data to the user. In agriculture, for 

example, multispectral imaging made the study of plant health possible (Lowe et al., 2017). 

However, hyperspectral imaging brought new capabilities, as its high number of continuous 

narrow bands provide a larger quantity of data related to the material characteristics (Qureshi et 

al., 2019). 

Hyperspectral systems include a spectrograph that records the reflectance in a wide range 

of the spectrum, from ultraviolet to near-infrared into a digital sensor (Bock et al., 2010). Data 

acquired by multispectral and hyperspectral cameras have three-dimensional structures 

consisting of two spatial dimensions and one spectral dimension. These structures are usually 

called ‘hypercubes’ or ‘datacubes’ (Figure 1) (Qureshi et al., 2019). Processing techniques 

applied in analyzing hyperspectral data are applied in every layer in the spectral dimension, 

which requires a high level of computational power. 
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Figure 1. Hyperspectral data are organized in a “hypercube” with three dimensions, two spatial 

dimensions, and one spectral dimension. 

2.2.2. Palmer amaranth identification using remote sensing techniques 

Palmer amaranth morphology is similar to other pigweeds, especially in early growth 

stages. Therefore, identifying this species using morphology characteristics can result in species 

misidentification (Legleiter and Johnson, 2013). 

Some cameras can visualize light reflectance wavelengths that cannot be processed by the 

human eye, which provides more information that can be used to facilitate Palmer amaranth 

identification. Weed species have been identified using multispectral and hyperspectral 

reflectance, associated with image processing techniques (Wang et al., 2019). However, limited 

studies were found on Palmer amaranth species identification through imaging technologies. A 

study compared different accessions of Palmer amaranth and pitted morning-glory (Ipomoea 

lacunosa L.) (Gray et al., 2007). The authors used two analysis techniques, linear discriminant 

analysis and best spectral-band combination analysis, using data collected with a hand-held 

hyperspectral radiometer. The results of this work suggest that there are slight spectral 
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reflectance differences between accessions; however, the genetic diversity within species made 

the classification difficult. On the other hand, the differentiation between Palmer amaranth and 

pitted morning glory had 100% accuracy in their differentiation (Gray et al., 2007). These results 

demonstrate the potential of the hyperspectral data for weed species differentiation. 

A study by Andersen et al. (1985) identified differences in the spectral reflectance using 

an airborne platform to collect data. The authors demonstrated that their methods were able to 

distinguish climbing milkweed [Sarcostemma cyancboides (Decne.) Schltr.] in orange (Citrus 

sinensis L.) trees; ragweed parthenium (Parthenium hysterophorus L.) in carrot (Daucus 

carota L., var. sativa ‘Long Imperator’); johnsongrass (Sorghum halepense L.) in cotton 

(Gossypium hirsutum L.); London rocket (Sisymbrium irio L.) in cabbage; and Palmer amaranth 

(Amaranthus palmeri S. Watson) in cotton. A more recent study aimed to distinguish glyphosate-

resistant (GR) Palmer amaranth from glyphosate susceptible (GS) Palmer amaranth plants using 

hyperspectral imagery (Reddy et al., 2014). It was found that GS plants have higher light 

reflectance in the visible region and lower light reflectance in the infrared region of the spectrum 

relative to the GR plants. The most significant reflectance wavelength ranges to separate these 

two groups of plants were from 400 to 500 nm, 650 to 690 nm, 730 to 740 nm, and 800 to 900 

nm. The authors concluded that hyperspectral imagery could distinguish GR and GS Palmer 

amaranth plants before any glyphosate application (Reddy et al., 2014). Multispectral reflectance 

data have also been used to identify soybean, sunflower (Helianthus pumilus L.), redroot 

pigweed (Amaranthus retroflexus L.), and velvetleaf (Abutilon theophrasti Medik) species based 

on their leaf shape (Fletcher and Reddy, 2016). Shortwave-infrared wavelengths were identified 

as the most important variables used for discrimination of soybeans and pigweeds, such as 

Palmer amaranth (Fletcher and Reddy, 2016). 
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3. MATERIALS AND METHODS 

3.1. Greenhouse experiment for Palmer amaranth hyperspectral image data collection  

Palmer amaranth and soybean were grown in the spring, 2019, in the Waldron 

Greenhouse at North Dakota State University (NDSU). Palmer amaranth plants were grown from 

seed provided by Kansas State University. The soybean variety used was AG08X8 RRXtend 

(Asgrow, Bayer Crop Science, St. Louis, MO). The experiment was a randomized complete 

block design with two replications and consisted of three different runs. Each run was 28 

replications. The first run was seeded on April 10, 2019, the second run was seeded on April 17, 

2019, and the third run was seeded on April 24, 2019. The experiment design accounted for 

temporal and spatial variance in the plant’s growth.  

Seeds were planted in labeled cone cells SC10 U (Ray Leach, United States) with a cell 

diameter of 3.8 cm and a depth of 19 cm. The cones contained a commercial potting mix 

(SunshineMix #1; Sun Gro Horticulture, Bellevue, WA). Plants were irrigated manually in each 

cell, daily. Each cell contained a central drainage hole at the bottom, as well as four lateral holes. 

Cone cells were arranged (Figure 2) in 70 × 30.5 ×17.5 cm racks that could hold 98 cells. 

 

Figure 2. Experiment design for the third run. 
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The greenhouse temperature was kept at around 21 C. Natural light was supplemented by 

400-watt high-pressure sodium bulbs set for 12 hour day lengths. Soybean emerged 

approximately 14 days after seeding and Palmer amaranth approximately three days longer 

(Figure 3). Soybean emerged uniformly, but Palmer amaranth emergence was highly variable. 

 

Figure 3. Palmer amaranth plants at the germination stage, May 2019. 

Data collection began when Palmer amaranth and soybean were at the seedling stage, 

generally around 2.5 cm tall. The hyperspectral data acquisition occurred twice weekly in each 

run until the plants reached a height of about 13 cm. Data collection for the first run started on 

April 26, 2019, the second run on May 03, 2019, and the third run on May 10, 2019. The data 

collection in every run lasted about three weeks. 

3.2. Field experiment for Palmer amaranth hyperspectral image data collection 

Field data experiments were conducted near Carleton and Clay Center, Nebraska, in July 

2019. The field at Carleton, was a commercial soybean field, with an indigenous Palmer 

amaranth density at 80 plants per 10 m2 (Figure 4). The second field was at the U.S Meat Animal 

Research Center, Clay Center, NE. The field was divided into soybean plots, with indigenous 
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Palmer amaranth density at 80 plants per 10 m2 (Figure 5). Canopy hyperspectral reflectance was 

collected in both locations within a three-day period (July 10 to July 12, 2019). 

 

Figure 4. Palmer amaranth indigenous population in a soybean field, Carleton, Nebraska, July 

2019. 
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Figure 5. Palmer amaranth population in soybean plots, Clay Center, Nebraska, July 2019. 

3.3. Hyperspectral imaging system 

An attachable hyperspectral imaging system was developed to conduct data collection 

under different conditions. The hyperspectral imaging system was composed of the imaging and 

scanning units. The imaging unit included a push-broom hyperspectral camera model FX-10 

(SPECIM, Finland) in the visible and near-infrared with a spectrum ranging from 400 nm to 

1000 nm with 224 bands and a frame rate of 30 frames per second (Figure 6). The spatial sensor 

resolution was 1024 pixels and the field of view was 38 degrees. This device was equipped with 

an integrated shutter, which allowed the dark reference to be collected without the need to block 

the light manually. The white reference collection was carried out using a Teflon board with a 

light reflection of 99%. Six halogen lamps were integrated in the imaging unit. 
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Figure 6. Hyperspectral camera model FX-10 (SPECIM, Finland). 

A threaded rod with a width of 12 mm and a length of 1500 mm, powered by a motor 

stepper-motor (MDI1FRD17A4-EQ, Schneider Electric Intelligent Motion Systems, USA), was 

responsible for the scanning unit movement. The longest scanning distance was designed at 1.5 

m, encompassing the different crop row options in the field, e.g. 0.38-cm row or 0.76-cm row. 

LUMO Recorder (SPECIM, Finland) software was used for data collection. 

In the greenhouse experiments, the hyperspectral imaging system was attached to a 3-

dimensional scanning platform, which allowed the movement of the hyperspectral imaging 

system in 3-dimensional directions, according to the position and size of the target plants and 

scanning area. The bottom platform frame was made of steel to reduce vibration when operating. 

Wheels were incorporated into the platform to make it easier to move over the bench and field 

plots (Figure 7). 
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Figure 7. Scanning platform collecting data, May 2019. 

A second platform was developed to collect hyperspectral reflectance in Nebraska, as the 

greenhouse platform was large and had fragile components that would have to be transported in a 

trailer during long travel. Therefore, a second smaller and more portable platform was 

developed. The second platform consisted of an aluminum axis built into a steel stand. This 

platform did not have any wheels. The operator had to carry it to move to a different location. 

The platform was positioned perpendicular to the crop rows during the data collection (Figure 8). 

Soybean and Palmer amaranth plants were captured in the same scan to reduce the variability 

among different pictures caused by ambient conditions. 
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Figure 8. Field data collection platform in action, Nebraska, July 2019. 

3.4. Hyperspectral image data pre-processing 

The output from the image acquisition software was a raw format file. This file was 

processed to eliminate irrelevant information caused by external factors, such as the influence of 

nuisance signals due to illumination effects and detector sensitivity. 

These misleading characteristics could be presented in function of the wavelength or as 

variations in the spatial domain. Spectral calibration was necessary to correct these differences in 

the spectral and spatial domains (Mishra et al., 2017). The image calibration and correction from 

reflectance to pseudo-absorbance were conducted in the software Evince (Prediktera, Sweden), 

according to equation (1): 

                                             𝐼𝜆,𝑛 = −𝑙𝑜𝑔10 [(
𝑆𝜆,𝑛−𝐵𝜆,𝑛

𝑊𝜆,𝑛−𝐵𝜆,𝑛
)]                                                 (1) 
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where n is the pixel index variable of the reorganized hypercube; Iλ,n is the absorbance 

intensity of pixel n at wavelength λ; S𝜆,n is the sample pixel n at wavelength λ; B𝜆,n is the dark 

reference pixel n at wavelength λ; and W𝜆,n is the white reference pixel n at wavelength λ. 

The calibrated images from both plant species were organized in a single mosaic, which 

facilitated the processing methods used. Pixels associated with the background were removed 

from the mosaic image to reduce noise in the data. The background pixels in the mosaic were 

eliminated by calculating the Normalized Vegetation Index (NDVI) to enhance the features of 

plant vegetation attributes, which makes the hyperspectral image background segmentation more 

accurate. A binary automatic threshold using the OTSU’s method was conducted. This is a 

method used to separate two classes of pixels and is commonly used in agronomic applications 

(Otsu, 1979). This method calculates the optimum threshold based on minimizing intra-class 

variance. It is easy to compute, stable, and does not require prior information (Torres-Sánchez et 

al., 2015). The binary layer was applied to the dataset as a mask, and each pixel of the mask was 

multiplied by each spectral layer of the data cube (Figure 9). 

 

Figure 9. Pre-processing sequence: a) Original mosaic b) Mosaic after normalized difference 

vegetation index calculation c) Mosaic after threshold method d) Final pre-processed mosaic. 

This technique assigned the value of zero to the pixels that did not represent any 

vegetation. Values of zero were ignored by the software when the final dataset was exported. All 
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segmentation was done in the software ENVI (L3 HARRIS Geospatial, USA). Data were mean-

centered, as the mean value of a variable was subtracted from each individual value (Burger, 

2006). Standard normal variate and multiplicative scatter correction techniques were applied to 

correct baseline shifts and slopes in the data (Mishra et al., 2017). 

3.5. Palmer amaranth and soybean classification methods 

It was necessary to associate spectral characteristics with each vegetation type to 

distinguish plant species. These spectral characteristics are usually related to chemical and 

physical properties. Due to the hyperspectral data’s complexity, the information is typically 

mixed in spectral and spatial dimensions, which means that the chemical or physical 

characteristics are not associated with a single wavelength, but instead with multiple 

wavelengths. This complexity of hyperspectral data requires multivariate data analysis and 

reduction techniques to reduce the data’s dimensionality. 

Principal component analysis (PCA) is a powerful tool to reduce the dimensions of large 

datasets and is widely used in hyperspectral data processing.  

The dataset was unfolded, so the three-dimensional matrix became a two-dimensional 

matrix with columns corresponding to wavebands and rows corresponding to pixels. The PCA 

generated matrices of scores (T) and loadings (P) from each pixel’s spectrum. A score plot was 

generated, in which similar pixels were plotted close together. The PCA score plots were used to 

visualize possible clusters and eliminate outliers. 

Partial least squares-discriminant analysis (PLS-DA) modelling was used to classify the 

different plant species. This type of modelling has been used in hyperspectral imaging 

classification with favorable results (Amigo et al., 2015; Herrmann et al., 2013). A PLS-DA is a 

supervised class-modeling technique that uses a PLS algorithm to predict whether a sample 
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belongs to a determined class. To create a calibration method, a matrix (X), containing the 

spectra for calibration, and a corresponding matrix (Y), containing the information about the 

species, were created. Due to the high amount of samples (pixels) in the dataset, about 50% of 

the pixels were used to train the model, unlike the common 70 to 75% in published studies (Eddy 

et al., 2014). Training a model with 70% of the current dataset was not possible due to 

limitations of the Random-Access Memory (RAM) in the hardware. The software required the 

dataset to be arranged in a single mosaic, which required high RAM capacity. The plants in the 

calibration mosaic were selected manually and identified as Palmer amaranth or soybean (Figure 

10). This dataset was used to train both machine learning models. The PLS-DA models were 

calculated with partial evenly spread cross-validation. The model was applied to the testing 

portion of the dataset, and a classification image was generated. 

 

Figure 10. Portion of the calibrated dataset, which consisted of manually classified plants. 

A soft independent modelling of class analogy (SIMCA) method was also tested to 

classify both plant species (Shirzadifar et al., 2018). Under this method, the classification was 

based upon each classified observation’s distance to a PCA model created from a certain class. A 



 

20 

critical distance was calculated, where 95% of the model’s observations are considered to belong 

to the class (Shirzadifar et al., 2018). 

The PLS-DA and SIMCA classification models were developed to find the best method 

to discriminate Palmer amaranth from soybean species. 
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4. RESULTS AND DISCUSSION 

4.1. Principal component analysis for species classification 

Plants were separated from the background particles (soil particles and pixels containing 

irrelevant information) using the segmentation procedure explained in previous sections. A PCA 

was applied to the raw data (without any previous pre-processing) to explore the data and 

identify potential clusters (Figure 11). The scored plots were shaded according to the density of 

points (density of pixels per component in the score plot). The score images were shaded 

according to the first principal component (PC1) score values, where the amplitude represented 

the variance within the first component in the score image. Some outliers were visible in the 

score plot, which suggested that the segmentation method used did not remove all the 

unnecessary data. The results did not show any clusters in the scores plot, and the score images 

did not demonstrate any difference among species (Sendin et al., 2019). Some variability in the 

score images was noticeable. However, this was due to differences in the data collection times 

rather than species, which suggested that further pre-processing techniques were needed to 

eliminate the external variability from the data. 

 

Figure 11. Principal component analysis of the raw data: a) Score plot of the first and second 

components b) Score images of the first component. 
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The pre-processing techniques of mean centering, multiplicative scatter correction, and 

standard normal variate were applied, and a PCA analysis was conducted a second time to 

explore the new dataset. As shown in the score images in Figure 12 (a), the techniques applied 

removed some variability previously seen in Figure 11 (a). However, there were still no clusters 

in Figure 12 (a), which indicated that a supervised classification method would be required to 

classify plant species. There was no presence of evident individual clusters; however, outliers 

could be identified in the score plots since they were further from the main cluster, as shown in 

Figure 12 (a). These outliers were selected and removed from the dataset. 

 

Figure 12. Principal component analysis of the pre-processed data: a) Score plot of the first and 

second components b) Score images of the first component. 

The outliers were removed through the selection of points that were farther away from 

the main density of points in the score plot (Figure 12 (a)). This selection removed small 

particles of the background that had not been removed by the previous segmentation techniques. 

In the score plot, shown in Figure 13 (a), the cluster was not as condensed as the cluster in Figure 

12 (a). However, the cluster separation was not due to species classification differences; rather, 

this separation occurred due to the positions of the leaves on the plant, as the light from the 

 

Outliers 
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illumination system was reflected differently according to each leaf position on the plant. This 

can be seen in the score image in Figure 13 (b), in which different colors represent different parts 

of each plant. 

 

Figure 13. Principal component analysis of the pre-processed data with the outliers removed: a) 

Score plot of the first and second components b) Score images of the first component. 

A PCA method was used in two different studies to separate kernels from the background 

(Manley et al., 2009; Sendin et al., 2019). This method was effective in separating the 

background from the particles of interest; however, in this method, the complete dataset had to 

be imported into the software Evince (Prediktera, Sweden), which made processing much slower 

compared with the method used in this paper. In this research, only the relevant data was 

imported. 

The PCA method was used to remove noise and fine particles in the background that 

were not removed by the threshold method. Principal component analysis was also used as an 

exploratory tool; however, it was not possible to visualize any cluster that could represent plant 

species in any of the components. Therefore, the use of supervised classification techniques 

using training datasets was necessary for further analysis. The number of components for the 
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classification models was decided according to the slope of the cumulative variance. When the 

cumulative variance stopped increasing significantly, the components were not considered 

important. Six components were used in both models. 

4.2. Partial least squares discriminant analysis (PLS-DA) for species classification 

This study aimed to identify two different plant species; therefore, it can be considered a 

discrimination problem. A PLS-DA has been used in similar discrimination problems with high 

rates of success (Herrmann et al., 2013; McGoverin et al., 2011; Sendin et al., 2019). 

A PLS-DA is based on conventional PLS regression; however, different categories 

(categorical variables) are organized in a response matrix (Y) that indicates the class category 

(Rodionova et al., 2016); in this case, the plant species. A pixel-wise approach was chosen; each 

pixel in the image was classified as Palmer amaranth or soybean. In different studies, object-wise 

classification achieved better results because the objects classified were usually low and flat, 

with a small variability related to the vertical dimension (Sendin et al., 2018). In this study, 

object-wise classification did not work as expected due to the variability associated with the 

vertical dimension, which made the plant segmentation more difficult and less accurate. 

The first two PLS factors were able to differentiate Palmer amaranth and soybean 

species. Blue and green pixels are located in different areas of the score plot. There was also 

some overlap in the score plot, which was predictable since redundancy of spectral information 

is expected in a pixel-wise classification (Figure 14 (a)). The PLS-DA model was able to classify 

both species with a predictive ability (Q2Y(cum); cross-validated explained variance, calculated 

from the ratio of the residual cross-validated variance and the original variance of the dataset) of 

60%, using six factors. The cumulative variation (R2Y(cum); total variance explained by the 

model) for the same number of PLS factors was also 60% (Figure 14 (b)). 
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Figure 14. Palmer amaranth vs soybean classification: a) Score plot (first and second factors) b) 

Cumulative variation and predictive ability for the first six factors. 

Loading line plots were used to identify the most significant wavelengths for each model 

(Figure 15). Peaks in the plot represent a higher level of significance for the model. 

The wavelength region from 530 to 680 nm was relevant for the first component of the 

model, showing positive peaks that were positively correlated to the component and negative 

peaks, which were inversely correlated to the component (Figure 15). The region above 800 nm 

did not contribute to the model discrimination, as indicated by the values near zero. There were 

also some positive peaks in the second PLS factor; however, as the factor position increased, the 

noise increased, and the peaks became smaller. In general, the wavelength region between 500 

and 700 nm contributed to species classification, as they contained the major peaks in the first 

two PLS factors. 
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Figure 15. Loading line plots for the first and second components of the Partial least squares- 

discriminant analysis model. 

The model was tested on an independent dataset. Plants were identified as PA or SOY 

(Figure 16). Some pixels within each plant were not identified correctly because of variability 

within the same plant due to leaf angle and necrotic lesions on some leaves. Any particles that 

were not classified as either of the species were considered “No class”. 

Some pixels in PA plants were classified as SOY and vice-versa in the pixel-wise 

classification. Several pixels in the classification images were shaded parts of the plants or 

corresponded to leaf edges. Since both species had shaded leaves, and those pixels have similar 

reflectance properties, there were several pixels with similar spectral information in both classes, 

which reduced the classification capacity of the machine learning models. Consequently, it was 

technically impossible to obtain a classification in which 100% of the pixels were classified 

correctly. However, in most cases, there was a big difference in the total amount of pixel 

classified as PA or SOY in the same plant. The pixel-wise predictive ability of the model was 

60%, while Figure 16 showed that most of the plants were classified correctly, considering the 

average number of pixels classified as PA and SOY in each plant. 
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Based on pixel-wise classification alone, the Q2Y(cum) of 60% would not be high enough 

for some applications where species identification is necessary. Therefore, a different model was 

also tested in order to find the one that would best fit our application. 

 

Figure 16. Classification image of the Partial least squares – discriminant analysis model, applied 

to the testing dataset.  

4.3. Soft independent modelling of class analogy (SIMCA) for species classification 

A SIMCA is a supervised classification technique in which a PCA is developed for each 

class individually, within its calculated boundary. For a given class, a hyper-plane is created 

according to the principal components and the mean orthogonal distance of the training data 

samples from the hyper-plane is used to determine the critical distance for the classification. 

New observations are projected into each PC model, and the residual distances are calculated. 

The observation is assigned to the model if its residual distance is below the class’ statistical 

limit. A SIMCA has commonly been used for chemometrics analysis (Rodionova et al., 2016; 

Shirzadifar et al., 2018). Models from SIMCA were also used to classify three weed species 

using canopy reflectance with an accuracy of 100% (Shirzadifar et al., 2018). 

A SIMCA model was applied using the same training dataset as an alternative to 

distinguish PA from SOY species. The Coomman’s plot showed the discrimination between 
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species achieved by the SIMCA model. There was some classification overlap on the plot; 

however, species were generally organized in clusters (Figure 17). A big portion of the pixels 

was below the critical value (represented by the red lines), which meant that most of the pixels 

were attributed to a specific class (Palmer amaranth or soybean). 

 

Figure 17. Coomman’s plot of the soft independent modelling of class analogy classification 

model applied to the testing dataset. Most of the pixels were attributed successfully to one of the 

classes. 

The Q2Y(cum) of the SIMCA model using six components was 82%. The R2Y(cum) for the 

same number of components was 85% (Figure 18). The SIMCA model performed better 

compared to the PLS-DA model. These results are in agreement with previous research using the 

SIMCA model for plant species identification (Shirzadifar et al., 2018). 
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Figure 18. Cumulative variation (R2Y(cum)) and predictive ability (Q2Y(cum)), SIMCA model. 

The SIMCA model was applied to an independent dataset. There were some pixels that 

were considered “No class” because they belonged to the background and were not included in 

the training dataset. The model was able to classify the dataset with an accuracy of 0.90 on a 

pixel basis (Table 1). These results were in line with the results obtained from the model cross-

validation in Figure 16 and confirmed SIMCA models’ ability for PA and SOY classification. 

Table 1. Error matrix of the SIMCA model applied to the independent dataset. 

  
Classification (pixels) 

 

  
Soybean Palmer amaranth No class Total 

Ground 

Truth 

Soybean 189581 19509 22394 231484 

Palmer amaranth 11761 75428 9862 97051 

No class x y 32256 328535 

Several studies have been conducted in weed identification using hyperspectral data, yet, 

none have classified Palmer amaranth and soybean species. Okamoto et al. (2007) developed a 

portable hyperspectral imaging system, which captured spectral images in the range of 400 to 
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1000 nm with 10 nm resolution. Their research focused on identifying wild buckwheat, field 

horsetail, green foxtail, and common chickweed in sugar beet crop and achieved a classification 

success rate of 75% to 80% using wavelength transformation and stepwise variable selection 

method. The processing methods used by Okamoto et al. (2007) were different from the methods 

used in this study; furthermore, the species classified were different. 

Suzuki et al. (2008) distinguished goosefoot pigweed, small crabgrass, field horsetail, and 

pearlwort from soybean by employing a hyperspectral imaging system. Reddy et al. (2014) 

characterized Palmer amaranth glyphosate-resistant and susceptible populations with 95% 

accuracy using a laboratory hyperspectral imaging system. Herbicide resistance is highly related 

to the chemical properties of the plants; therefore, it can be classified using the plant’s 

reflectance characteristics. In opposition, differences between plant species can be more difficult 

to identify. 

Gao et al. (2018) separated Canada thistle, rumex, and field bindweed from maize crop 

using a snapshot mosaic hyperspectral imaging sensor, which provided 25 bands from 600 to 871 

nm. Zhang et al. (2019) developed a line-scanning visual and near-infrared hyperspectral 

imaging system that acquired images of samples in a laboratory environment. The authors used 

this system to differentiate barnyard grass and weedy rice from the rice crop and indicated that 

six wavelengths (415, 561, 687, 705, 735, and 1007 nm) showed the potential to discriminate the 

two weeds and rice. Both studies conducted by Gao et al. (2018) and Zhang et al. (2019) used 

hyperspectral data in weed identification; however, none of them had the same objective of 

classifying Palmer amaranth and soybean using hyperspectral imaging. 

The use of hyperspectral imaging in plant species identification has been the focus of 

several researchers. However, no study has been conducted on the identification of Palmer 
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amaranth and soybean in the same manner as described in this paper. In this study, a customized 

scanning platform was also developed to collect hyperspectral imaging data of Palmer amaranth 

and soybean in greenhouse and field conditions. In addition to this, PLS-DA and SIMCA models 

have not been extensively used in species classification using hyperspectral imaging. The need 

for soybean and Palmer amaranth identification and the necessity to explore machine learning 

methods applied to plant species identification made this study necessary. 
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5. CONCLUSIONS 

A platform capable of collecting hyperspectral images was developed to facilitate the 

data collection in greenhouse and field conditions. Palmer amaranth and soybean hyperspectral 

imaging data were collected. Machine learning models were created to discriminate both species. 

The background and noise were removed from the dataset using threshold techniques and PCA 

methods. Models developed using PLS-DA and SIMCA machine learning methods were used to 

classify plants as either Palmer amaranth or soybean. The PLS-DA model achieved a cumulative 

variation (R2Y(cum)) of 60% and predictive ability (Q2Y(cum)) of 60%, while the SIMCA model 

achieved R2Y(cum) of 85% and Q2Y(cum) of 82%. Hyperspectral imaging showed the potential for 

species identification in greenhouse and field conditions. These findings have the potential to be 

instrumental in the development of new weed control techniques. These species identification 

models, associated with a vision system and a mechanical or chemical weeding tool, allow site-

specific weed management techniques, which would increase weed control efficiency. 
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APPENDIX. PLANT MOSAICS 

 

Figure A1. Mosaic of different plant species, at different stages, grown in the greenhouse, 2019. 
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Figure A2. Mosaic of plant images after the segmentation technique, which removed the 

background and unnecessary data. 
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Figure A3. Mosaic of soybeans and Palmer amaranth plants. 
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Figure A4. Sample of field data collected in Carleton, NE. The wind had an important 

contribution to the data quality. Leaves were moving during data collection, generating low 

quality images. 


