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ABSTRACT 

Surface depressions are important topographic features, which affect overland flow, 

infiltration, and other hydrologic processes. Specifically, depressions undergo filling-spilling-

merging-splitting processes under natural rainfall conditions, featuring discontinuity in 

hydrologic connectivity and variability in contributing area. However, a constant and time-

invariant contributing area is often assumed in traditional hydrologic modeling, and 

consequently, the real threshold-controlled overland flow dynamics cannot be captured. The 

overall goal of this dissertation research is to improve hydrologic modeling, especially for 

depression-dominated areas, by quantifying the hydrologic effects of depressions. The specific 

objectives are to analyze the hydrotopographic characteristics of depressions and identify the 

intrinsic relationships of hydrologic variables, develop new modeling methods to simulate the 

depression-oriented dynamics in overland flow and variations in contributing area, and reveal the 

influence of spatially distributed depressions on the surface runoff generation and propagation 

processes. To achieve these objectives, three studies were conducted: (1) the frequency 

distribution of depression storage capacities was determined and a puddle-based unit (PBU)-

probability distribution model (PDM) was developed; (2) the intrinsic changing patterns of 

contributing area and depression storage were identified, based on which a new depression-

oriented variable contributing area (D-VCA) model was developed; and (3) a modified D-VCA 

(MD-VCA) model was further developed by introducing a depressional time-area zone scheme 

and a new variable contributing area-based surface runoff routing technique to account for the 

spatial distribution of depressions. These three models (PBU-PDM, D-VCA, and MD-VCA) 

were evaluated through the applications to depression-dominated watersheds in North Dakota, 

and simulation results demonstrated their capabilities in simulating the variations of contributing 
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areas and threshold-controlled overland flow dynamics. In addition, these three studies 

emphasized the important roles of depressions in the evolution of contributing areas as well as 

surface runoff generation and propagation. Without considering the spatial distribution of 

depressions, the formation of contributing area and the timing and quantity of runoff 

contributions cannot be characterized. 
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1. GENERAL INTRODUCTION 

1.1. Background and Problem Statement 

Surface topography has significant impacts on watershed hydrology and ecosystems, and 

depressions, one of the important topographic features, have been studied in recent years for their 

hydrologic, environmental, and ecologic effects (Abedini et al., 2006; Chu et al., 2013; Euliss et 

al., 2004; Mekonnen et al., 2017; Mushet et al., 2015). Depressions, acting as surface 

impoundments, undergo filling and spilling processes during rainfall events, which may delay 

the initiation of surface runoff and intercept surface runoff generated from upstream areas (Chi et 

al., 2012; Darboux & Huang, 2005). Depressions may also merge or have hydrologic 

connectivity with surrounding depressions, increasing the complexity of overland flow 

generation and propagation (Chu 2017; Leibowitz & Vining, 2003; Yang & Chu, 2013). For 

areas dominated by numerous depressions such as the Prairie Pothole Region (PPR) that covers 

five U.S. states and three Canadian provinces, overland flow often exhibits discontinuous filling-

spilling dynamics, and the outlet contributing area features in variability (Chu, 2017; Yang & 

Chu, 2013). The water ponded in depressions is subject to infiltration and evaporation, which 

further affect other hydrologic processes such as subsurface flow (Darboux et al., 2001; Darboux 

& Huang, 2005). Along with the depression-controlled hydrologic processes, soil erosion, 

sediment movement, and nutrient transportation are also affected (Tayfur et al., 1993; Hansen et 

al., 1999).  

Hydrologic modeling is an efficient tool for providing detailed information about the 

spatial and temporal variations in hydrologic processes and facilitating the evaluation of water 

quantity and quality. However, the existence of depressions brings challenges in hydrologic 

modeling since they break hydrologic connectivity and change the local flow directions. In 
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traditional modeling, depressions are often removed to create a depressionless, well-connected 

surface (Marks et al., 1984; Gabrecht & Martz, 2000; USACE-HEC, 2013). The depression 

storage, together with canopy storage and infiltration before the initiation of surface runoff, is 

lumped and included in the initial abstraction (USACE-HEC, 2013). In this case, surface runoff 

cannot be generated before the initial abstraction is satisfied, and the outlet contributing area 

increases from 0 to 100% of the basin/subbasin once surface runoff is initiated. In reality, 

however, smaller depressions may contribute surface runoff when larger depressions are still 

filling, and the outlet contributing area expands progressively under rainfall conditions (Chu, 

2017). Therefore, the real influence of depressions on rainfall-runoff processes is not well 

characterized in many traditional hydrologic models. 

To improve hydrologic modeling for depression-dominated areas, this dissertation study 

explores the current research progresses in the related field, identifies the research gaps or 

limitations of current studies, and highlights the importance of the relevant research. This 

dissertation study focuses on analyzing the hydrotopographic characteristics of depressions and 

the intrinsic properties of variable contributing areas dominated by the filling-spilling of 

depressions and developing new hydrologic modeling methods to reveal the dynamic threshold-

controlled overland flow generation and propagation processes.  

1.2. Modeling of the Aggregated Effects of Surface Depressions 

In recent decades, different hydrologic models/methods have been developed to simulate 

the depression-oriented hydrologic processes (e.g., Arnold et al., 1998; Amoach et al., 2013; 

Markstrom et al., 2015; Tahmasebi Nasab et al., 2017a; Wang & Yang, 2008; Yang et al., 2010). 

The lumped depression approach, which aggregates all depressions together, has become a 

widely used one to account for the hydrologic effects of depressions. Specifically, the lumped 
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depression receives surface runoff from the basin/subbasin area, and a specified threshold is used 

to control the water release from the lumped depression. With the development of computer 

technologies for analyzing surface topography, the understanding of the hydrotopographic 

characteristics of depressions has been improved, and the lumped depression approach undergoes 

progressive enhancement to mimic the dynamic influence of depressions on the filling-spilling 

processes of overland flow.  

The Soil and Water Assessment Tool (SWAT) is an example of applying the lumped 

depression approach with one or two water release thresholds, in which three functions (i.e., 

pond, wetland, and pothole functions) are provided for simulating the influence of water bodies 

off the subbasin main channel (Arnold et al., 1998). In SWAT, a watershed is divided into a 

number of subbasins, each of which is further divided into many hydrologic response units 

(HRUs) based on the combination of land use, soil type, and slope of the subbasin. The pond and 

wetland functions lump all depressions within a subbasin, and the lumped depression receives 

inflow from a fraction of the subbasin area. The water balance of the lumped depression is 

further calculated, and the water release from the lumped depression is subject to the target 

depression storage (pond function) or the normal and maximum depression storage (wetland 

function). In the pothole function, the spatially distributed depressions are also lumped together, 

and an HRU is defined as a pothole. Based on the topographic characteristics, the HRUs that can 

contribute surface runoff to the pothole are identified, and the fractions of the HRU areas that 

drain into the pothole are determined. The outflow from the pothole is released to subbasin main 

channel through the overflow surpassing the maximum depression storage, the release operation, 

or drainage tiles. These three functions, or other similar functions using the lumped depression 

approach, have been applied in different studies to simulate the rainfall-runoff processes 
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dominated by depressions (Hörmann et al., 2008; Schmalz et al., 2008; Tahmasebi Nasab et al., 

2017a; Wang & Yang, 2008; Yang et al., 2010). However, it is difficult to characterize the 

filling-spilling overland flow dynamics and the contributing area variations due to the concept of 

lumped depression storage and only one or two thresholds for water release. 

To improve the lumped depression approach by depicting the gradual water release from 

depressions and the time-varying feature of the outlet contributing area, a thorough knowledge 

about the hydrologic characteristics of depressions and their potential interactions is needed. In 

recent decades, many surface delineation tools have been developed to identify depressions, their 

contributing areas, and/or the hierarchical relationships with surrounding depressions (Arnold 

2010; Chu et al., 2010; Maidment 2002; Tahmasebi Nasab et al., 2017b; Ullah & Dickinson, 

1979a; Wang & Chu, 2020), based on which a series of hydrotopographic parameters and their 

relationships are determined (Antoine et al., 2009; Grimm & Chu, 2020; Le & Kumar, 2014; 

Ullah & Dickinson, 1979b; Wang et al., 2019). For example, Ullah and Dickinson (1979a) 

utilized a digital elevation model to identify individual depressions and calculate their geometric 

properties such as depths, surface areas, and volumes. Then, the relationships of the volumes, 

depths, and surface areas of individual depressions were obtained from the regression analyses, 

and two mathematical probability models were proposed to describe the frequency distribution of 

these three geometric parameters (Ullah & Dickinson, 1979b).  

Individual depressions may have the potential to merge with surrounding depressions to 

form higher-level depressions and further affect the overland flow dynamics. An understanding 

of this process is essential for depression-oriented hydrologic modeling. Chu et al. (2010) and 

Tahmasebi Nasab et al. (2017b) developed the puddle delineation (PD) algorithm and the 

improved depression-dominated delineation (D-cubed) algorithm, respectively, which have been 
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used to identify individual depressions and their hierarchical relationships (i.e., depressions at 

different levels) and calculate the topographic parameters (e.g., maximum depression storage and 

contributing area) of all depressions at different levels. Specifically, the concept of puddle-based 

unit (PBU) is introduced to depict the highest-level depression and its contributing area (Chu et 

al., 2010). In addition to the PBUs, channel segments and their contributing areas are also 

determined by the D-cubed algorithm, and the concept of channel-based unit (CBU) is used to 

describe the channel segment and its contributing area.  

The development of surface delineation algorithms also facilitates the improvement of 

hydrologic models (Abedini, 1998; Grimm & Chu, 2020; Kuchment et al., 2000; Mekonnen et 

al., 2014; Mekonnen et al., 2016; Wang et al., 2019). For example, Wang et al. (2019) and 

Grimm and Chu (2020) took advantage of the surface delineation results from the D-cubed 

algorithm and developed new modeling methods for simulating the depression-dominated 

rainfall-runoff processes. In their studies, a depression-dominated subbasin is divided into non-

depressional and depressional areas. Wang et al. (2019) determined the relationships between 

depression storage and ponding area of depressions and the hierarchical control thresholds by 

analyzing the attributes of depressions at different levels, which were further specified to the 

lumped depression to gradually release ponded water to the subbasin outlet. Grimm and Chu 

(2020) identified the relationship between depression storage and outflow for a depressional 

area, which improved hydrologic modeling for the simulation of the dynamic filling-spilling 

processes of depressions and the threshold behavior of overland flow.  

Compared with the lumped depression approach with one or two water release 

thresholds, the models that incorporate the relationships of depression storage, ponding area, and 

outlet discharge improve the simulation of threshold-controlled overland flow. However, in such 



 

6 

models, the interactions of spatially distributed depressions are often simplified in a lumped 

manner, and the outflow from depressions is delivered directly to the subbasin outlet, which still 

has room for improvement in simulating the detention effects of depression storage on surface 

runoff. 

1.3. Modeling of the Influence of Spatially Distributed Depressions 

The lumped depression approach accounts for the aggregate effects of surface 

depressions on watershed hydrology, while the detailed information on the filling-spilling of 

depressions and the interactions of depressions is limited. In recent decades, efforts have been 

made to simulate water movement over individual depressions (Ameli & Creed, 2017; Antoine et 

al., 2009; Chu et al., 2013; Darboux et al., 2002; Evenson et al., 2015, 2016; Shaw et al., 2013; 

Shook et al., 2013; Yang & Chu, 2015).  

To simulate hydrologic processes related to individual depressions, some hydrologic 

models/algorithms have been developed. For example, Darboux et al. (2002) and Antoine et al. 

(2009) developed a conditioned-walker method and a filling algorithm, respectively, to simulate 

the depression filling processes and quantify the hydrologic connectivity of depressions without 

considering infiltration. Apples et al. (2011) developed an algorithm to track the filling, merging, 

and connecting of depressions on permeable soil surfaces. Shaw et al. (2013) developed a simple 

pothole terrain analysis algorithm (SPILL) to analyze the influence of spatial variations of 

depressions on hydrologic connectivity. Chu et al. (2013) and Yang and Chu (2015) developed a 

physically-based, spatially-distributed model to track the  puddle to puddle (P2P) and cell to cell 

(C2C) microtopography-controlled overland flow dynamics and the P2P filling-spilling-merging-

splitting processes across all levels of depressions. These hydrologic models/algorithms take 

individual depressions as basic simulation units and provide the detailed information on surface 
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runoff generation, propagation, and hydrologic connectivity, while tracking the filling/spilling 

conditions of depressions and the interactions of depressions requires high-resolution input data 

and intensive computation capacities. Thus, they are more suitable for small-scale hydrologic 

modeling. 

For watershed-scale hydrologic modeling, Evenson et al. (2015) modified SWAT to 

simulate the filling-spilling of geographically isolated wetlands (GIWs). Their model accounted 

for three different types of HRUs: HRUs consisting of GIWs, GIWs representing the drainage 

areas of GIWs, and HRUs disassociated with GIWs and their drainage areas. An extended 

pothole function was used to simulate the filling-spilling of depressions, and the outflow was 

delivered to the associated subbasin main channel. To account for the interactions of GIWs, 

Evenson et al. (2016) further constructed the fill-spill relationships of GIWs, and the fill-spill 

network followed a flow order from the GIWs with fewer drainage areas to the GIWs with more 

drainage areas. Considering GIWs and their drainage areas resulted in a significant increase in 

the number of HRUs compared to the delineation without GIWs (Evenson et al., 2016), making 

the input data preparation and hydrologic simulation for long-tern modeling more challenging. 

For a depression-dominated watershed, the hierarchical relationships of depressions make 

the interactions of depressions intricate, and the spatial distribution of depressions also increases 

the complexity of the simulation of the filling-spilling-merging-splitting of depressions. 

Hydrologic models that consider individual depressions require delineating the surface 

topographic characteristics, processing input data associated with a large number of depressions, 

and simulating the aforementioned threshold-controlled overland flow dynamics, making the 

applications difficult for large-scale watersheds. 
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1.4. Dissertation Objectives 

Surface depressions are important topographic features that influence the hydrologic 

processes (e.g., overland flow generation and propagation), and the spatial distribution of 

depressions makes such impacts more intricate. As aforementioned, aggregating the spatially 

distributed depressions together may lose some details in the simulation of surface runoff 

detention due to the lack of characterization of the interactions of depressions. Also, simulating 

water movement over individual depressions needs detailed, high-resolution input data and 

requires high computational capacity, which limits the efficiency of their applications at a 

watershed scale. This dissertation research aims at improving watershed-scale hydrologic 

modeling, especially for depression-dominated regions, by quantifying the influence of spatially 

distributed depressions. The specific objectives of this research are to: 

 Analyze the hydrotopographic characteristics of depressions and identify the 

intrinsic relationships of hydrologic variables; 

 Develop new modeling methods to simulate the depression-oriented dynamics in 

overland flow and variations in outlet contributing area; and 

 Reveal the influence of spatially distributed depressions on surface runoff 

generation and propagation processes. 

1.5. Organization of the Dissertation 

This dissertation consists of five chapters with the first and last chapters focusing on the 

general introduction and the overall conclusions of the dissertation study, respectively. Chapter 2 

introduces a new PBU-probability distribution model (PDM), which is used to enhance the 

SWAT for simulating the depression-oriented, variable contributing area and overland flow 

dynamics. In the PBU-PDM, the hydrotopographic characteristics of depressions are analyzed, 
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and a series of probability distribution functions are implemented to describe depression storage 

and outlet contributing areas at different filling conditions. The surface runoff generated from the 

contributing area is further routed to the subbasin main channel to account for the detention 

effects of depressions. The performance and capabilities of the PBU-PDM enhanced SWAT in 

mimicking the threshold-controlled overland flow dynamics are evaluated through the 

application to a depression-dominated watershed in the PPR of North Dakota. 

Chapter 3 focuses on a new event-based, depression-oriented variable contributing area 

(D-VCA) model, which implements an analysis procedure and a simulation procedure. The 

former identifies the intrinsic changing patterns of outlet contributing area and depression 

storage as depression filling and establishes a probability distribution function related to 

depression storage capacities to describe the likelihood of occurrence of outlet contributing 

area/runoff contribution. Such information is incorporated into the simulation procedure for the 

simulation of the variable outlet contributing area, depression storage, surface runoff, and their 

likelihoods of occurrence. To simulate the detention effect induced by spatially distributed 

depressions, the surface runoff generated from contributing area is routed to the subbasin outlet 

by using the Clark unit hydrograph method. The D-VCA model is applied to a depression-

dominated watershed in North Dakota, and its performance and unique features are assessed.  

Chapter 4 describes a modified D-VCA (MD-VCA) model, which takes the influences of 

both depression storages and their spatial distribution into consideration. Instead of using the 

Clark unit hydrograph method, the MD-VCA introduces a depressional time-area zone scheme 

and constructs a new variable contributing area-based surface runoff routing technique to 

incorporate the influence of spatially distributed depressions. In addition, a joint probability 

distribution associated with depression storages and their spatial distribution is also established 
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to describe the likelihood of occurrence of outlet contributing area/runoff contribution. By 

applying to the same depression-dominated watershed selected for testing the D-VCA model, the 

performance of the MD-VCA model is evaluated, and the improvement of the MD-VCA over 

the D-VCA model is highlighted. The influence of depression storages and their spatial 

distribution is also discussed and summarized. 
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2. IMPROVED HYDROLOGIC MODELING FOR DEPRESSION-DOMINATED AREAS 

2.1. Abstract 

Modeling of overland flow for a depression-dominated area is a difficult task due to the 

spatial distribution of depressions. Particularly, the hierarchical relationships of depressions and 

their variable contributing areas make the hydrologic modeling more complicated. In traditional 

hydrologic modeling, however, digital elevation models (DEMs) that are used to represent 

surface topography are often edited by filling depressions before delineation, and the impacts of 

depressions are considered by using certain simplified and lumped approaches. Due to such 

flaws, these hydrologic models fail to account for the actual dynamic influences of surface 

depressions. The objective of this study is to improve hydrologic modeling for depression-

dominated regions by developing a new modeling framework to quantify the influence of 

spatially distributed depressions. To achieve this objective, a new puddle-based unit (PBU) 

probability distributed model (PBU-PDM) is developed and coupled with the existing Soil and 

Water Assessment Tool (SWAT). The PBU-PDM facilitates separate simulations for non-

depressional and depressional areas, and accounts for the hierarchical relationships of 

depressions, their filling and spilling processes, and the dynamic variations in their contributing 

areas. The PBU-PDM enhanced SWAT was applied to the Upper Maple River watershed in 

North Dakota, and calibrated and validated using the observed data. In particular, it was also 

compared with the original SWAT model, which demonstrated the abilities of PBU-PDM to 

mimic the filling-spilling overland flow dynamics and the threshold behavior. The PBU-PDM 

provides improved watershed-scale hydrologic modeling, especially for depression-dominated 

areas.  
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2.2. Introduction 

Surface topography affects overland flow generation, surface runoff, and other 

hydrologic processes (Abedini, et al., 2006; Chu, 2017; Darboux & Huang, 2005). For example, 

depressions act as surface impoundment and intercept surface runoff generated from their 

upstream contributing areas until reaching their maximum depression storage (MDS) thresholds. 

Also, each depression has a unique MDS, contributing area (CA), and relationships with its 

surrounding depressions, and thus undergoes specific, dynamic puddle-to-puddle (P2P) filling-

spilling-merging processes during rainfall events (Chu et al., 2013). The influence of depressions 

makes hydrologic processes more complicated. In many traditional watershed hydrologic 

models, a digital elevation model (DEM), which is used to represent surface topography, is 

preprocessed by filling all sinks or depressions. The impacts of depressions are usually simulated 

by using certain oversimplified and lumped approaches such as a single depression storage 

threshold control on the initiation of surface runoff (e.g., Amoah et al., 2013; Tahmasebi Nasab 

et al., 2017a). In reality, smaller depressions that connect to the outlet may contribute runoff 

water before larger depressions are fully filled. Thus, the lumped methods do not consider the 

spatial distributions of depressions and cannot fully simulate the real dynamic influences of 

depressions on hydrologic processes (Evenson et al., 2015; Golden et al., 2014, 2017; Tahmasebi 

Nasab et al., 2017a). Therefore, how to characterize and account for depressions in hydrologic 

models is an important task, especially for depression-dominated areas. 

Some modeling efforts have been made to consider the spatial variations of depressions 

in hydrologic modeling (e.g., Ameli & Creed, 2017; Chu et al., 2010; Chu et al., 2013; Evenson 

et al., 2015, 2016; Shaw et al., 2013; Shook et al., 2013; Tahmasebi Nasab et al., 2017b; Yang & 

Chu, 2015). Shaw et al. (2013) developed a simple pothole terrain analysis algorithm (SPILL) to 
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simulate the fill-spill processes of all depressions and quantify surface depression storage and 

basin CA under different runoff conditions. Shook et al. (2011) developed a fully distributed 

wetland DEM ponding model (WDPM) to simulate the filling and depleting processes of 

depressions, dynamic ponding storage of each depression, time-varying basin CA, and surface 

runoff in a wetland-dominated region. Chu et al. (2010) proposed a puddle delineation (PD) 

algorithm, based on which a depression-dominated delineation (D-cubed) algorithm was further 

developed (Tahmasebi Nasab et al., 2017b). The algorithms have been used to identify 

depressions/puddles, track the CA of each puddle, determine the hierarchical relationships of 

puddles, compute flow directions and accumulations, and calculate topographic parameters. 

Particularly, the D-cubed algorithm delineates a surface into a number of puddle-based units 

(PBUs) and channel-based units (CBUs). Chu et al. (2013) and Yang and Chu (2015) developed 

a physically-based, distributed P2P model for simulating overland flow processes over 

depression-dominated areas based on the detailed surface microtopographic characteristics from 

the PD algorithm. The P2P model simulates the dynamic filling, spilling, merging, and splitting 

processes of puddles and reveals the real microtopography-controlled drainage patterns. 

However, modeling overland flow dynamics over all depressions needs high-resolution input 

data and requires high computational capacity, making these distributed models more suitable for 

smaller scale modeling problems. For watershed-scale modeling, Evenson et al. (2015, 2016, and 

2018) modified SWAT to simulate the influences of geographically isolated wetlands (GIWs) on 

downstream hydrology. In their studies, the hydrologic response units (HRUs) were re-defined 

by distinguishing GIWs from their catchment areas and introducing a series of GIW HRUs (i.e., 

wetlands) and catchment HRUs. An extended SWAT pothole function was utilized to simulate 

the outflows of GIWs, which were further routed. The redefinition of HRUs resulted in a 
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significant increase in the number of HRUs (Evenson et al., 2016), which consequently made 

long-term modeling (including input data preparation, model calibration and validation) more 

challenging. 

Alternatively, the geometric properties of depressions (e.g., area, depth, and storage 

capacity) can be quantified by a frequency distribution (Ullah & Dickinson, 1979), which 

potentially improves surface runoff simulation for depression-dominated surfaces (Abedini, 

1998; Kuchment et al., 2000; Mekonnen et al., 2014; Mekonnen et al., 2016). Abedini (1998) 

applied the probability distributed model (PDM) originally developed by Moore (1985) to 

describe the spatial variations of depression storage capacities, characterize the dynamic CAs, 

and calculate the water storage of depressions and surface runoff. Kuchment et al. (2000) utilized 

an exponential distribution function to represent the spatial distribution of surface depressional 

storages and applied the distribution to the simulation of runoff processes in a wetland-covered 

basin. Following Abedini (1998) and Moore (2007), Mekonnen et al. (2014) and Mekonnen et al. 

(2016) incorporated the PDM into the MESH modeling system (Modélisation Environmentale 

Communautaire – Surface and Hydrology, Pietroniro et al., 2007) and SWAT to account for the 

heterogeneity of storages of depressions and simulate surface runoff. Their modeling results 

indicated that such a statistical approach was able to simulate the influence of spatially 

distributed depressions.   

For larger watersheds with numerous depressions, the probability distributed approach is 

feasible and convenient for considering the diversity of depressions. However, the PDM does not 

consider the dynamic relationships of depressions and their CAs. To the best of our knowledge, 

no probability distributed approach has been developed to address the impacts of such 

complicated properties of depressions on hydrologic modeling. The objective of this study is to 
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improve hydrologic modeling for depression-dominated regions by quantifying the influence of 

spatially distributed depressions. To achieve this objective, a new PBU-based probability 

distributed model (PBU-PDM) is developed and coupled with the existing SWAT to account for 

the spatial distributions and relationships of surface depressions and simulate their filling and 

spilling processes and the dynamic variations in their contributing areas. The PBU-PDM is then 

applied to the Upper Maple River watershed in North Dakota and its performances in both 

calibration and validation are evaluated.  

2.3. Methodology and Materials 

2.3.1. Characterization of Surface Topography 

To provide the detailed topographic information of depressions (e.g., size, storage, CA, 

and the relationships with surrounding depressions) for the PBU-PDM modeling, the D-cubed 

algorithm (Tahmasebi Nasab et al., 2017b) was utilized. Based on the original DEM of a 

watershed, the D-cubed algorithm identifies depressions/puddles by searching their centers, 

thresholds, and all included cells, which are defined as first-level depressions/puddles. If two or 

more first-level puddles share a common threshold, they potentially merge and form a second-

level puddle. All higher-level puddles are formed in the same fashion. Such different levels of 

puddles define their hierarchical relationships. This process continues until all highest-level 

puddles are determined. Then, the MDS and maximum ponding area (MPA) of each puddle, and 

other topographic parameters are computed. During the delineation process, the D-cubed 

algorithm also provides the details on flow directions, flow accumulations, and channel 

segments. Importantly, the algorithm identifies all PBUs and CBUs. The former (PBU) consists 

of a highest-level puddle and its CA, while the latter (CBU) includes a channel segment and its 

CA. PBUs and CBUs can connect to each other and the interconnections of all PBUs and CBUs 
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form a cascaded channel-puddle drainage system, which contributes runoff water to the 

watershed outlet. Table 2.1 lists all acronyms and variables/parameters used in this paper. 

Table 2.1. List of acronyms and variables. 

Acronym/Variable Definition/Notation 

CA Contributing area 

CBU Channel-based unit 

DEM Digital elevation model 

HRU Hydrologic response unit 

MDS Maximum depression storage 

PA Ponding area 

PBU Puddle-based unit 

PDM Probability distributed model 

Aj Surface area of subbasin j (L2) 

Cc,i,j Depression storage capacity of group i in subbasin j (L) 

CA_Rfri,j Surface runoff release fraction for CAs of depressions of group i in subbasin j 

GTCi,j,k Threshold capacity of group i in subbasin j at time step k (L) 

MaxCi,j Maximum depression storage capacity of group i in subbasin j (L) 

MedCAi,j Median area of CAs of depressions of group i in subbasin j (L2) 

Ri,j,k Surface runoff generated from group i in subbasin j at time step k (L) 

R’
i,j,k Surface runoff from group i that reaches the main channel of subbasin j at time step k (L) 

Rj,k Surface runoff that reaches the main channel of subbasin j at time step k (L) 

R’
CBU,j,k Surface runoff from CBUs that reaches the main channel of subbasin j at time step k (L) 

RCBU,j,k Surface runoff generated in the CBUs of subbasin j at time step k (L) 

Rfrj Surface runoff release fraction of subbasin j 

RSi,j,k-1 Surface runoff stored on the surface of group i in subbasin j at time step k-1 (L) 

RSCBU,j,k-1 Surface runoff stored on the CBUs of subbasin j at time step k-1 (L) 

Si,j,k Total depression storage of group i in subbasin j at time step k (L) 

Sj,k Depression storage of subbasin j at time step k (L) 

∆Si,j,k Depression storage change of group i in subbasin j during time step k (L) 

rMPA Ratio of maximum ponding area MPA to surface area PA of a PBU 

αi,j Coefficient of the exponential function of group i in subbasin j. 

βi,j Coefficient of the exponential function of group i in subbasin j. 
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2.3.2. Model Development 

2.3.2.1. Overall modeling framework 

In the original SWAT modeling, a watershed is delineated into a number of subbasins by 

using a pre-filled DEM. Based on the meteorological and hydrologic data, soil type, land use, 

and other input data, SWAT provides the simulated surface runoff, infiltration, 

evapotranspiration, and other hydrologic variables. Thus, the original SWAT modeling is 

performed for a depressionless, well-connected surface. For the PBU-PDM enhanced SWAT 

model, in addition to the aforementioned input data, a set of topographic property parameters and 

data from the D-cubed algorithm are used for developing the PDMs for all subbasins. The land 

phase modeling is performed for all subbasins, which is followed by channel routing for the 

entire drainage system (Fig. 2.1). For the land phase modeling of each subbasin (within the 

subbasin loop), a two-step modeling is performed: (1) SWAT subbasin-based modeling (Step 1) 

and (2) PBU-PDM modeling (Step 2) (Fig. 2.1). In Step 1, hydrologic processes such as surface 

runoff and infiltration are simulated for all subbasins, while Step 2 implements the PBU-PDM 

simulation. Specifically, the surface runoff simulated in Step 1 without consideration of the 

influence of depressions is transferred into the PBU-PDM. As detailed in the following 

subsection, the PBU-PDM simulates the dynamic variations in depression storage across all 

subbasins and the threshold-controlled surface runoff reaching the main channels, which is 

further transferred back to the SWAT model for channel routing throughout the entire channel 

network.  
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Figure 2.1. Flowchart of the PBU-PDM enhanced SWAT model. 

 

2.3.2.2. New PBU-PDM 

Based on the original DEM, the D-cubed algorithm divides a basin into a number of 

subbasins, each of which is further divided into numerous PBUs (depressional area) and CBUs 

(non-depressional area). In the PBU-PDM, separate simulations are conducted for the CBUs and 

PBUs of each subbasin (Fig. 2.2a). Since a CBU does not contain any depression, the surface 

runoff generated from a CBU is equal to that simulated in the SWAT modeling (Step 1, Fig. 2.1) 

and is assumed to contribute directly to the corresponding subbasin main channel. For PBUs, 

however, a series of PDMs (Fig. 2.2a) are used to determine the temporal variations of 
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depression storage and surface runoff from such depressional areas. As basic modeling units, 

PBUs account for the hierarchical relationships of depressions and their CAs.  

 

Figure 2.2. (a) PBU-PDM for subbasin j at time step k; and (b-d) mechanisms of PDM for group 

i of subbasin j. 
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To develop the PDMs for depressional areas (Fig. 2.2a), water balance is analyzed for an 

individual PBU (Fig. 2.3). Specifically, a PBU consists of a CA and a ponding area (PA). The 

CA receives precipitation water and loses water by infiltration, and the resulting surface runoff 

contributes to its associated PA (Fig. 2.3a). The PA receives water from precipitation and surface 

runoff from its CA and loses water through evaporation and seepage. If the net water input 

(difference between inputs and losses) of the PA exceeds the available depression storage of the 

PBU, the highest-level puddle is fully filled, reaching its MDS and overflowing to its 

downstream (Fig. 2.3b).  

 

Figure 2.3. PBU and its contributing area (CA) and ponding area (PA). 

 

The outflow and depression storage of the PBU can be mathematically expressed as 

follows (note that hydrologic variables D, C, S/S0, and R are expressed as a depth over the PBU): 

 R = { 
D − (C − S0)                                          D > (C − S0) 
0                                                               D ≤ (C − S0)

 (2.1) 

 S = {
  C                                                                D > (C − S0) 
D + S0                                                       D ≤ (C − S0)

  (2.2) 

in which 

(a) (b) 
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 𝐷 = (𝑃𝑟𝑒𝑐𝑖𝑝 − 𝐸𝑣𝑎𝑝 − 𝑆𝑒𝑒𝑝𝑎𝑔𝑒) ×
𝑃𝐴

𝐴
+ 𝑅𝑢𝑛𝑜𝑓𝑓𝐶𝐴 × (1 −

𝑃𝐴

𝐴
) (2.3) 

where R is the surface runoff generated from the PBU at the end of a given time step (L), D is 

the net water input of the PA of the PBU during the time step (L), C is the depression storage 

capacity of the highest-level puddle of the PBU (L), S0 is the depression storage of the PBU at 

the beginning of the time step (L), S is the depression storage of the PBU at the end of a time 

step (L), RunoffCA is the surface runoff generated from the CA of the PBU during the time step 

(L) and is equal to the surface runoff simulated in the SWAT modeling (Step 1, Fig. 2.1), and PA 

and A are respectively the area of the ponding area and the entire surface area of the PBU (L2).  

The water evaporation and seepage of the PA are respectively given by (Arnold et al., 

1998): 

 𝐸𝑣𝑎𝑝 = 𝜂 × 𝑃𝐸𝑇  (2.4) 

 𝑆𝑒𝑒𝑝𝑎𝑔𝑒 = 𝐾 × ∆𝑡  (2.5) 

where η is the evaporation coefficient of the PA of the PBU, PET is the potential 

evapotranspiration (L), K is the saturated hydraulic conductivity of the bottom sediment of the 

PA of the PBU (L/T), and Δt is the time interval (T) which is a daily increment in this study. It is 

worth noting that the infiltration of the CAs of all PBUs and CBUs is calculated in the SWAT 

modeling (Step 1, Fig. 2.1) and updated at each daily step based on the soil water content and top 

soil temperature, and the percolation from the bottom of the soil profile and the seepage from the 

PAs of PBUs enter the deep vadose zone and the groundwater zone. 

Within a subbasin, precipitation, evaporation, and seepage are considered to be the same 

for all PBUs. All depressions are assumed empty at the beginning of simulation. In applications, 

the issue associated with this initial condition can be addressed by the warm-up simulation. To 

simplify the PBU-PDM for PBUs, the maximum ponding area of a PBU is used in the 
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computation of net water input. According to Eqs. 2.1-2.3, the PBUs with the same ratio of 

maximum ponding area to the PBU area (i.e., rMPA, = MPA/A) have the same net water input, and 

the generated surface runoff and depression storage of the PBUs are only related to their 

depression storage capacities and the filling conditions of their highest-level puddles. For the 

PBUs with the same rMPA, following Abedini (1998) and Mekennon et al. (2016), the probability 

distributed approach can be applied to simulate the filling-spilling overland flow processes. 

Thus, the PBUs with the same rMPA are assigned to the same group. As a result, all PBUs within 

one subbasin are assigned to different groups based on their rMPA values (Fig. 2.2a). That is, one 

subbasin may include many groups, each of which contains many PBUs that have the same rMPA. 

Then, a PDM is developed for each group to calculate the total amount of water stored in this 

group and the surface runoff generated from this group at each time step (Fig. 2.2a).  

Figs. 2.2b-d show how the PDM determines the total depression storage and surface 

runoff for group i of subbasin j. This group consists of a set of PBUs with different depression 

storage capacities, which are represented by the columns with different heights in Fig. 2.2b. The 

probability of each depression storage capacity is determined by frequency analysis for 

depression storage capacities of all PBUs in this group. Through analysis of water balance of the 

CA and PA of each PBU in group i of subbasin j at time step k (Eqs. 2.1 – 2.3), the PBUs with 

the same depression storage capacities have the same depression storage and outflow. Their 

values depend on the filling-spilling condition. To determine the filling-spilling condition of the 

PBUs in a group, the concept of group threshold capacity is introduced (Fig. 2.2c). During the 

filling process with a positive net water input, if a PBU happens to be fully filled and does not 

generate outflow (e.g., PBU4 in Fig. 2.2c), the depression storage capacity of this PBU at that 

time step is defined as the group threshold capacity. Thus, if the depression storage capacity of a 
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PBU in group i of subbasin j is greater than the group threshold capacity (e.g., PBUs 5, 6, and 7 

in Fig. 2.2c), it will not contribute runoff water and its depression storage equals the group 

threshold capacity. If the PBUs in group i of subbasin j have a depression storage capacity 

smaller than the group threshold capacity (e.g., PBUs 1, 2, and 3 in Fig. 2.2c), they reach their 

depression storage capacities and the excess water becomes surface runoff (outflow). The 

proportion of the area of the PBUs that contributes surface runoff to the subbasin outlet can be 

calculated by Eq. 2.6 and the total depression storage in group i of subbasin j at time step k is 

given by Eq. 2.7 (Moore, 1985): 

 𝑃(𝐶𝑐,𝑖,𝑗 ≤ GTC𝑖,𝑗,𝑘) = ∫ 𝑓(𝐶𝑐,𝑖,𝑗)𝑑𝐶𝑐,𝑖,𝑗
GTC𝑖,𝑗,𝑘

0
 (2.6) 

  𝑆𝑖,𝑗,𝑘 = ∫ 𝐶𝑐,𝑖,𝑗𝑓(𝐶𝑐,𝑖,𝑗)𝑑𝐶𝑐,𝑖,𝑗
GTC𝑖,𝑗,𝑘

0
+ GTC𝑖,𝑗,𝑘 ∫ 𝑓(𝐶𝑐,𝑖,𝑗)𝑑𝐶𝑐,𝑖,𝑗

𝑀𝑎𝑥𝐶𝑖,𝑗

GTC𝑖,𝑗,𝑘
   

    ( GTC𝑖,𝑗,𝑘 = 𝑚𝑖𝑛. (GTC𝑖,𝑗,𝑘, 𝑀𝑎𝑥𝐶𝑖,𝑗))  (2.7) 

where Si,j,k is the total depression storage of group i in subbasin j at time step k (L), GTCi,j,k is the 

threshold capacity of group i in subbasin j at time step k (L), Cc,i,j is the depression storage 

capacity of group i in subbasin j (L), MaxCi,j is the maximum depression storage capacity of 

group i in subbasin j (L),  and f(Cc,i,j) is the probability of occurrence of depression storage 

capacity Cc,i,j of group i in subbasin j.  

According to Kuchment et al. (2000) and Mekonnen et al. (2016), depression storage 

capacity follows a continuous exponential distribution. Thus, an exponential function (Eq. 2.8) is 

used in this study to describe the probability distribution of depression storage capacities, and the 

total water stored in the PBUs of group i in subbasin j at time step k is given by Eq. 2.9.  

  𝑓(𝐶𝑐,𝑖,𝑗) = 𝛼𝑖,𝑗 × exp (𝛽𝑖,𝑗 × 𝐶𝑐,𝑖,𝑗)  (2.8) 

  𝑆𝑖,𝑗,𝑘 =
𝛼𝑖,𝑗

𝛽𝑖,𝑗
2 × (1 − exp(𝛽𝑖,𝑗 × 𝐺𝑇𝐶𝑖,𝑗,𝑘)    (  GTC𝑖,𝑗,𝑘 = 𝑚𝑖𝑛. (GTC𝑖,𝑗,𝑘, 𝑀𝑎𝑥𝐶𝑖,𝑗))  (2.9) 
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where αi,j and βi,j are the coefficients of the exponential function of group i in subbasin j, which 

are obtained by fitting the probability distribution curve of depression storage capacities. The 

two coefficients are obtained by fitting the distribution of the depression storage capacities of the 

PBUs of group i in subbasin j and can vary over groups and subbasins.  

To determine the group threshold capacity and the generated surface runoff, two 

scenarios are considered. If the net water input of group i in subbasin j at time step k+1 is greater 

than zero, the group threshold capacity increases by the net water input during this time step (Eq. 

2.10, Fig. 2.2d). The water stored during the current time step is given by Eq. 2.11, and the 

surface runoff generated in this group during this time step is given by Eq. 2.12 (Fig. 2.2d).  

  GTC𝑖,𝑗,𝑘+1 = GTC𝑖,𝑗,𝑘 + D𝑖,𝑗,𝑘+1  (GTC𝑖,𝑗,𝑘+1 = 𝑚𝑖𝑛. (GTC𝑖,𝑗,𝑘+1, 𝑀𝑎𝑥𝐶𝑖,𝑗)) (2.10) 

  ∆𝑆𝑖,𝑗,𝑘+1 = 𝑆𝑖,𝑗,𝑘+1 − 𝑆𝑖,𝑗,𝑘  (2.11) 

  R𝑖,𝑗,𝑘+1 = D𝑖,𝑗,𝑘+1 − ∆𝑆𝑖,𝑗,𝑘+1  (2.12) 

where ∆Si,j,k+1 is the depression storage change of group i in subbasin j during time step k+1 (L), 

and Ri,j,k+1 is the surface runoff generated from group i in subbasin j at time step k+1 (L). If 

Di,j,k+1 < 0, no runoff is generated in group i (Eq. 2.13) at time step k+1; the storage decreases 

due to the negative net water input (Eq. 2.14); and the group threshold capacity can be obtained 

by solving Eq. 2.7.  

  R𝑖,𝑗,𝑘+1 = 0       (D𝑖,𝑗,𝑘+1 < 0)  (2.13)  

  𝑆𝑖,𝑗,𝑘+1 = 𝑆𝑖,𝑗,𝑘 + D𝑖,𝑗,𝑘+1       (D𝑖,𝑗,𝑘+1 < 0) (2.14) 

The actual amount of water stored in the PBUs of subbasin j can be expressed as: 

  𝑆𝑗,𝑘 = ∑ 𝑆𝑖,𝑗,𝑘 × 𝑔𝑖
𝑛
𝑖=1   (2.15) 
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where Sj,k is the depression storage of subbasin j at time step k (L), and gi is the ratio of the area 

of group i to the total area of subbasin j. Similar to the original SWAT, the surface runoff 

generated from CBUs and PBUs is routed to the main channel in the subbasin by:  

For CBUs: 

  𝑅𝐶𝐵𝑈,𝑗,𝑘
′ = (𝑅𝐶𝐵𝑈,𝑗,𝑘 + 𝑅𝑆𝐶𝐵𝑈,𝑗,𝑘−1) × 𝑅𝑓𝑟𝑗  (2.16) 

For PBUs: 

  𝑅𝑖,𝑗,𝑘
′ = (𝑅𝑖,𝑗,𝑘 + 𝑅𝑆𝑖,𝑗,𝑘−1) × 𝑅𝑓𝑟𝑗  (2.17) 

and the total runoff water reaching the main channel in the subbasin is given by: 

  R𝑗,𝑘 = ∑ 𝑅𝑖,𝑗,𝑘
′ × 𝑔𝑖 + 𝑅𝐶𝐵𝑈,𝑗,𝑘

′ × 𝑔𝐶𝐵𝑈
𝑛
𝑖=1   (2.18) 

where R’
CBU,j,k is the surface runoff from CBUs that reaches the main channel of subbasin j at 

time step k (L), RCBU,j,k is the surface runoff generated in the CBUs of subbasin j at time step k 

(L), RSCBU,j,k-1 is the surface runoff stored on the CBUs of subbasin j at time step k-1 (L), Rfrj is 

the surface runoff release fraction of subbasin j, R’
i,j,k is the surface runoff from group i that 

reaches the main channel of subbasin j at time step k (L), RSi,j,k-1 is the surface runoff stored on 

the surface of group i in subbasin j at time step k-1 (L), Rj,k is the surface runoff that reaches the 

main channel of subbasin j at time step k (L), and gCBU is the ratio of the area of the CBUs in 

subbasin j to the total area of subbasin j. It is worth noting that the CA of a PBU can be large so 

that the surface runoff from the entire CA may not reach its corresponding PA of the PBU within 

one daily time step. Thus, the CA runoff release fraction parameter is used to separate the surface 

runoff generated from the CA in one day into two parts: runoff water reaching the PA and runoff 

water stored on the CA. The former is a water input of the PA at the current time step and the 

latter is a water input of the PA at the following time steps. Since the sizes of CAs of PBUs vary, 
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the median CA in each group, instead of the average CA, is utilized to calculate the CA runoff 

release fraction for the group, which can be obtained by: 

  CA_Rfr𝑖,𝑗 = 𝑅𝑓𝑟𝑗 ×
𝑀𝑒𝑑𝐶𝐴𝑖,𝑗

𝐴𝑗
  (2.19) 

where CA_Rfri,j is the surface runoff release fraction for the CAs of all depressions of group i in 

subbasin j, MedCAi,j is the median area of the CAs of all depressions of group i in subbasin j 

(L2), and Aj is the entire surface area of subbasin j (L2). 

2.3.3. Application of the PBU-PDM 

The PBU-PDM enhanced SWAT model was applied to a study area in the Prairie Pothole 

Region (PPR) of North Dakota (Fig. 2.4a). It is the upper portion of the Maple River watershed 

with an outlet at the USGS gaging station #05059700 at Maple River NR Enderlin (latitude: 

46°37'18", longitude: 97°34'25"). The drainage area is 2183.36 km2, 81.24% of which is 

agricultural lands. The Upper Maple River watershed covers parts of five counties in the east 

central North Dakota including Barnes, Cass, Griggs, Ransom, and Steele counties. 

In this study, a 30-m DEM was downloaded from the USGS National Map (TNM). The 

ArcSWAT, an extension of ArcGIS, was used to preprocess the DEM by filling depressions, 

delineate the watershed into subbasins, and prepare the input data. The original DEM was also 

imported into D-cubed algorithm to identify depressions and compute topographic parameters 

for all subbasins. The land use and land cover (LULC) data were obtained from the National 

Land Cover Database (NLCD 2011), and the soil type data were obtained from the Soil Survey 

Geographic Database (SSURGO). Eight different LULC types and 47 different soil types were 

considered in the modeling. The LULC and soil type data were further used in SWAT to define 

HRUs and calculate curve numbers. This watershed included five climate stations (Fig. 2.4a), 

which provided daily precipitation, temperature, solar radiation, wind speed, and humidity for 
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SWAT modeling. The climate data were obtained from the Climate Forecast System Reanalysis 

(CFSR). The Soil Conservation Service Curve Number (SCS-CN) method, the Penman-Monteith 

method, and the variable storage routing method were selected in ArcSWAT to simulate rainfall 

excess, potential evapotranspiration, and perform channel routing.  

 

Figure 2.4. (a) and (b) Locations of the Prairie Pothole Region (PPR), Upper Maple River 

watershed, USGS gaging station, five climate stations, watershed delineation results; and (c) 

distributions of PBUs and CBUs (different colors represent different PBUs and CBUs). 

 

To demonstrate the improved capabilities, the PBU-PDM enhanced SWAT model was 

compared with the original SWAT model. In the original SWAT model, depression storage is a 

part of the initial abstraction, which is defined as 20% of the potential maximum retention in the 

curve number method. In this study, this default initial abstract coefficient (i.e., 0.2) was used. In 

addition, the original SWAT model was also calibrated by adjusting this initial abstraction 

coefficient in the SWAT source code to further evaluate its performance. In contrast, the PBU-

PDM enhanced SWAT model explicitly simulates the influences of depressions on surface 

runoff, filling and spilling processes, and the dynamic variations in contributing areas. Thus, the 

(a) (b) (c) 
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initial abstraction in the enhanced SWAT model did not include depression storage and its value 

was also obtained through model calibration. 

2.3.4. Model Calibration and Validation 

The entire modeling system was calibrated and validated. Specifically, a four-year period 

from 1994 to 1997 was selected as the warm-up period; the calibration and validation periods 

ranged from 1998 to 2002 and from 2003 to 2006, respectively. The observed discharge data at 

the final outlet used for model calibration and validation were downloaded from the USGS 

National Water Information System. The SUFI-2 algorithm in SWAT-CUP was utilized for 

model calibration and validation. The model performance was evaluated by using two statistical 

measures: Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe 1970) and percent bias (PBIAS) 

(Gupta et al., 1999) that are respectively expressed as:   

  𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑠𝑖𝑚,𝑖)2𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−Q𝑜𝑏𝑠)2𝑛
𝑖=1

   (2.20) 

  𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑠𝑖𝑚,𝑖−𝑄𝑜𝑏𝑠,𝑖)𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖)𝑛
𝑖=1

× 100  (2.21) 

where n is the total number of discharge observations; Qsim,i is the simulated outlet discharge 

(L3/T); Qobs,i is the observed outlet discharge (L3/T);Qobs is the average of the observed outlet 

discharges (L3/T).  

2.4. Results and Discussions 

2.4.1. Surface Delineation Results and PBU-PDM 

The Upper Maple River watershed was divided into 16 subbasins (Fig. 2.4b), which were 

further divided into many PBUs and CBUs (Fig. 2.4c). Table 2.2 lists the major topographic 

parameters for all subbasins of the Upper Maple River watershed determined by the D-cubed 

algorithm. As shown in Table 2.2, the CBUs only account for 5.54% - 29.32% of their subbasin 

areas and the remaining areas are PBUs, suggesting that most surface runoff in a subbasin was 
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from its PBUs and subject to the threshold control. The number of PBUs and their sizes and 

MDS values varied among subbasins (Table 2.2). The total MDS of the 16 subbasins ranged 

from 3.07×106 to 26.06×106 m3, and the MDS of individual PBUs ranged widely from a value 

smaller than 0.01 m3 to 6.47×106 m3.  

Table 2.2. Topographic parameters for all subbasins of the Upper Maple River watershed 

determined by the D-cubed algorithm.  

Notes: CBU = channel-based unit; PBU = puddle-based unit; and MDS = maximum depression storage. 

 

For the development of PBU-PDM, all PBUs within each subbasin were aggregated into 

many groups based on their rMPA values. A probability distributed function was created for each 

group. Table 2.2 lists the number of groups for all subbasins, ranging from 6 to 9. As an 

example, Table 2.3 shows the details on the groups of subbasin 9 including the number of PBUs, 

rMPA ranges, maximum and minimum depression storage capacities, and percent areas, as well as 

the fitted probability distributed functions. In addition, group 6 in subbasin 9 has only one PBU 

Sub-

basin 

Area 

(km2) 

 CBUs   PBUs  
Number 

of 

groups 
Area 

(km2) 

Percent 

(%) 

Area 

(km2) 

Percent 

(%) 

Number 

of 

PBUs 

Total 

MDS 

(106 m3) 

Minimum 

MDS 

(m3) 

Maximum 

MDS  

(106 m3) 

1 52.87 4.80 9.08 48.07 90.92 597 3.98 0.05 0.53 8 

2 228.24 39.71 17.40 188.53 82.60 2581 7.05 0.00 0.38 6 

3 157.51 10.51 6.67 147.00 93.33 1943 9.29 0.05 0.55 6 

4 158.59 33.70 21.25 124.89 78.75 1818 9.43 0.24 4.35 7 

5 76.40 14.13 18.50 62.27 81.50 1005 3.26 0.29 1.49 6 

6 159.72 10.21 6.39 149.52 93.61 1304 12.83 0.07 1.09 7 

7 120.42 22.81 18.94 97.61 81.06 1480 4.74 0.07 1.27 8 

8 43.48 2.41 5.54 41.07 94.46 517 3.07 0.01 0.40 7 

9 204.45 40.24 19.68 164.21 80.32 2695 8.04 0.01 0.92 6 

10 198.64 16.92 8.52 181.72 91.48 2002 15.14 0.02 2.69 9 

11 66.53 10.18 15.30 56.35 84.70 663 5.77 0.16 1.28 7 

12 137.83 15.64 11.35 122.19 88.65 1855 6.08 0.26 0.35 7 

13 135.46 39.72 29.32 95.74 70.68 514 23.54 26.61 6.47 7 

14 131.28 13.67 10.41 117.61 89.59 1390 9.34 0.05 0.43 8 

15 101.71 12.64 12.43 89.07 87.57 1213 7.64 0.07 1.49 6 

16 197.33 17.64 8.94 179.69 91.06 2076 26.06 0.18 2.52 7 
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with a significantly large depression storage capacity (Table 2.3), which unlikely contributes any 

runoff water under a normal climate condition. Thus, no PDM was developed for this group. The 

impact of this group on the modeling should be limited since it only accounts for 1% of the area 

of subbasin 9 (Table 2.3). Fig. 2.5 shows the cumulative probability distributions of depression 

storage capacities of PBUs for all groups in three representative subbasins (subbasins 4, 9, and 

13) that have unique topographic characteristics. Subbasins 9 and 13 have relatively small and 

large MDS of individual PBUs, respectively, while subbasin 4 has a moderate MDS of individual 

PBUs (Table 2.2 and Fig. 2.5). The groups of different subbasins that have the same rMPA ranges 

show a similar trend. With the increase in the group number (or rMPA values), the depression 

storage capacities of PBUs increase. Resultantly, the capacity curve covers a wider range. 

Table 2.3. Topographic details and the probability distribution functions of all groups in 

subbasin.  

Group rMPA 
Number 

of PBUs 

 Minimum 

DSC (mm) 

Maximum  

DSC (mm) 

Group Area/ 

Subbasin Area 

Probability Distribution 

Function 

1 0.0-0.1 1364 0.00 58.04 0.41 f(C)=0.16exp(-0.16C) 

2 0.1-0.2 935 0.00 145.02 0.21  f(C)=0.04exp(-0.04C) 

3 0.2-0.3 274 0.02 291.17 0.11  f(C)=0.015exp(-0.015C) 

4 0.3-0.4 93 4.08 634.28 0.06  f(C)=0.007exp(-0.007C) 

5 0.4-0.5 23 4.34 661.23 0.01  f(C)=0.004exp(-0.004C) 

6 0.5-0.6 1 853.27 853.27 <0.01 / 
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Figure 2.5. Cumulative probability distributions of depression storage capacities of PBUs for all 

groups of three selected subbasins (subbasins 4, 9, and 13). 

 

2.4.2. Model Performance 

Following Lin et al. (2015) and based on the special need of the new PBU-PDM model, 

18 parameters were selected for model calibration and the calibrated values are shown in Table 

2.4. Particularly, two depression-related parameters, evaporation coefficient of depressions (η) 

and hydrologic conductivity through the bottom of depressions (K) (Eqs. 2.4 and 2.5) were 

included in the PBU-PDM depression simulation, and the initial abstraction coefficient (λ) was 

also calibrated in the original SWAT model and the PBU-PDM enhanced SWAT model.  
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Table 2.4. Calibrated parameters for the Upper Maple River watershed in the PBU-PDM 

enhanced SWAT model.  

 

The comparisons of the simulated and observed hydrographs for the calibration and 

validation periods are shown in Fig. 2.6. Overall, the PBU-PDM enhanced SWAT model 

provided reasonable hydrographs for both periods. The magnitude, timing, and duration of most 

of the peak flows simulated by the PBU-PDM enhanced SWAT model reasonably matched the 

observed data (Fig. 2.6). However, the original SWAT model with the default initial abstraction 

significantly overestimated most of peak flows, showing a pattern of quick rise and short 

recession. This is because the default initial abstraction failed to account for the magnitude and 

the actual hydrologic roles of surface depressions. Other studies (e.g., Tahmasebi Nasab et al., 

Parameter (unit) Level (SWAT file) Calibrated value 

SURLAG (day) Basin (.bsn) 3.03 

SFTMP (oC) Basin (.bsn) 5.09 

SMTMP (oC) Basin (.bsn) -1.02 

TIMP Basin (.bsn) 0.12 

ALPHA_BF (1/day) Subbasins (.gw) 0.80 

GW_DELAY (day) Subbasins (.gw) 7.42 

GWQMN (mm) Subbasins (.gw) 574.03 

GW_REVAP Subbasins (.gw) 0.15 

REVAPMN (mm) Subbasins (.gw) 8.53 

CN2 HRUs (.mgt) vary 

SOL_AWC(1) (mm H2O/mm Soil) HRUs (.sol) vary 

ESCO HRUs (.hru) 0.23 

EPCO HRUs (.hru) 1 

CH_N1 Subbasins (.sub) 0.32 

CH_N2 Subbasins (.rte) 0.07 

η Subbasins (.dep) 0.70 

K (mm/hr) Subbasins (.dep) 0.85 

λ Subbasins (.dep) 0.1 
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2017a; Menkenon et al., 2016) also indicated that the original SWAT model tended to 

overestimate peak flows for depression-dominated watersheds. By calibrating the initial 

abstraction coefficient (the calibrated value was 0.8), some peaks matched the observed data, 

while many others underestimated peak flows since surface runoff initiated until the initial 

abstraction was fully satisfied (Fig. 2.6). The underestimated peaks occurred in short snowmelt 

periods for the original SWAT model and the PBU-PDM enhanced SWAT model can be 

attributed to the limited capability of SWAT in the modeling of snowmelt and the related 

processes in such a cold region, which was also indicated by Tahmasebi Nasab et al. (2018). In 

addition to the snowmelt-induced high peaks, the simulated streamflow did not match the 

observed data very well in 2000 and 2003, in which the precipitation was relatively low. 

Additionally, together with previous warm and dry winters, the soil water contents in these two 

years were very low, which further reduced the surface runoff. Thus, the original SWAT model 

and the PBU-PDM enhanced SWAT model underestimated the surface runoff and discharges at 

the final outlet in these two years. Except for these two years, other low flows in the dry time 

periods simulated by the PBU-PDM enhanced SWAT model matched the observed ones very 

well, while the original SWAT model underestimated such low flows (Fig. 2.6). This is because 

the PBU-PDM enhanced SWAT model allowed smaller depressions to contribute surface runoff 

before larger depressions were fully filled, while the original SWAT model generated surface 

runoff only after the initial abstraction was satisfied for each rainfall event. The underestimation 

of low flows in the original SWAT model was also found by Tahmasebi Nasab et al. (2017a). 
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Figure 2.6. Comparison of the hydrographs simulated by the original SWAT model and the 

PBU-PDM enhanced SWAT model and the observed hydrology for the Upper Maple River 

watershed in the calibration and validation periods. 

 

The performances of the original SWAT model and the PBU-PDM enhanced SWAT 

model were also evaluated by using the two statistical measures, NSE and PBIAS (Table 2.5). 

According to Moriasi et al. (2007, 2015), the model can be considered satisfactory if NSE > 0.5 

and PBIAS is within ±15%. In the PBU-PDM enhanced SWAT model, the NSE values were 

0.71 and 0.53 for the calibration and validation periods, respectively, indicating a satisfactory 

agreement between the simulated and observed daily discharges. However, the NSE values of 

the original SWAT model for both default and calibrated initial abstraction options (i.e., the 

initial abstraction coefficient values are 0.2 and 0.8, respectively) fell out of the satisfactory 

range in the calibration and validation periods (Table 2.5). The poor simulation results are 

Validation Calibration 
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similar to those of other studies that used the original SWAT model for depression-dominated 

watersheds. For example, the NSE values ranged from -35.7 to -0.005 in the study of Chanasyk 

et al. (2003) and from -6.5 to 0.39 in the study of Menkenon et al. (2016). The PBIAS values of 

the PBU-PDM enhanced SWAT model were -0.5% and -4.0% for the calibration and validation 

periods, respectively, which also fell into the recommended range (-15% < PBIAS < 15%). The 

negative values of PBIAS suggest that the PBU-PDM enhanced SWAT model had a slight 

underestimation of the daily streamflow at the final outlet. However, the PBIAS values of the 

original SWAT model for both initial abstraction options fell out of the satisfactory range in the 

calibration and validation periods (Table 2.5). 

Table 2.5. Statistics of the simulated daily streamflow for both calibration and validation periods. 

Model 
Calibration period Validation period 

NSE PBIAS (%) NSE PBIAS (%) 

Original SWAT model (Ia=0.2S) 0.07 27.7 -1.11 22.4 

Original SWAT model (Ia=0.8S) 0.15 -73.6 -0.06 -70.7 

PBU-PDM enhanced SWAT model 0.71 -0.5 0.53 -4.0 

Notes: Ia= initial abstraction and S= soil retention parameter. 

 

Fig. 2.7 illustrates the simulated monthly surface runoff released from all PBUs in the 

watershed (i.e., monthly depths of surface runoff over the entire watershed surface) and the 

probabilities of monthly overflows (water spill) of all PBUs (i.e., monthly percentages of the 

areas of the PBUs that spill in the watershed) from 1998 to 2006. The box-plot shows the 

minimum, 25th percentile, median, 75th percentile, and maximum of the areas of the PBUs that 

spill in each month. The minimum probability of water spilling from the PBUs is zero, indicating 

that in at least one day in the month, all PBUs did not spill. This is reasonable when there was no 

net water input on that day. Both curves show the seasonal variations in surface runoff. That is, 

the PBUs had a higher potential to be fully filled and then spill runoff water from March to May. 

This finding is consistent with those obtained from other studies in the PPR. For example, 
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Evenson et al. (2016) simulated hydrologic processes in the Pipestem Creek watershed and found 

that the prairie pothole wetlands had higher spilling frequency in spring months (March through 

May). Kantrud et al. (1989) demonstrated that the spilling events of seasonal and semipermanent 

prairie wetlands in North Dakota occurred mainly in April through May. According to the 

graphical and statistical comparisons in this study, the original SWAT model, without accounting 

for the actual hydrologic roles of depressions, may not be able to precisely simulate hydrologic 

processes in depression-dominated watersheds. In contrast, the PBU-PDM enhanced SWAT 

model developed in this study provides improved modeling capabilities. 

 

Figure 2.7. Simulated monthly surface runoff released from all PBUs in the watershed (right 

axis) and the probabilities of monthly overflows (water spill) of all PBUs (left axis). The box-

plot shows the minimum, 25th percentile, median, 75th percentile, and the maximum 

probabilities. 

 

2.4.3. PBU-PDM vs. Threshold-controlled Runoff 

To further examine the improvement of the PBU-PDM in the simulation of surface runoff 

generation processes under the influence of spatially distributed depressions, the variations of 

CA were analyzed. For any daily time step, the group threshold capacity may increase or 

decrease, depending on the climate condition. If the net input is less than zero, the group 
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threshold capacity decreases and the contributing area of the group is zero. Otherwise, the group 

threshold capacity increases and the contributing area is determined by the probability distributed 

function of the group. Fig. 2.8a shows the normalized contributing area versus the normalized 

group threshold capacity for all groups in subbasin 9. With an increase in the group threshold 

capacity, the contributing area of this group also increases. When the group threshold capacity 

reaches its maximum depression storage capacity (i.e., GTCi,j,k/MaxCi,j = 1), all PBUs in this 

group may contribute runoff water to the main channel of the subbasin and the normalized 

contributing area of the group becomes 1.0. For group 1 of subbasin 9, with an increase in the 

group threshold capacity, the contributing area increased rapidly before the threshold capacity 

reached 20% of its maximum. At 20% of the maximum depression storage capacity, nearly 86% 

of the group area contributed runoff water to the main channel of the subbasin. This is because 

the group contained many PBUs with smaller depression storage capacity (Fig. 2.5) that were 

quickly fully-filled and then contributed their runoff water to the main channel. In contrast, the 

remaining 14% of the area in this group consisted of large PBUs with greater depression storage 

capacity and it took a longer time to fully fill them. The contributing areas of other groups also 

increased with the increase of the group threshold capacity, but the increasing rates were 

different, depending on their probability distributed functions of depression storage capacities. 

The modeling results demonstrated that the PBU-PDM revealed the dynamic variations of 

contributing area by tracking the group threshold capacity, which improved the modeling of the 

depression-controlled surface runoff generation processes and the related threshold behavior. 
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Figure 2.8. (a) Relationships of the normalized contributing area and the normalized group 

threshold capacity for subbasin 9; (b) relationship of the normalized depression storage and the 

normalized threshold capacity for group 1 in subbasin 9; and (c) simulated surface runoff, group 

threshold capacity, and depression storage for group 1 of subbasin 9 in May 1999. 

 

In addition to the dynamic contributing area, the time-varying water storage and release 

of PBUs were also simulated by the PBU-PDM. As an example, Fig. 2.8b shows the relationship 

(a) 

(b) 

(c) 



 

45 

of the group depression storage and the group threshold capacity for group 1 in subbasin 9, 

which was obtained based on its probability distributed function (Eq. 2.9). The total amount of 

water stored in the PBU depressions of group 1 increased rapidly before the group threshold 

capacity reached 10 mm and then increased gradually until the maximum group threshold 

capacity (i.e., 58.04 mm) was reached. This changing pattern can be attributed to the fact that 

about 82% of the PBUs had depression storage capacities less than 10 mm, and the remaining 

18% of the PBUs had relatively larger depression storage capacities, requiring a long time to be 

fully filled. Note that the PBUs with depression storage capacities greater than the group 

threshold capacity at a time step experienced the filling process only and their depression storage 

equaled the group threshold capacity. The PBUs with depression storage capacities lower than 

the group threshold capacity underwent both filling and spilling processes. As a result, runoff 

was generated from these PBUs, and its quantity is given by Eq. 2.12.  

Fig. 2.8c shows the group net water input, group threshold capacity, group depression 

storage, and surface runoff for group 1 of subbasin 9 during a selected 31-day period in May 

1999. With the change in the net water input, the group threshold capacity, group depression 

storage, and surface runoff varied accordingly. When the net water input was less than zero, the 

group depression storage decreased due to evaporation and seepage; the group threshold capacity 

also decreased; and there was no surface runoff from this group. Otherwise, the group threshold 

capacity and group depression storage increased; and surface runoff was generated. Surface 

runoff simulated by the PBU-PDM initiated when the net water input was greater than zero. Note 

that the PBU-PDM allows the PBUs with depression storage capacities lower than the group 

threshold capacity to contribute surface runoff while the PBUs with depression storage capacities 

higher than the group threshold capacity are still filling. The quantity of the surface runoff from a 
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group simulated by its PBU-PDM was reduced due to the storage feature of PBUs, which helped 

the PBU-PDM enhanced SWAT model to effectively avoid the potential 

overestimation/underestimation of discharge for wet/dry periods. 

2.4.4. PBU-PDM vs. Two other Modified SWAT Models 

The SWAT model for GIWs by Evenson et al. (2015, 2016) (referred to as SWAT-GIWs 

herein) and the SWAT-PDLD model (Mekonnen et al., 2016) are different modified SWAT 

models, which quantify the hydrologic effects of spatially distributed depressions or wetlands. 

Specifically, the SWAT-GIWs simulates depression storage and outflow of individual wetlands, 

whereas the SWAT-PDLD model simulates the total depression storage and surface runoff for a 

series of depressions using probability distributed models.  

In the SWAT-GIWs, HRUs determined by the combination of soil type, landuse, and 

slope are further redefined by a fourth attribute (i.e., spatial and hydrologic relationships of 

HRUs), creating new GIW HRUs and catchment HRUs to respectively represent wetlands and 

the associated catchment areas. Then, a pothole function is used to simulate the water balance for 

each GIW HRU, in which the water inflow comes from its catchment HRUs. The generated 

surface runoff from a GIW HRU is further routed to other GIW HRUs by assuming that outflow 

of GIWs with fewer catchment areas spills to GIWs with more catchment areas or subbasin main 

channel if the GIW HRU does not have a downgradient GIW HRU. For each application, a large 

quantity of input files (e.g., 62721 HRUs in the Pipestem Creek watershed (Evenson et al., 

2016)) need to be constructed for simulation parameters of new HRUs and fill-spill relationships 

of GIW HRUs, and thus, high computational capacities for model running are required, making 

the model calibration and validation for long time periods more challenging. In addition, the 

SWAT-GIWs simulates the hydrologic effect of wetlands that are geographically isolated, which 
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may not be applicable for depression-dominated areas due to the hierarchical relationships of 

depressions. For example, when applying the SWAT-GIWs to a depression-dominated watershed 

and considering each depression as a GIW HRU, if one GIW HRU that has the potential to 

merge with another GIW HRU that is fully filled, its excess water tends to spill to its 

downgradient GIW HRU in the model instead of the one to be merged. Moreover, since the 

MDS of the merged depression is larger than that of each depression, the model without 

considering the hierarchical relationships of depressions tends to underestimate MDS and 

overestimate surface runoff for such a depression-dominated watershed. To make the SWAT-

GIWs more suitable for depression-dominated areas, additional data preprocessing and modeling 

efforts are needed to account for the hierarchical relationships of surface depressions. 

Instead of processing each individual depression, the SWAT-PDLD model and the PBU-

PDM enhanced SWAT model implement probability distributed models to deal with water 

balance for a series of depressions with similar hydrotopographic properties, which is more 

feasible and convenient for input data preparation and modeling running. Specifically, the 

SWAT-PDLD model conceptualizes each individual depression as a basic unit and assumes that 

all depressions within the same subbasin have the same net water input and their outflows 

directly enter the subbasin main channel. Based on this assumption, a probability distribution 

function is applied to calculate the total depression storage of all depressions and the total 

surface runoff generated from the subbasin. In reality, the depressions that have different 

hierarchical relationships with other depressions may have distinct net water inputs, making the 

probability distribution function of a subbasin unsuitable for quantifying the total depression 

storage and surface runoff. In addition, if a depression is fully filled, it may spill to and merge 

with other depressions, instead of contributing its runoff water directly to the subbasin main 
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channel, indicating that the probability distribution function may overestimate the surface runoff. 

In this study, however, a PBU, which includes all depressions having the potential to merge and 

form the highest-level puddle (ponding area) and the corresponding contributing area, is 

considered as a basic modeling unit to account for the hierarchical relationships of depressions. 

A PBU generates surface runoff only when its MDS is reached, which avoids underestimating 

the total MDS of a subbasin and overestimating the surface runoff from the subbasin. To take 

advantage of the probability distribution approach, all PBUs within a subbasin that have the 

same net water input are grouped and a probability distribution function is utilized for each 

group to quantify the total depression storage and surface runoff of the group. With such a 

modeling framework, the PBU-PDM enhanced SWAT model is able to quantify the hydrologic 

effects of spatially distributed depressions and further improve hydrologic modeling for 

depression-dominated areas. 

2.5. Summary and Conclusions 

In this study, the new PBU-PDM was developed and integrated with SWAT to improve 

hydrologic modeling for depression-dominated regions. In the PBU-PDM, surface runoff 

generation processes were simulated separately for non-depressional areas (i.e., CBUs) and 

depressional areas (i.e., PBUs). The surface runoff simulated from CBUs contributed directly to 

the main channel. For PBUs, however, the PBU-PDM simulated the runoff water intercepted by 

and released from PBUs. In particular, the PBU-PDM accounted for the hierarchical 

relationships of depressions and the contributing areas of depressions. All PBUs within a 

subbasin were grouped, and a probability distribution function was developed for each group to 

simulate the influence of depressions on surface runoff generation processes. The topographic 

characteristics, including PBUs and their surface area, MPA, and MDS were delineated and 
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calculated by using the D-cubed algorithm, and further used for the development of the 

probability distribution functions.  

The PBU-PDM enhanced SWAT model was applied to the Upper Maple River watershed 

in North Dakota and compared with the original SWAT model to demonstrate its unique features 

and capability of hydrologic modeling for depression-dominated areas. Comparisons of the 

discharges simulated by the PBU-PDM enhanced SWAT model and the original SWAT model 

against the observed data indicated that the original SWAT model tended to 

overestimate/underestimate the discharges for wet/dry periods, whereas the PBU-PDM enhanced 

SWAT model provided improved modeling for this depression-dominated watershed. 

Specifically, the simulation results highlighted the performance of the PBU-PDM in the 

modeling of surface runoff generation processes as well as the variability in contributing area 

and the depression filling-spilling dynamics of PBUs by tracking the group threshold capacities. 

The PBUs with depression storage capacities greater than the group threshold capacities 

underwent filling process only, while the PBUs with depression storage capacities lower than the 

group threshold capacities experienced both filling and spilling processes, which led to the 

initiation of surface runoff. Thus, the contributing area only consisted of those PBUs with 

depression storage capacities lower than their group threshold capacities. By this means, the 

water stored in and released from PBUs was quantified and the depression-controlled surface 

runoff was simulated.  

In summary, the PBU-PDM enhanced SWAT model considers the hierarchical 

relationships of depressions, which avoids underestimating the total maximum depression 

storage and overestimating surface runoff. It utilizes the probability distribution approach at a 

level of PBUs within each individual subbasin to quantify the hydrologic effects of spatially 
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distributed depressions, which facilitates the efficient modeling of threshold-controlled runoff 

processes. The PBU-PDM can also be incorporated into other watershed-scale models for 

simulating hydrologic processes especially in depression-dominated regions.  
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3.  A NEW PROBABILITY-EMBODIED MODEL FOR SIMULATING VARIABLE 

CONTRIBUTING AREAS AND HYDROLOGIC PROCESSES DOMINATED BY 

SURFACE DEPRESSIONS 

3.1. Abstract 

Surface depressions play an important role in overland flow, infiltration, and other 

hydrologic processes. They undergo filling, spilling, and merging during rainfall events, 

affecting hydrologic connectivity and the size of the contributing area. However, such variability 

is often ignored or oversimplified in traditional hydrologic models. Consequently, they fail to 

simulate the threshold-controlled overland flow dynamics. The objective of this study is to 

improve hydrologic modeling, especially for depression-dominated areas, by capturing the 

variable contributing area and the threshold behavior of overland flow. To achieve this objective, 

a new depression-oriented variable contributing area (D-VCA) model is developed to simulate 

the contributing area, runoff dynamics, and their likelihood of occurrence. Specifically, the D-

VCA model integrates the simulation of hydrologic processes with a surface topographic 

analysis procedure, which is able to (1) determine the probability distribution functions of 

depression storage and the corresponding contributing area and (2) examine the intrinsic 

changing patterns of depression storage and contributing area. The model was applied to a 

depression-dominated watershed in North Dakota and its performance was evaluated by 

comparing the simulated and observed discharges at the outlet. Modeling results demonstrated 

the unique capabilities of the D-VCA model in simulating depression-influenced overland flow 

dynamics and the associated threshold behavior. The new model also provides an improved 

understanding of the evolution of contributing areas and their influence on overland flow 

generation across different topographic landscapes. 
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3.2. Introduction 

Surface depressions are important topographic features, which have a significant 

influence on overland flow, infiltration, soil erosion, and other hydrologic, environmental, and 

ecological processes (Abedini et al., 2006; Chu et al., 2013; Darboux & Huang, 2005; Huang & 

Bradford, 1990). Due to the impact of depressions, overland flow is characterized by puddle-to-

puddle (P2P) filling, spilling, merging, splitting processes during rainfall events, which results in 

a spatiotemporally variable contributing area (Chu et al., 2013; Yang & Chu, 2015). However, 

this time-varying feature of the contributing area is often ignored or oversimplified in many 

traditional hydrologic models, which simply use a pre-filled, depressionless digital elevation 

model (DEM) to represent the real topographic surface and assume the entire basin area as its 

contributing area. Some hydrologic models simply incorporate a lumped depression storage 

(water depth) with a constant contributing area for a subbasin to simulate the influence of surface 

depressions. In this case, surface runoff is not initiated until this lumped depression storage is 

reached, and the contributing area of the subbasin outlet instantaneously increases to 100% of the 

subbasin area (Antoine et al., 2009; Wang et al., 2019). As a result, the real hydrologic effects of 

depressions cannot be reflected in these hydrologic models. Thus, a critical question remains to 

be addressed: how to incorporate the threshold-controlled overland flow dynamics and the 

variability in contributing area in a physically-based hydrologic model? 

To address this issue, individual depressions have been used as basic modeling units in 

some hydrologic models, where the filling, spilling, merging, and/or splitting of depressions are 

tracked, and thus, the depression-induced discontinuous overland flow is simulated. For instance, 

Darboux et al. (2002) proposed a conditioned-walker method to simulate the gradual filling of 

depressions, as well as the hydrologic connectivity of fully-filled depressions and downstream 
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boundaries. They used this model to evaluate the impacts of surface roughness on overland flow 

generation. Chu et al. (2013) and Yang and Chu (2015) developed a physically-based, spatially-

distributed P2P modeling framework to simulate overland flow over microtopographic surfaces. 

The P2P model incorporated a puddle delineation (PD) algorithm (Chu et al., 2010) to provide 

detailed microtopographic characteristics of depressions and simulate the filling-spilling-

merging-splitting of depressions, the threshold-controlled overland flow dynamics, and the 

variations of the contributing area to the outlet. Similarly, Appels et al. (2011) developed an 

algorithm to simulate the filling, merging, and connecting of depressions, as well as the 

microtopography-controlled overland flow during a rainfall event. Antoine et al. (2009) 

developed a depression-filling algorithm to simulate simplified hydrographs and quantified 

hydrologic connectivity by proposing a relative surface connection function, in which the 

contributing area was represented by a runoff coefficient (instantaneous outflow/inflow). The 

relative surface connection function was further integrated with two corrective procedures to 

account for the influence of depression storage and surface runoff generation in distributed 

hydrologic models at an inter-rill scale (Antoine et al., 2011). These spatially-distributed models 

that consider the detailed water movement over individual depressions are mostly applied to 

field-scale plots or smaller surfaces due to their demands for high-resolution input data and high 

computational capacity. To quantify the hydrologic influence of depressions in a watershed-scale 

model, Evenson et al. (2015; 2016) improved the SWAT model to simulate the filling-spilling of 

geographically isolated wetlands (GIWs) by redefining hydrologic response units (HRUs) as 

regular HRUs, GIW HRUs, and catchment HRUs (i.e., contributing areas of GIWs). However, 

for a depression-dominated area, such a model results in a large number of HRUs, which 
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increases challenges for input data preparation and model calibration and validation, especially 

for longer simulation time periods. 

With the development of surface delineation algorithms and analysis tools, surface 

topographic characteristics and the changing patterns of hydrologic variables have been 

investigated, which further provides important insights into hydrologic modeling. For example, 

Ullah and Dickinson (1979a) analyzed the frequency distributions of three geometric properties 

of depressions (i.e., maximum depth, surface area, and depression storage) based on depression 

characterization results from a digital surface model (Ullah & Dickinson, 1979b). Abedini (1998) 

used an exponential function to represent the probability distribution of depression storage and 

developed a probability distributed model (PDM) to simulate rainfall-runoff and estimate 

contributing area, depression storage, and outlet discharge for depression-dominated areas. Wang 

et al. (2019) obtained the relationship between ponding area and depression storage from a 

depression-dominated delineation (D-cubed) algorithm (Tahmasebi Nasab et al., 2017) and 

further developed a depression-oriented hydrologic (HYDROL-D) model to simulate water 

release from depressions and to quantify the contributing area of the watershed outlet.  

Incorporating topographic relationships into hydrologic models facilitates the simulation 

of depression-influenced rainfall-runoff processes. To date, however, the intrinsic properties of 

dynamic contributing areas (e.g., the changing pattern of contributing areas dominated by the 

hierarchical relationships of surface depressions and their filling, spilling, and merging 

processes) have not been directly incorporated in watershed-scale hydrologic modeling, and the 

probability distribution of the occurrences of contributing area has not been investigated. The 

objective of this study is to improve hydrologic modeling, especially for depression-dominated 

areas, by accounting for the variation characteristics of contributing areas and the threshold 
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behaviors of overland flow. To achieve this objective, a new depression-oriented variable 

contributing area (D-VCA) model is developed to simulate depression-induced hydrologic 

processes during a rainfall event. First, a surface topographic analysis is performed to (1) 

determine the probability distribution functions of depression storage and the corresponding 

contributing area and (2) examine the changing patterns of depression storage and contributing 

area. This information is then used in the simulation of the contributing area, depression storage, 

and surface runoff, as well as their occurrence probabilities. The D-VCA model is applied to a 

depression-dominated watershed in North Dakota to evaluate its performance and highlight its 

capabilities in mimicking the threshold-controlled surface runoff generation processes in this 

depression-dominated watershed. 

3.3. Materials and Methods 

3.3.1. Characterization of Surface Topography 

The HUD-DC, an ArcGIS-based algorithm for the delineation of hydrologic units 

associated with depressions and channels (Wang & Chu, 2020), was used to obtain detailed 

characteristic parameters of surface topography for the D-VCA modeling. Individual depressions 

consist of centers, cells, and thresholds, and they may have hierarchical relationships with 

surrounding depressions. That is, if two individual depressions share a common threshold, they 

have the potential to merge as a larger depression, which is defined as a second-level depression. 

Following the same fashion, all higher-level depressions can be formed (Chu et al., 2013; Chu 

2017). During the surface topographic delineation processes in the HUD-DC, all highest-level 

depressions are identified by using the ArcGIS filling function, and the algorithm searches cells 

as well as thresholds for all highest-level depressions and all channel cells through a series of cell 

loops. Then, the HUD-DC determines contributing areas of highest-level depressions and 
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channel segments by employing the ArcGIS watershed function. Specifically, the highest-level 

depressions and their contributing areas are defined as puddle-based units (PBUs), while the 

channel segments and their contributing areas are termed as channel-based units (CBUs). Thus, a 

subbasin is divided into a number of interconnected PBUs and CBUs. The HUD-DC also 

calculates a set of topographic parameters, such as the number of highest-level depressions and 

channel segments, the maximum depression storage (MDS), the contributing areas of all highest-

level depressions, and the contributing areas of all channel segments. 

3.3.2. New D-VCA Modeling Framework 

The D-VCA model is a semi-distributed watershed model that simulates depression-

influenced rainfall-runoff processes during a rainfall event (Fig. 3.1). The model input data 

include meteorological data, basic model parameters (e.g., curve number and time of 

concentration), topographic parameters obtained from the HUD-DC algorithm, and the upstream-

downstream relationships of the channel network. In the D-VCA model, a watershed is divided 

into many subbasins based on a prefilled DEM. For each subbasin, the D-VCA model couples a 

topographic analysis procedure with the simulation of threshold-controlled filling-spilling 

overland flow processes. The topographic analysis procedure takes advantage of the surface 

delineation results from the HUD-DC algorithm, which divides a subbasin into a set of 

interconnected CBUs and PBUs. Since CBUs are non-depressional areas and do not retain 

surface runoff, a lumped CBU, which contributes runoff water directly to the subbasin outlet, is 

used. For depressional areas, PBUs are used as the basic modeling units. As detailed in the 

following subsections, the surface topographic analysis procedure determines the probability 

distributions of the occurrences of fully-filled depression storage and the corresponding 

contributing area, as well as the curves of fully-filled depression storage and contributing area 
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versus depression filling. Such information is then incorporated into the simulation procedure, 

which determines contributing area, depression storage, and surface runoff, as well as their 

occurrence probabilities for all time steps during a rainfall event. Once the simulations are 

performed for all subbasins, their outlet discharges are further routed through the entire channel 

network to the watershed outlet. 

 

Figure 3.1. Flowchart of the D-VCA model. 

 

In the D-VCA model, rainfall in a subbasin is partitioned into infiltration and rainfall 

excess using the soil conservation service (SCS) curve number method. Based on the available 

rainfall excess, depression storage and surface runoff are simulated by the unique integrated 
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algorithm of the D-VCA model. Together with the baseflow simulated by the recession method 

(Chow et al., 1988; USACE-HEC, 2000), the total discharge at the subbasin outlet is obtained, 

which is further routed to the watershed outlet using the lag method (Pilgrim & Cordery, 1993). 

The major model outputs include the water balance for all subbasins and channels, hydrographs 

for all subbasins and outlets, as well as depression storage, contributing areas, and their 

occurrence probabilities for all subbasins. 

3.3.3. Topographic Analysis in the D-VCA Model 

Figures 3.2a-g illustrate the detailed methodology for creating the probability distribution 

functions of the storages and contributing areas of the fully-filled depression as well as their 

intrinsic property curves for a subbasin. As aforementioned, a subbasin consists of a lumped 

CBU and a number of PBUs. During a rainfall event, when the condition of a PBU shifts from 

filling to spilling, it starts to contribute runoff water to the subbasin outlet. Under such a 

condition, the contributing area of the subbasin contains the lumped CBU and all fully-filled 

PBUs. To calculate the contributing area (CA) and the total depression storage of these fully-

filled PBUs (referred to as FDS), all topographic units (i.e., the lumped CBU and all PBUs) are 

arranged in an ascending order based on their MDS values and assigned unique unit numbers (or 

ranking numbers) ranging from zero to the maximum number of the units in the subbasin (Fig. 

3.2a). Thus, the lumped CBU with an MDS of zero has a unit number of zero, the PBU with the 

smallest MDS has a unit number of one, and the PBU with the largest MDS has the maximum 

unit number. The CA and the FDS can be respectively calculated by 

  CA𝑖,𝑗
𝑢𝑛𝑖𝑡 = ∑ A𝑙,𝑗

𝑢𝑛𝑖𝑡𝑖
l=0  (3.1) 

 FS𝑖,𝑗
𝑢𝑛𝑖𝑡 = ∑ MDS𝑙,𝑗

𝑢𝑛𝑖𝑡𝑖
l=0   (3.2) 
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where CA𝑖,𝑗
𝑢𝑛𝑖𝑡 is the CA of subbasin j when PBU i starts to contribute runoff (L2); l is the number 

of the units with an MDS smaller than the MDS of PBU i; A𝑙,𝑗
𝑢𝑛𝑖𝑡 is the area of unit l in subbasin j 

(L2); FS𝑖,𝑗
𝑢𝑛𝑖𝑡 is the FDS of subbasin j when unit i starts to contribute runoff (L3); and MDS𝑙,𝑗

𝑢𝑛𝑖𝑡 is 

the MDS of PBU l in subbasin j (L3). Fig. 3.2b shows the relationship between the normalized 

CA (i.e. CA/subbasin area) and the normalized FDS (i.e. FDS/subbasin depression storage). At 

the beginning of a rainfall event, all PBUs are under a filling condition (i.e., FDS = 0), and the 

normalized CA represents the non-depressional area (i.e. the area of the lumped CBU). With 

increasing rainfall, the FDS and CA increase until all PBUs are fully filled and the entire 

subbasin contributes surface runoff to the outlet. In a subbasin, the unit with a smaller MDS has 

a higher probability to contribute surface runoff. Thus, the probability of a unit being fully filled 

is calculated by 

 𝑃𝑖,𝑗 = 1 −
𝑚𝑖,𝑗

𝑀𝑗
 (3.3) 

where 𝑃𝑖,𝑗 is the probability of unit i in subbasin j being fully filled; 𝑚𝑖,𝑗 is the ranking number 

of unit i in subbasin j; and 𝑀𝑗 is the total number of the units in subbasin j. Together with the 

paired relationship of CA and FDS (Fig. 3.2b), the probability distributions of CA and FDS can 

be obtained (Figs. 3.2c and 3.2d). With a positive rainfall excess, there is a 100% probability that 

CA is larger than or equal to the lumped CBU’s area and FDS is larger than or equal to zero. 

Both probability curves exhibit a decreasing trend with an increase in CA and FDS, and their 

probabilities reach their minimum values when all PBUs are fully filled. 
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Figure 3.2. D-VCA modeling procedures: (a) characteristics of depressions; (b) relationship 

between the normalized fully-filled depression storage (FDS) and the normalized contributing 

area (CA); (c) probability distribution of the normalized CA; (d) probability distribution of the 

normalized FDS; (e) depth of net water input applied to the subbasin; (f) comparison of available 

depression storage and net water input for all units; (g) CAI and FDI curves of the subbasin; (h-i) 

incremental and cumulative rainfall excess; (j) normalized CA and FDS; k) calculation of 

depression storage and surface runoff; and (l) probabilities of occurrence of contributing area and 

surface runoff. 
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To analyze the evolution of CA and FDS during the depression filling process, a steady 

and uniform net water input is applied to the depression-dominated subbasin (Fig. 3.2e). The 

intensity and duration of the net water input are determined to ensure that the gradual changes in 

CA and FDS can be represented until all PBUs are fully filled. The volume of water applied to 

each unit is given by: 

 𝑉𝑖,𝑗,𝑘
𝑢𝑛𝑖𝑡 = 𝐼𝑘,𝑗 × A𝑖,𝑗

𝑢𝑛𝑖𝑡  (3.4) 

where 𝐼𝑘,𝑗 is the depth of net water applied to subbasin j during time step k (L); and 𝑉𝑖,𝑗,𝑘
𝑢𝑛𝑖𝑡 is the 

volume of net water applied to unit i of subbasin j at time step k (L3). Then, the CA and FDS at a 

time step are determined by comparing all units’ available depression storage values at the 

beginning of the time step and the volume of net water input during this time interval. For 

example, Fig. 3.2f shows the comparison for one time step. While other units are still filling 

during a time step, the scatter points located at the X axis represent the units that form the outlet 

contributing area at the beginning of this time step, and the scatter points located between the X 

axis and the 45° line represent the units that contribute surface runoff during this time step. The 

CA, FDS, and cumulative net water input of subbasin j at the end of time step k can be calculated 

by:  

 CA𝑗,𝑘
𝑠𝑢𝑏 = ∑ A𝑖,𝑗

𝑢𝑛𝑖𝑡𝑀𝑗

𝑖=0
  (𝑓𝑜𝑟 𝐴𝐷𝑆𝑖,𝑗,𝑘−1

𝑢𝑛𝑖𝑡 < 𝑉𝑖,𝑗,𝑘
𝑢𝑛𝑖𝑡)   (3.5) 

 FS𝑗,𝑘
𝑠𝑢𝑏 = ∑ MDS𝑖,𝑗

𝑢𝑛𝑖𝑡𝑀𝑗

𝑖=1
  (𝑓𝑜𝑟 𝐴𝐷𝑆𝑖,𝑗,𝑘−1

𝑢𝑛𝑖𝑡 < 𝑉𝑖,𝑗,𝑘
𝑢𝑛𝑖𝑡)  (3.6) 

 CI𝑗,𝑘
𝑠𝑢𝑏 = CI𝑗,𝑘−1

𝑠𝑢𝑏 + 𝐼𝑘,𝑗  (3.7) 

where CA𝑗,𝑘
𝑠𝑢𝑏 is the outlet contributing area of subbasin j at time step k (L2); 𝐴𝐷𝑆𝑖,𝑗,𝑘−1

𝑢𝑛𝑖𝑡  is the 

available depression storage of unit i in subbasin j at the beginning of time step k (L3); FS𝑗,𝑘
𝑠𝑢𝑏 is 

the FDS of subbasin j at time step k (L3); and CI𝑗,𝑘−1
𝑠𝑢𝑏  and CI𝑗,𝑘

𝑠𝑢𝑏 are the cumulative net water 
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input of subbasin j at time step k-1 and k (L), respectively. Then, the available depression storage 

of a unit at time step k is updated by 

 𝐴𝐷𝑆𝑖,𝑗,𝑘
𝑢𝑛𝑖𝑡 = max(0, 𝐴𝐷𝑆𝑖,𝑗,𝑘−1

𝑢𝑛𝑖𝑡 − 𝑉𝑖,𝑗,𝑘
𝑢𝑛𝑖𝑡)  (3.8) 

As a result, the changing patterns of the outlet CA and the normalized FDS with the cumulative 

water input are obtained for the subbasin (Fig. 3.2g), which are referred to as the CA-cumulative 

net water input (CAI) curve and the FDS-cumulative net water input (FDI) curve, respectively. 

Both curves exhibit an increasing trend; their increasing rates reflect the impacts of the dynamic 

properties of PBUs (e.g., their contributing areas and MDS). In addition, it is worth noting that 

unlike the FDI curve with a starting point of zero, the starting value of the CAI curve is greater 

than zero, which represents the area of the lumped CBU. 

3.3.4. Surface Runoff Simulation in the D-VCA Model 

Once the surface topographic analysis of a subbasin is completed, the hydrologic 

processes of a subbasin are simulated through a time loop (Fig. 3.1). Figures 3.2h-l illustrate the 

simulation of surface runoff generation processes. For each time step, the incremental and 

cumulative rainfall excess values are first calculated (Figs. 3.2h and 3.2i). Based on the 

calculated cumulative rainfall excess (Fig. 3.2i), as well as the FDI and CAI curves (Fig. 3.2g), 

the CA and FDS of the subbasin are calculated (Fig. 3.2j). If the normalized CA reaches one, the 

entire subbasin is hydrologically connected to its outlet, and the depression storage and the 

surface runoff generated from the subbasin are respectively given by 

 DS𝑗,𝑘
𝑠𝑢𝑏 = DS𝑗

𝑠𝑢𝑏 (3.9) 

 R𝑗,𝑘
𝑠𝑢𝑏 = P𝑗,𝑘

𝑠𝑢𝑏 × A𝑗
𝑠𝑢𝑏 − (DS𝑗

𝑠𝑢𝑏 − DS𝑗,𝑘−1
𝑠𝑢𝑏 ) (3.10) 

where DS𝑗,𝑘
𝑠𝑢𝑏 is the depression storage of subbasin j at time step k (L3); DS𝑗

𝑠𝑢𝑏 is the total 

depression storage of subbasin j (L3); R𝑗,𝑘
𝑠𝑢𝑏 is the surface runoff generated from subbasin j at time 
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step k (L3);  P𝑗,𝑘
𝑠𝑢𝑏 is the depth of rainfall excess of subbasin j at time step k (L); A𝑗

𝑠𝑢𝑏 is the area 

of subbasin j (L2); and DS𝑗,𝑘−1
𝑠𝑢𝑏  is the depression storage of subbasin j at time step k-1 (L3). If the 

normalized CA is less than one, the subbasin consists of a CA and a partially-filled area (PFA) 

(Fig. 3.2k). Since only CA contributes surface runoff, depression storage and surface runoff are 

calculated for CA and PFA separately (Fig. 3.2k). For a CA, all PBUs within it are fully filled 

and the corresponding depression storage is given by: 

 DS𝑗,𝑘
𝐶𝐴 = FS𝑗,𝑘

𝐶𝐴 (3.11) 

where DS𝑗,𝑘
𝐶𝐴 is the depression storage of the PBUs within the CA in subbasin j at time step k (L3); 

and FS𝑗,𝑘
𝐶𝐴 is the FDS corresponding to the CA in subbasin j at time step k (L3). To simulate 

surface runoff, the depression storage within the CA at the beginning of time step k is calculated. 

Thus, the new CA at time step k consists of the CA at time step k-1 and the expanded CA during 

time step k, and the depression storage corresponding to this new CA can be expressed as:  

 DS0𝑗,𝑘
𝐶𝐴 = FS𝑗,𝑘−1

𝐶𝐴 + (A𝑗,𝑘
𝐶𝐴 − A𝑗,𝑘−1

𝐶𝐴 ) × CP𝑗,𝑘−1
𝑠𝑢𝑏  (3.12) 

where DS0𝑗,𝑘
𝐶𝐴 is the depression storage within the CA in subbasin j at the beginning of time step k 

(L3); FS𝑗,𝑘−1
𝐶𝐴  is the FDS associated with the CA in subbasin j at time step k -1 (L3); A𝑗,𝑘−1

𝐶𝐴  and 

A𝑗,𝑘
𝐶𝐴 are the CAs in subbasin j at time step k -1 and k, respectively (L2); and CP𝑗,𝑘−1

𝑠𝑢𝑏  is the 

cumulative rainfall excess of subbsin j at time step k-1 (L). The generated surface runoff (Fig. 

3.2k) equals the difference between the volume of rainfall excess in the CA and the available 

depression storage of this CA, which is mathematically expressed as: 

 R𝑗,𝑘
𝑠𝑢𝑏 = P𝑗,𝑘

𝑠𝑢𝑏 × A𝑗,𝑘
𝐶𝐴 − (DS𝑗,𝑘

𝐶𝐴 − DS0𝑗,𝑘
𝐶𝐴) (3.13) 
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For the PFA, no surface runoff is generated, and all rainfall excess of this area becomes 

depression storage. The total depression storage of the PFA at the end of this time step is given 

by: 

 DS𝑗,𝑘
𝑃𝐹𝐴 = CP𝑗,𝑘

𝑠𝑢𝑏 × (A𝑗
𝑠𝑢𝑏 − A𝑗,𝑘

𝐶𝐴) (3.14) 

where DS𝑗,𝑘
𝑃𝐹𝐴 is the depression storage of the partially-filled area of subbasin j at time step k (L3); 

and CP𝑗,𝑘
𝑠𝑢𝑏 is the cumulative rainfall excess of subbasin j at time step k (L). The total depression 

storage of the subbasin, including the depression storages of both fully-filled and partially-filled 

PBUs, is given by:  

 DS𝑗,𝑘
𝑠𝑢𝑏 =  DS𝑗,𝑘

𝐶𝐴 + DS𝑗,𝑘
𝑃𝐹𝐴 (3.15) 

Within a rainfall event, the seepage and evapotranspiration of depressions are not 

simulated. Thus, for a time step without rainfall (e.g., time step 5 in Fig. 3.2h), the CA and 

depression storage of both CA and PFA are the same as those at the previous time step, and no 

surface runoff is generated. For a time step with rainfall, the occurrence probabilities of 

contributing area, depression storage, and/or surface runoff (Fig. 3.2l) are obtained based on the 

probability distribution function of CA (Fig. 3.2c) or the fully-filled depression storage (Fig. 

3.2d) and the corresponding CA or FDS at that time step. 

3.3.5. Model Application and Evaluation 

To test the new D-VCA model, a watershed located in the Prairie Pothole Region (PPR) 

of North Dakota (ND) was selected (Fig. 3.3). The watershed is the upper portion of the Upper 

Sheyenne River watershed and covers about 4619.7 km2. The watershed outlet is located at the 

USGS gaging station #05055300 at the Sheyenne River above the Devils Lake outlet near Flora, 

ND (latitude: 47°54'28"N, longitude: 99°24'56"W). This watershed is dominated by numerous 

depressions (Fig. 3.3b), indicating that the evolution of contributing area and surface runoff 
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generation processes are subject to the influence of surface depressions. In this study, a 10-m 

DEM was downloaded from the USGS National Map (TNM). Based on the prefilled, 

depressionless DEM, the watershed was divided into 12 subbasins. In addition, the original DEM 

of each subbasin was delineated by using the HUD-DC algorithm to compute all topographic 

parameters. The land use and land cover (LULC) data and the soil type data, which were used to 

calculate curve numbers, were obtained from the National Land Cover Database (NLCD 2011) 

and the State Soil Geographic (STATSGO2) dataset, respectively. Hourly rainfall data at a 

precipitation station in the watershed (48.167°N, 99.648°W) (Fig. 3.3) were acquired from the 

North Dakota Agriculture Weather Network (NDAWN). 

 

Figure 3.3. (a) Location of the upper portion of the Upper Sheyenne River watershed; and (b) 

distribution of surface depressions in the watershed. 

 

The D-VCA model was calibrated and validated by using three storm events with an 

hourly time interval. The calibration event ranged from 6/26/2009, 18:00 to 7/2/2009, 8:00 

(event 1), and the two validation events ranged from 9/20/2019, 18:00 to 9/24/2019, 0:00 (event 

2), and from 6/13/2017, 4:00 to 6/18/2017, 10:00 (event 3). These three events were selected for 

(a) (b) 
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evaluating the D-VCA model since they represented different rainfall conditions, in terms of the 

magnitude, duration, and distribution. In addition, they had long antecedent dry periods to 

minimize the potential impacts of other rainfall events. Thus, the outlet discharge at the 

beginning of each rainfall event was considered as the initial baseflow. A set of major parameters 

were selected for calibration and their initial values were estimated. Specifically, the SCS curve 

numbers were calculated for all subbasins of the watershed based on the land use and soil type 

GIS data. The time of concentration was calculated by using the SCS lag method, and the lag 

time of a channel was calculated based on the length of the channel and the velocity estimated by 

using the Manning equation.  

The observed discharge data at the watershed outlet were downloaded from the USGS 

National Water Information System and compared with the simulations by the D-VCA model. 

The model performance was quantitatively evaluated by using three statistical metrics: Nash-

Sutcliffe efficiency (NSE) coefficient (Nash & Sutcliffe 1970), ratio of the root mean square 

error to the standard deviation of the observed data (RSR) (Moriasi et al., 2007), and percent bias 

(PBIAS) (Gupta et al., 1999). The NSE, RSR, and PBIAS are respectively given by: 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑠𝑖𝑚,𝑖)2𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄̅𝑜𝑏𝑠)2𝑛
𝑖=1

   (3.16) 

 𝑅𝑆𝑅 =
√∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

√∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄̅𝑜𝑏𝑠)
2𝑛

𝑖=1

  (3.17) 

 𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑠𝑖𝑚,𝑖−𝑄𝑜𝑏𝑠,𝑖)𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖)𝑛
𝑖=1

× 100  (3.18) 

where n is the total number of discharge observations; 𝑄𝑜𝑏𝑠,𝑖 is the ith observed outlet discharge 

(L3/T); 𝑄𝑠𝑖𝑚,𝑖 is the ith simulated outlet discharge (L3/T); and 𝑄̅𝑜𝑏𝑠 is the mean of the observed 

outlet discharges (L3/T). 
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In addition to the comparison of the simulated and observed discharges, the simulated 

contributing areas, depression storage, and surface runoff were also evaluated. Specifically, the 

simulation results were analyzed and different modeling approaches were compared to 

demonstrate the improvement of the D-VCA model and the reasonability of simulation results. 

The contributing areas and depression storages of all subbasins were calculated for both 

calibration and validation events based on the surface delineation results. Then, the 95% 

confidence intervals of the contributing areas and depression storages were identified and 

compared with the corresponding values simulated by the D-VCA model to further assess the 

accuracy of the simulations.  

Note that some large depressions were not completely filled under the three real rainfall 

events selected for the model calibration and validation. To fully demonstrate the capabilities of 

the D-VCA model in simulating the formation and evolution of contributing areas and the 

surface runoff generation dynamics influenced by topographic depressions, a 30-hr design storm 

with an intensity of 5 cm/h was selected and the D-VCA simulation was performed for the 

selected watershed using the well-calibrated parameters. The simulation results were analyzed, 

and new findings were summarized.  

3.4. Results and Discussions 

3.4.1. Characteristics of Surface Topography 

In this study, the watershed was divided into 12 subbasins, which were further delineated 

into 338,132 PBUs and CBUs (Fig. 3.4a). Depressions dominate a large portion of the 

watershed, and their distribution varies among all subbasins (Fig. 3.4a). Fig. 3.4b displays the 

topographic details for the non-depressional areas (i.e., CBUs) and depressional areas (i.e., 

PBUs) of all subbasins. Specifically, the percentages of the depressional areas of all subbasins 
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range from 73% to 92%, and the total MDS values of the subbasins range from 4.2×107 m3 to 

5.8×108 m3, indicating that the surface runoff generation processes in the watershed are 

controlled by depressions. The MDS values of individual PBUs are important because the PBUs 

with a smaller MDS can be fully filled quickly and then contribute surface runoff, while the 

PBUs with a larger MDS take a longer time to become an effective contributing area. Therefore, 

the cumulative distributions of MDS of individual PBUs were analyzed for all subbasins (Fig. 

3.5a). The MDS values of individual PBUs in the watershed range from 3×10-3 m3 to 5.8×106 

m3. However, the median MDS values of the subbasins range from 3.2 m3 to 21.4 m3. These 

cumulative distribution curves increase rapidly when the MDS ranges between 1 m3 to 100 m3, 

and for all subbasins the PBUs with an MDS larger than 100 m3 only account for 15.5% to 

31.4% (Fig. 3.5a), suggesting that the subbasins mostly contain depressions with a small MDS.  

 

Figure 3.4. Delineation results of the watershed: (a) subbasins and their PBUs and CBUs; (b) 

area percentages of the PBUs and CBUs for all subbasins. 

 

Fig. 3.5b shows the probability distributions of the normalized contributing areas (i.e., 

contributing area/subbasin area) for all subbasins, obtained by frequency analyses of the 

modeling units (i.e., PBUs and CBUs) being part of contributing areas (Eq. 3.3). Therefore, these 

(b) (a) 



 

74 

relationships are “static” and only dependent on the topographic characteristics (i.e., MDS and 

areas of individual PBUs) of each subbasin. As shown in Fig. 3.5b, the normalized contributing 

areas of all subbasins are greater than zero when the probability is equal to 1, which reflect their 

non-depressional areas and are consistent with the area percentages of their CBUs in Fig. 3.4b. 

Since the depressions with a smaller MDS have a higher chance to contribute surface runoff, the 

probability distributions of the contributing areas of all subbasins have a decreasing trend 

compared to the corresponding cumulative distributions of MDS (Fig. 3.5a). As shown in the 

inset of Fig. 3.5b, the probability distribution curves are generally not smooth because the entire 

surface area of a PBU is added to the contributing area when it is fully filled. In addition, the 

probabilities of contributing areas decrease rapidly at smaller contributing area values, which can 

be attributed to the large number of PBUs that can be easily fully filled and become part of the 

contributing area (Fig. 3.5a). The decreasing rates of these curves gradually decrease with an 

increase in the contributing area due to the reduced number of PBUs with a larger MDS (Fig. 

3.5a). The fewer PBUs an MDS includes, the smaller the decreasing rate of the probability of CA 

is. Based on these probability distribution curves (Fig. 3.5b), the occurrence probability of a CA 

during a rainfall event can be determined once the CA is simulated. 

 

Figure 3.5. (a) Cumulative probability distributions of MDS of individual PBUs for all 

subbasins; (b) probability distributions of normalized contributing area for all subbasins. 

(a) (b) 
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3.4.2. Intrinsic Changing Patterns of Contributing Area and Depression Storage 

Fig. 3.6a shows the CAI curves for all subbasins, which illustrate the changing patterns of 

CA during the depression filling processes. These curves follow a similar increasing trend. The 

contributing areas increase rapidly along a smooth curve at the beginning of depression filling 

due to the large number of small depressions (Fig. 3.5). Then, the increasing rates decrease as the 

number of small depressions decreases, and the curves exhibit a stepwise changing pattern due to 

the existence of the PBUs that take a longer time to be fully filled and to contribute runoff. 

Therefore, such intrinsic changing patterns of contributing areas stem from the impact of varying 

topography (e.g., the depression storages and contributing areas of PBUs). For example, 

subbasin 11 mostly shows gradual and slight stepwise changes in contributing area, while 

subbasin 12 exhibits sudden and large stepwise increases in contributing area. The occurrence 

and timing of the gradual and slight or sudden and large stepwise changes in contributing areas 

are affected by the surface areas and depression storages of individual PBUs (Fig. 3.5b). 

However, the stepwise changes in Fig. 3.6 are more significant than those in Fig. 3.5b because 

one or more PBUs become part of contributing area when a net water input is applied (Fig. 3.6), 

whereas only one PBU is added as a newly expanded contributing area when calculating the 

occurrence probability of contributing area (Fig. 3.5b). 

Fig. 3.6b shows the intrinsic evolutions of FDS during depression filling for all 

subbasins, which has a similar increasing pattern like the corresponding CAI curve. Specifically, 

the timing of the stepwise changes is exactly the same in both curves for each subbasin due to the 

relationship between CA and FDS (Figs. 3.2a and 3.2b). However, the extent of each stepwise 

increase in FDS is greater than that of CA because the magnitude of the MDS of PBUs is greater 

than that of their CA. Therefore, in the temporal changes in contributing area and depression 
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storage, the occurrence and timing of smooth/stepwise and rapid/slow increasing patterns depend 

on the components of PBUs, including the MDS and surface areas of individual PBUs as well as 

the number of PBUs with different sizes. The influence of different topographic features is in 

agreement with the finding of Grimm and Chu (2018) who analyzed the intrinsic relationship 

between topographic characteristics and contributing area and quantified the hydrologic 

connectivity of three different land surfaces located in the PPR of North Dakota using a 

physically-based, fully-distributed model (Chu et al., 2013; Yang and Chu, 2015). 

 

Figure 3.6. (a) Intrinsic changing patterns of contributing area for all subbasins; (b) intrinsic 

changing patterns of depression storage of contributing area for all subbasins. 

 

3.4.3. Evaluation of Model Performance 

Figures 3.7a-3.7c respectively show the simulated hydrographs for the calibration event 

(event 1) and the two validation events (events 2 and 3), compared against the observed 

hydrographs at the final outlet of the watershed. Table 3.1 lists all calibrated parameters. The 

results demonstrate the ability of the new D-VCA model to simulate the hydrograph. For these 

three events, the simulated hydrographs follow the general shapes of the observed hydrographs. 

Specifically, the simulated peak discharges and the time to peak for the calibration event were 

well captured (Fig. 3.7a). A slight underestimation at the beginning of the calibration event can 

be observed (Fig. 3.7a), which can be attributed to the lack of accounting for the real spatial 

(a) (b) 
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variability in rainfall. In addition, there were slight overestimations in the rising limbs of these 

three simulated hydrographs. To quantitatively evaluate the performance of the D-VCA model, 

three statistical parameters, RSR, NSE, and PBIAS were calculated. For the calibration event, the 

RSR, NSE, and PBIAS were 0.005, 0.93, and 1.73%, respectively, indicating a very good 

agreement between the simulated and observed hydrographs (Moriasi et al., 2007; 2015). Despite 

the slight overestimation of the simulated hydrograph (PBIAS > 0), it still fell into the 

recommended range (Moriasi et al., 2007; 2015). For the validation events, the RSR, NSE, and 

PBIAS of event 2 were 0.05, 0.97, and -0.048%, respectively, and the RSR, NSE, and PBIAS of 

event 3 were 0.08, 0.82, and 3.69%, respectively, indicating an overall good performance of the 

model for the two validation rainfall events (Moriasi et al., 2007, 2015). 

To reveal the influence of surface depressions during the real rainfall events, the 

contributing area, depression storage, and surface runoff were analyzed for all subbasins for the 

calibration and validation events (Fig. 3.8). Due to the small rainfall amounts of these three 

events, the normalized contributing areas ranged from 0.20 to 0.39 (Figs. 3.8a and 3.8b). 

According to the intrinsic CAI curves (Fig. 3.6a), the expansion of the contributing area of each 

subbasin was at a rapid increase stage. The surface runoff generated during these three rainfall 

events accounted for 57% - 77% of the outlet hydrograph. This is why the hydrographs (Fig. 3.7) 

featured a rapidly rising limb and a quick decreasing recession limb. Figs. 3.8a and 3.8b show 

the percentages of non-depressional areas for all subbasins, indicating that only a small portion 

of the depressional area of each subbasin contributed surface runoff to the outlet during these 

three rainfall events. The differences in the connected depressional areas (i.e., the areas that 

contribute runoff to the drainage system) for all subbasins can be attributed to their distinct 

rainfall intensities, soil types, and land use, which affect the amount of rainfall excess and the 
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filling-spilling conditions of depressions, resulting in significant differences in the depressional 

contributing areas of all subbasins (Fig. 3.5a).  

 

 

 

Figure 3.7. Comparison of the simulated and observed discharges at the watershed outlet for (a) 

calibration event (event 1) and (b-c) validation events (events 2 and 3). 

 

 

(a) 

(b) 

(c) 

Time 

Time 

Time 
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Table 3.1. Calibrated parameters for the watershed in the D-VCA model.  

 

To further explore the influence of depressions on surface runoff, the total surface runoff 

and depression storage were normalized by the total rainfall excess for the calibration and 

validation events (Figs. 3.8a and 3.8b). It can be observed that depressions intercepted a large 

quantity of excess water, and only 16.7% to 35.4% of the excess water was transferred to surface 

runoff in these three events, suggesting that most excess water was retained by the depressions 

instead of flowing to the subbasin outlet. The transfer ratios of all subbasins varied due to their 

different distributions of PBUs. It was found that the transfer rate of rainfall excess to surface 

runoff for a subbasin was proportional to the corresponding normalized contributing area before 

full hydrologic connectivity was developed. The subbasins with a larger contributing area had a 

higher transfer rate (Figs. 3.8a and 3.8b). This proportional relationship can be derived from Eq. 

3.13 and expressed as: 

 ∑
R𝑗,𝑘

𝑠𝑢𝑏

P𝑗,𝑘
𝑠𝑢𝑏

𝑇
𝑘=1 = ∑ A𝑗,𝑘

𝐶𝐴𝑇
𝑘=1 − ∑

(DS𝑗,𝑘
𝐶𝐴−DS0𝑗,𝑘

𝐶𝐴)

P𝑗,𝑘
𝑠𝑢𝑏

𝑇
𝑘=1 = 𝑥 ∙ A𝑗,𝑇

𝐶𝐴 − ∑
(DS𝑗,𝑘

𝐶𝐴−DS0𝑗,𝑘
𝐶𝐴)

P𝑗,𝑘
𝑠𝑢𝑏

𝑇
𝑘=1  (3.19) 

in which 

 𝑥 =
∑ A𝑗,𝑘

𝐶𝐴𝑇
𝑘=1

A𝑗,𝑇
𝐶𝐴  (3.20) 

Parameter (unit) Description Calibrated value(s) 

CN Curve number for subbasins 61.04-69.5 

λ Initial abstraction coefficient 0.1 

Tc (hr) Time of concentration for subbasins 11.6-32.4 

Rc (hr) Surface storage coefficient for subbasins 30.2-44.4 

R Baseflow recession coefficient 0.85 

T 

Coefficient for the determination of the time at 

which the delayed subsurface flow reaches 

channels 

0.55 

Lag (hr) Lag time of channels 1.5-5.8 
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where T is the total simulation time steps. Figs. 3.8a and 3.8b show the probabilities of 

occurrence of contributing areas and the associated surface runoff obtained by referring to Fig. 

3.5b. 

 
Figure 3.8. Transfer rates of rainfall excess to surface runoff and depression storage (i.e., R/Pe 

and DS/Pe), normalized contributing area (CA), normalized non-depressional area (NDA) and 

probabilities of occurrence of CAs for all subbasins at the end of (a) calibration event (event 1) 

and (b) validation events (events 2 and 3). 

 

3.4.4. Threshold Control of Depressions on Contributing Area 

The capabilities of the new D-VCA model were highlighted by examining the dynamic 

variations in contributing area during the depression filling-spilling processes. As shown in Fig. 

3.6, subbasins 2, 6, and 12 are three representative subbasins that had different increasing rates 

of contributing area at the beginning of depression filling and different timing of reaching full 

hydrologic connectivity. The 30-hr design storm was applied to these three subbasins. Fig. 3.9 

shows the formation of hydrologic connectivity for subbasins 2, 6, and 12, revealing the unique 

threshold controls of different topographic features. The changes in CA and FDS of these three 

subbasins follow a rapid, slow, and/or stepwise trend similar to that of their intrinsic CAI and 

FDI curves (Fig. 3.6). At the beginning of the simulation, the contributing areas of all three 

subbasins (CA > 0) represent their non-depressional areas (CBUs). With an increase in 

depression storage, subbasin 6 exhibited a rapid increase in CA before 6% of the total depression 

(a) (b) 
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storage (Fig. 3.9a), which was mainly associated with the PBUs with smaller depression 

storages, was filled. These PBUs accounted for 57% of the subbasin area (Fig. 3.9a) and only 1% 

of the depression storage of this subbasin (Fig. 3.9b). Then, the increasing rate of CA decreased 

since larger PBUs took a longer time to be fully filled. Thus, a 20% increase in CA occurred 

when depression storage increased from 6% to 47% (Fig. 3.9a), and these PBUs newly added to 

the CA accounted for 10% of the total depression storage of the subbasin (Fig. 3.9b). Due to the 

existence of the depressions with large depression storage, the stepwise changing patterns can be 

observed in both CA and FDS (Fig. 3.9). The plateaus in Fig. 3.9 indicate that all partially-filled 

PBUs were under the filling condition and they made no contributions to the subbasin outlet. At 

the end of the simulation, 96% of the subbasin area (Fig. 3.9a) contributed runoff water to the 

outlet and the remaining 4% area accounted for 38% of the total depression storage (Fig. 3.9b).  

 

Figure 3.9. Relationships between normalized depression storage and (a) normalized contributing 

area CA and (b) normalized fully-filled depression storage FDS in the depression-filling process 

for subbasins 2, 6, and 12. 

 

Subbasin 2 also underwent a rapid, slow, and stepwise increase in CA during this design 

storm event. The CA increased rapidly at the beginning of depression filling, and then the 

increasing rate of CA decreased. This rapid and slow increases occurred until 54% of the 

depression storage was filled, making 88% of the subbasin area connected to its outlet (Fig. 

(a) (b) 
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3.9a), which had only 31% of the total depression storage (Fig. 3.9b). The filling-spilling 

processes of the remaining PBUs led to the stepwise increasing patterns (Fig. 3.9). Following the 

rapid and slow increases in CA, subbasin 12 underwent slight stepwise increases in CA during 

this design storm (Fig. 3.9), and more significant stepwise increases may occur under a larger 

storm according to Fig. 3.6a. Therefore, the contributing area may increase rapidly, slowly, 

and/or in a stepwise manner, and the occurrence and timing depend on the topographic properties 

(e.g., the depression storages and contributing areas of PBUs). The unique changing pattern of 

contributing area simulated by the D-VCA in this study is different from the findings in some 

other studies (e.g., Menkenon et al, 2014), in which the simulated contributing area increased 

smoothly with an increase in rainfall. This is because they estimated the contributing area using 

statistical methods, which simulated the evolution of contributing area based on probability 

distribution functions. The results from other studies (e.g., Andrés Peñuela et al., 2016; Grimm & 

Chu, 2018; Wang et al., 2019) support the findings from this study regarding the rapid, slow, and 

stepwise increasing patterns of CA across different topographic surfaces. Therefore, the 

simulated contributing area and depression filling-spilling processes reflect the surface runoff 

generation and allow the model to mimic the threshold-controlled overland flow. 

3.4.5. Threshold Control of Depressions on Overland Flow 

To understand the influence of surface depressions on outlet discharge, the simulated 

surface runoff was normalized by rainfall excess. The temporal variations in the normalized 

runoff were compared for three selected subbasins (subbasins 2, 6, and 12) (Fig. 3.10a). Without 

considering the impact of depressions, all rainfall excess would be transferred to surface runoff. 

Thus, the curves indicate the ratios of rainfall excess transferred to surface runoff, and the 

differences between R/Pe = 1 and the curves represent the part of rainfall excess trapped in 
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depressions. Surface runoff was generated from the contributing area, and thus the generated 

surface runoff changed similarly to the contributing area (Fig. 3.9a and Fig. 3.10a). At the 

beginning of the simulation, all depressions were disconnected to the subbasin outlets. Once 

rainfall excess occurred, non-depressional areas and the fully-filled PBUs contributed runoff 

water to the outlet. With an increase in rainfall excess, more PBUs were fully filled, and thus the 

transfer ratio of rainfall excess to surface runoff increased. Subbasins 2 and 6 mostly had higher 

percentages of contributing area than subbasin 12, resulting in larger transfer ratios of rainfall 

excess to surface runoff in subbasins 2 and 6 (Fig. 3.10a). The surface runoff generated from 

subbasin 2 exceeded that of subbasin 6 after time step 7 (Fig. 3.10a), which was consistent with 

the changing patterns of the normalized contributing areas of both subbasins (Fig. 3.9a). When 

smaller depressions were fully filled and larger depressions were still in the filling stage (i.e., the 

plateaus in Figs. 3.9a and 3.9b), the contributing area and surface runoff remained constant (Figs. 

3.9a and 3.10a). As a result, there was also a stepwise trend in the surface runoff generation 

process. At the end of the design storm event, the transfer ratios for subbasins 2 and 6 were 0.94 

and 0.96, respectively, while the transfer ratio of subbasin 12 was only 0.64 (Fig. 3.10a). These 

results demonstrate the ability of the new D-VCA model to simulate the dynamic water release 

influenced by depressions. Similar increasing patterns of surface runoff across different types of 

surface topography were also identified by Grimm and Chu (2018) who simulated threshold-

controlled surface runoff for three different land surfaces in the PPR of North Dakota. 

To quantify the influence of contributing area on surface runoff generation, Fig. 3.10b 

shows the normalized surface runoff versus the normalized contributing area. These two 

variables have a proportional relationship, which can be explained by Eq. 3.13. This finding 

improved our understanding of the mechanisms of surface runoff generation and provided a 
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method for fast prediction of surface runoff under storm events. This linear relationship was also 

used by Antoine et al. (2009) to develop the relative surface connection function by using a 

filling algorithm. In their work, the contributing area was equal to the ratio of instantaneous 

outflow to instantaneous inflow since infiltration and transfer time were not considered and 

rainfall was uniformly distributed. In this study, however, both infiltration and rainfall excess 

were simulated, and the routing method was employed to account for the transfer time. 

Therefore, the linear relationship between the normalized surface runoff and the normalized 

contributing area is suitable for a permeable soil surface and can be further used to improve 

hydrologic modeling for depression-dominated areas, similar to other studies (Andrés Peñuela et 

al., 2016; Antoine et al. 2011). 

 

Figure 3.10. (a) Time series of normalized surface runoff and (b) relationships between 

normalized surface runoff and normalized contributing area for subbasins 2, 6, and 12. 

 

3.4.6. More Discussions on the Features of the D-VCA Model 

In this study, a new modeling method was proposed to mimic depression-oriented, 

variable contributing areas and overland flow dynamics, and the simulation results showed its 

good performance in simulating depression-influenced watershed responses. To further 

demonstrate the improvement of the D-VCA model and the reasonability of the simulated 

(a) (b) 
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contributing area formation and overland flow generation, the simulation results were analyzed 

and different modeling approaches were compared. According to the D-VCA modeling results, 

the total simulated rainfall excess of the depressional area of subbasin 1 was 2.11 mm (water 

depth over the depressional area) at the end of the calibration rainfall event, and the depression 

storage (water depth over the depressional area) of subbasin 1 was 183 mm. If a lumped 

depression storage is used in the modeling for the depressional area of subbasin 1, all excess 

water (2.11 mm) will be used to fill this “lumped depression” with a capacity of 183 mm and no 

surface runoff will be generated and contributed to its outlet during the entire rainfall event. 

However, the new D-VCA model, which accounts for the intrinsic changing patterns of 

depression storage and contributing area, was able to track the progressive expansion of the 

contributing area (Fig. 3.9) and facilitate the simulation of hierarchical, gradual water release 

from the depression-dominated area (Fig. 3.10). Thus, in the D-VCA modeling, the contributing 

area of subbasin 1 at the end of the calibration event consists of not only the non-depressional 

area but also a part of the depressional area (Fig. 3.8). Mekonnen et al. (2014) and Zeng et al. 

(2020) improved depression-dominated hydrologic modeling by using probability distribution 

functions of depression storages. Fig. 3.11, created based on the data from Mekonnen et al. 

(2016), schematically shows the probability density function of depression storage capacities and 

the corresponding normalized surface areas in a watershed. In their methods, the threshold 

depression storage corresponding to overflow/spilling under a rainfall condition was first 

calculated and then the outlet contributing area was determined, which consisted of the non-

depressional area and the depressional areas where the depression storages were less than the 

threshold depression storage. Under this condition, the proportion of outlet contributing area in 

the watershed was equal to the total probability of occurrence of the non-depressional area and 
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the depressional areas with their depression storages smaller than the threshold depression 

storage (i.e., the cumulative probability at the threshold depression storage in Fig. 3.11b). In the 

D-VCA model, the outlet contributing area, calculated by referring to the intrinsic CAI curve, 

equals the areas of the lumped CBU and the PBUs with fully-filled, highest-level depressions 

(Fig. 3.9a). Thus, the outlet contributing area estimated by using the probability distribution 

functions can be different from the real one. In contrast, the D-VCA model accounts for the 

actual variations in contributing area and characterizes its stepwise changes (Fig. 3.9a).  

 

Figure 3.11. (a) Probability density function of depression storage capacities and the 

corresponding normalized surface areas; (b) cumulative distribution function of depression 

storage capacities and the corresponding cumulative normalized surface areas. 

 

Furthermore, the accuracy of the contributing areas and depression storages simulated by 

the D-VCA model for all subbasins during the three selected rainfall events was evaluated (Fig. 

3.12). By analyzing the filling-spilling of depressions under the same rainfall conditions, the 

contributing areas and depression storages at the end of the three selected rainfall events were 

identified for all subbasins. Fig. 3.12 shows the 95% confidence intervals of the contributing 

areas and depression storages of all subbasins at the end of the three rainfall events. The 

contributing areas and depression storages simulated by the D-VCA model fell into their 95% 

ranges, respectively, implying that the D-VCA model reasonably accounted for surface 

(a) (b) 
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depressions and precisely simulated their impacts on the overland flow dynamics. In addition, it 

has been found that, during these three rainfall events in June and September, the simulated 

contributing areas were formed only by a small portion of the subbasin areas and most of rainfall 

excess became depression storage (Fig. 3.8). This finding is consistent with those from other 

studies for depression-dominated areas (e.g., Evenson et al., 2015; Evenson et al., 2016; Zeng et 

al., 2020). For example, Zeng et al. (2020) incorporated the probability distribution functions of 

depression storages into watershed hydrologic modeling and found that the depressional 

contributing areas were 0-42% of the watershed area for rainfall events in summer and fall 

months in North Dakota. Evenson et al. (2015) simulated water movement across individual 

depressions for a depression-dominated watershed over a 4-year period and showed that more 

rainfall excess was routed to depression storage and less excess water became surface runoff. 

 

Figure 3.12. Normalized contributing areas with 95% confidence intervals and normalized 

depression storages with 95% confidence intervals for all subbasins for (a) calibration event 

(event 1) and (b) validation events (events 2 and 3). 

 

3.5. Summary and Conclusions 

In this study, a new D-VCA model was developed to simulate the hydrologic processes in 

depression-dominated areas. In the model, surface topographic parameters were first analyzed to 

obtain (1) the probability distribution functions of fully-filled depression storage and the 

(a) (b) 
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corresponding contributing area, and (2) the intrinsic relationships of depression storage versus 

water input (FDI) and contributing area versus water input (CAI). Both relationship curves were 

further incorporated in the modeling to determine the contributing area and partition the 

simulated rainfall excess into depression storage and surface runoff in a rainfall event. Then, the 

occurrence probabilities of contributing area, depression storage, and generated surface runoff 

were obtained by referring to the probability distribution functions. The final outlet hydrograph 

was simulated by routing the generated surface runoff. 

The D-VCA model was applied to a depression-dominated watershed located in the PPR 

in North Dakota. The intrinsic CAI and FDI curves were created for all subbasins. The model 

was calibrated and validated by using the observed discharge data at a USGS gaging station for 

three rainfall events. The model performance was evaluated by three statistical parameters 

including RSR, NSE, and PBIAS, indicating that the simulated discharges were in good 

agreement with the observed data. The simulation results were also analyzed and different 

modeling approaches were compared to demonstrate the improvement of the D-VCA model and 

the reasonability and accuracy of the simulation results. This study demonstrated the influence of 

topographic depressions on the formation of contributing area and the impact of contributing 

area on surface runoff generation. In addition, a 30-hr design storm was used to demonstrate the 

unique features of the new D-VCA model in simulating the threshold control of depressions on 

the evolution of contributing area and the surface runoff generation processes in depression-

dominated areas. It was found that the contributing area and depression storage followed a trend 

similar to that of the corresponding intrinsic CAI and FDI curves, suggesting that the CAI and 

FDI curves were able to represent the surface runoff generation processes impacted by 

depressions and their filling and spilling. Surface runoff followed a trend similar to that of the 
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corresponding contributing area, indicating the significance of considering variable contributing 

areas in the modeling of depression-dominated areas. A linear relationship between the 

normalized surface runoff and contributing area simulated by the D-VCA model was identified, 

which potentially provides an enhanced understanding of the surface runoff generation processes 

under the influence of surface depressions. The linear relationship, together with the CAI curve, 

can be used for efficient prediction of variable contributing area and surface runoff in storm 

events, and, in particular, can also improve hydrologic modeling for depression-dominated areas. 

While the D-VCA model is capable of simulating the detailed formation of contributing 

areas and surface runoff generation, several aspects can be improved in future studies. For 

example, the spatial distributions of surface depressions and their influences can be incorporated 

in the probability distribution of contributing areas and the routing of surface runoff. In addition, 

it is expected to extend the D-VCA model for longer time-scale simulations and evaluate its 

performance using subbasin-level, high-resolution observed data. 
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4. INTEGRATING DEPRESSION STORAGES AND THEIR SPATIAL DISTRIBUTION 

IN WATERSHED-SCALE HYDROLOGIC MODELING 

4.1. Abstract 

Surface depressions are important topographic characteristics for surface runoff initiation, 

and the spatial distribution of depressions further affects the timing and quantity of surface 

runoff reaching channels and outlets. However, many hydrologic models simulate the fill-spill 

processes for depression-dominated areas in a lumped manner and release outflows from 

depressions to channels or outlets directly. As a result, the progressive formation of contributing 

area (CA) and the dynamic runoff contribution process are not well characterized. The objective 

of this study is to improve depression-oriented hydrologic modeling by incorporating the 

influence of depression storages and their spatial distribution into the simulation of surface 

runoff generation and flow routing. To achieve this objective, a modified depression-oriented 

variable contributing area (MD-VCA) model is developed, which employs a new depressional 

time-area zone scheme to deal with the spatially distributed depression storages, tracks the 

intrinsic changing patterns of connected areas and depression storage, simulates the connected 

area-based surface runoff generation dynamics, implements a new CA-based surface runoff 

routing technique, and quantifies the likelihood of occurrence of outlet CA and runoff 

contributions using the joint probability distribution associated with depression storages and their 

spatial distribution. The performance of the MD-VCA model was evaluated through the 

application to a depression-dominated watershed in the Prairie Pothole Region of North Dakota. 

Simulation results demonstrated that the MD-VCA model was able to simulate the threshold-

controlled overland flow dynamics under different rainfall conditions, and revealed the influence 

of depression storages and their spatial distribution on surface runoff generation and propagation 



 

95 

processes. The MD-VCA model was also compared with the D-VCA model to demonstrate its 

improvement in filling the gap in simulating the influences of spatially distributed depression 

storages. 

4.2. Introduction 

Depressions, which serve as surface impoundments, play important roles in hydrologic 

processes (Chu, 2017; Darboux & Huang, 2005; Kamphorst et al., 2000). For example, 

depressions undergo filling, spilling, and merging processes during rainfall events, resulting in 

threshold-controlled, discontinuous overland flow (Chu et al., 2013; Yang & Chu, 2015). As 

such, the outlet contributing area (CA) expands gradually as rainfall continues. In addition, the 

spatial arrangement of depression storages further affects the quantity and timing of runoff 

reaching the basin outlet. However, in many hydrologic models, the influence of depressions 

within a subbasin is often simulated using a lumped depression, which has a constant CA and 

releases outflow to the subbasin outlet directly. In this case, these models fail to mimic the real 

variations in outlet CAs and the surface runoff generation and routing processes. Thus, there is a 

significant research need for developing methods to quantify the hydrologic effects of spatially 

distributed depression storages and simulate the threshold-controlled rainfall-runoff processes. 

To deal with the complicated influences of depressions on catchment response, new 

modeling approaches have been developed. For instance, Chu et al. (2013) and Yang and Chu 

(2015) simulated the overland flow on depression-dominated surfaces by proposing the concepts 

of puddle to puddle (P2P) and cell to cell (C2C) and developing a physically-based distributed 

model. The model captured the specific hydrologic connections of depressions and the detailed 

threshold behaviors of overland flow. Antoine et al. (2011) simulated the influence of depression 

storage and surface detention on surface runoff triggering and propagation at a grid (inter-rill) 
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scale by weighting the effective water input or CA using a relative surface connection function. 

Evenson et al. (2016) modified the Soil and Water Assessment Tool (SWAT) to create two 

additional types of hydrologic response units (HRUs) that respectively represented individual 

depressions and their catchments. The interactions of depressions and surface runoff routing 

were also simulated in the modified SWAT model by constructing the upstream-downstream 

networks of depressions. However, these models require detailed information on surface 

topographic characteristics and need high computing capacities for the simulation of surface 

runoff over individual depressions, making the watershed-scale hydrologic modeling more 

challenging. 

To facilitate watershed-scale hydrologic modeling in depression-dominated regions, 

some studies have been conducted to simulate the depression-induced surface runoff generation 

processes. For example, Wang et al. (2019) developed a depression-oriented hydrologic 

(HYDROL-D) model for the simulation of threshold-controlled, dynamic overland flow. In 

HYDROL-D, all depressions within a subbasin were aggregated together, and hierarchical 

control thresholds were applied to determine the dynamic water release from the lumped 

depression of the subbasin. Grimm and Chu (2020) improved the HEC-HMS model for 

depression-dominated areas by incorporating a newly developed depression threshold control 

proxy (DTCP). Specifically, all depressions and their CAs within a subbasin were lumped 

together, and the DTCP specified the relationship between depression storage and outflow for the 

depressional area to simulate the filling-spilling overland flow dynamics. In these models, the 

influences of spatially distributed depressions are simplified in a lumped manner at a subbasin 

level, and the outflow from depressions are released to the subbasin outlet directly. Mekonnen et 

al. (2016) incorporated a probability distribution approach into the SWAT to improve hydrologic 
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modeling for depression-dominated areas. In their model, the threshold depression storage 

capacity associated with the filling-spilling conditions of depressions was determined first, and a 

probability density function was used to estimate the depression storage and outflow from fully-

filled depressions. Similarly, the surface runoff generated from the spatially distributed 

depressions was delivered to the subbasin main channel directly. 

To account for the surface runoff initiation and propagation induced by the spatially 

distributed depressions, Zeng and Chu (2020) developed a new depression-oriented variable 

contributing area (D-VCA) model to simulate surface runoff generation for depression-

dominated subbasins by referring to the constructed intrinsic changing patterns of depression 

storage and CA as depression filling. The generated surface runoff was further routed to subbasin 

outlet by using the Clark unit hydrograph method.  

The objective of this study is to improve hydrologic modeling for depression-dominated 

areas by incorporating both depression storages and their spatial distribution in surface runoff 

routing to quantify the variations in outlet CA and the threshold-controlled overland flow 

dynamics and propagation. To address this objective, a modified D-VCA (MD-VCA) model is 

developed in this study by introducing a new depressional time-area zone scheme to account for 

the spatially distributed depression storages and developing a variable CA-based surface runoff 

routing technique. In addition, the joint probability distributions associated with both depression 

storages and their spatial distribution are established to depict the likelihood of occurrences of 

outlet CAs and runoff contributions. The performance of the MD-VCA model is evaluated 

through the application to a depression-dominated watershed in North Dakota. The modeling 

results reveal the influences of both depression storages and their spatial distribution and 

highlight the improvements of the MD-VCA model. 
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4.3. Materials and Methods 

4.3.1.  MD-VCA Modeling Framework 

In this study, two impact factors of catchment response are considered: depression 

storages and their spatial distribution. Note that the spatial distribution of CBUs are also included 

since they are hydrologic units with zero depression storage. Depression storages affect the 

initiation of surface runoff, while their spatial distribution may influence the timing and quantity 

of surface runoff reaching outlets. When surface runoff is generated from hydrologic units (i.e. 

PBUs or CBUs) under certain rainfall condition, the areas of these units are considered to be 

connected areas. Moreover, when generated surface from a hydrologic unit reaches the outlet, the 

area of this unit is identified as outlet CA. 

Figure 4.1 illustrates the MD-VCA modeling framework. Similar to the D-VCA model, 

based on the detailed topographic parameters (e.g., depression storages and CAs of depressions) 

provided by the HUD-DC algorithm, a surface topographic analysis procedure is performed for 

each subbasin to assess the intrinsic influences of depressions on runoff contribution, which is 

then implemented in the simulation of variable CA and threshold-controlled overland flow. To 

account for the aforementioned two impact factors, new analysis and simulation methods are 

developed in the MD-VCA model (Fig. 4.1). Specifically, in the surface topographic analysis 

procedure, a subbasin is divided into a number of depressional time-area zones to deal with the 

spatially distributed depression storages, and a joint probability distribution associated with 

depression storages and their spatial distribution that depicts the likelihood of the occurrence of 

the outlet discharge is identified. Based on the methods used in the D-VCA model, the intrinsic 

changing patterns of depression storage and connected areas for each depressional time-area 

zone is determined. Then, the variable connected area-based surface runoff generation algorithm 
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in the D-VCA model is applied to track the filling-spilling of depressions and the formation of 

connected areas for each time step in the rainfall event, and a variable CA-based surface runoff 

routing technique is developed to mimic the propagation of generated surface runoff and the 

expansion of CA.  

 

Figure 4.1. Flowchart of the MD-VCA model. 
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4.3.2. Depressional Time-area Zones Delineation 

The depressional time-area zones are established to consider the influence of spatially 

distributed hydrologic units on surface runoff routing (Fig. 4.1). Specifically, the spatial 

distribution of hydrologic units (i.e. PBUs and CBUs) in a subbasin is represented by their runoff 

travel time to the subbasin outlet, and depressional time-area zones of the subbasin are specified 

by the runoff travel time isochrones (Fig. 4.2a). Each depressional time-area zone contains all 

hydrologic units that have the possibility to contribute surface runoff to subbasin outlet within 

the same time interval. Then, as detailed in the following subsections, the connected area of each 

depressional time-area zone is controlled by the other impact factor (i.e., depression storages), 

and the surface runoff generated from the connected area is further routed to the subbasin outlet.  

To calculate the runoff travel time for a hydrologic unit, the flow length from its 

depression threshold or channel ending point to the subbasin outlet is determined by using the 

ArcGIS flow direction function and flow length function. The runoff travel time from the 

depression threshold or channel ending point to the subbasin outlet is calculated by using the 

SCS lag equation: 

  𝑇𝑖,𝑗 =
0.000227∙𝐿𝑖,𝑗

0.8∙(
1000

𝐶𝑁𝑗
−9)0.7

𝑆𝑗
0.5

  (4.1) 

where 𝑇𝑖,𝑗 = runoff travel time from depression threshold or channel ending point of unit i in 

subbasin j to the subbasin outlet (h); 𝐿𝑖,𝑗  = flow length from the depression threshold or channel 

ending point of unit i in subbasin j to the subbasin outlet (m); 𝐶𝑁𝑗  = curve number of subbasin j; 

𝑆𝑗  = average slope of subbasin j (m/m). To create the depressional time-area zone diagram (Figs. 

4.2a and 4.2b), the interval of the time isochrones is the same as that in the simulation procedure 

(i.e., one hour). Thus, the hydrologic units with a runoff travel time less than or equal to one hour 
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are included in depressional time-area zone 1; the hydrologic units with a runoff travel time 

between one and two hours are included in depressional time-area zone 2; and all other higher 

depressional time-area zones are defined in the same fashion.  

 

Figure 4.2. MD-VCA modeling procedures for surface topographic analysis, variable connected 

area-based surface runoff generation, and variable contributing area (CA)-based surface runoff 

routing: (a) distribution of depressional time-area zones of a subbasin; (b) the normalized area of 

each depressional time-area zone; (c) probability distribution of runoff contributions of 

hydrologic units with and without considering their spatial distribution; (d) joint probability 

distribution of the normalized CA; (e) intrinsic changing patterns of connected area and 

depression storage of depressional time-area zone 1; (f-g) normalized connected areas and 

generated surface runoff of each depressional time-area zone during a rainfall event; (h-i) 

normalized CA and surface runoff generated on the CA during the rainfall event; (j) hydrograph 

at the subbasin outlet; and (k) joint probability of occurrence of CA. 
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4.3.3. Joint Probability Distribution Identification 

The surface topographic analysis also explores the probability distribution of runoff 

contributions from the subbasin area, which is further used by the simulation procedure to 

determine the likelihood of occurrence of outlet discharge (Fig. 4.1). To obtain the subbasin-

level probability distribution, the runoff contributions of hydrologic units are analyzed first. The 

hydrologic units with a smaller depression storage capacity have a higher probability to generate 

surface runoff, and the hydrologic units that have a shorter runoff travel time have a higher 

probability to contribute surface runoff to the subbasin outlet when surface runoff is generated. 

Thus, a joint probability distribution associated with depression storage and runoff travel time is 

developed in this study to depict runoff contributions of hydrologic units by analyzing the 

impacts of depression storage and runoff travel time separately.  

To examine the probability of a hydrologic unit that generates surface runoff, all 

hydrologic units are organized in an ascending order based on their maximum depression 

storages and assigned unique ranking numbers starting from zero. Note that the hydrologic units 

that have the same maximum depression storage have the same ranking number. The probability 

of a hydrologic unit that generates surface runoff is calculated by 

 𝑃𝑖,𝑗(𝐷𝑆) = 1 −
𝑚𝑖,𝑗 (𝐷𝑆)

𝑀𝑗
 (4.2) 

where 𝑃𝑖,𝑗(𝐷𝑆) = probability of unit i in subbasin j that generates surface runoff; 𝑚𝑖,𝑗 (𝐷𝑆) = 

ranking number of unit i in subbasin j based on its maximum depression storage; and 𝑀𝑗 = total 

number of units in subbasin j. To determine the probability of a hydrologic unit that contributes 

surface runoff to the subbasin outlet when surface runoff is generated, all hydrologic units are 

rearranged in an ascending order based on their runoff travel times and reassigned ranking 

numbers, starting from zero. Similarly, the hydrologic units that have the same runoff travel time 
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have the same ranking number. The probability that a hydrologic unit contributes surface runoff 

to the subbasin outlet when surface runoff is generated is calculated by  

 𝑃𝑖,𝑗(𝑇) = 1 −
𝑚𝑖,𝑗 (𝑇)

𝑀𝑗
 (4.3) 

where 𝑃𝑖,𝑗 (𝑇) = probability that unit i in subbasin j contributes surface runoff to the subbasin 

outlet when surface runoff is generated; and 𝑚𝑖,𝑗(𝑇) = ranking number of unit i in subbasin j 

based on its runoff travel time. Then, the joint probability of the hydrologic units whose 

generated surface runoff reaches the subbasin outlet is calculated by  

  𝑃𝑖,𝑗(𝐷𝑆, 𝑇) = 𝑃𝑖,𝑗(𝐷𝑆) ∗ 𝑃𝑖,𝑗(𝑇) (4.4) 

where 𝑃𝑖,𝑗(𝐷𝑆, 𝑇) = joint probability of unit i in subbasin j that contributes surface runoff to the 

subbasin outlet. The joint probability distribution of runoff contributions of hydrologic units is 

illustrated in Fig. 4.2c. Without considering the spatial distribution of depressions (obtained by 

Eq. 4.2; squares in Fig. 4.2c), the probability of a hydrologic unit contributing surface runoff to 

the subbasin outlet gradually decreases with the increase of the maximum depression storage. 

Due to the impact of the spatial distribution of hydrologic units, the joint probabilities of runoff 

contributions of hydrologic units fluctuate at different maximum depression storages (even at the 

same maximum depression storage) and are less than or equal to the probability that only 

considers depression storage. Once the joint probabilities of runoff contributions of hydrologic 

units are obtained, the subbasin-level runoff contributions can be described. That is, when the 

surface runoff generated from any particular hydrologic unit reaches the subbasin outlet, the 

outlet CA consists of all hydrologic units that have a joint probability greater than or equal to 

that of this particular unit. Thus, the CA is coupled with the joint probability distribution to 

describe the probability of subbasin-level runoff contributions (Fig. 4.2d). The joint probability 
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decreases as the CA increases and reaches its minimum when the entire subbasin contributes 

surface runoff to the outlet.  

4.3.4. Modeling of Threshold-controlled Overland Flow Dynamics 

As illustrated in Fig. 4.1, the depression-oriented overland flow dynamics are simulated 

through two major techniques: variable connected area-based surface runoff generation and 

variable CA-based surface runoff routing. To accomplish the simulation of surface runoff 

generation, the intrinsic changing patterns of depression storage and connected areas are tracked 

for each depressional time-area zone (Fig. 4.2e) in the surface topographic analysis procedure 

(Fig. 4.1) using the same method as the D-VCA model (Figs. 3.2e-3.2g). Then, the connected 

area (Fig. 4.2f) and the generated surface runoff (Fig. 4.2g) of each depressional time-area zone 

during a rainfall event are simulated by using the same method as the D-VCA model (Figs. 3.2h-

3.2j).  

Once surface runoff is generated from the connected area of a subbasin, it is then 

transferred to the subbasin outlet within some time scales. Thus, based on the depressional time-

area zone scheme, a new variable CA-based surface runoff routing technique is developed in the 

MD-VCA model to transfer the surface runoff generated from each depressional time-area zone 

to the subbasin outlet (Figs. 4.1 and 4.2). Since the time interval of the time-area isochrones is 

the same as that of simulation, the outlet CA at each time step (Fig. 4.2h) is calculated by using 

the linear superposition of the connected areas of depressional time-area zones. For example, the 

CA at time step 1 is equal to the connected area of depressional time-area zone 1 at time step 1; 

and the CA at time step 2 consists of the connected area of depressional time-area zone 1 at time 

step 2 and the connected area of depressional time-area zone 2 at time step 1. Thus, the outlet CA 

can be expressed as 
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 A𝑗,𝑘
𝐶𝐴 = ∑ 𝐴𝑧,𝑗,𝑘−𝑧+1

𝐶𝑁𝐴𝑡
𝑧=1  (4.5) 

where A𝑗,𝑘
𝐶𝐴 = CA of subbasin j at time step k (L2); and A𝑧,𝑗,𝑘−𝑧+1

𝐶𝑁𝐴  = connected area of 

depressional time-area zone z in subbasin j at time step k-z+1 (L2). Then, the surface runoff from 

the outlet CA (Fig. 4.2i) is given by 

 R𝑗,𝑘
𝐶𝐴 = ∑ 𝑅𝑧,𝑗,𝑘−𝑧+1

𝑧𝑜𝑛𝑒𝑡
𝑧=1 ,  (4.6) 

where R𝑗,𝑘
𝐶𝐴 = surface runoff generated from the CA of subbasin j at time step k (L3); and 

R𝑧,𝑗,𝑘−𝑧+1
𝑧𝑜𝑛𝑒  = surface runoff generated from depressional time-area zone z in subbasin j at time 

step k-z+1 (L3). The surface runoff generated from the CA is subject to the detention due to 

depression filling, and the attenuation is simulated by using a linear reservoir equation in this 

study (Fig. 4.2). Thus, the direct runoff hydrograph at the subbasin outlet (Fig. 4.2j) can be 

determined by 

 𝑄𝑗,𝑘 =
2∆𝑡

2𝐾+∆𝑡
× R̅𝑗,𝑘

𝐶𝐴 +
2𝐾−∆𝑡

2𝐾+∆𝑡
× 𝑄𝑗,𝑘−1,  (4.7) 

where 𝑄𝑗,𝑘 = surface runoff reaching the subbasin outlet at time step k (L3); K = storage 

coefficient; and R̅𝑗,𝑘
𝐶𝐴 = average surface runoff from the CA of subbasin j at time step k (L3). In 

addition, based on the relationship between the joint probability distribution of runoff 

contribution and the subbasin CA (Fig. 4.2d), the probability of occurrence of the CA or outlet 

discharge is calculated (Fig. 4.2k). 

4.3.5. Model Evaluation and Scenario Definition 

The MD-VCA model was tested through an application to the upper portion of the Upper 

Sheyenne River watershed (Fig. 3.3), and its performance was evaluated by using the three storm 

events selected in Chapter 3. Eventually, the simulated and observed discharges at the watershed 

outlet were compared, and four statistical parameters (NSE, PBIAS, RSR, and coefficient of 
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determination R2) were used to quantitatively evaluate the performance of the MD-VCA model. 

R2 can be expressed as: 

  𝑅2 = (
∑ (𝑄𝑜𝑏𝑠,𝑘−𝑄̅𝑜𝑏𝑠)(𝑄𝑠𝑖𝑚,𝑘−𝑄̅𝑠𝑖𝑚)𝑛

𝑘=1

√∑ (𝑄𝑜𝑏𝑠,𝑘−𝑄̅𝑜𝑏𝑠)
2𝑛

𝑘=1
√∑ (𝑄𝑠𝑖𝑚,𝑘−𝑄̅𝑠𝑖𝑚)

2𝑛
𝑘=1

)2
  (4.8) 

where n = total number of discharge observations; 𝑄𝑜𝑏𝑠,𝑘 = observed outlet discharge at time step 

k (L3/T); 𝑄𝑠𝑖𝑚,𝑘 = simulated outlet discharge at time step k (L3/T); 𝑄̅𝑜𝑏𝑠 = mean of the observed 

outlet discharges (L3/T), and 𝑄̅𝑠𝑖𝑚 = mean of the simulated outlet discharges (L3/T). 

To highlight the capabilities of the MD-VCA, the simulated connected areas, CAs, and 

surface runoff were analyzed. Also, the influence of spatially distributed depressions was 

discussed through three modeling scenarios. The first scenario (S1) only accounted for the 

influence of depressions on surface runoff generation and assumed that the generated surface 

runoff contributed to the corresponding subbasin outlet when it was generated. Thus, this 

scenario was performed by setting only one depressional time-area zone per subbasin in the MD-

VCA model. Then, the surface runoff generation of a subbasin was simulated by tracking the 

connected areas and the depression storage of the depressional time-area zone (i.e., the 

subbasin), and the generated surface runoff was routed to the subbasin outlet by using a linear 

reservoir function. The second scenario (S2) was set up to simulate the influence of spatial 

distribution of generated surface runoff on surface runoff routing without considering 

depressions. In this scenario, storage capacities of depressions were set to zero, and thus, each 

subbasin consisted of a number of CBUs and special PBUs. To deal with the spatial distribution 

of generated surface runoff, each subbasin was divided into many depressionless time-area 

zones. The depressionless time-area zones have the same ranges and areas as the corresponding 

depressional time-area zones when depressions are taken into consideration, which is because a 

depressional time-area zone is designed to contain all PBUs and CBUs that have the potential to 
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contribute surface runoff to the subbasin outlet during the same time interval. Then, the 

generated surface runoff of each depressionless time-area zone was routed to subbasin outlet 

based on the time-area zone scheme and a linear reservoir function in the MD-VCA model. In 

the third scenario (S3), the MD-VCA model was used to simulate the influence of spatially 

distributed depressions on surface runoff generation and routing processes. In this scenario, a 

subbasin was divided into many depressional time-area zones, connected areas and surface 

runoff during a rainfall were tracked for each depressional time-area zone, and the generated 

surface runoff was routed to the subbasin outlet based on the depressional time-area zone scheme 

and a linear reservoir function. In addition, the improvement of the MD-VCA over the D-VCA 

model was discussed.  

4.4. Results and Analyses 

4.4.1. Topographic Characteristics 

Depression storages and their spatial distribution are the two impact factors of catchment 

response considered in this study. Table 4.1 lists the areas of PBUs and CBUs and the total 

maximum depression storages for the 12 subbasins of the upper portion of the Upper Sheyenne 

River watershed. For a better understanding of the topographic characteristics of all subbasins, 

Fig. 4.3 displays the distributions of maximum depression storages and runoff travel times from 

hydrologic units (channel ending points of CBUs or depression thresholds of PBUs) to the 

corresponding subbasin outlets for all subbasins. Specifically, the maximum depression storages 

of all subbasins are right-skewed distributed, indicating that subbasins contain numerous 

depressions with smaller depression storages that can be quickly fully filled to generate surface 

runoff during the early stage of a rainfall event. The runoff travel times from hydrologic units to 

the corresponding subbasin outlets are approximately normally distributed and the median travel 
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time varies among subbasins, which can be attributed to their distinct characteristics (e.g., sizes 

and shapes). The hydrologic units with a shorter travel time to the corresponding subbasin outlet 

have higher probabilities to make runoff contributions when surface runoff is generated. Fig. 4.4 

shows the joint probability of the normalized CA for all subbasins under the influence of both 

depression storages and their spatial distribution. The hydrologic units with smaller depression 

storages and runoff travel time to the corresponding subbasin outlet have higher probabilities to 

become part of the outlet CA, and the probability of occurrence of outlet CA decreases as the 

expansion of outlet CA.  

Table 4.1. Topographic parameters for all subbasins of the watershed.  

Sub-

basin 

Area 

(km2) 

Non-depressional area  Depressional area  Number of 

depressional 

time-area zones 
Area 

(km2) 

Percentage 

(%) 

Area 

(km2) 

Percentage 

(%) 

Total MDS 

(107m3) 

1 394.08 48.13 12.21 345.95 87.79 6.36 16 

2 435.44 34.14 7.84 401.31 92.16 10.67 23 

3 365.41 58.92 16.12 306.49 83.88 6.28 21 

4 968.17 78.97 8.16 889.21 91.84 58.44 35 

5 424.86 114.93 27.05 309.93 72.95 10.35 20 

6 190.06 32.24 16.97 157.82 83.03 4.39 19 

7 315.59 41.87 13.27 273.72 86.73 8.59 26 

8 252.15 38.69 15.34 213.46 84.66 8.57 22 

9 237.23 33.66 14.19 203.57 85.81 11.08 15 

10 381.25 54.53 14.30 326.72 85.70 5.06 22 

11 322.44 40.99 12.71 281.45 87.29 4.29 19 

12 333.00 37.63 11.30 295.37 88.70 45.81 20 

Note: MDS=maximum depression storage 
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Figure 4.3. Distributions of maximum depression storage (MDS) and runoff travel time from 

hydrologic units (channel ending points of CBUs or depression thresholds of PBUs) to the 

subbasin outlets. The box-plot shows the 10 percentile, 25 percentile, median, 75 percentile, and 

90 percentile of the MDS or runoff travel time. (The 90 percentile of the MDS of subbasins 7, 8, 

9, and 12 are 1383 m3, 1024 m3, 1641 m3, and 4759 m3, respectively). 

 

 

Figure 4.4. Joint probability distributions of the normalized contributing area (i.e., contributing 

area/subbasin area) for all subbasins of the watershed. 
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To account for the impact of the spatial distribution of depression storages on subbasin 

runoff contribution, each subbasin was also divided into a number of depressional time-area 

zones. Table 4.1 lists the number of depressional time-area zones for all subbasins, and Fig. 4.5 

shows the spatial distribution of depressional time-area zones of subbasin 1 as an example. Fig. 

4.6a illustrates the percentages of non-depressional areas and depressional areas for all 

depressional time-area zones of subbasin 1. As shown in Fig. 4.6a, the non-depressional areas 

only dominate a small portion of the area of the corresponding zones, and they generate surface 

runoff and are connected once rainfall satisfies the initial abstraction (i.e., canopy interception 

and infiltration before surface runoff initiates). As rainfall continues, more depressions are filled 

and start to generate surface runoff, and thus, the connected area of each zone expands. To 

further investigate the generation of surface runoff, Figs. 4.6b and 4.6c show the formation of 

connected areas and the increasing patterns of fully-filled depression storages for two 

representative depressional time-area zones: zone 4 and zone 8, respectively. The percentages of 

connected areas of both zones are larger than zero before water input (i.e., rainfall) is applied, 

representing the ratio of non-depressional area of each zone. At the beginning of depression 

filling, the connected areas and fully-filled depression storage of both zones increase rapidly 

since many smaller depressions are quickly filled and generate surface runoff. As the net water 

input increases, the connected area and fully-filled depression storage of zone 4 exhibit a 

stepwise increasing pattern, while the connected area and fully-filled depression storage of zone 

8 only show slight stepwise changes, which can be attributed to the properties of PBUs (i.e., 

surface areas and depression storages of PBUs) of both zones. For example, there are several 

PBUs with large depression storages in zone 4, which take a longer time to be fully filled and 

become a connected area of the zone, resulting in stepwise changes. Since there are a large 
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number of depressions with different maximum depression storages in the subbasins and each 

depressional zone only dominates a small portion of the subbasin area (Fig. 4.6a), the stepwise 

changes in the connected area and fully-filled depression storage of the subbasin (Fig. 4.6d) are 

not as obvious as those in Figs. 4.6b and 4.6c. The ratios of connected areas and the fully-filled 

depression storages of both zones eventually reach 1.0 when all depressions are fully filled. The 

intrinsic changing patterns of the connected area and fully-filled depression storage facilitate the 

simulation of CA formation and surface runoff generation for real rainfall events.  

 

Figure 4.5. Distribution of depressional-time area zones of subbasin 1. 
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Figure 4.6. (a) Percentages of non-depressional area and depressional area for all depressional 

time-area zones of subbasin 1; (b) and (c) intrinsic changing patterns of connected area and fully-

filled depression storage for two representative time-area zones (zone 4 and zone 8) of subbasin 

1; and (d) intrinsic changing patterns of connected area and fully-filled depression storage for 

subbasin 1. 

 

4.4.2. Evaluation of the MD-VCA Model 

Fig. 4.7 shows the comparisons between the observed and simulated hydrographs at the 

watershed outlet for the calibration event (event 1: 6/26/2009, 18:00-7/2/2009, 8:00) and two 

validation events (event 2: 9/20/2019, 18:00-9/24/2019, 0:00 and event 3: 6/13/2017, 4:00-

6/18/2017, 10:00), which have different features such as magnitudes and durations (refer to 

subsection 3.3.5 for details). As shown in Fig. 4.7, the peak flow and time to peak of the 

hydrographs for events 1 and 2 match the observed data, and the general shapes of the 

(a) (b) 

(c) (d) 
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hydrographs for the three events are well characterized. A slight underestimate at the beginning 

of the hydrograph for event 1 (Fig. 4.7a) and a slightly early peak flow for event 3 (Fig. 4.7c) can 

be observed, which may be due to the spatial and temporal variations of the rainfall. In addition 

to the graphic comparisons, the NSE, RSR, PBIAS, and R2 were used to quantitatively describe 

the agreement between the simulated and observed hydrographs. Table 4.2 lists the values of 

NSE, RSR, PBIAS, and R2 for the calibration and validation events. According to Moriasi et al. 

(2007, 2015), simulations are considered as very good if the NSE is greater than 0.75, the RSR is 

less than 0.5, and PBIAS is less than ±10%. In this study, the calculated NSE, RSR, and PBIAS 

fall into the recommended ranges, indicating a very good agreement between the simulated and 

observed discharges. In addition, the R2 values (>0.95) for the calibration and validation events 

also indicated a good performance of the MD-VCA model.  
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Figure 4.7. Comparisons of the simulated and observed discharges at the watershed outlet for (a) 

calibration event (event 1: 6/26/2009, 18:00-7/2/2009, 8:00) and (b-c) validation events (event 2: 

9/20/2019, 18:00-9/24/2019, 0:00 and event 3: 6/13/2017, 4:00-6/18/2017, 10:00). 

 

(a) 

(b) 

(c) 
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Table 4.2. Statistics of the simulated outlet discharges for the three selected storm events.  

Statistic parameters 
Event 1a 

(calibration event) 

Event 2b 

(validation event) 

Event 3c 

(validation event) 

NSE 0.92 0.99 0.89 

RSR 0.004 0.05 0.09 

PBIAS (%) 0.543 -1.724 0.731 

R2 0.95 0.99 0.97 
aEvent 1: 6/26/2009, 18:00-7/2/2009, 8:00 
bEvent 2: 9/20/2019, 18:00-9/24/2019, 0:00 
cEvent 3: 6/13/2017, 4:00-6/18/2017, 10:00 

 

In addition to the comparisons of simulated and observed hydrographs at the watershed 

outlet, the simulated connected areas, CAs, depression storage, and surface runoff of the 

calibration and validation events were analyzed for all subbasins. Figs. 4.8a-4.8c show the 

simulated connected areas and CAs for all subbasins at the end of the three calibration and 

validation events, respectively. The 95% confidence intervals of both connected areas and CAs 

at the end of the three events were also calculated by analyzing the filling-spilling conditions of 

depressions. The connected areas and CAs simulated by the MD-VCA model fall into their 95% 

ranges, demonstrating the reliability of the simulation results of the MD-VCA model. Figs. 4.8d-

4.8f display the simulated depression storage and the total amount of generated surface runoff of 

all subbasins (i.e., water depth over the corresponding subbasin area) at the end of the three 

calibration and validation events, respectively. Clearly, if more rainfall excess water was trapped 

by depressions, less water became surface runoff. As shown in Fig. 4.9, the simulated connected 

areas, depression storage, and surface runoff vary among all subbasins, which can be attributed 

to the differences in the land use, soil type, and surface topographic characteristics (e.g., areas 

and depression storages of hydrologic units) of the subbasins. The CAs of all subbasins also 

differ, due to the dissimilar spatial distributions of hydrologic units. For example, at the end of 

the calibration event, 18.6% of the connected area of subbasin 5 became the subbasin CA, while 
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only 4% of the connected area of subbasin 1 became the subbasin CA. This is because subbasin 5 

has more hydrologic units with smaller depression storages, which are located close to the 

subbasin outlet.  

 

Figure 4.8. Simulated connected areas, contributing areas, their 95% ranges, and the joint 

probability of contributing area for all subbasins at the end of (a) calibration event (event 1) and 

(b-c) validation events (event 2 and event 3); and simulated depression storage and total amount 

of surface runoff of all subbasins at the end of (d) calibration event (event 1) and (e-f) validation 

events (event 2 and event 3). 
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4.4.3. Hydrologic Effects of Depression Storages and their Spatial Distribution 

To demonstrate the role of the spatially distributed depressions in surface runoff 

generation and routing, simulation results from the three modeling scenarios were compared. 

Fig. 4.9 shows the connected areas, CAs, and surface runoff simulated for the three modeling 

scenarios for subbasin 1 during the storm event 2 that occurred in September 2019 as an 

example. Specifically, Figs. 4.9a and 4.9c demonstrate the influence of depressions on the 

surface runoff generation by illustrating the simulated connected area normalized by the subbasin 

area and the total amount of surface runoff generated from the subbasin connected area in the 

three modeling scenarios during the storm event. As aforementioned in subsection 4.3.5, S1 and 

S3 considered the influence of the real, delineated depression storages on surface runoff 

generation, while S2 ignored the influence of depression storages. Thus, in S2, all rainfall excess 

became surface runoff and the entire subbasin was connected. In S1 and S3, however, all rainfall 

excess of CBUs became surface runoff, while the rainfall excess of PBUs flowed to depressions 

and surface runoff initiated only when there were fully-filled depressions. A part of rainfall 

excess of this subbasin was trapped in depressions and the remaining water became surface 

runoff, whereas the subbasin connected area consisted of the non-depressional area (i.e., areas of 

CBUs) as well as the CA and ponding area of the fully-filled depressions. Thus, as shown in Fig. 

4.9a, the normalized connected area of the subbasin in S2 at each time step reached 1.0, while 

the normalized connected areas of the subbasin in S1 and S3 at each time step were equal and 

less than 1.0. Similarly, S1 and S3 had the same amount of total surface runoff at each time step, 

and the values of generated surface runoff in S1 and S3 were less than that simulated in S2 (Fig. 

4.9c), which was the total amount of rainfall excess at this time step.  
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Figure 4.9. Comparisons of (a) connected areas, (b) contributing areas (CAs), (c) generated 

surface runoff on connected areas, and (d) generated surface runoff on contributing areas of 

subbasin 1 for three scenarios (Scenario 1 only considers the influence of depression storages, 

Scenario 2 ignores depression storages and only simulates the influence of spatially distributed 

surface runoff, and Scenario 3 takes both depression storages and their spatial distributions into 

account). 

 

Figs. 4.9b and 4.9d respectively show the subbasin CA normalized by the subbasin area 

and the surface runoff generated on the CA for the three modeling scenarios during the storm 

event, revealing the influence of the spatial distribution of depression storages on surface runoff 

routing. As discussed previously, in S1 all surface runoff contributed to the subbasin outlet when 

it was generated and the subbasin connected area became the outlet CA of the subbasin, while S2 

and S3 accounted for the spatial distributions of generated surface runoff. Thus, the simulated 

outlet CA at each time step in S1 was equal to the corresponding subbasin connected area (Figs. 

(a) (b) 

(c) (d) 
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4.9a and 4.9b), and the runoff contribution at each time step also equaled the total amount of 

surface runoff generated at the same time step (Figs. 4.9c and 4.9d). In this case, the runoff 

contributions in the subbasin varied with the rainfall intensities, and there was no runoff 

contribution to the subbasin outlet if there was no rainfall excess (Fig. 4.9d). In S2 and S3, 

however, the spatial distribution of surface runoff was considered. Thus, the outlet CAs and the 

runoff contributions of the subbasin varied with both rainfall intensity, which affected the 

connected area or the generated surface runoff of each time-area zone, and runoff travel time. 

For example, at 9/20/2019, 23:00 in S2 and S3 (Figs. 4.9b and 4.9d), only the connected areas of 

time-area zone 1 became the outlet CAs (very small values); the surface runoff generated from 

time-area zone 1 made runoff contributions to the subbasin outlet at this time step (also very 

small values), and the surface runoff generated from other time-area zones contributed to the 

subbasin outlet at the following time steps depending on the runoff travel time of each time-area 

zone. Therefore, after 9/21/2019, 7:00 (i.e., the end of the storm), the outlet CA and runoff 

contribution in S2 and S3 were still larger than zero (Figs. 4.9b and 4.9d). In addition, the outlet 

CAs and runoff contributions simulated in S2 were greater than those in S3 for the same time 

steps (Figs. 4.9b and 4.9d), which can be attributed to the fact that S2 did not consider depression 

storage. The time when the outlet CA and runoff contributions reached their peak values were 

the same as that in S2 and S3, which can be attributed to the same scheme of time-area zones 

(i.e., the depressionless and depressional time-area zones in S2 and S3 had the same spatial 

range). 

From the comparisons of S1-S3 (Fig. 4.9), it can be found that there are significant 

differences in the subbasin connected areas and the total amounts of surface runoff simulated 

with and without considering depressions, demonstrating the importance of considering 
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depressions in the modeling of surface runoff generation. In addition, there are notable 

discrepancies in the formation of the outlet CA and the timing and quantity of runoff 

contributions with and without considering the spatial distribution of depressions even though 

the subbasin connected area and the total amount of surface runoff are the same in both scenarios 

(i.e., S1 and S3). Thus, it is essential to incorporate both depression storages and their spatial 

distribution in the simulation of rainfall-runoff dominated by surface depressions. 

4.5. Discussion 

4.5.1. Unique Features of MD-VCA Model 

In this study, the MD-VCA model was developed to incorporate the influences of both 

depression storages and their spatial distribution into the simulation of depression-oriented 

rainfall-runoff processes. Recently, some hydrologic models have been developed, in which the 

depression filling-spilling processes are simulated and the influences of the spatial distribution of 

depressions and generated surface runoff are simplified. For example, Zeng et al. (2020) 

simulated the overland flow filling-spilling dynamics for depression-dominated areas using a 

series of probability distribution functions of depression storages, and the surface runoff lag 

method (Arnold et al., 1998) was used to route the generated overland flow to the subbasin main 

channel. In the lag method, an empirical equation is used to control the amount of surface runoff 

reaching channels for each time step. However, such a model cannot provide the details on the 

progressive formation of the outlet CA and the propagation processes of generated surface 

runoff. The MD-VCA model developed in this study simulates the influence of spatially 

distributed depressions on surface runoff propagation by introducing the depressional time-area 

zone scheme and developing the CA-based surface runoff routing algorithm. Resultantly, in 

addition to mimic the generation of surface runoff, the MD-VCA model can track the formation 
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of CA and runoff contributions in the transfer of generated surface runoff to the subbasin outlet 

(Fig. 4.9). 

To demonstrate the performance of the MD-VCA, the simulation results were analyzed. 

In the modeling for real rainfall events, the simulated outlet hydrographs showed a good 

agreement with the observed data (Fig. 4.7), indicating the ability of the MD-VCA model in 

mimicking the threshold-controlled overland flow dynamics under different rainfall conditions. 

In addition to the outlet discharges, the simulated connected areas and CAs for all subbasins for 

the calibration and validation events were verified by comparing to their 95% confidence ranges 

(Fig. 4.8). The comparisons demonstrated the reasonability and accuracy of the simulation 

results. In addition, during the calibration and validation events occurred in summer and fall 

months, a large portion of rainfall excess was trapped by depressions and the simulated outlet 

CAs of all subbasins only reached 20%-39% of their areas during those rainfall events (Fig. 4.9), 

which are consistent with the findings in other studies for depression-dominated areas (Zeng et 

al., 2020; Evenson et al., 2015).  

4.5.2. MD-VCA vs. D-VCA 

As detailed in Chapter 3, The D-VCA model is a watershed-scale hydrologic model for 

simulating depression-oriented, variable CA and threshold-controlled overland flow dynamics, 

while the MD-VCA model further incorporates the influence of the spatial distribution of 

depression storages on watershed hydrology. With similar modeling structures (Figs. 4.1 and 

3.1), both models analyze the intrinsic influence of depressions and then simulate depression-

influenced rainfall-runoff by referring to the analysis results. However, the MD-VCA model 

adds new components in both analysis and simulation procedures to account for the impacts of 

the spatial distribution of depression storages, as highlighted in its flowchart (Fig. 4.1).  
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In the analysis procedure, the D-VCA model tracks the intrinsic changing patterns of 

connected area and the fully-filled depressions in each subbasin. However, to incorporate the 

spatial distribution of depression storages, the MD-VCA model divides each subbasin into a 

series of depressional time-area zones and detects the intrinsic changing patterns of connected 

area and fully-filled depression storage for each zone. Since the filling-spilling conditions of 

depressions are directly subject to the characteristics of depressions (i.e., depression storages and 

their corresponding CAs) when the same amount of rainwater is applied, the intrinsic changing 

patterns of connected areas and the fully-filled depression storage calculated in both models are 

the same for the same subbasin, which can be observed in Figs. 4.6d and 3.6. In addition, the 

MD-VCA model calculates the joint probability distribution associated with depression storages 

and their spatial distribution, instead of the probability distribution determined in the D-VCA 

model, which is only related to depression storages. In the D-VCA model, the probability 

distributions are used to describe the probabilities of occurrence of connected areas since only 

depression storages are taken into consideration in the probability distribution, while the joint 

probability distributions in the MD-VCA model depict the likelihood of occurrences of the outlet 

CA that is related to both depression storages and their spatial distribution. The fundamental 

differences between the probability distributions and the joint probability distributions can be 

observed in Figs. 4.4 and 3.5b. 

In the simulation of surface runoff generation, the MD-VCA model applies the same 

methods as the D-VCA model to calculate the connected areas and the total amount of generated 

surface runoff during a rainfall event by referring to the intrinsic changing patterns detected in 

the analysis procedure. The major difference is that the MD-VCA model performs such a 

simulation for each depressional time-area zone of subbasins, while the D-VCA model simulates 
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the connected areas and surface runoff for the entire subbasins directly. As discussed previously, 

the intrinsic changing patterns of connected areas and fully-filled depression storages are the 

same for the same subbasin. Thus, as shown in Figs. 4.8 and 3.8, the simulation results of the 

connected areas and the total amount of surface runoff of all subbasins during the same rainfall 

event are consistent.  

In the surface runoff routing, the generated surface runoff is delivered to the 

corresponding subbasin outlet by using the Clark unit hydrograph method in the D-VCA model, 

whereas the MD-VCA model introduces a depressional time-area zone scheme and a unique 

variable CA-based surface runoff routing technique. In the MD-VCA model, the depressional 

time-area zones of each subbasin are determined based on the flow length and flow travel time 

from PBUs and CBUs to the corresponding subbasin outlet. Thus, the number of depressional 

time-area zones and the area of each depressional time-area zone are constant. The surface runoff 

generated from each depressional time-area zone is simulated by using the corresponding 

intrinsic changing patterns of connected areas and fully-filled depression storage, which is then 

delivered to the corresponding subbasin outlet using the variable CA-based routing technique. As 

shown in Fig. 4.7, the MD-VCA model can provide good simulation results for watershed outlet 

discharges. The hydrographs simulated by the MD-VCA model have similar shapes and 

magnitudes to those simulated by the D-VCA model (Figs. 4.7 and 3.7), which can be attributed 

to the similar time-area zone theory used in the surface runoff routing in both D-VCA and MD-

VCA models. That is, in the D-VCA model, the connected areas of a subbasin at each time step 

are lumped together and divided into many time-area zones based on an empirical equation, and 

the amount of surface runoff over each time-area zone is routed to the subbasin outlet using the 

Clark unit hydrograph method. The number of time-area zones and the area of each time-area 
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zone are adjusted during the calibration processes so that the simulated hydrograph at the 

watershed outlet can match the observed one. The calibrated number of time-area zones and the 

area of each time-area zone in the D-VCA model have similar values to that in the MD-VCA 

model. Thus, the similar hydrographs simulated by both models suggests that the MD-VCA is 

able to simulate the timing and quantity of surface runoff reaching the subbasin outlet. In 

particular, with consideration of the spatial distribution of depression storages, the MD-VCA 

model can provide the progressive formation of the outlet CA and the propagation of surface 

runoff. 

4.6. Summary and Conclusions 

The D-VCA model, which was developed to simulate the threshold control of 

depressions on watershed hydrology in a previous study (Chapter 3), was further modified in this 

study to improve its ability to simulate the influence of spatially distributed depression storages 

on catchment responses. In the MD-VCA model, a depression-dominated subbasin was divided 

into a number of depressional time-area zones based on the spatial distribution of depression 

storages, each of which contained all hydrologic units that had the possibilities to contribute 

surface runoff to the corresponding subbasin outlet during the same time interval. Then, the 

intrinsic changing patterns of connected areas and fully-filled depression storage were detected 

for each depressional time-area zone, which was used to determine the connected areas and the 

total amount of surface runoff of the subbasin during the surface runoff generation processes 

under rainfall events. The formation of the outlet CA and the contribution of surface runoff to the 

subbasin outlet were tracked by a newly developed CA-based surface runoff routing technique. 

In addition, the joint probability distributions associated with both depression storages and their 
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spatial distribution were created to describe the likelihood of occurrence of the outlet CAs and 

runoff contributions.  

The performance of the MD-VCA model was evaluated through the application to a 

depression-dominated watershed in the Prairie Pothole Region of North Dakota. The simulated 

hydrographs at the watershed outlet reasonably matched the observed ones, in terms of the 

shapes, durations, peak flows, and time to peak. Four statistical parameters (RSR, NSE, PBIAS, 

and R2) also demonstrated a good agreement between the simulated and observed hydrographs 

and the ability of the MD-VCA model in simulating the surface runoff initiation and propagation 

under the influence of spatially distributed depression storages. In addition to the discharges at 

the watershed outlet, the simulated connected areas and CAs for all subbasins were also verified 

by their 95% confidence ranges. The influences of depression storages and their spatial 

distribution on surface runoff generation and routing were revealed in this study through three 

modeling scenarios: S1 (considering the influence of depression storages only), S2 (ignoring 

depression storages and only simulating the influence of spatially distributed surface runoff), and 

S3 (taking both depression storages and their spatial distributions into account). Without 

considering depression storages, the connected areas and the total amounts of generated surface 

runoff were overestimated, leading to overestimations of the outlet CAs and runoff contributions 

to outlets. Without considering the spatial distribution of depression storages, the connected 

areas and total amounts of generated surface runoff were captured. However, the model failed to 

track the outlet CAs and characterize the timing and quantity of runoff contributions. 

Furthermore, the MD-VCA model was compared with the D-VCA model, and the improvements 

of the MD-VCA model in the depression-controlled surface runoff routing were discussed and 
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analyzed, which helps bridge the gap in simulating the formation of CA and the contribution of 

surface runoff under the influence of spatially distributed depression storages.  
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5. OVERALL CONCLUSIONS 

Hydrologic processes (e.g., overland flow) are subject to the influence of surface 

topography, land use and land cover, soil properties, and climate conditions. Surface depressions, 

one of the important surface topographic characteristics, undergo filling-spilling-merging 

processes during rainfall events, resulting in discontinuity in hydrologic connectivity and 

variability in contributing area. The quantity and timing of the generated surface runoff are also 

affected by depressions. This dissertation research focuses on improving watershed-scale 

hydrologic modeling, especially for depression-dominated areas, by incorporating the hydrologic 

effects of depressions. To accomplish this goal, the hydrotopographic characteristics of 

depressions were analyzed, and the intrinsic relationships of hydrologic variables (e.g., outlet 

contributing area and depression storage) were identified, which were further used to develop 

new modeling methods for the simulation of the depression-oriented dynamics in overland flow 

and variations in outlet contributing area. Moreover, the influences of depressions on both 

surface runoff generation and propagation processes were investigated by using the developed 

models. 

In Chapter 2, an improved hydrologic model was developed based on the frequency 

distribution of depression storage capacities for simulating the depression-oriented variable 

contributing area and overland flow dynamics. The concept of PBU was used to account for the 

potential merging of depressions and their contributing areas, and a PBU-probability distribution 

model (PDM), which included a series of probability distribution functions, was developed to 

describe depression storage and outlet contributing areas at different filling conditions. The 

surface runoff generated from contributing area was simulated and further routed to the subbasin 

main channel to account for the detention effects of surface depressions. The PBU-PDM was 
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integrated with the SWAT and its performance and capabilities were assessed through the 

application to a depression-dominated watershed in the PPR of North Dakota. Simulation results 

demonstrated the ability of the PBU-PDM in mimicking the dynamics of overland flow and the 

variations of contribution area, and the unique features of the PBU-PDM for tracking the filling-

spilling conditions of depressions. The PBU-PDM enhanced SWAT model was also compared 

with the original SWAT model and two other modified SWAT models to highlight its 

improvement in the simulation of the potential merging of depressions, the filling-spilling of 

PBUs, and the threshold behavior of overland flow. The original SWAT model that lumped all 

depressions together tended to overestimate/underestimate the surface runoff for wet/dry periods, 

and the modified SWAT models without considering the hierarchical relationships of 

depressions tended to underestimate the total maximum depression storage and overestimate 

surface runoff.  

In Chapter 3, a new depression-oriented variable contributing area (D-VCA) model was 

developed to simulate the progressive formation of outlet contributing area, threshold behavior 

of overland flow, and the likelihood of occurrence of outlet contributing area and runoff 

contribution. In the D-VCA, the intrinsic changing patterns of depression storage and 

contributing area were tracked throughout depression filling and further used to simulate the 

threshold-controlled overland flow dynamics and expansion of contributing area. A probability 

distribution function related to depression storages was established to describe the probability of 

occurrence of outlet contributing area and runoff contribution. The surface runoff retention 

induced by spatially distributed depressions was quantified by using the Clark unit hydrograph 

method. The D-VCA model was applied to a depression-dominated watershed in North Dakota, 

and its unique capabilities in simulating the depression-induced variations in outlet contributing 
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area and the dynamics in overland flow were demonstrated. Simulation results indicated that the 

variations in contributing area and depression storage during real rainfall events followed a trend 

similar to the corresponding intrinsic changing patterns of contributing area and depression 

storage. In addition, it was found that the generated surface runoff followed a trend similar to 

that of the corresponding contributing area, which emphasized the significance of considering 

variable contributing areas in the hydrologic modeling for depression-dominated areas. 

In Chapter 4, the D-VCA model was further modified to incorporate the influences of 

both depression storages and their spatial distribution on surface runoff propagation. In the 

modified D-VCA (MD-VCA) model, instead of using the Clark unit hydrograph method, a 

depressional time-area zone scheme was introduced to deal with the spatial distribution of 

depression storages, and a new variable contributing area-based surface runoff routing technique 

was developed to simulate the propagation of surface runoff and progressive formation of 

contributing area. In addition, a joint probability distribution associated with depression storages 

and their spatial distribution was established to describe the likelihood of occurrence of outlet 

contributing area and runoff contribution. The performance of the MD-VCA model was 

evaluated through an application to the same depression-dominated watershed selected for 

testing the D-VCA model. A good agreement between the simulated and observed hydrographs 

was achieved, indicating the ability of the MD-VCA model for simulating the influence of 

spatially distributed depressions on the rainfall-runoff processes. The importance of both 

depression storages and their spatial distribution in the modeling of surface runoff generation and 

propagation processes was also highlighted. Without considering depression storages, the 

connected areas and the total amount of surface runoff generated from a subbasin were 

overestimated, leading to overestimations in outlet contributing area and runoff contribution to 
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the subbasin outlet. Without considering the spatial distribution of depression storages, the 

connected areas and the total amount of generated surface runoff were captured. However, the 

model failed to track the outlet contributing area and characterize the timing and quantity of 

runoff contributions. The MD-VCA was also compared with the D-VCA model, and it was 

found that both models were able to simulate the threshold behavior of overland flow dynamics, 

while the MD-VCA was able to provide the detailed information on the variations in outlet 

contribution area and the surface runoff propagation processes.  

While this dissertation study improved hydrologic modeling for depression-dominated 

areas, the following aspects can be improved in future studies: 

 The developed models are expected to be evaluated for longer simulation periods 

with more observed data (e.g., localized overland flow data). 

 Consideration of more impact factors of hydrologic processes (e.g., land use and soil 

properties of PBUs and CBUs) can improve the capabilities of the models developed 

in this dissertation research (i.e., the PBU-PDM, D-VCA, and MD-VCA). 

 The models developed in Chapters 2 and 3 can be further extended to incorporate the 

snowfall and snowmelt processes for the applications to cold-climate, depression-

dominated regions. 

 


