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ABSTRACT 

Challenges to growing winter wheat in North Dakota include winter temperature and 

disease pressure.  Fusarium head blight (FHB) is a devastating disease that necessitates breeding 

for resistance. In the NDSU breeding program FHB resistance genes are often associated with a 

decrease in performance. This study used single seed descent to advance lines while maintaining 

a near random population. Early generation (F4) selection focused heavily on yield and the 

presence of FHB resistance quantitative trait loci to develop winter wheat lines with FHB 

resistance and high yield. 

Stripe rust is a fungal disease that is becoming increasingly problematic in North Dakota. 

To assess the available stripe rust resistance in the NDSU winter wheat germplasm, two sets of 

diverse breeding lines were used for stripe rust resistance phenotyping and genotyping by 

sequencing.  The phenotype and genotype data were then used to locate resistance genes through 

genome wide association study. 
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LITERATURE REVIEW 

Wheat Domestication 

The earliest forms of cultivated wheat were the diploid species Triticum monococcum 

(einkorn) and the tetraploid species Triticum dicoccon (emmer wheat).  It wasn’t until around 

10,000 years ago that the hexaploid bread wheat species Triticum aestivum first appeared 

(Feldman, 2001).  Triticum aestivum, along with other small grains like barley, were among the 

first plants domesticated around 10,000 years ago in the Fertile Crescent.  The center of origin 

for wheat can be pinpointed to the mountainous regions around the Tigris and Euphrates rivers 

(Braidwood, 1969).   

Early humans began unconsciously breeding wheat by mass selection (Feldman, 2001).  

They did so by simply choosing the plants that had characteristics important to them such as the 

amount of seeds on a plant and taste, as well as plants that looked healthy.  They would then save 

some of the harvested seeds to plant near their home the next year.  Besides increased yield some 

of the other traits that were first bred for were domestication syndrome traits.  Domestication 

syndrome traits are the traits that need to be modified in order for a plant species to be properly 

domesticated.  Two common domestication traits are loss of spike shattering and a change from 

hulled to free-threshed spikes.  In wheat the first of these traits that was bred for was non-brittle 

rachis (Charmet, 2011).  Having brittle rachis results in spike shattering and loss of seed.  It was 

important to get rid of spike shattering to decrease the amount of seed that is lost when spikes 

become mature (Nalam, 2006).  The second trait that was bred for was naked grain (free-

threshing) (Charmet, 2011).  Making wheat free-threshing made it easy to remove the glumes 

from the grain (Jantasuriyarat, 2004).  It was later determined that wheat plants that have non-

brittle rachis and are free-threshing have a dominant allele at the Q locus (Jantasuriyarat, 2004).  
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Being qualitative traits made it possible for early farmers to breed for these two traits without 

having knowledge as to how the traits are genetically controlled.  Later, more complex traits 

such as flowering time and grain size progressively improved favorably for farmers (Charmet, 

2011).  Since then, wheat has become the most widely cultivated crop with over 120 countries 

growing wheat (Langridge, 2017). 

Economic Importance 

Wheat has become one of the most widely grown crops in the world with over 214 

million ha planted in 2018 with an average yield of 3425 kg/ha (FAOSTAT, 2018).  Wheat has 

one of the largest cultivation regions of any crop being grown from Scandinavia to South 

America (CIMMYT-WHEAT, 2017).  Wheat export quantity exceeds all other crops and 

reached 190 million tonnes in 2018 (FAOSTAT, 2018).  China (131 million tonnes) and India 

100 (million tonnes) are the two largest producers of wheat, accounting for 30% of the total 

wheat production in the world (FAOSTAT, 2018).  The average per capita consumption of wheat 

around the world is 66 kg/year (Awika, 2011).  Wheat is an even more important crop in 

developing countries where 80% of the wheat grown is used for food, compared to 50% in 

already developed countries.  Wheat is an important part of a balanced diet as it is high in both 

carbohydrates and protein.  Wheat is also a very important part of the North Dakota economy.  

North Dakota consistently ranks first in the United States in durum and spring wheat production 

(North Dakota Wheat Commission).  In North Dakota 3.1 million hectares of wheat was grown 

in 2018.  The average yield of wheat in North Dakota was 3201 kg/ha in 2018. 

Types of Wheat 

There are many different types of wheat with the main ones being hard red winter wheat 

(HRWW), soft red winter wheat (SRWW), hard red spring wheat (HRSW), hard white wheat 
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(HWW), soft white wheat (SWW), and durum (US Wheat Associates, 2020).  Different types of 

wheat are used for different types of baking with HRWW being used mainly for bread, HRSW 

for rolls, SRWW for cookies, SWW for cakes, HWW for Asian style noodles, and durum for 

premium pasta.  Different types of wheat also have different production regions within the 

United States.  Hard red winter wheat is mainly grown in the Great Plains region with Kansas 

and Oklahoma being the two main producers.  Soft red winter wheat production is spread 

throughout the eastern United States.  Hard red spring wheat is mainly grown in the upper 

Midwest with most production occurring in North Dakota, Minnesota, Montana, and South 

Dakota.  Hard white wheat is the least grown class of wheat with production occurring in the 

western United States as well as sporadically in the Great Plains.  Soft white wheat is grown 

almost entirely in Washington, Oregon, and Idaho.  Durum wheat is grown almost entirely in 

North Dakota.  Ninety five percent of the wheat currently grown is of the hexaploid bread wheat 

types HRWW, SRWW, HRSW, HWW, and SWW (Shewry, 2009).  Most of the remaining 5% 

grown is durum wheat.  The many different uses in baking along with its ability to grow in drier 

environments than other crops like Zea mays, and Glycine max have made wheat a staple food 

crop throughout the world. 

Wheat Breeding 

Wheat breeding follows the same general five step plan as many other self-pollinating 

crops.  Step 1 is to identify the problem and the objectives, step 2 is to select germplasm, step 3 

choose selection type and breeding method, step 4 evaluate lines, and step 5 release cultivar 

(Baenziger, 2018).  Common problems and objectives targeted in wheat breeding are increasing 

yield, improving disease resistance, increasing abiotic stress tolerance, and decreasing height 

(Grover, 2003).  In wheat it is important to consider how improving one trait will affect other 
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important traits.  Often times when one trait is improved another trait will decrease in value.  An 

example of this in wheat is that when yield is increased protein content is decreased (Fettell, 

2012).  Another example that will be looked at in chapter 2 of this paper is that when exotic 

genes (such as FHB resistance genes) are incorporated into winter wheat, yield may be decreased 

(Bakhsh, 2013). 

After the problem and objectives have been identified, the next step is to select 

germplasm that could achieve the objectives (Baenziger, 2018).  In wheat the most common 

germplasm that is used is lines that have been developed by the breeding program, or lines that 

have been developed by other programs that are acclimated to similar conditions.  If there are no 

lines in that group that could help achieve the objective, breeders will choose lines that are 

adapted to other regions.  In rare circumstances if there are no developed lines that can help 

achieve the objective, breeding will get germplasm from wild relatives of wheat. 

The next step is to choose the breeding method.  In wheat common breeding methods 

used are pedigree selection, bulk selection, single seed descent, doubled haploids, and 

backcrossing (Mac Key, 1986).  Pedigree selection involves planting F2 seeds in rows, selecting 

the best plants in each row for replanting, and repeating these two actions in subsequent 

generations until near homozygosity is reached, which usually takes 5-6 generations (Osei, 

2014).  Pedigree selection focuses heavily on artificial selection (selection by humans) of the 

best genotypes and is therefore labor and resource intensive (Hill, 2001).  The evaluation, 

selection and note taking done while performing pedigree selection provide a lot of useful 

information to the breeding program.  Bulk selection involves planting F2 seed in a bulk plot, 

harvesting plants in bulk, and replanting a sample of the bulked seed until near homozygosity is 

reached (5-6 generations) (Osei, 2014).  Whereas pedigree selection involves selecting the best 
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genotypes, bulk selection relies more heavily on natural selection to get rid of inferior genotypes.  

Artificial selection does not occur until inbred lines have been developed in bulk selection.  This 

makes bulk selection less labor and resource intensive than pedigree selection.  Single seed 

descent is a method used to reach homozygosity rapidly (Snape, 1975).  Single seed descent is 

most often performed in a greenhouse, because of this multiple generations can be grown every 

year.  Single seed descent is initiated from a large F2 and aims to keep as much of the variation in 

the population as possible (Mac Key, 1986). Maintaining variation prevents genotypes that are 

segregating from being prematurely discarded.  Plants need to be handled individually when 

performing single seed descent, and since there is no selection, the population size is a constant 

making single seed descent labor intensive.  Single seed descent is a more rapid procedure for 

spring wheat than winter wheat.  This is because winter wheat requires a vernalization period, 

which reduces the number of generations that can be grown every year.  Doubled haploid 

breeding is another method to reach homozygosity rapidly and can be initiated in the F1. While 

haploids can be generated through androgenesis (Pandey, 1973), the F1 is most commonly 

crossed with an unrelated species (usually maize); the chromosomes from the unrelated species 

are spontaneously eliminated shortly after fertilization leaving a haploid wheat zygote. 

Chromosome number can then be doubled by treating with colchicine (Niu, 2014).  Doubled 

haploids produced in this manner are completely homozygous individuals.   

While Pedigree breeding is the preferred breeding strategy of most wheat breeding 

programs, it has the disadvantage of being less suited to the improvement of quantitative traits 

such as yield (Nunes, 2008). This is because initial (early generation) selection is strongly 

focused on easily evaluated qualitative traits, resulting in rapid erosion of variability for complex 

quantitative traits that can most effectively be selected for in replicated trials conducted in the 
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advanced generations (Mac Key, 1986). A modified version of Pedigree breeding that is more 

accommodating of quantitative traits involves the use of single seed descent inbreeding steps 

rather than the conventional single plant selection steps. In this manner a large number of inbred 

lines are developed through single seed descent from the F2 to generate a population of inbred 

lines that are more representative of the total variability for yield within the cross. Such lines can 

then be evaluated more thoroughly in yield trials.  With winter wheat there is an added level of 

complexity when breeding for complex traits such as cold hardiness and yield. 

Cold hardiness is a complex trait that is quantitatively inherited (Worzella, 1942).  The 

complexity of cold hardiness is due to changes in every morphological, physiological, and 

chemical character when winter wheat goes through cold acclimation (Limin, 1991).  Cold 

hardiness is mostly controlled by additive effect genes, with the cold hardiness of the F1 

population almost always equal to the midpoint of the two parents (Sutka, 1981).  As a trait cold 

hardiness has not been improved upon much in the last century. This is likely due to all the 

genetic variability for cold hardiness in winter wheat having already been exploited (Limin, 

1991).  Further compounding the difficulty of breeding for cold hardiness is inconsistent winter 

temperatures (Fowler, 1979).  If winter temperatures do not drop below the minimum killing 

temperature for a cultivar the cultivar could be considered cold tolerant when in fact its winter 

survival was due to mild winter temperatures.  The same is true for extremely cold winters, 

which could result in complete winterkill.  Variation in the cold hardiness of winter wheat 

genotypes makes selecting high yielding varieties of winter wheat more difficult as well. 

Yield of a wheat plant is determined by the number of spikes per plant X the number of 

spikelets per spike X number of kernels per spikelet X weight per seed (Slafer, 2007).  Being 

controlled by multiple associated traits and many genes with minor effects makes yield a very 
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complex trait (Erkul, 2010).  Each yield component of wheat has higher heritability than yield 

itself, because of this it can be beneficial to select for a single yield component instead of yield 

when trying to improve yield (Erkul, 2010; Slafer, 2007).  The problem with selecting for a 

single yield component is that yield components are often negatively correlated with each other 

(Slafer, 2003).  In winter wheat selection for high yielding lines can be complicated by winterkill 

(Kergjord Olsen, 2017).  A line that could be very high yielding could end up being discarded for 

low yield, when in fact a harsh winter could have resulted in an abnormal amount of winterkill.  

This can be especially problematic in North Dakota when trying to select for high yielding, cold 

hardy lines that also have Fusarium head blight (FHB) resistance.  FHB resistance genes are 

often transferred from spring wheat germplasm which generally lacks cold tolerance and reduces 

yield if winter temperatures are low (Bakhsh, 2013). 

Winter Wheat 

The advantages of planting winter wheat include a higher yield potential than spring 

wheat, early spring growth which can help reduce competition with weeds, reducing the need for 

selective herbicides, and spreading the need of labor and equipment (Wiersma, 2006).  Winter 

wheat can be classified into three different categories based on vernalization length 

requirements.  It can be weak winter, semi-winter, and strong winter (Li, 2013).  Weak winter 

types require two weeks to vernalize, semi-winter requires two to four weeks to vernalize, and 

strong winter types requires more than four weeks to vernalize.  In order to vernalize, 

temperatures usually need to be under eight degrees Celsius for an extended period.  The harsh 

winters in North Dakota can be problematic for growing winter wheat.  Winter hardiness is 

controlled by many genes, and because of its complex inheritance there hasn’t been any genetic 

improvement in the last 100 years (Fowler, 1999).  Winter wheat can survive at soil temperatures 
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down to -26 degrees Celsius (Wiersma, 2005).  In order to improve the likelihood of surviving 

the winter it is important to choose a cultivar with good genetics for winter survival, plant into 

previous crop residue, apply phosphorus, and plant at the recommended date (Ransom, 2016).  

Planting into taller residue from the previous crop can improve winter survival by helping retain 

snow cover on top of established winter wheat seedlings. Snow cover of three inches has been 

shown to greatly increase the likelihood of winter wheat survival (Larson, 1987).  Planting 

winter wheat too early can lead to excessive fall growth and can diminish soil moisture (Ransom, 

2016).  Planting too late may result in the crown not being hardy enough to survive the winter.  

This makes it problematic to plant winter wheat in a wheat-soybean rotation as soybeans are 

often not harvested until after the optimum planting date for winter wheat.  Soybean stubble also 

will not retain as much snow due to its short stature.  In a study conducted by J.K. Larsen and 

L.J. Brun they showed that when planting into seven-inch-tall barley stubble winter wheat 

survival was near 100% (Larson, 1987). 

Winter wheat represents 60-80% of the total wheat production in the United States 

(USDA-ERS).  In the 2018/2019 growing season 61% of the 51.29 million metric tons of wheat 

produced in the United States was winter wheat; this means a total of 31.3 million metric tons of 

winter wheat were produced (FAOSTAT; USDA-ERS).  The major growing region for winter 

wheat in the United States is the Great Plains. Kansas is the state that produces the most winter 

wheat (Plains Grains Inc., 2017).  In the period, 2010-2017 Kansas planted an average of 3.3 

million hectares of winter wheat every year and produced a total of 9.25 million metric tons.  In 

North Dakota winter wheat is far less popular due to the harsh winters.  In North Dakota, from 

2010-2017, 132,000 hectares of winter wheat were grown per year.  North Dakota produces an 

average of 427,000 metric tons of winter wheat per year.  Winter wheat has however, shown 
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potential to be more widely grown in North Dakota.  The average yield of winter wheat in North 

Dakota from 2010-2017 was 3090 kg/ha, higher than that of Kansas which had an average yield 

of 2890 kg/ha. 

Winter Wheat Quality 

In wheat quality, the most important traits are protein percent, milling properties, mixing 

properties, and baking properties.  Protein percent is measured as the percentage of weight of a 

kernel at a specific moisture percent (Carson, 2009).  Milling wheat removes the bran and germ 

from the wheat kernel leaving behind the endosperm (Kanojia, 2018).  The endosperm is then 

crushed to make refined flour.  For milling, high flour extraction percent is important.  Flour 

extraction percent is determined by weighing the amount of flour obtained through milling and 

dividing by the weight of wheat that was used to obtain the flour.  The amount of glutenin in 

wheat flour is an important characteristic that affects mixing properties of flour (Dhaka, 2015).  

Different ways that glutenin content and mixing properties are measured include solvent 

retention capacity, Mixograph, and GlutoPeak characteristics.   

Mixographs are used to measure the mixing characteristics of flour (Hazelton, 1994).  

Mixographs involve adding wheat flower (35, 10, or 2g) into a bowl with water, pins are then 

used to produce a pull, stretch, and tear action on the dough (AACC, 1999; Hazelton, 1994).  In a 

mixograph the increasing slope indicates water absorption, the peak indicates optimum dough 

development and dough strength, and the downward slope indicates the breakdown of gluten 

from excess mixing (Neacsu, 2009).  The main traits that can be measured from a mixograph are 

mix time to optimum consistency, water absorption, dough extensibility, dough stability, mixing 

tolerance, and dough elasticity (Labushagne, 2016).  Longer peak times also signify a higher 

glutenin content in the flour.  The values provided from a mixograph such as peak value (%), 
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peak value time, tail slope, and tail width can be combined into a singular mixograph score 

ranging from 1 (worst) - 8 (best) (Olsen, 2020 Personal Communication). 

Solvent retention capacity (SRC) involves adding different solvents to wheat flour to 

determine components of the flour (Slade, 1994; AACC, 2009). The SRC test measures the 

enhanced swelling behavior of polymer networks when put in a solvent.  The solvents used for 

SRC tests are water, 5% sodium carbonate: 95% water, 50% sucrose: 50% water, and 5% lactic 

acid: 95% water (AACC, 2009).  Different solvents cause different flour components to swell, 

because of this each solvent can be used to measure different components of flour (Guttieri, 

2001).  Sodium carbonate is used to measure damaged starch, sucrose is used to measure 

pentosans, and lactic acid is used to measure glutenin.  Water causes all three components to 

swell.  When performing an SRC test, 5 grams of flour is put in a test tube with 25 grams of 

solvent, the tube is then shaken until the flour is dissolved, the tube is then centrifuged, 

supernatant is then discarded, the test tube is drained, and the swollen flour that remains is 

weighed (AACC, 2009).  The percent weight increase is then recorded as the SRC value.  For 

bread wheat SRC values desired are 65-70 in water, 105-115 in sucrose, 80-90 in sodium 

carbonate, and greater than 140 in lactic acid (U.S. Wheat Associates).  A high SRC in sucrose 

means that the bread made from the flour will have a higher water retention capacity (Kweon, 

2011).  If the SRC in sodium carbonate is high, the bread will stale faster (U.S. Wheat 

Associates).  The high SRC in lactic acid means that the flour has more glutenin (Guttieri, 2001). 

The GlutoPeak uses shear force to measure the aggregation behavior of gluten (Wang, 

2018).  In the GlutoPeak method flour and a solvent are mixed together, the gluten is then 

separated by a rotating paddle until aggregation.  The gluten will then resist the force of the 
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paddle resulting in a torque curve.  This curve can be used to measure how complex the structure 

of the gluten is as well as the breakdown behavior of the gluten structure. 

Diseases Affecting Wheat 

One of the main problems with growing wheat is that there are many diseases that do 

serious harm to the crop.  These diseases include FHB, stem rust, leaf rust, stripe rust, tan spot, 

and stagonospora nodorum blotch (Wiese, 1987).  These diseases along with other abiotic and 

biotic stress factors have led to farmers getting nowhere close to the absolute yield level for 

wheat (Curtis, 2002).  Wheat is estimated to have an absolute yield of 20 tons/ha based on 

genetic potential, but the highest yield farmers have been able to obtain has been 14 tons/ha.  

This has led breeders to focus their research on disease resistance.  In addition to the use of 

native resistance, many of the resistance genes in wheat have been transferred from wild 

relatives (Bakhsh, 2013).  Doing this can sometimes co-introduce deleterious genes through 

linkage drag leading to reduced yield and lower quality. However, in many instances gene 

transfer may not influence other desirable traits, or may even increase yield and quality (Gill, 

2008; Liu, 2009).  If there is a yield or quality penalty associated with a resistance gene in a 

cultivar, then in years where the disease is absent yield or quality may be decreased. 

Rust Diseases Affecting Wheat 

Wheat rust diseases have been a major problem for wheat growers since the beginning of 

wheat cultivation - the Greeks and Romans prayed to specific gods for help against rust diseases 

(Peterson, 2001).  Rust infection in the fall can leave plants weakened and reduce winter survival 

as well as increase the likelihood of other diseases such as powdery mildew (Wiese, 1987). Rust 

diseases are most harmful when the infection occurs during flowering. Rust resistance in wheat 

can be classified as either all-stage or adult-plant resistance (Sthapit, 2014).  All-stage resistance 
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is usually race specific and more effective against a single or few races.  The adult-plant 

resistance can be either race specific or non-race specific.  Rust diseases have three ways of 

dispersion: single event across a very long distance, stepwise range progression, and extinction 

and recolonization (Sharma, 2012).  Human assistance is usually needed for a single event, 

across a very long distance. Stepwise expansion is the gradual expansion of a disease to a new 

area.  Extinction and recolonization occur in areas that aren't suited for year-round survival.  In 

these areas the pathogen relies on wind to blow it to a more suitable area and then back to the 

original area when conditions are suitable there again.  One of the main problems with breeding 

for rust resistance is that rust virulence genes can mutate fast, rendering race specific resistance 

genes useless (McIntosh, 1988). The three main types of rust diseases affecting wheat are stem 

rust, leaf rust, and stripe rust (yellow rust).  

Stem rust is caused by the fungal pathogen Puccinia graminis Pers.  f. sp. tritici (Sharma, 

2012).  Puccinia graminis is a heteroecious pathogen, meaning that it requires two hosts (wheat 

and barberry) to complete its life cycle (Wiese, 1987).  Puccinia graminis is macrocyclic 

meaning that during its life cycle it will produce five different types of spores.  These spores are 

basidiospores, pycniospores, aeciospores, urediniospores, and teliospores (Sharma, 2012).  Stem 

rust can be identified by the red urediniospores that are seen on stems and by black teliospores 

that are seen on stems later in the season.  Stem rust disrupts nutrient flow to the head which 

causes kernels to become shriveled.  If stem rust is not controlled by either planting a resistant 

variety or by applying fungicide, it can lead to a yield reduction between 50 and 70%.  In the 

early 1920s, stem rust destroyed 20% of the wheat grown in the United States.  There are 50 

established (named) genes that provide resistance to stem rust and another 22 genes that do not 

yet have established names (USDA-ARS Cereal Disease Lab, 2017).   
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Leaf rust is caused by the fungal pathogen Puccinia triticina Erikss. (Wiese, 1987).  

Puccinia triticina can survive winters by overwintering as mycelium on volunteer wheat.  

Puccinia triticina is spread by wind blowing the urediniospores from infected plants to 

uninfected plants.  It develops most rapidly between 15 and 22 degrees Celsius when moisture is 

not limited.  Leaf rust is so widespread that it is said to practically co-exist with wheat.  Leaf rust 

can be identified by brown circular uredinia that occur on the top surface of leaves.  Leaf rust is 

not as severe a disease as stem rust, but can lead to yield reductions of around 20%.  There have 

been 77 resistance genes for leaf rust discovered and named (USDA-ARS Cereal Disease Lab, 

2017).  

Stripe rust that is present in North and South America is believed to have originated in 

Europe (Ali, 2014).  Stripe rust was first described in Europe in 1827 (Line, 2002).  Stripe rust 

was first known as Uredo glumarum, later changed to Puccinia glumarum, and in 1956 it was 

changed to its current scientific name Puccinia striiformis (Humphrey, 1916; Cummins, 1956).  

It was first recognized in the U.S. in 1915 in Arizona, but leaf samples revealed that stripe rust 

had been present since 1892 (Carleton, 1915; Line, 2002).  Due to the increased demand for 

wheat during World War I, stripe rust research was rapidly increased (Line, 2002).  Early 

research focused mainly on economic impact, origin, distribution, resistance, morphology, and 

infection process.  Research on stripe rust stalled in 1930 when infection rates slowed (Coakley, 

1979).  Lack of research on stripe rust resulted in this disease becoming the most import disease 

in the Pacific Northwest in 1960.  In 1960 and 1961, stripe rust resulted in tens of millions of 

dollars in damage in the Pacific Northwest alone.  Stripe rust was found on experimental 

nurseries in Fargo, ND in 1958 (Gough, 1958).  That same year it was also found on durum 

wheat fields near Valley City and Langdon, ND. 
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Wheat stripe rust (yellow rust) is caused by the fungal pathogen P. striiformis f. sp. tritici 

(Case, 2014). P. striiformis has five different spore stages (Hovmoller, 2011).  These spore 

stages can be broadly categorized as sexual and asexual spore stages.  The asexual spore stages 

are the infectious stages of P. striiformis.  The sexual spore stages of P. striiformis are not 

infectious to wheat, instead they survive most often on Berberis spp. commonly known as 

barberry.  Barberry is required for the sexual spore stages, because P. striiformis needs a living 

host to survive (Jin, 2010).  The asexual spores can infect wheat at any stage of its growth cycle.  

The spores are usually dispersed through wind (Hovmoller, 2011). 

Stripe rust is one of the most important leaf diseases of wheat with infections occurring 

everywhere that wheat is grown (CAHNRS & WSU Extension, 2020).  Infections occur most 

often when temperatures are 10-16 degrees Celsius (UGA Extension, 2017).  This makes stripe 

rust especially important in winter wheat where most of the growth cycle is completed when 

temperatures are cool in both the fall and spring.  Signs of a stripe rust infection are yellow 

pustules occurring on the leaf surface that are often lined up resembling stripes (Chen, 2005).  

Stripe rust damages wheat plants by extracting nutrients from leaf tissue, increasing 

transpiration, increasing respiration, and decreasing photosynthesis.  This leads to a decrease in 

floret number as well as grain weight.  Stripe rust can destroy entire fields if infection is bad, 

genotypes without resistance are planted, and no fungicide is applied (Chen, 2010).  Yield loss 

can range from 10% in lines with high resistance to 70% in lines with little resistance.  It has 

been estimated that 5.47 million tonnes of wheat are lost to stripe rust infection each year, 

amounting to an economic loss of $979 million (Beddow, 2015). 

Stripe rust can be controlled by applying fungicide.  However, spraying fungicide is 

costly, because of this, lines with resistance to stripe rust are preferred (Singh, 2016).  When 
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stripe rust genes are named they are usually given a name that starts with “Yr” for yellow rust 

followed by a number.  There are two main types of resistance genes to stripe rust (Case, 2014).  

These are all-stage resistance genes and adult-stage resistance genes.  All-stage resistance genes 

provide resistance to stripe rust throughout a plant's life cycle.  The resistance offered by all-

stage resistance genes is often race specific.  Resistance to race specific resistance genes can be 

easily overcome.  Oftentimes only a single gene mutation is needed in the fungus to render the 

gene useless (Flor, 1971).  There are a few all-stage resistance genes such as Yr5, Yr15, and Yr45 

that are effective against many races (Chen, 2002; Chen, 2007; Li, 2011).  Adult-stage resistance 

genes are usually only effective at the later stages of plant development (Chen, 2005).  Adult-

stage resistance genes offer low levels of resistance to multiple races of stripe rust.  Adult-stage 

resistance genes that are not specific to a single race of stripe rust are the most durable.  Stacking 

multiple genes that provide resistance to multiple races of a pathogen is one of the most effective 

ways to provide resistance to a certain pathogen (Singh, 2000).  Most of the stripe rust genes that 

have been identified to date are race specific genes. Due to smaller resistance effects, 

quantitative inheritance and masking by the race-specific genes, the non-race specific genes have 

been less well studied and mapped (Liu, 2015). 

In the study outlined in chapter two the rust resistance genes Lr37/Sr38/Yr17, Lr24/Sr24, 

Lr46/Yr29, Lr56, Lr16, and Lr77 were implemented in a winter wheat population.  The 

Lr37/Sr38/Yr17 translocation is located on the short arm of chromosome 2A in wheat 

(Blaszczyk, 2004).  The translocation is originally from Triticum ventricosum chromosome 2N.  

Lr37 is a race-specific gene for leaf rust resistance (Cristina, 2015).  Sr38 is a widely used 

seedling resistance gene for stem rust (Flath, 2017).  Some studies have shown that resistances 

from Yr17 is only present in the adult-stage, whereas others state that resistance is present in the 
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one-leaf stage (Milus, 2015).  Lr24 and Sr24 co-segregate as they are located on a Thinopyrum 

ponticum-derived translocation that occurs on the long arm of chromosome 3D in bread wheat 

(Mago, 2005).  Sr24 offers resistance to many different races of stem rust.  Lr24 provides 

resistance to many leaf rust races (Zhang, 2011).  Lr46 and Yr29 are located on chromosome 1B 

in wheat and often co-segregate (William, 2003).   Lr46 does not provide active resistance to leaf 

rust, it instead slows down the infection process of leaf rust.  Yr29 is an adult stage resistance 

gene that provides a moderate level of resistance to stripe rust.  Lr56 previously designated as 

LrS12 is a leaf rust resistance gene derived from Aegilops sharonensis (Marais, 2006).  Lr56 is a 

widely-effective race-specific gene located on the short arm of chromosome 6A (Marais, 2010).  

Lr16 is a widely utilized leaf rust resistance gene located on the short arm of chromosome 2B.  

Lr16 is an all-stage resistance gene that leads to a necrotic ring being formed around Puccinia 

triticina uredinia spores when lines carrying Lr16 are infected with leaf rust (Kassa, 2017).  Lr77 

is a leaf rust resistance gene located on the long arm of chromosome 3B (Kolmer, 2018).  Lr77 is 

an adult plant resistance gene. 

Tan Spot and Stagonospora Nodorum Blotch 

Tan spot is caused by the fungal pathogen Pyrenophora tritici-repentis (Wegulo, 2011).  

Tan spot can occur in both tetraploid and hexaploid wheat.  Pyrenophora tritici-repentis 

overwinters in stubble residue (Faris, 2013).  Signs of a Pyrenophora tritici-repentis infection 

include tan colored lesions surrounded by chlorotic circles.  Persistent wet weather during the 

growing season will increase tan spot infection.  In the worst-case scenario, tan spot can lead to a 

yield reduction of 49% (Rees, 1982).  Yield losses are mainly due to reduced kernel weight and 

kernels per head (Shabeer, 1988). 
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Stagonospora nodorum blotch is caused by the fungal pathogen Stagonospora nodorum 

(Mehra, 2019).  Stagonospora nodorum blotch is also commonly referred to as septoria nodorum 

blotch and glume blotch.  The primary inoculum of Stagonospora nodorum blotch are infected 

seeds and ascospores (Solomon, 2006).  Like Pyrenophora tritici-repentis, Stagonospora 

nodorum also overwinters as pseudothecia and pycnidia in stubble (Mehra, 2019).  Initial signs 

of a Stagonospora nodorum infection include yellowing at the infection site and necrosis at the 

leaf tip (Solomon, 2006).  Chlorotic tissue then expands to form oval shaped lesions.  Necrotic 

tissue can then be seen within the chlorotic lesion; in advanced infections the entire leaf can 

become chlorotic.  Yield losses are highest when the flag, F-1, or F-2 leaves are infected.  Yield 

losses are due to a decrease in thousand-kernel-weight. 

Fusarium Head Blight 

Fusarium head blight (FHB) is a fungal disease caused primarily by the pathogen 

Fusarium graminearum (Wiese, 1987).  It is known by many different names such as scab, pink 

mold, whiteheads, and tombstone scab.  FHB prefers wet conditions and temperatures between 

20 and 30 degrees Celsius (Bakhsh, 2013).  It can affect many small grains including wheat and 

barley (Wiese, 1987).  Fusarium graminearum can overwinter as perithecium on crop residues 

(Manstretta, 2016). During anthesis Fusarium graminearum can infect crops when its ascospores 

are blown from an infected plant to a plant that is not infected.  FHB is more severe in spring 

wheat than in winter wheat.  Winter wheat can avoid infection in some cases, because it flowers 

earlier than spring wheat in a drier period (Wiersma, 2005). 

Symptoms of FHB include premature bleaching of the heads and shriveled kernels 

(Wiese, 1987).  This can lead to a massive yield reduction of between 20 and 80% in susceptible 

varieties.  The reduction in yield can be attributed to the reduced size of kernels, and the 
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decreased number of kernels produced when infection occurs early in kernel development 

(Aakre, 2005).  Nganje et al. 2004 found that the cumulative economic cost due to yield loss 

from FHB from 1993-2001 in Illinois, Indiana, Kentucky, Michigan, Missouri, Minnesota, Ohio, 

South Dakota, and North Dakota was $2.491 billion.  They also found that annual economic 

losses over that time period varied from 6.4% in 2000 to 18.7% in 1998.  Economic losses from 

1993-2001 due to FHB were greatest in North Dakota with a loss of $1.1 billion, nearly double 

that of Minnesota, the second worst hit state.  The reduction of yield, however, is not the only 

major problem associated with fusarium. 

Fusarium graminearum produces a mycotoxin known as deoxynivalenol (DON) that is 

poisonous to both humans and animals at very low quantities.  The FDA recommends DON 

levels in finished food products not exceeding 1 ppm, 10 ppm for cattle feed, and 5 ppm for 

swine and other animals (U.S. Food and Drug Administration, 2010).  

These problems have led to wheat breeders trying to incorporate resistance genes into 

almost every new variety that they release.  Two well-characterized and commonly used 

resistance genes for FHB are Fhb1 and Qfhs.ifa-5A (Steiner, 2017).  Fhb1 is located on the short 

arm of chromosome 3B, and Qfhs.ifa-5A is located on chromosome 5A (Waldron, 1999; 

Buerstmayr, 2002).  It was recently determined by Steiner et al. (2019) that Qfhs.ifa-5A is 

actually two separate QTL.  One of these QTL is a major effect QTL referred to as Qfhs.ifa-5Ac 

and was mapped across the centromere; the other QTL, Qfhs.ifa-5AS, is a minor effect QTL and 

was mapped to the distal half of the short arm on chromosome 5A.  Other QTL that have been 

successfully implemented in breeding programs include Fhb2, Fhb4, Fhb5, and Qfhs.nau-2DL 

(Anderson, 2001; Xue, 2010; Xue, 2011; Jiang, 2007).  These QTL were all identified in Chinese 

germplasm, with Fhb1, Fhb2, and Qfhs.ifa-5A all coming from the Chinese variety Sumai-3. 
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There are five different mechanisms of FHB resistance (Mesterhazy, 1999).  Type I 

resistance is resistance to the initial infection (Schroeder, 1963), type II resistance is resistance to 

disease spread within spikes, type III is resistance to DON accumulation (Miller, 1986), type IV 

is resistance to kernel damage (Mesterhazy, 1995), and type V is tolerance (Mesterhazy, 1999).  

Different resistance mechanisms have different broad sense heritabilities with type II being the 

most heritable (.73), followed by type I (.70), type IV (.68), and type III with .54 (Ma, 2019).  

Major resistance genes that confer type I resistance are Fhb4, Fhb5, Qfhs.ifa-5A, and Qfhb.nau-

2b (Lin, 2006; Buerstmayr, 2003; Lin, 2004).  Major resistance genes that confer type II 

resistance are Fhb1, Fhb2, Qfhs.ndsu-3AS, and Qfhb.nau-2B (Liu, 2006; Cuthbert, 2007; Lin, 

2006).  Major resistance genes for type III resistance are QFhs.nau-2DL and QFhs.nau-5AS 

(Jiang, 2007). 

Along with the use of partially resistant cultivars, additional cultivation strategies that 

producers can use to decrease DON levels include implementing an effective crop rotation, 

applying fungicide, and tillage (Aakre, 2005).  A post-harvest strategy to reduce DON content is 

to use screens and air pressure to clean the wheat (DON infected kernels have a lighter test 

weight than uninfected kernels).  However, cleaning wheat is expensive (around 40 cents per 

bushel), and this expenditure has to be less than the discount DON infected wheat has at the time 

of sale. 

Wheat Genome 

Common wheat (Triticum aestivum L.) is an allohexaploid meaning that it is a hexaploid 

derived from the genomes of unrelated species (Haider, 2013).  Wheat has 42 chromosomes and 

is functionally a diploid giving it a genetic formula of 2n=6x=42.  It has two complete sets of 

each of the A, B, and the D genomes.  It was formed from a hybrid between emmer wheat 
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(Triticum turgidum L.), which has a genetic formula of 2n=4x=AABB=28, and Aegilops 

tauschii, which has a genetic formula of 2n=2x=DD=14.  Triticum turgidum in turn originated 

through the hybridization of two diploid species, i.e. T. urartu Thumanian ex Gandilvan 

(2n=2x=AA=14) and an unknown species closely related to the S-genome species of the Sitopsis 

section (possibly Ae. speltoides Tausch) of the genus Aegilops L. that contributed the B 

genome.  The average wheat chromosome contains 810 Mb DNA, making it 25 times larger than 

the average rice chromosome (Gupta, 1999).  Hexaploid wheat has 48 regions that are gene rich 

regions (GRR) (Erayman, 2004).  Eighteen of the gene rich regions are major gene rich regions, 

the other 30 gene rich regions are minor gene rich regions.  The major gene rich regions cover 

11% of the genome, but contain 60% of the genes.  Every chromosome group contains gene rich 

regions with group 1, 5, and 7 chromosomes (8 gene rich regions in each) containing the most 

gene rich regions.  Gene rich regions occur on both the long and short arm of the chromosomes 

with 27 gene rich regions occurring on the long arm of chromosomes, and 21 gene rich regions 

occurring on the short arm of chromosomes.  The five largest gene rich regions (1S0.8, 2L1.0, 

4S0.7, 6S1.0 and 6L0.9) span 3% of the wheat genome and contain 26% of wheat genes. 

Molecular Markers 

Molecular markers can be broadly broken down into two types; hybridization-based and 

PCR-based (Nadeem, 2018).  Hybridization-based markers where the first markers used (He, 

2014).  Restriction fragment length polymorphism (RFLP) is the only hybridization-based 

marker.  PCR is a technique used to amplify a DNA fragment by denaturation of template DNA 

into single strands, annealing of primers to each original strand, and extension of new DNA 

strands (Delidow, 1993).  There are many types of molecular markers that are PCR-based with 

randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism 
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(AFLP), sequence-characterized amplified regions (SCAR), cleaved amplified polymorphic 

sequence (CAPS), simple sequence repeat (SSR), kompetitive allele specific PCR (KASP), and 

single nucleotide polymorphism (SNP) being among the most common (Nadeem, 2018; Zhao, 

2017).  SNP, SSR, KASP, CAPS, and SCAR markers are based on actual sequence information; 

RAPD and AFLP markers are based on more randomly obtained sequences (Pardok, 2014).  Of 

these, single nucleotide polymorphisms are the most common type used. 

A single nucleotide polymorphism is a single base change in a strand of DNA.  Single 

nucleotide polymorphisms are the most common type of genetic variation (Johnson, 2009).  

Single nucleotide polymorphisms are most commonly the result of two types of genetic 

mutations (Robert, 2018).  These mutations are transversions or transitions.  Single nucleotide 

polymorphisms can be used to develop markers.  These markers can then be used to map useful 

genes that are linked to the marker.  Single nucleotide polymorphism markers have many 

advantages over other types of markers.  The advantage of SNP markers are that they are 

abundant, highly heritable, cost effective, are convenient to work with (Koopaee, 2014). 

Genotyping by Sequencing 

Genotyping by sequencing (GBS) is a form of next-generation sequencing (NGS) using 

the Illumina NGS platform for large genome species like wheat (Elshire, 2011).  GBS reveals 

large numbers of SNPs that can be used in genetic studies (Wickland, 2017).  GBS has been 

successfully implemented in genome-wide association studies (Babu, 2020).  The general steps 

of GBS are 1: obtain plant tissue sample; 2: grind tissue and isolate DNA; 3: digest DNA with 

the use of enzymes; 4: attach adaptors and barcoding region (short, unique DNA sequence) to 

DNA segment (amplified fragments from different samples at this stage represent the GBS 

library); 5: analyze library using NGS program for GBS (the program used is usually either 
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MiSeq or HiSeq2500); 6: analyze sequenced data; 7: implement results for GWAS, QTL 

mapping, constructing genome maps, genomic selection, and SNP identification among others 

(He, 2014).  Advantages of using GBS to genotype include low cost, fewer PCR steps, it is easy 

to scale up, and requires fewer samples than other genotyping methods (Davey, 2011).  

Genetic Mapping 

The goal of genetic mapping studies is to identify QTL that contribute to the phenotypic 

expression of a trait (Flint-Garcia, 2003).  QTL can be identified after recombination events 

rearrange chromosome regions.  The different rearranged regions will then result in different 

levels of phenotypic expression of a trait.  There are two main types of genetic mapping studies.  

These are association mapping and linkage mapping (Alvarez, 2014).  Association mapping and 

linkage mapping both rely on recombination events to identify QTL responsible for the variation 

in phenotypic expression of a trait (Zhu, 2008).  They differ however, in the control the 

experimenter has over the amount of recombination. 

Linkage mapping is often conducted by performing a bi-parental cross to develop a 

mapping population (Li, 2010).  This means that the recombination in linkage mapping is highly 

controlled, but that there is only one recombination event.  In linkage mapping only a few 

molecular markers need to be used to identify QTL because there will only be a few 

recombination regions. 

The first step in linkage mapping is to select parental strains that express differing 

phenotypes for the trait of interest (Xu, 2017).  The next step is to choose which type of 

molecular marker is going to be used (SNP, SSR, KASP, etc.).  The third step is to make a bi-

parental cross to develop a mapping population.  There are different types of mapping 

populations.  The most common are F2-derived, backcross, doubled haploid, recombinant inbred 
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lines, and near isogenic lines.  Each has positive and negative attributes when used as a mapping 

population.  The positives for F2-derived lines are that they can be developed quickly and can 

estimate additive and dominance effects; the negatives are that F2-derived lines have low power 

to detect QTL and limited recombination.  Backcross lines work well when trying to map the 

trait that is being incorporated, but backcross lines take a long time to develop and don’t estimate 

dominance effects.  Doubled haploid lines can be developed rapidly and the results of a mapping 

experiment are easy to replicate; the disadvantages for doubled haploids is the cost to develop a 

population and they do not allow the estimation of dominance effects.  Recombinant inbred lines 

allow for abundant recombination, but take a long time to be developed.  After a mapping 

population has been developed the next step is to genotype and phenotype the population.  The 

final step is to find QTL.  The power to detect QTL is affected by the amount that a QTL 

contributes to phenotypic variation, the allele frequency, and the mapping population.  Linkage 

mapping has been successfully used to map many QTL (Morrell, 2012).  The need for higher 

resolution maps however, has led to an increase in the use of linkage disequilibrium mapping. 

Linkage disequilibrium is the nonrandom association of alleles at different loci (Qanbari, 

2020).  Linkage disequilibrium means that there is a correlation between multiple alleles.  

Linkage disequilibrium is used to map QTL in association mapping (linkage disequilibrium 

mapping) studies.  There are many factors that affect linkage disequilibrium in a population.  The 

common factors are recombination, the mating system, subdivisions within the population, 

admixture, population size, mutation, and selection (Rafalski, 2004).  Self-pollinating plant 

species have an extended linkage disequilibrium.  Plant populations that have been selected such 

as commercial cultivars have a more extended linkage disequilibrium decay than populations that 

have not been selected such as landraces.  High recombination rate, high mutation rate, and large 



 

24 

populations all have decreased linkage disequilibrium.  The rate of decrease in linkage 

disequilibrium in a population determines the number of markers that are needed to scan the 

genome (Xu, 2017).  If linkage disequilibrium rapidly decreases more markers are needed, and 

the resulting map will have higher resolution.  If linkage disequilibrium decreases slowly, less 

markers are needed, but the resulting map will be lower resolution.   

In the association mapping experiment discussed in chapter 3, junior and senior winter 

wheat lines were used as the mapping population. Since a self-pollinating species was used and 

the population had previously been selected, the linkage disequilibrium is expected to decay 

slowly.  This means that fewer markers will be needed to cover the genome in the population, 

but the map will be low resolution.  

Genome wide association mapping (linkage disequilibrium mapping) takes advantage of 

all the recombination events that have occurred while the population has been developing (Flint-

Garcia, 2003).  Consequently, maps developed by genome wide association mapping are of a 

much higher resolution than maps that have been developed from linkage mapping (Yu, 2006).  

In order to obtain high resolution association maps the following prerequisites must be 

considered: population structure, genotyping, and accurate phenotyping (Balding, 2006).  

Another advantage of genome wide association mapping is that multiple traits can be tested at 

the same time as long as phenotypic data are available.  Genome wide association mapping does; 

however, have some disadvantages including false-positive and false-negative results (Zegeye, 

2014).   

False-positives are defined as the association of a SNP with the expression of a 

phenotype when no association exists (Li, 2012).  False-positives can result from the population 

structure, due to many neutral markers being significantly correlated with trait differences among 
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subpopulations (Yu, 2006).  Mixed linear models with population structure set as a fixed effect 

can be used to correct for population structure.  The population structure can be obtained by 

using principal component analysis (Price, 2006).  Principal component analysis summarizes the 

original genotype data as a small number of underlying components.  Relatedness is another 

problem that needs to be corrected for in order to obtain accurate results.  Mixed linear models 

can also correct for relatedness by using a marker-genotype kinship matrix (Yu, 2006).   

False-negatives are defined as finding no association between a SNP and the phenotypic 

expression of a trait when an association exists (Li, 2012).  False-negatives can happen because 

GWAS has a low power to detect rare alleles (Kaler, 2020).  GWAS can only detect rare alleles 

if they contribute a significant amount of variation in phenotypic expression.  Using mixed linear 

models to correct for false-positives can lead to an increase in false-negatives due to overfitting 

of the model (Liu, 2016).  Although a single, minor allele does not contribute much to 

phenotypic variation; quantitative traits such as yield are controlled by many minor alleles 

(Korte, 2013).  Most association mapping studies would not consider any of these alleles of 

minor effect to be significant.  Linkage mapping is a much better option when trying to locate 

rare alleles than association mapping (Xu, 2017).   

Another limitation of association mapping is that testing the same population multiple 

times can lead to false results.  In order to correct for false results from multiple testing, use of 

the Bonferroni’s correction, permutation test, or false discovery rate can be done (Muller, 2011; 

Benjamini, 1995).  Bonferroni’s correction is a highly conservative conventional way to correct 

for multiple testing (Muller, 2011).  The permutation test provides reliable results, but can take a 

long time.  False discovery rate is simpler than the other two methods, but can be less precise 

(Benjamini, 1995). 
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The first step when performing a genome wide association study is the selection of 

germplasm (Gomez, 2011).  The germplasm that is selected should be as diverse as possible in 

order to maximize the number of different recombination events that have occurred in each line.  

The selected germplasm should then be phenotyped for the trait of interest.  Some traits that 

association mapping studies are commonly conducted on are disease resistance, abiotic stress 

tolerance, and height.  The next step is to genotype the population.  This is done using a gene 

chip or library (Rimbert, 2018).  In wheat, multiple gene chips of different marker densities have 

been created.  The next step is to determine the linkage disequilibrium.  There are three different 

models that can be used to determine linkage disequilibrium; they are the P model, K model, and 

PK model.  The P model accounts for just the population structure, the K model accounts for the 

relatedness (kinship) within the population, and the PK model accounts for both the population 

structure and the relatedness.  The best model is then determined by calculating the mean square 

difference between the observed and the expected P value.  The model with the lowest mean 

square difference is the best model for that trait within that population.  The chosen model can be 

used to determine the markers that have a significant effect on the expression of a trait based on 

the P-value of each marker.  A Manhattan plot can then be constructed to show what 

chromosome each significant marker is on as well as how likely that marker is associated with 

the trait of interest. 

References 

Aakre, D., G. Flaskerud, K. Hellevang, G. Lardy, M. McMullen, J. Ransom, et al. 2005. DON 

(Vomitoxin) in wheat: basic questions and answers. NDSU Extension Service. 

 

AACC Approved Methods of Analysis, 11th Ed. Method 54-40.02. Mixograph Method. 

November 3rd, 1999. Cereals & Grains Association, St. Paul, MN, U.S.A. 

http://10.1094/AACCIntMethod-54-40.02. 

 



 

27 

AACC Approved Methods of Analysis, 11th Ed. Method 56-11.02. Solvent Retention Capacity 

Profile. June 3rd, 2009. Cereals & Grains Association, St. Paul, MN, U.S.A. 

http://10.1094/AACCIntMethod-56-11.02. 

 

Ali, S., P. Gladieux, M. Leconte, A. Gautier, A.F. Justesen, M.S. Hovmoller, J. Enjalbert, C. de 

Vallavieille-Pope. 2014. Origin, migration routes and worldwide population genetic 

structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS 

Pathogens. 10(1):e1003903. Doi:10.1371/journal.ppat.1003903.  

 

Alvarez, M.F., T. Mosquera, M.W. Blair. 2014. The use of association genetics approaches in 

plant breeding. In Plant Breeding Reviews: Volume 38. J. Janick (Ed.). 

 

Anderson, J.A., R.W. Stack, S. Liu, B.L. Waldron, A.D. Fjeld, C. Coyne, B. Moreno-Sevilla, 

J.M. Fetch, Q.J. Song, P.B. Cregan, R.C. Frohberg. 2001. DNA markers for Fusarium 

head blight resistance QTLs in two wheat populations. Theor Appl Gene. 102:1164-1168. 

 

Awika, J.M. 2011. Major cereal grains production and use around the world. American Chemical 

Society Publications. 1:1-13. 

 

Babu, B.K., R.K. Mathur, G. Ravichandran, P. Anita, M.V.B. Venu. 2020. Genome wide 

association study (GWAS) and identification of candidate genes for yield and oil yield 

related traits in oil palm (Eleaeis guineensis) using SNPs by genotyping-based 

sequencing. Genomics. 112(1):1011-1020. 

 

Baenziger, P.S. 2016. Wheat breeding and genetics. University of Nebraska. DOI:10.1016/B978-

0-08-100596-5.03001-8 

 

Bakhsh, A., N. Mengistu, P. S. Baenziger, I. Dweikat, S. N. Wegulo, D. J. Rose, et. al. 2013. 

Effect of Fusarium head blight resistance gene Fhb1 on agronomic and end-use quality 

traits of hard red winter wheat. Crop Sci. 53:793-801. 

 

Balding, D.J. 2006. A tutorial on statistical methods for population association studies. Nature 

Reviews Genetics. 7:781-791. 

 

Beddow, J.M., P.G. Pardey, Y. Chai, T.M. Hurley, D.J. Kriticos, H.J. Braun, …, T. Yonow. 

Research investment implications of shifts in the global geography of wheat stripe rust. 

Nature Plants. 1:15132. Doi.org/10.1038/nplants.2015.132. 

 

Benjamini, Y., Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. J. R. Statist. Soc. B. 57(1):289-300. 

 

Blaszczyk, L. H. Goyeau, X.Q. Huang, M. Roder, L. Stepien, J. Chelkowski. 2004. Identifying 

leaf rust resistance genes and mapping gene Lr37 on the microsatellite map of wheat. 

Cellular and Molecular Biology Letters. 9:869-878. 

 



 

28 

Braidwood, R.J., H. Cambel, P.J. Watson. 1969. Prehistoric investigations in southeastern 

Turkey. Science. 164(3885):1275-1276. 

 

Buerstmayr, H., M. Lemmens, L. Hartl, L. Doldi, B. Steiner, M. Stierschneider, P. Ruckenbauer. 

2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. 

Resistance to fungal spread (Type II resistance). Theor Appl Genet. 104:84-91. 

 

Buerstmayr, H., B. Steiner, L. Hartl, M. Griesser, N. Angerer, D. Lengauer, T. Miedaner, B. 

Schneider, M. Lemmens. 2003. Molecular mapping of QTLs for Fusarium head blight 

resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. 

Genet. 107:503-508. 

 

CAHNRS, Washington State University Extension. Wheat & small grains - Stripe rust. 

http://smallgrains.wsu.edu/disease-resources/foliar-fungal-diseases/stripe-rust/. Accessed 

on 5/13/2020. 

 

Carleton, M.A. 1915. A serious new wheat rust in this country. Science. 42(1071):58-59. 

 

Carson, G.R., N.M. Edwards. 2009. Criteria of wheat and flour quality. In: K. Khan and P.R. 

Shewry, editors. Wheat-Chemistry and Technology. Elsevier Inc. 

 

Case, A.J., Y. Naruoka, X. Chen, K.A. Garland-Campbell, R.S. Zemetra, A.H. Carter. 2014. 

Mapping stripe rust resistance in a BrundageXCoda winter wheat recombinant inbred line 

population. PLOS ONE. 9(3): e91758. Doi.org/10.1371/journal.one.0091758. 

 

Charmet, G. 2011. Wheat domestication: Lessons for the future. Biology Reports. 334(3):212-

220. 

 

Chen, X.M., M. Moore, E.A. Milus, D.L. Long, R.F. Line, D. Marshall, L. Jackson. 2002. Wheat 

stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 

2000. Plant Disease. 86:39-46. 

 

Chen, X.M. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on 

wheat. Canadian Journal of Plant Pathology. 27(3):314-337. 

 

Chen, X.M. 2007. Challenges and solutions for stripe rust control in the United States. Australian 

Journal of Agricultural Research. 58:648-655. 

 

Chen, X.M., L. Penman, A. Wan, P. Cheng. 2010. Virulence races of Puccinia striiformis f.sp. 

tritici in 2006 and 2007 and development of wheat stripe rust and distributions, 

dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. 

Canadian Journal of Plant Pathology. 32(3):315-333. 

 

CIMMYT-WHEAT. 2017. WHEAT in the world. https://wheat.org/wheat-in-the-

world/#:~:text=Wheat%20is%20grown%20yearly%20on,crop%20(see%20map%20belo

w). 

http://smallgrains.wsu.edu/disease-resources/foliar-fungal-diseases/stripe-rust/


 

29 

Coakley, S.M. 1979. Climate variability in the Pacific Northwest and its effect on stripe rust 

disease of winter wheat. Climatic Change. 2:33-51. 

 

Cristina, D., A.G. Turcu, M. Ciuca. 2015. Molecular detection of resistance genes to leaf rust 

Lr34 and Lr37 in wheat germplasm. Agriculture and Agriculture Science Procedia. 

6:533-537. 

 

Cummins, GB, J.A. Stevenson. 1956. A checklist of North American rust fungi (Uredinales). 

Plant Disease Reporter. 240:109-183. 

 

Curtis, B. C. 2002. Wheat in the world. In: B. C. Curtis, S. Rajaram, H. G. Macpherson, editors. 

Bread wheat improvement and production. Food and agriculture organization of the 

United Nations. Rome, Italy. p. 1-15. 

 

Cuthbert, P.A., D.J. Somers, A. Brule-Babel. 2007. Mapping of Fhb2 on chromosome 6BS: a 

gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum 

L.). Theor. Appl. Genet. 114:429-437. 

 

Davey, J.W., P.A. Hohenlohe, P.D. Etter, J.Q. Boone, J.M. Catchen, M.L. Blaxter. 2011. 

Genome-wide genetic marker discovery and genotyping using next-generation 

sequencing. Nature Reviews Genetics. 12:499-510. 

 

Delidow, B.C., J.P. Lynch, J.J. Peluso, B.A. White. 1993. Polymerase chain reaction: basic 

protocols. Methods in Molecular Biology. 15:1-29. 

 

Dhaka, V, D.S. Khatkar. 2015. Effects of gliadin/glutenin and hmw-gs/lmw-gs ratio on dough 

rheological properties and bread-making potential of wheat varieties.  Journal of Food 

Quality. 38:71-82. 

 

Elshire, R.J., J.C. Glaubits, Q. Sun, J.A. Poland, K. Kawamota, E.S. Buckler, S.E. Mitchell. 

2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity 

species. PLoS ONE. 6(5): e19379. Doi:10.1371/journal.pone.0019379. 

 

Erayman, M., D. Sandhu, D. Sidhu, M. Dilbirligi, P.S. Baenziger, K.S. Gill. Demarcating the 

gene-rich regions of the wheat genome. Nucleic Acids Research. 32(12):3546-3565. 

 

Erkul, A., A. Unay, C. Konak. 2010. Inheritance of yield and yield components in a bread wheat 

(Triticum aestivum L.) cross. Turkish Journal of Field Crops. 15(2):137-140. 

 

Food and Drug Administration-Foods and Veterinary Medicine, Center for Food Safety and 

Applied Nutrition, Center for Veterinary Medicine. 2010. Guidance for industry and 

FDA: Advisory levels for Deoxynivalenol (DON) in finished wheat products for human 

consumption and grains and grain by-products used for animal feed. Guidance 

Document. Fda.gov/regulatory-information/search-fda-guidance-documents/guidance-

industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human. 

 



 

30 

FAOSTAT. 2018. Crops. World-Yield-Wheat-2018. Fao.org/faostat/en/#data/QC. Accessed 

4/2/2020. 

 

FAOSTAT. 2018. Countries by commodity. 

http://www.fao.org/faostat/en/#rankings/countries_by_commodity 

 

Faris, J.D., Z. Liu, S.S. Xu. Genetics of tan spot resistance in wheat. Theoretical and Applied 

Genetics. 126:2197-2217. 

 

Feldman, M. 2001. Origin of Cultivated Wheat. In: A.P. Bonjean, W. J. Angus, editors. The 

world wheat book: A history of wheat breeding. Lavoisier Publishing. Paris, France. p. 7-

12. 

 

Fettell, N., R. Brill, M. Gardner, G. McMullen. 2012. Yield and protein relationships in wheat. 

Grains Research & Development Corporation.  

 

Flath, K., T. Miedaner, P.D> Olivera, M.N. Rouse, Y. Jin. 2018. Genes for wheat stem rust 

resistance postulated in German cultivars and their efficacy in seedling and adult-plant 

field tests. Plant Breeding. 1-12. 

 

Flor, H.H. 1971. Current status of the gene-for-gene concept. Annual Reviews Phytopathology. 

9:275-296. 

 

Fowler, D.B., L.V. Gusta. 1979. Selection for winterhardiness in wheat. I. Identification of 

genotypic variability. Crop Science.19:769-772. 

 

Fowler, D. B., A. E. Limin, and J. T. Ritchie. 1999. Low-Temperature Tolerance in Cereals: 

Model and Genetic Interpretation. Crop Sci. 39:626-633. 

 

Gill, B.S., L. Huang, V. Kuraparthy, W.J. Raupp, D.L. Wilson, B. Friebe. Alien genetic 

resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. 

Australian Journal of Agricultural Research. 59(3):197-205. 

 

Gomez, G., M.F. Alvarez, T. Mosquera. 2011. Association mapping, a method to detect 

quantitative trait loci: statistical bases. Agron. Colomb. 29(3). 

 

Gough, F.J., N.D. Williams, W.E. Brentzel. 1959. Occurrence of stripe rust in North Dakota in 

1958. Plant Disease Reporter. 43(2):169-171. 

 

Grover, A., D. Pental. 2003. Breeding objectives and requirements for producing transgenics for 

major field crops of India. Current Science. 84(3):310-320. 

 

Gupta, P. K., R. K. Varshney, P. C. Sharma, and B. Ramesh. 1999. Molecular markers and their 

applications in wheat breeding. Plant Breeding. 118: 369-390. 

 



 

31 

Guttieri, M.J., D. Bowen, D. Gannon, K. O’Brien, E. Souza. 2001. Solvent retention capacities 

of irrigated soft white spring wheat flours. Crop Science. 41(4):1054-1061. 

 

Haider, N. (2013).  The origin of the B-genome of bread wheat (Triticum aestivum L.). Russ J 

Genet 49: 263-274.  

 

Hazelton, J.L., C.E. Walker. 1994. Changes in mixograms resulting from variation in shear 

caused by different bowl pin sizes. Cereal Chemistry. 71(6):632-624. 

 

He, J., X. Zhao, A. Laroche, Z.X. Lu, H.K. Liu, Z. Li. 2014. Genotyping-by-sequencing (GBS), 

an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers 

in Plant Science. 5(484): doi:10.3389/fpls.2014.00484. 

 

Hill, W.G. 2001. Artificial selection.  Encyclopedia of Genetics. 96-101. 

https://doi.org/10.1006/rwgn.2001.0075. 

 

Hovmoller, M.S., C.K. Sorensen, S. Walter, A.F. Justesen. 2011. Diversity of Puccinia 

striiformis on cereals and grasses. Annual Review of Phytopathology. 49:197-217. 

 

Humphrey, H.B., A.G. Johnson. 1916. Observations on the occurrence of Puccinia glumarum in 

the United States. Phytopathology. 6:96-97. 

 

Jantasuriyarat, C., M.I. Vales, C.J.W. Watson, O. Riera-Lizarazu. 2004. Identification and 

mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat 

(Triticum aestivum L.). Theor Appl Genet. 108:261-273. 

 

Larsen, J.K, L.J. Brun, J.W. Enz, D.J. Cox. 1987. Minimizing the risk of producing winter wheat 

in North Dakota. 1. The effect of tillage on snow depth, soil temperature, and winter 

wheat survival. Farm Research. 44(5). 

 

Jiang, G.-L., Y. Dong, J. Shi, R.W. Ward. 2007. QTL analysis of resistance to Fusarium head 

blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol 

accumulation and grain yield loss. Theor Appl Genet. 115:1043-1052. 

 

Jin, Y., L.J. Szabo, M. Carson. 2010. Century-old mystery of Puccinia striiformis life history 

solved with the identification of Berberis as an alternate host. Phytopathology. 100: 432-

435. 

 

Johnson, A.D. 2009. Single-nucleotide polymorphism bioinformatics. Circulation: 

Cardiovascular Genetics. 2:530-536. 

 

Kaler, A.S., J.B. Gillman, T. Beissinger, L.C. Purcell. 2020. Comparing different statistical 

models and multiple testing corrections for association mapping in soybean and maize. 

Front Plant Sci. 10(1794). doi.org/10.3389/fpls.2019.01794. 

 



 

32 

Kanojia, V., N.L. Kushwaha, M. Reshi, A. Rouf, H. Muzaffar. 2018. Products and byproducts of 

wheat milling process. International Journal of Chemical Studies. 6(4):990-993. 

 

Kassa, M.T., F.M. You, C.W. Hiebert, C.J. Pozniak, P.R> Fobert, A.G. Sharpe, …, C.A. 

McCartney. 2017. Highly predictive SNP markers for efficient selection of the wheat leaf 

rust resistance gene Lr16. BMC Plant Biology. 17(1):45. 

 

Kolmer, J.A., Z. Su, A. Bernardo, G. Bai, S. Chao. 2018. Mapping and characterization of the 

new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat. Theor. 

Appl. Genet. 131:1553-1560. 

 

Koopaee, H.K., A.E. Koshkoiyeh. 2014. SNPs genotyping technologies and their applications in 

farm animals breeding programs: review. Brazilian Archives of Biology and Technology. 

57(1):87-95. 

 

Korte, A., A. Farlow. 2013. The advantages and limitations of trait analysis with GWAS: a 

review. Plant Methods. 9(29). 

 

Kweon, M., L. Slade, H. Levine. 2011. Solvent retention capacity (SRC) testing of wheat flour: 

principles and value in predicting flour functionality in different wheat-based food 

processes and in wheat breeding-a review. Cereal Chemistry. 88(6):537-552. 

 

Labuschagne, M.T., R.C. Lindeque, A. van Biljon. 2016. Dough mixing characteristics measured 

by Mixsmart software as possible predictors of bread making quality in three production 

regions of South Africa. Journal of Cereal Science. 70:192-198. 

 

Li, G., M. Yu, T. Fang, S. Cao, B. F. Carver, and L. Yan. 2013. Vernalization requirement 

duration in winter wheat is controlled by TaVRN-A1 at the protein level. The Plant 

Journal. 76(5): 742-753. 

 

Li, H., S. Hearne, M. Banziger, Z. Li, J. Wang. 2010. Statistical properties of QTL linkage 

mapping in biparental genetic populations. Heredity. 105:257-267. 

 

Li, H.H., L.Y. Zhang, J.K. Wang. 2012. Estimation of statistical power and false discovery rate 

of QTL mapping methods through computer simulation. Chinese Science Bulletin. 

57(21):2701-2710. 

 

Li, Q., X.M. Chen, M.N. Wang, J.X. Jing. 2011. Yr45, a new wheat gene for stripe rust 

resistance on the long arm of chromosome 3D. Theoretical and Applied Genetics. 

122:189-197. 

 

Limin, A.E., D.B. Fowler. 1991. Breeding for cold hardiness in winter wheat: problems, progress 

and alien gene expression. Field Crops Research. 27:201-218. 

 

 



 

33 

Lin, F., Z.X. Kong, H.L. Zhu, S.L. Xue, J.Z. Wu, D.G. Tian, J.B. Wei, C.Q. Zhang, Z.Q. Ma. 

2004. Mapping QTL associated with resistance to Fusarium head blight in the 

Nanda2419 x Wangshuibai population. I. Type II resistance. Theor. Appl. Genet. 

109(7):1504-1511. 

 

Lin, F., S.L. Xue, Z.Z. Zhang, C.Q. Zhang, Z.X. Kong, G.Q. Yao, …, Z.Q. Ma. 2006. Mapping 

QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai 

population. II: Type I resistance. Theor. Appl. Genet. 112: 

 

Line, R.F. 2002. Stripe rust of wheat and barley in North America: A retrospective historical 

review. Annual Review of Phytopathology. 40:75-118. 

 

Liu, J., Z. He, L. Wu, B. Bai, W. Wen, C. Xie, X. Xia. 2015. Genome-wide linkage mapping of 

QTL for adult-plant resistance to stripe rust in a Chinese wheat population Linmai 2 x 

Zong 892. PLoS ONE. 10(12): e0145462. doi.org/10.1371/journal.pone.0145462. 

 

Liu, S., X. Zhang, M.O. Pumphrey, R.W. Stack, B.S. Gill, J.A. Anderson. 2006. Complex 

microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic 

region harboring a major QTL for resistance to Fusarium head blight in wheat. Functional 

& Integrative Genomics. 6:83-89. 

 

Liu, X., M. Huang, B. Fan, E.S. Bucker, Z. Zhang. 2016. Iterative usage of fixed and random 

effect models for powerful and efficient genome-wide association studies. PLoS 

Genetics. 12(2): e1005767. doi.org/10.1371/journal.pgen.1005767. 

 

Liu, W.Q., Y.Y. Fan, J. Chen, Y.F. Shi, J.L. Wu. 2009. Avoidance of linkage drag between blast 

resistance gene and the QTL conditioning spikelet fertility based on genotype selection 

against heading date in rice. Rice Science. 16(1):21-26. 

 

Ma, Z., Q. Xie, G. Li, H. Jia, J. Zhou, Z. Kong, N. Li, Y. Yuan. 2020. Germplasms, genetics and 

genomics for better control of disastrous wheat Fusarium head blight. Thor. Appl. Genet. 

133:1541-1568. 

 

Mac Key, J., C.O. Qualset. 1986. Conventional methods of wheat breeding. Crop Science 

Society of America and American Society of Agronomy. 13:7-24. 

 

Mago, R., H.S. Bariana, I.S. Dundas, W. Spielmeyer, G.J. Lawrence, A.J. Pryor, J.G. Ellis. 2005. 

Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 

and Sr26 in diverse wheat germplasm. Theor. Appl. Genet. 111:496-504. 

 

Manstretta, V., V. Rossi. 2016. Effects of temperature and moisture on development of Fusarium 

graminearum perithecia in maize stalk residues. Applied and Environmental 

Microbiology. 82(1):184-191. 

 

Marais, G.F., B. McCallum, A.S. Marais. 2006. Leaf rust and stripe rust resistance genes derived 

from Aegilops sharonensis. Euphytica. 149:373-380. 



 

34 

Marais, G.F., B. McCallum, J.A. Kolmer, S.M. Pirseyedi, B.R. Bisek, M. Somo. 2017. 

Registration of spring wheat sources of leaf rust resistance genes Lr53, Lr56, Lr59, and 

Lr62. Journal of Plant Registrations. 12:157-161. 

 

McIntosh, R. A. 1988. The role of specific genes in breeding for durable stem rust resistance in 

wheat and triticale. In: N. W. Simmonds, S. Rajaram, editors. Breeding strategies for 

resistance to the rusts of wheat. CIMMYT. Mexico. p. 1-2. 

 

Mehra, L.K., U. Adhiraki, P.S. Ojiambo, C. Cowger. 2019. Septoria nodorum blotch of wheat. 

The Plant Health Instructor. doi.org/10.1094/PHI-I-2019-0514-01. 

 

Mesterhazy, A. 1995. Types of components of resistance to Fusarium head blight of wheat. Plant 

Breeding. 114(5):377-386. 

 

Miller, J.D., Arnison, P.G. 1986. Degradation of deoxynivalenol by suspension cultures of the 

Fusarium head blight resistant wheat cultivar Frontana. Canadian Journal of Plant 

Pathology. 8:147-150. 

 

Milus, E.A., K.D. Lee, G. Brown-Guedira. 2015. Characterization of stripe rust resistance in 

wheat lines with resistance gene Yr17 and implications for evaluating resistance and 

virulence. Phytopathology. 105:1123-1130. 

 

Morrell, P.L., E.S. Buckler, J. Ross-ibarra. 2012. Crop genomics: advances and applications. 

Nature Reviews-Genetics. 13(2):85-96. 

 

Muller, B.U., B. Stich, H.-P. Piepho. 2011. A general method for controlling the genome-wide 

type I error rate in linkage and association mapping experiments in plants. Heredity. 

106(5):825-831. 

 

Naddem, M.A., M.A. Nawaz, M.Q. Shahid, Y. Dogan, G. Comertpay, M. Yildiz, …, F.S. 

Baloch. 2018. DNA molecular markers in plant breeding: current status and recent 

advancements in genomic selection and genome editing. Biotechnology & Biotechnical 

Equipment. 32(2):261-285. 

 

Nalam, V.J., M.I. Vales, C.J.W. Watson, S.F. Kianian, O. Riera-Lizarazu. 2006. Map-based 

analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum 

turgidum L.). Theor Appl Genet. 112: 373-381. 

 

Neacsu, A., G. Stanciu, N.N. Saulescu. 2009. Most suitable mixing parameters for use in 

breeding bread wheat for processing quality. Cereal Research Communication. 31(1):83-

92. 

 

Nganje, W.E., S. Kaitibie, W.W. Wilson, F.L. Leistritz, D.A. Bangsund. 2004.  Economic 

impacts of Fusarium head blight in wheat and barley: 1993-2001. Agribusiness and 

Applied Economics Report No 538. North Dakota State University. 

 

https://doi.org/10.1094/PHI-I-2019-0514-01


 

35 

Niu, Z., A. Jiang, W.A. Hammad, A. Oladzadabbasabadi, S.S. Xu, M. Mergoum, E.M. Elias. 

2014. Review of doubled haploid production in durum and common wheat through wheat 

x maize hybridization. Plant Breeding. 133(3):313-320. 

 

North Dakota Wheat Commission. https://www.ndwheat.com/growers/chartsandstats/ 

 

Nunes, J.A.R., M.A.P. Ramalho, D.F. Ferreira. 2008. Inclusion of genetic relationship 

information in the pedigree selection method using mixed models.  Genetics and 

Molecular Biology. 31(1):73-78. 

 

Osei, M.K., M.D. Asante, A. Agyeman, M.A. Adebayo, H. Adu-Dapaah. Plant breeding: a tool 

for achieving food sufficiency. Sustainable Development and Biodiversity. 2. DOI 

10.1007/978-3-319-06904-3_11. 

 

Pandey, K.K. 1973. Theory and practice of induced androgenesis. New Phytology. 72:1129 

1140. 

 

Pardok D.C., S. Terracciano, S. Giordano, V. Spagnuolo. 2014. Molecular markers based on 

PCR methods: a guideline for mosses. Cryptogamie, Bryologie. 35(3):229-246. 

 

Peterson, P. D. 2001. Stem rust of wheat: exploring the concepts. In: P. D. Peterson, editor. Stem 

rust of wheat: from ancient enemy to modern foe. The American Phytopathological 

Society. St. Paul, MN. p. 1-2. 

 

Plains Grains Inc. 2017. Hard red winter wheat- 2017 regional quality survey. 

https://www.plainsgrains.org/wp-content/uploads/2018/10/2017-HRWW-

Report__HiRes-FINAL.pdf.  

 

Prescott, J.M., P.A. Burnett, E.E. Saari, J. Ransom, J. Bowman, W. de Milliano, R.P. Singh, G. 

Bekele. 1986. Wheat diseases and pests-a guide for field identification. Mexico, D. F.: 

International Maize and Wheat Improvement Center (CIMMYT). 

 

Price, A.L., N.J. Patterson, R.M. Plenge, M.E. Weinblatt, N.A. Shadick, D. Reich. 2006. 

Principal components analysis corrects for stratification in genome-wide association 

studies. Nature Genetics. 38(8):904-909. 

 

Ransom, J., F. Marais, S. Simsek, A. Friskop. 2016. North Dakota hard winter wheat-variety trial 

results for 2016 and selection guide. NDSU Extension Service. Fargo, ND. 

 

Rees, R.G., G.J. Platz, R.J. Mayer. 1982. Yield losses in wheat from yellow spot: comparison of 

estimates derived from single tillers and plots. Aust. J. Agric. Res. 33:899-908. 

  

Rimbert, H. B. Barrier, J. Navarro, J. Kitt, F. Choulet, M. Leveugie, …, E. Paux. 2018. High 

throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE. 13(1): 

e0186329. https://doi.org/10.1371/journal.pone.0186329 

 

https://www.ndwheat.com/growers/chartsandstats/
https://www.plainsgrains.org/wp-content/uploads/2018/10/2017-HRWW-Report__HiRes-FINAL.pdf
https://www.plainsgrains.org/wp-content/uploads/2018/10/2017-HRWW-Report__HiRes-FINAL.pdf


 

36 

Robert, F., J. Pelletier. 2018. Exploring the impact of single-nucleotide polymorphisms on 

translation. Front. Genet. https://doi.org/10.3389/fgene.2018.00507. 

 

Schroeder, H.W., J.J. Christensen. 1963. Factors affecting resistance of wheat to scab by 

Gibberella zeae. Phytopathology. 53:831-838. 

 

Shabeer, A., W.W. Bockus. 1988. Tan spot effects on yield and yield components relative to 

growth stage in winter wheat. Plant Disease. 72:599-602. 

 

Sharma, I. 2012. Diseases in wheat crops - an introduction. In: I. Sharma, editor. Diseases 

resistance in wheat. CABI. Wallingford Oxfordshire, UK. p. 1. 

 

Shewry, P.R. 2009. Wheat. Journal of Experimental Botany. 60(6):1537-1553.  

 

Singh, R.P., J. Huerta-Espino, S. Rajaram. 2000. Achieving near-immunity to leaf and stripe 

rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et 

Entomologica Hungarica. 35:133-139. 

 

Singh, R.P., P.K. Singh, J. Rutkoski, D.P. Hodson, X. He, L.N. Jorgensen, M.S. Hovmoller, J. 

Huerta-Espino. 2016. Disease impact on wheat yield potential and prospects of genetic 

control. Annual Review of Phytopathology. 54:303-322. 

 

Slade, L. H. Levine. 1994. Structure-function relationships of cookies and cracker ingredients. 

In: H. Faridi, editor. The Science of Cookies and Cracker Production. Chapman & Hall. 

New York. p:23-141. 

 

Slafer, G.A. 2003. Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann. 

Appl. Biol. 142:117-128. 

 

Slafer, G.A. 2007. Physiology of determination of major wheat yield components. In: H.T. Buck, 

et al., editors. Wheat Production in Stressed Environments. Springer. p:557-565. 

 

Snape, J.W., T.J. Riggs. 1975. Genetical consequences of single seed descent in the breeding of 

self-pollinating crops. Heredity. 35(2):211-219. 

 

Solomon, P.S., R.G.T. Lowe, K.C. Tan, O.D.C. Waters, R.P. Oliver. 2006. Stagonospora 

nodorum: cause of Stagonospora nodorum blotch of wheat. Molecular Plant Pathology. 

7(3):147-156 

 

Steiner, B., M. Buerstmayr, S. Michel, W. Schweiger, M. Lemmens, H. Buerstmayr. 2017. 

Breeding strategies and advances in line selection for Fusarium head blight resistance in 

wheat.  Trop. Plant pathol. 42: 165-174. 

 

 

 

https://doi.org/10.3389/fgene.2018.00507


 

37 

Steiner, B., M. Buerstmayr, C. Wagner, A. Danler, B. Eshonkulov, M. Ehn, H. Buerstmayr. 

2019. Fine-mapping of the Fusarium head blight resistance QTL Qfhs.ifa-5A identifies 

two resistance QTL associated with anther extrusion.  Theor. Appl. Genet. 132:2039-

2053. 

 

Sthapit, J., M. Newcomb, J. M. Bonman, X. Chen, and D. R. See. 2014. Genetic diversity for 

stripe rust resistance in wheat landraces and identification of accessions with resistance to 

stem rust and stripe rust. Crop Sci. 54:2131-2139. 

 

Sutka, J. 1981. Genetic studies of frost resistance in wheat. Theor. Appl. Genet. 59:145-152. 

 

University of Georgia Extension. 2017. Stripe rust (yellow rust) of wheat. 

https://extension.uga.edu/publications/detail.html?number=C960&title=Stripe%20Rust%

20(Yellow%20Rust)%20of%20Wheat 

 

USDA-ARS Cereal Disease Lab. 2017. Resistance Genes. St. Paul, MN. 

https://www.ars.usda.gov/midwest-area/4stpaul/cereal-disease-lab/docs/resistance-

genes/resistance-genes/. Accessed on 11/14/2018. 

 

USDA-ERS. Wheat sector at a glance. https://www.ers.usda.gov/topics/crops/wheat/wheat-

sector-at-a-glance/#classes. 

 

U.S. Wheat Associates.  Wheat Classes. https://www.uswheat.org/working-with-buyers/wheat-

classes/. Accessed on 5/13/2020. 

 

U.S. Wheat Associates. 2018. Recommended SRC values for selected products. 

https://www.uswheat.org/wp-content/uploads/2018/03/Solvent-Retention-Capacity-

Recommendations.pdf. Accessed on 9/29/2020. 

 

Waldron, B.L., B. Moreno-Sevilla, J.A. Anderson, R.W. Stack, R.C. Frohberg. 1999. RFLP 

mapping of QTL for Fusarium head blight resistance in wheat. Crop Science. 39(3):805-

811. 

 

Worzella, W.W. 1942. Inheritance and interrelationship of components of quality, cold 

resistance, and morphological characters in wheat hybrids. Journ. Agr. Res. 65(11):501-

522. 

 

William, M., R.P. Singh, J. Huerta-Espino, S. Ortiz Islas, D. Hoisington. Molecular marker 

mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance 

gene Yr29 in wheat. Phytopathology. 93:153-159. 

 

Wegulo, S.N. 2011. Tan spot of cereals. The Plant Health Instructor. DOI: 10.1094/PHI-I-2011-

0426-01. 

 

 

https://extension.uga.edu/publications/detail.html?number=C960&title=Stripe%20Rust%20(Yellow%20Rust)%20of%20Wheat
https://extension.uga.edu/publications/detail.html?number=C960&title=Stripe%20Rust%20(Yellow%20Rust)%20of%20Wheat
https://www.ars.usda.gov/midwest-area/4stpaul/cereal-disease-lab/docs/resistance-genes/resistance-genes/
https://www.ars.usda.gov/midwest-area/4stpaul/cereal-disease-lab/docs/resistance-genes/resistance-genes/
https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/#classes
https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/#classes
https://www.uswheat.org/working-with-buyers/wheat-classes/
https://www.uswheat.org/working-with-buyers/wheat-classes/
https://www.uswheat.org/wp-content/uploads/2018/03/Solvent-Retention-Capacity-Recommendations.pdf
https://www.uswheat.org/wp-content/uploads/2018/03/Solvent-Retention-Capacity-Recommendations.pdf


 

38 

Wickland, D.P., G. Battu, K.A. Hudson, B.W. Diers, M.E. Hudson. A comparison of 

genotyping-by-sequencing analysis methods on low-coverage crop datasets shows 

advantages of a new workflow, GB-eaSy. BMC Bioinformatics. 18(586). 

doi.org/10.1186/s12859-017-2000-6. 

 

Wiersma, J., Z. Fore, H. Kandel. 2006. The feasibility of winter wheat following soybean in 

northern Minnesota. Online. Crop Management doi:10.1094/CM-2006-1110-01-RS. 

 

Wiersma, J.J., J.K. Ransom. 2005. The small grains field guide. North Dakota State University 

Ext. Pub. A290. Fargo, ND. 

 

Wiese, M. V. 1987. Infectious diseases - diseases caused by bacteria and mycoplasmas. In: M. V. 

Wiese, editor. Compendium of wheat diseases. Second Edition. The American 

Phytopathological Society. St. Paul, MN, USA. pg. 16-41. 

 

Xue, S., G. Li, H. Jia, F. Xue, F. Lin, M. Tang, Y. Wang, X. An, H. Xu, L. Zhang, Z. Kong, Z. 

Ma. 2010. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium 

infection in bread wheat (Triticum aestivum L.). Theor Appl Genet. 121:147-156. 

 

Xue, S., F. Xu, M. Tang, Y. Zhou, G. Li, X. An, F. Ling, H. Xu, H. Jia, L. Zhang, Z. Kong, Z. 

Ma. 2011. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium 

infection in bread wheat (Triticum aestivum L.). Theor Appl Genet. 123:1055-106. 

 

Yu, J., E.S. Buckler. 2006. Genetic association mapping and genome organization of maize. 

Current Opinion in Biotechnology. 17(2):155-160. 

 

Yu, J., G. Pressoir, W.H. Briggs, I.V. Bi, M. Yamasaki, J.F. Doebley, et al. 2006. A unified 

mixed-model method for association mapping that accounts for multiple levels of 

relatedness. Nature Genetics. 32(2):203-208. 

 

Zegeye, H., A. Rasheed, F. Makdis, A. Badebo, F.C. Ogbonnaya. 2014. Genome-wide 

association mapping for seedling and adult plant resistance to stripe rust in synthetic 

hexaploid wheat. PLoS ONE. 9(8): e105593. Doi:10.1371/journal.pone.0105593. 

 

Zhang, N., W.X. Yang, D.Q. Liu. 2011. Identification and molecular tagging of leaf rust 

resistance gene (Lr24) in wheat. Agricultural Sciences in China. 10(12):1898-1905. 

 

Zhao, S., A. Li, C. Li, H. Xia, C. Zhao, Y. Zhang, L. Hou, X. Wang. 2017. Development and 

application of KASP marker for high throughput detection of AhFAD2 mutation in 

peanut. Electronic Journal of Biotechnology. 25:9-12. 

 

Zhu, C., M. Gore, E.S. Buckler, J. Yu. 2008. Status and prospects of association mapping in 

plants. The Plant Genome. 1(1):5-20. 

 

  



 

39 

EARLY GENERATION SELECTION OF HARD RED WINTER WHEAT LINES TO 

IMPROVE YIELD AND FHB RESISTANCE 

Abstract 

Incorporating Fhb1 and Qfhs.ifa-5A into NDSU winter wheat lines has historically 

resulted in lines that had lower grain yield than lines without the resistance. This necessitated 

pre-breeding to develop higher yielding, Fusarium head blight (FHB) resistant breeding stock. 

Towards this goal, a double cross was made; modified single seed descent (SSD) inbreeding was 

initiated; early generation selection (F4) focused primarily on yield and marker screening results 

for Fhb1 and Qfhs.ifa-5A was done; and the selected lines were planted in a replicated yield trial.  

The highest yielding lines from the replicated yield trial were selected and marker screened for 

FHB and rust resistance QTL.  A final round of selection was done on single plants with the best 

gene pyramids from the highest yielding families.  These plants will be used as cross parents to 

further introgress Fhb1 and Qhfs.ifa-5A into NDSU winter wheat germplasm.  

Introduction 

The main problem with growing winter wheat in the United States upper Midwest is the 

cold, unpredictable winters (Karki, 2019).  Despite the harsh winters, winter wheat has been 

successfully grown in North Dakota.  From 2010-2017 the average yield of winter wheat in 

North Dakota was 3090 kg/ha. This was higher than the average yields from Kansas and 

Oklahoma, the two largest winter wheat producing states (Plains Grains Inc., 2017).  Variety 

trials conducted by NDSU extension services have also shown the potential of winter wheat.  

The three most commonly planted varieties in North Dakota, SY Wolf, Jerry, and Willow Creek, 

account for 46% of the winter wheat acres planted (Ransom, 2019a).  Jerry had a three-year 

average yield (2017-2019) of 3630 kg/ha in western (Dickinson, Hettinger, Minot, Williston) 
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North Dakota, and 4100 kg/ha in eastern (Carrington, Prosper) North Dakota.  SY Wolf had a 

three-year average yield of 3690 kg/ha in western North Dakota, and 4500 kg/ha in eastern North 

Dakota. 

Apart from the severe winters, winter wheat production in North Dakota is compounded 

by the prevalence of many diseases, with FHB being one of the most damaging.  Besides FHB, 

other diseases of importance in North Dakota include leaf rust, stem rust, and tan spot (Ransom, 

2019a).  FHB in North America is primarily caused by the fungal pathogen Fusarium 

graminearum (Dweba, 2017).  In susceptible cultivars, yield losses up to 80% occur if no 

fungicide is applied (McMullen, 2012).  Yield loss is not the only problem associated with FHB.  

Fusarium graminearum produces the mycotoxin deoxynivalenol in infected wheat kernels 

(Sobrova, 2010).  Deoxynivalenol is a highly toxic chemical and grain with a low 

deoxynivalenol concentration can be rejected at elevators.   

Worldwide, across crops, Fusarium graminearum is considered the fourth most important 

fungal pathogen in terms of economic importance (Dean, 2012).  As far as fungal pathogens 

affecting wheat, Fusarium graminearum is the second most important pathogen after Puccinia 

spp. if all rust diseases (leaf, stem, stripe rust) are grouped together.  FHB re-emerged as a 

serious threat to US wheat production in the 1990s (Del Ponte, 2017).  One reason for the re-

emergence of FHB is the increase in maize production.  The casual organism that causes FHB, 

Fusarium graminearum can infect maize causing Gibberella ear rot (Kuhnem, 2015).  This along 

with the increased adoption of conservation tillage and climatic variability are the most likely 

reasons for the re-emergence of FHB.   

The U.S. Wheat and Barley Scab Initiative was established in 1997 to combat the disease 

through discovery and implementation of effective control measures that would minimize the 
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threat to producers, processors, and consumers of wheat and barley (Anderson, 2020). FHB is 

considered the number one disease of spring wheat in North Dakota and it is highly unlikely that 

a hard-red spring wheat (HRSW) cultivar without moderate resistance to FHB will be grown in 

North Dakota (Ransom, 2019b).  Winter wheat flowers earlier than spring wheat and during a 

drier period (Wiersma, 2005) and as a result the crop often escapes infection in FHB epidemic 

seasons. Hence, compared to spring wheat, the general level of FHB resistance in ND winter 

wheat cultivars is low.  

The four most commonly grown winter wheat varieties in North Dakota in 2018 were 

Jerry, Decade, Peregrine, and SY Wolf. Using a 1-9 scale to rate FHB with 9 being very 

susceptible Jerry has a score of 8, Decade has a score of 9, Peregrine has a score of 6, and SY 

Wolf has a score of 6 (Ransom, 2018).  With the implementation of a NDSU winter wheat 

breeding program in 2011 (Marais 2020, Personal communication) FHB resistance was a 

primary breeding objective. To acquire breeding stock with notable FHB resistance, effective 

resistance QTL are being transferred from HRSW and integrated into adapted, winter-hardy and 

high yielding winter wheat genetic backgrounds. It is to be expected that HRSW genes closely 

linked to the targeted FHB resistance QTL will be co-transferred to winter wheat. Some of the 

linkage-dragged genes from HRSW could detrimentally affect hardiness and yield of winter 

wheat.  

One way to increase the likelihood of combining multiple favorable traits that are 

sometimes negatively correlated is by relying on random recombination and segregation, as first 

proposed by Kaufmann in 1971 for oat breeding.  This involves advancing elite crosses using 

single seed descent and not performing any selection.  This allows homozygosity to increase 

while maintaining a near-random population to ensure maximum variation in F3 - F4 lines where 
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early generation selection can then take place (Mac Key, 1986).  When performing early 

generation selection there usually will not be enough seed to plant a replicated yield trial; 

however, yield trials without replication that utilize multiple checks or moving means are 

possible.  In 1973, Townley-Smith and Hurd found that when doing early generation yield 

selection in wheat, moving means methods had less experimental error than the multiple checks 

method.  Having the maximum amount of variation in a population when selection takes place 

increases the likelihood that a genotype with the most favorable traits is present in the 

population.  This is especially true when considering traits such as winter survival and yield that 

may correlate negatively with FHB resistance in winter wheat (Kaufmann, 1971).  Kaufmann 

found that under normal pedigree selection, high yielding lines that are segregating might be 

discarded before they are recognized as such.   

The main problem with using single seed descent (SSD) inbreeding is that no genetic 

advancement occurs during the inbreeding process (Snape, 1975).  Using SSD to reduce 

segregation while maintaining maximum variation would be the ideal method to use for crosses 

designed to improve traits that may be negatively correlated, but logistics prevent it from being 

more widely used (Mac Key, 1986).   

When using SSD to maintain maximum variation it is still very unlikely that the perfect 

genotype will be present. A selection index weighing traits based on their importance to the 

objectives of the breeding program can be used to select lines that best meet the needs of the 

breeding program (Vieira, 2016).  In this study, a double cross that segregated for target traits of 

primary importance was explored. To maximize chances of selecting lines that are winter-hardy, 

high yielding and FHB resistant, a large population of near random inbred lines were first 

developed and evaluated in a yield trial without replication. Following this, index selection was 
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done considering adjusted yield, height, test weight, winter survival, lodging, and marker 

information.  Yield was weighted the heaviest, followed by FHB resistance (based on marker 

screening), then winter survival. 

Selected lines were then grown in a replicated field trial using a randomized complete 

block design.  Lines were scored for the same traits as in the trial without replication with the 

addition of quality traits.  Marker screening for rust and FHB resistance was conducted on the 

highest yielding lines. 

Materials and Methods 

Starting Material 

An appropriate segregating population (cross 16M10) was derived from the double cross 

that is outlined in Fig. 1.  Resistance genes believed to occur in each of the parental lines are 

given in Table 1.  The average genetic composition of the cross 16M10 F1 in terms of the parents 

that were used was calculated to be approximately 62.5% Jerry, 12.5% CM82036, and 25% 

SD09227.  Due to the excellent winter survival of Jerry, it was important to have a greater 

relative contribution of Jerry to the double-cross population. The spring wheat line CM82036 

was crossed with Jerry and the progeny was crossed with Jerry-Lr56 to produce the parental line 

14K456-K-1 for this study.  CM82036 was the initial donor of Fhb1 and Qfhs.ifa-5A.  14K456-

K-1 is homozygous for Fhb1 and Qfhs.ifa-5A (based on marker presence as well as FHB 

resistance response). As a result, it was expected that the F1 of cross 16M10 would segregate 

1:2:1 with respect to both QTL. SD09227 contributed stem rust resistance through the Sr24 

translocation and stripe rust resistance from the Yr17 translocation.  Major gene leaf rust 

resistance is contributed by the Lr56 gene from Jerry-Lr56. Line 14K456-K-1 is homozygous for 

Lr56 and this gene was also expected to segregate 1:2:1 in the 16M10 F1. 
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Table 1: Resistance genes believed to occur in the parental lines of double cross 16M10 

Parents Resistance genes contributed 

14K456-K-1 Fhb1, Qfhs.ifa-5A, Lr56 

Jerry Sr24/Lr241, Lr77 

Jerry-Lr56 Lr46/Yr29, Lr56 

SD09227 Lr16, Sr24/Lr24, Lr37/Sr38/Yr17 
1 Marker tests have shown Jerry to be heterogeneous for the translocation 

 

Figure 1: Outline of the double cross F1: 16M10. 

In March 2017, SSD inbreeding was initiated in a greenhouse with approximately 200 

16M10 F1 seeds.  In September 2017 the F1:2 seeds of 151 of the initial families were re-planted.  

In March 2018, six F3 seeds of each of 259 F3 families that stemmed from 151 of the initial F1 

plants were planted. Families that were excessively tall were discarded, as well as those that 

were diseased and had very low seed set (a greenhouse FHB trial was conducted in part of the 

greenhouse and the disease appeared to have spread to the seed increase pots). Individual plants 

were harvested from the remaining 141 families in August 2018 and their F4 seeds provided the 

starting material for this study.  

Broad Outline of the Study 

A field trial without replication was conducted at Casselton in 2018/19 in which the 141 

F4 families were compared for yield.  All plots were evaluated for winter survival, height, 

flowering date, and yield.  Marker tests were performed to determine the possible presence of 

effective disease resistance alleles.  Following the assessment of the combined data, the best 

selections were advanced to a replicated yield trial with appropriate controls that was again 
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planted at Casselton in 2019/20.  Following the second season’s assessment for agronomic 

performance, disease resistance and marker presence, and associations with yield were studied 

and the most productive and promising pyramided genotypes were identified.  When testing for 

disease resistance based solely on molecular markers, recombination may break the marker-trait 

associations resulting in false positive tests.  When possible, in this empirical experiment, natural 

infection in the field was used for verification of the marker data.  

Yield Trial Without Replication 

In August 2018 the four best plants (based on phenotype) from each of 141 pots of F3 

plants were harvested from the greenhouse.  Marker analyses (Fhb1, Qfhs.ifa-5A, Sr24, 

1BL.1RS, Lr56 and Yr17) were done by the USDA-ARS Small Grains Genotyping Center 

(located at the Red River Valley Agricultural Research Center in Fargo, ND) on two random 

seeds from each of the 141 F4 families that were planted in the field. The parental lines were also 

included in the marker analyses.  Samples were cut and placed into sampling plates provided by 

the Genotyping Center.  The Genotyping Center protocols for performing routine marker 

analyses can be accessed through the link: https://wheat.pw.usda.gov/GenotypingLabs/fargo.  

Assuming random segregation, the expected ratio of homozygous plus heterozygous resistant 

plants to susceptible plants in the F4 was expected to conform to a 0.531: 0.469 ratio with respect 

to each of the Fhb1, Qfhs.ifa-5A and Lr56 loci (since the F1: 16M10 was heterozygous for each 

locus). The expected incidences of Sr24, Yr17 and the 1BL.1RS translocation in the F4 could not 

be predicted from the available data. The marker data for Fhb1 and Qfhs.ifa-5A were used to 

assign an FHB resistance score (MS) for each of the lines based on the number of resistance 

QTL markers that were detected (none = 0; Qfhs.ifa-5A marker = 1; Fhb1 marker = 2; both Fhb1 

and Qfhs.ifa-5A markers = 3).   

https://wheat.pw.usda.gov/GenotypingLabs/fargo
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Two and a half grams of seed from each plant was then used to plant a row in a 4-row by 

two-meter plot.  The trial consisted of 141 plots of F3-derived F4-seed rows with no checks.  In 

the spring, winter-survival (WS) scores were taken based on a 0-10 scale with 0 equal to 0% of 

the plants emerged in the spring, and 10 equal to 100% of the plot emerged.  Days (Julian) to 

flowering (DF) reflected the number of days that lapsed until 50% of the heads in a plot 

flowered. Plant height (PH; cm) was the average height of plants in a plot taken from the base of 

the plant to the tip of the tallest spike (awns not included). Lodging scores (LS) were taken as no 

lodging (recorded as 0), partially lodged (.5), and completely lodged (1).  All of the plots were 

harvested by combine.  Plot weights (Y; g) and test weights (TW; kg/hl) were recorded.  Test 

weights were adjusted to the industry standard moisture content for wheat at 13.5%, based on the 

moisture content at the time of recording.  Next, the winter survival, plant height, flowering date, 

plot yield and test weight data were adjusted using the moving means method that compares a 

plot to its surrounding plots.  For example, if a plot had a winter survival score of 10 and the 

closest eight plots had an average score of 9, the adjusted value of the plot would be 1.  The 

moving means method helped reduce the experimental error caused by changes in the 

environment without having to use multiple checks throughout the field which makes a trial 

much larger.  The data gathered throughout the summer as well as the marker data were then 

used to select single rows from the 60 best genotypes.  An index score (Figure 2) was calculated 

for every line to facilitate selection.  The index was designed to emphasize high yielding plots 

the most (adjusted yield needed to be divided by 15 because it was measured in grams/plot and 

some adjusted values were high), but also favor plots that had good marker scores and did not 

lodge.  Winter survival was not weighed heavily in the selection index due to winter survival 

scores being high for every line.  The index discriminated against lines that were later, taller and 
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lodged more severely than the average. Days to flowering and test weight were also not weighed 

heavily as variation among the lines was minimal.  The 40 best lines based on their index score 

were selected and planted in a replicated trial in Casselton, North Dakota in 2019-2020 using an 

RCBD design with four replications.  Cultivars Jerry, SY Wolf, Emerson, Keldin, Ideal, SY 

Monument, Oahe, and Northern were used as checks. 

 

Figure 2: Selection index equation. WS= adjusted winter survival; DF=adjusted days to flower; 

PH= adjusted plant height; TW=adjusted test weight; Y=adjusted yield; MS=marker score; 

LS=lodging score 

Seedling Screening 

The 40 selected lines were also tested for seedling resistance to six races of leaf rust, four 

races of stem rust, one tan spot race, and one Stagonospora nodorum race.  This was done by 

planting three seeds from each line into a pot.  Ten lines were grown in each pot.  Seedlings were 

grown in a growth chamber, and inoculated using a suspension of spores in distilled water and a 

small amount of wetting agent (Triton).  The parental lines Jerry, SD09227, and 14K456-K-1 

were used as controls.  The six leaf rust races used were TBDJQ, MFPS, TDBG, THBL, MCDL, 

and an unidentified race collected in the field in the summer of 2017.  The four stem rust races 

used were isolates 72-41-SP2 (TMLK), 64E(1)-SP-1 (QTHJ), TNMK-SP-1 (TPMKC), and A48 

(QFCQ).  The tan spot isolate used was Pti2 and the S. nodorum isolate used was Sn4. 

Rust seedling reactions were recorded using a 0-4 scale with 0=immune, ;= nearly 

immune, 1= very resistant, 2= moderate resistant, 3= moderately susceptible, and 4= very 

susceptible (Stakman, 1962).  X was used to indicate if a genotype was heterogeneous. Within 

the scale + and – were used to indicate if a line was slightly less or more resistant/susceptible.  

Lines were evaluated on a single plant basis if obvious variation was present between plants of 
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the same line.  If variable infection types were present on a single plant, multiple infection types 

were recorded (i.e. if a single plant expressed both infection types 1 and 2, the infection type was 

recorded as 12). Chlorosis (C) and necrosis (N) were also recorded when present. 

The scoring scale used for tan spot was a 1-5 scale (Lamari, 1989).  A score of 1 

(resistant) meant that there were resistant specks present on the leaves; 2 (moderately resistant) 

meant that there were lesions with little necrosis and chlorosis; 3 (moderately susceptible) meant 

that there were lesions with distinct necrosis and chlorosis; 4 (susceptible) meant that there were 

coalescing type 3 lesions, while 5 (susceptible) meant that there was extensive necrosis/chlorosis, 

and an absence of borders between lesions.  The scoring scale used for S. nodorum was similar to 

that of tan spot but it also included a 0 (Liu, 2004).  A 0 (highly resistant) meant that there was 

no visible lesions; 1 (resistant) meant there was some flecking and a few dark spots; 2 

(moderately resistant) meant there was a few dark spots and a little surrounding 

necrosis/chlorosis; 3 (moderately susceptible) meant lesions were 2-3 mm with 

necrosis/chlorosis; 4 (susceptible) meant there were large lesions with necrosis/chlorosis; and 5 

(highly susceptible) meant that there was major leaf damage with little green leaf tissue 

remaining. 

Replicated Yield Trial 

In September, 2019 a replicated yield trial was planted at Casselton, ND.  The replicated 

trial consisted of the forty selected lines as well as nine checks.  Four replications were planted 

for each entry.  Plots were five meters long with seven rows, and seven-inch row spacing. 

In the summer, data were collected on winter survival, flowering date, plant height, 

lodging, yield, and test weight using the same procedures and scales employed for the trial 

without replication.  A 200-gram bulk sample was then taken for each entry by pooling 50 grams 



 

49 

of seed from each replicate of that entry. The 200-gram samples were used to test for wheat 

quality traits.  Quality analysis was performed by the Cereal and Food Biochemistry Research 

Laboratory at North Dakota State University.  Milling quality (flour extraction %), protein % 

(12% moisture basis), mixing characteristics, and baking quality were evaluated.  Mixograph 

measurements included: mixograph score, envelope right slope (%/min), mid line peak time 

(min), mid line tail slope (%/min), and mid line timex width (%). Lactic acid SRC and water 

SRC were measured on the flour samples.  The Glutopeak measurements were: peak maximum 

time (sec), maximum torque (GPU), torque 15 seconds before maximum (GPU), torque 15 

seconds after maximum (GPU), startup energy (cm2), plateau energy (cm2), and aggregation 

energy (cm2).  Baking characteristics measured were: mix time (min), baking absorption 14% mb 

(%), dough optimization (1-10), loaf volume (cc), crumb color (1-10), and crust color (1-10). 

Data analysis was performed using SAS 9.4 software (SAS Institute, Cary, NC).  

Analyses of variance (PROC GLM) were done for winter survival, flowering date, height, yield, 

and test weight.  Mean separation was determined using Tukey’s test with an alpha level of .05.  

The highest yielding lines were selected to be marker screened for Fhb1, Qfhs.ifa-5A, and 

multiple rust resistance genes. 

Marker Screening 

Selected high yielding 16M10 lines with the parental lines Jerry, 14K456-K-1, and 

CM82037 used as checks were planted to be screened for the presence of expected segregating 

markers.  Twenty F6 seeds were planted of each line.  Five cm of leaf samples were taken from 

each plant when seedlings were ~25 cm tall.  Tissue samples were placed into a silica coated cell 

of a 96-cell tray.  The trays were then sent to the Small Grains Genotyping Center of the USDA-

ARS in Fargo, ND.  Marker tests were performed to test for the presence of Fhb1, Qfhs.ifa-5A, 
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and several rust resistance genes.   For Fhb1 the Fhb1-FM227 and the TaHRC markers were 

used.  For Qfhs.ifa-5A the markers barc180_Gene-3371_56 and barc186_80018 were used. The 

Fhb1-FM227 (UMN10) marker is a codominant marker that is highly diagnostic for Fhb1 (Liu, 

2008). The TaHRC marker is based on a deletion mutation in the TaHRC protein coding region 

of the Fhb1 gene (Su, 2018).  Barc180 and barc186 are flanking markers for Qfhs.ifa-5A that are 

located 1.7 centimorgans apart (Buerstmayr, 2018).  The rust resistance genes tested for were 

Lr56 (Dupw217), and Sr24/Lr24 (Sr24#12) whereas Lr34, 1B1R, Lr46/Yr29, and 

Lr37/Sr38/Yr17 were tested for employing internal (Genotyping Center) markers. 

Results 

Trial Without Replication 

Data were recorded for MS, WS, DF, PH, LS, TW, and Y. Barring MS and LS, the plot 

values of all traits were adjusted, based on their moving means.  The adjusted plot values and 

MS were then used to calculate a selection index.  The forty best lines, based on the selection 

index were selected. The data pertaining to the index are given in Table 2. 

The ranges and averages recorded for the agronomic measurements of the yield trial 

without replication are given in Table 2 together with the corresponding values of the 40 selected 

lines and the remaining lines that were not selected. The mean of the selected entries was 1330 

g/plot compared to 1120 g/plot for the original population and 1040 g/plot for lines that were not 

selected. The use of moving means to provide a control value for each plot allowed for 

adjustment of the data for soil trends. Adjustment gave extra weight to a plot value if the 

surrounding plots performed comparatively poorly and vice versa, thus correcting for local 

environmental differences. The overall index was designed to give most weight to yield 

performance. The 40 selected lines had a mean selection index score of 21.04 (range = 14.38 to 
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37.36).  The average index value for the remaining (rejected) lines was .05 (range = -49.89 to 

14.07).  Table 2 also gives the size ranges of the different component traits of the index 

following adjustment for environmental effects and weighting according to the importance of 

each trait. 
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Table 2: Summary of the variation in un-adjusted and adjusted trait vales that were used for the calculation of the selection index. 

 Range of variation and mean values among lines with respect to:  

 Winter 

Survival 

(WS)1 

Flowering 

Date 

(DF)2 

Plant height 

 

(PH) 

Test weight 

 

(TW) 

Yield 

 

(Y) 

Marker 

Score 

(MS) 

Lodging 

Scores 

(LS) 

 

 

Index 

All lines 6 to 10 18 to 26 71 to 96 56.6 to 70.9 512 to 1,715 0 to 3 0 to 1 -49.9 to 37.4 

Average (all lines) 9.3 22 84 64.5 1,122 2.3 .57 6 

Selected group 8 to 10 18 to 25 74 to 96 60.8 to 70.9 954 to 1,715 0 to 3 0 to 1 14.4 to 37.4 

Average (selected) 9.4 21 86 65.4 1,328 2.1 .56 21 

Lines not selected 6 to 10 18 to 26 71 to 95 56.6 to 68.8 512 to 1,451 0 to 3 0 to 1 -49.9 to 14.1 

Average (not selected) 9.2 22 83.6 64.1 1,040 2.3 .57 .05 

Calculated index3 

component1 

-6.5 to 2.9 -2.1 to 2.3 -7.1 to 5.9 -3.3 to 2.5 -44 to 39.1 0 to 15 0 to 10 -49.9 to 37.4 

1 Winter survival was evaluated on a 1(worst)-10(best) scale based on percent emergence in the spring 
2 The entire population flowered within the range of June 18 to 26. 

3 Trait values were adjusted for surrounding plots using moving means and multiplied with weight constant as in formula (Fig. 1) 
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Winter survival, DF, PH and TW showed limited variation within the original population 

of lines and therefore had only small effects on the index. The index discriminated against taller 

and later lines and those that lodged whereas better WS was an advantage. For WS the average 

of the selected group was 9.4 compared to the average of the original set, which was 9.3. The 

selected group did; however, exclude the most sensitive lines. The lines flowered within a range 

of only eight days (June 18 to 26), which was similar for both the selected (mean = June 21st) and 

the original population (June 22nd). The adjusted DF means for the lines in the selected 

population was negative for 57.5% of the selected lines, meaning that lines that flowered earlier 

were slightly favored by the selection index. The selected lines were on average slightly (2 cm) 

taller than the original group. Although the selected lines had a slightly higher mean height, 14 of 

the 40 selected lines had a negative adjusted height; meaning that they were shorter than the 

surrounding plots.  The selected population being slightly taller than the lines that were not 

selected was also due to the index favoring other traits more than height. Lodging was a general 

problem due to frequent rain and high winds around harvest time which affected most of the 

breeding material. In this trial, 73% of plots experienced some degree of lodging.  The lines that 

were not selected were completely lodged in 40.4% of plots, and 32.6% of plots were partially 

lodged.  Among the selected lines, 40% of the plots were completely lodged, and 32.5% of plots 

were partially lodged, thus selection is not expected to improve the population for this trait. With 

regard to TW the selected population had an average of 65.5 kg/hl compared to 64.5 kg/hl for the 

original population.  The marker score was calculated based on marker data for Fhb1 and 

Qfhs.ifa-5A. With regard to the 141 F4 families that were marker tested, it was expected that 

approximately 53% will have the diagnostic marker while 47% will lack it. With regard to 

Qfhs.ifa-5A, 55% of the lines were positive for the marker’s presence and 24% lacked the marker 
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(in 21% of lines that allele couldn’t be determined); however, for Fhb1 the observed presence of 

its marker was 74% and absence was 11% (in 15% of lines the allele couldn’t be determined). As 

this was unexpected, a rerun of the marker was done by the Genotyping Center which produced 

the same result. A Chi-square test to determine goodness of fit was not conducted due to the 

number of lines where the presence or absence of Fhb1/Qfhs.ifa-5A could not be determined.  

The strong deviation in expected versus observed segregation of the Fhb1 marker is likely due to 

unintended selection against FHB susceptibility in the F3 increase pots. Among the lines that 

were not selected, 80% had the Fhb1 positive marker allele and 55% had the Qfhs.ifa-5A positive 

marker allele. In the selected group, 68% had the Fhb1 marker, whereas 58% had the Qfhs.ifa-5A 

positive marker allele. Thus, it is possible that the selection index, which favored high yielding 

lines more strongly, resulted in the inclusion of a lower frequency of lines with Fhb1. A 

comparison of the raw and adjusted yield data with the Fhb1 marker data for the selected 

population and the population before selection is provided in Table 3. The data suggest that lines 

without the Fhb1 marker on average yielded better than lines with the Fhb1 marker.  While it 

was not possible to attach a measure of experimental error to the mean comparisons, the results 

imply a high likelihood that within the total population of lines, the introgression of Fhb1 was 

accompanied with a deleterious effect on yield.  

Table 3: Raw and adjusted yield of selected lines and entire population with or without Fhb1. 

Yield data Group Fhb1 Marker Range Mean 

Raw All lines (141) + (105)1 512 to 1601 1097 

  - (16) 997 to 1715 1303 

 Selected (40) + (28) 954 to 1601 1301 

  - (8) 1153 to 1715 1401 

Adjusted All lines (141) + -567 to 383 -20 

  - -128 to 586 195 

 Selected (40) + -34 to 383 193 

  - 128 to 586 337 
1 Number indicates the number of lines that were positive/negative for Fhb1 marker 
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Seedling Resistance Screening 

The parents plus 40 lines selected for inclusion in a follow-up replicated trial were 

evaluated for seedling resistance to leaf rust and stem rust. The seedling resistance data 

pertaining to all of the entries are provided in Tables A4 (leaf rust) and A5 (stem rust) of the 

Appendix. Among the parents, SD09227 showed good resistance to five of the six P. triticina 

races with the lone exception being MCDL which could not be scored (seedlings did not emerge) 

(Table 6).  Jerry was also resistant to all six races.  The 14K456-K-1 seed had low viability and 

results were obtained with only two of the races (THBL and MFPS).  14K456-K-1 was resistant 

to both of these races. The seedling leaf rust resistance data pertaining to the 40 lines that were 

evaluated in the replicated yield trial (Table 4) revealed very strong resistance (Infection Type 

(IT) = 0 to 1- in 42% - 76% of the inbred lines), strong resistance (IT = 1 to 12 in 17% - 39% of 

the lines) and intermediate (IT = 12+ to 2++3, X in 0% - 18% of lines). Susceptible ratings (IT = 

3 to 34) were obtained in 13% of the lines to race TBDJQ, 6% of the lines to race MFPS, 4% of 

the lines to race TDBG, 4% of the lines to the unidentified race, 11% of the lines to race THBL, 

and 3% of the lines to race MCDL. Thus, the 16M10 population segregates for resistance to all 

six leaf rust races tested. 

Table 4:  Number of seedlings within each infection type to six Puccinia triticina races.  

Infection Type Range 

Puccinia triticina Race 

TBDJQ MFPS TDBG Field THBL MCDL 

0 to 1-1 13 25 13 18 16 21 

1 to 121,2 12 6 11 5 8 11 

12+ to 2++31 2 0 4 4 0 1 

X 0 0 0 1 0 0 

3 to 342 4 2 1 1 3 1 

4 0 0 0 0 0 0 

Total 31 33 29 29 27 36 

Susceptible (%) 12.9 6 3.4 3.4 11.1 2.8 

Lines that segregated for infection type were not counted 
1Resistant phenotype 
2Two numbers (12 or 34) indicate that both infection types were present on the same plant 
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Of the three parents, SD09227 showed the strongest resistance to the four P. graminis 

races (Table 5).  14K456-K-1 was also resistant to all four races.  Jerry was susceptible to race  

QTHJ and marginally resistant to race TMLK.  Eleven of the 40 inbred lines showed a high level 

of resistance to all four races.  A breakdown of how the population scored against each race 

according to the Stakman scale can be seen in Table 5. 

For tan spot and S. nodorum none of the parental lines or any of the experimental lines 

tested showed any level of resistance. 

 

Disease resistance scores to the six Puccinia triticina races and the four Puccinia 

graminis races for the 16M10 lines selected from the replicated yield trial and the parental lines 

can be seen in Table 6.

Table 5: Number of seedlings within each infection type to four Puccinia graminis races.  

Infection Type Range 

Puccinia graminis Race 

TMLK QTHJ TPMKC QFCQ 

0 to 1-1 4 1 17 10 

1 to 121,2 13 15 7 6 

12+ to 2++31 14 6 12 10 

3 to 342 2 4 0 11 

4 0 2 0 0 

Total 33 28 36 37 

Susceptible (%) 6 21.4 0 29.7 

Lines that segregated for infection type were not counted 
1 Resistant phenotype 
2 Two numbers (12 or 34) indicate that both infection types were present on the same plant 
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Table 6: Seedling leaf and stem rust screening scores for selected lines and checks 

 Leaf Rust Race Stem Rust Race 

Line TBDJQ MFPS TDBG Field THBL MCDL TMLK QTHJ TPMKC QFCQ 

143-2 1P12 1P3 2P; 1P1 1+ ; 1 ; 2+ 4 ; 2++3 

136-2 1P; 2P2 12 12 1P1CN 2P2CN 2P; 1P2CN 12CN 2P1 1P3 2++3CN 12+ 12++CN 

17 1CN ;1 2 12 2P1 1P2 1 2++3CN 1P1 2P2++3 1P1 1P2+ 3 

67 12CN ; ; 12CN 2P; 1P2+CN ; 23 12CN 1P1 1P2+ 3 

143-1 2P12 2P3 2P12 1P3 2+ 2++ 12 1= 2++3 2++3 2+CN 12++ 

73 3 3 3 3 3 3 12 1P1 2P2++3 2++3 3 

22 ; ;1 2++ 2++ 12 3P12 1P3 ;1 2P1CN 1P3 ; ; 

105-1 ; 1P; 1P2 1P; 1P12 ; ;12 ; 1CN 1CN ; ; 

123-1 12 ;CN 12 12CN 1P; 1P3 12CN 1P1 1P2++ 1P1CN 2P34 1P0 1P2++  1/3 

Jerry 2 ; ; ;1= ; 2CN 2++3CN 3 12 ;1 

SD09227 1CN ;1= ;1= 1CN 1P0 1P2CN - 1-CN 1-CN ;1= 1=CN 

14K456-K-1 - ; - - 1CN - 1=CN 2 ; 0 

Scoring Scale: Resistant=0<;<1<2. Susceptible=3<4 

Two numbers (i.e. 12) indicate that both infection types occurred on the same plant 

Key: - = No data;  +/- = slightly higher/lower;  CN = Chlorosis/Necrosis;  P = # of plants 
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Replicated Yield Trial 

A summary of the analysis of variance results for all traits is given in Table 7.  There 

were significant (Tukey’s p=.05) differences among entries for all five traits (WS, H, FD, TW, 

and Y).  The mean values for traits WS, H, FD, TW, and Y and outcomes of Tukey’s test for 

significance of differences among the 40 lines are given in Figures A1 through A5 of the 

Appendix.  

Table 7: Analysis of Variance results for five winter wheat traits 

 Entry Rep 

Trait F Value p-Value Interpretation F Value p-Value Interpretation 

Winter Survival 1.73 0.008 Significant 2.09 0.105 Not Significant 

Flowering Date 4.79 <.0001 Significant 6.26 0.0005 Significant 

Height 6.31 <.0001 Significant 8.27 <.0001 Significant 

Test Weight 12.23 <.0001 Significant 3.95 0.0096 Significant 

Yield 3.43 <.0001 Significant 2.25 0.085 Not Significant 

 

The agronomic data of all the trial entries are given in Table A1 of the Appendix. The 

average plot yield of the trial was 2690 g/plot.  The entries ranged in yield from 2253 to 3350 

g/plot with the yield of the eight control varieties ranging from 2560 g/plot (Northern) to 3350 

g/plot (Ideal). The minimum yield difference to be considered significant using Tukey’s multiple 

comparison test (p=.05) was 654 g/plot. Nine 16M10 lines had yields statistically similar to the 

best yielding entry, Ideal (Figure A5). For selection purposes, yield was considered the single 

most important trait, and hence the nine best yielding 16M10 selections were retained. The 

selections ranged in yield from 2750 g/plot to 2970 g/plot.  

The agronomic and marker data pertaining to the eight control varieties and nine selected 

entries are summarized in Table 8. The non-yield data were used for further characterization of 

the selected entries rather than for direct selection. The marker data were used to identify 

superior plants within each of the highest yielding families.  
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Table 8:  Summary of agronomic traits and marker screening results for the selected 16M10 lines and controls  

Entry Winter  Flowering  Plant Test Grain Frequency of F6 plants per family with the critical marker allele2 

 Survival Date Height weight Yield Lr46/ Lr37/Sr38/ Lr24/     

 0-10 June- cm Kg/hl grams Yr29 Yr17 Sr24 Fhb1 Qfhs.ifa-5A 1B1R Lr56 

16M10-143-2 9 14 83 74.25 2972 0.4 0.3 0 0.9 1 0 0.25 

16M10-136-2 9.3 14 84 72.55 2939 0 0 0 0 1 0 0.45 

16M10-17 9.4 14 84 73.24 2893 0 0.15 0.05 0.05 0.5 0.25 0 

16M10-67 9 16 84 71.24 2850 0 0.75 0 0.6 0.45 0 0.85 

16M10-143-1 9.3 15 83 74.44 2826 1 0.35 0 0.35 1 0 0 

16M10-73 9.3 15 85 72.9 2807 0.56 0.65 0 0.85 1 0 0 

16M10-22 8.9 14 84 72.38 2788 0 0 0.6 0.90 1 0.5 0.4 

16M10-105-1 9.6 14 85 72.63 2777 0 0.95 1 1 1 0.15 0.65 

16M10-123-1 8.9 17 83 72.14 2748 0 0.33 0 0.83 0.15 0.05 0.2 

Jerry 9.1 16 87 72.76 2996 1 0 0 0 0 0 0 

SY Wolf 9.4 15 71 73.5 2989        

Ideal 9.8 16 77 74.52 3350        

Monument 9.8 16 69 71.52 2931        

Oahe 9.6 15 80 74.04 2897        

Keldin 9.3 17 77 72.54 2822        

Emerson 9 15 86 75.04 2860        

Northern 8.9 18 80 70.25 2564        

CM820361 
     0 0 0 1 1 1 0 

14K456-K-11 
     0 0 0 1 1 1 0 

Trial Average 9.1 15 83 72.16 2695        
1CM82036 (spring wheat) and 14K456-K-1 (lack of seed) are parental lines that were excluded from the field trial 
2Twenty samples were screened for each line, samples where an allele could not be determined were not included 
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With respect to WS, the control scores ranged from 8.9 to 9.8 whereas the selections had 

values ranging from 8.9 to 9.6. Based on Tukey’s multiple comparison test (p=.05), almost every 

16M10 line tested was statistically similar to the hardiest checks Ideal and Monument (score 9.8) 

(Figure A1).  Lines 16M10-105-1 and 16M10-126-2 had the highest WS score (9.6) in the 

selected group. For FD the average date when 50% of the plants in a plot were flowering was 

June 15th. The controls flowered between June 15th and 18th whereas the nine selections had a 

slightly broader range (June 14th to 17th). The earliest flowering check was SY Wolf with an 

average FD of June 15th.  Using Tukey’s test (p=.05), the minimum difference to be considered 

significant was 2.7 days.  The 16M10 selections were statistically similar to the majority of the 

check varieties (Figure A2).  The range for height of all entries was 69 to 92 cm.  The controls 

varied in height from 69 cm (Monument) to 87 cm, whereas the nine selections were all within a 

taller category (83 to 85 cm). The TWs of all trial entries varied from 68.9 to 75.0 kg/hl.  The test 

weights of the nine selections (71.2 to 74.4) were within the range of test weights produced by 

the controls (70.3 to 75 (Emerson)). The minimum difference to be considered significantly 

different using Tukey’s (p=.05) test was 3.1 kg/hl.  Using this value for mean separation meant 

that eight of the nine selected lines were not significantly lower in TW than Emerson (Figure 

A4). Thus, based on their agronomic features in comparison with the controls, the selected group 

merited continued testing in yield trials.   

The complete quality data with respect to the forty lines that were evaluated in the 

replicated trial are given in Tables A2 and A3 of the Appendix.  The data were obtained from 

bulked (replications) samples and it was not possible to test for significance of differences 

among lines. The general trial statistics (data range, mean, standard deviation and coefficient of 

variation) for those quality traits that were deemed most informative are summarized in Table 9. 
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Table 9: Summary of statistics for the quality tests conducted on 16M10 lines and controls 

   Mixograph SRC GlutoPeak Baking 

 Flour 

Extraction Protein 

Mixo 

Score 

Peak 

Time 

Peak 

Value 

Lactic 

Acid Water 

Max 

Torque 

Peak Max 

Time 

Aggregation 

Energy 

Loaf 

Volume 

Crumb 

Color 

Crust 

Color  

 % 12% Mb 1-8 Minutes % % % GPUa Seconds cm^2 cc 0-10b 1-10b 

Mean 50.12 13.28 2.10 6.73 36.99 129.73 62.12 43.39 194.55 1323.86 176.24 5.49 9.51 

Minimum 44.77 12.09 1.00 4.03 27.48 97.00 58.00 13.00 80.00 1112.50 127.00 0.00 7.00 

Maximum 54.89 14.69 5.00 8.00 47.66 150.00 69.00 49.00 417.00 4761.95 221.00 8.00 10.00 

StDev 2.34 0.59 1.01 1.24 4.01 11.24 2.12 4.85 77.14 505.11 20.05 2.36 0.89 

CV 0.05 0.04 0.48 0.18 0.11 0.09 0.03 0.11 0.40 0.38 0.11 0.43 0.09 
aGPU= GlutoPeak Units 
bScale for crumb color and crust color is 0/1(worst) – 10(best) 
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With regard to the nine best-yielding selections and eight control cultivars, the relevant 

data were extracted and summarized in Table 10.  For flour protein content, the controls ranged 

from 12.3% (Ideal) to 13.7% (Emerson) and the nine selections fell within a similar range 

(12.2% to 13.5%). The flour extraction percentage of the controls ranged from 46.7% (Keldin) to 

50.1% whereas the selected group had higher-tending values (49% to 53%). The range in 

mixograph peak time values for the control and selected groups were 4 to 8 and 5.5 to 7, 

respectively. For mixograph peak value the ranges were 28 to 48 and 32 to 41, respectively. 

While for both peak time and peak value, the selections were within the ranges of the controls, 

the mixograph scores (visual assessment) suggested that three lines, 16M10-17, -22 and -105-1, 

had weaker (score = 1) mixing properties than the controls. Mixing properties were also 

measured with a Glutopeak instrument. The maximum torque values of the controls ranged from 

13 (Monument) to 47 (Northern) whereas the selections ranged from 41 to 46. Maximum peak 

time ranged from 82 (Oahe) to 417 (Monument) for the controls and from 175 to 300 for the 

selections. Aggregation energy of the controls ranged from 1134 to 1374 for seven of the 

controls (Monument with 4762 being the outlier) and from 1177 to 1321 for the selected group. 

Thus, for the Glutopeak measurements, the selections had mixing properties in the same range as 

seven of the released cultivars; however, Monument appeared to have clearly weaker mixing 

properties (low max torque, long max time, and high energy) than both the selections and 

remaining controls. The ranges of solvent retention capacities of the selected group fell within 

the ranges set by the eight controls. The loaf volumes of the controls varied from 127 to 221 ml 

whereas the selected group ranged from 147 to 195 ml. The averages of both groups were 175 

ml. Overall, the preliminary data are not indicative of serious quality defects within the nine 

selected families.
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Table 10: Summary of important quality traits for the selected 16M10 lines and checks 

   Mixograph SRC1 Glutopeak Baking 

 

Flour 

Extraction Protein 

Mixo 

Score 

Mixo 

Time 

Peak 

Value 

Lactic 

Acid Water 

Max 

Torque 

Peak Max 

Time 

Aggregation 

Energy 

Loaf 

Volume 

Crumb 

Color 

Crust 

Color 

Entry % 12% Mb 1-8 Min % % % GPU Sec cm^2 ml 0-10 1-10 

16M10-143-2 53.11 12.6 2 5.72 35.3 124 63 42 194 1230 166 6 10 

16M10-136-2 52.7 13.5 3 6.75 41 127 61 42 250 1197 190 6 9 

16M10-17 50.81 12.2 1 6.39 31.6 124 63 41 175 1177 187 6 9 

16M10-67 52.86 13.2 4 8 41.3 136 62 42 300 1221 172 6 10 

16M10-143-1 50.65 12.6 2 6.31 39.8 127 60 43 201 1232 175 8 10 

16M10-73 52.27 13.3 2 5.48 40.6 124 61 44 190 1223 195 6 10 

16M10-22 48.99 13.3 1 6.55 37.8 121 63 43 175 1222 187 6 10 

16M10-105-1 50.84 12.7 1 7.51 32.4 134 62 46 182 1321 147 0 8 

16M10-123-1 51.3 12.7 3 7.25 36.4 130 60 42 241 1210 155 1 8 

Jerry 50.06 13 2 5.13 38.7 130 59 44 185 1226 206 7 10 

SY Wolf 46.85 13.5 2 8 36.4 110 61 43 146 1168 192 7 10 

Ideal 49.77 12.3 2 7.97 31.2 131 60 39 374 1135 127 1 7 

Monument 48.9 12.5 4 7.88 29.5 142 66 13 417 4762 131 1 7 

Oahe 50.1 13.2 4 4.03 41.5 118 63 45 82 1292 166 8 10 

Keldin 46.71 12.6 3 8 36.7 140 63 44 243 1256 170 1 8 

Emerson 49.97 13.7 2 8 27.5 148 60 41 381 1195 187 7 10 

Northern 46.85 13.3 5 5.25 47.7 134 69 47 109 1374 221 8 10 

Trial Average 50.12 13.28 2.1 6.73 36.99 129.73 62.12 43.39 194.55 1324 176 5.49 9.51 
1SRC=solvent retention capacity 
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Marker Screening 

Twenty plants per selected 16M10 family were tested with the marker panel and the 

individual plant data are provided in Appendix Table A4. The marker data are also summarized 

in Table 8. The results showed that some 16M10 lines derived from the 16M10 population are 

still segregating for many of the markers that were tested. For each line the proportion of the 

twenty samples that had the resistance allele for each of the markers tested are shown in Table 8. 

Only two of the nine selected lines completely lacked the Fhb1 marker; in three lines 90-100% 

of the 20 plants sampled tested positive for the Fhb1 marker; whereas the presence of the marker 

ranged from 0.35 to 0.85 among the four remaining lines. Thus, the data did not reflect a 

negative effect on yield in plants with the Fhb1 marker. Table 11 provides a summary of the 

single, apparently homozygous plants within each selected family that have the Fhb1 and Qfhs-

ifa-5A markers together with markers for additional resistance genes. The latter plants will be 

selfed for seed increase, continued evaluation in yield trials and use in new crosses. 
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Table 11: Individual plants with the best gene pyramids in the selected 16M10 families 

  Resistance Gene 

Entry Plant # Lr46/Yr29 Lr37/Sr38/Yr17 Lr24/Sr24 Fhb1 Qfhs.ifa-5A 1B1R Lr56 

16M10-143-2 12 Present Present  Present Present  Present 

16M10-143-2 14  Present  Present Present  Present 

16M10-143-2 18  Present  Present Present  Present 

16M10-67 14  Present  Present Present  Present 

16M20-143-1 11 Present Present  Present Present   
16M10-73 2 Present Present  Present Present   
16M10-73 6 Present Present  Present Present   

16M10-73 11 Present Present  Present Present   

16M10-22 14   Present Present Present Present Present 

16M10-105-1 3  Present Present Present Present Present Present 

16M10-105-1 7  Present Present Present Present Present Present 

16M10-105-1 11  Present Present Present Present Present Present 

16M10-123-1 6  Present  Present Present   
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Discussion 

Hard red winter wheat has not been commonly accepted by growers in North Dakota.  In 

North Dakota winter wheat was the fifteenth most widely grown crop in 2018 with a total of 

34,398 hectares planted (USDA-NASS, 2019).  Most of the winter wheat planted in North 

Dakota is in the Southwest (34.4% of total area planted) and Northwest (11.5% of total area 

planted) regions of the state.  The Southwest and Northwest regions have historically been some 

of the least productive regions for all types of wheat.  Winter wheat had an average yield of 2500 

kg/ha in the Northwest region, and 2720 kg/ha in the Southwest region in 2018.  Yields of winter 

wheat in these regions are comparable to 5-year average (2013-2017) yields of spring wheat in 

these regions (2840 kg/ha in Northwest, 2520 kg/ha in Southwest region).  However, the market 

price for spring wheat is consistently higher than that of winter wheat.  One reason for this is the 

higher protein percentage in spring wheat (Ransom, 2019a, Ransom, 2019b).  Variety trials 

conducted by NDSU extension found that the average protein percent of winter wheat varieties 

in North Dakota is 13.6% (12% mb), spring wheat had an average protein percent of 15% (12% 

mb).  Another problem with winter wheat is the lack of FHB resistance genes in the genome.  

Most FHB resistance genes originate in spring wheat, because of this winter wheat needs to be 

crossed with spring wheat to introduce FHB resistance genes (Buerstmayr, 2009).  Crossing 

winter wheat with spring wheat can lead to a decrease in winter hardiness and lower yield, 

because of this most winter wheat varieties grown in North Dakota have low/no resistance to 

FHB (von der Ohe, 2010).  The lower protein percentage than spring wheat, comparable yields to 

spring wheat, risk of winter kill, lack of FHB resistance, and height are some of the main reasons 

why winter wheat has not become a more widely grown crop in North Dakota.  The main goal of 

this study was to select a high yielding winter wheat line(s) with FHB resistance QTL Fhb1 and 
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Qfhs.ifa-5A, acceptable agronomic and quality traits and possibly also resistance to the wheat 

rusts.  Such material will be very valuable for continued cross-breeding and improvement of the 

winter wheat breeding population.   

The most widely grown winter wheat varieties in North Dakota are SY Wolf (24% of 

acreage in 2018-19 growing season) and Jerry (11% of acreage) (Ransom, 2019a); because of 

this SY Wolf and Jerry were the main varieties that the 16M10 lines were compared to.  In the 

replicated field trial, the highest yielding entries were control varieties Ideal (3350 g/plot), Jerry 

(3000 g/plot) and SY Wolf (2990 g/plot).  The yields of the nine highest yielding 16M10 lines 

were not statistically different from that of Jerry, SY Wolf and Ideal with 16M10-143-2 (2970 

g/plot) being the best. There were no significant differences between the nine highest yielding 

16M10 lines, Jerry, and SY Wolf for winter survival.  Previous studies have found that winter 

wheat can survive temperatures as low as -26°C with snow cover increasing the likelihood that 

winter wheat will survive lower temperatures (Wiersma, 2005; Larson, 1987).  Temperatures in 

December, January, February, and March of 2020 were above the 100-year average from 1901-

2000 (NOAA, 2020).  This was a likely contributing factor to the winter survival scores being 

high. Height has been shown to be correlated with lodging tolerance in wheat (Navabi, 2006).  

The highest yielding 16M10 lines ranged in height from 83 cm for 16M10-123-1 to 84.75 for 

16M10-73. All were all significantly taller than SY Wolf (70.75 cm) but slightly shorter than 

Jerry (87 cm). The likely reason for the 16M10 lines being tall is due to 62.5% of the genetic 

makeup of the 16M10 lines coming from Jerry. It is important for hard red winter wheat to be 

U.S. Grade No.2 or better, because if a wheat sample is lower than U.S. Grade No.2 it is 

ineligible for protein premiums (USDA-FSA, 2019).  For hard red winter wheat to be considered 

a U.S. Grade No.2 the test weight must be at least 72.5 kg/hl.  Both Jerry (72.8 kg/hl) and SY 
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Wolf (73.5 kg/hl) are considered U.S. Grade No.2 based on test weight.  Of the 16M10 lines 

16M10-143-2, 16M10-136-2, 16M10-17, 16M10-143-1, 16M10-73, and 16M10-105-1 were all 

above a test weight of 72.5 kg/hl. Summarized, the field agronomic data recorded for the 16M10 

lines during the 2019-2020 growing season suggest that the nine selections include potentially 

good lines that, while having comparable yield to the leading North Dakota varieties, have the 

added (marker predicted) advantage of incorporating excellent FHB and rust resistance gene 

pyramids. Based on the preliminary trial data, the most serious agronomic concern is with regard 

to the height and lodging resistance of the final selections.   

No major diseases occurred in the field in 2020, and thus, the resistance of the lines to 

natural infection could not be evaluated. Resistance differences were, however, seen with regard 

to the seedling resistance evaluations. As is reflected by the diverse infection types that were 

observed as well the variation in virulent/ avirulent interaction patterns produced in the inbred 

lines by the six races, several resistance genes are segregating in the cross. Every parent in the 

double cross contributed leaf rust resistance genes. The population is therefore expected to 

segregate for the all stage leaf rust resistance gene Lr56 (Marais, 2010) that derives from 

14K456-K-1 and appears to give universal resistance; adult plant resistance gene Lr46 derived 

from Jerry-Lr56; and seedling resistance genes Lr16, Lr24 and Lr37 from SD09227 (Table 1).  

Lr16 is a seedling resistance gene that is highly effective against North American leaf rust races 

when pyramided with other genes (Kassa, 2017). SD09227 also contributed the Aegilops 

ventricosa-derived Lr37/Sr38/Yr17 translocation (Blaszczyk, 2004) and the Lr24/Sr24 

translocation from Thinopyrum ponticum (Mago, 2005). Both Lr37 and Lr24 have been 

overcome by mutation in the pathogen and are no longer effective against all races of P. triticina 

(Kolmer, 2017; Hanzalova, 2016). Lr46 is a slow rusting gene that expresses only in the adult 
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stage and it can reduce the symptoms caused by the pathogen (William, 2003).  Lr77 is another 

adult-stage resistance gene, so it would not have had any effect on the results from the seedling 

screenings (Kolmer, 2018).  Based on the leaf rust seedling screenings 16M10-136-2, 16M10-17, 

16M10-67, and 16M10-105-1 were resistant to all races of leaf rust tested.  In all of these 

families besides 16M10-17, Lr56 was present in some plants.  The resistance in 16M10-17 is 

likely due to Lr37 and 1B1R being present in some plants in the family.  16M10-105-1 had the 

best leaf rust gene pyramid with Lr37, Lr24, 1B1R, and Lr56 occurring at varying frequencies in 

the family.  All F6 plants in the 16M10-105-1 family also had Fhb1 and Qfhs.ifa-5A.  

The resistance to stem rust in the 16M10 population (Table 5) is inherited mostly from 

the parental line SD09227.  SD09227 contains the Sr24/Lr24 translocation as well as the 

Lr37/Sr38/Yr17 translocation.  Jerry also appears to be a heterogeneous cultivar reported to have 

Sr24/Lr24 (USDA-ARS, 2019); however, Sr24 does not appear to occur in all plants of the 

cultivar (Marais 2020, Personal communication).  Sr24 is a seedling resistance gene that is 

effective against multiple races (Flath, 2017).  Recent variants of the Ug99 race have proven to 

be virulent to Sr24 (Xu, 2017).  Sr24 segregates with the leaf rust resistance gene Lr24.  

However, the diversity in ITs observed among the inbred lines and the diverse responses to the 

panel of four races, suggest that additional, unknown major stem rust resistance genes are likely 

segregating in the population. The marker data (Table 8) suggest that the 1BL.1RS translocation 

occurs in a low frequency of lines. The 14K456-K-1 parent is not completely pure-breeding; is 

known to segregate for the presence of the translocation; and is probably the source. The marker 

data also corroborate the likely presence of the Sr24/Lr24, Lr37/Sr38/Yr17, and Lr56 

translocations as well as resistance genes Lr46/Yr29.  Based on marker screenings of the F6 

families only 16M10-22 and 16M10-105-1 showed the presence of Sr24.  16M10-105-1 was 
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highly resistant to all four stem rust races tested, 16M10-22 was highly resistant to all races but 

QTHJ.  16M10-22 also had a 50% frequency of plants with 1B1R.  16M10-105-1 had a 95% 

frequency of Sr38.  The results from the marker screening and seedling screening suggest that 

the presence of Sr24 along with one other SR gene provides a high level of resistance to the stem 

rust races tested.  Lines with just Sr38 ranged with moderate resistance to susceptible to the stem 

rust races tested.  Both 16M10-22 and 16M10-105-1 had Fhb1 and Qfhs.ifa-5A in a high 

frequency of F6 plants (90% for 16M10-22 and 100% for 16M10-105-1).  

The 16M10 lines had similar milling properties as SY Wolf and Jerry, based primarily on 

flour extraction percent.  For the 16M10 lines flour extraction ranged from 44.8-54.9% whereas 

Jerry had a flour extraction of 50.1%, and SY Wolf had a flour extraction of 46.8%.  The nine 

highest yielding 16M10 lines had higher flour extraction percentages than both Jerry and SY 

Wolf. Protein percent is a very important trait for hard red winter wheat as premiums are given to 

higher protein wheat.  For hard red winter wheat, the standard grain protein percent is usually 

11% with premiums occurring above this level (USDA-FSA, 2019). Protein content of the nine 

highest yielding 16M10 lines compared relatively well with Jerry (13%) and SY Wolf (13.5%). 

16M10-136-2 along with 16M10-39, 16M10-22, 16M10-73, and 16M10-67 all had higher 

protein contents than Jerry. The Mixograph test indicated that the 16M10 lines had mixing 

qualities similar to that of Jerry and SY Wolf.  16M10 lines had Mixograph scores between 1-4, 

Jerry and SY Wolf had a score of 2.  The solvent retention capacity test showed that the 16M10 

lines had more glutenin than that of SY Wolf, and three lines were higher than Jerry.  The 

glutopeak test showed that 16M10 lines had gluten strengths similar to that of Jerry and SY 

Wolf, based on maximum torque. To determine baking quality; bread loaf volume, crumb color, 

and crust color were scored.   The baking test results indicated that the 16M10 lines produced 
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bread that is visually similar to Jerry and SY Wolf, but the average bread volume of the 16M10 

lines was 16.4% less than that of SY Wolf. Generally, the quality characteristics of the nine 

selections were within the boundaries set by the control varieties. 

The preliminary marker screening done on just two F4 samples from each 16M10 line 

detected the Fhb1 and Qfhs.ifa-5A markers in the 16M10 population.  The second marker 

screening done on nine high yielding 16M10 lines using twenty samples (F6) of each line 

confirmed the results from the first marker screening. The second marker screen also allowed for 

the identification of individual plants that appeared to be homozygous for desirable marker 

pyramids.  

Fusarium head blight (FHB) is one of the most prevalent wheat diseases in North Dakota, 

because of this wheat varieties that have tolerance to FHB are preferred (Friskop, 2018).  Neither 

Jerry nor SY Wolf contain Fhb1 or Qfhs.ifa-5A.  The lack of Fhb1 and Qfhs.ifa-5A resistant 

alleles results in SY Wolf scored as susceptible to FHB, and Jerry scored as very susceptible to 

FHB (Ransom, 2019).  The marker data of the 16M10 lines showed that six of the highest 

yielding 16M10 lines had the Fhb1 marker in >50% of plants, and seven of the 16M10 lines had 

the Qfhs.ifa-5A marker in >50% of plants, while 16M10-105-1, 16M10-73, 16M10-143-2, and 

16M10-22 had both markers.  Winter wheat often flowers early enough to partially avoid FHB 

infection. This coupled with the presence of Fhb1 and Qfhs.ifa-5A could strongly reduce 

fungicide application for the control of FHB.   

One objective of this study to determine if Fhb1 and Qfhs.ifa-5A could be stacked in hard 

red winter wheat lines in the NDSU breeding program while maintaining a high yield. The 

results obtained in the yield trial without replication suggested that a general decrease in yield 

was a correlated response to the introgression of Fhb1. Results from the replicated yield trial 
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suggested that by targeting selection for yield beginning in the early generations it is possible to 

incorporate FHB resistance while maintaining high yield. Four of the ten highest yielding 16M10 

lines contained both the Fhb1 and Qfhs.ifa-5A markers, which is evidence that it is possible to 

maintain high yields while incorporating FHB resistance genes.  There was also no significant 

difference between the highest yielding check (Ideal) and any of the high yielding 16M10 lines 

with the FHB resistance stack. Continued intercrosses with/of the best yielding, Fhb1-carrying 

breeding lines followed by strict yield selection of the progeny might further improve the yield 

of FHB resistant material. 

Marker screening was done to detect rust resistance genes/translocations Lr34/Yr18, 

Lr46/Yr29, Lr37/Sr38/Yr17, Lr24/Sr24, 1B1R, and Lr56 among 20 random F6 plants from each 

of the nine highest yielding selections. Only plants that had both the Fhb1 and Qfhs.ifa-5A 

markers plus additional resistance markers are listed in Table 11. Only four plants (three from 

16M10-105-1) with the 1BL.1RS translocation were selected due to the negative connotation 

with processing quality (Zhao, 2012). Plant 16M10-143-2-12 is the most promising plant 

(derived from the highest yielding line) with three additional positive marker results. Plants in 

the 16M10-105-1 family had the most additional resistance genes with four rust resistance genes 

occurring in plant numbers 3, 7, 11.  16M10-17 and 16M10-136-2 were the only families that did 

not have any plants with Fhb1, because of this no plants in these families were selected.  The 

thirteen selected F6 plants are expected to be highly homozygous (97% for loci that were 

heterozygous in the F1) and will continue to be evaluated in advanced yield trials.  

Conclusion 

The results of the field trial, the quality tests, and the marker screens suggested that the 

nine highest yielding 16M10 selections were very comparable to the commercial control 
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varieties and barring plant height (which was comparable to the tall variety, Jerry) exhibited no 

major production or processing defects. The pure lines being developed from the F6 single plant 

selections will have a high level of within-line uniformity and will continue to be tested for 

possible commercialization. However, the preliminary data suggest that it is unlikely that the 

selections will significantly out-yield the leading commercial varieties. The selections will, 

however, have the advantage of possessing pyramids of Fhb1 and Qfhs.ifa-5A and rust resistance 

markers which could provide a benefit when disease epidemics occur. Since the expression of 

FHB resistance is strongly influenced by genetic background, it will be necessary to confirm that 

the marker pyramids actually translate into resistance in the field. The selections will nonetheless 

be valuable resources for continued crosses to introgress Fhb1 and Qfhs.ifa-5A in the breeding 

population and develop pyramided germplasm with broader disease resistance. Selection 16M10-

143-2-12 derives from the highest yielding 16M10 line and is the single, most promising 

selection with an excellent marker pyramid (Fhb1, Qfhs.ifa-5A, Lr46/Yr29, Lr37/Sr38/Yr17, and 

Lr56).  Finally, the study suggested that while the incorporation of Fhb1 in this double cross was 

accompanied by detrimental yield effects, it appeared possible to select recombined genotypes 

with both Fhb1 and high yield.   

References 

Anderson, T., Ward, R.W. History of the U.S. wheat and barley scab initiative. U.S. Wheat & 

Barley Scab Initiative. https://scabusa.org/about. Accessed 5/13/2020. 

 

Buerstmayr, H, T. Ban, J.A. Anderson. 2009. QTL mapping and marker-assisted selection for 

Fusarium head blight resistance in wheat: a review. Plant Breeding. 128(1):1-26. 

 

Buerstmayr, M. B. Steiner, C. Wagner, P. Schwarz, K. Brugger, D. Barabaschi, …, H. 

Buerstmayr. 2018. High-resolution mapping of the pericentromeric region on wheat 

chromosome arm 5AS harbouring the Fusarium head blight resistance QTL Qfhs.ifa-5A. 

Plant Biotechnology Journal. 16(5):1046-1056. 

 

https://scabusa.org/about


 

74 

Dean, R., J.A.L. Van Kan, Z.P. Pretorius, K.E. Hammond-Kosack, A. Di Pietro, P.D. Spanu, …, 

G.D. Foster. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular 

Plant Pathology. 13(4):414-430. 

 

Del Ponte, E.M., B. Valent, G.C. Bergstrom. 2017. A special issue on Fusarium head blight and 

wheat blast. Tropical Plant Pathology. 42:143-145. 

 

Dweba, C.C., S. Figlan, H.A. Shimelis, T.E. Motaung, S. Sydenham, L. Mwadzingeni, T.J. Tsilo. 

2017. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop 

Protection. 91:114-122. 

 

Finnie, S., W.A. Atwell. 2016. Milling. In. S. Finnie and W.A. Atwell, editors. Wheat Flour-2nd 

Edition. Elsevier Inc. p:17-30. 

 

Flath, K. T. Miedaner, P.D. Olivera, M.N. Rouse, Y. Jin. 2018. Genes for wheat stem rust 

resistance postulated in German cultivars and their efficacy in seedling and adult-plant 

field tests. Plant Breeding. 1-12. DOI: 10.1111/pbr.12591. 

 

Friskop, A, S. Zhong, R. Brueggeman. 2018. Fusarium head blight (scab) of small grains. NDSU 

Extension Publication. PP804. 

 

Guttieri, M.J., D. Bowen, D. Gannon, K. O’Brien, E. Souza. 2001. Solvent retention capacities 

of irrigated soft white spring wheat flours. Crop Science. 41(4):1054-1061. 

 

Hanzalova, A., P. Bartos, T. Sumikova. 2016. Virulence of wheat leaf rust (Puccinia triticina 

Eriks.) in the years 2013-2015 and resistance of wheat cultivars in Slovakia. Cereal 

Research Communications. 44(4):585-593.  

 

Karki, D. 2019. Effects of snow on wheat. SDSU Extension. Extension.sdstate.edu/effects-snow-

wheat.  

 

Karki, D. 2020. Winter survival and spring stand counts in winter wheat. SDSU Extension. 

https://extension.sdstate.edu/winter-survival-and-spring-stand-counts-winter-wheat 

 

Kassa, M.T., F.M. You, C.W. Hiebert, C.J. Pozniak, P.R. Fobert, A.G. Sharpe, …, C.A. 

McCartney. 2017. Highly predictive SNP markers for efficient selection of the wheat leaf 

rust resistance gene Lr16. BMC Plant Biology. 17(45): DOI 10.1186/s12870-017-0993-7. 

 

Kaufmann, M.L. 1971. The random method of oat breeding for productivity. Canadian Journal of 

Plant Science. 51:13-16. 

 

Kolmer, J.A., M.E. Hughes. 2017. Physiologic specialization of Puccinia triticina on wheat in 

the United States in 2015. Plant Diseases. 101:1968-1973. 

 

Kolmer, J.A., Z. Su, A. Bernardo, S. Chao. 2018. Mapping and characterization of the new adult 

plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat. 



 

75 

 

Kuhnem, P.R., E.M. Del Ponte, Y. Dong, G.C. Bergstrom. 2015. Fusarium graminearum 

isolates from wheat and maize in New York show similar range of aggressiveness and 

toxigenicity in cross-species pathogenicity tests. Phytopathology. 105(4):441-448. 

 

Lamari, L., C.C. Bernier. 1989. Evaluation of wheat lines and cultivars to tan spot [Pyrenophora 

tritici-repentis] based on lesion type. Canadian Journal of Plant Pathology. 11:49-56. 

 

Larson, J.K, L.J. Brun, J.W. Enz, D.J. Cox. 1987, Minimizing the risk of producing winter wheat 

in North Dakota. 1. The effect of tillage on snow depth, soil temperature, and winter 

wheat survival. Farm Research. 44:5. 

 

Liu, S., M.O. Pumphrey, B.S. Gill, H.N. Trick, J.X. Zhang, J. Dolezel, …, J.A. Anderson. 2008. 

Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in 

wheat. Cereal Research Communications. 36:195-201. 

 

Liu, Z.H., T.L. Friesen, J.B. Rasmussen, S. Ali, S.W. Meinhardt, J.D. Faris. 2004. Quantitative 

trait loci analysis and mapping of seedling resistance to stagonospora nodorum leaf 

blotch in wheat. Phytopathology. 94:1061-1067. 

 

Mac Key, J., C.O. Qualset. 1986. Conventional methods of wheat breeding. Crop Science 

Society of America and American Society of Agronomy. 13:7-24. 

 

Mago, R., G. Brown-Guedira, S. Dreisigacker, J. Breen, Y. Jin, R. Singh, …, W. Spielmeyer. 

2011. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor. 

Appl. Genet. 122:735-744. 

 

Marais, G.F., P.E. Badenhorst, A. Eksteen, Z.A. Pretorius. 2010. Reduction of Aegilops 

sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. 

Euphytica. 171:15-22. 

 

McMullen, M., G. Bergstrom, E. De Wolf, R. Dill-Mackey, D. Hershman, G. Shaner, D. Van 

Sanford. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head 

blight. Plant Disease. 96(12): doi.org/10.1094/PDIS-03-12-0291-FE. 

 

Navabi, A., M. Iqbal, K. Strenzke, D. Spaner. 2006. The relationship between lodging and plant 

height in diverse wheat population. Canadian Journal of Plant Science. 86(3):723-726. 

 

NDAWN. 2020. Prosper 5NW Daily Observations from November, 2019 to April, 2020. 

Accessed: September 30, 2020. https://ndawn.ndsu.nodak.edu/get-monthly-

report.html?quick_pick=&station=44&begin_date=2019-11&count=12. 

 

NOAA National Centers for Environmental Information. 2020. Climate at a Glance: Statewide 

Time Series. Accessed: September 30, 2020. https://www.ncdc.noaa.gov/cag/. 

 



 

76 

North Dakota State University Extension. 2019. Variety trial results-winter wheat. 

https://www.ag.ndsu.edu/varietytrials/winter-wheat. 

 

Plains Grains Inc. 2017. Hard red winter wheat- 2017 regional quality survey. 

https://www.plainsgrains.org/wp-content/uploads/2018/10/2017-HRWW-

Report__HiRes-FINAL.pdf.  

 

Ransom, J., F. Marais, S. Simsek, A. Friskop, E. Eriksmoen, J. Rickertsen, …, G. Pradhan. 2018. 

North Dakota hard winter wheat-Variety trial results for 2018 and selection guide. NDSU 

Extension Publication. A1196-18. 

 

Ransom, J., F. Marias, S. Simsek, A. Friskop, E. Eriksmoen, B. Hanson, …, G. Pradhan. 2019a. 

North Dakota hard red winter wheat-Variety trial results for 2019 and selection guide. 

NDSU Extension Publication. A1196-19. 

 

Ransom, J. A. Green, S. Simsek, A. Friskop, M. Breiland, T. Friesen, …, M. Ostlie. 2019b. 

North Dakota hard red spring wheat-Variety trial results for 2019 and selection guide. 

NDSU Extension Publication. A574-19. 

 

SAS Institute. 2020. SAS for Windows. Release 9.4. Sas Inst., Cary, NC. 

 

Snape, J.W., T.J. Riggs. 1975. Genetical consequences of single seed descent in the breeding of 

self-pollinating crops. Heredity. 35(2):211-219. 

 

Sobrova, P., V. Adam, A. Vasatkova, M. Beklova, L. Zeman, R. Kizek. 2010. Deoxynivalenol 

and its toxicity. Interdisc Toxicol. 3(3):94-99. 

 

Stakman, E.C., D.M. Stewart, W.Q. Loegering. 1962. Identification of physiologic races of 

Puccinia graminis var. Tritici. USDA-ARS. E617. 

 

Su, Z., S. Jin, D. Zhang, G. Bai. 2018. Development and validation of diagnostic markers for 

Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theoretical and 

Applied Genetics. Doi.org/10.1007/s00122-018-3159-6. 

 

Townley-Smith, T. F., E. A. Hurd. 1973.  Use of moving means in wheat yield trials. Can. J. 

Plant Sci. 53: 447-450.  

 

USDA-ARS (2019) Hard winter wheat regional nursery program. 

https://www.ars.usda.gov/plains-area/lincoln-ne/wheat-sorghum-and-forage-

research/docs/hard-winter-wheat-regional-nursery-program/research/ (Accessed June 

2020). 

 

USDA-FGIS. 2016. Chapter 10 Wheat. In. Grain Grading Primer. Accessed:  Sept 30, 2020. 

https://www.ams.usda.gov/sites/default/files/media/GrainGradingPrimer11272017.pdf. 

 

 

https://www.ag.ndsu.edu/varietytrials/winter-wheat
https://www.plainsgrains.org/wp-content/uploads/2018/10/2017-HRWW-Report__HiRes-FINAL.pdf
https://www.plainsgrains.org/wp-content/uploads/2018/10/2017-HRWW-Report__HiRes-FINAL.pdf
https://www.ars.usda.gov/plains-area/lincoln-ne/wheat-sorghum-and-forage-research/docs/hard-winter-wheat-regional-nursery-program/research/
https://www.ars.usda.gov/plains-area/lincoln-ne/wheat-sorghum-and-forage-research/docs/hard-winter-wheat-regional-nursery-program/research/


 

77 

USDA-FSA. 2019. 2019 crop year premiums and discounts and additional discounts for wheat, 

barley and oats. Accessed: October 1, 2020. https://www.fsa.usda.gov/Assets/USDA-

FSA-Public/usdafiles/Price-Support/pdf/Prem-Disc-

2019/2019%20Crop%20Year%20PD's%20and%20Additional%20Discounts%20for%20

Wheat%20Barley%20and%20Oats.pdf 

 

USDA-NASS-North Dakota Field Office. 2019. North Dakota Agricultural Statistics 2019. Ag 

Statistics. 88. Accessed: September 30, 2020. 

https://www.nass.usda.gov/Statistics_by_State/North_Dakota/Publications/Annual_Statis

tical_Bulletin/2019/ND-Annual-Bulletin19.pdf. 

 

U.S. Wheat Associates. 2018. Recommended SRC values for selected products. 

https://www.uswheat.org/wp-content/uploads/2018/03/Solvent-Retention-Capacity-

Recommendations.pdf. Accessed on 9/29/2020. 

 

Vieira, R.A., R. Rocha, C.A. Scapim, AA.T. Amaral Junior, M. Vivas. 2016. Selection index 

based on the relative importance of traits and possibilities in breeding popcorn. Genet. 

Mol. Res. 15(2). Doi: 10.4238/gmr.15027719. 

 

von der Ohe, C., E. Ebmeyer, V. Korzun, T. Miedaner. 2010. Agronomic and quality 

performance of winter wheat backcross populations carrying non-adapted Fusarium head 

blight resistance QTL. Crop Science. 50(6):2283-2290. 

 

Wiersma, J.J., J.K. Ransom. 2005. The small grains field guide. NDSU Extension Publication 

A290. 

 

William, M., R.P. Singh, J. Huerta-Espino, S.O. Islas, D. Hoisington. 2003. Molecular marker 

mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance 

gene Yr29 in wheat. Phytopathology. 93(2):153-159. 

 

Xu, X.F., D.D. Li, Y. Liu, Y. Gao, Z.Y. Wang, Y.C. Ma, …, T.Y. Li. 2017. Evaluation and 

identification of stem rust resistance genes Sr2, Sr24, Sr25, Sr26, Sr31 and Sr38 in wheat 

lines from Gansu Province in China. PeerJ. 5:e4146. DOI 10.7717/peerj.4146. 

 

Yu, L.X., H. Barbier, M.N. Rouse, S. Singh, R.P. Singh, S. Bhavani, J. Huerta-Espino, M.E. 

Sorrells. 2014. A consensus map for Ug99 stem rust resistance loci in wheat. Theor. 

Appl. Genet. 127(7):1561-1581. 

 

Zhang, D., R.L. Bowden, J. Yu, B.F. Carver, G. Bai. 2014. Association analysis of stem rust 

resistance in U.S. winter wheat. PLoS ONE. 9(7): e103747. 

Doi:10.1371/journal.pone.0103747. 

 

Zhao, C., F. Cui, X. Wang, S. Shan, X. Li, Y. Bao, H. Wang. 2012. Effects of 1BL/1RS 

translocation in wheat on agronomic performance and quality characteristics. Field Crop 

Research. 127:79-84.

https://www.uswheat.org/wp-content/uploads/2018/03/Solvent-Retention-Capacity-Recommendations.pdf
https://www.uswheat.org/wp-content/uploads/2018/03/Solvent-Retention-Capacity-Recommendations.pdf


 

78 

GENOME WIDE ASSOCIATION MAPPING OF STRIPE RUST RESISTANCE QTL 

Abstract 

Historically in the United States, stripe rust infections have been problematic in the 

Pacific Northwest.  In recent years however, stripe rust infections have become more common in 

North Dakota, creating an increasing need to breed for stripe rust resistance. The first step was to 

survey and assess the genetic variability for resistance within the NDSU hard red winter wheat 

(HRWW) breeding population. Of similar importance was to determine how many different 

resistance loci might be present in the more resistant lines. One way to map and study genes is 

through genome wide association study (GWAS).  GWAS locates single nucleotide 

polymorphisms (SNPs) that are closely associated with quantitative trait loci that contribute to 

the phenotypic variation of a trait.  In this study, genome wide association mapping was 

performed on two different populations of breeding material. There were no SNPs found that 

were associated with stripe rust resistance in either population. 

Introduction 

Association mapping is a quantitative trait locus (QTL) mapping method that exploits 

historical recombination events (Zhu, 2008).  Instead of using crossover and recombination 

information such as from a conventional bi-parental mapping experiment, association mapping 

uses linkage disequilibrium to find associations between markers and phenotypes.  Maps created 

by association mapping have higher resolution than maps created by bi-parental mapping (Yu, 

2006).  Association mapping is often used to locate disease resistance genes as well as genes 

affecting other agronomic traits.  Association mapping has been used to map traits such as spot 

blotch resistance, tan spot resistance, drought stress tolerance, as well as stripe rust resistance in 

bread wheat (Ahirwar, 2018; Gurung, 2011; Qaseem, 2018; Naruoka, 2015). 



 

79 

Agriculture is very important to North Dakota having contributed $8.2 billion to the 

economy in 2016 (U of A-Research & Extension, 2020).  Three crops, soybean, corn, and wheat 

contributed over 50% of the 8.2 billion dollars.  Wheat is the second largest agricultural 

commodity contributing $1.6 billion to the North Dakota economy.  Wheat exports were just 

under $1 billion in 2016, second to that of soybeans. 

Stripe rust used to mainly be a problem in the Pacific Northwest of the United States, but 

spreading significantly increased beginning in 1960 (Coakley, 1979; Beddow, 2015).  Eighty-

eight percent of wheat production in the world is now vulnerable to stripe rust infections 

(Beddow, 2015).  The most likely explanations for the expansion are changing climatic 

conditions and newer races of stripe rust that are adapted to warmer temperatures and are more 

virulent (Lyon, 2017).  The climatic factors that affect the ability of stripe rust to infect crops are 

moisture, temperature, and wind.  In North Dakota, the average annual temperature has been 

rising at a rate of .26°F per decade (Frankson, 2017).  Five-year averages for precipitation in 

North Dakota have been above the average yearly precipitation of 38.5 cm since 1990.  It is 

likely that increasing temperatures and more precipitation will increase the likelihood of stripe 

rust infection and cause stripe rust infections to occur earlier in the growing season (Lyon, 2017). 

Stripe rust reduces yield by slowing grain filling and decreasing seed weight (He, 2019).  

Yield loss can be up to 70% if a susceptible cultivar is planted, conditions are favorable for 

infection, and no fungicide is applied (Chen, 2005).  Although fungicide treatments are an 

effective option to control stripe rust, it is costly.  A much cheaper way to control stripe rust is by 

planting resistant cultivars.  Eighty-two stripe rust resistance genes have been mapped to date 

(Gevreslasie, 2020).  Many of these resistance genes are all-stage resistance genes.  All-stage 

resistance genes can be easily mapped and implemented in lines, because they often provide high 
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levels of resistance to specific races of a pathogen (Yuan, 2018).  Resistance to specific races 

provided by all-stage resistance genes is often short lived as pathogens can mutate to make the 

resistance ineffective (Hou, 2013).  An alternate approach to using all-stage resistance genes is 

stacking multiple adult-stage resistance genes (Yuan, 2018).  Adult-stage resistance genes 

provide low levels of resistance to many races of a pathogen, so by pyramiding adult-stage 

resistance genes, or by combining adult stage and all stage resistance genes, a high level of stable 

resistance to many races can be achieved.  

An integrated genetic map of wheat was produced that incorporates 78 permanently 

named stripe rust resistance genes, 67 temporarily designated stripe rust resistance genes, and 

327 resistance QTL (Wang, 2017).  Previous studies have shown that GWAS is a strong tool to 

locate novel adult-plant stripe rust resistance genes (Ye, 2019; Li 2019).  Well-studied stripe rust 

resistance genes are Yr29, Yr5, Yr15, Yr17 (Cobo, 2019; Zhang, 2020; Klymiuk, 2018; Milus, 

2015).  Yr29 is a durable, moderately effective, adult stage, non-race specific gene (Cobo, 2019).  

Yr5 and Yr15 are all-stage resistance genes that provides resistance to a broad range of stripe rust 

races (Murphy, 2009).  Yr17 is an all-stage race specific gene (Milus, 2015).  Yr17 has been 

widely used since it was introduced into wheat in 1967 from Aegilops ventricosa (Maia, 1967).  

Virulence to Yr17 appeared in 1994 in the United Kingdom and Denmark due to large acreages 

of wheat with Yr17 as the only source of stripe rust resistance utilized by resistance cultivars 

(Bayles, 2000).  However, incorporating Yr17 along with other race specific and/or race non-

specific genes remains an effective management strategy for stripe rust (Paillard, 2012; Aviles, 

2015). 

In the United States, the most common stripe rust races are PSTv-37, PSTv-47, PSTv-41, 

PSTv-4, and PSTv-52 (Chen, 2019).  PSTv-47, PSTv-41, PSTv-4, and PSTv-52 occurred only in 
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wheat grown in the western United States (Washington, Oregon, Idaho, California) in 2019.  

PSTv-37 has the largest infection range and this race was present in twelve states in 2019. No 

significant stripe rust infection was reported in North Dakota in 2019.  However, previous 

studies have shown that both PSTv-37 and PSTv-52 have occurred in North Dakota (Wan, 

2016).  Both of these races are virulent to a number of stripe rust resistance genes including Yr17 

(Chen, 2019). 

To evaluate and map the available and currently effective resistance to stripe rust within 

the NDSU breeding germplasm, two populations of inbred lines from the junior, senior, and elite 

trials of the 2018 and 2019 seasons were used for genome wide association mapping. Such 

resistance genes could be of either the all stage or adult stage types. This will serve as a first step 

in discovering useful and different sources of resistance that can be employed in crosses and 

breeding. 

Materials and Methods 

Mapping Populations 

Two different mapping populations were used for this study; one based on inbred lines 

developed in 2018 and the other consisting of inbred lines developed in 2019.  The 2018 

mapping population consisted of 162 senior and elite winter wheat lines from the NDSU winter 

wheat breeding program.  The 2019 mapping population consisted of 270 junior and senior lines 

from the NDSU winter wheat breeding program. 

Data Recorded 

In 2018 and 2019 resistance phenotype data for the 2018 and 2019 inbred lines were 

obtained by Dr. Kimberly A. Garland-Campbell; USDA-ARS Research Geneticist (Plants); 

Wheat Health, Genetics, and Quality Research; Pullman, WA 99164. Lines were evaluated for 
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stripe rust race PSTv-37 infection type and disease severity.  Scores for infection type were 

based on the Qayoum and Line scale (Line, 1992). Signs and symptoms of each infection type 

base on the Qayoum and Line scale are shown in Table 12.  PSTv-37 is by far the most common 

race in the United States.  The virulence/avirulence formula for race PSTv-37 is provided in 

Table 13.  

Table 12: Stripe rust infection type scale of Qayoum and Line (1992) 

Infection Type Signs and symptoms 

0 No visible signs of symptoms 

1 Necrotic and/or chlorotic flecks; no sporulation 

2 Necrotic and/or chlorotic blotches or stripes; no sporulation 

3 Necrotic and/or chlorotic blotches or stripes; trace sporulation 

4 Necrotic and/or chlorotic blotches or stripes; light sporulation 

5 Necrotic and/or chlorotic blotches or stripes; intermediate sporulation 

6 Necrotic and/or chlorotic blotches or stripes; moderate sporulation 

7 Necrotic and/or chlorotic blotches or stripes; abundant sporulation 

8 Chlorosis behind sporulating area; abundant sporulation 

9 No necrosis or chlorosis; abundant sporulation 

Infection types were only recorded as 2, 5, and 8 in this study  

Stripe rust severity was recorded as the percentage of leaf area that was affected.  Disease 

severity and infection type were also multiplied to get a disease index.  Data normalization was 

conducted using sqrt and log transformation for infection type and index, and for severity arcsine 

sqrt was used.  To test for normality the Shapiro-Wilk test was used (Shapiro, 1965). 

 

 

 

Table 13: Virulence/avirulence data for Puccinia striiformis race PSTv-37.  

 
Stripe Rust Resistance Genes 

Stripe Rust Race Virulent Avirulent 

PSTv-37 Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, 

Yr43, Yr44, YrTr1, YrExp2 

Yr1, Yr5, Yr10, Yr15, Yr24, 

Yr32, YrSP, Yr76 



 

83 

Environments 

Field evaluations were conducted at two localities in Washington (Central Ferry and 

Pullman) in 2018 and 2019.  Two replications were planted at each location.  At Pullman in 

2019, disease ratings were taken on two different dates (July 1st, and July 12th).  At Central Ferry 

in 2019, ratings were taken on June 12th.  Due to data being collected in two years from two 

locations, four environments were available for genome wide association mapping.  However, 

none of the inbred lines or checks used in 2018 and 2019 were the same, because of this the lines 

used in 2018 and 2019 needed to be analyzed separately. 

Calculating BLUEs 

Phenotype data collected from Washington State were used to calculate best linear 

unbiased estimators (BLUEs) for infection type, severity, and disease index.  RStudio packages 

lme4 version 1.1-21 and LMERConvenianceFunctions were used to calculate BLUEs (Bates, 

2019), using a linear mixed model with genotype as a fixed effect and location and replication as 

random effects. 

Genotyping 

Plants that were phenotyped were also planted in the Agricultural Experiment Station 

Research Greenhouse Complex at the North Dakota State University campus in 2018 and 2019.  

Plants were grown to the 3-leaf stage when a 3.8-5-cm leaf segment was cut from each sample 

and placed into a 96-deep-well block filled with silica gel.  The last well in each block was left 

empty to help make sure the blocks were orientated correctly for genotyping.  After each block 

was filled it was sealed tightly with the cap-mat and inverted multiple times to ensure that leaf 

tissue was in contact with the silica gel.  Genotyping by sequencing was performed by Dr. 
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Xuehui Li’s laboratory at North Dakota State University.  Wheat genotype libraries GBS30 and 

GBS50 were used for genotype calling.  The raw genotype file consisted of 447,310 sites. 

Association Mapping 

Filtering 

The 2018 and 2019 genotype files both had a large proportion of missing alleles.  In an 

attempt to lower the proportion of missing alleles, genotype filtering was done on sites with high 

proportions of missing alleles as well as genotypes with high proportions of missing alleles.  For 

both the sets of lines developed in 2018 and 2019, sites were filtered so that sites with 50% 

missing data or more were not included in the analysis.  For the 2018 genotypes there was one 

outlier genotype that was near 100% missing data that was filtered out.  For the 2019 genotypes 

there were four genotypes that had over 90% missing data that were filtered out.  A final filtering 

for minor allele frequency (MAF) of .05 was performed before imputation. 

Imputation 

The remaining missing genotypes were imputed using LD KnnI imputation in TASSEL 

5.0.  LD Knni is based on nearest neighbor imputation.  LD KnnI factors in linkage 

disequilibrium between SNPs when choosing the nearest neighbor (Money, 2015).  LD KnnI 

Imputation was set to include the ten nearest neighbors in the imputation. 

Population Structure and Kinship 

Principal component analysis was done (using TASSEL 5.0) to control population 

structure and remove false positives due to population structure.  Principal component analysis 

reduces the dimensionality of a data set while still maintaining maximum variation (Lever, 

2017).  It does this by identifying directions along which variation is maximal.  The number of 

principal components that will be used in an analysis is determined by the total amount of 
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variance the researcher wants the principal components to include.  In this experiment the 

number of principal components used accounted for 25% of the total variation.  The identity by 

state relative K-matrix was estimated by measuring relatedness between pairs of entries. 

Regression Models 

In order to find marker-trait associations, four different models were tested using 

TASSEL 5.0 and RStudio.  The models tested were the simple model, P (principal component) 

model, K (kinship) model, and the PK (principal component + kinship) model.  The simple and 

the P models are general linear models with only fixed effects.  The simple model had an 

equation of phenotype is explained by the fixed effect of the SNPs plus residual effects.  The P 

model had an equation of phenotype is explained by the fixed effects of the SNPs plus principal 

component matrix multiplied by the fixed effects of population structure plus residual effects.  

The K model and the PK model were mixed linear models with both fixed and random effects.  

The K model had an equation of phenotype is explained by fixed effects of the SNPs plus 

kinship matrix multiplied by random effects of individuals relatedness plus residual effects.  The 

PK model had an equation of phenotype is explained by the fixed effect of SNPs plus principal 

component matrix multiplied by the fixed effect of population structure plus kinship matrix 

multiplied by the random effects of individuals relatedness plus residual effects. P values were 

calculated for each SNP for the four models using TASSEL 5.0.  Mean square differences were 

then calculated to find deviations for observed P-values from the uniform distribution using 

RStudio.  The uniform distribution was found by calculating the expected p-values using the 

ppoints function in the stats (version v3.6.1) package in RStudio (R Core Team).  The model that 

had the lowest mean square difference is the best model to use for genome wide association 

study for stripe rust resistance in this study. 
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Determining Significance 

Manhattan plots were constructed in RStudio using -log10 p-values as the y-axis and 

chromosome number (chromosome numbers were labeled as 1-21 instead of 1A-7D) as the x-

axis.  Bonferroni’s correction with a genome wide error rate of α=.1 was used to reduce the 

number of false-positive results.  To determine if a single marker is significantly associated with 

a trait when using Bonferroni’s correction, the genome-wide error rate is divided by the number 

of markers tested. 

Results 

Phenotype Results 

Infection type and severity of stripe rust were evaluated at Central Ferry and Pullman in 

Washington.  For each genotype a mean infection type, severity, and disease index was 

calculated for each location.  Genotype means were then used to derive the range, mean, and 

standard deviation for infection type, severity, and disease index at each location (summarized in 

Table 14). Disease severity, infection type, and disease index scores were higher at Pullman than 

at Central Ferry in 2019.  For severity recorded in 2018, severity in 2019, and disease index in 

2019 there was a significant interaction between location and genotype. Heritability was high for 

all three traits evaluated for both years.  For infection type 2018 the heritability was 84%, and in 

2019 it was 80%.  For severity in 2018 the heritability was 92%, and in 2019 it was 84%.  For 

disease index in 2018 the heritability was 92%, and in 2019 it was 83%.  Severity, infection type, 

and disease index data were not normally distributed.  In an attempt to normalize infection type 

and disease index both log and sqrt (square root) transformation were performed.  In attempt to 

normalize disease severity arcsine sqrt transformation was used.  The attempts to normalize the 

phenotype data however, did not result in any of the data being close to normally distributed. 
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Table 14: Summary of stripe rust resistance traits in NDSU hard red winter wheat breeding 

material 

 2018 CF 2018 P 2019 CF 2019 P 

Infection type: Range 

(mean) 

2-8 (6.5) 2-8 (6.3) 2-8 (5) 2-8 (6.2) 

Infection type: SD (CV) 1.95 (0.3) 1.8 (0.29) 2.25 (0.45) 1.69 (0.27) 

Severity: Range (mean) 10-90 (57.4) 15-100 (57.3) 5-90 (29.1) 5-90 (46.7) 

Severity: SD (CV) 21.5 (0.37) 19.67 (0.34) 23.8 (0.82) 24.93 (0.53) 

Disease index: Range 

(mean) 

20-720 

(403.9) 

30-800 

(389.1) 

10-720 

(186.3) 

10-720 

(328.9) 
Disease index: SD (CV) 216.7 (0.54) 208.3 (0.54) 200.2 (1.07) 217.5 (0.66) 

CF=Central Ferry, Washington 

fF 
P=Pullman, Washington 

 

To minimize environmental effects, Best Linear Unbiased Estimates (BLUEs) were 

calculated for disease severity, infection type, and disease index for the 2018 and 2019 breeding 

populations.  The calculated BLUEs were then used for GWAS.  A summary of the distribution 

of BLUEs can be seen in Table 15. 

Table 15: Distribution of stripe rust infection type and severity in the 2018 and 2019 winter 

wheat populations based on BLUEs 

Trait Classification 

2018 2019 

Number Percentage Number Percentage 

Infection Typea 

1-3 14 8.7% 21 7.9% 

4-6 76 47.2% 140 52.4% 

7-9 71 44.1% 106 39.7% 

Severity 

0-20 1 0.6% 69 25.8% 

20-40 36 22.4% 86 32.2% 

40-60 48 29.8% 69 25.8% 

60-80 63 39.1% 38 14.2% 

80-100 13 8.1% 5 1.9% 

Disease Index 

0-250 48 29.6% 153 57.3% 

250-500 55 34% 89 33.3% 

500-750 59 36.4% 25 9.4% 
a BLUEs that fell between the ranges of 3-4 and 6-7 were rounded to the nearest whole number 

and included in that classification 

 

Filtering/Imputation 

The 2018 raw genotype file consisted of 138 taxa and 447,310 sites for a total of 

6.17x107 sites x taxa (alleles) with 58.2% of those alleles missing before filtering and 

imputation.  By filtering out taxa and sites that had high proportions of missing data, filtering out 
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MAF .05, and by performing LD KnnI Imputation, the proportion of missing alleles was reduced 

to 3%.  After filtering and imputation, the 2018 genotype file consisted of 137 taxa and 139,994 

sites.  The 2019 genotype file consisted of 271 taxa and 447,310 sites for a total of 1.2x108 

alleles, 67.3% of which alleles were missing before filtering and imputation.  After filtering and 

imputation, 5.3% of the alleles were missing.  The resulting genotype file consisted of 267 taxa 

and 89,967 sites. 

Principal Component Analysis 

To reduce false-positives, principal component analysis was performed to account for 

population structure.  Principal components that explained up to 25% of the total variation were 

used.  The 2018 genotype data had seven principal components that explained approximately 

25% of the genetic variation.  The 2019 genotype data had nine principal components that 

explained approximately 25% of the genetic variation. 

Regression Models 

The mean squared difference of the four different models were calculated in RStudio.  

The results for the simple, P, K, and PK models for the six association studies (2018 infection 

type, 2018 severity, 2018 disease index, 2019 infection type, 2019 severity, and 2019 disease 

index) are reported in Table 16.  The bold, mean squared difference indicates the model that was 

used for that association. 

Table 16: Mean squared differences for simple, p, k, and pk models for the years 2018 and 2019 

infection type, disease severity, and disease index 

 Mean Squared Difference 

Model 2018 IT 2018 Sev 2018 Index 2019 IT 2019 Sev 2019 Index 

Simple 0.0028 0.004 .004 0.021 0.022 .0197 

P 0.0009 0.0015 .001 0.0058 0.0072 .006 

K 0.0002 0.0002 6.8E-05 2.77E-05 1.96E-05 5.08E-05 

PK 1.45E-05 8.24E-06 3.8E-06 2.29E-05 2.15E-05 7.88E-05 

Bold indicated model used for each year and trait  
It=Infection Type, Sev=Disease Severity 
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Significant Markers 

SNPs were considered significant at the experiment wise Bonferroni level of =.1.  For 

the 2018 GWAS experiments 139,994 markers were tested.  For a single marker to be considered 

significant it must have a p value of 7.1x10-7.  There were no markers that were considered 

significant for 2018 infection type, disease severity, or disease index at this level.  For 2019 

GWAS experiments 89,967 markers were tested, for a single marker to be considered 

significantly associated with a trait is must have a p value of 1.1x10-6.  There were no markers 

that were considered significant at this level for 2019 infection type, disease severity, or disease 

index.  The Manhattan plots that were constructed are shown in Figures 3-8 with –log10(p) 

plotted against chromosome location.  Different colors signify the change from one chromosome 

to another. 

 

Figure 3: Manhattan Plot for Infection Type 2018 based on -log10(p) 
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Figure 4: Manhattan plot for Severity 2018 based on -log10(p) 

 

Figure 5: Manhattan plot for Index 2018 based on -log10(p) 
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Figure 6: Manhattan plot for Infection Type 2019 based on -log10(p) 

 

Figure 7: Manhattan plot for Severity 2019 based on -log10(p) 
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Figure 8: Manhattan plot of Index 2019 based on -log10(p) 

Discussion 

Stripe rust is still an uncommon disease in North Dakota with infections rarely occurring 

(Friskop, 2015).  This resulted in little effort being put into the collection of stripe rust resistant 

material when the hard red winter wheat breeding program was started at NDSU (Marais 

personal communication, 2020).  Therefore, it was not expected that many, if any, effective 

stripe rust resistance QTL would occur in the breeding material.  The results from the 

phenotyping conducted at Washington State University showed that there is very little resistance 

to stripe rust race PSTv-37.  One reason for this is that in the breeding material, the most 

commonly used race-specific resistance gene Yr17 is not effective against stripe rust race PSTv-

37 (Wan, 2016).  Despite this, 8.7% of the lines tested in 2018 had the resistant infection type, 

and 23% of lines were partially resistant (severity less than 40%).  In 2019, 7.9% of the lines had 

the resistant infection type, and 58% of lines were partially resistant, based on severity.  In an 
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attempt to identify markers that correlate with resistance in the winter wheat breeding material a 

genome wide association study (GWAS) was conducted. 

When conducting GWAS, false-positive results are common (Kaler, 2019).  In an attempt 

to limit false-positive results, kinship analysis and principal component analysis were conducted 

to correct for relatedness of genotypes and population structure.  In all six of the GWAS data sets 

(2018 and 2019 infection type, disease severity, and disease index) kinship needed to be 

accounted for, and population structure needed to be accounted for in all datasets except for 2019 

severity and 2019 disease index.  Even when kinship and population structure are accounted for, 

false-positive results can still occur due to the number of marker-trait associations that are tested 

in a GWAS (Johnson, 2010).  In the 2018 and 2019 GWAS, totals of 139,884 and 89,967 

markers were tested respectively.  Since each one of these markers can result in a false-positive 

association, a statistical method that considers experiment-wise Type I (false-positive) error rate 

needed to be implemented.  One common method used to account for experiment-wise Type I 

error is Bonferroni’s correction (Johnson, 2010).  When performing multiple tests 

simultaneously, the risk of a Type I error increases.  Bonferroni’s correction takes this into 

account by dividing the experiment-wise α level needed to be considered significant by the total 

number of tests being conducted to get the p-value that is needed to be considered significant for 

a single marker.  When using Bonferroni’s correction in this experiment a marker needed to have 

a p-value of 7.14 x 10-7 for 2018 data and 1.11 x 10-6 for 2019 data to be considered significant.   

There were no markers that were significantly associated with stripe rust resistance at 

these p-values in any of the six GWAS conducted.  It is however, important to note that 

Bonferroni’s correction is a very conservative approach to minimize Type I errors that often 

results in an increase in Type II errors (Kaler, 2019).  This coupled with each line only being 



 

94 

grown in two environments, the phenotype data not being normally distributed, and a high 

amount of missing genotype data could be reasons why no marker-trait associations were found.  

Ideally, phenotype data for GWAS should be gathered over multiple years and multiple locations 

as more observations for each entry helps minimize the environmental error.  In this experiment 

phenotype data were only gathered for one year at two locations for each line.  When analyzing 

QTL, it is assumed that the phenotypic data is normally distributed (Goh, 2009).   

If the phenotype data is not normally distributed it can severely reduce the power of a 

GWAS to identify marker-trait associations.  Attempts to normalize the stripe rust phenotype 

data using arcsine, log, and square root transformation methods did not improve normality.  

These factors could have contributed to no significant markers being found.  Previous marker 

screening has shown that the stripe rust resistance genes Yr29 and Yr18 are present in NDSU 

hard red winter wheat germplasm.  Yr29 and Yr18 are both race-nonspecific resistance genes that 

would provide resistance to stripe rust race PSTv-37 (Cobo, 2019; Wu, 2015).  Possible reasons 

why Yr29 and Yr18 were not identified in this study could be that their individual contributions 

to stripe rust resistance is not significant enough to be identified by GWAS, or the frequency at 

which the two QTL occur in the germplasm is too low. 

Conclusion 

This experiment failed to identify stripe rust resistance genes that provide significant 

resistance to stripe rust race PSTv-37 in the NDSU winter wheat breeding germplasm.  The 

ability of GWAS to detect minor stripe rust resistance QTL in the NDSU winter wheat 

germplasm can be improved through more comprehensive phenotyping employing multiple 

years and multiple races of stripe rust. However, lack of resources and facilities does not make 

this possible, especially because the disease still shows very sporadic incidence and regular, 
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annual field evaluations within North Dakota are currently not possible. An obvious, primary 

reason for the paucity of effective resistance QTL is that in previous years stripe rust has not 

been considered a significant threat to winter wheat production in North Dakota. More frequent 

incursions of the disease into North Dakota in recent years means that concerted attempts should 

be made to introgress resistance genes into the breeding population drawing on known resistance 

sources from elsewhere and utilizing established molecular markers. If stripe rust infections 

become more common in North Dakota it is likely that it will be race PSTv-37 or PSTv-52 as 

these races have already shown the ability to survive and infect wheat in North Dakota. Race 

specific stripe rust genes that are currently effective against PSTv-37 (Table 13) and could be 

targeted for introgression include the major resistance genes Yr5 and Yr15 among others. 
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Figure A1: Mean separation of 16M10 lines and checks for winter survival 
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Figure A2: Mean separation of 16M10 lines and checks for flowering date 
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Figure A3: Mean separation of 16M10 lines and checks for height 
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Figure A4: Mean separation of 16M10 lines and checks for test weight 
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Figure A5: Mean separation of 16M10 lines and checks for yield 
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Table A1:  Mean value for agronomic traits for 40 16M10 lines and eight checks 
 Entry 

Trait 65 125-2 53-2 72 46 39 105-1 16 143-2 120-1 125-1 73 

Winter Survival 9.125 8.875 9.25 9.25 9.25 9.125 9.625 9 9 8.875 9.31 9.25 

Flowering Date 15.25 15.25 14.5 14.5 15.25 14.5 14.25 17 14 16.5 14.25 15.25 

Height 86 86 87.75 77.5 90 84.25 85.25 84 83.25 82 84 84.75 

Test Weight 70.19 73.55 72.00 69.03 72.50 72.79 72.63 71.06 74.25 74.30 73.64 72.90 

Yield 2471.8 2471.8 2701.6 2621.6 2725 2777.7 2777 2346.5 2972.1 2628.6 2681.3 2806.9 

 Entry 

Trait 8-1 112 123-1 136-2 149 124-2 22 147 82 126-2 127-1 85 

Winter Survival 8.75 8.875 8.875 9.25 9.125 9.5 8.875 9 9 9.625 9 8.875 

Flowering Date 13.75 17 17 14 15.75 13.5 14.25 15.25 17.5 16 14.5 15.5 

Height 85 85 83 84.25 85.75 91 84.25 74.5 80.25 76.5 83.25 80 

Test Weight 72.52 72.90 72.14 72.55 71.59 70.9 72.38 70.45 72.25 71.30 71.53 68.89 

Yield 2711.9 2683.1 2747.9 2938.6 2731.6 2527.8 2788 2553.2 2527.3 2464.2 2624.5 2517.9 

 Entry 

Trait 89 27 141 99-2 131 67 17 105-2 6 135-1 148-1 68 

Winter Survival 9 9 9.125 8.875 8.625 9 9.375 8.75 9.375 7.875 9.25 8.875 

Flowering Date 17.25 14 14.5 15.25 15.25 16 13.75 15.75 16.5 16.25 15.75 15.75 

Height 79.25 88.25 92.25 81.5 83.5 84.25 84 77 87.75 85 88.75 84.75 

Test Weight 72.07 71.56 71.50 72.91 70.32 71.24 73.24 71.28 74.52 71.44 71.84 72.13 

Yield 2526.1 2681 2565.1 2686.7 2598.7 2849.8 2893.2 2345.9 2715.1 2495.6 2679.2 2587.9 

 Entry 

Trait 24 143-1 63 21 Jerry Ideal Northern Monument Oahe Keldin SY Wolf Emerson 

Winter Survival 8.875 9.25 9.375 8.7 9.125 9.75 8.875 9.75 9.625 9.25 9.375 9 

Flowering Date 15.5 15 14.5 16.25 15.5 15.5 17.75 16 15.25 16.5 15 15.25 

Height 87.5 83.25 75.25 81.5 87 77 80 69.25 79.5 77.25 70.75 85.5 

Test Weight 71.39 74.44 69.69 71.62 72.76 74.52 70.25 71.52 74.04 72.54 73.5 75.04 

Yield 2605.1 2825.7 2436.7 2532 2995.5 3349.6 2564.3 2930.7 2897.3 2822.4 2989.1 2860.4 
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Table A2: Milling and baking characteristics for 16M10 lines and checks 

Entry Extraction (%) Protein (12% Mb)  Loaf Volume (cc) 

Crumb 

Color (1-10) 

Crust  

Color (1-10) 
16M10-65 51.98 13.5 189 5 10 

16M10-125-2 54.57 12.8 183 6 10 

16M10-53-2 50.32 13.6 192 7 10 

16M10-72 49.38 14.7 160 1 10 

16M10-46 51.98 12.9 143 3 8 

16M10-39 52.90 13.1 148 7 10 

16M10-105-1 50.84 12.7 147 0 8 

16M10-16 50.55 14.1 196 7 10 

16M10-143-2 53.11 12.6 166 6 10 

16M10-120-1 54.12 12.9 198 7 10 

16M10-125-1 51.95 13.5 190 7 10 

16M10-73 52.27 13.3 195 6 10 

16M10-8-1 49.45 13.4 167 7 10 

16M10-112 50.68 13.6 180 7 10 

16M10-123-1 51.30 12.7 155 1 8 

16M10-136-2 52.70 13.5 190 6 9 

16M10-149 48.41 13.6 166 5 10 

16M10-124-2 50.81 13.2 148 5 8 

16M10-22 48.99 13.3 187 6 10 

16M10-147 51.43 14.1 167 5 9 

16M10-82 52.44 14.0 167 5 8 

16M10-126-2 50.58 13.3 189 7 10 

16M10-127-1 51.40 13.9 199 7 10 

16M10-85 47.34 13.8 194 6 10 

16M10-89 48.28 13.7 210 6 10 

16M10-27 51.62 13.4 171 7 10 

16M10-141 51.95 12.1 163 6 9 

16M10-99-2 48.99 13.0 188 7 10 

16M10-131 47.37 12.5 171 7 10 

16M10-67 52.86 13.2 172 6 10 

16M10-17 50.81 12.2 187 6 9 

16M10-105-2 47.40 14.2 183 7 10 

16M10-6 54.89 13.8 183 7 10 

16M10-135-1 49.68 13.7 150 6 8 

16M10-148-1 50.39 12.9 171 7 10 

16M10-68 46.01 13.3 177 6 10 

16M10-24 47.91 12.8 160 0 10 

16M10-143-1 50.65 12.6 175 8 10 

16M10-63 47.66 13.3 188 8 10 

16M10-21 46.10 13.1 170 6 10 

Jerry 50.06 13.0 206 7 10 

14K456-K-1 44.77 14.6 201 0 10 

Ideal 49.77 12.3 127 1 7 

Northern 46.85 13.3 221 8 10 

Monument 48.90 12.5 131 1 7 

Oahe 50.10 13.2 166 8 10 

Keldin 46.71 12.6 170 1 8 

SY Wolf 46.85 13.5 192 7 10 

Emerson 49.97 13.7 187 7 10 
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Table A3: Mixing quality test results for 16M10 lines and checks 

 Mixograph SRC GlutoPeak 

Entry 

Mixo 

Score 

Peak 

time 

(min) 

Peak 

value 

(%) 

Lactic 

Acid Water 

PMT 

(sec) 

BEM 

(GPU) 

Aggregation 

Energy 

(cm^2) 
16M10-65 3 5.11 41.4 127 61 114 46 1325.8 

16M10-125-2 2 8.00 39.1 130 58 211 43 1212.3 

16M10-53-2 1 5.37 37.5 133 62 103 46 1341.5 

16M10-72 1 8.00 31.6 150 62 207 46 1323.2 

16M10-46 1 8.00 33.8 140 63 246 44 1302.8 

16M10-39 3 7.43 40.5 139 63 205 46 1289.7 

16M10-105-1 1 7.51 32.4 134 62 182 46 1321.2 

16M10-16 2 7.41 32.1 148 59 175 46 1323.7 

16M10-143-2 2 5.72 35.3 124 63 194 42 1230.2 

16M10-120-1 2 5.81 39.0 133 59 241 44 1245.7 

16M10-125-1 1 7.49 35.6 129 62 185 44 1241.7 

16M10-73 2 5.48 40.6 124 61 190 44 1222.9 

16M10-8-1 1 7.37 33.4 119 61 184 44 1235.6 

16M10-112 2 6.27 37.8 126 63 260 43 1219.1 

16M10-123-1 3 7.25 36.4 130 60 241 42 1209.7 

16M10-136-2 3 6.75 41.0 127 61 250 42 1196.6 

16M10-149 1 7.73 35.3 124 62 150 45 1255.3 

16M10-124-2 2 8.00 32.7 139 62 280 44 1285.6 

16M10-22 1 6.55 37.8 121 63 175 43 1221.8 

16M10-147 3 7.46 39.4 142 62 296 45 1274.0 

16M10-82 4 7.87 40.5 137 64 263 44 1294.7 

16M10-126-2 2 6.02 39.8 131 63 151 45 1244.8 

16M10-127-1 3 4.26 43.3 131 62 147 42 1249.8 

16M10-85 1 6.74 37.4 111 65 81 47 1262.3 

16M10-89 3 5.38 42.2 140 61 173 45 1276.1 

16M10-27 2 7.78 34.0 138 64 225 44 1264.0 

16M10-141 2 6.84 36.1 117 66 209 40 1135.1 

16M10-99-2 2 8.00 37.7 131 63 201 44 1231.2 

16M10-131 1 4.22 33.9 108 63 87 42 1112.5 

16M10-67 4 8.00 41.3 136 62 300 42 1221.3 

16M10-17 1 6.39 31.6 124 63 175 41 1177.0 

16M10-105-2 2 7.62 36.8 146 67 161 48 1383.8 

16M10-6 3 4.42 42.0 129 61 123 45 1268.7 

16M10-135-1 2 7.65 37.5 150 61 226 45 1331.0 

16M10-148-1 2 8.00 36.7 129 60 227 44 1251.7 

16M10-68 2 6.52 40.2 120 63 106 46 1268.2 

16M10-24 1 7.96 32.1 125 64 166 44 1263.9 

16M10-143-1 2 6.31 39.8 127 60 201 43 1231.8 

16M10-63 1 5.67 35.7 119 60 118 43 1207.3 

16M10-21 1 5.52 32.5 97 61 87 42 1144.7 

Jerry 2 5.13 38.7 130 59 185 44 1225.5 

14K456-K-1 1 5.41 40.2 119 61 80 49 1365.6 

Ideal 2 7.97 31.2 131 60 374 39 1134.5 

Northern 5 5.25 47.7 134 69 109 47 1374.3 

Monument 4 7.88 29.5 142 66 417 13 4762.0 

Oahe 4 4.03 41.5 118 63 82 45 1292.1 

Keldin 3 8.00 36.7 140 63 243 44 1256.3 

SY Wolf 2 8.00 36.4 110 61 146 43 1167.5 

Emerson 2 8.00 27.5 148 60 381 41 1194.6 
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Table A4: Seedling leaf rust resistance scores for 16M10 lines and checks 

 Leaf Rust Race 

Line TBDJQ MFPS TDBG Field THBL MCDL 

Jerry 2 ; ; ;1= ; 2CN 

SD09227 1CN ;1= ;1= 1CN 1P0 1P2CN - 

14K456-K-1 - ; - - 1CN - 

120-1 ;1= ; ; ; ; ; 

126-2 3 3 12 2P12 1P2++3 3- 1P1 2P3 

131 ;CN ;1= - ; 2P; 1P1CN 1=CN 

99-2 3 1P; 1P2 1P3 2P; 1P2++ 1P3 2++3 3 1P; 1P23 

6 ;1= ;CN ; ; ; ; 

125-2 ; ; ; ; ; ; 

27 ; ; ; ; 0; ; 

82 ;1= ;CN ; ; ; ; 

68 12CN 1P;1= 2P2 12- 1P; 1P1 1P2CN ; 1P; 1P2 

148-1 12 ; 2P; 2P1 ;1- ; 12CN 

22 ; ;1 2++ 2++ 12 3P12 1P3 

112 1P12CN 1P3 ;1= 12CN 1-CN 1 1=CN 

17 1CN ;1 2 12 2P1 1P2 1 

89 3 2P12 1P2 3P2++3 1P1 1P2 12CN ;1- 

85 2 ; 12 ; 1CN ; 

105-2 2++3 1-CN 2P; 1P12 2P1 1P12CN ; ; 

143-2 1P12 1P3 2P; 1P1 1+ ; 1 ; 

24 ; ; ; ; ; ; 

147 ;1= ; ;CN ; 1P12 1P3 2 

124-2 ; 1P; 2P2+CN 3P; 1P2 1P; 1P3 1P1 2P12 12 

21 - ;1- ; ; - 2P; 1P2 

143-1 2P12 2P3 2P12 1P3 2+ 2++ 12 1= 

67 12CN ; ; 12CN 2P; 1P2+CN ; 

46 12 ;1- 2P; 1P12 - ;1= 1= 

72 ;1- ;1- ;1= ;1= ;1= ; 

135-1 ;1+ ; ; ;1= - ; 

39 ; ; ; ;1- - ; 

123-1 12 ;CN 12 12CN 1P; 1P3 12CN 

16 - 1+ 1P; 1P12 1P12 1P2++ 2P3 1P1CN 1P; 2P34 

53-2 - 12CN 2 X(;3) 2P12 1P3 1CN 

149 12CN 1CN 1=CN 1P1 2P12CN 1P1 1P2 ;1- 

125-1 ;1- ; ; ; 0; ; 

127-1 1P; 1P12CN ;1= - 1P12CN 1P; ;1- ; 

8-1 2P1CN 1P2 ;1 1= 1CN ;1= ;1- 
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Table A4: Seedling leaf rust resistance scores for 16M10 lines and checks (continued) 
 Leaf Rust Race 

Line TBDJQ MFPS TDBG Field THBL MCDL 

136-2 1P; 2P2 12 12 1P1CN 2P2CN 2P; 1P2CN 12CN 

73 3 3 3 3 3 3 

63 12CN 1CN 1=CN 1+CN 1=CN ; 

141 1P;1= 2P3 ;1= 1P; 1P2++3 1P; 1P2++3 ; ; 

65 1CN 1CN 1=CN 2CN ;1- 1 

105-1 ; 1P; 1P2 1P; 1P12 ; ;12 ; 

Scoring scale from most to least resistant 0>;>1>2>3>4 

Two numbers such as “12” indicates that both infection types occurred on a single plant 

X indicates a heterogeneous genotype 

CN chlorosis/necrosis; P plants; = variation between +/- for the infection type 
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Table A5: Seedling stem rust resistance scores for 16M10 lines and checks 

 Stem Rust Race 

Line TMLK QTHJ TPMKC QFCQ 
Jerry 2++3CN 3 12 ;1 

SD09227 1-CN 1-CN ;1= 1=CN 

14K456-K-1 1=CN 2 ; 0 

120-1  1/3 2++3CN 12CN 2++3 

126-2 12 0 12 3 

131 ;1- 1=CN ;1= ; 

99-2 1P; 2P3 1P1CN 2P3 12++ 1P2 1P3 

6 3 3 12+ 3 

125-2 2++3 2++CN 12+ 12++CN 

27 3 34 ;1 34 

82 2++3 3 2++3 2++ 

68 ;1 1CN ; 1 

148-1 1P1 1P3 12 ;1= 3 

22 ;1 2P1CN 1P3 ; ; 

112 2++3 1P1-CN 1P2++CN ;1= 0 

17 2++3CN 1P1 2P2++3 1P1 1P2+ 3 

89 ;1 1P1CN 2P34CN ;1= 1 

85 1= 1CN ;1- 1= 

105-2 12 1CN ;1= 12 

143-2 2+ 4 ; 2++3 

24 2+ 12CN ; 3 

147 12++CN 2P12CN 1P2++CN ; 0 

124-2 12 1CN ;1= ;1= 

21 1 1CN ; ; 

143-1 2++3 2++3 2+CN 12++ 

67 23 12CN 1P1 1P2+ 3 

46 12++CN 1CN 12++ 0 

72 1 1CN 1- 1 

135-1 12 2P2 1P3 12CN 3 

39 12++CN 2++3CN ; 2++3 

123-1 1P1 1P2++ 1P1CN 2P34 1P0 1P2++  1/3 

16 1=/3 4 2+ 3 

53-2 23 1P1CN 2P3 1= 2 

149 12 1=CN 1CN 1= 

125-1 ;/3 2++CN 2++3 2++3 

127-1 22++CN 2++CN 2++ 0 

8-1 1 0/1 ;1= ;1 

136-2 2P1 1P3 2++3CN 12+ 12++CN 

73 12 1P1 2P2++3 2++3 3 

63 1- 1CN 1 12 

141  1/3 34 12++ 3 

65 2++3 1CN 1P;1 2P2++ 2++3 

105-1 1CN 1CN ; ; 

Scoring scale from most to least resistant o>;>1>2>3>4 

Two numbers such as “12” indicates that both infection types occurred on a single plant 

CN chlorosis/necrosis, P plants, = variation between +/- for the infection type
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Table A6: Marker screening results for individual plants in F6 16M10 families. 

  

Leaf Rust 

1B Leaf Rust 2A Rust 1B, 3D Fhb 3B 

Fhb 3B 

Fhb 5A Fhb 5A   

  Lr46/Yr29 Lr37/Sr38/Yr17 Lr24/Sr24 Fhb1-FM227 TaHRC barc180 barc186 1B1R Lr56 

  C = Sus G = Sus G = Sus T = Res T = Res A = Res A = Res G = Absent  
Name Sample # G = Res T = Res T = Res C = Sus G = Sus G = Sus C = Sus A = Present dupw217 

16M10-105-1 1 C T T T T A A G 251 

16M10-105-1 2 C T T T T A A G  

16M10-105-1 3 C T T T T A A A 251 

16M10-105-1 4 C T T T T A A G 251 

16M10-105-1 5 C G T T T A A G 251 

16M10-105-1 6 C T T T T A A G 251 

16M10-105-1 7 C T T T T A A A 251 

16M10-105-1 8 C T T T T A A G  

16M10-105-1 9 C T T T T A A G  

16M10-105-1 10 C T T T T A A G 251 

16M10-67 1 C T G C G A A G 251 

16M10-67 2 C T G T T G C G 251 

16M10-67 3 C G G C G G C G 251 

16M10-67 4 C T G T T A A G 251 

16M10-67 4-2 C G G T T G C G 251 

16M10-67 6 C T G T T A A G 251 

16M10-67 7 C Het G T T G C G  

16M10-67 8 C T G T G Het Het G 251 

16M10-67 9 C T G C G A A G 251 

16M10-67 10 C T G T T A A G 251 

16M10-136-2 1 C G G C G A A G 251 

16M10-136-2 2 C G G C G A A G 251 

16M10-136-2 3 C G G C G A A G 251 

16M10-136-2 4 C G G C G A A G  

16M10-136-2 5 C G G C G A A G 251 

16M10-136-2 6 C G G C G A A G  

16M10-136-2 7 C G G C G A A G 251 

16M10-136-2 8 C G G C G A A G  

16M10-136-2 9 C G G C G A A G  

16M10-136-2 10 C G G C G A A G 251 

16M10-17 1 C G G C G G C G  

16M10-17 2 C G G C G A A A  

16M10-17 3 C G G C G G C A  

16M10-17 4 C G G C G G C G  

16M10-17 5 C G G C G G C A  

16M10-17 5-2 C G G C G A A G  

16M10-17 7 C G G C G A A G  

16M10-17 8 C G G C G A A G  
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Table A6: Marker screening results for individual plants in F6 16M10 families (continued). 

  

Leaf Rust 

1B Leaf Rust 2A Rust 1B, 3D Fhb 3B 

Fhb 3B 

Fhb 5A Fhb 5A   

  Lr46/Yr29 Lr37/Sr38/Yr17 Lr24/Sr24 Fhb1-FM227 TaHRC barc180 barc186 1B1R Lr56 

  C = Sus G = Sus G = Sus T = Res T = Res A = Res A = Res G = Absent  

Name Sample # G = Res T = Res T = Res C = Sus G = Sus G = Sus C = Sus A = Present dupw217 

16M10-17 9 C G G C G G C G  

16M10-17 10 C G G C G A A G  

16M10-73 1 Unk T G T T A A G  

16M10-73 2 G T G T T A A G  

16M10-73 3 G T G T T A A G  

16M10-73 4 G G G T G A A G  

16M10-73 5 G T G T T A A G  

16M10-73 6 G T G T T A A G  

16M10-73 7 C G G T T A A G  

16M10-73 8 Het G G Unk T A A G  

16M10-73 9 C Het G T G A A G  

16M10-73 10 C T G T T A A G  

16M10-143-2 1 C G G T T A A G  

16M10-143-2 2 C G G T T A A G 251 

16M10-143-2 3 C G G T T A A G  

16M10-143-2 4 G T G T T A A G  

16M10-143-2 5 C T G C G A A G  

16M10-143-2 6 G G G T T A A G  

16M10-143-2 7 G G G T T A A G  

16M10-143-2 8 C Het G T T A A G  

16M10-143-2 9 C G G T T A A G  

16M10-143-2 10 C T G T T A A G 251 

16M10-123-1 1 C G G T T G C G  

16M10-123-1 2 C G G T T G C G  

16M10-123-1 3 C G G T T A A G  

16M10-123-1 4 C T G T T Het Het G  

16M10-123-1 5 C G G T T G C G  

16M10-123-1 6 C T G T T A A G  

16M10-123-1 7 C G G T T G C G  

16M10-123-1 8 C T G T G G C G 251 

16M10-123-1 9 C G G C G G C A 251 

16M10-123-1 10 C Het G T T A A G  

16M10-143-1 1 G T G C G A A G  

16M10-143-1 2 G G G C G A A G  

16M10-143-1 3 G G G T T Unk A G  

16M10-143-1 4 G G G C G A A G  

16M10-143-1 5 G G G T T A A G  

16M10-143-1 6 G T G C G A A G  
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Table A6: Marker screening results for individual plants in F6 16M10 families (continued). 

  

Leaf Rust 

1B Leaf Rust 2A Rust 1B, 3D Fhb 3B 

Fhb 3B 

Fhb 5A Fhb 5A   

  Lr46/Yr29 Lr37/Sr38/Yr17 Lr24/Sr24 Fhb1-FM227 TaHRC barc180 barc186 1B1R Lr56 

  C = Sus G = Sus G = Sus T = Res T = Res A = Res A = Res G = Absent  

Name Sample # G = Res T = Res T = Res C = Sus G = Sus G = Sus C = Sus A = Present dupw217 

16M10-143-1 7 G G G T T A A G  

16M10-143-1 8 G G G T T A A G  

16M10-143-1 9 G T G C G A A G  

16M10-143-1 10 G T G C G A A G  

16M10-22 1 C G G T T A A G  

16M10-22 2 C G T T T A A A 251 

16M10-22 3 C G T T Unk A A G  

16M10-22 4 C G T T T A A A  

16M10-22 5 C G T T T A A G 251 

16M10-22 6 C G T T T A A A 251 

16M10-22 7 C G G T T A A G  

16M10-22 8 C G G T T A A G 251 

16M10-22 9 C G T T T A A A  

16M10-22 10 C G G T T A A A  

16M10-123-1 1 C T G T T G C G  

16M10-123-1 2 C T G T T Het Het G  

16M10-123-1 3 C G G T T G C G  

16M10-123-1 4 C T G T T G C G  

16M10-123-1 5 C G G C Unk G C G 251 

16M10-123-1 6 C T G T T A A G  

16M10-123-1 7 C T G T T G C G  

16M10-123-1 8 C G G T T G C G  

16M10-123-1 9 C G G T T G C A 251 

16M10-123-1 10 C T G C G G C G 251 

Jerry 1 G G G C G G Het G  

CM82036 1 C G G T T A A A  

14K456-K-1 1 C G G T T A A A  

Jerry 2 G G G C G G C G  

CM82036 2 C G G T T A A A  

14K456-K-1 2 C G G T T A A A  

16M10-136-2 11 C G G C G A A G  

16M10-136-2 12 C G G C G A A G  

16M10-136-2 13 C G G C G A A G  

16M10-136-2 14 C G G C G A A G  

16M10-136-2 15 C G G C G A A G  

16M10-136-2 16 C G G C G A A G 251 

16M10-136-2 17 C G G C G A A G  

16M10-136-2 18 C G G C G A A G  
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Table A6: Marker screening results for individual plants in F6 16M10 families (continued). 

  

Leaf Rust 

1B Leaf Rust 2A Rust 1B, 3D Fhb 3B 

Fhb 3B 

Fhb 5A Fhb 5A   

  Lr46/Yr29 Lr37/Sr38/Yr17 Lr24/Sr24 Fhb1-FM227 TaHRC barc180 barc186 1B1R Lr56 

  C = Sus G = Sus G = Sus T = Res T = Res A = Res A = Res G = Absent  

Name Sample # G = Res T = Res T = Res C = Sus G = Sus G = Sus C = Sus A = Present dupw217 

16M10-136-2 19 C G G C G A A G 251 

16M10-136-2 20 C G G C G A A G 251 

16M10-67 11 C T G C G G C G 251 

16M10-67 12 C T G C G G C G  

16M10-67 13 C T G C G A A G 251 

16M10-67 14 C T G T T A A G 251 

16M10-67 15 C T G T T G C G 251 

16M10-67 16 C G G C G G C G 251 

16M10-67 17 C G G T T A A G 251 

16M10-67 18 C T G T T G C G 251 

16M10-67 19 C T G T T A A G  

16M10-67 20 C T G T T G C G 251 

16M10-73 11 G T G T T A A G  

16M10-73 12 Unk G G T T A A G  

16M10-73 13 G T G T T A A G  

16M10-73 14 C T G T G A A G  

16M10-73 15 C T G T T A A G  

16M10-73 16 C G G T T A A G  

16M10-73 17 G T G T T A A G  

16M10-73 18 G T G T T A A G  

16M10-73 19 G T G T T A A G  

16M10-73 20 C Het G T T A A G  

16M10-17 11 C T G C G G C G  

16M10-17 12 C T G C G Het Het G  

16M10-17 13 C G G C G A A G  

16M10-17 14 C G G C G A A G  

16M10-17 15 C G G C G Het Het G  

16M10-17 16 C G G C G G C A  

16M10-17 17 C G G C G A A G  

16M10-17 18 C G G C G A A G  

16M10-17 19 C Het T T T Het Het G  

16M10-17 20 C T G C G A A A  

16M10-123-1 11 C G G T T A Het G  

16M10-123-1 12 C T G T T A A G  

16M10-123-1 13 C G G T G G C G 251 

16M10-123-1 14 C T G T T G C G  

16M10-123-1 15 C T G T T A A G  

16M10-123-1 16 C G G T T Unk C G  
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Table A6: Marker screening results for individual plants in F6 16M10 families (continued). 

  

Leaf Rust 

1B Leaf Rust 2A Rust 1B, 3D Fhb 3B 

Fhb 3B 

Fhb 5A Fhb 5A   

  Lr46/Yr29 Lr37/Sr38/Yr17 Lr24/Sr24 Fhb1-FM227 TaHRC barc180 barc186 1B1R Lr56 

  C = Sus G = Sus G = Sus T = Res T = Res A = Res A = Res G = Absent  

Name Sample # G = Res T = Res T = Res C = Sus G = Sus G = Sus C = Sus A = Present dupw217 

16M10-123-1 17 C G G T T G C G  

16M10-123-1 18 C G G T T G C G  

16M10-123-1 19 C T G T T G C G  

16M10-123-1 20 C G G T G G C G  

16M10-143-2 11 C G G T T A A G  

16M10-143-2 12 G T G T T A A G 251 

16M10-143-2 13 G G G T T A A G  

16M10-143-2 14 C T G T T A A G 251 

16M10-143-2 15 G G G T T A A G  

16M10-143-2 16 C G G T T A A G  

16M10-143-2 17 G G G T Unk A A G  

16M10-143-2 18 C T G T T A A G 251 

16M10-143-2 19 C G G C G A A G  

16M10-143-2 20 G G G T T A A G  

16M10-105-1 11 C T T T T A A A 251 

16M10-105-1 12 C T T T T A A G  

16M10-105-1 13 C T T T T A A G  

16M10-105-1 14 C T T T T A A G  

16M10-105-1 15 C T T T T A A G 251 

16M10-105-1 16 C T T T T A A G 251 

16M10-105-1 17 C T T T T A A G 251 

16M10-105-1 18 C T T T T A A G 251 

16M10-105-1 19 C T T T T A A G  

16M10-105-1 20 C T T T T A A G 251 

16M10-143-1 11 G T G T T A A G  

16M10-143-1 12 G G G C G A A G  

16M10-143-1 13 G T G C G A A G  

16M10-143-1 14 G Het G C G A A G  

16M10-143-1 15 G G G C G A A G  

16M10-143-1 16 G G G T T A A G  

16M10-143-1 17 G G G T T A A G  

16M10-143-1 18 G G G C G A A G  

16M10-143-1 19 G T G C G A A G  

16M10-143-1 20 G G G C G A A G  

16M10-22 11 C G G T G A A G 251 

16M10-22 12 C G G T T A A G  

16M10-22 13 C G T T G A A G  

16M10-22 14 C G T T T A A A 251 
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Table A6: Marker screening results for individual plants in F6 16M10 families (continued). 

  

Leaf Rust 

1B Leaf Rust 2A Rust 1B, 3D Fhb 3B 

Fhb 3B 

Fhb 5A Fhb 5A   

  Lr46/Yr29 Lr37/Sr38/Yr17 Lr24/Sr24 Fhb1-FM227 TaHRC barc180 barc186 1B1R Lr56 

  C = Sus G = Sus G = Sus T = Res T = Res A = Res A = Res G = Absent  

Name Sample # G = Res T = Res T = Res C = Sus G = Sus G = Sus C = Sus A = Present dupw217 

16M10-22 15 C G T T T A A A  

16M10-22 16 C G T T T A A A  

16M10-22 17 C G T T T A A G  

16M10-22 18 C G G T T A A A 251 

16M10-22 19 C G G T T A A A  

16M10-22 20 C G T T T A A G 251 

16M10-123-1 11 C G G C G G C G 251 

16M10-123-1 12 C Het G T T G C G  

16M10-123-1 13 C G G T T G C G  

16M10-123-1 14 C Unk G T T G C G  

16M10-123-1 14-2 C G G T T G C G  

16M10-123-1 16 C G G T T G C G  

16M10-123-1 17 C G G T T G C G 251 

16M10-123-1 18 C G G T T G C G  

16M10-123-1 19 C G G T T G C G  

16M10-123-1 20 C G G T T Het Het G  

 


