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ABSTRACT 

From 2019 to 2020, greenhouse and field research was conducted at North Dakota State 

University to investigate the canopy temperature response of waterhemp (Amaranthus rudis), 

kochia (Kochia scoparia), common ragweed (Ambrosia artemisiifolia), horseweed 

(Conyza canadensis), Palmer amaranth (Amaranthus palmeri), and red root pigweed 

(Amaranthus retroflexus) after glyphosate application to identify glyphosate resistance.  In 

these experiments, thermal images were captured of randomized glyphosate resistant populations 

and glyphosate susceptible populations of each weed species.  The weed canopies' thermal 

values were extracted and submitted to statistical testing and various classifiers in an attempt to 

discriminate between resistant and susceptible populations.  Glyphosate resistant horseweed, 

when collected within greenhouse conditions, was the only biotype reliably classified using 

significantly cooler temperature signatures than its susceptible counterpart. For field conditions, 

image based machine learning classifiers using thermal data were outperformed by classifiers 

made using additional multispectral data, suggesting thermal is not a reliable predictor of 

glyphosate resistance.  
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1. INTRODUCTION 

1.1. Purpose of Study 

In the spring of 2017, researchers at North Dakota State University pursued a method of 

herbicide resistance detection that utilized thermal imaging technology. The research team 

hypothesized that glyphosate resistant populations of ragweed, waterhemp, and kochia would 

have lower canopy temperatures in comparison to susceptible populations immediately after 

glyphosate application and that the differences could be used to develop a support vector 

machine (SVM) classifier to identify glyphosate resistant weeds (Shirzadifar, 2018).  This study 

was performed to validate the original method and had the potential to offer valuable insight into 

the value of thermal data within agriculture. Developing a method that can differentiate and 

geotag weeds that exhibit herbicide resistance with thermal imagery within an acceptable 

timeframe after application has great potential to help growers manage their fields more 

effectively. 

 1.1.1. Objectives of Study 

The goal of this project was to validate the previously developed method to identify 

herbicide resistance in weeds in true field conditions by integrating thermal and multispectral 

sensing methods to statistically analyze the thermal response of six weed species to glyphosate 

application.  The species investigated in this study are waterhemp (Amaranthus rudis), kochia 

(Kochia scoparia), common ragweed (Ambrosia artemisiifolia), horseweed 

(Conyza canadensis), palmer amaranth (Amaranthus palmeri), and red root pigweed 

(Amaranthus retroflexus).   
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1.1.1.1. Sub-Objectives 

1. Confirm previous greenhouse study findings and generate a weed canopy 

temperature extraction method for future greenhouse studies.  

2. Collect thermal and spectral images of weeds with an unmanned aerial system 

(UAS) mounted multispectral and thermal imaging system 

3. Develop a map of weed populations indicating thermal canopy values and 

herbicide resistance status 

1.1.2. Research Approach 

Populations of glyphosate resistant and glyphosate susceptible biotypes of waterhemp, 

kochia, ragweed, red root pigweed, and palmer amaranth were grown in greenhouse conditions 

and then subjected to glyphosate application.  Thermal values of weed canopies were extracted 

1-7 days after treatment and submitted for statistical testing. For the field studies, more 

populations of weed species were grown and transferred to fields at multiple North Dakota State 

University Agricultural Experiment Stations (Casselton & Carrington).  A randomized complete 

block design was applied to each species within rows of soybeans that were planted shortly 

before weed transplantation. A UAS was then used to capture the weed canopies' thermal 

signatures for further analysis 4, 6, and 8 days after application of glyphosate herbicide as shown 

in Figure 1.1. 

 

 

Figure 1.1. Field data collection with DJI M600 UAS 
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1.1.3. Organization of Thesis 

This thesis presents the findings of studies designed to identify glyphosate resistant 

weeds using thermal sensing technology. Chapter 1 is a literature review detailing various 

aspects of glyphosate resistance, plant stress, thermal and multispectral imaging, and 

computational classifiers.  Chapter 2 details efforts to validate a previously performed 

greenhouse study to identify weeds' glyphosate resistance status within a greenhouse setting.  

Chapter 3 outlines the methodology to perform the greenhouse observation procedure in true 

field conditions to classify between resistant and susceptible weeds using thermal data as well as 

multispectral data.  References are included at the end of the document.  
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1.2. Literature Review 

1.2.1. Glyphosate Usage 

Herbicide usage provides crop producers with multiple benefits including increased crop 

yield, timely and affordable management, reduced weed pressure, and reduction in soil structure 

degradation caused by conventional tillage methods (Rahman, 2016).  Scientific advancements 

in the 1990s supported the development of a transgenic glyphosate resistant crop varieties that 

allowed crop producers to spray herbicides to kill weeds with no concern of harming their crops 

(Evans et al, 2015). However, dependency on herbicide as a management technique has led to 

overuse through continuous growth of a single mode of action against resistant crops.  In 2010, 

93% of all soybeans grown in the USA were herbicide-resistant, as were 78% of all cotton and 

70% of all maize varieties (Pollegioni et al., 2011). This rise in herbicide usage is illustrated in 

Figure 1.2. The overuse of herbicides has caused genetic shifts in weed populations, resulting in 

resistant biotypes which are difficult to control (Christophers, 1999).  Studies estimate that 

herbicide-resistant management (HRM) has increased herbicide costs in states such as Iowa by 

$20-$40 per acre from 2013-2017 (Hartzler, 2017).   

 

Figure 1.2. Adoption of genetically engineered herbicide-tolerant (HT) corn and soybeans and 

pounds of herbicide active ingredient (a.i.) applied to those crops, 1996-2013 
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Glyphosate (N-phosphonomethyl-glycine) is one of the most common herbicides in 

production agriculture.  Developed in 1974, glyphosate is a non-selective herbicide that inhibits 

the enzyme enolpyruvyl shikimate-3-phosphate synthase (EPSPS) from developing amino acids 

that are required for protein synthesis (Pollegioni et al., 2011).  The interruption of the shikimate 

pathway is illustrated in Figure 1.3. Additional glyphosate application symptoms include 

photosynthetic rate reduction, inhibition of growth, and chlorosis of plant tissue (Gomes et al., 

2017). The highly effective herbicide quickly established widespread use by crop producers, 

accelerating the evolution of resistance mechanisms within weeds (Christophers, 1999). 

Moderate resistance is achieved in some weeds by mutations that occur at the targeted enzyme 

(Pollegioni et al., 2011). However, glyphosate's translocation through the non-targeted parts of 

the plants (i.e. plant leaves) reduces the herbicides' ability to reach the root and apical meristems 

where the inhibition of EPSPS can occur (Pollegioni et al., 2011).  

 

Figure 1.3. Inhibition of EPSP synthesis due to application of glyphosate 
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1.2.2. Mechanisms of Glyphosate Resistance 

In-depth explanation of herbicide resistance requires a complex understanding of weeds' 

molecular characteristics and how they can adapt to their environment over time.   When 

applying herbicides, there are different modes of action that are enacted upon weeds that 

instigate mortality (Evans et al., 2010). In the case of glyphosate, the lethal action caused by the 

herbicide is the inhibition of the enzyme EPSPS.  Glyphosate first begins to affect a plant by 

accumulating in the phloem after it has been absorbed through the parenchymal cells of leaf 

tissue (Page et al., 2017).  The herbicide is then translocated to various parts of the plant where it 

can invade the growing points of the plant and infect chloroplasts.  It is within the chloroplasts 

that the inhibition of EPSPS occurs.  The inhibition of EPSPS results in a blockage in the 

shikimate pathway which is utilized to create aromatic amino acids (Pollegioni et al, 2011). 

Shikimate blockage, in turn, does not allow the plant to be able to generate or transport amino 

acids to other parts of the plant that are dependent upon them for plant survival (Pollegioni et al, 

2011).  

For a plant to survive a glyphosate application, it must first develop a mode of resistance 

(also known as resistance mechanism) to glyphosate.  Two primary mechanisms of resistance 

exist within resistant plants.  Target-site resistance mechanisms are occurrences where enzymatic 

mutations occur at the site of action where an herbicide performs its function (Delye et al., 

2015). These mutations do not occur in many plant species and multiple factors must be in 

accordance with each other to facilitate resistance in this fashion.  Non-target site resistance is 

the second class of resistance mechanisms and is most common (Delye et al., 2015).  Examples 

of non-target site resistance include reduced herbicide penetration on the leaf surface, alterations 
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in translocation within plant that inhibit the plant from reaching the target site, or enhanced 

metabolic capabilities that reduce the efficacy of the herbicide (Delye et al., 2015). 

The physiological basis for weed resistance to glyphosate is complicated and often 

conferred with varying resistance mechanisms depending on the species in question. In separate 

studies it was found that an altered EPSPS site was a TSR mechanism responsible for conferring 

glyphosate resistance in goosegrass while reduced translocation, a NTSR mechanism, was 

responsible for conferring resistance in annual ryegrass (Green, 2007). The target site mutation 

conferring resistance in annual ryegrass enacts a transformation of amino acid 106 from proline 

to serine or threonine that generates a form of resistant EPSPS.  This resistant EPSPS enables the 

annual ryegrass to survive applications of glyphosate (Green, 2007).  

Another TSR mechanism, gene amplification, was seen in populations of the closely 

related waterhemp and Palmer amaranth species where the target enzyme is present in higher 

concentrations than susceptible plants and therefore is able to endure glyphosate application 

(Chatham et al., 2015) Gene amplification is also considered to be a prominent mechanism of 

resistance in kochia as well (Kumar & Jha, 2015). In horseweed, a form of NTSR referred to as 

compartmentalization was observed where more instances of glyphosate accumulation occurred 

within vacuoles of resistant plants than susceptible plants (Ge et al., 2010).  

Differentiating susceptible and resistant populations of weeds is no easy task.  Prior to 

herbicide application, there is no significant difference in the visual appearance of resistant and 

susceptible weeds of the same species that can be noticed during scouting (Reddy et al. 2014).  

Use of hyperspectral systems to detect differences between resistant and susceptible biotypes 

show potential in controlled environments, but their effectiveness is drastically reduced once 

introduced to field conditions (Shirzadifar, 2018). Lab testing for an accumulation of shikimic 
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acid within plant leaves is one method used to identify glyphosate resistance, but its lack of 

practicality does not justify its use in large scale applications (Xu et al., 2017). 

1.2.3. Plant Canopy Temperature 

The use of plant canopy temperature data traditionally applies mostly to drought and 

altered stomatal conductance analysis of crop vegetation (Jones et al., 2009).  Leaf temperature is 

an important variable that impacts the rate of which physiological processes occur within plant 

tissue (Jones, 2018). Plant canopy temperature is affected by many factors including air 

temperature, humidity, wind speed, time of day, sky conditions, soil characteristics, and stomatal 

aperture of the plant species in question (Jones et al., 2009).  Canopy temperature is illustrated as 

a leaf energy balance function in the following equation (Costa et al., 2013).  

𝑇𝑐𝑎𝑛𝑜𝑝𝑦 −  𝑇𝑎𝑖𝑟 =
[𝑟𝐻𝑅(𝑟𝑎𝑤 + 𝑟𝑠)𝛾𝑅𝑛𝑖 − 𝜌𝑐𝑝𝑟𝐻𝑅𝑉𝑃𝐷]

[𝜌𝑐𝑝{𝛾(𝑟𝑎𝑤 + 𝑟𝑠) + 𝑠𝑟𝐻𝑅}] 
       (1.1) 

where  

Tcanopy =plant canopy temperature (K) 

Tair=air temperature (K),  

rHR =parallel resistance to heat and radiative transfer (s m–1 ) 

raW =boundary layer resistance to water vapor (s m–1 )  

γ =psychrometric constant (Pa K–1 )  

Rni =net isothermal radiation (the net radiation for a plant at air temperature) (W m–2 )  

p =density of the air (kg m–3 ) 

cp = is specific heat capacity of air (J kg–1 K –1 )  

s = the slope of curve relating saturating water vapor pressure to temperature (Pa K–1 ), 

VPD = air vapor pressure deficit  

 

Due to the high amount of environmental variation that dictates this result, many studies 

have been performed to normalize the environmental variation to mitigate the amount of detailed 

information that must be gathered to perform the calculation.  The various studies have produced 

a number of indices that do not require such tedious data collection but still maintain validity.  
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The creation of the crop-water stress index (CWSI) by Idso et al. (1982), allowed researchers to 

investigate plant water relations on a larger scale than previous methods using  

𝐶𝑊𝑆𝐼 = (𝑇𝑠 − 𝑇𝑛𝑤𝑠)/(𝑇𝑑𝑟𝑦 − 𝑇𝑛𝑤𝑠)        (1.2) 

where 

 Ts = leaf canopy temperature 

 Tnws = temperature of a watered canopy transpiring at its potential rate 

 

This index has been widely used for crop irrigation scheduling and also benefits from the fact 

that variations in atmospheric humidity (which can negatively impact index results) are 

accounted for (Jones, 2018). A variation to the CWSI was developed by Jones (1999) resulting in 

the index of stomatal conductance (Ig) alternatively using 

𝐼𝑔 = (𝑇𝑑𝑟𝑦 − 𝑇𝑠)/(𝑡𝑠 − 𝑇𝑤𝑒𝑡)     (1.3) 

where  

Twet = temperature of a wet reference surface 

 Tdry = temperature of a non-transpiring reference surface 

 

The result of this formula is proportional to stomatal conductance (g1) and therefore can be 

further converted to stomatal conductance using the following equation (Jones, 2018).  

𝑔𝑙 = 𝐼𝑔/(𝑟𝑎𝑊 + (𝑠/𝛾)𝑟𝐻𝑅)      (1.4) 

 Stomatal conductance is a measure of the degree of stomatal opening of plant leaves and 

is often used as an indirect indicator of plant-water status. Stomatal conductance is lessened in 

during water stress situations to mitigate transpiration and conserve water within the plant tissue.  

The inhibition of stomatal conductance results in increased leaf temperatures due to the loss of 

water and eventual desiccation of leaf vegetation. (Gimenez et al., 2013)   
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1.2.4. Thermal Imaging of Glyphosate-Affected Vegetation 

Thermal imaging has proven itself to be an invaluable method to collect canopy 

temperature data.  Compared to other thermal collection systems such as IR thermometers or 

thermocouples, thermal cameras allow the user to better understand the variance of temperature 

of any object, including vegetation (Jones, 2018). Thermal imaging has shown potential in 

detecting plant canopies experiencing increased levels of stress and reduced photosynthesis 

(Stoll and Jones, 2007). The application of glyphosate to susceptible plants causes a reduced 

photosynthetic rate due the inhibition of stomatal conductance (Picoli et al., 2016). The reduction 

in stomatal activity lowers the transpiration of water throughout the plant leaf, resulting in 

increased leaf temperature (Gonzalez-Dugo et al., 2019). If the affected plant canopy emits a 

significantly higher temperature, there is potential for the temperature change to be visualized by 

a thermal imager.   

Historically, thermal images of landscapes were primarily captured using satellites that 

provided low-resolution (10m+) which were only suitable for large scale applications to monitor 

regional drought and detect plant water stress in dense vegetation (Veysi et al., 2017). The 

introduction of newer, higher resolution thermal imaging systems that are compatible with 

unmanned aerial vehicles (UAV) have boosted the practical use of thermography within 

agriculture. The enhanced resolutions have enabled crop producers to record and manage water 

stress on a smaller scale than with satellite imagery, thus reducing operating costs by mitigating 

over-irrigation (Gonzalez-Dugo et al., 2015).  Recent studies have demonstrated the relatively 

untapped potential of thermal imagery to conduct high-throughput plant phenotyping.  

Maimaitijiang M. et al. (2017) found that a combination of multispectral and thermal data 

provided a high quality estimate for nitrogen concentration and chlorophyll content of soybeans. 
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Ludovosi et al. (2017) compared drought response of 503 genotypes of black poplar trees to 

designate drought-tolerant varieties of black poplar trees. Thermal imaging has also been 

successfully utilized to estimate wheat yields by monitoring average canopy temperatures (Guo 

et al., 2016). 

1.2.5. Multispectral Imaging Technology  

Analogous to thermal sensing, multispectral sensing is also used extensively within 

agriculture.  Multispectral sensing is the practice of using one sensor to image multiple areas of 

the light spectrum at the same time (Micasense, 2017).  When paired with UAV, multispectral 

sensing payloads have proven to be powerful detectors of biophysical characteristics of 

vegetation during the growing season (Liu et al., 2018).  Multispectral cameras capture image 

data within specified wavelengths of the electromagnetic spectrum, most commonly in the blue, 

green, red, red-edge, & near-infrared wavelengths. But some sensors such as the Micasense Red-

Edge MX Dual Camera is capable of capturing as many as ten different wavelengths at the same 

time (Micasense, 2020).   

The high spatial and spectral resolution can be used for a variety of agricultural 

applications including high-throughput phenotyping, disease identification and severity analysis, 

nutrient management, and weed identification and mapping (Micasense, 2020). Rapid 

identification of plant height, canopy cover, vegetation index, and flowering stage was 

performed in cotton fields to enhance breeding using multispectral images over multiple stages 

of the growing season (Xu et al., 2019).  Potato late blight disease severity was measured using 

leaf and canopy measurements from the red and red-edge wavelengths with classification 

accuracies as high as 89.33% (Fernandez et al, 2020). Optimal, site specific, nitrogen fertilizer 

rate was investigated by Thompson and Puntl (2020). Their use of multispectral sensors reduced 
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nitrogen application rates by approximately 31 kg N ha-1 without causing yield losses and 

improved nitrogen use efficiency by as much as 18%.  Finally, computational deep learning with 

multispectral images provided a practical solution to identifying weeds in a sugarbeet field by 

detecting subtle differences in shapes and reflectance patterns of their leaf canopies (Dyrmann et 

al., 2018). 

1.2.6. Image Based Machine Learning Classification Methods 

Traditional methods of computationally differentiating agricultural data utilizes machine 

learning.  Machine learning is generally separated into two classes, supervised and unsupervised.  

Supervised learning develops a predictive model based on a subset of the data inspected 

intensely (“trained”) by a computer and then used to predict untrained data status.   Unsupervised 

learning does not require the need for training and is useful for finding patterns within datasets  

(Matlab, 2020). 

   Support vector machine modeling is a form of supervised machine learning designed to 

analyze and separate classes within datasets based upon the characteristics of training examples 

provided to it (Furey et al. 2000). A hyperplane is generated to classify and segregate data points 

into their respective classes.  The hyperplane location within the dataset depends on the presence 

of support vectors, which are data points that prove to be the most difficult to classify.  The 

identification of support vectors optimizes hyperplane generation and maximizes the margin 

between datasets, leading to more reliable classifications (Shi et al., 2012).   

Another common classification method is random trees, a set of individual decision trees 

where each tree is generated from subsets of the training data (ESRI, 2020).  A decision tree is a 

set of determinants listed by priority with the goal of coming to a final decision which designates 

the untrained data as one class or another (ESRI, 2020). 
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2. IMAGE BASED THERMAL SENSING FOR GLYPHOSATE RESISTANT WEED 

IDENTIFICATION IN GREENHOUSE CONDITIONS 

2.1. Introduction 

In 2019 and 2020, greenhouse studies were performed with the objective of validating 

and improving a previously developed method to distinguish between herbicide resistant and 

herbicide susceptible weeds.  In these studies, six weed species were included; waterhemp, 

kochia, ragweed, horseweed, palmer amaranth, and red root pigweed.  The weeds selected were 

determined to be most relevant to North Dakota agriculture and showed the most potential for 

herbicide resistance. The stepwise regression and SVM classification strategies were utilized to 

validate the findings of Shirzadifar (2018) and one tailed t-testing to examine the significance of 

the temperature differences observed. However, modifications were made to the data collection 

procedure in an attempt improve the thermal signature selection procedure to provide the SVM 

classifier with the most accurate information possible while adhering to the original method as 

much as possible.   

2.2. Materials and Methods 

2.2.1. Species and Biotype Selection 

This experiment was performed in a greenhouse at North Dakota State University in 

Fargo, ND.  Seed collections were gathered for two biotypes of waterhemp (Figure 1.a), kochia 

(Figure 1.b), ragweed (Figure 1.c), horseweed (Figure 1.d), palmer amaranth (Figure 1.e) and red 

root pigweed (Figure 1.f) to perform the experiments.  The biotypes chosen were based on their 

resistance to glyphosate application with the goal of having one biotype serve as a resistant 

population, and another biotype serves as a susceptible population. To test for resistance, small 

samples of each biotype were grown in 4-inch plastic pots and treated with a glyphosate-based 
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herbicide solution.  Survival evaluations of these tests contributed to the selection of the 

biotypes.  The seeds were sourced from various locations throughout the contiguous United 

States of America. 

   

 

  

(a) (b) (c) 

 

   

 

   

 

 

(d) (e) (f) 

 

Figure 2.1. Images of weed species. a) horseweed, b) kochia, c) ragweed, d) waterhemp, 

e) Palmer amaranth, and f) redroot pigweed 

 

2.2.2. Weed Planting & Growing Conditions  

Seeds from each species were planted in Ray Leach SC10 Super cone-tainer cells 

(Stuewe & Sons Inc., Tangent, OR, USA) with a cell diameter of 3.8 cm and a depth of 21 cm 

(1.5” diameter, 8.25” depth).  The cells were filled with commercial potting mix (Metro-Mix 

360; Sun Gro Horticulture, Bellevue, WA) and seeds were planted and separated based upon 

biotype. Cone cells were placed in 70×30.5×17.15 cm3 racks which held the potting mix for the 

weeds.  Plants were watered overhead by hand until reaching a height of approximately 10cm, 

after which they were placed in sub-irrigation tubs for the duration of the experiment. To 

perform the experiment, a space of approximately 1.5×1.0 m2 was utilized to accommodate the 

weeds during monitoring. The greenhouse temperature was set to 21° C for the duration of the 
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experiment.  From 06:00 h to 20:00 h each day, additional heat and light were provided by 

sodium vapor lamps as well as natural light to provide a 14 h photoperiod.  In 2019, all six weed 

species were grown and observed simultaneously.  In 2020, the horseweed experiment was 

grown and performed independently due to poor germination occurring on the first attempted 

experiment, while the kochia was paired with ragweed and Palmer Amaranth was paired with 

waterhemp to gather data for all species while maintaining a concise experiment timeline. 

2.2.3. Application of Glyphosate and Thermal Monitoring Setup 

 Once the height of the weeds averaged approximately 10 cm, the weeds were treated with 

Roundup PowerMax herbicide (Monsanto Company, St. Louis, MO) in a concentration of 1.7ml 

herbicide to 100ml H2O (1.7%) within a cabinet sprayer (DeVries Manufacturing, Hollandale, 

MN, USA, Figure 2.2.).  The herbicide applications were performed at 40 psi at 1.33 m/s with a 

boom height of 41.3 cm.  The herbicide was paired with 0.25 ml of nonionic surfactant and 1.019 

g of ammonium sulfate adjuvant to ensure even coverage.  

 

Figure 2.2. DeVries cabinet sprayer 

 

To monitor the canopy temperature of the weeds post-herbicide application, an ICI 

Model 9640 P-series (Infrared Cameras Incorporated, Beaumont, TX, USA) thermal camera was 
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used to capture one thermal image of the experiment area per hour up to 110 hours (4.5 days). 

The ICI thermal camera was equipped with a 25mm manual focus lens that provided a 

24.8°×18.6° field of view. It stored long wave infrared (LWIR) (7-14µm) images in a 640×480 

pixel array for visualization.  To operate the camera and convert the LWIR values to temperature 

values, the computer software IR Flash (Infrared Cameras Incorporated, TX, USA) was used on 

a laptop using the Microsoft Windows 7 operating system.   

  Prior to image collection, it was necessary to ensure that the camera was recording 

accurate temperature values.  A Blackbody ICI 350 Portable IR Calibrator (Infrared Cameras 

Incorporated. TX, USA) and a handheld IR thermometer (Model Raynger ST-4, Raytek. 

Wilmington, NC, USA) were used to check the calibration of the ICI thermal camera.  Figure 2.3 

displays the results of a calibration experiment to test the accuracy of the camera.  Upon 

reviewing the high R2 returned by plotting the results, it was determined that the camera satisfied 

the performance required to conduct the experiment.  

 

Figure 2.3. Accuracy of ICI camera with ICI Blackbody providing Actual Target Temperature  
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The ICI thermal camera was mounted 1.83 m (6 feet) above the surface of the experiment area 

on a cross beam throughout the experiment.  At this height, the camera provided 2.0 mm spatial 

resolution (Fig. 2.4).   

 

Figure 2.4. Layout of thermal monitoring station while monitoring waterhemp and Palmer 

amaranth with close-up images of ICI 9640p thermal camera and HOBO temperature logger 

 

To account for variations in environmental conditions, a HOBO pro series sensor (Onset 

MA, USA) was used to collect temperature, relative humidity, and light intensity data of the 

experiment area. The temperature data collected by the sensor is a critical component in the 

analysis of thermal images because the ambient temperature significantly impacts the canopy 

temperature of the weeds. The ambient temperature is also a factor in the expression      

𝑇𝐶𝑎𝑛𝑜𝑝𝑦 − 𝑇𝐴𝑖𝑟 which is used to calculate the differences between weed species biotypes and to 

estimate stomatal conductance within plants (Jones et al., 2009). 

2.2.4. Experimental Layout  

 Experimental layout between the test years of 2019 and 2020 varied. In 2019, position of 

resistant and susceptible biotypes were randomized on a greenhouse bench.  Visible observations 

were made 14 days after application to confirm resistance status of samples based upon their 

degree of herbicide symptomology.  Thermal values from 34 samples of either susceptible or 
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resistant were compared using one tailed t-tests for each hour of data collection for each tested 

species. 

 In 2020, population sizes were increased. To optimize the distinction between glyphosate 

susceptible and resistant biotypes, sampling was performed for weeds that could be easily 

categorized as susceptible or resistant based upon visible observation.  Therefore, the number of 

sampled plants was less than the total number of plants within the experiment area.   The 

horseweed experiment was performed independently of other species and the randomization 

between biotypes was repeated.  It was found that 42 horseweed plants were susceptible to the 

glyphosate treatment and 40 were resistant. (Fig. 2.5) In the kochia and ragweed experiment, 50 

resistant and 45 susceptible kochia plants were sampled and 50 resistant and 50 susceptible 

ragweed plants were sampled.  The waterhemp and Palmer amaranth experiment contained 40 

resistant and 43 susceptible waterhemp plants samples with 48 resistant and 38 susceptible 

Palmer amaranth samples, respectively.   

 
Figure 2.5. Comparison of glyphosate resistant (left) and glyphosate susceptible (right) 

horseweed 

 

2.2.5. Thermal Signature Extraction Process 

 A novel method of extracting thermal values from images was developed to 

accommodate this study.  Once images were captured using the ICI thermal camera, thermal 
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images were exported to CSV format. Matlab software (version 9.4, MathWorks, Santa Clara, 

CA) was used to further process the images.  A script was made to upload all thermal datasets 

from an experiment and arrange (or ‘stack’) them in a 640x480xHI multiway array relating to 

row pixel, column pixel, and (HI) hourly images, respectively. (Fig. 2.6) 

 

 

 

 

 

 

 

 

 

Figure 2.6. Visual representation of multiway array assembly 

 

Manual selection of plant locations on a template image were used to crop these larger 

images into plant sample multiway arrays. The dimensions of this array is described as  

(𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝐼𝑚𝑎𝑔𝑒 ×  𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝐼𝑚𝑎𝑔𝑒 × 𝑁𝑜. 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑 × 𝑁𝑜. 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑃𝑙𝑎𝑛𝑡𝑠)  

Finally, a manual sampling procedure was used to extract ten, single pixel thermal value 

samples from each cropped weed canopy at every hour to form aggregated datasets of resistant 

and susceptible canopy temperatures up to 113 hours after application of glyphosate for use in 

regression modeling (Figure 2.7.). 



 

20 

 

 (b)  (c) 

 (a)  (d) (e) 

Figure 2.7. Thermal signature extraction procedure. a) Flowchart of operations b) Selection map 

for resistant horseweed where blue boxes denote areas of CSVs that were cropped and used for 

canopy temperature retrieval; c) Example of cropped resistant horseweed where black crosshairs 

indicate which pixel value was recorded for final datasets d)Selection map for susceptible kochia 

e)Example of cropped susceptible kochia 

 

To normalize the temperature values of the weeds, the equation  𝑇𝐶𝑎𝑛𝑜𝑝𝑦 − 𝑇𝐴𝑖𝑟  was 

used. Where, 𝑇𝐶𝑎𝑛𝑜𝑝𝑦 is the value observed by the ICI thermal camera and 𝑇𝐴𝑖𝑟 is the value 

observed by the HOBO sensor. This allowed differences in temperatures to occur along an 

equivalent range, so that the data can be used in regression modeling and machine learning 

models.  

2.2.6. Statistical Analysis of Weed Canopy Differences 

 The datasets assembled using the extraction method were subjected to multiple statistical 

tests.  A one tailed t-test (a= 0.05) was performed for each tested species for every hour of 
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collected data to test the alternative hypothesis that glyphosate susceptible plants exhibit canopy 

temperatures that are significantly higher than glyphosate resistant plants.  

A stepwise regression function was then used to identify the hour after glyphosate 

application in which the distinction between resistant and susceptible crops was most prevalent.  

In this instance, the canopy temperatures collected each hour, after glyphosate application, 

served as the potential predictor variables.  Variables were considered significant at an alpha 

value of 0.05.  Variables having a probability of a greater F of greater than 0.1 were not 

considered.  Model performance was then illustrated by observing the adjusted coefficient of 

determination and standard error of the estimate.  

Finally, the datasets were used for training a linear SVM classification model. The 

datasets for each species were then submitted to a support vector machine classifier, where 70% 

of the plants served as training data to classify the remaining 30% as glyphosate susceptible or 

resistant plants.  The predictor variables collected during the stepwise regression procedure were 

utilized as support vectors for the classification procedure to aid in the classification of 

glyphosate resistant weeds. Classification results were then investigated using several 

performance metric methods the assess the agreement between the classified results and the 

actual weed herbicide resistance statuses. 

2.3. Results and Discussion 

2.3.1. Plant Canopy Temperature of Glyphosate Resistant and Susceptible Weeds 

The mean canopy temperatures of each biotype included in the experiment were grouped 

according to their respective species type and plotted to create a generalized comparison of 

canopy temperature differences. In 2019, no easily discernable difference occurred in any of the 

tested species (Figure 2.8.).  However, upon closer evaluation it was seen that resistant kochia 
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and waterhemp maintained consistently lower temperatures throughout the data collection period 

than the susceptible biotypes albeit minute differences at best.     

In 2020, waterhemp, Palmer amaranth, kochia, and ragweed all exhibited temperature 

signatures that showed little difference in canopy temperature between biotypes (Figure. 2.9.).  

However, horseweed displayed a window of increasing differences between resistant and 

susceptible plants beginning roughly 60 hours after herbicide application (Figure 2.9.a). This is 

the only finding that showed similar trends to Shirzadifar (2018). 
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(a) 

 

(b) 

Figure 2.8. 2019 Experiment: Differences between plant canopy thermal signatures and ambient 

temperature of glyphosate resistant and glyphosate susceptible weeds. a) horseweed, b) ragweed, 

c) kochia, d) Palmer amaranth, e) waterhemp, and f) red root pigweed 
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(c) 

 

(d) 

Figure 2.8. 2019 Experiment: Differences between plant canopy thermal signatures and ambient 

temperature of glyphosate resistant and glyphosate susceptible weeds. a) horseweed, b) ragweed, 

c) kochia, d) Palmer amaranth, e) waterhemp, and f) red root pigweed (continued) 
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(e) 

 

(f) 

 

Figure 2.8. 2019 Experiment: Differences between plant canopy thermal signatures and ambient 

temperature of glyphosate resistant and glyphosate susceptible weeds. a) horseweed, b) ragweed, 

c) kochia, d) Palmer amaranth, e) waterhemp, and f) red root pigweed (continued) 
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(a) 

 

(b) 

Figure 2.9. 2020 Experiment: Differences between plant canopy thermal signatures and ambient 

temperature of glyphosate resistant and glyphosate susceptible weeds. a) horseweed, b) ragweed, 

c) kochia, d) Palmer amaranth, and e) waterhemp. Camera malfunction caused loss of data from 

1-46 hours and 76-79 hours after glyphosate application in kochia and ragweed 
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(c) 

 

(d) 

Figure 2.9. 2020 Experiment: Differences between plant canopy thermal signatures and ambient 

temperature of glyphosate resistant and glyphosate susceptible weeds. a) horseweed, b) ragweed, 

c) kochia, d) Palmer amaranth, and e) waterhemp. Camera malfunction caused loss of data from 

1-46 hours and 76-79 hours after glyphosate application in kochia and ragweed (continued) 

 

-5

-4

-3

-2

-1

0

1

2

3

4

46 66 86 106

Δ
T

 (
°C

)

Time (h)

Resistant Kochia Susceptible Kochia

-10

-5

0

5

10

15

20

1 21 41 61 81 101

Δ
T

 (
°C

)

Time (h)

Resistant Palmer Amaranth Susceptible Palmer Amaranth



 

28 

 

 

(e) 

Figure 2.9. 2020 Experiment: Differences between plant canopy thermal signatures and ambient 

temperature of glyphosate resistant and glyphosate susceptible weeds. a) horseweed, b) ragweed, 

c) kochia, d) Palmer amaranth, and e) waterhemp. Camera malfunction caused loss of data from 

1-46 hours and 76-79 hours after glyphosate application in kochia and ragweed (continued) 

 

While biotypes of species were screened for their susceptibility or resistance prior to 

evaluation, the biotypes of kochia, ragweed, Palmer amaranth, and waterhemp showed mixed 

response to the glyphosate application. Visible evaluations were performed 14 days after 

application (Table 2.1.). Directed sampling was performed to include weeds that were highly 

susceptible or resistant. However, in order to maintain valid population sizes for further testing, 

some plants were selected that . During the experiments, every weed was categorized on a scale 

of 0-5 to describe the magnitude of their resistance (MoR). Plants with a MoR less than or equal 

to 2 were classified as susceptible and plants with an MoR greater than or equal to 3 were 

classified as resistant.  
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Table 2.1. Individual Plant Survival Evaluation from Application of Glyphosate 

 

 The distinction between glyphosate resistance and susceptibility that occurred in biotypes 

of horseweed, but not in other species, seems to connect with the low canopy temperature 

differences observed in Figure 8. The 42 horseweed plants that were selected for high 

susceptibility to glyphosate successfully succumbed to the herbicide treatment and were given an 

MoR of 0 or 1. Meanwhile, the 40 horseweed plants that were selected for resistance traits 

displayed great resistance to the herbicide treatment and all of them were granted an MoR of 5. 

This distinction could possibly offer reasoning as to why differences in average canopy 

temperatures are noticeable within Figure 2.9.a. This level of distinction did not occur in kochia, 

ragweed, waterhemp, or Palmer amaranth, where a large number of plants were classified with a 

MoR of 2 or 3 therefore resulting a great deal of indefinite observations. When sampling for 

testing, plants with an MoR of 2 or 3 were avoided, but some selections had to be made to ensure 

adequate sample sizes for further use in classification models. 

 Therefore, the inclusion of plants that showed mixed response to glyphosate possibly 

caused the differing results of this study compared to Shirzadifar (2018) findings where large 

temperature differences existed as early as 10 hours after application in kochia, ragweed, and 

waterhemp. The ratio of susceptible to resistant plants was not reported by Shirzadifar (2018), 

therefore no direct comparison can be made to strengthen the suggestion that varied levels of 

resistance deter the effectiveness of observing thermal values to determine glyphosate resistance.   

Species 0 1 2 3 4 5 Susc. Res. Susc. Res.

Horseweed 42 0 0 0 0 40 42 40 42 40

Kochia 16 20 20 40 24 29 56 93 45 50

Ragweed 27 30 37 25 10 15 94 50 50 50

Waterhemp 2 11 30 58 39 4 43 101 43 40

Palmer amaranth 21 16 42 40 7 1 79 48 38 48

Magnitude of Resistance Key: 0=Dead Plant 5=Alive Plant with no Symptoms

Magnitude of Resistance # Observed # Sampled for Testing
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However, the inclusion of weeds with different degrees of resistance is suggested by 

Shirzadifar (2018) as potential future research, so the presence of variably resistant weeds in this 

study actually introduces valuable insight into the overall practicality of the method.  By 

observing the small differences recorded from weeds with varying MoRs, it can be seen that the 

inhibition of stomatal conductance and increased canopy temperatures cannot be seen as easily 

as compared to weeds with large differences in MoR. 

2.3.2. One Tailed t-Test Analysis and Interpretation 

 In 2019, all t-tests executed to test if plants with glyphosate susceptibility exhibited 

significantly higher canopy temperatures than resistant plants returned results that disputed the 

alternative hypothesis. Over the course of the experiments, neither kochia, ragweed, or red root 

pigweed showed any instances where their susceptible temperatures were significantly higher 

than their resistant counterparts. Only 2 out of 100 tests of susceptible Palmer amaranth and 1 

out of 100 tests of horseweed were significantly higher temperature than resistant weeds at level 

 = 0.05, confirming that canopy temperatures of the populations of susceptible plants were not 

significantly higher than resistant plants after glyphosate application. 

In 2020, the t-test returned multiple results that dispute the alternative hypothesis. 

Throughout the experiments, only 1 out of 113 tests of susceptible Palmer amaranth was 

significant at level  = 0.05, strongly suggesting that canopy temperatures of susceptible plants 

are not significantly higher than resistant plants after glyphosate application.  Within kochia and 

waterhemp, larger differences tended to be found between resistance classes compared with 

Palmer amaranth but still failed to reject the null hypothesis of no differences. Only 8 out of 65 

tests of susceptible kochia were classified as significant at significance level  = 0.05 while 

waterhemp had 12 significant tests of 113 total.  Some differences existed in ragweed as 16 
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significant tests were found out of 65 recorded tests at  = 0.05.  All of the significant tests in 

kochia, waterhemp, and ragweed occurred 60 hours after application, indicating that the 

difference in temperature between susceptible and resistant biotypes before 60 hours were 

indistinguishable.  None of the tests within kochia, ragweed, waterhemp, or Palmer amaranth 

satisfied the Bonferroni adjusted level of significance ( where 100 represents the 

total number of tests performed). Glyphosate visual symptomology typically begins 48-96 hours 

after application (Monsanto Company, 2017) Therefore, the onset of visual symptoms after 

glyphosate application is expected to occur before or at the same time as any significant change 

in canopy temperature. 

Horseweed once again displayed results that differed greatly from the other species.  

Here, 63 out of 101 tests were deemed to be significant with 28 of those significant tests 

occurring before 60 hours after application.  Horseweed continued to show differences even at 

the Bonferroni adjusted level of significance ( = 0.05/101). At this p-level, 49 tests were 

significant with 15 tests occurring before 60 hours after application.  This is an impactful finding 

because it indicates that significant canopy temperature differences in horseweed are detectable 

at a time period that is close to the time period in which visual symptoms may occur.  The 

instances where susceptible horseweed exhibited significantly higher canopy temperatures than 

resistant horseweed is illustrated in Figure 2.9. 
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Figure 2.10. Results of One-tailed t-Test for Horseweed. Instances where bars do not pass the 

Level of Significance line indicate significantly higher glyphosate susceptible canopy 

temperatures 

 

2.3.3. Stepwise Regression Analysis for Feature Selection 

In 2019, the stepwise regression analysis that was conducted to select predictive variables 

(VARi) for classification resulted in standard errors of 0.464, 0.35, 0.253, 0.199, 0.129, and 

0.086 for Palmer amaranth, red root pigweed, horseweed, waterhemp, ragweed, and kochia 

respectively. Each hour of data collected after application acted as the predictive variables for 

which the model would evaluate and select for optimal performance. The optimum number of 

variables were added to each model until the highest possible adjusted coefficient of 

determination (R2) values was attained.   R2 values of 0.247, 0.526, 0.752, 0.846, 0.932, and 

0.971 were recorded for Palmer amaranth, red root pigweed, horseweed, waterhemp, ragweed, 

and kochia respectively.  The highest performing species, kochia, ragweed, and waterhemp, 

noticeably were the species that maintained consistently lower resistant biotype temperatures 

than susceptible in the original comparison.  Based on the model performance, 15 predictive 

variables of VAR86, VAR60, VAR40, VAR25, VAR55, VAR13, VAR05, VAR17, VAR58, VAR75, 
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and VAR27 were selected to establish the model for classification for glyphosate resistant kochia 

where VAR27 represents the canopy temperatures collected during the 27th interval of data 

collection with one image being collected every hour. Varying combinations of input variables 

occurred for each species.    

Table 2.2. 2019 Experiment Summary of Stepwise Regression Model for Feature Selection

 

In 2020, the stepwise regression analysis resulted in standard errors 0.464, 0.404, 0.413, 

0.366, and 0.23 for ragweed, waterhemp, kochia, Palmer amaranth, and horseweed, respectively. 

The optimum number of variables were added to each model until the highest possible adjusted 

coefficient of determination (R2) values were attained.   R2 values of 0.146, 0.354, 0.32, 0.47, 

and 0.79 were attained for ragweed, waterhemp, kochia, Palmer Amaranth, and horseweed, 

respectively. Upon reviewing these values, it was determined that the model generated to select 

predictive variables (VARi) for horseweed was the only suitable model for further investigation.  

Each hour of data collected after application acted as the predictive variables for which the 

model would evaluate and select for optimal performance. The predictive variables selected for 

horseweed were VAR70, VAR47, VAR97, VAR18, VAR72, VAR95, VAR42 represents the dataset 

from the 70th hour of data collection and is the most statistically significant predictor for 

identifying glyphosate resistant horseweed.  VAR47 served as the second most discriminative 

Palmer Amaranth RRPW Horseweed Waterhemp Ragweed Kochia Palmer Amaranth RRPW Horseweed Waterhemp Ragweed Kochia

1.000 0.172 0.094 0.182 0.163 0.511 0.121 0.477 0.484 0.459 0.464 0.347 0.476

2.000 0.247 0.187 0.402 0.459 0.671 0.357 0.464 0.458 0.392 0.373 0.284 0.407

3.000 0.317 0.502 0.619 0.718 0.463 0.420 0.358 0.313 0.263 0.372

4.000 0.428 0.575 0.723 0.756 0.609 0.384 0.331 0.267 0.245 0.318

5.000 0.406 0.661 0.764 0.797 0.671 0.392 0.296 0.247 0.224 0.291

6.000 0.469 0.708 0.796 0.826 0.757 0.370 0.274 0.229 0.207 0.250

7.000 0.526 0.752 0.822 0.854 0.811 0.350 0.253 0.214 0.189 0.221

8.000 0.846 0.912 0.842 0.199 0.148 0.202

9.000 0.932 0.866 0.129 0.186

10.000 0.889 0.169

11.000 0.910 0.152

12.000 0.930 0.135

13.000 0.944 0.120

14.000 0.965 0.095

15.000 0.971 0.086

Std. Error of the Estimate
Model No.

Adjusted R
2
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predictor of glyphosate resistance in horseweed. After the inclusion of  VAR47  in the model, the 

improvements to adjusted R2 began to reduce significantly, suggesting that the inclusion of the 

other predictive variables do not contribute much to the model (Table 2.3.). Therefore, it can be 

assumed that it is unlikely that discrimination between glyphosate susceptible and glyphosate 

resistant horseweed plants will occur before 48 hours after application, which is the time period 

for visual symptoms to appear from glyphosate application (Monsanto, 2017). 

Table 2.3. 2020 Experiment: Summary of Stepwise Regression Model for Feature Selection

 

2.3.4. Support Vector Machine Analysis 

  Despite the promising results from the stepwise regression in 2019, only poor to 

moderate classification accuracy was achieved using the support vector machine. Ragweed 

achieved the highest accuracy with 70%.  However, it was also the smallest test set with only 10 

plants being classified.   The species with the highest R2 from the stepwise regression, kochia, 

only managed classification accuracy of 50%.  Waterhemp, horseweed, red root pigweed, and 

Palmer amaranth each achieved accuracies of 60%, 61.54%, 50% and 50% respectively.  

Classification results and performance metrics for the 2019 experiment are presented in Tables 

2.4. and 2.5.

Ragweed Waterhemp Kochia
Palmer 

Amaranth
Horseweed Ragweed Waterhemp Kochia

Palmer 

Amaranth
Horseweed

0.1 0.086 0.053 0.079 0.583 0.477 0.480 0.487 0.482 0.325

0.146 0.152 0.123 0.254 0.636 0.464 0.463 0.469 0.434 0.303

0.197 0.197 0.285 0.678 0.450 0.449 0.425 0.285

0.236 0.234 0.357 0.723 0.439 0.438 0.403 0.265

0.225 0.271 0.414 0.751 0.442 0.428 0.385 0.251

0.249 0.329 0.452 0.77 0.435 0.410 0.372 0.241

0.32 0.47 0.782 0.413 0.366 0.235

0.793 0.229

0.79 0.23

8

9

3

4

5

6

7

Model No.

Adjusted R
2 Std. Error of the Estimate

1

2
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Table 2.4. Confusion Matrix of 2019 SVM Classification 

 

 

 

 

 

Table 2.5. Performance Summary of SVM Classification

  

 

NO YES Total NO YES Total NO YES Total NO YES Total NO YES Total NO YES Total

NO 3 7 10 3 2 5 2 5 7 4 3 7 2 5 7 6 1 7

YES 3 7 10 1 4 5 1 7 8 2 4 6 2 5 7 6 1 7

Total 6 14 50.00% 4 6 70.00% 3 12 60.00% 6 7 61.54% 4 10 50% 12 2 50.00%

Palmer Amaranth

Predicted Value

2019

Actual Value

Kochia Ragweed Waterhemp Horseweed Red Root Pigweed

Weed Species Kochia Ragweed Waterhemp Horseweed Red Root Pigweed Palmer Amaranth

Classification Accuracy% 50.00 70.00 60.00 61.54 50.00 50.00

Specificity 0.30 0.60 0.29 0.43 0.29 0.86

Sensitivity 0.70 0.80 0.88 0.67 0.71 0.14

Kappa Coefficient 0 0.54 0.59 0.49 0.56 0.19
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 In 2020, two positive classification results were recorded in the case of horseweed and 

waterhemp and can be found within Table 2.6 and 2.7.  An accuracy result of 88.89% was 

achieved with a kappa score of 0.79 by using the SVM classifier.  Waterhemp achieved an 

accuracy of 85% with a kappa score of 0.7.  All other weed species failed to be reliably classified 

as accuracies of 44.44%, 50%, and 63.16% were achieved for kochia, ragweed, and Palmer 

amaranth respectively.   

Table 2.6. Confusion Matrix of 2020 SVM Classification

 

Table 2.7. Performance Summary of 2020 SVM Classification 

 

The attainment of better classification results in 2020 for waterhemp and horseweed is 

likely due to sampling performed to select plants with the most distinct differences in MoR.  

When applied to weeds that show varying MoR, this finding indicates that thermal data is not a 

reliable predictor to classify between glyphosate resistant and glyphosate susceptible weeds.  

However, it is seen that in cases where high distinction between resistance and susceptibility is 

present thermal data proves capable in achieving commendable results.  The findings of 

Shirzadifar (2018) solely involved canopy temperatures taken from weed populations that 

showed polarizing differences in MoR, which is possibly a reason why results between studies 

differ significantly. 

NO YES Total NO YES Total NO YES Total NO YES Total NO YES Total

NO 6 11 10 3 4 3 8 2 7 10 0 10 2 7 9

YES 4 6 10 3 4 4 1 9 8 2 6 8 0 10 10

Total 6 14 44.44% 11 10 50.00% 3 12 85.00% 12 6 88.89% 2 17 63.16%

2020

Actual Value

Predicted Value

Kochia Ragweed Waterhemp Horseweed Palmer Amaranth

Weed Species Kochia Ragweed Waterhemp Horseweed Palmer Amaranth

Classification Accuracy% 44.44 50 85 88.89 63.16

Specificity 0.22 0.42 0.80 0.20 0.22

Sensitivity 1 0.57 0.90 0.67 0.14

Kappa Coefficient 0.36 0 0.7 0.79 0.23
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2.4. Conclusion 

This study illustrated the debilitating effect of varying MoR on the accuracy of SVM 

classification of glyphosate resistant weeds using thermal data.  The t-testing performed to test if 

the temperature of susceptible weeds was significantly greater than resistant weeds returned 

positive results only in horseweed where 63 out of 101 tests were deemed to have significantly 

higher susceptible temperatures than resistant temperatures.  The SVM classifier results across 

2019 and 2020 returned poor classification accuracy in all species except horseweed and 

waterhemp in 2020.  This study, originally conducted with the goal of validating the previous 

method created by Shirzadifar (2018), shows that classification between glyphosate resistant and 

glyphosate susceptible weeds using thermal data is only possible in situations where there is 

great distinction between glyphosate susceptible weeds and herbicide resistant weeds that occurs 

within a 4-day period.   
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3. UAV-BASED THERMAL INFRARED AND MULTISPECTRAL IMAGING OF 

WEED CANOPIES FOR GLYPHOSATE RESISTANCE DETECTION 

3.1. Introduction 

The introduction of newer, higher resolution thermal imaging systems that are compatible 

with unmanned aerial vehicles (UAV) have boosted the practical use of thermography in 

agriculture.  UAV thermal remote sensing applications include monitoring plant water stress, 

detection of diseases, and plant phenotyping (Sagan et al., 2019).  Most of these applications are 

used to monitor crops, and the investigation of other types of vegetation within agricultural 

systems is low.  

Weed control is a critical component to large-scale farming and the unexplored potential 

of thermal imagery using UAVs could boost the capabilities site-specific weed management 

technology.  In most cases, thermal imagery brings value to producers through its ability to 

estimate a plant's stomatal conductance that may be suffering from water stress (Jones, 2018). 

Stomatal conductance is lessened in water stress times to mitigate transpiration and conserve 

water within the plant (Gimenez et al., 2013).  The reduction in stomatal activity lowers the 

transpiration of water to be performed by the plant leaves, resulting in increased leaf temperature 

(Gonzalez-Dugo et al., 2019). 

However, the inhibition of stomatal conductance is not only caused by water stress. The 

application of glyphosate to susceptible plants causes a reduced photosynthetic rate due the 

inhibition of stomatal conductance (Picoli et al., 2016).  Glyphosate (N-phosphonomethyl-

glycine) is one of the most commonly used herbicides in production agriculture.  Developed in 

1974, glyphosate is a non-selective herbicide that inhibits the enzyme enolpyruvyl shikimate-3-

phosphate synthase (EPSPS) from developing amino acids that are required for protein synthesis 
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(Pollegioni et al., 2011).  The highly effective herbicide quickly established widespread and 

repetitive use by crop producers, accelerating the evolution of resistance mechanisms within 

weeds (Christophers, 1999).   

The work reported here sought to confirm previous findings that suggested that thermal 

imagery could be used to differentiate between glyphosate susceptible and glyphosate resistant 

weed populations based on canopy temperature (Shirzadifar, 2018). The original study was 

performed using thermal imagery on an extremely small spatial scale where each image used for 

classification only covered 1.6 m2.  This study was designed to investigate the potential of 

thermal data on a larger area than the original study and compares thermal imagery performance 

to additional multispectral sensors. 

3.2. Materials and Methods 

3.2.1. Study Site and Experimental Setup 

The experiment was conducted at two locations, one being the NDSU Agronomy Seed 

Farm in Casselton, North Dakota, USA while the other was conducted at the NDSU Research 

and Extension Center in Carrington, North Dakota, USA.  Each location contained a plot 

measuring approximately 33 m in length and 3.5 m in width (115 m2).  Data collections were 

performed from the middle to end of August 2020. 

At the Casselton location (Figure 3.1.), a combination of Roundup Ready 2 Xtend and 

ND Stutsman (NDSU) conventional soybeans were planted in alternating fashion in 4 rows with 

30-inch row spacing.  A center-pivot irrigation system was not available at this site so water was 

provided to the weed plants using a truck-mounted water tank.  At this location, the soil series 

was predominantly Kindred-Bearden silty clay loams that are somewhat poorly drained and 

nonsaline (Soil Survey Staff, 2005).  Buckets of soil were collected at the location and brought to 
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the Agricultural Experiment Station Greenhouse at the NDSU campus in Fargo, ND to be 

autoclaved to sterilize the soil of weed seeds and microbiological inhabitants.  Once the 

autoclave process was complete, the soil was used to germinate the weed populations in 

greenhouse conditions at another location on campus.  A total of 60 kochia plants, 60 waterhemp 

plants, 60 red root pigweed plants, and 30 ragweed plants were successfully grown and 

transplanted to the field.  To increase plant population, a selection of naturally occurring ragweed 

plants was transplanted from site location and introduced to the plot, resulting in a total number 

of 59 ragweed plants. The weed populations were comprised equally of 2 different biotypes, one 

being selected for glyphosate resistance and the other for glyphosate susceptibility.  Plants were 

organized in a randomized complete block design based on their believed resistance status and 

planted in between the soybean rows with one species occupying a single row at a time.   When 

the weeds were approximately 12-15cm tall, 28 oz/a of Roundup Powermax (48.7% glyphosate) 

with Class Act NG at 2% v/v was applied to the plot in an attempt to induce symptomology on 

the susceptible biotypes. Post-experiment visual evaluations were performed 14 days after 

application (14DAA). The evaluations showed that varying degrees of glyphosate resistance 

occurred in the species. The magnitudes of resistance observed at the Casselton location are 

summarized within Table 3.1. where weeds are grouped based on their resistance status. 

Table 3.1. Casselton Plant Survival Evaluation (14DAA) 

 

 

0 1 2 3 4 5 Susc. Res.

Kochia 21 12 2 10 6 6 35 22

Ragweed 42 10 0 0 10 5 52 7

Waterhemp 0 0 0 0 15 45 0 60

Red Root Pigweed 52 8 0 0 0 0 60 0

Species Rating
Magnitude of Resistance # Observed

Magnitude of Resistance: 0=Dead Plants 5=Alive Plants with no Symptoms
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Figure 3.1. RGB mosaic of Casselton field experiment location 

 

At the Carrington location (Figure 3.2a), five rows of Roundup Ready 2 Xtend (Bayer, 

Whippany, NJ) Soybeans (Glycine Max) were planted with 30-inch row spacing.  A center pivot 

irrigation system at this location was utilized to provide a constant water source for the plot.  The 

soil series present at this location is predominantly Fram-Wyard (G211A) loams which are 

somewhat poorly drained and slightly saline (Soil Survey Staff, 2014).  Buckets of soil were also 

collected at this location and brought to the Agricultural Experiment Station Greenhouse at 

NDSU in Fargo, ND to be autoclaved in order to sterilize the soil of weed seeds or 

microbiological inhabitants. The soil was then returned to a greenhouse located at the Carrington 

location where weed populations were grown in 3-in diameter pots. A total of 60 kochia plants, 

60 waterhemp plants, 60 red root pigweed plants and 30 ragweed plants were successfully grown 

and then transplanted to the field plot in randomized fashion (Figure 3.2b).  When the weeds 

were approximately 12-15cm tall, 28 oz/a of Roundup Powermax (48.7% glyphosate) with Class 

Act NG at 2% v/v was applied to the plot in an attempt to induce symptomology on the 

susceptible biotypes. Both the Casselton and Carrington locations shared the same source of 

seeds so the varying degrees of resistance observed at Casselton were seen at Carrington. 

However, the herbicide's efficacy was noticeably less at the Carrington site, as symptomology 

was seen as early as 2DAA at the Casselton site but not seen until 6DAA at the Carrington site.  

The rates of susceptibility observed at the Carrington location are summarized within Table 3.2. 

N 
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Table 3.2. Carrington Plant Survival Evaluation (14DAA) 

 

 

 

a) 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

Figure 3.2. a) Mosaic of Carrington Field Experiment Location b) Randomization scheme used 

at both locations 

0 1 2 3 4 5 Susc. Res.

Kochia 1 7 17 7 9 19 25 35

Ragweed 2 3 3 7 10 5 8 22

Waterhemp 0 0 0 0 18 42 0 60

Red Root Pigweed 40 20 0 0 0 0 60 0

# Observed

Species Rating

Magnitude of Resistance: 0=Dead Plants 5=Alive Plants with no Symptoms

Magnitude of Resistance

Legend

Kochia

Biotype

Susceptible

Resistant

Ragweed

Biotype

Susceptible

Resistant

Amaranth

Biotype

Susceptible Red Root Pigweed

Resistant Waterhemp
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3.2.2. UAV Equipment and Flight Parameters 

 Image data for the plots were performed using a Zenmuse XT2 RGB/Thermal camera 

(DJI Technology Co., Ltd., Shenzhen, China) and a Micasense Red-Edge MX Dual Camera 

System (Micasense, Seattle, USA).  The Zenmuse XT2 provided both RGB and thermal image 

data, but only the thermal image data was used for testing.  The Red-Edge MX Dual Camera 

system provided ten bands of spectral data. Imagers on the dual camera provided a selection of 

imagery around the blue, green, red, red-edge and near-infrared (NIR) wavelengths. Both 

systems were mounted simultaneously on a DJI M600 Pro UAV (DJI Technology Co., Ltd., 

Shenzhen, China).   

Due to restrictions with the flight planning software, simultaneous image capture for both 

systems could not be performed at an altitude less than 25m.  Therefore, an 8m manual flight 

was conducted solely using the Zenmuse XT2 while separate automated flights were performed 

at 10m while capturing imagery with the Red-Edge MX Dual Camera system. Automated flights 

for the Red-Edge MX Dual Camera were planned and performed using Pix4D capture mobile 

app on iOS.  This approach allowed for greater spatial resolution with the thermal camera, as the 

XT2 has a lower resolution than the Red-Edge MX Dual Camera system.  Image data captured 

with the Red-Edge MX Dual Camera was calibrated using a provided reflectance panel from 

Micasense to transform raw pixel values to absolute reflectance.   

Imagery was captured at 4 and 6 DAA at both locations. An extra flight was performed 8 

DAA at Casselton. Weather conditions at the Carrington during the 8DAA time period prevented 

a flight from being performed.  Georeferencing for the imagery was performed by the inclusion 

of ground control points (GCPs).  The GCPs consisted of white 5-gallon bucket lids with colored 

stakes driven through the center of them to provide a distinct center point.  A Trimble Geo-7x 
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Handheld Data Collector and Zephyr 3 for GIS GNSS antenna (Trimble Geospatial, 

Westminster, Sunnyvale, USA) was then used to capture the GCP locations with 2cm accuracy.  

Five GCPs were placed at each site with four points at the field corners and one point at the 

center.  In cases where thermal imagery was being captured, cold water was placed over the 

bucket lids to be easily visible in the imagery.  In addition to GCP collection, GPS data was 

collected from the approximate centroid of each plant location for later use in GIS mapping 

software. 

Imagery was stitched into reflectance ortho-mosaics using Pix4Dmapper Version 4.5.6 

(Pix4D, Prilly, Switzerland).  Near-Infrared and red wavelength imagery from the Red-Edge MX 

Dual Camera system were used to generate an additional NDVI mosaic. Approximately 150-200 

image captures were taken per flight and used for mosaic generation.  Ground control point data 

from the Trimble GPS was incorporated in the processing procedure to grant spatial accuracy as 

high as 2cm.   

A complete list of flight operations and equipment parameters is summarized in Table 

3.3. and the weather conditions for each flight is listed in Table 3.4. 

Table 3.3. UAS Flight Operations Summary 

 

Multispectral Thermal

UAS Model DJI M600 DJI M600

Sensor Micasense Red-Edge Dual Camera Zenmuse XT2 Thermal Camera

Pixel Resolution 1280 x 960 640x512

Focal Length 5.4mm 25mm

Channels
444, 475, 531, 560, 650, 668, 705, 

717,740, 842 (nm)
7.5-13.5 (μm)

Average altitude 10m 8m

Ground Spatial Distance (GSD) 0.71cm 1.03cm

Forward overlap 75% +80%

Side overlap 75% +80%

FOV 47.2° HFOV 25° HFOV

Camera Type
Equipment and Parameters
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Table 3.4. Weather Conditions During Data Collection 

 
 

3.2.3. Extraction of Vegetation and Development of Classification Zones 

 Once the images gathered from the experiments were processed into mosaics, they were 

visualized using ArcGIS Pro (ESRI, Redlands, CA). The plant GPS data was then overlaid as 

point shapefiles.  The Buffer tool in ArcGIS Pro was then used to create 12cm buffer shapefiles 

around the centroid of the pots.  Buffers were inspected for accurate placement in the imagery 

and corrected if necessary.  Buffers were then selected and separated into their own respective 

species using the Clip tool.  The visual survival evaluation results were then added to the 

shapefile attribute table to further separate the buffers into resistant and susceptible biotypes 

within each species.   

 The buffers were then used to extract 12cm diameter raster information from each image 

datasets, vastly reducing the amount of imagery so that only the plant locations would be 

subjected to further processes. This approach, however, still left a mixture of soil and vegetation 

within the buffers. To increase the extraction accuracy even further, the Extract by Attributes 

tool was used to extract pixels from the buffers that had an NDVI value greater than 0.4.  This 

action removed the soil from the buffers so that only vegetation would be displayed.  The NDVI 

output was then used to remove soil pixels from the thermal and multispectral rasters using the 

Extract by Mask tool.  The complete extraction process is illustrated in Figure 3.3. 

Site Days After Application Collection Time Air Temp (°C) Relative Humididty (%) Solar Radiation (Lys)

4 10:30-11:30 21.77 74 14.5

6 10:30-11:30 23.31 55 61

8 10:30-11:30 22.68 77.5 37.5

4 10:30-11:30 23.73 65 52

6 10:30-11:30 22.39 80 33

Casselton

Carrington
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(b) (c) (d) (e) 

 

a) 

 

 

   

 

 

 

Figure 3.3. Result of extracted thermal data from Kochia at the Casselton location. a) final 

product after NDVI extraction b) RGB image of kochia for reference c) NDVI of kochia prior to 

0.4 pixel value extraction d) NDVI mask containing pixels that score over 0.4 e) NDVI mask 

applied to thermal data (℃) 

 

 Sets of buffers were created for each species and separated into classes based upon their 

resistance status.  In addition to thermal extraction from the Zenmuse XT2, extractions of NDVI 

and a 3-band composite image from the Red-Edge MX Dual Camera system were also made to 

serve as comparisons. By using the Spectral Profile tool within ArcGIS, the reflectance of 

glyphosate resistant vegetation and glyphosate susceptible vegetation were compared at each of 

the ten bands provided by the Red-Edge MX Dual Camera system (Figure 3.4a). Bands 5,7, and 

9 from the Red-Edge MX Dual Camera (842nm, 705nm, & 740nm, respectively) were selected 

because large differences in reflectance were found at these wavelengths between glyphosate 

resistant vegetation and glyphosate susceptible vegetation.  Bands 5, 7, & 9 were subsequently 

used to create a composite image that served as a third data source for classification attempts 

(Figure 3.4b). 
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Figure 3.4. a) Spectral profile illustrating differences seen at band 5, 7, and 9 between glyphosate resistant vegetation and glyphosate 

susceptible vegetation b) Image of Casselton site 8DAA using band combination 5,7, & 9 (842nm, 705nm, and 740nm) from Red-

Edge MX Dual Camera 
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3.2.4. Raster Classification of Glyphosate Resistant and Glyphosate Susceptible Weeds 

 Once the buffered and extracted datasets were created, they were then classified using the 

Image Classification Wizard in ArcGIS Pro.  Training zones were created over the plant 

locations using the buffer shapefiles that were separated based upon resistance status and then 

conjoined to create a training template containing two classes: glyphosate susceptible vegetation 

and the other being glyphosate resistant vegetation.  Each classification was performed on each 

species independently from one another except in the case of waterhemp and red root pigweed.   

The MoR of resistance did not have any variation within the respective species as the waterhemp 

population was determined to be completely resistant to the glyphosate application while the red 

root pigweed population was determined to be completely susceptible to the glyphosate 

application.  

That being said, waterhemp and red root pigweed both are in the same genus of 

herbaceous plants (Amaranthus L.) commonly referred to as pigweeds (NRCS, 2020). Rather 

than sacrificing their presence in the study because of their unfavorable resistance statuses, the 

two species were paired together because of their close relation to each other. The waterhemp 

served as a glyphosate resistant population and red root pigweed served as a susceptible 

population.  This approach sacrificed the randomization schemes seen in kochia and ragweed, 

making thermal classification results unreliable due to spatial temperature differences of areas 

within the scene.  NDVI and band combination 579 however, still is somewhat reliable as 

spectral reflectance of vegetation is more consistent despite its location within the scene as all 

plants received approximately the same amount of sunlight.  In addition to weed classifications, a 

classification was made between the Round-up Ready soybean and conventional Stutsman 
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soybean at Casselton 8DAA to see if thermal classification performance can be greatly improved 

when dealing with known opposing MoR ratings. 

  Pixel based image analysis was used to classify the biotypes.  Three classification 

methods were used to classify each species raster data set for each of the three days. Data was 

collected to compare classification accuracy between the imaging systems and classification 

methods.  Maximum likelihood (ML), random trees (RT), and support vector machine (SVM) 

were the three classification methods used.   

 The support vector machine classification method utilized only a subset of the pixels 

included in the raster datasets to act as training data for the classifier.  The maximum samples per 

class was set to the default value of 500 pixels for each class. The random trees classifier 

similarly used only a subset of pixels but with a default value of 1000 pixels.  The maximum 

likelihood classifier was also used with its default settings. 

3.2.5. Accuracy Assessments of Thermal, NDVI, and Band 579 Classifications 

 To test the accuracy of the generated classifications, the Create Accuracy Assessment 

within ArcGIS Pro was used to digitize ground truth points within each classification raster's 

extents.  Pixels that belonged to plant that was determined to be glyphosate susceptible within 

the survival evaluation were assigned the value of 0, while pixels that belonged to a glyphosate 

resistant plant were assigned a value of 1. Approximately 1000 points were used for every 

species. The points were then updated by recording the values of the point locations observed in 

the classification raster, which provided a shapefile with both ground truth and classification 

fields with raster values ranging from 0-1.  The Compute Confusion Matrix tool was then used to 

observe the accuracy and kappa coefficient of each classification attempt. 
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3.3. Results and Discussion 

 Overall, classification performance was somewhat poor within kochia and ragweed 

observations. However, improvements in classification accuracy were observed across the total 

data collection period for each site with band combination 5,7, & 9 from the Red-Edge MX Dual 

Camera providing the highest accuracy and kappa coefficient results.  This effect is expected, as 

the herbicide is provided more time to induce symptomology and gradually desiccate the 

susceptible population due to the inhibition of stomatal conductance often observed with 

glyphosate application (Picoli et al., 2017).   

3.3.1. Classification of Glyphosate Resistant Kochia  

The Kappa coefficient values for kochia at 4DAA suggested only slight agreement at best 

between the classification and ground truth fields of band combination 579 at the Casselton 

location (Table 3.5). The random trees classifier performed the best at 4DAA with an accuracy 

of 62.9%.  At 6DAA, performance slightly improved in all band combinations. Band 579 at the 

Casselton location with the random trees classifier once again achieved the highest classification 

accuracy and kappa coefficient results at this time period with values of 74% and 0.471 

respectively.  The 8DAA kochia classification at Casselton once again improved in performance. 

The maximum likelihood classifier provided the highest performing result out of all 

classification attempts with an accuracy of 75.2% and a kappa coefficient of 0.487.  

Thermal classifications for kochia were noticeably the lowest performing of the three 

tested band options.   The highest performing thermal classification, which used the random trees 

method at 8DAA was outperformed by all NDVI and band combination 579 classifications.  This 

finding suggests that thermal canopy temperature data is not a reliable predictor of glyphosate 

resistance in kochia and that multispectral data should be further investigated.  



  

51 

 

Table 3.5. Carrington Kochia Classification Performance Summary 

 

Table 3.6. Casselton Kochia Classification Performance Summary 

 
 

3.3.2. Classification of Glyphosate Resistant Ragweed  

Generally, poor classification performance was seen in ragweed as well.  Only 8 ragweed 

plants at the Carrington site succumbed to the glyphosate application and 22 survived. The 

weeds showed varying levels of resistance, which likely also reduced the classifier's capability to 

distinguish between the two biotypes. Contrary to the Casselton site, a large number of 

susceptible ragweed dominated the Casselton site, leaving only 7 resistant weeds.  The natural 

population of ragweed that was introduced to the study to increase population sizes was 

determined to be part of the cause for such varying numbers, but it can also be noted that the 

glyphosate symptomology appeared much sooner and more severely than at Carrington. Despite 

difficulties in the 4DAA and 6DAA data collections, a commendable classification was made by 

the NDVI  8DAA in Casselton, where the random trees classifier attained an accuracy of 87.2% 

Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa

ML 0.591 0.089 ML 0.576 0.151

RT 0.507 0.015 RT 0.589 0.162

SVM 0.542 0.102 SVM 0.587 0.177

ML 0.572 0.04 ML 0.637 0.286

RT 0.572 0.04 RT 0.606 0.115

SVM 0.566 0.07 SVM 0.623 0.257

ML 0.584 0.167 ML 0.673 0.3

RT 0.591 0.134 RT 0.727 0.453

SVM 0.584 0.148 SVM 0.667 0.334

  4DAA 

Thermal

NDVI

Band 579

  6DAA 

Thermal

NDVI

Band 579

Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa

ML 0.576 0.133 ML 0.577 0.161 ML 0.579 0.17

RT 0.548 0.087 RT 0.58 0.163 RT 0.622 0.22

SVM 0.497 -0.004 SVM 0.563 0.126 SVM 0.602 0.181

ML 0.559 0.011 ML 0.638 0.276 ML 0.654 0.283

RT 0.605 0.179 RT 0.667 0.317 RT 0.724 0.401

SVM 0.588 0.177 SVM 0.666 0.314 SVM 0.726 0.388

ML 0.609 0.224 ML 0.691 0.385 ML 0.752 0.487

RT 0.629 0.258 RT 0.74 0.471 RT 0.742 0.463

SVM 0.577 0.19 SVM 0.706 0.372 SVM 0.748 0.482

  4DAA   6DAA 

Thermal Thermal

NDVI NDVI

Band 579 Band 579

8DAA

Thermal

NDVI

Band 579
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with a kappa of 0.413.  In order to determine the effectiveness of thermal data to identify 

glyphosate resistance in ragweed, it is necessary that more data must be gathered 

Table 3.7. Carrington Ragweed Classification Performance Summary 

 

Table 3.8. Casselton Ragweed Classification Performance Summary 

 

3.3.3. Classification of Glyphosate Resistant Amaranth Results 

The amaranth dataset (composed of resistant waterhemp and susceptible red root 

pigweed) exhibited much higher accuracy and kappa scores for thermal classifications, although 

these values are likely inflated.  The Carrington site's thermal classifications likely received such 

high accuracy and kappa scores solely because of the two species' spatial location within the 

scene.  The resistant waterhemp population filled the interior of a soybean row with dense 

vegetation that was near canopy closure.  The soybean canopy provided shelter for the 

waterhemp, while the red root pigweed was positioned on the outside of a soybean row, it was 

directly exposed to sunlight.  The presence of shadows over vegetation provide a cooling effect 

Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa

ML 0.591 0.089 ML 0.477 0.045

RT 0.507 0.015 RT 0.643 0.25

SVM 0.542 0.102 SVM 0.484 0.06

ML 0.32 0.03 ML 0.329 0.031

RT 0.483 0.056 RT 0.574 0.127

SVM 0.441 0.022 SVM 0.565 0.119

ML 0.428 0.067 ML 0.29 0.036

RT 0.618 0.25 RT 0.656 0.3

SVM 0.564 0.191 SVM 0.633 0.263

Thermal

NDVI

Band 579

  6DAA 

Thermal

NDVI

Band 579

  4DAA 

Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa

ML 0.582 -0.057 ML 0.622 -0.046 ML 0.43 0.071

RT 0.568 0.13 RT 0.514 0.051 RT 0.627 0.119

SVM 0.592 0.052 SVM 0.442 0.02 SVM 0.562 0.055

ML 0.704 -0.087 ML 0.642 0.099 ML 0.728 0.179

RT 0.562 0.05 RT 0.643 0.174 RT 0.778 0.27

SVM 0.54 0.066 SVM 0.689 0.124 SVM 0.872 0.413

ML 0.552 0.096 ML 0.711 0.157 ML 0.761 0.246

RT 0.635 0.113 RT 0.767 0.37 RT 0.769 0.303

SVM 0.536 0.071 SVM 0.755 0.231 SVM 0.767 0.278

NDVI NDVI

Band 579 Band 579

  4DAA   6DAA 

Thermal Thermal

NDVI

Band 579

8DAA

Thermal
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to the waterhemp plant areas. Shaded areas receive diffused solar radiation compared to areas in 

direct sunlight, leading to a significant temperature differential (Renhua, et al., 2001). In addition 

to the difference in spatial location, the polarizing differences in MoR that were observed could 

also further cause an easily detectable temperature differential between the two species, where 

the resistant waterhemp canopies showed cooler temperatures than the susceptible red root 

pigweed canopies.  

It is possible that the difference in spatial location was not as much of a factor at the 

Casselton location as sunlight exposure was approximately the same for both species. Due to the 

north facing orientation of the plot, sunlight was provided parallel to the soybean rows at the 

time of data collection rather than across dense soybean rows as in Carrington.  This reasoning 

could offer explanation as to why the Carrington location received higher accuracy results than 

Casselton.  Regardless, this approach illustrates the powerful impact of spatial variability of 

temperature on classification accuracy using thermal sensors. Weeds that were placed only a few 

feet away from each other exhibited significantly different canopy temperatures because of 

different levels of exposure to sunlight.  While the spatial variability and presence of crops could 

potentially impact the thermal readings, reflectance values from a multispectral sensor are less 

susceptible to the same degree of contamination as sunlight reflectance is the value being 

recorded and not temperature. Therefore, the superior performance shown by the multispectral 

sensors serves as another indicator that thermal classifications are not reliable. The results of the 

Amaranth classifications are summarized in Tables 3.9. and 3.10.  
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Table 3.9. Carrington Amaranth Classification Performance Summary 

 

Table 3.10. Casselton Amaranth Classification Performance Summary 

 

3.3.4. Soybean Observation Results 

 A final attempt at distinguishing between glyphosate resistant vegetation and glyphosate 

susceptible vegetation was made using the conventional Stutsman soybeans and Xtend2 Round-

Up Ready soybeans at the Casselton location.  The observation made to investigate the 

classification accuracy attained when dealing with vegetation with known opposing MoR found 

that multispectral data generally shows better potential for classification between glyphosate 

resistant and glyphosate susceptible vegetation. However, thermal classifications showed higher 

performance at 4DAA than NDVI or the Band 579 (Table 3.11.).  This finding was unexpected, 

as thermal classifications for any of the weed species did not exhibit similar performance levels 

at this time interval.  This outlier in classification performance could result from incorporating 

highly glyphosate susceptible Stutsman soybeans and glyphosate tolerant Xtend 2 Round Up 

Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa

ML 0.778 0.554 ML 0.707 0.406

RT 0.793 0.587 RT 0.956 0.912

SVM 0.796 0.592 SVM 0.92 0.84

ML 0.769 0.535 ML 0.865 0.729

RT 0.727 0.454 RT 0.869 0.737

SVM 0.779 0.558 SVM 0.861 0.722

ML 0.778 0.554 ML 0.911 0.822

RT 0.796 0.592 RT 0.836 0.671

SVM 0.793 0.587 SVM 0.907 0.813

 4DAA  6DAA 

Thermal

NDVI

Band 579

Thermal

NDVI

Band 579

Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa

ML 0.775 0.457 ML 0.783 0.489 ML 0.7 0.274

RT 0.721 0.389 RT 0.745 0.43 RT 0.678 0.177

SVM 0.79 0.474 SVM 0.796 0.499 SVM 0.651 0.278

ML 0.971 0.935 ML 0.969 0.939 ML 0.923 0.8

RT 0.967 0.926 RT 0.976 0.944 RT 0.935 0.81

SVM 0.972 0.936 SVM 0.98 0.954 SVM 0.919 0.796

ML 0.977 0.947 ML 0.942 0.856 ML 0.935 0.82

RT 0.967 0.926 RT 0.988 0.972 RT 0.927 0.81

SVM 0.97 0.932 SVM 0.986 0.968 SVM 0.919 0.796

  4DAA 

Thermal

NDVI

Band 579

  6DAA 

Thermal

NDVI

Band 579

8DAA

Thermal

NDVI

Band 579
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Ready soybeans.  This degree of difference in resistance status is highly unlikely in natural 

populations of weeds as resistance to glyphosate is generally conferred at a low MoR (2 or 3) 

which is why high doses of herbicide are recommended to impede glyphosate resistance 

(Sammons et al., 2007).  An additional suggestion for the increased performance is that the 

increased amount of vegetation area was able to be captured more effectively with the lower 

resolution thermal camera, thus encouraging segregation between classes. The Zenmuse XT2 

thermal camera provided 1.03 cm/pixel spatial resolution (Table 3.3.).  The average leaf diameter 

of the soybeans was 7cm. The largest weed average leaf diameter belonged to waterhemp and 

was only 2-3cm.  Therefore, it is possible that there were many more reliable thermal signatures 

captured off of soybean canopies than weed canopies. Reliable soybean canopy temperature 

extraction has proven to be possible with spatial resolutions as high as 0.8 m when investigating 

stomatal closure due to drought conditions (Crusiol et al., 2020).  

Table 3.11. Casselton Soybean Classification Performance Summary 

 
 

3.4. Conclusion 

This study's findings firmly suggest that using thermal imagery data as a predictor for 

glyphosate resistance within weed populations in field conditions is unreliable and susceptible to 

environmental variability. While technological advancements have provided increased 

resolutions in thermal systems, it was observed that higher resolution is needed to make 

investigations at the individual plant level using thermal data more scalable.  NDVI and a 

Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa Band Selection Method Accuracy Kappa

ML 0.942 0.88 ML 0.82 0.62 ML 0.886 0.76

RT 0.918 0.83 RT 0.77 0.52 RT 0.908 0.81

SVM 0.936 0.87 SVM 0.79 0.56 SVM 0.889 0.77

ML 0.794 0.55 ML 0.944 0.89 ML 0.977 0.95

RT 0.71 0.41 RT 0.935 0.86 RT 0.981 0.96

SVM 0.742 0.45 SVM 0.941 0.88 SVM 0.983 0.96

ML 0.824 0.636 ML 0.953 0.9 ML 0.987 0.972

RT 0.82 0.64 RT 0.907 0.808 RT 0.978 0.954

SVM 0.824 0.65 SVM 0.963 0.922 SVM 0.981 0.959

  4DAA   6DAA 

Thermal Thermal

NDVI NDVI

Band 579 Band 579

  8DAA 

Thermal

NDVI

Band 579
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composite image comprised of 842nm, 705nm, and 740nm imagery managed to provide better 

classification results than thermal in most cases, but classifications performed within a single 

species to segregate glyphosate resistant and glyphosate susceptible biotypes of weeds still were 

not definitive. The high classification accuracy obtained in the cases of amaranth plants and 

soybeans supports the notion that extreme differences in MoR are necessary for any reliable 

attempt to identify glyphosate resistant vegetation regardless of using multispectral or thermal 

data as a predictor. 
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4. FUTURE RESEARCH 

In the greenhouse, the use of only 10 pixel values from the weed canopies expresses a 

drastic need for an improved extraction method across large time periods. The optimal method to 

do this would be to find a way to generate an NDVI or RGB mask that aligns with the thermal 

data so that a mask image could be gathered with every thermal image.  Using cool water to 

create a thermal mask image is possible, but it is only useful for a single image capture interval 

and then must be reapplied for future captures. The field research performed in this thesis was 

performed on weeds with varying magnitudes of glyphosate resistance.  Future studies focused 

on an open rangeland setting where there is an establishment of natural weed populations that is 

not interrupted by the presence of crop rows may reduce the amount of variability in canopy 

temperature caused by sunlight blockage from other objects in the scene. 
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