
ON THE APPLICABILITY OF DEEP METRIC LEARNING TO ADDRESS SOURCE CODE

AUTHORSHIP ATTRIBUTION PROBLEM UNDER SIMULATED REAL-WORLD

CONSTRAINTS.

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Sarim Zafar

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

October 2020

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY
Graduate School

Title

ON THE APPLICABILITY OF DEEP METRIC LEARNING TO ADDRESS

SOURCE CODE AUTHORSHIP ATTRIBUTION PROBLEM UNDER

SIMULATED REAL-WORLD CONSTRAINTS.

By

Sarim Zafar

The supervisory committee certifies that this thesis complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Muhammad Zubair Malik
Chair

Dr. Saeed Salem

Dr. María de los Ángeles Alfonseca-Cubero

Approved:
16 November 2020

Date

Prof. Simone Ludwig
Department Chair

ABSTRACT

Source code authorship attribution is a widely studied research topic in the information

security domain. In this dissertation, we develop and evaluate models that enable us to solve source

code authorship attribution using deep metric learning. In particular, first, we simulate a real-world

setting. Second, we use a number of loss functions from the deep metric learning domain to train

neural network models. Thirdly, we evaluate these different models’ performance on a benchmark

and determine whether there is a quantifiable performance difference between these deep metric

loss functions. Lastly, we demonstrate how we can extend our proposed methodology address the

open world scenario. We argue that these models, and the techniques they take advantage of, are

a stepping stone towards achieving real-world source code authorship attribution that can work

across multiple programming languages and even under large scale obfuscated settings.

iii

ACKNOWLEDGEMENTS

There are many people I must thank for contributing to the two beautiful years of my

experience as a Masters’s student at NDSU.

First and foremost, I would like to thank Dr. Muhammad Zubair Malik wholeheartedly.

He has supported me through thick and thin. His sage-like wisdom kept me on track and focused.

I genuinely believe that he has made a better researcher. He helped me on all sorts of fronts,

from improving my writing to enhancing my understanding of the different nuances of conducting

experiments.

I have also been very fortunate to meet and learn from extremely talented and driven people

here at NDSU. They have always been very patient with me and never flinched from taking out

time to help me. Dr. Saeed Salem has been one of those people. Even though I was his student, he

never made me feel that way and always treated me as a peer. Dr. Gursimran Singh Walia has also

been very kind and considerate to me over the past two years. Our "quick" hallway conversations

have always concluded with a powerful lesson. Your constant uplifting statements got me through

the gloomiest of days. I want to especially acknowledge Dr. Brian Slator for the fun environment

he provided in his class. He made our lives richer with his vigor and batman apparel; I feel poorer

after his untimely passing.

I want to thank Muhammad Usman Sarwar for his constant support through the highs and

the lows of my time here. I will always look up to you for your uncanny ability to play around with

words like a magician and the stable positive aura you always emanate. Thank you for going over

my drafts at a moment’s notice and providing useful and tangible feedback. Apart from the people

at the university, I would also like to extend my warmest thanks to those whom I’ve interacted

with on a day to day basis. From the wonderful neighbors to the heartwarming interactions at the

local grocery store around the block; You all made me feel welcomed.

Lastly, I would like to thank in no particular order Aizaz Qaisarani, Ali Dehalvi, Usman

Zafar, Taimur Hassan, Abdullah Moazzam, and Tazeen Shaukat who all kept me sane during the

early Covid-19 days and patiently listened to all my ramblings and gave me carefully curated advice.

iv

DEDICATION

This thesis is dedicated to my father(ą �όĜą �όĜ). With this, I am now one step closer to your dream for

me. I want to dedicate the following few verses, written in Urdu, taken from a poem by Shahzad

Ahmad to him.

ç �Ŭό˰ë �Ŵ I̫ �όœ ŕόƞ ęĎόĶ Łʶ �ύĜ àٓ Ū �όŊ àž IόǶ �éɞ �όȕï
ç �Ŭό˰ë �Ŵ I̫ �όœ ŕόƞ ç �Ŭ �όį ĕȏ �όŇ ė �όĿ ÿIȊ ç �Ŭό˰êũ �Żόʾ Ęù

çό˭ ÿŎٔàٓ ;èŪόƚ ĕȏ �όŇà HϜ FϝāɛUŷUόŰ ÿIȊ ąI όĵïǸόưêŪ �όŊ
ç �Ŭό˰ë �Ŵ I̫ �όœ ŕόƞ ç̬ �̰ �όň �ôàŏ �όŢ ÿŎٔž IόǶ ÿ�Ŏç �όŰ

ņٔόŉž IόǶ ĕɚ�όķ ũ �Ż
όǇũ �όʠ ĕ Iʑùʺ �όě �ìàٓ ÿIȊë �ŴόĶ ŏǜόƥ
ç �Ŭό˰ ë �Ŵ I̫ �όœ ŕόƞ àٓ Ęù HϜ FϝāɛUŷUόŰ ėόˁ êŪ �όŊ ÿIȊ ç �Ŭǆόư

ÿȋ �èà �í ņό˂ðà ąI όĵï ĕ Iʑ ėƴό˭ ė �όĿ íؔà �ŔI ʉ
όʆç �Ŭό˰ë �Ŵ I̫ �όœ ŕόƞ ėƴό˭ ņٔόŉŪόƞ Ęù ÿŎٔž IόǶ ÿ�Ŏç �όŰ

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF APPENDIX TABLES . xi

1. INTRODUCTION . 1

1.1. Overview . 1

1.2. Contributions and outline . 3

1.2.1. Large scale authorship attribution . 3

1.2.2. Multi-lingual scenario . 3

1.2.3. Obfuscated constraint . 4

1.2.4. Simulated real-world constraint . 4

1.2.5. Close world assumption and open world assumption 4

2. THEORETICAL BACKGROUND FOR DEEP METRIC LEARNING 6

2.1. Deep metric learning . 6

2.2. Contrastive loss . 7

2.3. Triplet loss . 7

2.3.1. Miners for finding interesting triplets . 8

2.3.2. Semi-hard triplet loss . 9

2.3.3. Soft margin variant of triplet loss . 9

2.4. Lifted structure loss . 9

3. SOURCE CODE AUTHORSHIP ATTRIBUTION 1 . 11

3.1. Related work . 11

3.2. Authorship attribution system . 15

vi

3.3. Source code representation . 15

3.4. Dataset collection . 16

3.5. Dataset preparation . 16

3.6. Obfuscation tools . 17

3.7. Dataset preprocessing . 18

3.8. Dataset analysis . 18

3.9. Problem framing . 19

3.10. Loss functions . 22

3.11. Train, validation, and test split for NNs . 22

3.12. Model architecture . 22

3.13. Optimizer . 23

3.14. Batching methodology . 24

3.15. Training parameters . 24

3.16. Classification using embeddings . 25

3.17. Attribution evaluation . 25

4. EXPERIMENT RESULTS . 26

4.1. Embedding evaluation . 26

4.2. Closed world source code authorship attribution . 31

4.2.1. Performance on original source code only dataset 31

4.2.2. Performance on obfuscated source code dataset 40

4.2.3. Performance on simulated real-world dataset 53

4.2.4. Discussion . 64

4.3. Open world setting . 65

4.4. Are the different models language oblivious? . 68

5. FUTURE WORK . 70

6. CONCLUSION . 71

vii

REFERENCES . 72

APPENDIX. SUPPLEMENTARY TABLES . 78

viii

LIST OF TABLES

Table Page

3.1. Results of past source coode authorship attribution systems. 15

4.1. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset. . . . 39

4.2. TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset. . . . 41

4.3. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset. . . . 41

4.4. TH-soft: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages using the original GCJ dataset. 42

4.5. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting. 53

4.6. TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting. 55

4.7. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting. 55

4.8. TH-soft: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under obfuscated setting. 56

4.9. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint. 63

4.10. TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint. 65

4.11. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint. 65

4.12. TH-soft: Accuracy of authorship attribution across different number of source code
files per author, different years and programming languages under simulated real-world
constraint. 66

4.13. Accuracy of authorship attribution across different number of source code files per au-
thor, different unseen programming languages mined from the original GCJ dataset. . . 68

ix

LIST OF FIGURES

Figure Page

3.1. Number of source code files associated with different languages across different datasets.
Here, the y-axis shows the number of source code files on the log scale (base 10) while
the x-axis shows different datasets. 19

3.2. Distribution of source code files length. Here the y-axis shows the number of source
code files while the x-axis shows the length of source code files in number of characters. 20

3.3. Distribution of number of source code files per author. Here, the y-axis shows the
number of authors while the x-axis shows the number of source code files. 21

3.4. CNN model architecture . 23

4.1. Lifted struct: Distribution of inter and intra-cluster distances in training (2018), vali-
dation set (2008), and one of the test years (2020). Here, the red distribution shows the
inter cluster distances while dotted blue distribution shows the intra-cluster distances. . 26

4.2. Triplet semi-hard: Distribution of inter and intra-cluster distances in training (2018),
validation set (2008), and one of the test years (2020). Here, the red distribution shows
the inter cluster distances while dotted blue distribution shows the intra-cluster distances. 27

4.3. Triplet hard: Distribution of inter and intra-cluster distances in training (2018), valida-
tion set (2008), and one of the test years (2020). Here, the red distribution shows the
inter cluster distances while dotted blue distribution shows the intra-cluster distances. . 29

4.4. Triplet hard soft: Distribution of inter and intra-cluster distances in training (2018),
validation set (2008), and one of the test years (2020). Here, the red distribution shows
the inter cluster distances while dotted blue distribution shows the intra-cluster distances. 30

4.5. Loss function performance comparison using the original GCJ dataset 40

4.6. Distributions of accuracy loss when moving from original to obfuscated setting. Here the
y-axis shows the density while the x-axis shows the accuracy difference. The box plot
on top of the distributions shows an alternative visualization of the same distribution
and shares the x-axis with the same distribution. 52

4.7. Loss function performance comparison on obfuscated source code 54

4.8. Loss function performance comparison on simulated real world dataset. 64

4.9. Distributions of accuracy difference across all settings between loss functions. Here the
y-axis shows the density while the x-axis shows the accuracy difference. 66

4.10. Open world setting . 67

x

LIST OF APPENDIX TABLES

Table Page

A.1. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset. . . . 78

A.2. TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages evaluated on obfuscated dataset. . . 79

A.3. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset. . . . 80

A.4. TH-Soft: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under non-obfuscated settings. . 81

A.5. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using obfuscated dataset. 82

A.6. TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting. 83

A.7. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting. 84

A.8. TH-soft: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under obfuscated setting. 85

A.9. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint. 86

A.10.TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint. 87

A.11.TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint. 88

A.12.TH-soft: Accuracy of authorship attribution across different number of source code
files per author, different years and programming languages under simulated real-world
constraint. 89

xi

1. INTRODUCTION

1.1. Overview

Source code often contains distinctive patterns that represent a programmer’s style of writ-

ing code. The source code authorship attribution aims to extract these patterns from the source

code and identify the author. Source code authorship attribution has primarily relied on feature

engineering, where unique features are associated with each author, such as variable naming con-

ventions, use of for, or while loop. However, extracting such features is time-consuming and chal-

lenging. Even for a single author, coding style varies across different programming languages due

to language-specific conventions and constraints. Further, with continuous learning and increased

programming expertise, programmers’ styles keep on evolving.Source code authorship attribution

has numerous applications in the information security domain, such as identifying malicious source

code authors, plagiarism detection [1], and resolving copyrights infringement [2]. Despite its appli-

cation in numerous fields, source code authorship identification can also be a privacy risk for the

programmers who do not want to reveal their true identities, such as contributors to open-source

projects and activists [3].

In the last decade, artificial intelligence has made commendable strides primarily due to

access to large volumes of data and astronomical increase in the processing power of computers.

The AI agents have started making a noticeable impact on our everyday lives ranging from artificial

assistants such as Apple’s Siri to Tesla’s self-driving cars. But the Achilles heel of many of these

agents is the number of training samples required to perform well in a real-world scenario. For

example, Tesla cars have driven around 3 billion miles across the world, but their driving agent has

still not achieved completely autonomous self-driving capability. We want our AI agents to learn

from a small number of training samples just like an average human would recognize a dog or a

cat without seeing tens of thousands of examples of each. The few-shot learning domain came into

existence to deal with learning new concepts from a limited training dataset. The progress in this

domain has been extremely promising in the last few years. For example, they can now perform

person/vehicle re-identification using only a few examples for each instance with a very high success

rate [4, 5, 6].

1

We propose that we can similarly address source code authorship attribution as we address

the vehicle re-identification problem. Instead of images of cars from different viewpoints under

different lighting conditions, we observe source codes authored by programmers to solve various

tasks written across multiple programming languages. Source code authorship attribution is usu-

ally solved by capturing distinctive patterns of style in source code and matching them with a

programmer’s programming style. For a computer, characterizing such patterns of style to capture

an author’s style accurately is challenging. You have to remember that the source code for a com-

puter is an array of numbers. It must understand what a particular combination of numbers means

and the relationship between them to perform any meaningful analysis.

Source code authorship attribution becomes especially hard to address when:

• The number of known source code files associated with each author is limited.

• The attribution has to be done among thousands of authors.

• The source codes are authored in multiple programming languages.

• The source codes are obfuscated.

In this work, we are specifically interested in solving this problem while addressing the

aforementioned points. We do so by taking advantage of the work done in the deep metric learning

domain, which is sometimes used to solve the few-shot learning problems similar to what we are

trying to address. Deep metric learning algorithms enable a neural network to learn a mapping

such that similar inputs are mapped closer to each other in the embedding space, and dissimilar

samples are easily differentiated by being mapped farther apart in the embedding space. We aim

to evaluate such algorithms’ applicability and determine how well they can perform in solving

the source code authorship attribution problem under various constraints. To do so, we choose a

variety of deep metric learning loss functions and train neural network models using those. We

then compare each technique’s performance on a large scale diverse dataset consisting of source

codes written in different programming languages. To make the problem even harder to solve, we

further obfuscate the source codes using off the shelf obfuscators. We want to demonstrate that

the techniques can map source code files originating from the same author closer to each other in

the embedding space even when they are obfuscated.

2

Despite the difficulty of the task, commendable progress has been made. Researchers in

the past have tried to solve this problem using both handcrafted features [7] and by using term-

frequency based features [3]. But the experiments have either been limited to a single programming

language [8, 9] or a small number of authors [10]. The past papers’ proposed techniques are rarely

evaluated on obfuscated source code [11], especially on the same scale as the regular source code.

1.2. Contributions and outline

This dissertation is primarily based on and is an extension of our work published in IEEE

Access in Oct. 2020 [12]. This dissertation shows that we can solve the source code authorship

attribution problem by treating it as an information retrieval task and by leveraging deep metric

learning based loss functions. Our models ingest a source code and output a vector that can then

be used to look up other similar vectors in a priors database to identify the author of the source

code. The latter part enables us to bring down the system’s overall complexity by a large margin

compared to the existing state of the art. Our goal is to determine whether we can learn such

a transformation function to map diverse source code files and use these embeddings to perform

authorship attribution in a real-world like setting. We further want to determine whether there is

a performance difference between different loss functions if trained using a similar configuration.

1.2.1. Large scale authorship attribution

Typically authorship attribution problem is evaluated on the scale of a few thousand authors

at max. In this work, we consider a much larger pool of authors and demonstrate that our proposed

methodologies can work well beyond the traditional upper limit and can even operate when the

number of authors is tens of thousands. We do this by removing the static classifier component

and replacing it with a lazy learner. We use the Nearest Neighbor Classifier (NNC) to store source

code vectors and their respective authors. When our system is queried to determine the author of a

source code file, we map it to a vector using our deep learning model and then ask the NNC to decide

who could be the potential author. The NNC part is critical. It allows us to add more authors

without re-training any classifier from scratch. Because it is an information retrieval problem, the

complexity is drastically lower than traditional classifiers.

1.2.2. Multi-lingual scenario

The source code authorship attribution problem is traditionally evaluated, assuming that

all the source code files are written using a single programming language. However, recent literature

3

has looked into assessing the problem under a multi-lingual scenario but is currently limited to only

two languages together. We take this a step further and consider three programming languages.

For example, under this scenario, it could be that given two source code files that are written in

C++ and Python authored by the same person, We want to determine whether a third source

code file, written in Java, is also authored by that same person or not.

1.2.3. Obfuscated constraint

One of the critical experiments missing in the existing literature is evaluating the approach

using obfuscated source code files, especially on the same scale as the regular source code files. In

the case of Abuhamad et al. [3], they only evaluated on C++ obfuscated source codes with only

up to 120 authors.

In this work, we not only evaluate our approach on obfuscated source codes for each of

the primary languages separately, but we also assess it in a multi-lingual scenario. For example,

under this specific constraint and scenario, given two obfuscated source code files that are written in

C++ and Python authored by the same person, We want to determine whether a third obfuscated

source code file, written in Java, is also written by that same person or not.

1.2.4. Simulated real-world constraint

We make the evaluation more rigorous by further increasing the difficulty of the problem

by trying to solve the problem in a multi-lingual setting where both Obfuscated & the original

version of the source codes are included. To the best of our knowledge, this is the first study that

evaluates a proposed approach for solving the source code authorship attribution problem under

such a rigorous constraint. This enables us to claim more confidently that our work can be used

to solve this problem in the real world where the source codes associated with an author could be

written in multiple programming languages, and some of them could be obfuscated as well.

1.2.5. Close world assumption and open world assumption

The source code authorship attribution problem could either be solved with a closed-world

assumption or an open-world one. Under a closed-world assumption, given a source code, you

would need to identify the most likely author from a set of authors. In an open world scenario,

the system should also be able to say whether the given source code was authored by someone

who is not present in the set of authors. In this work, we primarily work under the closed-world

assumption, but we also demonstrate an extension that can work in the open-world setting as

4

well by utilizing distance-based thresholding. This is possible primarily because we calculate the

distance between different source codes to determine their authors, and we can say that if a source

code vector is farther than a specific distance from all the prior source code vectors, then the source

code is probably authored by someone that our system does not know about.

In Chapter 2, we briefly discuss the relevant mathematical background for deep met-

ric learning and related concepts. We primarily discuss three different deep metric learning loss

functions and a few different mining methods.

In Chapter 3, we formally define the source code authorship attribution problem. Fur-

thermore, source code collection and pre-processing steps are described. We briefly discuss the

obfuscation tools used to obfuscate the source codes. We argue the need for simulated real-world

constraint and discuss how we simulated one. We design our deep learning models for learning

meaningful embeddings. We discuss the training strategies across different loss functions.

In Chapter 4, we evaluate our models under a number of different scenarios described in

the earlier chapter. We also evaluate and discuss the goodness of our embeddings, both qualitatively

and quantitatively. We also compare our performance and results with existing literature.

Finally, in Chapter 5, we identify the remaining challenges and discuss the path moving

forward.

5

2. THEORETICAL BACKGROUND FOR DEEP METRIC

LEARNING

This chapter provides the necessary technical background on deep metric learning. For a

more thorough and slower-paced introduction to underlying concepts such as Neural Networks and

how they work, we recommend the Deep Learning book from Goodfellow et al. [13]. For those who

prefer video content, the Deep Learning course taught by Andrew Ng at Stanford is a good point

to get started as well.

2.1. Deep metric learning

We, as humans, are good at determining the similarity between different objects. Most of

the data that we work with, such as images, are usually represented by numbers, so one can argue

that we can use some distance metric to determine the similarity between two images. However,

there are infinite numbers of distance metrics that one can use. At its core, the idea of deep metric

learning is to learn an embedding function such that the samples that we consider to be similar

should be closer to each other while the samples that we consider to be dissimilar should be further

away according to a selected distance metric. This approach has a number of advantages over

traditional classification based approaches. In traditional approaches, you would get a probability

distribution over a set of known classes. In contrast, a deep metric learning based approach allows

us to reduce the problem to nearest neighbor lookup, which further allows us to solve open set

classification problems. There are essentially three components of deep metric learning, which are

informative input samples, the encoder or the deep learning model, and the loss function. We will

talk about all three in this work wherever it is required.

Assume there’s a dataset X = {x1, . . . , xN} with corresponding labels C = {c1, . . . , cN}.

The idea is to minimize the distance Da,b, where Da,b = D(f(xa), f(xb)), such that ca = cb and

maximize the distance Da,d such that ca ̸= cd. Where f(.) is the deep neural network’s embedding

output. In a deep learning based setting in order to achieve this we try to minimize the following

loss function:

6

min ℓ(d, ((x1, c1), . . . , (xm, cm))). (2.1)

, where d is a distance metric and m, is the batch size.

In this work, the loss functions that we will be discussing use the Squared−L2 distance to

determine the distance between the embeddings. There are other recent works in the deep metric

learning domain that use cosine similarity as well [14, 15, 16].

2.2. Contrastive loss

Contrastive loss [17] is computed using three inputs xi,xj , yij . The idea is to minimize the

distance between a pair of examples with the same class label. We penalize a pair of examples with

different class labels if their distance is smaller than that of the margin parameter α. Following is

the formulation of the contrastive loss function:

J =
1

m

m/2∑
(i,j)

yi,jD
2
i,j + (1− yi,j) [α−Di,j]

2
+ (2.2)

where m is the number of sample in a batch, Di,j = ||f(xi) − f(xj)||2, and the label yi,j ∈ {0, 1}

indicates whether xi,xj is from the same class or not. The α is the margin parameter. The [·]+

operation indicates the hinge function max(0, ·).

2.3. Triplet loss

Triplet loss [18] computed using three values x
(i)
a ,x

(i)
p ,x

(i)
n where x

(i)
a ,x

(i)
p have the same

class labels and x
(i)
a ,x

(i)
n have different class labels. The x

(i)
a term is referred to as an Anchor of

a triplet. The x
(i)
p term is referred to as an Positive of a triplet and x

(i)
n term is referred to as an

Negative of a triplet. The idea is to help the network learn such a mapping from input to output

domain such that the distance between x
(i)
a and x

(i)
n is larger than the distance between x

(i)
a and

x
(i)
p plus the margin parameter α. The cost function is defined as,

J =
3

2m

m/3∑
i

[
D2

ia,ip −D2
ia,in + α

]
+

(2.3)

7

where Dia,ip = ||f(xa
i)− f(xp

i)|| and Dia,in = ||f(xa
i)− f(xn

i)||.

2.3.1. Miners for finding interesting triplets

The idea of miners is motivated by the importance of good informative samples. Up until

now, we focused on the loss function and did not really discuss how we should sample the triplets

from the dataset. As one can imagine, random sampling might give you non-optimal samples to

work with. As the potential number of triplets scales cubically in training set size, you will encounter

more and more non-optimal triplets if the sampling strategy is naive. During the training process,

more and more of those non-optimal triplets are correctly ordered and effectively provide no training

signal [18], thus impairing the remaining training process. The idea is to get informative triplets

from the dataset so that we can learn ’meaningful‘ representation and allow the network to learn

faster. There are two ways to do this, either we mine for samples in an ’offline‘ strategy, or we

mine for them in an ’online‘ strategy. In an offline mining strategy, you would identify meaningful

samples before each epoch starts. So in case of triplet loss, you would mine for ’meaningful‘ triplets

by going through the training dataset and feed in the curated triplets to train the network and

repeat the process after a certain time because the embeddings have been updated. Overall this way

of mining is considered to be not very efficient since we need to do a full pass on the training set to

generate the set of ’meaningful‘ triplets. In an online mining strategy, you would form ’meaningful‘

triplets using samples from within the batch. This is done in two parts; first, the samples in a batch

are not fed as triplets, but independent samples, just like for a normal classification problem, and

secondly, by modifying the vanilla loss function and including the mining process before the actual

loss is computed. As you can imagine, both approaches have their pros and cons. Researchers

often resort to online mining because of its cheap compute cost and decent results on a variety of

datasets.

In literature, there are primarily two kinds of ’interesting‘ triplets, Hard triplets and Semi-

Hard triplets.

2.3.1.1. Hard triplet loss

Hard triplet [19] loss is a variant of triplet loss that dictates that when forming a triplet it

should hold the following property:

8

Dia,ip > Dia,in (2.4)

The motivation behind this triplet formation strategy is that in vanilla triplet loss, most of the

trivial examples are learned to map easily by the mapping function quickly hence making them

uninformative for the rest of the training process. Thus mining hard triplets become a crucial

step for learning throughout the training process. Intuitively, reading very similar source code

originating from different authors (hard negatives) or source codes that are wildly different but are

authored by the same author (hard positives) dramatically helps the network to solve the problem.

2.3.2. Semi-hard triplet loss

Semi-Hard triplet [18] loss is a variant of triplet loss that dictates that when forming a

triplet it should hold the following property:

Dia,ip + α > Dia,in > Dia,ip (2.5)

The motivation behind this triplet formation strategy is that hard triplet loss would select

outliers in the data disproportionately and will not allow the neural network to learn ’normal‘

associations. This is why we choose to form triplets with this new constraint.

2.3.3. Soft margin variant of triplet loss

The role of the hinge function [·]+ in triplet loss is to avoid correcting ’already correct‘

triplets. But for some tasks, it can be beneficial to pull together samples from the same class as

much as possible [20, 21]. For this purpose, it is possible to replace the hinge function with a

smooth approximation using the softplus function. The softplus function has similar behavior to

the hinge, but it decays exponentially instead of having a hard cut-off.

2.4. Lifted structure loss

Lifted Structure loss was presented by Song et al. [22]. The idea is to extract as much

information from each batch as you can. This is done by considering all possible triplets one can

9

form given an anchor and a positive sample in the batch. So the loss function will force to push

away all the possible negatives while bringing the anchor and positive closer together.

J̃i,j = log

 ∑
(i,k)∈N

exp{α−Di,k}+
∑

(j,l)∈N

exp{α−Dj,l}

+Di,j

J̃ =
1

2|P|
∑

(i,j)∈P

max
(
0, J̃i,j

)2
(2.6)

Here, P denotes the set of positive pairs in the batch, N denotes the set of negative pairs

in the batch, and Di,j is the distance between sample i and sample j. So the source code vectors

belonging to one author are pushed together in the distance space, and the source code vectors

belonging to different authors are pushed further apart from each other.

Usually, all of these loss functions are used to fine-tune existing pre-trained vision models

for a specific use case, such as person re-identification.

10

3. SOURCE CODE AUTHORSHIP ATTRIBUTION 1

This chapter discusses the related work and configuration of different experiments conducted

to address the source code authorship attribution problem under various constraints and scenarios.

3.1. Related work

Numerous studies conducted in the past to explore source code authorship attribution

problem. These studies use machine learning based approaches on different handcrafted features,

such as lexical features, syntactical features, semantic features, textual features, and graph-based

features. Table 3.1 shows a summary of the related work, along with the comparison across four

factors: number of authors, programming languages, accuracy, and approach.

Abuhamad et al. [3] proposed a CNN based source code authorship framework. They repre-

sent the source codes using TF-IDF and word embedding based vectors. These code representations

are further fed into CNN to learn ’deep representations‘. They use these deep representations to

train a random forest classifier to extract source code authorship. They used source codes from

Google Code Jam (GCJ) and Github to evaluate their approach. They reported accuracy of 99.4%

for 150 programmers and 96.2% for 1600 programmers. They claim that their approach can scale

to several hundred programmers and across various programming languages.

Abuhamad et al. [11] proposed a recurrent neural network (RNN) based approach to classify

source code authors. Source code files are first encoded in TF-IDF vectors and fed into RNN to

generate the deep feature vectors. Further, the deep representations are fed into a random forest

classifier to classify the source code authors. They used source codes from Google Code Jam (GCJ)

and Github to evaluate their approach. They achieved an accuracy of 96% for 1600 authors in the

GCJ dataset and 94.38% for 745 authors in the Github dataset. Also, they reached an accuracy of

93.42% for 120 authors on obfuscated source code files. They claim that their approach is resilient

to obfuscation and is scalable to multiple languages. However, they created their large-scale dataset

by assuming that if the same username occurs across different years of the code jam dataset, they
1Some of the material in this chapter was taken from a journal paper that was co-authored by Sarim Zafar, Usman

Sarwar, Saeed Salem, and M. Zubair Malik. Sarim Zafar had primary responsibility for devising all the experiments
and conducting them. Sarim Zafar was the primary developer of the conclusions that are advanced here. Sarim Zafar
also drafted and revised all versions of this chapter. M. Zubair Malik served as proofreader and checked the validity
of the content and experiments conducted by Sarim Zafar.

11

must be the same author. They acknowledge that they induce both false positive and false negative

errors to the experiment by making this assumption.

Ullah et al. [23] used a program dependence graph (PDG) along with the deep learning

model to identify the authors from the source code of different languages. First, the PDG is used

to extract the control flow and data variation features from source code files. Then, TF-IDF based

representations of PDG features are fed into a neural network to identify the source code author.

They conducted the experimentation on a GCJ dataset of three programming languages: C++,

Java, C#. These experiments scale to 1000 programmers.

Caliskan-Islam et al. [7] utilized machine learning models to de-anonymize source code

authors. The extensive feature extraction process for programmer code stylometry involves code

parsing. They derive the stylometry feature set of the coding style from abstract syntax trees.

Syntactic features for code stylometry are extracted using a fuzzy parser to generate an abstract

syntax tree. The feature set was composed of a comprehensive set of around 120,000 layout-based,

lexical, and syntactic features. They achieved an accuracy of 94% and 98% over 1600 and 250

programmers, respectively, on the GCJ dataset.

Dauber et al. [9] analyzed the source code files extracted from the open-source version

control systems. They provided an extension of Caliskan-Islam et al. [7] work, which performs

stylistic authorship identification on the source code sample with high accuracy. Following are

some of the highlights of their work:

• They ensemble the output probabilities of sample source code files of the same author for the

same classifier, which results in improved classification.

• They were able to link several samples to the same programmer.

• They used calibration-curves to prove the quality of authorship attribution for a given source

code sample.

Yang et al. [24] proposed a novel approach to determine the authors of Java source code

files. They used Neural Network (NN) based particle swarm optimization (PSO) and lexical, layout,

structural, and syntactic features to perform the source code attribution. The source code is fed

into the NN where the PSO backpropagation algorithm learns the network’s weights. They used

12

3,022 java files authored by 40 authors, extracted from GitHub, To evaluate their approach. They

were able to achieve 91.06% accuracy to identify 40 Java programmers.

Burrow et al. [1] utilized n-gram features of the source code files to perform authorship

attribution. Their work was inspired by the success of using n-gram based features in text author-

ship identification, as reported in [25]. Results were reported on the tokenized representations of

C language source code files for 100 authors.

Frantzeskou et al. [2] presented an approach called Source Code Author Profiles (SCAP).

It utilizes the byte level n-grams and similarity measure to predict the author of the source code.

Experiments were conducted on Java and C++ programming languages with the number of authors

ranging from 6 to 30 programmers. With 30 java authors, they were able to achieve 96.9% accuracy

while they were able to achieve 100% accuracy for 6 C++ programmers.

Code authorship identification of the source code binaries has also been studied in the

past. One such study was conducted by Caliskan et al. [26], where abstract syntax trees based

author identification approach was used to extract authors from binaries. First, syntactical features

are extracted using an abstract syntax tree. Further, these features are fed to the random forest

classifier to yield authors of the binaries. The approach was evaluated using the GCJ dataset and

reported an accuracy of 96% for 100 programmers and 86% accuracy for 600 programmers.

Meng et al. [27] proposed a framework to identify multiple authors in a binary file. They

exploit the features that capture the programming style at the programming block level. The

feature set includes the instruction features, control flow features, data flow features, and context

features. Further, these features are fed into a joint classification model trained with Conditional

Random Field (CRF). The study was conducted on three open-source projects: Apache HTTP

server, the Dyninst binary analysis, instrumentation tool suite, and GCC. The dataset contains

147 binaries of C language and 22 binaries of C++ language. They were able to achieve 65%

accuracy on 284 authors.

Despite the exciting results demonstrated by previous works, different kinds of limitations

persist throughout. First, most of the earlier studies’ features limit the applicability to usually

one language because of the feature engineering step’s handcrafted nature. Features extracted

for one particular language cannot be used to identify authors in other languages. However, the

work by Abuhamad et al. [3, 11] addresses this issue by extracting language-oblivious features.

13

However, They work on the keyword level, which limits the elements of style. Also, existing works

use relatively small scale datasets, where the number of authors ranges from a few hundred to a

few thousand authors.

Numerous loss functions have been presented in previous studies to solve few-shot learning

problems, including contrastive loss [17], triplet loss [18], Quadruplet loss [28], and lifted structured

loss [22]. These loss functions have been shown to perform well to solve few-shot problems. The

contrastive loss function was proposed to minimize the embedding distance between positive pairs

and maximize the distance between the negative pairs. Triplet loss function aims to pull an anchor

point closer to the positive point and increase the distance between the anchor and negative points

by a fixed margin. Quadruplet loss was proposed to address the limitations of triplet loss. Chen

et al. [28] argue that a model trained using triplet loss function would still show a relatively large

intra-class variation. They proposed to address this problem by adding an extra penalty in the loss

function, which forces the two negatives in the quadruplet to maximize the distance between them.

Many approaches proposed for solving few-shot problems, aimed at explicitly solving com-

puter vision based problem of vehicle/person re-identification/verification task [18]. In a verification

task, given two images, we want to determine whether they are the same person/vehicle. Naturally,

re-identification is an extension of this task. Our work takes inspiration from the approaches pro-

posed to solve these problems and argues that our task is analogous to the re-identification task.

Rather than looking at head-shots, we look at source codes and want to determine whether the

same person authored them. So, consequently, we decided to evaluate the applicability of deep

metric learning based loss functions.

Our neural networks models take the source code as input and output a dense vector. We

also applied specific constraints on the embedding vector, such as L2-normalization, as required by

some specific loss functions. Some of the previous works [3, 11] obtain these embeddings from a

NN’s penultimate layer trained using the categorical cross-entropy loss function. We specifically

use Convolutional Neural Network (CNN), based models. Researchers use these type of neural

networks often to solve vision-based tasks, but they have also been shown to work well on NLP

related tasks as well[29]. We use models based on this due to its ability to train faster as compared

to LSTM and GRU, especially when you are considering very long sequences. This is due to the

inherent time/space complexity advantage of CNNs over RNN based models.

14

Table 3.1. Results of past source coode authorship attribution systems.

Reference No. of Authors Languages Accuracy (%) Approach
Pellin [30] 2 Java 88.47% SVM with tree kernel

MacDonell et al. [31] 7 C++ 81.10% Machine Learning (FNN). Statistical analysis (MDA)
MacDonell et al. [31] 2 C++ 88.00% Machine learning (case-based reasoning)
Frantzeskou et al. [2] 8 C++ 100.00% Rank similarity using KNN
Burrows et al. [32] 10 C 76.78% Information retrieval using mean reciprocal ranking

Elenbogen & Seliya [33] 12 C++ 74.70% Statistical analysis using decision tree
Lange & Mancoridis [34] 20 Java 55.00% Rank similarity measurements (nearest neighbor)

Krsul & Spafford [35] 29 C 73.00% Statistical analysis (discriminant analysis)
Frantzeskou et al. [2] 30 C++ 96.90% Rank similarity measurements

Yang et al. [24] 40 Java 91.10 % NN with particle swarm optimization
Ding & Samadzadeh [8] 46 Java 62.70% Statistical analysis using canonical discriminant

Burrows et al. [25] 100 C, C++ 79.90% Support Vector Machines
Burrows et al. [25] 100 C, C++ 80.37% Random Forest

Caliskan-Islam et al. [7] 229 Python 53.91% Random Forest
Meng et al. [27] 284 C, C++ Binaries 65.00% Combined model with Conditional Random Field (CRF)

Farhan Ullah et al. [23] 1000 C# 98% PDG with Neural Network
Farhan Ullah et al. [23] 1000 C++ 100% PDG with Neural Network
Farhan Ullah et al. [23] 1000 Java 98% PDG with Neural Network
Caliskan-Islam et al. [7] 1,600 C++ 92.83% Random Forest

Abuhamad et al. [11] 1000 Java 95.8% Stacked Convolutional Neural Network
Abuhamad et al. [11] 1500 Python 94.6% Stacked Convolutional Neural Network
Abuhamad et al. [11] 1600 C++ 96.2% Stacked Convolutional Neural Network
Abuhamad et al. [3] 566 C 94.80% RNN along with Random Forest
Abuhamad et al. [3] 1,952 Java 97.24% RNN along with Random Forest
Abuhamad et al. [3] 3,458 Python 96.20% RNN along with Random Forest
Abuhamad et al. [3] 8,903 C++ 92.30% RNN along with Random Forest

3.2. Authorship attribution system

The authorship attribution system consists of two primary components. One is the deep

neural network that encodes the source code files in fixed dimensional vectors, and second, a lookup

system takes a set of source code vectors of ’known‘ authors and takes some query vectors of whom

we want to know the authors. The lookup system then assigns each vector an author based on the

priors. For the lookup system, we choose to use a simple Nearest Neighbor Classifier(NNC). Usage

of NNC is an intuitive choice here as the same author’s vectors are supposed to be close to each

other in the embedding space as compared to vectors of codes authored by others. To determine

the distance between two vectors, we choose to work with L1 distance. It has been shown to work

very well in high dimensional space by Aggarwal et al. [36]. Our experiments suggest a modest

improvement when we use L1 distance instead of L2.

3.3. Source code representation

The source codes cannot be fed into the neural network as is because it is essentially a

string. There are many ways to compute a vector representation of a given text that can then be

fed to a neural network. It can be represented as a fixed size term frequency vector. It can also

15

be represented as a sequence of vector tokens where each token represents a character or a word.

In this work, we chose to represent the source code as a sequence of characters. Character-level

representation allows us to maximize the number of styles our model can capture from the source

codes. For example, in a term-based representation, if the tokenizer has not seen a particular

term in the camel case but only in the upper case, it would be treated as a UNK (unknown)

token. Whereas in a character-level encoding, we can still represent this new term as a sequence of

previously known upper and lower case characters. We first convert each character to an integer,

and then we map these series of integers to a sequence of vectors. This mapping can be done

either by one-hot encoding the integers or by learning an embedding matrix that can map the said

integers to a vector. This representation almost always will result in variable-sized sequences, and

Tensorflow [37] requires the sequence sizes to remain constant within a batch. To address this, we

can choose a cut-off point and pad each sequence of integers with zeros. We mask these zeros during

the training and testing process so that the network does not use this information. Even though

we chose to work with character level tokens in this work, there is a drawback associated with it.

You can end up with really long sequences, and that can increase computation requirements.

3.4. Dataset collection

For this dissertation, we chose to work with the Google Code Jam (GCJ) 2 dataset. GCJ is

a global coding competition that is held annually online. All of the past and present submissions

are publicly available. The GCJ dataset compiled out of the past submissions to the competition

over the years. In particular, we downloaded this dataset from this link3.

3.5. Dataset preparation

In the GCJ dataset for each year, we can see the source code submission of candidates, the

source code file name, and their username. From here on, we can consider many approaches to

prepare the dataset.

• We can assume that the same username across all the years represents the same author. This

way, we can combine the data across all the years resulting in a massive dataset.

• We can treat each year as a separate dataset altogether. This will help us to avoid inducing

false positive and false negative errors in the dataset preparation phase.
2https://codingcompetitions.withgoogle.com/codejam
3https://github.com/Jur1cek/gcj-dataset

16

https://codingcompetitions.withgoogle.com/codejam
https://github.com/Jur1cek/gcj-dataset

• We can assume that an author never changes the username in the competition and remove

any occurrence from the later years and only keep the code files from the first year the author

participated.

• We can assume that an author never re-appears in the competition again and rename all the

usernames and assign them a unique id and then combine data across the years.

In this work, we choose to treat each year as a separate dataset. We strongly believe that

making assumptions that can induce false positive or false negative errors to increase authors’ scale

can lead to misleading results. Abuhamad et al. chose to work with the first assumption, where

they combine authors with the same username across the years to demonstrate the performance of

their proposed approach [3]. However, they noted that their dataset preparation approach could

induce false-positive errors. We choose to work primarily with the three most popular languages in

the competition CPP, Python, and Java. We assess the popularity of the programming languages

by looking at the number of source code files associated with each language. To determine a source

code’s programming language, we look at a source code file’s extension.

3.6. Obfuscation tools

We obfuscate the source code files belonging to each programming language to teach our

models how to perform authorship attribution even when the source codes are obfuscated. Numer-

ous obfuscation tools are available for the programming languages under consideration. However,

we decide to use PyObfx 4, Stunnix 5, and JavaSourceCodeObfuscator6 to obfuscate Python, C++

and Java source codes respectively. We use the default settings for all the obfuscation tools. It is

also important to note that these tools obfuscate the source code such that the code’s functionality

remains the same.

The PyObfx tool is a popular python source code obfuscator that obfuscates the source

code by giving a cryptic look to the strings, integers, floats, and booleans. Moreover, it also

changes the variables name and imported libraries’ names to random non-recognizable strings.

Stunnix is a sophisticated C/C++ obfuscator that replaces the symbol name, numeric constants

with non-recognizable strings. It also removes the spaces, tabs, and comments from the source
4https://github.com/PyObfx/PyObfx
5http://stunnix.com/prod/cxxo
6https://github.com/veylence/JavaSourceCodeObfuscator

17

https://github.com/PyObfx/PyObfx
http://stunnix.com/prod/cxxo
https://github.com/veylence/JavaSourceCodeObfuscator

code. The JavaSourceCodeObfuscator tool is an off-the-shelf Java source code obfuscator that

renames the classes, interfaces, methods, parameters, fields, and variables to random alphabetic

non-recognizable strings. All the above-mentioned obfuscation tools are randomized such that

re-executing the obfuscator on the same source code yields different results.

3.7. Dataset preprocessing

We performed the following pre-processing steps:

• We first remove any duplicate source codes.

• We only keep source code files with the following extension: cpp, Java, py, python3, python,

cc, cxx, and c++

• We run obfuscation tools on the remaining source code files.

• We remove the obfuscated version of the source code files that were empty. It could be due

to many reasons. Either because of the timeout or some error in the obfuscation process.

• We remove any file that has 400 characters or less content. The reason for doing so is to

remove tiny source code files. We arrived at the 400 number by calculating the 5th percentile

of all the source code file lengths.

• We remove any author that has only one source code file

• We also cut-off excessively long source code files. We do this by only keeping the first 7200

characters of each source code file. We arrived at the 7200 number by calculating the 95th

percentile of all the source code file lengths.

3.8. Dataset analysis

In this section we briefly discuss our findings about the prepared dataset. After applying all

the pre-processing steps we are left with 3,487,865 source code files. These include obfuscated, and

original source code files across 13 years. We note that we end up with slightly more obfuscated

files as compared to original source-code files due the minimum length cut-off. In the figure 3.1 you

can see the porgramming language distribution across train,validation and test sets.

18

Test Dataset Train Dataset Validation Dataset

104

105

106
No

. o
f c

od
e

fil
es

 o
n

lo
g

sc
al

e C++
Java
Python

Figure 3.1. Number of source code files associated with different languages across different datasets.
Here, the y-axis shows the number of source code files on the log scale (base 10) while the x-axis
shows different datasets.

Figure 3.2 shows the distribution of the length of the source code files after pre-processing

for the training dataset. According to this distribution, 50% of the source code files have a length

of fewer than 2026 characters.

Moreover, the distribution of the number of source code files against the number of authors

can be seen in figure 3.3 for the training dataset. We limit the visualization to 80 source code

files in figure 3.3, as the distribution is right-tailed. According to this distribution, 50% of the

authors have less than 12 source code files. While the average number of files associated with

an author within 2018 was 18.65. We discovered that 21076 authors wrote in one programming

language, while 1535 wrote in two programming languages, and only 73 authors wrote in all three

programming languages in the year 2018.

3.9. Problem framing

As briefly discussed in the introduction, We evaluate our proposed approach to solving

source code authorship attribution under three constraints. It is important to note that we assume

19

1000 2000 3000 4000 5000 6000 7000
Length of source code in characters

0

5000

10000

15000

20000
No

. o
f s

ou
rc

e
co

de
s

Figure 3.2. Distribution of source code files length. Here the y-axis shows the number of source
code files while the x-axis shows the length of source code files in number of characters.

that we are primarily addressing the problem in the close world domain. Given n number of authors

and 4, 6, or 8 source code files as priors for each author, we are asked to perform attribution on n

source code files where each of those files belongs to precisely one author.

First, we apply the constraint that we will only use the original source codes from the

competition to evaluate the models.

Secondly, we apply the constraint that we will evaluate the different models using only the

obfuscated version of the source codes mined from the GCJ competition.

We argue that the first constraint is too relaxed as in the real world, all of the files would not

be what the author originally wrote. We also believe that the second constraint is too unrealistic.

In the real world, All of the files would not be obfuscated. It is safe to assume that we would have a

mix of obfuscated source codes and original/non-obfuscated source codes to work in the real world.

We also argue that the source codes would not be limited to one specific programming language

in the real world because many programmers can write code in multiple programming languages.

Hence, we combine the first two constraints to simulate a real-world constraint. We apply the

20

0 10 20 30 40 50 60 70 80
No. of source code files

0

1000

2000

3000

4000
No

. o
f a

ut
ho

rs

Figure 3.3. Distribution of number of source code files per author. Here, the y-axis shows the
number of authors while the x-axis shows the number of source code files.

constraint that a source code being considered can be the original source code or an obfuscated

version.

For each constraint discussed above, we evaluate different approaches in two scenarios. In

the first scenario, all the training and test source codes belong to only one programming language.

In the second scenario, we sample the training and the testing files from all the source code files

associated with an author regardless of their programming language. As we are dealing with three

programming languages, we will report each programming language’s results separately, and we

will also report results for the ’Mixed‘ scenario.

Moreover, we hypothesize that the character-level representation, obfuscation, and the

multi-lingual constraint, should force our models to extract meaningful obfuscation-oblivious stylis-

tic features that can even work on programming languages the model has not seen before. To test

this hypothesis, we create a separate dataset. We extract source code from the GCJ competi-

tion of the year 2020 written in C, C#, Javascript, Ruby, PHP, and Go and evaluate our models’

performance on these.

21

Lastly, we go beyond the closed world approach and address the problem using data from

the year 2008 with an open world assumption under the simulated real-world constraint.

3.10. Loss functions

We evaluated the following loss functions in this work:

• Triplet semi-hard loss (TSH)

• Triplet hard loss (TH)

• Soft margin variant of triplet hard loss (TH-Soft)

• Lifted structured loss (LS)

3.11. Train, validation, and test split for NNs

We use all the source codes in the year 2018 to train the NNs with different loss functions.

This means that we train the NN on the simulated real-world constraint across all three program-

ming languages. We used the year 2008 as validation to fine-tune the hyper-parameters. Lastly,

we use the rest of the individual years as test datasets.

3.12. Model architecture

We use a CNN based architecture inspired by Ruder et al. [29]. Our network takes a

character level vector as an input. Here, each character is represented by an integer, as discussed

before. Further, the sequence is passed through an embedding layer such that it maps each integer

onto a 128-dimensional embedding vector. After the embedding layer, we use the spatial dropout

layer [38] with a 25% dropout. This helps the neural network to avoid overfitting. We then use

four 1-D convolution layers consisting of 512 filters with kernel sizes of 2, 3, 5, and 7, respectively.

The convolution filter weights were initialized using he-normal initialization [39]. Further, to add

non-linearity we applied ReLU activation function [40]. To condense the feature maps and retain

the most important features, we use global max-pooling operation over time [41], which outputs

four 512 dimensional vectors against each convolution layer. We concatenated these features to

form a 2048 dimensional vector and applied a 50% dropout on this vector’s activations. We feed

this output to a 256-dimensional dense layer. After this, depending upon the choice of the loss

function, we modify the architecture. For lifted structure loss, we apply the ReLU activation

function on the output of the dense layer. The weights of the dense layer were initialized using

22

Figure 3.4. CNN model architecture

he-normal initialization [39] in this case. We applied the Tanh activation function on the dense

layer output for the triplet loss functions. Every dimension has an upper and lower bound because

of this activation. We follow this by an l2 normalization on the resultant vector. The weights of the

dense layer were initialized using glorot-uniform initialization [42]. The hyper-parameters of our

CNN architecture were chosen after various iterations. Figure 3.4 shows the high-level illustration

of our CNN architecture.

3.13. Optimizer

We used rectified adam presented by Liu et al. [43] in conjunction with the Lookahead

technique proposed by Zhang et al. [44] to train our deep learning models. Liu et al. claim that

adaptive learning rate based optimizers struggle to generalize during the first few batch updates

and have very high variance during training. They address these problems as mentioned earlier

23

by utilizing warm up with a low initial earning rate and not using momentum for the first few

training iterations. There is another reason for using learning rate warm-up as it has been argued

that by taking big steps at the start of the training process, we can get stuck in a local minima.

As for Lookahead, the algorithm chooses a search direction by looking ahead at the ’fast weights‘

sequence generated by another optimizer. We would encourage the readers to read the respective

papers to gain more intuition.

3.14. Batching methodology

Analyzing the dataset reveals that source code files are not evenly spread across authors,

so randomly selecting authors and sampling files for training might induce a bias as authors with

more files might not get proper representation. To address this concern, we sample an author based

on the prior distribution of source code files such that the author with more source code files gets

sampled more often in each iteration, but we only select two source code files from that author

and put them in a batch. We repeat the process while ensuring that no author appears more than

twice in a batch. So with this in mind, we selected a batch size of 64, which means that we have

precisely 32 authors per batch. This process is called massaging the batch and is usually used in

imbalanced class problems.

3.15. Training parameters

Usually, these loss functions are used to fine-tune pre-trained NNs designed to solve image

classification problems. Instead of first pre-training our model and then fine-tuning it similarly, we

show that we can train our NN from scratch as well. We train all of the neural networks for 100,000

train steps. We utilize the learning rate warm-up, as it has been shown to work well to stabilize

the training process. The learning rate was increased linearly from 0 to 1e − 3 in the first 1% of

the training process, and then it was decreased linearly from 1e − 3 to 1e − 5 over the rest of the

training process. The intuition behind reducing the learning rate in our context is straightforward.

We don’t want an outlier batch to drastically modify our neural networks’ weights, especially in

the later parts of the training process. We noted that this technique allows the network to converge

more stably than a fixed learning rate based training regime. We also kept the highest learning

rate to be 1− e3 because anything higher than that would cause the network to start diverging.

Before we proceed, the reader must note that we are not claiming that one loss function

is objectively better than the other. We are just reporting the results for our particular bench-

24

mark with the configuration, as mentioned earlier. It is completely possible that a change in the

configuration can change the standing of different loss functions.

Both hard triplet and its soft margin variant collapsed after training for a couple of epochs.

Collapsing here means that the network would learn to map everything to a single point. We tried

to inspect if the optimizers’ specific parameters were causing it, but modifying them did not work.

We also tried changing the learning rate and applied gradient clipping, but that didn’t help either.

We switched to the Stochastic Gradient Descent Optimizer to see if we could train the network, but

embedding yielded were stuck in a local minima. We did, however, find an alternative methodology

to train the networks with these loss functions. We first train the neural network with the TSH

loss function for 35% of the training steps. We then switch the loss function to either TH or its soft

margin variant. This is possible because they all share the same architecture. We hypothesize that

a NN trained using the TSH loss function allows it not to be stuck in the local minima as before,

and neither does the network’s embedding’s collapse to a single point.

3.16. Classification using embeddings

Intuitively, We use the Nearest Neighbor classifier(NNC) to perform authorship attribution

using the learned embeddings. Previously more complex classifiers have been used to perform the

attribution step but using the deep metric learning based loss function allows us to the NNC, which

is much more scalable than other typically used classifiers.

3.17. Attribution evaluation

We use the accuracy metric to determine our proposed approach’s performance in line with

previous works that try to address this problem. We also calculate top-3 accuracy to show that

even if the nearest source code did not belong to the correct author, we could drastically increase

our approach’s performance if we look at the top 3 candidates instead. Researchers usually employ

a k-fold split in the existing literature to report results over a fixed set of sampled files. We diverge

from this because the associated number of files with each author is different; we could induce a

sampling bias because of this. To address this concern, We repeat every experiment ten times and

report the scores’ average and standard deviation. This is done to show the stability of the method

and demonstrate that there is no selection bias in our results.

25

4. EXPERIMENT RESULTS

In this chapter, we discuss the results of the different experiments proposed in the last

chapter. We do not discuss the results for all of the years for the sake of brevity. All the results

for all of the years have been added in the appendix located at the end of the thesis.

4.1. Embedding evaluation

We visualize the intra-cluster and inter-cluster distance distributions in the year 2018, 2008,

and 2020 which are our training, validation, and one of the test years, respectively. Here, a cluster

represents a unique author, and we consider all of the files regardless of the programming language

and whether it was obfuscated or not. For each author in the training set, we calculated the mean of

the Manhattan-distances between the embedding vectors of all the source code files to get the mean

intra-cluster distance. Further, we also calculated the mean Manhattan-distances between the mean

of each cluster’s embedding vectors to get the mean inter-cluster distance between the clusters. This

kind of analysis aims to get an idea of how well behaved the learned embedding function is without

running further authorship attribution experiments. If the distribution structures are visually

similar across train, validation, and test and similar overlap between the two distributions, we can

get a good idea of how well it would perform in the tests moving forward. This was one of the ways

we were able to re-iterate quickly over our proposed NN architectures.

Figure 4.1 shows the inter and intra-cluster distance distributions for Lifted Struct Loss

based embeddings. For the year 2018, The average intra-cluster is 46.47±16.21 while the average

0 20 40 60 80 100 120 140
Manhattan-Distance

0

200

400

600

800

1000

1200

1400

No
. o

f c
lu

st
er

s

(a) Inter and Intra cluster dis-
tances of the year 2018.

20 40 60 80 100 120 140
Manhattan-Distance

0

100

200

300

400

No
. o

f c
lu

st
er

s

(b) Inter and Intra cluster dis-
tances of the year 2008.

0 20 40 60 80 100 120 140
Manhattan-Distance

0

500

1000

1500

2000

2500

No
. o

f c
lu

st
er

s

(c) Inter and Intra cluster dis-
tances of the year 2020.

Figure 4.1. Lifted struct: Distribution of inter and intra-cluster distances in training (2018),
validation set (2008), and one of the test years (2020). Here, the red distribution shows the inter
cluster distances while dotted blue distribution shows the intra-cluster distances.

26

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Manhattan-Distance

0

250

500

750

1000

1250

1500

No
. o

f c
lu

st
er

s

(a) Inter and Intra cluster dis-
tances of the year 2018.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Manhattan-Distance

0

100

200

300

400

No
. o

f c
lu

st
er

s

(b) Inter and Intra cluster dis-
tances of the year 2008.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Manhattan-Distance

0

500

1000

1500

2000

2500

No
. o

f c
lu

st
er

s

(c) Inter and Intra cluster dis-
tances of the year 2020.

Figure 4.2. Triplet semi-hard: Distribution of inter and intra-cluster distances in training (2018),
validation set (2008), and one of the test years (2020). Here, the red distribution shows the inter
cluster distances while dotted blue distribution shows the intra-cluster distances.

inter-cluster distance is 119.03±6.80. We note that the minimum inter-cluster for 2018 is 93.52,

while the maximum intra-cluster distance is 128.69. We also noted that only 158, which is 0.69%

of the total number of clusters, have an intra-cluster distance greater than the minimum of inter-

cluster distances.

For the year 2008, The average intra-cluster is 45.38±14.99. In comparison, the average

inter-cluster distance is 97.20±6.07. The minimum inter-cluster for the year 2008 is 78.20, while

the maximum intra-cluster distance is 140.88. We also note that only 133, which is 2.53% of the

total number of clusters, have an intra-cluster distance greater than the minimum of inter-cluster

distances.

For the year 2020, The average intra-cluster is 48.79±19.61. At the same time, the average

inter-cluster distance is 114.13±7.65. The minimum inter-cluster for the year 2020 is 89.08, while

the maximum intra-cluster distance is 128.69. We also note that only 1600, which is 3.89% of the

total number of clusters, have an intra-cluster distance greater than the minimum of inter-cluster

distances.

We observe that the intra-cluster distances are significantly lower than the inter-cluster

distances across different years. This means that the embedding space’s distance can discriminate

between different authors’ source code files. We can also see that the distributions across training,

validation, and test sets are quite similar, reflecting that our model did not overfit and generalize

well.

Figure 4.2 shows the inter and intra-cluster distance distributions for Triplet SemiHard

Loss based embeddings. It is important to note that the distance ranges between triplet based

27

loss functions and Lifted Struct loss are because we employed normalization in one and not the

other. For 2018, The average intra-cluster is 4.21±2.27, while the average inter-cluster distance is

13.21±1.06. The minimum inter-cluster for the year 2018 is 9.79, while the maximum intra-cluster

distance is 18.67. We also note that only 431, which is 1.90% of the total number of clusters, have

an intra-cluster distance greater than the minimum of inter-cluster distances.

For the year 2008, The average intra-cluster is 4.71±2.32. In comparison, the average

inter-cluster distance is 13.14±0.83. The minimum inter-cluster for the year 2008 is 10.41, while

the maximum intra-cluster distance is 19.07. We also note that only 100, which is 1.90% of the

total number of clusters, have an intra-cluster distance greater than the minimum of inter-cluster

distances.

For the year 2020, The average intra-cluster is 4.31±2.43. In contrast, the average inter-

cluster distance is 12.75±1.15. The minimum inter-cluster for the year 2020 is 9.25, while the

maximum intra-cluster distance is 15.34. We also note that only 1841, which is 4.48% of the

total number of clusters, have an intra-cluster distance greater than the minimum of inter-cluster

distances.

We observe that the intra-cluster distances are again significantly lower than the inter-

cluster distances across different years. This means that the embedding space’s distance can dis-

criminate between different authors’ source code files reliably. We can also see that the distributions

across training, validation, and test sets are quite similar, reflecting that our model did not overfit

and generalize well. Although it is hard to compare these numbers with that of the Lifted Struct

Loss based embeddings, we can observe a slight degradation when we look at the distribution

overlap for the year 2020.

Figure 4.3 shows the inter and intra-cluster distance distributions for Triplet Hard Loss

based embeddings. For the year 2018, The average intra-cluster is 4.97±2.49, while the average

inter-cluster distance is 13.96±1.05. The minimum inter-cluster for the year 2018 is 10.18, while

the maximum intra-cluster distance is 18.92. We also note that only 716, which is 3.15% of the

total number of clusters, have an intra-cluster distance greater than the minimum of inter-cluster

distances.

For the year 2008, The average intra-cluster is 5.39±2.51. In comparison, the average

inter-cluster distance is 13.97±0.89. The minimum inter-cluster for the year 2008 is 11.10, while

28

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Manhattan-Distance

0

200

400

600

800

1000

1200

1400
No

. o
f c

lu
st

er
s

(a) Inter and Intra cluster dis-
tances of the year 2018.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Manhattan-Distance

0

100

200

300

400

No
. o

f c
lu

st
er

s

(b) Inter and Intra cluster dis-
tances of the year 2008.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Manhattan-Distance

0

500

1000

1500

2000

No
. o

f c
lu

st
er

s

(c) Inter and Intra cluster dis-
tances of the year 2020.

Figure 4.3. Triplet hard: Distribution of inter and intra-cluster distances in training (2018), valida-
tion set (2008), and one of the test years (2020). Here, the red distribution shows the inter cluster
distances while dotted blue distribution shows the intra-cluster distances.

the maximum intra-cluster distance is 20.37. We also note that only 132, which is 2.51% of the

total number of clusters, have an intra-cluster distance greater than the minimum of inter-cluster

distances.

For the year 2020, The average intra-cluster is 5.08±2.66. In contrast, the average inter-

cluster distance is 13.57±1.13. The minimum inter-cluster for the year 2020 is 9.85, while the

maximum intra-cluster distance is 15.78. We also note that only 2381, which is 5.80% of the total

number of clusters, have an intra-cluster distance to be greater than the minimum of inter-cluster

distances.

We observe that the intra-cluster distances are again significantly lower than the inter-

cluster distances across different years. This means that the embedding space’s distance can dis-

criminate well between different authors’ source code files. We can also see that the distributions

across training, validation, and test sets are quite similar, reflecting that our model did not overfit

and generalize well. However, we notice a slight degradation in performance when comparing the

distance numbers with Triplet SemiHard based embedding.

Figure 4.4 shows the inter and intra-cluster distance distributions for Triplet Hard Soft

Margin Variant Loss based embeddings. For the year 2018, The average intra-cluster is 6.18±2.50,

while the average inter-cluster distance is 14.04±0.91. The minimum inter-cluster for the year 2018

is 10.47, while the maximum intra-cluster distance is 17.54. We also note that only 1267, which is

5.58% of the total number of clusters, have an intra-cluster distance greater than the minimum of

inter-cluster distances.

29

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Manhattan-Distance

0

200

400

600

800

1000

1200
No

. o
f c

lu
st

er
s

(a) Inter and Intra cluster dis-
tances of the year 2018.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Manhattan-Distance

0

50

100

150

200

250

300

350

No
. o

f c
lu

st
er

s

(b) Inter and Intra cluster dis-
tances of the year 2008.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Manhattan-Distance

0

500

1000

1500

2000

No
. o

f c
lu

st
er

s

(c) Inter and Intra cluster dis-
tances of the year 2020.

Figure 4.4. Triplet hard soft: Distribution of inter and intra-cluster distances in training (2018),
validation set (2008), and one of the test years (2020). Here, the red distribution shows the inter
cluster distances while dotted blue distribution shows the intra-cluster distances.

For the year 2008, The average intra-cluster is 6.51±2.34. At the same time, the average

inter-cluster distance is 13.00±0.85. The minimum inter-cluster for the year 2008 is 10.70, while

the maximum intra-cluster distance is 18.27. We also note that only 263, which is 5.01% of the

total number of clusters, have an intra-cluster distance greater than the minimum of inter-cluster

distances.

For the year 2020, The average intra-cluster is 6.23±2.72. In contrast, the average inter-

cluster distance is 13.66±0.99. The minimum inter-cluster for the year 2020 is 10.02, while the

maximum intra-cluster distance is 17.45. We also noted that only 4133, which is 10.07% of the

total number of clusters, were found to have an intra-cluster distance greater than the minimum of

inter-cluster distances.

We observe that the intra-cluster distances are again significantly lower than the inter-

cluster distances across different years. This means that the embedding space’s distance can dis-

criminate between the source code files written by different authors. We can also see that the

distributions across training, validation, and test sets are quite similar, reflecting that our model

did not overfit and generalize well. We, however, again notice a degradation in performance when

comparing the distance numbers with Triplet SemiHard and Triplet Hard based embedding.

According to this preliminary analysis, we thought that LS based embeddings would yield

the best performance while TSH based embedding would be in second place. Third and fourth

place would be secured by TH and TH-Soft, respectively. However, further analysis upsets our

early guesses.

30

4.2. Closed world source code authorship attribution

In this section, we will discuss results from all the different constraints across all the loss

functions.

4.2.1. Performance on original source code only dataset

This subsection discusses and compares the results across different loss functions using only

the original source code mined for the GCJ dataset.

4.2.1.1. Five files per author

LS based embeddings achieve an accuracy of 84.79±0.4% in the mixed language scenario

for the year 2018. We see an average -1.63±3.44% difference in the accuracy of all years from the

year 2018 in this particular scenario. For C++, these embeddings achieve an 88.18±0.2% accuracy

for 2018 with an average difference of -2.95±2.98% compared to the rest of the years. While

for Python, it achieves an accuracy of 82.26±0.5% in the year 2018 with an average difference

of 4.32±6.0% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 84.79±0.4% in the year 2018 with an average difference of -1.0±3.51% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 89.14±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 4.35 compared to simple accuracy for the year 2018.

We note an average 5.3±1.04% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 92.12±0.3% for the year 2018, resulting in a

difference of 3.94 compared to simple accuracy for the year 2018. We note an average 4.98±0.95%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 87.75±0.3% for the year 2018, resulting in a difference of

5.49 compared to simple accuracy for the year 2018. We note an average 4.99±1.33% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 89.42±0.4% for the year 2018, resulting in a difference of 4.63 compared to

simple accuracy for the year 2018. We note an average 5.5±1.05% difference in the top-3 accuracy

and simple accuracy across all years.

TSH based embeddings achieve an accuracy of 75.87±0.2% in the mixed language scenario

for the year 2018. We see an average 2.03±3.64% difference in the accuracy of all years from the year

31

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 80.37±0.2%

in the year 2018 with an average difference of -1.4±3.31% compared to the rest of the years. While

for Python, they achieve an accuracy of 71.4±1.2% in the year 2018 with an average difference

of 11.88±7.73% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 75.77±0.5% in the year 2018 with an average difference of 4.75±4.36% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 81.05±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 5.18 compared to simple accuracy for the year 2018.

We note an average 5.92±1.06% difference in the top-3 accuracy and simple accuracy across all

years. For C++, these embeddings achieve a top-3 accuracy of 84.81±0.5% for the year 2018,

resulting in a difference of 4.44 compared to simple accuracy for the year 2018. We note an average

5.76±1.21% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 77.0±0.3% for the year 2018, resulting in a difference

of 5.6 compared to simple accuracy for the year 2018. We note an average 5.44±1.26% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 80.55±0.4% for the year 2018, resulting in a difference of 4.78 compared to

simple accuracy for the year 2018. We note an average 5.37±0.93% difference in the top-3 accuracy

and simple accuracy across all years.

TH based embeddings achieve an accuracy of 74.4±0.3% in the mixed language scenario for

the year 2018. We see an average 2.08±3.63% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 78.6±0.3% in

the year 2018 with an average difference of -1.0±3.07% compared to the rest of the years. While

for Python, they achieve an accuracy of 70.22±0.9% in the year 2018 with an average difference

of 11.64±7.58% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 74.79±0.8% in the year 2018 with an average difference of 3.93±4.55% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 79.49±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 5.09 compared to simple accuracy for the year 2018. We

note an average 6.11±1.04% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 83.31±0.4% for the year 2018, resulting in

32

a difference of 4.71 compared to simple accuracy for the year 2018. We note an average 6.1±1.2%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 76.35±0.7% for the year 2018, which results in a difference

of 6.13 compared to simple accuracy for the year 2018. We note an average 6.03±1.36% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 79.37±1.0% for the year 2018, resulting in a difference of 4.58 compared to

simple accuracy for the year 2018. We note an average 5.62±1.15% difference in the top-3 accuracy

and simple accuracy across all years.

TH-soft based embeddings achieve an accuracy of 79.57±0.2% in the mixed language

scenario for the year 2018. We see an average 0.45±4.07% difference in the accuracy of all years

from the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

82.82±0.3% in the year 2018 with an average difference of -1.86±3.72% compared to the rest of the

years. While for Python, they achieve an accuracy of 76.14±0.6% in the year 2018 with an average

difference of 9.36±7.62% compared to the rest of the years. Lastly, for Java, these embeddings

achieve an accuracy of 81.06±0.7% in the year 2018 with an average difference of 1.56±4.37%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 84.37±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 4.8 compared to simple accuracy for the year 2018. We

note an average 5.48±0.97% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 87.1±0.2% for the year 2018, resulting in a

difference of 4.28 compared to simple accuracy for the year 2018. We note an average 5.42±1.01%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 82.13±0.5% for the year 2018, which results in a difference

of 5.99 compared to simple accuracy for the year 2018. We note an average 5.05±1.19% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 85.81±0.5% for the year 2018, resulting in a difference of 4.75 compared to

simple accuracy for the year 2018. We note an average 5.18±1.33% difference in the top-3 accuracy

and simple accuracy across all years.

33

4.2.1.2. Seven files per author

LS based embeddings achieve an accuracy of 88.99±0.3% in the mixed language scenario for

the year 2018. We see an average -0.33±2.99% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 91.86±0.2% in

the year 2018 with an average difference of -1.61±2.43% compared to the rest of the years. While

for Python, they achieve an accuracy of 86.49±0.5% in the year 2018 with an average difference

of 5.59±5.0% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 89.2±0.5% in the year 2018 with an average difference of 0.44±2.89% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 92.91±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 3.92 compared to simple accuracy for the year 2018. We

note an average 4.15±0.92% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 94.83±0.2% for the year 2018, resulting in a

difference of 2.97 compared to simple accuracy for the year 2018. We note an average 3.94±0.98%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 91.66±0.5% for the year 2018, resulting in a difference of

5.17 compared to simple accuracy for the year 2018. We note an average 3.46±1.09% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 93.07±0.6% for the year 2018, resulting in a difference of 3.87 compared to

simple accuracy for the year 2018. We note an average 4.13±0.89% difference in the top-3 accuracy

and simple accuracy across all years.

TSH based embeddings achieve an accuracy of 81.57±0.3% in the mixed language scenario

for the year 2018. We see an average of 2.84±3.3% difference in the accuracy of all years from

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 85.41±0.5% in

the year 2018 with an average difference of -0.06±2.89% compared to the rest of the years. While

for Python, they achieve an accuracy of 77.44±0.7% in the year 2018 with an average difference

of 12.07±7.09% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 81.98±0.6% in the year 2018 with an average difference of 5.16±3.84% compared to

the rest of the years.

34

These embeddings achieve a top-3 accuracy of 86.43±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 4.86 compared to simple accuracy for the year 2018.

We note an average of 4.97±0.81% difference in the top-3 accuracy and simple accuracy across

all years. For C++, these embeddings achieve a top-3 accuracy of 89.49±0.4% for the year 2018,

resulting in a difference of 4.08 compared to simple accuracy for the year 2018. We note an average

5.06±1.11% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 83.13±0.4% for the year 2018, resulting in a difference

of 5.69 compared to simple accuracy for the year 2018. We note an average 4.06±1.34% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 85.78±0.7% for the year 2018, resulting in a difference of 3.8 compared to simple

accuracy for the year 2018. We note an average 4.31±0.85% difference in the top-3 accuracy and

simple accuracy across all years.

TH based embeddings achieve an accuracy of 80.23±0.2% in the mixed language scenario

for the year 2018. We see an average of 2.95±3.35% difference in the accuracy of all years from

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 83.92±0.5% in

the year 2018 with an average difference of 0.28±2.84% compared to the rest of the years. While

for Python, they achieve an accuracy of 76.03±0.6% in the year 2018 with an average difference

of 12.77±6.92% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 80.49±0.9% in the year 2018 with an average difference of 5.22±3.74% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 85.01±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 4.78 compared to simple accuracy for the year 2018. We

note an average 5.34±0.94% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 87.95±0.3% for the year 2018, resulting in a

difference of 4.03 compared to simple accuracy for the year 2018. We note an average 5.39±1.18%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 82.06±0.6% for the year 2018, resulting in a difference of

6.03 compared to simple accuracy for the year 2018. We note an average 4.09±1.32% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 84.94±0.6% for the year 2018, resulting in a difference of 4.45 compared to

35

simple accuracy for the year 2018. We note an average 4.89±0.77% difference in the top-3 accuracy

and simple accuracy across all years.

TH-soft based embeddings achieve an accuracy of 84.49±0.3% in the mixed language

scenario for the year 2018. We see an average 1.58±3.59% difference in the accuracy of all years

from the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

87.6±0.5% in the year 2018 with an average difference of -0.61±3.14% compared to the rest of the

years. While for Python, they achieve an accuracy of 81.14±0.8% in the year 2018 with an average

difference of 9.87±6.73% compared to the rest of the years. Lastly, for Java, these embeddings

achieve an accuracy of 86.37±0.4% in the year 2018 with an average difference of 2.19±3.63%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 89.04±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 4.55 compared to simple accuracy for the year 2018.

We note an average 4.55±0.75% difference in the top-3 accuracy and simple accuracy across all

years. For C++, these embeddings achieve a top-3 accuracy of 91.47±0.3% for the year 2018,

resulting in a difference of 3.87 compared to simple accuracy for the year 2018. We note an average

4.56±0.99% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 86.64±0.5% for the year 2018, resulting in a difference

of 5.5 compared to simple accuracy for the year 2018. We note an average 3.59±1.26% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 90.39±0.6% for the year 2018, resulting in a difference of 4.02 compared to

simple accuracy for the year 2018. We note an average 4.15±1.06% difference in the top-3 accuracy

and simple accuracy across all years.

We note a noticeable increase in performance with just two more files as priors, but one

could also argue that this increase in performance is due to decreased author count.

4.2.1.3. Nine files per author

LS based embeddings achieve an accuracy of 91.59±0.2% in the mixed language scenario for

the year 2018. We see an average 0.65±2.47% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 93.89±0.3% in

the year 2018 with an average difference of -0.47±1.91% compared to the rest of the years. While

for Python, they achieve an accuracy of 89.85±0.5% in the year 2018 with an average difference

36

of 5.2±4.56% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 91.92±0.6% in the year 2018 with an average difference of 1.28±2.34% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 94.63±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 3.04 compared to simple accuracy for the year 2018. We

note an average 2.87±0.73% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 96.34±0.2% for the year 2018, resulting in a

difference of 2.45 compared to simple accuracy for the year 2018. We note an average 2.77±0.85%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 93.59±0.5% for the year 2018, resulting in a difference of

3.74 compared to simple accuracy for the year 2018. We note an average 1.99±1.29% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 95.04±0.5% for the year 2018, resulting in a difference of 3.12 compared to

simple accuracy for the year 2018. We note an average 2.86±0.83% difference in the top-3 accuracy

and simple accuracy across all years.

TSH based embeddings achieve an accuracy of 85.25±0.3% in the mixed language scenario

for the year 2018. We see an average 3.49±3.19% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 88.45±0.5% in

the year 2018, with an average difference of 1.32±2.48% compared to the rest of the years. While

for Python, they achieve an accuracy of 81.72±0.9% in the year 2018 with an average difference

of 11.37±6.39% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 84.94±0.7% in the year 2018 with an average difference of 6.41±3.46% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 89.19±0.4% in the mixed language scenario

for the year 2018, resulting in a difference of 3.94 compared to simple accuracy for the year 2018.

We note an average 3.91±0.7% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 92.16±0.4% for the year 2018, resulting in a

difference of 3.71 compared to simple accuracy for the year 2018. We note an average 3.95±0.91%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 86.1±0.6% for the year 2018, resulting in a difference of

37

4.38 compared to simple accuracy for the year 2018. We note an average 2.65±1.02% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 88.92±0.5% for the year 2018, resulting in a difference of 3.98 compared to

simple accuracy for the year 2018. We note an average 3.14±0.79% difference in the top-3 accuracy

and simple accuracy across all years.

TH based embeddings achieve an accuracy of 83.88±0.3% in the mixed language scenario

for the year 2018. We see an average of 3.96±3.16% difference in the accuracy of all years from

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 86.84±0.3% in

the year 2018 with an average difference of 1.97±2.46% compared to the rest of the years. While

for Python, they achieve an accuracy of 80.24±0.6% in the year 2018 with an average difference

of 12.31±6.41% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 83.76±0.6% in the year 2018 with an average difference of 6.4±3.46% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 87.89±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 4.01 compared to simple accuracy for the year 2018. We

note an average 4.14±0.69% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 90.63±0.4% for the year 2018, resulting in

a difference of 3.79 compared to simple accuracy for the year 2018. We note an average 4.33±1.0%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 85.63±0.8% for the year 2018, resulting in a difference of

5.39 compared to simple accuracy for the year 2018. We note an average 2.81±1.14% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 87.84±0.5% for the year 2018, resulting in a difference of 4.08 compared to

simple accuracy for the year 2018. We note an average 3.75±0.71% difference in the top-3 accuracy

and simple accuracy across all years.

TH-soft based embeddings achieve an accuracy of 87.89±0.2% in the mixed language

scenario for the year 2018. We see an average 2.17±3.13% difference in the accuracy of all years

from the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

90.44±0.4% in the year 2018 with an average difference of 0.44±2.64% compared to the rest of the

years. While for Python, they achieve an accuracy of 84.92±0.7% in the year 2018 with an average

38

difference of 9.0±5.86% compared to the rest of the years. Lastly, for Java, these embeddings

achieve an accuracy of 89.38±0.7% in the year 2018 with an average difference of 3.07±2.81%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 91.46±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 3.57 compared to simple accuracy for the year 2018.

We note an average 3.42±0.7% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 93.48±0.2% for the year 2018, resulting in a

difference of 3.04 compared to simple accuracy for the year 2018. We note an average 3.55±1.01%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 89.25±0.6% for the year 2018, resulting in a difference of

4.33 compared to simple accuracy for the year 2018. We note an average 2.49±1.13% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 92.36±0.6% for the year 2018, resulting in a difference of 2.98 compared to

simple accuracy for the year 2018. We note an average 2.85±0.92% difference in the top-3 accuracy

and simple accuracy across all years.

We note a noticeable increase in performance yet again with the increase in the number

of files as priors. However, again, one could argue that this increase in performance is due to the

decrease in author count and not due to the increase in priors. In Figure 4.5 we compare the

performance of the different loss functions in different scenarios under this particular scenario for

the year 2020. As we can LS based embeddings always outperforms the TSH, TH, and its Soft

margin variant based embeddings.

Table 4.1. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7830 88.18±0.2 92.12±0.3 3525 82.26±0.5 87.75±0.3 2726 84.79±0.4 89.42±0.4 13983 84.79±0.4 89.14±0.3
7 6376 91.86±0.2 94.83±0.2 2620 86.49±0.5 91.66±0.5 2083 89.2±0.5 93.07±0.6 11152 88.99±0.3 92.91±0.3
9 5277 93.89±0.3 96.34±0.2 2054 89.85±0.5 93.59±0.5 1608 91.92±0.6 95.04±0.5 9053 91.59±0.2 94.63±0.2

2019
5 10122 86.69±0.2 90.09±0.2 6281 81.85±0.5 85.38±0.4 3921 82.25±0.5 86.35±0.6 19672 81.86±0.2 85.37±0.2
7 8087 90.8±0.5 93.57±0.2 4840 86.78±0.4 89.86±0.4 3069 87.25±0.5 90.54±0.5 15973 86.65±0.2 89.91±0.2
9 6468 93.19±0.3 95.27±0.2 3759 89.6±0.4 92.05±0.3 2373 90.1±0.7 92.95±0.3 12952 89.65±0.2 92.25±0.1

2020
5 16872 83.59±0.4 87.62±0.2 9124 70.65±0.3 76.16±0.5 3982 79.65±0.7 84.96±0.4 29838 77.15±0.3 81.83±0.2
7 13694 88.41±0.3 91.86±0.2 7130 77.9±0.3 83.04±0.3 3125 85.25±0.6 89.71±0.4 24281 83.11±0.1 87.25±0.1
9 11143 91.4±0.3 94.08±0.2 5513 82.1±0.4 86.88±0.4 2384 88.63±0.6 92.63±0.4 19529 86.95±0.2 90.3±0.2

39

Lifted Struct TSH TH TH-Soft
Loss functions

86

88

90

92

94
Accuracy
Top 3 Accuracy

(a) CPP

Lifted Struct TSH TH TH-Soft
Loss functions

82

84

86

88

90

92

94
Accuracy
Top 3 Accuracy

(b) Java

Lifted Struct TSH TH TH-Soft
Loss functions

74

76

78

80

82

84

86

88
Accuracy
Top 3 Accuracy

(c) Python

Lifted Struct TSH TH TH-Soft
Loss functions

80

82

84

86

88

90 Accuracy
Top 3 Accuracy

(d) Mixed

Figure 4.5. Loss function performance comparison using the original GCJ dataset

4.2.2. Performance on obfuscated source code dataset

In this subsection, we compare the results across different loss functions on the obfuscated

only constraint. In addition to the similar analysis that we did for the original source code only

constraint, we can also compare the two constraints’ performance difference. We can do so because

almost every original source code file has an obfuscated version, which leads to an almost equal

number of authors in each year in each scenario.

4.2.2.1. Five files per author

LS based embeddings achieve an accuracy of 74.48±0.3% in the mixed language scenario for

the year 2018. We see an average -2.82±3.41% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 80.56±0.4% in

the year 2018 with an average difference of -3.26±3.43% compared to the rest of the years. While

for Python, they achieve an accuracy of 68.35±0.8% in the year 2018 with an average difference of

40

Table 4.2. TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7830 80.37±0.2 84.81±0.5 3525 71.4±1.2 77.0±0.3 2726 75.77±0.5 80.55±0.4 13983 75.87±0.2 81.05±0.3
7 6376 85.41±0.5 89.49±0.4 2620 77.44±0.7 83.13±0.4 2083 81.98±0.6 85.78±0.7 11152 81.57±0.3 86.43±0.3
9 5277 88.45±0.5 92.16±0.4 2054 81.72±0.9 86.1±0.6 1608 84.94±0.7 88.92±0.5 9053 85.25±0.3 89.19±0.4

2019
5 10122 81.54±0.2 85.5±0.3 6281 74.77±0.7 78.69±0.4 3921 75.08±0.7 79.37±0.4 19672 75.55±0.3 79.64±0.3
7 8087 86.78±0.2 89.87±0.2 4840 80.34±0.6 84.11±0.4 3069 81.24±0.6 84.92±0.5 15973 81.51±0.3 84.98±0.2
9 6468 89.65±0.3 92.51±0.2 3759 83.87±0.3 86.98±0.4 2373 85.2±0.5 87.96±0.6 12952 85.03±0.3 88.28±0.2

2020
5 16872 78.03±0.3 82.36±0.2 9124 62.82±0.2 68.23±0.4 3982 73.05±0.7 78.25±0.6 29838 70.89±0.2 75.72±0.2
7 13694 83.73±0.3 87.59±0.3 7130 70.43±0.8 75.77±0.6 3125 79.53±0.7 84.17±0.8 24281 77.43±0.2 81.92±0.3
9 11143 87.66±0.2 90.67±0.2 5513 75.53±0.4 80.12±0.7 2384 84.0±0.3 88.21±0.7 19529 82.05±0.2 85.68±0.2

Table 4.3. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7830 78.6±0.3 83.31±0.4 3525 70.22±0.9 76.35±0.7 2726 74.79±0.8 79.37±1.0 13983 74.4±0.3 79.49±0.2
7 6376 83.92±0.5 87.95±0.3 2620 76.03±0.6 82.06±0.6 2083 80.49±0.9 84.94±0.6 11152 80.23±0.2 85.01±0.3
9 5277 86.84±0.3 90.63±0.4 2054 80.24±0.6 85.63±0.8 1608 83.76±0.6 87.84±0.5 9053 83.88±0.3 87.89±0.2

2019
5 10122 80.25±0.3 84.04±0.3 6281 74.34±0.4 78.11±0.6 3921 74.11±0.6 77.87±0.5 19672 74.32±0.2 78.34±0.2
7 8087 85.47±0.3 88.89±0.2 4840 80.19±0.4 83.44±0.5 3069 80.26±0.6 83.78±0.7 15973 80.44±0.4 84.26±0.2
9 6468 88.78±0.2 91.54±0.1 3759 83.25±0.4 86.76±0.5 2373 84.13±0.8 87.05±0.7 12952 84.1±0.4 87.34±0.2

2020
5 16872 76.54±0.3 80.88±0.4 9124 61.84±0.3 67.29±0.2 3982 71.69±0.7 76.73±0.3 29838 69.52±0.2 74.39±0.1
7 13694 82.4±0.3 86.45±0.3 7130 69.85±0.4 75.14±0.7 3125 78.4±0.7 83.03±0.4 24281 76.36±0.2 80.71±0.2
9 11143 86.28±0.3 89.62±0.3 5513 75.18±0.5 79.43±0.5 2384 83.04±0.5 86.95±0.8 19529 81.05±0.2 84.75±0.2

3.6±7.9% compared to the rest of the years. Lastly, for Java, these embeddings achieve an accuracy

of 71.33±0.7% in the year 2018 with an average difference of -4.76±3.41% compared to the rest of

the years.

These embeddings achieve a top-3 accuracy of 80.82±0.3% in the mixed language scenario

for the year 2018, which results in a difference of 6.34 compared to simple accuracy for the year

2018. We note an average 7.89±1.28% difference in the top-3 accuracy and simple accuracy across

all years. For C++, these embeddings achieve a top-3 accuracy of 86.04±0.3% for the year 2018,

resulting in a difference of 5.48 compared to simple accuracy for the year 2018. We note an average

7.02±1.28% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 76.19±0.6% for the year 2018, resulting in a difference

of 7.84 compared to simple accuracy for the year 2018. We note an average 8.67±1.45% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 77.64±0.7% for the year 2018, resulting in a difference of 6.31 compared to

41

Table 4.4. TH-soft: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages using the original GCJ dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7830 82.82±0.3 87.1±0.2 3525 76.14±0.6 82.13±0.5 2726 81.06±0.7 85.81±0.5 13983 79.57±0.2 84.37±0.2
7 6376 87.6±0.5 91.47±0.3 2620 81.14±0.8 86.64±0.5 2083 86.37±0.4 90.39±0.6 11152 84.49±0.3 89.04±0.2
9 5277 90.44±0.4 93.48±0.2 2054 84.92±0.7 89.25±0.6 1608 89.38±0.7 92.36±0.6 9053 87.89±0.2 91.46±0.3

2019
5 10122 83.07±0.2 86.64±0.3 6281 77.22±0.7 81.41±0.5 3921 79.55±0.3 83.18±0.5 19672 77.93±0.3 81.7±0.3
7 8087 87.95±0.4 90.98±0.4 4840 82.77±0.3 86.64±0.6 3069 84.65±0.5 88.03±0.4 15973 83.37±0.2 86.96±0.2
9 6468 90.73±0.3 93.19±0.3 3759 85.74±0.4 89.05±0.5 2373 88.08±0.6 90.8±0.6 12952 86.72±0.3 89.82±0.2

2020
5 16872 79.32±0.3 83.66±0.2 9124 64.93±0.4 70.67±0.3 3982 77.05±0.6 82.26±0.3 29838 72.75±0.2 77.52±0.2
7 13694 84.9±0.3 88.57±0.2 7130 72.24±0.5 77.86±0.6 3125 82.96±0.2 87.55±0.4 24281 79.2±0.3 83.61±0.2
9 11143 88.52±0.2 91.54±0.3 5513 77.51±0.4 82.1±0.3 2384 87.22±0.5 91.08±0.5 19529 83.61±0.2 87.25±0.2

simple accuracy for the year 2018. We note an average 8.98±1.94% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -10.31, while the average difference is -11.51±0.89%. For C++, We note that the

difference for 2018 is -7.62, while the average difference between the original and obfuscated setting

is -7.93±1.07%. Lastly, For Python, the difference for the year 2018 is -13.91, while the average

difference with the obfuscated setting is -14.62±3.03%. For Java, the difference for the year 2018

is -13.46, while the average difference with the obfuscated setting is -17.22±2.03%

TSH based embeddings achieve an accuracy of 66.01±0.3% in the mixed language scenario

for the year 2018. We see an average 2.13±4.63% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 74.46±0.4% in

the year 2018 with an average difference of -1.49±2.96% compared to the rest of the years. While

for Python, they achieve an accuracy of 57.53±0.5% in the year 2018 with an average difference

of 11.64±11.27% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 58.9±1.1% in the year 2018 with an average difference of 5.53±6.01% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 72.39±0.3% in the mixed language scenario

for the year 2018, which results in a difference of 6.38 compared to simple accuracy for the year

2018. We note an average 7.38±0.73% difference in the top-3 accuracy and simple accuracy across

all years. For C++, these embeddings achieve a top-3 accuracy of 79.8±0.3% for the year 2018,

resulting in a difference of 5.34 compared to simple accuracy for the year 2018. We note an average

6.64±0.95% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

42

these embeddings achieve a top-3 accuracy of 66.49±0.3% for the year 2018, resulting in a difference

of 8.96 compared to simple accuracy for the year 2018. We note an average 9.1±1.17% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 66.29±0.8% for the year 2018, resulting in a difference of 7.39 compared to

simple accuracy for the year 2018. We note an average 8.16±0.95% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -9.86, while the average difference is -9.76±2.13%. For C++, We note that the

difference for 2018 is -5.91, while the average difference between the original and obfuscated setting

is -6.0±0.83%. Lastly, For Python, the difference for the year 2018 is -13.87, while the average

difference with the obfuscated setting is -14.11±4.05%. For Java, the difference for the year 2018

is -16.87, while the average difference with the obfuscated setting is -16.09±2.34%.

TH based embeddings achieve an accuracy of 63.7±0.3% in the mixed language scenario for

the year 2018. We see an average 2.51±4.77% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 72.77±0.3% in

the year 2018 with an average difference of -1.14±2.95% compared to the rest of the years. While

for Python, they achieve an accuracy of 54.77±0.6% in the year 2018 with an average difference

of 10.71±11.35% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 55.56±1.0% in the year 2018 with an average difference of 6.67±6.29% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 70.71±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 7.01 compared to simple accuracy for the year 2018. We

note an average 7.72±0.69% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 78.25±0.5% for the year 2018, resulting in a

difference of 5.48 compared to simple accuracy for the year 2018. We note an average 6.74±0.98%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 64.02±1.0% for the year 2018, resulting in a difference of

9.25 compared to simple accuracy for the year 2018. We note an average 10.08±1.08% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 64.09±0.8% for the year 2018, resulting in a difference of 8.53 compared to

43

simple accuracy for the year 2018. We note an average 8.47±0.83% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -10.7, while the average difference is -10.28±2.34%. For C++, We note that the

difference for 2018 is -5.83, while the average difference between the original and obfuscated setting

is -5.97±0.74%. Lastly, For Python, the difference for the year 2018 is -15.45, while the average

difference with the obfuscated setting is -16.38±4.43%. For Java, the difference for the year 2018

is -19.23, while the average difference with the obfuscated setting is -16.49±3.02%.

TH-soft based embeddings achieve an accuracy of 69.51±0.4% in the mixed language

scenario for the year 2018. We see an average 0.76±4.26% difference in the accuracy of all years

from the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

75.98±0.4% in the year 2018 with an average difference of -0.79±3.66% compared to the rest of the

years. While for Python, they achieve an accuracy of 63.89±0.7% in the year 2018 with an average

difference of 8.76±9.46% compared to the rest of the years. Lastly, for Java, these embeddings

achieve an accuracy of 65.15±0.8% in the year 2018 with an average difference of -0.29±4.95%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 75.53±0.5% in the mixed language scenario

for the year 2018, resulting in a difference of 6.02 compared to simple accuracy for the year 2018. We

note an average 7.15±0.97% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 81.14±0.4% for the year 2018, resulting in a

difference of 5.16 compared to simple accuracy for the year 2018. We note an average 6.38±1.01%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 71.88±0.3% for the year 2018, resulting in a difference of

7.99 compared to simple accuracy for the year 2018. We note an average 8.39±1.35% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 71.54±0.6% for the year 2018, which results in a difference of 6.39 compared to

simple accuracy for the year 2018. We note an average 8.01±1.13% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -10.06, while the average difference is -9.75±1.25%. For C++, We note that the

44

difference for 2018 is -6.84, while the average difference between the original and obfuscated setting

is -5.77±0.53%. Lastly, For Python, the difference for the year 2018 is -12.25, while the average

difference with the obfuscated setting is -12.85±2.86%. For Java, the difference for the year 2018

is -15.91, while the average difference with the obfuscated setting is -17.76±2.32%.

4.2.2.2. Seven files per author

LS based embeddings achieve an accuracy of 80.04±0.5% in the mixed language scenario for

the year 2018. We see an average -0.93±3.21% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 85.49±0.6% in

the year 2018 with an average difference of -1.79±2.94% compared to the rest of the years. While

for Python, they achieve an accuracy of 74.63±0.6% in the year 2018 with an average difference

of 5.57±7.61% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 76.37±0.8% in the year 2018 with an average difference of -1.5±2.9% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 85.78±0.1% in the mixed language scenario

for the year 2018, which results in a difference of 5.74 compared to simple accuracy for the year

2018. We note an average 6.92±1.05% difference in the top-3 accuracy and simple accuracy across

all years. For C++, these embeddings achieve a top-3 accuracy of 90.45±0.4% for the year 2018,

resulting in a difference of 4.96 compared to simple accuracy for the year 2018. We note an average

6.17±1.26% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 82.17±0.8% for the year 2018, resulting in a difference

of 7.54 compared to simple accuracy for the year 2018. We note an average 7.52±1.14% difference

in the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings

achieve a top-3 accuracy of 82.62±0.7% for the year 2018, which results in a difference of 6.25

compared to simple accuracy for the year 2018. We note an average 8.52±1.57% difference in the

top-3 accuracy and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -8.95, while the average difference is -9.55±0.88%. For C++, We note that the

difference for 2018 is -6.37, while the average difference between the original and obfuscated setting

is -6.55±0.92%. Lastly, For Python, the difference for the year 2018 is -11.86, while the average

45

difference with the obfuscated setting is -11.88±3.37%. For Java, the difference for the year 2018

is -12.83, while the average difference with the obfuscated setting is -14.78±1.75%.

TSH based embeddings achieve an accuracy of 71.99±0.4% in the mixed language scenario

for the year 2018. We see an average of 3.65±4.69% difference in the accuracy of all years from the

year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 80.2±0.3%

in the year 2018 with an average difference of -0.25±2.71% compared to the rest of the years. While

for Python, they achieve an accuracy of 63.45±0.5% in the year 2018 with an average difference

of 13.8±11.46% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 65.22±0.8% in the year 2018 with an average difference of 7.83±5.66% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 78.72±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 6.73 compared to simple accuracy for the year 2018.

We note an average 7.0±0.61% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 85.38±0.2% for the year 2018, resulting in a

difference of 5.18 compared to simple accuracy for the year 2018. We note an average 6.16±0.91%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 73.27±0.5% for the year 2018, resulting in a difference of

9.82 compared to simple accuracy for the year 2018. We note an average 7.88±1.33% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 73.38±0.9% for the year 2018, resulting in a difference of 8.16 compared to

simple accuracy for the year 2018. We note an average 8.01±0.75% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -9.58, while the average difference is -8.77±2.14%. For C++, We note that the

difference for 2018 is -5.21, while the average difference between the original and obfuscated setting

is -5.39±0.85%. Lastly, For Python, the difference for the year 2018 is -13.99, while the average

difference with the obfuscated setting is -12.25±4.76%. For Java, the difference for the year 2018

is -16.76, while the average difference with the obfuscated setting is -14.09±2.57%.

TH based embeddings achieve an accuracy of 70.13±0.4% in the mixed language scenario for

the year 2018. We see an average of 3.74±4.86% difference in the accuracy of all years from the year

46

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 78.81±0.4% in

the year 2018 with an average difference of -0.14±2.71% compared to the rest of the years. While

for Python, they achieve an accuracy of 60.56±0.7% in the year 2018 with an average difference

of 13.55±11.92% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 61.87±0.6% in the year 2018 with an average difference of 8.9±6.11% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 76.86±0.1% in the mixed language scenario

for the year 2018, which results in a difference of 6.73 compared to simple accuracy for the year

2018. We note an average 7.32±0.65% difference in the top-3 accuracy and simple accuracy across

all years. For C++, these embeddings achieve a top-3 accuracy of 83.91±0.4% for the year 2018,

resulting in a difference of 5.1 compared to simple accuracy for the year 2018. We note an average

6.38±1.06% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 70.33±0.7% for the year 2018, resulting in a difference

of 9.77 compared to simple accuracy for the year 2018. We note an average 9.05±1.21% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 70.78±1.0% for the year 2018, resulting in a difference of 8.91 compared to

simple accuracy for the year 2018. We note an average 8.36±0.98% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for 2018

is -10.1, while the average difference is -9.31±2.48%. For C++, We note that the difference for 2018

is -5.11, while the average difference between the original and obfuscated setting is -5.53±0.68%.

Lastly, For Python, the difference for the year 2018 is -15.47, while the average difference with the

obfuscated setting is -14.69±5.32%. For Java, the difference for the year 2018 is -18.62, while the

average difference with the obfuscated setting is -14.95±2.99%.

TH-soft based embeddings achieve an accuracy of 75.95±0.2% in the mixed language

scenario for the year 2018. We see an average 1.74±4.09% difference in the accuracy of all years

from the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

81.55±0.4% in the year 2018, with an average difference of 0.39±3.35% compared to the rest of the

years. While for Python, they achieve an accuracy of 69.52±0.8% in the year 2018 with an average

difference of 11.0±9.01% compared to the rest of the years. Lastly, for Java, these embeddings

47

achieve an accuracy of 71.74±0.8% in the year 2018 with an average difference of 1.48±4.47%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 81.42±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 5.47 compared to simple accuracy for the year 2018. We

note an average 6.64±0.96% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 86.6±0.6% for the year 2018, resulting in a

difference of 5.05 compared to simple accuracy for the year 2018. We note an average 5.89±0.98%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 77.61±0.7% for the year 2018, resulting in a difference of

8.09 compared to simple accuracy for the year 2018. We note an average 7.15±0.99% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 77.96±0.6% for the year 2018, resulting in a difference of 6.22 compared to

simple accuracy for the year 2018. We note an average 8.15±1.22% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for 2018

is -8.54, while the average difference is -8.38±1.25%. For C++, We note that the difference for 2018

is -6.05, while the average difference between the original and obfuscated setting is -5.06±0.78%.

Lastly, For Python, the difference for the year 2018 is -11.62, while the average difference with the

obfuscated setting is -10.49±3.13%. For Java, the difference for the year 2018 is -14.63, while the

average difference with the obfuscated setting is -15.34±2.37%.

We note a noticeable increase in performance with just two more files as priors, but one

could also argue that this increase in performance is due to decreased author count.

4.2.2.3. Nine files per author

LS based embeddings achieve an accuracy of 83.54±0.4% in the mixed language scenario for

the year 2018. We see an average 0.98±3.16% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 88.32±0.3% in

the year 2018 with an average difference of -0.05±2.43% compared to the rest of the years. While

for Python, they achieve an accuracy of 78.51±0.6% in the year 2018 with an average difference

of 6.98±7.36% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

48

accuracy of 79.88±1.1% in the year 2018 with an average difference of 1.64±3.15% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 88.7±0.4% in the mixed language scenario for

the year 2018, resulting in a difference of 5.16 compared to simple accuracy for the year 2018. We

note an average 5.64±0.82% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 92.58±0.3% for the year 2018, resulting in a

difference of 4.26 compared to simple accuracy for the year 2018. We note an average 4.82±1.14%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 85.24±0.6% for the year 2018, resulting in a difference of

6.73 compared to simple accuracy for the year 2018. We note an average 5.81±1.49% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 85.96±0.7% for the year 2018, resulting in a difference of 6.08 compared to

simple accuracy for the year 2018. We note an average 7.56±1.9% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -8.05, while the average difference is -7.72±1.0%. For C++, We note that the difference

for 2018 is -5.57, while the average difference between the original and obfuscated setting is -

5.15±0.87%. Lastly, For Python, the difference for the year 2018 is -11.34, while the average

difference with the obfuscated setting is -9.56±3.34%. For Java, the difference for the year 2018 is

-12.04, while the average difference with the obfuscated setting is -11.68±1.76%.

TSH based embeddings achieve an accuracy of 76.48±0.4% in the mixed language scenario

for the year 2018. We see an average of 4.77±4.78% difference in the accuracy of all years from

the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

83.49±0.6% in the year 2018, with an average difference of 1.66±2.43% compared to the rest of the

years. While for Python, they achieve an accuracy of 67.94±0.9% in the year 2018 with an average

difference of 14.44±11.21% compared to the rest of the years. Lastly, for Java, these embeddings

achieve an accuracy of 70.26±1.0% in the year 2018 with an average difference of 9.43±6.03%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 82.46±0.4% in the mixed language scenario

for the year 2018, resulting in a difference of 5.98 compared to simple accuracy for the year 2018.

49

We note an average 6.0±0.62% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 88.07±0.3% for the year 2018, resulting in a

difference of 4.58 compared to simple accuracy for the year 2018. We note an average 5.09±0.71%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 77.24±0.7% for the year 2018, resulting in a difference of

9.3 compared to simple accuracy for the year 2018. We note an average 6.71±1.79% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 77.27±1.0% for the year 2018, resulting in a difference of 7.01 compared to

simple accuracy for the year 2018. We note an average 6.97±1.03% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -8.77, while the average difference is -7.49±2.21%. For C++, We note that the

difference for 2018 is -4.96, while the average difference between the original and obfuscated setting

is -4.62±0.61%. Lastly, For Python, the difference for the year 2018 is -13.78, while the average

difference with the obfuscated setting is -10.7±5.19%. For Java, the difference for the year 2018 is

-14.68, while the average difference with the obfuscated setting is -11.66±2.91%.

TH based embeddings achieve an accuracy of 74.65±0.5% in the mixed language scenario

for the year 2018. We see an average 5.12±5.05% difference in the accuracy of all years from 2018

in this particular scenario. For C++, these embeddings achieve an accuracy of 82.17±0.4% in the

year 2018, with an average difference of 1.84±2.42% compared to the rest of the years. While for

Python, they achieve an accuracy of 65.94±0.9% in the year 2018 with an average difference of

13.97±11.98% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 67.4±1.0% in the year 2018 with an average difference of 10.65±6.7% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 80.91±0.4% in the mixed language scenario

for the year 2018, which results in a difference of 6.26 compared to simple accuracy for the year

2018. We note an average 6.36±0.71% difference in the top-3 accuracy and simple accuracy across

all years. For C++, these embeddings achieve a top-3 accuracy of 86.88±0.5% for the year 2018,

resulting in a difference of 4.71 compared to simple accuracy for the year 2018. We note an average

5.53±1.05% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

50

these embeddings achieve a top-3 accuracy of 74.54±0.7% for the year 2018, resulting in a difference

of 8.6 compared to simple accuracy for the year 2018. We note an average 7.45±1.38% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 74.7±1.0% for the year 2018, resulting in a difference of 7.3 compared to simple

accuracy for the year 2018. We note an average 7.26±0.84% difference in the top-3 accuracy and

simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -9.23, while the average difference is -8.07±2.51%. For C++, We note that the

difference for 2018 is -4.67, while the average difference between the original and obfuscated setting

is -4.8±0.62%. Lastly, For Python, the difference for the year 2018 is -14.3, while the average

difference with the obfuscated setting is -12.63±5.81%. For Java, the difference for the year 2018

is -16.36, while the average difference with the obfuscated setting is -12.11±3.74%.

TH-soft based embeddings achieve an accuracy of 79.36±0.3% in the mixed language

scenario for the year 2018. We see an average of 3.98±4.01% difference in the accuracy of all

years from the year 2018 in this particular scenario. For C++, these embeddings achieve an

accuracy of 84.96±0.4% in the year 2018, with an average difference of 1.92±2.7% compared to

the rest of the years. While for Python, they achieve an accuracy of 74.33±0.7% in the year 2018

with an average difference of 11.27±8.73% compared to the rest of the years. Lastly, for Java,

these embeddings achieve an accuracy of 76.0±0.8% in the year 2018 with an average difference of

4.14±4.61% compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 84.78±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 5.42 compared to simple accuracy for the year 2018.

We note an average 5.4±0.65% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 89.2±0.4% for the year 2018, resulting in a

difference of 4.24 compared to simple accuracy for the year 2018. We note an average 4.65±0.79%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 81.41±0.9% for the year 2018, resulting in a difference of

7.08 compared to simple accuracy for the year 2018. We note an average 5.26±1.62% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 81.02±0.7% for the year 2018, resulting in a difference of 5.02 compared to

51

−25 −20 −15 −10 −5 0
0.00

0.02

0.04

0.06

0.08

0.10

De
ns
ity

(a) Acc. difference for LS embeddings

−25 −20 −15 −10 −5 0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns
ity

(b) Acc. difference for TSH embeddings

−30 −25 −20 −15 −10 −5 0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns
ity

(c) Acc. difference for TH embeddings

−25 −20 −15 −10 −5 0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns
ity

(d) Acc. difference for TH-soft embeddings

Figure 4.6. Distributions of accuracy loss when moving from original to obfuscated setting. Here
the y-axis shows the density while the x-axis shows the accuracy difference. The box plot on top of
the distributions shows an alternative visualization of the same distribution and shares the x-axis
with the same distribution.

simple accuracy for the year 2018. We note an average 6.68±1.19% difference in the top-3 accuracy

and simple accuracy across all years.

For the mixed-language scenario, the accuracy difference with the original setting for the

year 2018 is -8.53, while the average difference is -6.72±1.51%. For C++, We note that the

difference for 2018 is -5.48, while the average difference between the original and obfuscated setting

is -4.0±0.54%. Lastly, For Python, the difference for the year 2018 is -10.59, while the average

difference with the obfuscated setting is -8.31±3.49%. For Java, the difference for the year 2018 is

-13.38, while the average difference with the obfuscated setting is -12.3±2.63%.

We note a noticeable increase in performance yet again with the increase in the number

of files as priors. However, again, one could argue that this increase in performance is due to

52

the decrease in author count and not due to the increase in priors. In figure 4.7 we compare the

performance of the different loss functions in different scenarios under this particular scenario for

the year 2020. As we can LS based embeddings always outperforms the TSH, TH, and its Soft

margin variant based embeddings. In figure 4.6, we show different distributions of the differences

between the accuracy of the original and the obfuscated setting across different loss functions.

According to the LS distribution, The mean difference between the two settings is -9.03±4.03%,

with the median value being -8.47. According to the TSH distribution, The mean difference be-

tween the two settings is -8.89±4.44%, with the median value being -7.71. According to the TH

distribution, The mean difference between the two settings is -9.68±5.00%, with the median value

being -8.70. According to the TH-Soft distribution, The mean difference between the two settings

is -8.55±4.36%, with the median value being -7.67. According to this analysis, TH-Soft yields the

least difference on average and median, While LS-based embeddings have a lower STD score, which

points to better stability, as can be seen by the box plots.

If we combine these distributions to form a new distribution, we can perform some fur-

ther analysis. The mean difference between the two settings, regardless of the loss function, is

-9.04±4.49%, with the median value being -8.07 according to the new distribution. This shows us

how much degradation we can expect if the approaches are evaluated solely using obfuscated source

code files.

Table 4.5. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7857 80.56±0.4 86.04±0.3 3641 68.35±0.8 76.19±0.6 2720 71.33±0.7 77.64±0.7 14093 74.48±0.3 80.82±0.3
7 6399 85.49±0.6 90.45±0.4 2737 74.63±0.6 82.17±0.8 2080 76.37±0.8 82.62±0.7 11278 80.04±0.5 85.78±0.1
9 5293 88.32±0.3 92.58±0.3 2155 78.51±0.6 85.24±0.6 1602 79.88±1.1 85.96±0.7 9164 83.54±0.4 88.7±0.4

2019
5 10581 80.34±0.4 84.97±0.3 7771 63.77±0.6 70.11±0.3 3912 69.3±0.8 74.44±0.7 21554 69.48±0.2 74.88±0.3
7 8464 85.47±0.4 89.48±0.2 5996 70.52±0.5 76.92±0.4 3059 75.75±0.7 80.81±0.4 17490 76.19±0.3 81.29±0.2
9 6783 88.99±0.4 91.99±0.1 4658 75.27±0.5 80.8±0.3 2372 80.44±0.7 84.0±0.6 14168 80.54±0.4 84.87±0.3

2020
5 16925 77.48±0.3 82.65±0.2 9471 53.87±0.3 61.6±0.4 3974 63.63±0.4 69.77±0.7 30153 66.58±0.2 72.33±0.3
7 13743 83.39±0.1 87.8±0.2 7457 61.94±0.5 69.1±0.6 3112 70.81±0.6 77.07±0.8 24644 73.41±0.2 78.94±0.2
9 11220 87.25±0.3 90.77±0.2 5827 67.63±0.7 74.41±0.4 2377 76.09±0.7 81.64±0.5 19905 78.1±0.3 83.0±0.3

4.2.3. Performance on simulated real-world dataset

In this subsection, we compare the results across different loss functions under the simulated

real-world constraint.

53

Lifted Struct TSH TH TH-Soft
Loss functions

80

82

84

86

88

90

92
Accuracy
Top 3 Accuracy

(a) CPP

Lifted Struct TSH TH TH-Soft
Loss functions

60

65

70

75

80
Accuracy
Top 3 Accuracy

(b) Java

Lifted Struct TSH TH TH-Soft
Loss functions

50

55

60

65

70

75 Accuracy
Top 3 Accuracy

(c) Python

Lifted Struct TSH TH TH-Soft
Loss functions

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0
Accuracy
Top 3 Accuracy

(d) Mixed

Figure 4.7. Loss function performance comparison on obfuscated source code

4.2.3.1. Five files per author

LS based embeddings achieve an accuracy of 76.78±0.4% in the mixed language scenario for

the year 2018. We see an average -2.29±3.65% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 82.75±0.4% in

the year 2018 with an average difference of -2.42±2.48% compared to the rest of the years. While

for Python, they achieve an accuracy of 74.76±0.5% in the year 2018 with an average difference

of 2.17±7.99% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 68.29±0.6% in the year 2018 with an average difference of -2.96±3.58% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 84.06±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 7.28 compared to simple accuracy for the year 2018.

We note an average 8.24±0.76% difference in the top-3 accuracy and simple accuracy across all

54

Table 4.6. TSH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7857 74.46±0.4 79.8±0.3 3641 57.53±0.5 66.49±0.3 2720 58.9±1.1 66.29±0.8 14093 66.01±0.3 72.39±0.3
7 6399 80.2±0.3 85.38±0.2 2737 63.45±0.5 73.27±0.5 2080 65.22±0.8 73.38±0.9 11278 71.99±0.4 78.72±0.3
9 5293 83.49±0.6 88.07±0.3 2155 67.94±0.9 77.24±0.7 1602 70.26±1.0 77.27±1.0 9164 76.48±0.4 82.46±0.4

2019
5 10581 74.9±0.4 79.72±0.3 7771 51.74±0.5 60.16±0.4 3912 57.63±0.6 64.21±0.5 21554 60.87±0.3 67.17±0.3
7 8464 81.06±0.4 85.37±0.4 5996 58.96±0.6 67.33±0.4 3059 65.2±0.8 71.64±0.7 17490 67.89±0.3 74.08±0.2
9 6783 85.06±0.2 88.83±0.2 4658 63.94±0.7 71.51±0.5 2372 69.97±0.5 75.4±0.7 14168 72.85±0.2 78.16±0.2

2020
5 16925 72.59±0.2 77.71±0.3 9471 42.84±0.4 51.4±0.5 3974 52.44±0.8 59.96±0.4 30153 58.95±0.2 65.2±0.3
7 13743 78.63±0.2 83.57±0.3 7457 49.51±0.4 58.8±0.5 3112 60.21±1.2 67.75±0.5 24644 65.57±0.3 72.24±0.3
9 11220 82.98±0.3 87.2±0.3 5827 55.19±0.5 63.83±0.6 2377 66.28±0.8 73.45±0.6 19905 70.76±0.2 76.97±0.2

Table 4.7. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7857 72.77±0.3 78.25±0.5 3641 54.77±0.6 64.02±1.0 2720 55.56±1.0 64.09±0.8 14093 63.7±0.3 70.71±0.3
7 6399 78.81±0.4 83.91±0.4 2737 60.56±0.7 70.33±0.7 2080 61.87±0.6 70.78±1.0 11278 70.13±0.4 76.86±0.1
9 5293 82.17±0.4 86.88±0.5 2155 65.94±0.9 74.54±0.7 1602 67.4±1.0 74.7±1.0 9164 74.65±0.5 80.91±0.4

2019
5 10581 73.6±0.4 78.7±0.3 7771 48.05±0.4 56.37±0.6 3912 54.78±0.6 62.21±0.6 21554 58.54±0.3 65.07±0.3
7 8464 79.81±0.3 84.47±0.2 5996 54.65±0.4 63.92±0.4 3059 61.51±0.6 69.27±0.5 17490 65.76±0.3 72.08±0.3
9 6783 84.14±0.6 87.99±0.4 4658 59.88±0.7 68.59±0.6 2372 66.45±1.0 73.39±0.8 14168 70.5±0.4 76.26±0.3

2020
5 16925 71.05±0.3 76.19±0.3 9471 39.12±0.4 47.79±0.6 3974 49.26±0.6 57.32±0.9 30153 56.66±0.2 63.05±0.2
7 13743 77.64±0.4 82.44±0.2 7457 45.73±0.5 55.11±0.5 3112 57.33±0.5 65.58±1.0 24644 63.34±0.2 70.07±0.2
9 11220 81.96±0.2 86.15±0.3 5827 50.94±0.5 60.22±0.5 2377 63.49±0.9 71.16±0.9 19905 68.59±0.4 74.79±0.2

years. For C++, these embeddings achieve a top-3 accuracy of 89.03±0.3% for the year 2018, which

results in a difference of 6.28 compared to simple accuracy for the year 2018. We note an average

7.17±0.78% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 82.94±0.4% for the year 2018, resulting in a difference

of 8.18 compared to simple accuracy for the year 2018. We note an average 8.26±1.04% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 77.17±0.6% for the year 2018, resulting in a difference of 8.88 compared to

simple accuracy for the year 2018. We note an average 10.54±1.61% difference in the top-3 accuracy

and simple accuracy across all years.

TSH based embeddings achieve an accuracy of 64.49±0.3% in the mixed language scenario

for the year 2018. We see an average 2.69±4.61% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 72.09±0.3% in

the year 2018, with an average difference of 0.01±2.49% compared to the rest of the years. While

for Python, they achieve an accuracy of 61.08±0.5% in the year 2018 with an average difference

55

Table 4.8. TH-soft: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under obfuscated setting.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 7857 75.98±0.4 81.14±0.4 3641 63.89±0.7 71.88±0.3 2720 65.15±0.8 71.54±0.6 14093 69.51±0.4 75.53±0.5
7 6399 81.55±0.4 86.6±0.6 2737 69.52±0.8 77.61±0.7 2080 71.74±0.8 77.96±0.6 11278 75.95±0.2 81.42±0.3
9 5293 84.96±0.4 89.2±0.4 2155 74.33±0.7 81.41±0.9 1602 76.0±0.8 81.02±0.7 9164 79.36±0.3 84.78±0.3

2019
5 10581 76.68±0.3 81.29±0.3 7771 60.4±0.3 67.0±0.4 3912 63.49±0.6 69.46±0.5 21554 65.89±0.4 71.07±0.3
7 8464 82.45±0.3 86.71±0.3 5996 67.58±0.6 73.86±0.5 3059 70.55±0.7 76.21±0.5 17490 72.69±0.3 77.93±0.3
9 6783 86.53±0.3 89.57±0.3 4658 72.07±0.7 77.71±0.5 2372 75.47±0.6 79.89±1.1 14168 77.33±0.4 81.81±0.3

2020
5 16925 74.08±0.4 78.9±0.3 9471 50.95±0.4 58.69±0.4 3974 56.63±0.6 63.25±0.5 30153 62.88±0.2 68.83±0.1
7 13743 80.25±0.3 85.08±0.2 7457 59.04±0.5 66.2±0.4 3112 64.11±0.7 71.53±0.5 24644 69.87±0.2 75.57±0.2
9 11220 84.53±0.3 88.36±0.3 5827 64.28±0.5 71.3±0.5 2377 70.03±0.6 76.41±0.6 19905 74.71±0.2 79.99±0.3

of 11.94±11.19% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 53.71±0.5% in the year 2018 with an average difference of 4.07±5.42% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 72.56±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 8.07 compared to simple accuracy for the year 2018.

We note an average 8.68±0.8% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 79.35±0.4% for the year 2018, resulting in

a difference of 7.26 compared to simple accuracy for the year 2018. We note an average 8.2±0.99%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 71.03±0.4% for the year 2018, resulting in a difference of

9.95 compared to simple accuracy for the year 2018. We note an average 8.86±1.15% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 61.23±0.7% for the year 2018, resulting in a difference of 7.52 compared to

simple accuracy for the year 2018. We note an average 9.56±1.48% difference in the top-3 accuracy

and simple accuracy across all years.

TH based embeddings achieve an accuracy of 62.52±0.2% in the mixed language scenario

for the year 2018. We see an average 2.7±4.72% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 70.77±0.4% in

the year 2018, with an average difference of 0.22±2.46% compared to the rest of the years. While

for Python, they achieve an accuracy of 58.67±0.4% in the year 2018 with an average difference

of 11.18±11.46% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

56

accuracy of 50.84±0.6% in the year 2018 with an average difference of 4.28±5.36% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 70.52±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 8.0 compared to simple accuracy for the year 2018. We

note an average 8.95±0.93% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 77.66±0.4% for the year 2018, resulting in

a difference of 6.89 compared to simple accuracy for the year 2018. We note an average 8.3±0.97%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 68.42±0.5% for the year 2018, resulting in a difference of

9.75 compared to simple accuracy for the year 2018. We note an average 9.46±1.18% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 59.3±0.6% for the year 2018, resulting in a difference of 8.46 compared to simple

accuracy for the year 2018. We note an average 9.76±1.42% difference in the top-3 accuracy and

simple accuracy across all years.

TH-soft based embeddings achieve an accuracy of 70.14±0.2% in the mixed language

scenario for the year 2018. We see an average 1.21±4.23% difference in the accuracy of all years from

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 75.66±0.3% in

the year 2018 with an average difference of 0.09±2.85% compared to the rest of the years. While

for Python, they achieve an accuracy of 70.12±0.3% in the year 2018 with an average difference

of 8.04±9.33% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 61.36±0.8% in the year 2018 with an average difference of 1.12±4.75% when compared

to the rest of the years.

These embeddings achieve a top-3 accuracy of 77.7±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 7.56 compared to simple accuracy for the year 2018.

We note an average 8.3±0.78% difference in the top-3 accuracy and simple accuracy across all

years. For C++, these embeddings achieve a top-3 accuracy of 82.43±0.4% for the year 2018,

which results in a difference of 6.77 when compared to simple accuracy for the year 2018. We

note an average 7.74±0.82% difference in the top-3 accuracy and simple accuracy across all years.

While for Python, these embeddings achieve a top-3 accuracy of 78.4±0.4% for the year 2018,

resulting in a difference of 8.28 compared to simple accuracy for the year 2018. We note an average

57

7.42±1.09% difference in the top-3 accuracy and simple accuracy across all years. Lastly, for Java,

these embeddings achieve a top-3 accuracy of 69.71±0.7% for the year 2018, resulting in a difference

of 8.35 compared to simple accuracy for the year 2018. We note an average 9.94±1.34% difference

in the top-3 accuracy and simple accuracy across all years.

4.2.3.2. Seven files per author

LS based embeddings achieve an accuracy of 82.24±0.3% in the mixed language scenario for

the year 2018. We see an average -1.33±3.28% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 87.5±0.4% in

the year 2018 with an average difference of -1.79±1.93% compared to the rest of the years. While

for Python, they achieve an accuracy of 80.54±0.5% in the year 2018 with an average difference

of 2.56±7.34% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 75.49±0.8% in the year 2018 with an average difference of -1.9±3.39% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 88.49±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 6.25 compared to simple accuracy for the year 2018.

We note an average 7.19±0.6% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 92.52±0.2% for the year 2018, resulting in a

difference of 5.02 compared to simple accuracy for the year 2018. We note an average 6.11±0.63%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 87.35±0.4% for the year 2018, resulting in a difference of

6.81 compared to simple accuracy for the year 2018. We note an average 6.74±1.24% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 83.44±0.7% for the year 2018, resulting in a difference of 7.95 compared to

simple accuracy for the year 2018. We note an average 9.46±1.38% difference in the top-3 accuracy

and simple accuracy across all years.

TSH based embeddings achieve an accuracy of 71.06±0.2% in the mixed language scenario

for the year 2018. We see an average 3.17±4.45% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 78.34±0.3% in

the year 2018 with an average difference of -0.08±2.14% compared to the rest of the years. While

for Python, they achieve an accuracy of 67.74±0.5% in the year 2018 with an average difference

58

of 11.36±10.56% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 61.45±0.6% in the year 2018 with an average difference of 5.6±5.49% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 78.61±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 7.55 compared to simple accuracy for the year 2018. We

note an average 8.04±0.58% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 84.46±0.3% for the year 2018, resulting in a

difference of 6.12 compared to simple accuracy for the year 2018. We note an average 7.48±0.88%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 76.93±0.3% for the year 2018, resulting in a difference of

9.19 compared to simple accuracy for the year 2018. We note an average 7.68±1.37% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 69.49±0.9% for the year 2018, resulting in a difference of 8.04 compared to

simple accuracy for the year 2018. We note an average 9.19±1.39% difference in the top-3 accuracy

and simple accuracy across all years.

TH based embeddings achieve an accuracy of 69.06±0.3% in the mixed language scenario

for the year 2018. We see an average 3.38±4.65% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 76.77±0.4% in

the year 2018, with an average difference of 0.48±2.09% compared to the rest of the years. While

for Python, they achieve an accuracy of 65.0±0.6% in the year 2018 with an average difference of

11.09±10.92% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 59.51±0.6% in the year 2018 with an average difference of 4.96±5.43% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 76.92±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 7.86 compared to simple accuracy for the year 2018. We

note an average 8.33±0.67% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 83.31±0.4% for the year 2018, resulting in

a difference of 6.54 compared to simple accuracy for the year 2018. We note an average 7.7±0.91%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 75.03±0.5% for the year 2018, resulting in a difference of

59

10.03 compared to simple accuracy for the year 2018. We note an average 8.52±1.2% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 67.13±0.7% for the year 2018, resulting in a difference of 7.62 compared to

simple accuracy for the year 2018. We note an average 9.39±1.4% difference in the top-3 accuracy

and simple accuracy across all years.

TH-soft based embeddings achieve an accuracy of 76.45±0.2% in the mixed language

scenario for the year 2018. We see an average 1.58±3.88% difference in the accuracy of all years

from the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

81.33±0.4% in the year 2018, with an average difference of 0.35±2.43% compared to the rest of the

years. While for Python, they achieve an accuracy of 75.96±0.5% in the year 2018 with an average

difference of 7.62±8.31% compared to the rest of the years. Lastly, for Java, these embeddings

achieve an accuracy of 69.11±0.7% in the year 2018 with an average difference of 1.77±4.49%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 83.28±0.3% in the mixed language scenario

for the year 2018, resulting in a difference of 6.83 compared to simple accuracy for the year 2018.

We note an average 7.5±0.56% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 87.37±0.3% for the year 2018, resulting in a

difference of 6.04 compared to simple accuracy for the year 2018. We note an average 6.93±0.76%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 83.25±0.5% for the year 2018, resulting in a difference of

7.29 compared to simple accuracy for the year 2018. We note an average 6.3±1.13% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 76.53±0.6% for the year 2018, resulting in a difference of 7.42 compared to

simple accuracy for the year 2018. We note an average 9.24±1.17% difference in the top-3 accuracy

and simple accuracy across all years.

4.2.3.3. Nine files per author

LS based embeddings achieve an accuracy of 85.56±0.3% in the mixed language scenario for

the year 2018. We see an average -0.56±3.07% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 89.9±0.2% in

the year 2018 with an average difference of -0.87±1.65% compared to the rest of the years. While

60

for Python, they achieve an accuracy of 83.41±0.3% in the year 2018 with an average difference

of 3.14±6.45% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 79.56±0.6% in the year 2018 with an average difference of -0.7±3.05% compared to the

rest of the years.

These embeddings achieve a top-3 accuracy of 90.64±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 5.08 compared to simple accuracy for the year 2018.

We note an average 5.7±0.45% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 94.06±0.2% for the year 2018, resulting in a

difference of 4.16 compared to simple accuracy for the year 2018. We note an average 4.74±0.53%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 89.68±0.4% for the year 2018, which results in a difference

of 6.27 compared to simple accuracy for the year 2018. We note an average 5.45±1.2% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 86.39±0.5% for the year 2018, resulting in a difference of 6.83 compared to

simple accuracy for the year 2018. We note an average 8.0±1.19% difference in the top-3 accuracy

and simple accuracy across all years.

TSH based embeddings achieve an accuracy of 75.34±0.3% in the mixed language scenario

for the year 2018. We see an average 3.44±4.41% difference in the accuracy of all years from the year

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 81.77±0.4%

in the year 2018, with an average difference of 0.54±1.9% compared to the rest of the years. While

for Python, they achieve an accuracy of 71.65±0.7% in the year 2018 with an average difference

of 11.1±9.85% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 66.85±0.7% in the year 2018 with an average difference of 6.42±5.33% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 81.82±0.4% in the mixed language scenario

for the year 2018, resulting in a difference of 6.48 compared to simple accuracy for the year 2018.

We note an average 6.75±0.48% difference in the top-3 accuracy and simple accuracy across all

years. For C++, these embeddings achieve a top-3 accuracy of 87.26±0.4% for the year 2018,

resulting in a difference of 5.49 compared to simple accuracy for the year 2018. We note an average

6.23±0.65% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

61

these embeddings achieve a top-3 accuracy of 79.6±0.5% for the year 2018, resulting in a difference

of 7.95 compared to simple accuracy for the year 2018. We note an average 6.3±1.23% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 73.27±0.6% for the year 2018, resulting in a difference of 6.42 compared to

simple accuracy for the year 2018. We note an average 7.63±1.02% difference in the top-3 accuracy

and simple accuracy across all years.

TH based embeddings achieve an accuracy of 73.39±0.4% in the mixed language scenario

for the year 2018. We see an average of 3.67±4.55% difference in the accuracy of all years from

2018 in this particular scenario. For C++, these embeddings achieve an accuracy of 80.64±0.5% in

the year 2018, with an average difference of 0.73±1.85% compared to the rest of the years. While

for Python, they achieve an accuracy of 68.99±0.7% in the year 2018 with an average difference

of 11.03±10.29% compared to the rest of the years. Lastly, for Java, these embeddings achieve an

accuracy of 64.33±0.7% in the year 2018 with an average difference of 6.52±5.44% compared to

the rest of the years.

These embeddings achieve a top-3 accuracy of 80.17±0.1% in the mixed language scenario

for the year 2018, which results in a difference of 6.78 when compared to simple accuracy for the year

2018. We note an average 7.2±0.6% difference in the top-3 accuracy and simple accuracy across

all years. For C++, these embeddings achieve a top-3 accuracy of 85.75±0.3% for the year 2018,

resulting in a difference of 5.11 compared to simple accuracy for the year 2018. We note an average

6.4±0.74% difference in the top-3 accuracy and simple accuracy across all years. While for Python,

these embeddings achieve a top-3 accuracy of 77.49±0.6% for the year 2018, resulting in a difference

of 8.5 compared to simple accuracy for the year 2018. We note an average 7.44±1.19% difference in

the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings achieve

a top-3 accuracy of 71.5±0.7% for the year 2018, which results in a difference of 7.17 compared to

simple accuracy for the year 2018. We note an average 8.07±1.21% difference in the top-3 accuracy

and simple accuracy across all years.

TH-soft based embeddings achieve an accuracy of 80.15±0.3% in the mixed language

scenario for the year 2018. We see an average 2.17±3.66% difference in the accuracy of all years

from the year 2018 in this particular scenario. For C++, these embeddings achieve an accuracy of

84.54±0.4% in the year 2018, with an average difference of 0.96±2.2% compared to the rest of the

62

years. While for Python, they achieve an accuracy of 79.2±0.6% in the year 2018 with an average

difference of 7.53±7.46% compared to the rest of the years. Lastly, for Java, these embeddings

achieve an accuracy of 73.89±1.0% in the year 2018 with an average difference of 2.78±4.36%

compared to the rest of the years.

These embeddings achieve a top-3 accuracy of 85.76±0.2% in the mixed language scenario

for the year 2018, resulting in a difference of 5.61 compared to simple accuracy for the year 2018. We

note an average 6.04±0.43% difference in the top-3 accuracy and simple accuracy across all years.

For C++, these embeddings achieve a top-3 accuracy of 89.63±0.3% for the year 2018, resulting in a

difference of 5.09 compared to simple accuracy for the year 2018. We note an average 5.52±0.59%

difference in the top-3 accuracy and simple accuracy across all years. While for Python, these

embeddings achieve a top-3 accuracy of 86.13±0.5% for the year 2018, which results in a difference

of 6.93 compared to simple accuracy for the year 2018. We note an average 5.16±1.28% difference

in the top-3 accuracy and simple accuracy across all years. Lastly, for Java, these embeddings

achieve a top-3 accuracy of 80.12±0.7% for the year 2018, which results in a difference of 6.23

compared to simple accuracy for the year 2018. We note an average 7.57±1.01% difference in the

top-3 accuracy and simple accuracy across all years.

We note a noticeable increase in performance yet again with the increase in the number

of files as priors. However, again, one could argue that this increase in performance is due to the

decrease in author count and not due to the increase in priors. In Figure 4.8 we compare the

performance of the different loss functions in different scenarios under this particular scenario for

the year 2020. As we can LS based embeddings always outperforms the TSH, TH, and its Soft

margin variant based embeddings.

Table 4.9. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 10090 82.75±0.4 89.03±0.3 4885 74.76±0.5 82.94±0.4 3734 68.29±0.6 77.17±0.6 18231 76.78±0.4 84.06±0.3
7 8852 87.5±0.4 92.52±0.2 4169 80.54±0.5 87.35±0.4 3152 75.49±0.8 83.44±0.7 15922 82.24±0.3 88.49±0.2
9 7850 89.9±0.2 94.06±0.2 3611 83.41±0.3 89.68±0.4 2726 79.56±0.6 86.39±0.5 14070 85.56±0.3 90.64±0.2

2019
5 13523 80.15±0.3 85.91±0.3 9597 68.22±0.4 75.63±0.4 5152 64.0±0.5 71.3±0.6 26224 70.36±0.2 77.05±0.2
7 11832 85.28±0.2 90.41±0.3 8236 74.92±0.4 81.49±0.4 4475 71.52±0.6 78.14±0.6 23321 76.8±0.2 83.01±0.2
9 10432 88.62±0.3 92.29±0.3 7123 79.21±0.3 84.37±0.4 3925 76.54±0.6 82.0±0.2 20833 81.13±0.3 85.83±0.2

2020
5 20677 76.54±0.3 83.14±0.2 11800 56.43±0.5 65.73±0.2 5032 59.26±0.5 67.34±0.4 36157 66.37±0.2 73.95±0.1
7 18818 82.2±0.1 87.98±0.2 10499 63.95±0.4 72.82±0.3 4510 66.84±0.3 74.96±0.6 33174 73.02±0.2 80.05±0.1
9 16916 85.98±0.3 90.44±0.2 9373 69.3±0.4 77.25±0.3 3985 72.78±0.5 79.58±0.7 30084 77.29±0.2 83.3±0.1

63

Lifted Struct TSH TH TH-Soft
Loss functions

76

78

80

82

84

86

88

90 Accuracy
Top 3 Accuracy

(a) CPP

Lifted Struct TSH TH TH-Soft
Loss functions

60

65

70

75

80 Accuracy
Top 3 Accuracy

(b) Java

Lifted Struct TSH TH TH-Soft
Loss functions

55

60

65

70

75

Accuracy
Top 3 Accuracy

(c) Python

Lifted Struct TSH TH TH-Soft
Loss functions

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0
Accuracy
Top 3 Accuracy

(d) Mixed

Figure 4.8. Loss function performance comparison on simulated real world dataset.

4.2.4. Discussion

In this subsection, we discuss some of the further analysis that we conducted across all

settings.

Compared with the other loss functions, LS achieves, on average 4.18±3.38 difference in ac-

curacy across all settings and scenarios. Here a higher average score represents better performance.

When compared with the other loss functions, TSH achieves an average of -1.77±3.34 difference in

accuracy across all settings and scenarios. For TH, a similar comparison yields an average difference

of -3.87±3.12. Lastly, When TH-Soft is compared with others, the average difference is 1.46±3.32.

We can see the distributions in figure 4.9 from which these numbers are derived.

With this, we can confidently claim that LS loss function is superior to others by a significant

margin while TH-Soft loss function comes in second, followed by TSH and TH, respectively.

64

Table 4.10. TSH: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 10090 72.09±0.3 79.35±0.4 4885 61.08±0.5 71.03±0.4 3734 53.71±0.5 61.23±0.7 18231 64.49±0.3 72.56±0.2
7 8852 78.34±0.3 84.46±0.3 4169 67.74±0.5 76.93±0.3 3152 61.45±0.6 69.49±0.9 15922 71.06±0.2 78.61±0.2
9 7850 81.77±0.4 87.26±0.4 3611 71.65±0.7 79.6±0.5 2726 66.85±0.7 73.27±0.6 14070 75.34±0.3 81.82±0.4

2019
5 13523 71.32±0.2 77.42±0.3 9597 56.21±0.5 64.46±0.4 5152 52.01±0.7 58.7±0.7 26224 59.82±0.2 66.7±0.2
7 11832 77.52±0.3 83.31±0.2 8236 63.06±0.5 70.9±0.5 4475 60.05±0.5 66.91±0.8 23321 66.95±0.2 73.73±0.2
9 10432 81.58±0.4 86.23±0.3 7123 67.83±0.4 74.35±0.4 3925 65.6±0.8 71.56±0.5 20833 71.65±0.3 77.41±0.2

2020
5 20677 67.97±0.3 74.76±0.2 11800 45.79±0.3 54.41±0.5 5032 47.34±0.6 54.98±0.5 36157 56.87±0.3 64.43±0.2
7 18818 74.25±0.2 80.72±0.2 10499 52.9±0.3 61.86±0.3 4510 55.6±0.4 63.03±0.7 33174 63.63±0.1 70.94±0.1
9 16916 78.63±0.2 84.01±0.2 9373 57.64±0.3 66.02±0.4 3985 61.59±0.4 68.31±0.5 30084 68.17±0.2 74.75±0.1

Table 4.11. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 10090 70.77±0.4 77.66±0.4 4885 58.67±0.4 68.42±0.5 3734 50.84±0.6 59.3±0.6 18231 62.52±0.2 70.52±0.3
7 8852 76.77±0.4 83.31±0.4 4169 65.0±0.6 75.03±0.5 3152 59.51±0.6 67.13±0.7 15922 69.06±0.3 76.92±0.3
9 7850 80.64±0.5 85.75±0.3 3611 68.99±0.7 77.49±0.6 2726 64.33±0.7 71.5±0.7 14070 73.39±0.4 80.17±0.1

2019
5 13523 70.0±0.2 76.39±0.3 9597 52.68±0.4 61.1±0.4 5152 49.88±0.8 56.55±0.6 26224 57.66±0.3 64.72±0.2
7 11832 76.38±0.3 82.23±0.3 8236 59.67±0.5 68.01±0.4 4475 57.79±0.6 64.14±1.0 23321 64.85±0.2 71.79±0.2
9 10432 80.56±0.2 85.54±0.2 7123 64.43±0.5 72.02±0.4 3925 63.43±0.4 69.44±0.6 20833 69.62±0.4 75.74±0.3

2020
5 20677 66.54±0.2 73.54±0.2 11800 42.35±0.3 50.79±0.3 5032 45.32±0.9 53.04±0.5 36157 54.84±0.2 62.3±0.2
7 18818 72.99±0.3 79.38±0.3 10499 49.2±0.3 57.96±0.3 4510 53.0±0.8 60.86±0.4 33174 61.46±0.2 68.88±0.2
9 16916 77.38±0.1 82.92±0.2 9373 54.29±0.4 62.43±0.5 3985 59.72±0.5 66.7±0.8 30084 66.24±0.2 72.87±0.2

4.3. Open world setting

This section will discuss different loss functions’ performance if we try to treat the problem

in an open-world setting. For this setting, we only evaluated the approaches to the source code

files from the year 2008. We use distance-based thresholding to determine whether the source code

belongs to a known author or if it originated from ’outside the world". We essentially modify the

nearest neighbor classifier to classify a particular input sample from outside if its distance from

that known source code file is larger than a specific threshold. However, we need some priors to

do such thresholding, and for that, we choose our training dataset, the year 2018. We calculate a

distribution of mean distances within each cluster. We then take the mean of this distribution and

calculate the standard deviation. We then select different distance cut-offs within the two standard

deviations of the mean. To form the training and testing data for this setting, we sample 8 source

codes from each author, and those who do not have that many source codes are put in the test

dataset and labeled as outside. We evaluate our approach ten times for each cut-off point and get

an average precision and recall score.

65

Table 4.12. TH-soft: Accuracy of authorship attribution across different number of source code
files per author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2018
5 10090 75.66±0.3 82.43±0.4 4885 70.12±0.3 78.4±0.4 3734 61.36±0.8 69.71±0.7 18231 70.14±0.2 77.7±0.2
7 8852 81.33±0.4 87.37±0.3 4169 75.96±0.5 83.25±0.5 3152 69.11±0.7 76.53±0.6 15922 76.45±0.2 83.28±0.3
9 7850 84.54±0.4 89.63±0.3 3611 79.2±0.6 86.13±0.5 2726 73.89±1.0 80.12±0.7 14070 80.15±0.3 85.76±0.2

2019
5 13523 74.66±0.5 80.75±0.2 9597 65.93±0.6 72.9±0.3 5152 58.68±0.4 66.05±0.3 26224 65.84±0.2 72.61±0.2
7 11832 80.63±0.3 86.01±0.3 8236 72.53±0.5 78.88±0.3 4475 66.52±0.7 73.2±0.5 23321 72.73±0.2 78.98±0.3
9 10432 84.41±0.3 88.74±0.2 7123 76.69±0.6 82.15±0.4 3925 71.64±0.4 77.29±0.7 20833 77.15±0.3 82.37±0.2

2020
5 20677 71.3±0.3 78.02±0.1 11800 54.75±0.4 63.62±0.4 5032 53.24±0.5 61.3±0.7 36157 62.23±0.1 69.63±0.3
7 18818 77.22±0.2 83.57±0.2 10499 62.23±0.4 70.63±0.4 4510 60.69±0.7 68.93±0.4 33174 68.74±0.2 75.98±0.2
9 16916 81.55±0.3 86.4±0.3 9373 67.37±0.4 74.73±0.4 3985 66.72±0.7 73.92±0.7 30084 73.47±0.2 79.6±0.1

−5 0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

De
ns

ity

TSH
TH
TH-Soft

(a) Acc. difference for LS embeddings

−15 −10 −5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

LS
TH
TH-Soft

(b) Acc. difference for TSH embeddings

−20 −15 −10 −5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

LS
TSH
TH-Soft

(c) Acc. difference for TH embeddings

−10 −5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

De
ns
ity

LS
TSH
TH

(d) Acc. difference for TH-soft embeddings

Figure 4.9. Distributions of accuracy difference across all settings between loss functions. Here the
y-axis shows the density while the x-axis shows the accuracy difference.

We want the reader to note that we are not claiming that a specific threshold will work all

the time; instead, we are just reporting the results on our specific dataset. We have plotted out

the performance of the models at different thresholds in figure 4.10.

66

0 20 40 60 80 100
Distance Threshold

0.0

0.2

0.4

0.6

0.8

1.0
S
co

re

Outside Recall
Outside Precison
Overall Recall
Overall Precison

(a) Lifted structured loss

0 2 4 6 8 10 12
Distance Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Outside Recall
Outside Precison
Overall Recall
Overall Precison

(b) Triplet semi-hard loss

0 2 4 6 8 10 12 14
Distance Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Outside Recall
Outside Precison
Overall Recall
Overall Precison

(c) Triplet hard loss

0 2 4 6 8 10 12 14
Distance Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Outside Recall
Outside Precison
Overall Recall
Overall Precison

(d) Triplet hard soft margin

Figure 4.10. Open world setting

For LS embeddings, we find that 36.95 was the most optimal distance threshold. We

achieved an overall mean precision and recall score of 53.5% and 77.4%, respectively. For the

outside class on the same threshold, we achieve an average recall of 67.7% and an average precision

score of 96.0%.

For TSH embeddings, we determined that 3.12 was the most optimal distance threshold.

We achieved an overall mean precision and recall score of 47.9% and 74.7%, respectively. For the

outside class on the same threshold, we achieve an average recall of 56.1% and an average precision

score of 96.3%.

For TH embeddings, we find that 3.78 was the most optimal distance threshold. We achieved

an overall mean precision and recall score of 45.3% and 74.7%, respectively. For the outside class

on the same threshold, we achieve an average recall of 52.1% and an average precision score of

96.7%.

67

For TH-soft embeddings, we determined that 4.99 was the most optimal distance threshold.

We achieved an overall mean precision and recall score of 52.7% and 76.3%, respectively. For the

outside class on the same threshold, we achieve an average recall of 67.1% and an average precision

score of 96.5%.

As we can see, LS embeddings again outperform the other three embeddings. TH-Soft

based embeddings perform almost as well with only minor degradation in overall precision and

recall noted to be -0.79% and -1.1% respectively when compared with LS based embeddings.

4.4. Are the different models language oblivious?

This section will discuss the performance of different loss functions on the authorship at-

tribution task but using source codes written in previously unseen programming languages. For

this setting, we only evaluated the approaches using the source code files from the year 2020. In

table 4.13, we show the performance of different loss functions on a number of previously unseen

programming languages as we can observe that all of the models can extract language oblivious

stylistic features.

Table 4.13. Accuracy of authorship attribution across different number of source code files per
author, different unseen programming languages mined from the original GCJ dataset.

LS TSH TH TH-Soft
Prog. Lang. Files Authors Acc. Top 3 Acc. Acc. Top 3 Acc. Acc. Top 3 Acc. Acc. Top 3 Acc.

C
5 579 89.4±1.2 93.07±1.1 82.45±1.4 86.8±1.5 82.11±1.4 85.99±1.4 81.38±1.3 86.3±1.1
7 409 93.2±1.0 95.43±0.9 87.29±1.6 90.05±1.2 87.04±1.9 90.2±1.4 87.14±1.3 90.32±1.5
9 262 95.04±0.7 96.34±0.8 90.23±1.1 92.75±1.6 90.42±1.5 91.07±0.8 90.57±1.8 91.49±1.9

Go
5 163 88.53±2.4 93.93±1.7 85.71±2.4 92.39±2.5 84.79±2.5 91.41±1.8 84.17±1.8 91.04±1.7
7 136 93.16±1.4 96.54±1.4 90.0±1.9 94.04±1.6 90.15±2.9 91.99±1.3 89.12±2.4 93.6±1.8
9 109 94.04±1.6 97.52±1.2 92.66±1.2 95.5±1.9 92.29±2.5 94.13±1.2 90.09±3.5 93.85±1.5

Ruby
5 95 84.21±3.5 91.16±3.2 83.58±3.4 88.63±2.0 78.84±2.3 83.79±2.6 81.05±3.8 85.68±3.1
7 80 91.75±1.8 95.38±2.6 89.12±2.1 93.5±1.9 86.88±4.0 91.62±1.5 85.75±3.3 91.0±3.4
9 60 92.83±2.9 95.83±2.6 91.0±1.7 95.5±2.7 91.17±4.1 93.83±2.1 88.5±3.8 94.0±1.7

PHP
5 51 97.65±2.9 99.61±0.8 96.08±2.3 98.24±1.1 96.67±1.3 99.22±1.3 96.47±3.0 99.41±0.9
7 37 99.19±1.2 100.0±0.0 98.11±2.1 99.46±1.1 97.57±2.2 98.92±1.3 97.03±3.3 99.19±1.2
9 32 99.06±1.4 99.69±0.9 98.75±2.1 99.06±1.4 97.81±2.4 99.06±1.4 98.75±1.5 99.06±1.4

C#
5 476 81.13±0.4 86.7±1.4 79.81±1.9 84.89±1.4 78.3±1.1 82.44±1.4 77.94±2.5 82.56±1.2
7 393 86.26±0.9 90.08±1.5 85.04±2.0 89.67±1.5 84.43±1.1 88.42±1.8 84.86±1.1 86.9±1.3
9 309 88.51±1.6 92.82±1.4 88.54±1.7 92.59±1.1 87.73±1.0 91.17±1.6 87.31±1.9 91.04±1.3

JS
5 259 90.46±1.3 94.17±1.1 88.19±1.3 92.36±1.6 83.78±1.9 90.08±2.0 83.13±1.6 88.42±1.5
7 205 92.78±1.4 96.98±0.8 91.76±1.9 93.9±1.9 88.78±2.4 92.98±2.4 87.71±2.1 92.24±2.0
9 164 93.9±2.0 97.68±0.9 93.6±1.5 94.88±1.0 92.13±2.0 95.12±1.1 91.34±1.5 94.21±0.8

Mixed
5 1623 86.64±0.7 90.96±0.6 82.8±0.8 87.78±0.7 80.97±0.6 86.31±0.6 81.2±0.9 85.78±0.5
7 1262 91.07±0.6 94.02±0.5 87.62±0.6 91.48±0.6 87.1±0.6 90.43±0.5 86.02±0.7 89.55±0.5
9 936 93.32±0.7 95.96±0.5 90.93±0.8 93.8±0.5 90.04±0.9 92.56±0.7 89.78±0.9 92.49±0.9

68

LS embeddings have an average accuracy difference of 3.18±1.93, while the median value

is 3.12 compared to the rest of the loss functions. Here a higher positive value represents better

performance. While for TSH, we observe an average difference of 0.15±2.23 and a median value

of 0.47. We calculate the average difference for TH and TH-Soft to be -1.47±2.11 and -1.86±2.02.

The median value for TH and TH-Soft was -0.96 and -1.32.

As we observed before, LS embeddings dominated the other three loss functions by a signif-

icant margin. Though this is not a definitive answer, the number of authors associated with each

of these languages is pretty low compared to the three most popular languages in the competition,

but it still shows promise.

69

5. FUTURE WORK

The following are some of the avenues we can consider to extend this work. In the data

selection phase, we can evaluate our approach on other source code datasets, especially those

sampled from the wild. In the neural network training phase, we can consider pre-training a neural

network and fine-tuning that using such loss functions may lead to faster convergence. During this

same phase, we can work on the source code files sampling so that there is an equal representation

of all the programming languages and one does not overpower the others. For instance, in our

experiments, the C++ language always outperforms the other programming languages due to

a larger number of source files. Moreover, we can explore other loss functions that use cosine

similarity as the "distance" metric [45] and determine their performance. We can also experiment

with a Hybrid neural network that consists of both convolutions and recurrent layers. Also, we can

consider encoding schemes other than character level representation, such as byte-level encoding.

We believe that some of these approaches might lead to significantly smaller sequence sizes and make

the evaluation of purely recurrent and even Transformers, proposed by Vaswani et al. [46], feasible.

Furthermore, we can consider non-gradient based optimization techniques such as the Particle

Swarm Optimization technique. We can use Neighborhood Component Analysis to transform the

embeddings further, as our initial experiment shows around a 3% improvement over the vanilla NN

embeddings. We can also consider applying regularization on the embedding layer, such as the one

proposed by Zhang et al. [47], which enforces the embeddings to be spread out over the hyper-

sphere by using an orthogonality based constraint. Also, we can use more complex obfuscators to

determine the effect state of the art obfuscation techniques on the performance of our proposed

system. Finally, our current work is based on the assumption that source code can be attributed

to a single author. However, in real-world scenarios, multiple authors usually author source codes

collectively, mainly when they belong to a single project. Identifying multiple programmers in a

source code could be an exciting avenue to explore using our proposed approach.

70

6. CONCLUSION

Identifying the author of source code is crucial for multiple applications such as plagiarism

detection, software forensic, and copyright violation detection. Programmers often use similar

patterns to write code, such as variable naming, use of for/while loop. These patterns play an

important role in identifying authors from the source code. We present an efficient approach

to learn novel deep representations of source code files that characterize the code in a fixed size

embedding vector. Code files written by the same author are close in the embedding space compared

to code files written by a different author. In this study, we provide a CNN based author attribution

system. We first train convolutional neural networks using various deep metric learning based loss

functions on character-level source code representations. We then extract the deep representation

vectors from the CNN and feed them to a K-nearest neighbor classifier.

We evaluate our approach using the GCJ dataset. We performed our analysis primarily on

the three most popular programming languages within GCJ: Python, C++, Java. Results show

that our models can achieve decent results under various constraints and scenarios. We evaluated

our approach under obfuscated source-code only, original source-code only, and simulated real-world

constraint. We also conducted two initial experiments. In the first initial experiment, we try to

address the problem’s open-world aspect, where the author could be someone outside the training

set. While in the second experiment, we try to show that our approach can perform the attribution

task using source codes written in previously unseen programming languages.

71

REFERENCES

[1] Steven Burrows and Seyed MM Tahaghoghi. Source code authorship attribution using n-grams.

In Proceedings of the Twelth Australasian Document Computing Symposium, Melbourne, Aus-

tralia, RMIT University, pages 32–39. Citeseer, 2007.

[2] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and Sokratis Katsikas. Effec-

tive identification of source code authors using byte-level information. In Proceedings of the

28th international conference on Software engineering, pages 893–896, 2006.

[3] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang. Large-

scale and language-oblivious code authorship identification. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, pages 101–114, 2018.

[4] Yutian Lin, Liang Zheng, Zhedong Zheng, Yu Wu, Zhilan Hu, Chenggang Yan, and Yi Yang.

Improving person re-identification by attribute and identity learning. Pattern Recognition,

95:151–161, 2019.

[5] Liang Zheng, Yi Yang, and Alexander G Hauptmann. Person re-identification: Past, present

and future. arXiv preprint arXiv:1610.02984, 2016.

[6] Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, and Xiaogang Wang. Learning deep neural

networks for vehicle re-id with visual-spatio-temporal path proposals. In Proceedings of the

IEEE International Conference on Computer Vision, pages 1900–1909, 2017.

[7] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare Voss, Fabian

Yamaguchi, and Rachel Greenstadt. De-anonymizing programmers via code stylometry. In

24th {USENIX} Security Symposium ({USENIX} Security 15), pages 255–270, 2015.

[8] Haibiao Ding and Mansur H Samadzadeh. Extraction of java program fingerprints for software

authorship identification. Journal of Systems and Software, 72(1):49–57, 2004.

[9] Edwin Dauber, Aylin Caliskan, Richard Harang, Gregory Shearer, Michael Weisman, Fred-

erica Nelson, and Rachel Greenstadt. Git blame who?: Stylistic authorship attribution of

72

small, incomplete source code fragments. Proceedings on Privacy Enhancing Technologies,

2019(3):389–408, 2019.

[10] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and Rachel Greenstadt.

Source code authorship attribution using long short-term memory based networks. In European

Symposium on Research in Computer Security, pages 65–82. Springer, 2017.

[11] Mohammed Abuhamad, Ji-su Rhim, Tamer AbuHmed, Sana Ullah, Sanggil Kang, and DaeHun

Nyang. Code authorship identification using convolutional neural networks. Future Generation

Computer Systems, 95:104–115, 2019.

[12] S. Zafar, M. U. Sarwar, S. Salem, and M. Z. Malik. Language and obfuscation oblivious source

code authorship attribution. IEEE Access, pages 1–1, 2020.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[14] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. Deep metric learning with

angular loss. In Proceedings of the IEEE International Conference on Computer Vision, pages

2593–2601, 2017.

[15] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity

loss with general pair weighting for deep metric learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5022–5030, 2019.

[16] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Advances

in neural information processing systems, pages 1857–1865, 2016.

[17] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an

invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[18] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for

face recognition and clustering. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 815–823, 2015.

73

http://www.deeplearningbook.org

[19] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person

re-identification. arXiv preprint arXiv:1703.07737, 2017.

[20] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a discriminative null space for per-

son re-identification. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1239–1248, 2016.

[21] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, and Nanning Zheng. Person re-

identification by multi-channel parts-based cnn with improved triplet loss function. In Pro-

ceedings of the iEEE conference on computer vision and pattern recognition, pages 1335–1344,

2016.

[22] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted

structured feature embedding. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4004–4012, 2016.

[23] Farhan Ullah, Junfeng Wang, Sohail Jabbar, Fadi Al-Turjman, and Mamoun Alazab. Source

code authorship attribution using hybrid approach of program dependence graph and deep

learning model. IEEE Access, 7:141987–141999, 2019.

[24] Xinyu Yang, Guoai Xu, Qi Li, Yanhui Guo, and Miao Zhang. Authorship attribution of source

code by using back propagation neural network based on particle swarm optimization. PloS

one, 12(11), 2017.

[25] Steven Burrows, Alexandra L Uitdenbogerd, and Andrew Turpin. Comparing techniques for

authorship attribution of source code. Software: Practice and Experience, 44(1):1–32, 2014.

[26] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad Rieck, Rachel

Greenstadt, and Arvind Narayanan. When coding style survives compilation: De-anonymizing

programmers from executable binaries. arXiv preprint arXiv:1512.08546, 2015.

[27] Xiaozhu Meng, Barton P Miller, and Kwang-Sung Jun. Identifying multiple authors in a

binary program. In European Symposium on Research in Computer Security, pages 286–304.

Springer, 2017.

74

[28] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. Beyond triplet loss: a deep

quadruplet network for person re-identification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 403–412, 2017.

[29] Sebastian Ruder, Parsa Ghaffari, and John G Breslin. Character-level and multi-

channel convolutional neural networks for large-scale authorship attribution. arXiv preprint

arXiv:1609.06686, 2016.

[30] Brian N. Pellin. Using classification techniques to determine source code authorship. 2006.

[31] Stephen G MacDonell, Andrew R Gray, Grant MacLennan, and Philip J Sallis. Software foren-

sics for discriminating between program authors using case-based reasoning, feedforward neu-

ral networks and multiple discriminant analysis. In ICONIP’99. ANZIIS’99 & ANNES’99 &

ACNN’99. 6th International Conference on Neural Information Processing. Proceedings (Cat.

No. 99EX378), volume 1, pages 66–71. IEEE, 1999.

[32] Steven Burrows, Alexandra L Uitdenbogerd, and Andrew Turpin. Application of information

retrieval techniques for source code authorship attribution. In International Conference on

Database Systems for Advanced Applications, pages 699–713. Springer, 2009.

[33] Bruce S Elenbogen and Naeem Seliya. Detecting outsourced student programming assignments.

Journal of Computing Sciences in Colleges, 23(3):50–57, 2008.

[34] Robert Charles Lange and Spiros Mancoridis. Using code metric histograms and genetic

algorithms to perform author identification for software forensics. In Proceedings of the 9th

annual conference on Genetic and evolutionary computation, pages 2082–2089, 2007.

[35] Ivan Krsul and Eugene H Spafford. Authorship analysis: Identifying the author of a program.

Computers & Security, 16(3):233–257, 1997.

[36] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior

of distance metrics in high dimensional space. In International conference on database theory,

pages 420–434. Springer, 2001.

75

[37] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org.

[38] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient

object localization using convolutional networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 648–656, 2015.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE

international conference on computer vision, pages 1026–1034, 2015.

[40] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann ma-

chines. In Proceedings of the 27th international conference on machine learning (ICML-10),

pages 807–814, 2010.

[41] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel

Kuksa. Natural language processing (almost) from scratch. Journal of machine learning

research, 12(Aug):2493–2537, 2011.

[42] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the thirteenth international conference on artificial intelli-

gence and statistics, pages 249–256, 2010.

[43] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and

Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint

arXiv:1908.03265, 2019.

76

[44] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k

steps forward, 1 step back. In Advances in Neural Information Processing Systems, pages

9597–9608, 2019.

[45] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. arXiv

preprint arXiv:2003.08505, 2020.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural infor-

mation processing systems, pages 5998–6008, 2017.

[47] Xu Zhang, Felix X Yu, Sanjiv Kumar, and Shih-Fu Chang. Learning spread-out local feature

descriptors. In Proceedings of the IEEE International Conference on Computer Vision, pages

4595–4603, 2017.

77

APPENDIX. SUPPLEMENTARY TABLES

Table A.1. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 1547 82.34±0.7 88.17±0.6 244 89.26±1.7 93.81±1.1 609 81.84±1.2 87.47±0.5 2427 81.44±0.8 88.22±0.5
7 1063 86.52±1.2 92.14±1.0 108 95.74±1.8 97.87±1.1 308 87.56±1.4 92.31±1.3 1503 86.35±0.7 92.0±0.5
9 807 89.76±0.6 94.55±0.8 37 98.38±1.3 98.11±1.2 176 90.91±1.9 95.34±1.9 1041 89.6±0.7 94.29±1.0

2009
5 2402 77.6±0.9 84.81±0.5 386 82.67±1.5 91.37±1.1 791 76.99±1.0 85.26±1.3 3625 76.93±0.5 84.6±0.5
7 1729 84.88±0.6 91.19±0.4 216 91.94±2.1 96.94±0.4 495 85.19±1.2 91.43±0.7 2513 84.06±0.7 90.58±0.5
9 1107 90.18±1.1 94.69±0.5 97 95.36±1.4 97.84±1.6 281 91.67±1.3 95.2±0.8 1539 90.51±0.7 94.16±0.5

2010
5 2463 86.09±0.3 91.38±0.5 445 91.15±1.2 95.35±1.2 861 89.16±0.5 94.17±0.8 3911 83.95±0.5 89.15±0.3
7 1673 90.68±0.3 94.87±0.5 247 94.25±1.2 97.61±1.2 568 94.47±0.6 97.2±0.6 2667 88.92±0.4 92.8±0.6
9 1006 94.28±0.7 96.85±0.4 126 97.78±1.1 98.89±0.8 335 96.33±0.8 98.18±0.9 1623 92.8±0.7 94.79±0.6

2011
5 3772 87.08±0.5 91.99±0.3 759 91.95±0.6 95.72±0.5 1373 86.74±0.8 91.51±0.6 5966 86.62±0.3 91.95±0.2
7 2880 91.84±0.6 95.73±0.2 460 95.09±0.9 97.72±0.6 947 90.83±0.8 94.75±0.6 4367 91.38±0.2 95.21±0.3
9 1989 94.72±0.5 97.17±0.4 242 97.48±0.7 98.72±0.7 612 94.72±0.7 96.85±0.6 2926 94.59±0.2 96.99±0.3

2012
5 3340 84.43±0.6 90.01±0.4 749 89.19±0.8 93.68±0.6 1252 83.35±0.7 89.34±0.8 5467 83.67±0.5 89.3±0.3
7 2127 90.57±0.6 94.35±0.5 343 94.2±1.6 96.91±0.6 621 90.05±0.8 94.09±0.5 3193 89.85±0.5 93.52±0.2
9 1255 93.28±0.6 96.12±0.6 155 97.29±0.8 99.16±0.6 340 94.65±0.6 96.71±0.8 1823 92.95±0.6 95.99±0.3

2013
5 4605 85.29±0.4 90.88±0.3 1263 89.26±0.3 94.05±0.5 1957 84.19±0.6 89.82±0.6 8046 83.72±0.3 89.08±0.3
7 2941 90.82±0.3 95.08±0.3 648 94.44±0.6 97.22±0.5 1077 90.55±0.5 94.26±0.5 4916 89.3±0.4 93.53±0.2
9 1820 94.25±0.7 97.02±0.3 314 96.91±0.9 98.09±0.6 597 93.69±0.6 96.3±0.6 2945 93.0±0.4 95.9±0.3

2014
5 5185 86.4±0.4 91.4±0.2 1422 90.44±0.7 94.9±0.5 1939 85.53±0.5 90.75±0.4 8648 85.35±0.3 90.77±0.3
7 3296 91.37±0.3 95.23±0.3 725 94.86±0.6 97.45±0.4 1039 91.57±0.5 95.38±0.8 5186 91.21±0.3 94.64±0.3
9 2166 94.52±0.4 96.95±0.4 336 97.17±1.1 98.78±0.2 599 94.11±1.0 97.11±0.6 3222 93.82±0.4 96.56±0.2

2015
5 4615 88.32±0.3 92.84±0.4 998 92.21±0.7 96.06±0.5 1344 89.01±0.7 93.43±0.4 7038 87.98±0.3 92.25±0.3
7 3293 92.35±0.3 95.77±0.3 593 96.07±0.6 98.41±0.8 830 93.29±0.7 96.86±0.5 4823 91.79±0.4 95.41±0.4
9 2239 95.07±0.4 97.1±0.2 329 98.02±0.5 99.0±0.4 500 95.58±0.7 98.02±0.6 3166 94.88±0.3 96.92±0.2

2016
5 6511 85.31±0.2 90.46±0.2 2532 82.02±0.5 88.53±0.4 2605 81.19±0.5 87.99±0.6 11896 81.77±0.3 87.72±0.1
7 4624 90.55±0.5 94.29±0.4 1567 89.59±0.8 94.36±0.4 1684 87.81±0.5 93.33±0.5 8181 88.19±0.3 92.77±0.2
9 3217 94.08±0.3 96.62±0.3 915 93.56±0.8 96.82±0.4 1060 92.34±0.6 95.94±0.6 5435 92.41±0.3 95.41±0.3

2017
5 5911 89.62±0.3 93.97±0.2 1960 88.29±0.4 93.25±0.2 1703 85.58±0.5 91.3±0.6 9698 87.54±0.3 92.32±0.2
7 4070 94.16±0.3 97.16±0.1 1105 94.05±0.5 97.34±0.3 979 91.88±0.7 95.63±0.5 6305 93.13±0.4 96.37±0.1
9 2752 96.32±0.2 98.18±0.2 621 96.96±0.7 98.42±0.5 550 95.67±0.9 97.27±0.8 4072 95.71±0.3 97.64±0.2

2018
5 7830 88.18±0.2 92.12±0.3 3525 82.26±0.5 87.75±0.3 2726 84.79±0.4 89.42±0.4 13983 84.79±0.4 89.14±0.3
7 6376 91.86±0.2 94.83±0.2 2620 86.49±0.5 91.66±0.5 2083 89.2±0.5 93.07±0.6 11152 88.99±0.3 92.91±0.3
9 5277 93.89±0.3 96.34±0.2 2054 89.85±0.5 93.59±0.5 1608 91.92±0.6 95.04±0.5 9053 91.59±0.2 94.63±0.2

2019
5 10122 86.69±0.2 90.09±0.2 6281 81.85±0.5 85.38±0.4 3921 82.25±0.5 86.35±0.6 19672 81.86±0.2 85.37±0.2
7 8087 90.8±0.5 93.57±0.2 4840 86.78±0.4 89.86±0.4 3069 87.25±0.5 90.54±0.5 15973 86.65±0.2 89.91±0.2
9 6468 93.19±0.3 95.27±0.2 3759 89.6±0.4 92.05±0.3 2373 90.1±0.7 92.95±0.3 12952 89.65±0.2 92.25±0.1

2020
5 16872 83.59±0.4 87.62±0.2 9124 70.65±0.3 76.16±0.5 3982 79.65±0.7 84.96±0.4 29838 77.15±0.3 81.83±0.2
7 13694 88.41±0.3 91.86±0.2 7130 77.9±0.3 83.04±0.3 3125 85.25±0.6 89.71±0.4 24281 83.11±0.1 87.25±0.1
9 11143 91.4±0.3 94.08±0.2 5513 82.1±0.4 86.88±0.4 2384 88.63±0.6 92.63±0.4 19529 86.95±0.2 90.3±0.2

78

Table A.2. TSH: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages evaluated on obfuscated dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 1547 74.82±1.1 82.29±0.7 244 89.1±2.2 94.06±1.5 609 80.51±0.6 86.06±1.2 2427 76.54±0.4 83.84±0.6
7 1063 80.7±0.7 87.42±0.6 108 95.74±1.2 98.24±1.2 308 86.01±1.4 91.14±1.5 1503 82.17±0.6 88.53±0.6
9 807 84.3±0.7 90.27±1.0 37 97.57±1.9 98.92±1.8 176 89.77±2.5 93.12±2.0 1041 85.08±0.7 90.69±1.0

2009
5 2402 70.71±0.7 79.25±0.7 386 81.76±0.9 90.41±1.6 791 75.09±1.2 82.72±0.8 3625 71.9±0.7 80.36±0.4
7 1729 78.81±0.8 86.09±0.8 216 91.2±1.4 96.81±0.9 495 84.34±1.5 90.59±1.4 2513 80.29±0.8 86.77±0.5
9 1107 86.03±0.7 91.7±0.3 97 96.6±1.5 97.94±1.4 281 90.85±1.0 94.48±1.0 1539 86.47±0.8 91.55±0.6

2010
5 2463 79.85±0.5 85.61±0.5 445 90.0±0.9 94.83±0.8 861 87.42±1.1 91.51±0.6 3911 79.08±0.4 84.87±0.5
7 1673 86.46±0.8 91.32±0.7 247 95.43±1.1 97.09±0.8 568 92.99±1.2 96.36±0.7 2667 85.85±0.5 89.94±0.4
9 1006 91.36±1.2 95.21±0.7 126 96.67±1.0 98.65±1.1 335 95.73±0.9 97.13±1.1 1623 89.84±0.4 93.42±0.6

2011
5 3772 79.44±0.6 85.89±0.3 759 89.18±0.5 93.89±0.6 1373 84.21±1.2 88.87±0.6 5966 80.79±0.3 86.78±0.3
7 2880 85.57±0.4 91.28±0.4 460 93.11±0.4 96.59±0.6 947 89.52±0.3 93.03±0.8 4367 86.66±0.4 91.65±0.2
9 1989 90.26±0.8 94.24±0.4 242 95.7±1.3 98.43±1.0 612 93.63±0.7 95.95±0.8 2926 90.73±0.4 94.61±0.4

2012
5 3340 78.41±0.5 84.41±0.6 749 86.41±1.1 91.67±0.7 1252 81.83±0.9 87.05±0.8 5467 78.85±0.6 84.9±0.4
7 2127 85.33±0.4 91.21±0.5 343 92.33±1.0 95.54±1.0 621 88.2±1.2 92.45±0.9 3193 85.66±0.7 90.82±0.5
9 1255 90.06±0.7 94.42±0.3 155 95.74±1.4 98.0±1.1 340 93.21±0.9 96.35±0.9 1823 90.28±0.5 94.32±0.6

2013
5 4605 79.38±0.3 85.37±0.4 1263 87.09±0.8 91.88±0.5 1957 80.85±0.4 86.43±0.6 8046 78.89±0.2 84.73±0.4
7 2941 86.63±0.5 91.62±0.6 648 91.99±1.3 96.22±0.7 1077 87.83±0.9 91.68±0.9 4916 85.32±0.4 90.53±0.2
9 1820 91.1±0.3 94.9±0.5 314 96.02±0.4 98.12±0.6 597 91.54±1.1 94.87±0.5 2945 90.15±0.6 93.88±0.4

2014
5 5185 79.86±0.5 85.7±0.4 1422 87.29±1.0 92.18±0.5 1939 82.76±0.9 88.08±0.7 8648 80.37±0.3 86.4±0.2
7 3296 86.6±0.5 91.61±0.4 725 92.59±0.9 96.33±0.9 1039 89.41±0.8 93.51±0.5 5186 86.88±0.4 91.75±0.2
9 2166 90.67±0.4 94.73±0.3 336 96.22±1.1 98.57±0.4 599 92.62±0.7 96.24±0.6 3222 91.06±0.5 94.79±0.3

2015
5 4615 82.66±0.5 87.88±0.3 998 89.74±0.8 93.73±0.6 1344 86.27±1.0 91.11±0.5 7038 83.2±0.4 88.49±0.3
7 3293 87.64±0.5 92.48±0.3 593 94.22±0.6 96.9±0.7 830 91.4±0.8 95.4±0.7 4823 88.08±0.3 92.6±0.2
9 2239 91.67±0.4 95.37±0.4 329 96.81±0.6 98.42±0.7 500 94.2±0.8 97.46±0.9 3166 92.04±0.6 95.11±0.5

2016
5 6511 79.2±0.3 85.06±0.3 2532 77.94±0.7 84.95±0.5 2605 77.26±0.6 83.98±0.6 11896 76.49±0.3 83.11±0.2
7 4624 86.0±0.3 91.24±0.3 1567 85.4±0.7 91.74±0.4 1684 85.33±0.6 91.05±0.7 8181 84.01±0.4 89.63±0.2
9 3217 90.71±0.3 94.16±0.4 915 91.57±0.7 95.1±0.5 1060 90.74±0.6 94.57±0.8 5435 89.05±0.3 93.26±0.2

2017
5 5911 83.7±0.4 88.77±0.3 1960 83.27±0.8 89.94±0.5 1703 81.89±0.5 87.82±0.5 9698 82.22±0.3 87.76±0.2
7 4070 89.94±0.4 94.15±0.3 1105 91.29±0.6 95.78±0.4 979 89.86±1.0 93.62±0.6 6305 89.11±0.2 93.54±0.2
9 2752 93.73±0.2 96.66±0.2 621 94.75±0.9 97.92±0.6 550 94.69±0.6 96.69±0.5 4072 93.08±0.3 96.21±0.3

2018
5 7830 80.37±0.2 84.81±0.5 3525 71.4±1.2 77.0±0.3 2726 75.77±0.5 80.55±0.4 13983 75.87±0.2 81.05±0.3
7 6376 85.41±0.5 89.49±0.4 2620 77.44±0.7 83.13±0.4 2083 81.98±0.6 85.78±0.7 11152 81.57±0.3 86.43±0.3
9 5277 88.45±0.5 92.16±0.4 2054 81.72±0.9 86.1±0.6 1608 84.94±0.7 88.92±0.5 9053 85.25±0.3 89.19±0.4

2019
5 10122 81.54±0.2 85.5±0.3 6281 74.77±0.7 78.69±0.4 3921 75.08±0.7 79.37±0.4 19672 75.55±0.3 79.64±0.3
7 8087 86.78±0.2 89.87±0.2 4840 80.34±0.6 84.11±0.4 3069 81.24±0.6 84.92±0.5 15973 81.51±0.3 84.98±0.2
9 6468 89.65±0.3 92.51±0.2 3759 83.87±0.3 86.98±0.4 2373 85.2±0.5 87.96±0.6 12952 85.03±0.3 88.28±0.2

2020
5 16872 78.03±0.3 82.36±0.2 9124 62.82±0.2 68.23±0.4 3982 73.05±0.7 78.25±0.6 29838 70.89±0.2 75.72±0.2
7 13694 83.73±0.3 87.59±0.3 7130 70.43±0.8 75.77±0.6 3125 79.53±0.7 84.17±0.8 24281 77.43±0.2 81.92±0.3
9 11143 87.66±0.2 90.67±0.2 5513 75.53±0.4 80.12±0.7 2384 84.0±0.3 88.21±0.7 19529 82.05±0.2 85.68±0.2

79

Table A.3. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using the original GCJ dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 1547 74.4±1.0 81.84±0.9 244 87.34±2.0 93.2±1.4 609 78.44±1.5 84.27±0.9 2427 75.94±0.4 82.66±0.6
7 1063 79.7±0.5 87.2±0.5 108 94.35±1.6 96.94±1.3 308 85.19±2.4 91.36±0.9 1503 80.57±0.9 87.64±0.7
9 807 83.85±0.9 90.5±1.0 37 97.84±1.6 99.46±1.1 176 89.03±1.3 93.86±1.6 1041 84.64±0.7 90.49±0.8

2009
5 2402 69.8±0.6 78.06±1.0 386 79.79±1.9 88.89±1.0 791 72.38±1.2 80.29±1.3 3625 70.1±0.5 78.55±0.4
7 1729 77.99±1.2 85.44±0.5 216 90.88±1.4 95.65±0.7 495 82.57±1.8 88.63±0.9 2513 78.85±0.8 86.12±0.5
9 1107 84.99±0.6 90.55±1.2 97 94.02±1.6 96.08±1.6 281 88.43±1.7 93.77±0.9 1539 85.61±0.4 90.62±0.8

2010
5 2463 78.52±0.8 84.99±0.7 445 88.74±0.9 94.31±1.2 861 86.19±1.1 90.77±0.9 3911 78.08±0.5 83.87±0.4
7 1673 85.97±0.7 90.99±0.3 247 93.85±1.4 95.99±1.0 568 91.51±0.9 95.7±0.9 2667 84.57±0.7 89.62±0.4
9 1006 90.7±0.8 94.9±0.6 126 96.9±1.6 98.65±0.7 335 94.81±0.9 97.55±0.7 1623 89.29±0.5 92.99±0.3

2011
5 3772 77.92±0.6 84.94±0.4 759 87.8±1.3 92.75±0.5 1373 82.75±0.8 87.83±0.9 5966 79.54±0.4 85.92±0.3
7 2880 84.38±0.5 90.33±0.6 460 92.37±0.6 96.13±0.9 947 87.51±0.8 92.71±0.5 4367 85.62±0.4 90.82±0.4
9 1989 89.38±0.6 94.05±0.4 242 96.32±1.0 97.77±1.0 612 91.94±1.0 95.54±0.7 2926 90.3±0.5 94.17±0.6

2012
5 3340 76.6±0.6 83.05±0.4 749 85.35±0.9 90.92±1.0 1252 80.38±1.2 86.57±0.6 5467 77.09±0.5 83.74±0.4
7 2127 84.46±0.9 90.05±0.4 343 92.13±0.9 95.19±0.8 621 87.54±0.8 91.66±0.8 3193 84.27±0.5 89.91±0.4
9 1255 89.03±1.0 93.9±0.6 155 95.81±1.3 97.68±0.7 340 92.0±1.1 95.56±0.9 1823 89.25±0.5 93.59±0.4

2013
5 4605 77.92±0.3 84.59±0.3 1263 84.47±0.9 91.08±0.9 1957 78.56±0.7 84.57±0.5 8046 77.27±0.4 83.41±0.3
7 2941 85.18±0.8 90.86±0.6 648 92.15±0.6 95.23±0.9 1077 86.21±0.7 90.58±0.7 4916 84.18±0.4 89.55±0.2
9 1820 89.6±0.4 94.63±0.4 314 94.65±1.5 97.58±0.6 597 90.6±0.6 94.09±1.2 2945 89.12±0.7 93.01±0.5

2014
5 5185 78.54±0.4 84.82±0.5 1422 86.07±1.0 91.53±0.5 1939 80.87±0.6 86.9±0.7 8648 78.88±0.3 85.24±0.4
7 3296 85.24±0.5 90.71±0.3 725 91.41±0.9 96.17±0.5 1039 87.8±0.5 92.83±0.8 5186 85.81±0.5 90.95±0.3
9 2166 89.84±0.3 94.04±0.5 336 95.68±1.1 98.01±0.8 599 91.92±1.1 95.28±0.5 3222 89.77±0.3 93.97±0.4

2015
5 4615 81.21±0.5 86.77±0.4 998 88.54±0.7 93.3±0.7 1344 84.87±0.7 89.26±0.7 7038 81.8±0.4 87.57±0.3
7 3293 86.3±0.3 91.72±0.3 593 93.52±0.7 96.63±0.9 830 89.88±0.9 94.93±0.6 4823 86.92±0.2 91.74±0.2
9 2239 90.79±0.6 94.55±0.4 329 95.99±0.9 98.27±0.3 500 93.34±0.8 97.44±0.6 3166 90.68±0.5 94.81±0.3

2016
5 6511 77.65±0.4 84.1±0.4 2532 76.1±0.7 84.13±0.6 2605 74.43±0.7 81.88±0.3 11896 74.95±0.2 81.85±0.2
7 4624 84.31±0.3 90.31±0.2 1567 84.88±0.7 91.41±0.6 1684 83.41±0.6 89.32±0.5 8181 82.47±0.2 88.5±0.4
9 3217 89.52±0.9 93.72±0.4 915 90.93±0.8 94.82±0.6 1060 89.37±1.0 93.26±0.4 5435 87.84±0.4 92.52±0.3

2017
5 5911 81.85±0.3 87.65±0.3 1960 81.95±0.8 89.05±0.7 1703 79.97±0.8 86.12±0.7 9698 80.31±0.3 86.66±0.2
7 4070 89.06±0.3 93.55±0.3 1105 89.98±0.6 94.83±0.6 979 88.29±1.0 93.22±0.6 6305 88.05±0.3 92.9±0.3
9 2752 92.91±0.4 96.23±0.4 621 93.98±0.8 97.17±0.6 550 93.36±0.6 96.31±0.7 4072 92.4±0.5 95.65±0.3

2018
5 7830 78.6±0.3 83.31±0.4 3525 70.22±0.9 76.35±0.7 2726 74.79±0.8 79.37±1.0 13983 74.4±0.3 79.49±0.2
7 6376 83.92±0.5 87.95±0.3 2620 76.03±0.6 82.06±0.6 2083 80.49±0.9 84.94±0.6 11152 80.23±0.2 85.01±0.3
9 5277 86.84±0.3 90.63±0.4 2054 80.24±0.6 85.63±0.8 1608 83.76±0.6 87.84±0.5 9053 83.88±0.3 87.89±0.2

2019
5 10122 80.25±0.3 84.04±0.3 6281 74.34±0.4 78.11±0.6 3921 74.11±0.6 77.87±0.5 19672 74.32±0.2 78.34±0.2
7 8087 85.47±0.3 88.89±0.2 4840 80.19±0.4 83.44±0.5 3069 80.26±0.6 83.78±0.7 15973 80.44±0.4 84.26±0.2
9 6468 88.78±0.2 91.54±0.1 3759 83.25±0.4 86.76±0.5 2373 84.13±0.8 87.05±0.7 12952 84.1±0.4 87.34±0.2

2020
5 16872 76.54±0.3 80.88±0.4 9124 61.84±0.3 67.29±0.2 3982 71.69±0.7 76.73±0.3 29838 69.52±0.2 74.39±0.1
7 13694 82.4±0.3 86.45±0.3 7130 69.85±0.4 75.14±0.7 3125 78.4±0.7 83.03±0.4 24281 76.36±0.2 80.71±0.2
9 11143 86.28±0.3 89.62±0.3 5513 75.18±0.5 79.43±0.5 2384 83.04±0.5 86.95±0.8 19529 81.05±0.2 84.75±0.2

80

Table A.4. TH-Soft: Accuracy of authorship attribution across different number of source code
files per author, different years and programming languages under non-obfuscated settings.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 1547 76.39±0.9 83.53±0.5 244 89.88±1.6 95.0±1.4 609 81.84±1.1 86.98±1.2 2427 78.63±0.8 84.71±0.4
7 1063 81.62±0.8 88.46±1.0 108 95.74±1.8 98.24±1.2 308 87.27±1.1 91.66±1.1 1503 83.39±1.2 89.17±0.5
9 807 85.29±1.5 91.62±1.2 37 97.03±3.7 99.73±0.8 176 90.91±1.3 94.03±1.2 1041 86.53±0.4 91.76±0.7

2009
5 2402 71.71±0.9 78.94±0.8 386 85.6±0.9 92.67±1.1 791 74.45±1.1 83.25±0.9 3625 72.29±0.2 80.32±0.8
7 1729 80.28±0.8 86.08±0.8 216 92.55±1.5 97.45±0.9 495 82.89±1.6 89.88±1.2 2513 80.43±0.5 86.72±0.4
9 1107 86.56±0.4 91.42±0.5 97 95.57±1.9 98.56±0.7 281 90.46±1.8 94.7±0.5 1539 87.23±0.6 91.59±0.9

2010
5 2463 81.88±0.3 87.69±0.6 445 92.54±0.7 96.07±1.1 861 89.62±0.7 92.86±0.6 3911 81.52±0.5 86.66±0.6
7 1673 88.42±0.5 92.82±0.3 247 96.23±1.0 97.69±1.0 568 93.87±0.9 96.53±0.9 2667 87.26±0.6 91.28±0.5
9 1006 92.37±1.0 95.53±0.4 126 97.86±1.0 98.81±1.0 335 96.36±0.6 97.76±0.4 1623 90.99±0.5 93.91±0.6

2011
5 3772 82.84±0.3 88.06±0.4 759 91.36±1.1 95.19±0.4 1373 86.28±0.8 91.13±0.7 5966 83.76±0.4 89.24±0.3
7 2880 88.24±0.4 92.78±0.2 460 94.5±1.0 97.74±0.8 947 90.7±1.1 94.63±0.6 4367 88.91±0.4 93.28±0.4
9 1989 91.84±0.6 95.85±0.3 242 96.94±1.2 98.76±0.8 612 94.66±0.6 96.52±0.6 2926 92.35±0.4 95.72±0.2

2012
5 3340 79.49±0.4 85.64±0.3 749 88.5±1.0 92.96±0.8 1252 82.86±0.7 87.92±1.0 5467 80.38±0.4 86.24±0.4
7 2127 86.53±0.7 92.24±0.4 343 93.76±1.1 96.88±0.9 621 88.45±1.3 92.98±0.9 3193 87.02±0.6 91.82±0.5
9 1255 90.85±0.7 94.79±0.3 155 96.77±1.0 98.06±1.3 340 92.97±1.0 96.21±0.8 1823 91.05±0.3 94.63±0.5

2013
5 4605 82.39±0.6 87.81±0.3 1263 88.75±0.7 93.17±0.5 1957 82.6±0.8 87.74±0.6 8046 81.33±0.3 86.9±0.3
7 2941 88.55±0.6 93.12±0.4 648 94.01±0.9 96.62±0.8 1077 88.53±1.1 92.88±0.7 4916 87.53±0.4 91.79±0.3
9 1820 92.71±0.4 95.6±0.6 314 96.31±1.0 98.28±0.9 597 91.69±0.9 95.93±0.7 2945 91.43±0.5 94.59±0.3

2014
5 5185 82.4±0.4 88.02±0.3 1422 89.73±0.8 94.25±0.5 1939 85.3±0.6 90.37±0.4 8648 83.18±0.4 88.56±0.2
7 3296 88.71±0.5 92.96±0.4 725 94.43±0.5 97.03±0.4 1039 91.92±0.7 95.37±0.5 5186 88.91±0.4 93.24±0.2
9 2166 92.46±0.5 95.44±0.3 336 97.23±0.9 98.27±0.6 599 94.22±0.8 97.15±0.4 3222 92.83±0.2 95.41±0.2

2015
5 4615 85.26±0.5 90.28±0.3 998 91.77±0.7 95.28±0.5 1344 88.47±0.6 92.92±0.7 7038 85.62±0.4 90.3±0.3
7 3293 89.69±0.3 94.06±0.5 593 95.41±0.9 97.93±0.5 830 93.34±0.7 96.35±0.4 4823 90.37±0.3 94.01±0.3
9 2239 92.75±0.6 96.16±0.3 329 97.36±0.6 99.15±0.4 500 95.02±0.8 97.7±0.6 3166 93.54±0.4 96.05±0.2

2016
5 6511 81.03±0.3 86.59±0.2 2532 80.41±0.6 87.27±0.6 2605 78.87±0.7 85.77±0.5 11896 78.55±0.3 84.78±0.2
7 4624 87.32±0.4 91.95±0.3 1567 88.02±1.0 93.04±0.4 1684 86.85±0.5 92.0±0.4 8181 85.72±0.2 90.77±0.2
9 3217 91.77±0.3 95.11±0.2 915 93.23±0.9 96.49±0.6 1060 92.02±0.5 94.63±0.6 5435 90.51±0.3 94.01±0.3

2017
5 5911 85.79±0.3 90.85±0.3 1960 85.3±0.4 91.71±0.5 1703 84.58±0.8 89.72±0.5 9698 84.27±0.4 89.73±0.3
7 4070 91.72±0.3 95.29±0.2 1105 92.44±0.7 96.12±0.5 979 91.29±0.5 94.84±0.5 6305 90.75±0.3 94.77±0.3
9 2752 94.72±0.3 97.42±0.1 621 95.44±0.7 97.83±0.3 550 95.75±0.9 96.96±0.8 4072 93.97±0.3 96.93±0.3

2018
5 7830 82.82±0.3 87.1±0.2 3525 76.14±0.6 82.13±0.5 2726 81.06±0.7 85.81±0.5 13983 79.57±0.2 84.37±0.2
7 6376 87.6±0.5 91.47±0.3 2620 81.14±0.8 86.64±0.5 2083 86.37±0.4 90.39±0.6 11152 84.49±0.3 89.04±0.2
9 5277 90.44±0.4 93.48±0.2 2054 84.92±0.7 89.25±0.6 1608 89.38±0.7 92.36±0.6 9053 87.89±0.2 91.46±0.3

2019
5 10122 83.07±0.2 86.64±0.3 6281 77.22±0.7 81.41±0.5 3921 79.55±0.3 83.18±0.5 19672 77.93±0.3 81.7±0.3
7 8087 87.95±0.4 90.98±0.4 4840 82.77±0.3 86.64±0.6 3069 84.65±0.5 88.03±0.4 15973 83.37±0.2 86.96±0.2
9 6468 90.73±0.3 93.19±0.3 3759 85.74±0.4 89.05±0.5 2373 88.08±0.6 90.8±0.6 12952 86.72±0.3 89.82±0.2

2020
5 16872 79.32±0.3 83.66±0.2 9124 64.93±0.4 70.67±0.3 3982 77.05±0.6 82.26±0.3 29838 72.75±0.2 77.52±0.2
7 13694 84.9±0.3 88.57±0.2 7130 72.24±0.5 77.86±0.6 3125 82.96±0.2 87.55±0.4 24281 79.2±0.3 83.61±0.2
9 11143 88.52±0.2 91.54±0.3 5513 77.51±0.4 82.1±0.3 2384 87.22±0.5 91.08±0.5 19529 83.61±0.2 87.25±0.2

81

Table A.5. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages using obfuscated dataset.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2008
5 1548 73.69±0.8 82.14±0.8 258 76.86±2.1 84.3±2.1 608 67.6±1.7 77.25±0.8 2442 70.94±1.0 80.77±0.6
7 1064 79.65±0.8 87.3±1.1 113 87.43±2.5 93.01±3.3 306 75.72±1.8 85.46±1.1 1508 77.67±0.7 85.97±0.6
9 807 83.48±0.7 90.26±0.7 39 93.08±3.8 95.13±2.4 176 80.17±2.8 90.97±1.7 1043 81.7±1.0 89.44±0.4

2009
5 2407 68.89±0.5 77.96±0.6 399 70.53±1.2 81.8±1.2 790 60.35±1.2 72.53±1.4 3644 66.23±0.8 75.68±0.7
7 1735 76.73±1.0 85.34±0.5 225 83.29±2.5 91.73±1.3 495 71.13±1.8 81.39±1.6 2526 75.32±0.7 84.21±0.4
9 1111 83.64±0.7 90.95±0.7 100 88.7±3.3 94.4±2.7 282 79.15±2.0 88.87±1.6 1548 83.6±0.5 89.7±0.6

2010
5 2578 76.01±0.5 84.18±0.7 523 79.58±1.3 87.13±1.5 856 72.43±1.3 82.97±0.9 4094 72.21±0.6 80.65±0.5
7 1799 82.7±0.8 90.01±0.6 310 85.35±1.7 92.68±0.6 567 80.32±0.9 89.74±1.2 2852 78.98±0.7 86.51±0.7
9 1094 87.8±0.7 93.24±0.8 150 90.6±1.8 96.33±1.7 336 87.86±1.8 94.88±0.9 1771 85.09±0.8 90.53±0.5

2011
5 3794 79.25±0.4 86.67±0.6 789 78.97±1.1 88.14±1.0 1375 67.11±1.1 77.61±0.8 6018 75.35±0.3 83.88±0.3
7 2902 85.11±0.6 91.67±0.6 491 86.54±1.5 93.91±1.1 946 74.88±1.0 84.21±0.8 4423 81.99±0.4 89.49±0.2
9 2018 89.69±0.3 94.49±0.4 271 91.44±1.7 96.09±0.9 609 81.95±1.4 90.62±0.9 2986 87.81±0.7 93.23±0.4

2012
5 3360 76.33±0.5 84.12±0.6 786 79.39±1.2 87.42±0.7 1253 66.34±0.9 74.81±0.9 5530 72.74±0.5 80.87±0.6
7 2136 83.6±0.7 90.31±0.5 361 85.57±1.7 92.58±1.0 618 73.92±0.7 83.69±1.1 3234 80.68±0.7 87.65±0.3
9 1258 88.65±0.5 93.68±0.5 168 89.64±3.2 94.88±2.1 338 82.28±1.3 90.27±1.3 1844 86.17±0.6 92.18±0.4

2013
5 4641 77.33±0.5 84.85±0.5 1316 75.68±1.2 84.03±1.1 1956 66.53±0.7 75.3±1.0 8137 71.91±0.4 80.12±0.2
7 2965 84.43±0.6 90.77±0.4 694 83.92±1.0 91.21±0.7 1076 75.32±0.9 84.15±1.0 5004 80.05±0.4 86.9±0.4
9 1831 89.43±0.6 94.22±0.4 334 89.37±1.8 94.52±0.7 595 82.47±1.4 89.31±1.2 2997 85.37±0.7 91.35±0.6

2014
5 5242 77.57±0.3 85.1±0.5 1531 73.66±0.9 82.95±0.7 1937 66.49±0.8 75.58±0.7 8809 72.93±0.4 81.47±0.3
7 3344 84.93±0.5 91.5±0.4 782 81.68±0.7 89.3±0.7 1037 75.01±1.4 83.59±1.1 5299 80.96±0.4 88.21±0.4
9 2195 89.74±0.4 94.36±0.4 386 86.45±1.7 93.78±1.3 596 81.14±1.6 89.26±0.9 3304 86.52±0.6 91.97±0.2

2015
5 4690 80.93±0.2 87.53±0.4 1103 78.67±1.0 86.77±0.6 1344 70.83±1.2 80.23±1.0 7208 77.27±0.3 84.76±0.3
7 3373 85.99±0.6 91.57±0.4 665 84.66±0.7 91.55±1.1 829 77.49±1.0 85.77±0.7 4995 83.31±0.4 89.79±0.5
9 2307 89.69±0.4 94.37±0.4 382 89.58±1.6 95.18±1.0 500 82.26±1.6 91.32±1.3 3309 87.73±0.5 93.1±0.2

2016
5 6623 77.1±0.4 84.38±0.3 2914 61.82±0.6 72.95±0.6 2607 61.02±0.5 71.17±0.7 12353 68.23±0.3 76.82±0.4
7 4730 83.66±0.2 89.99±0.4 1847 71.52±1.2 82.02±0.7 1689 70.17±0.5 79.89±0.6 8599 76.51±0.4 84.06±0.4
9 3314 88.48±0.6 93.21±0.4 1125 78.65±0.7 87.31±1.3 1058 77.88±1.4 86.83±0.6 5801 82.51±0.5 88.97±0.4

2017
5 5929 82.66±0.2 88.84±0.5 2095 70.65±0.7 81.13±0.8 1701 67.23±1.0 77.57±0.8 9858 76.04±0.2 83.88±0.3
7 4088 88.72±0.4 93.86±0.3 1190 79.97±0.8 88.54±0.5 976 77.88±0.9 87.16±1.1 6411 84.29±0.3 90.51±0.3
9 2761 92.39±0.4 96.12±0.3 672 85.51±1.2 91.88±0.7 548 86.55±0.9 92.5±0.9 4141 89.07±0.3 93.99±0.2

2018
5 7857 80.56±0.4 86.04±0.3 3641 68.35±0.8 76.19±0.6 2720 71.33±0.7 77.64±0.7 14093 74.48±0.3 80.82±0.3
7 6399 85.49±0.6 90.45±0.4 2737 74.63±0.6 82.17±0.8 2080 76.37±0.8 82.62±0.7 11278 80.04±0.5 85.78±0.1
9 5293 88.32±0.3 92.58±0.3 2155 78.51±0.6 85.24±0.6 1602 79.88±1.1 85.96±0.7 9164 83.54±0.4 88.7±0.4

2019
5 10581 80.34±0.4 84.97±0.3 7771 63.77±0.6 70.11±0.3 3912 69.3±0.8 74.44±0.7 21554 69.48±0.2 74.88±0.3
7 8464 85.47±0.4 89.48±0.2 5996 70.52±0.5 76.92±0.4 3059 75.75±0.7 80.81±0.4 17490 76.19±0.3 81.29±0.2
9 6783 88.99±0.4 91.99±0.1 4658 75.27±0.5 80.8±0.3 2372 80.44±0.7 84.0±0.6 14168 80.54±0.4 84.87±0.3

2020
5 16925 77.48±0.3 82.65±0.2 9471 53.87±0.3 61.6±0.4 3974 63.63±0.4 69.77±0.7 30153 66.58±0.2 72.33±0.3
7 13743 83.39±0.1 87.8±0.2 7457 61.94±0.5 69.1±0.6 3112 70.81±0.6 77.07±0.8 24644 73.41±0.2 78.94±0.2
9 11220 87.25±0.3 90.77±0.2 5827 67.63±0.7 74.41±0.4 2377 76.09±0.7 81.64±0.5 19905 78.1±0.3 83.0±0.3

82

Table A.6. TSH: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under obfuscated setting.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2008
5 1548 70.51±0.4 78.27±0.7 258 78.41±1.8 86.36±2.0 608 67.06±1.9 74.67±1.7 2442 70.15±0.8 77.24±0.7
7 1064 77.03±0.9 83.85±0.8 113 86.64±3.3 92.83±1.7 306 74.71±1.8 83.53±1.9 1508 76.17±1.1 83.37±0.8
9 807 80.62±1.2 87.19±0.8 39 94.1±2.0 97.44±2.8 176 79.83±2.4 88.98±2.6 1043 79.6±1.6 86.62±1.0

2009
5 2407 65.39±0.9 73.5±0.4 399 69.72±1.3 81.6±1.3 790 60.82±1.0 71.56±1.7 3644 63.95±0.6 72.77±0.7
7 1735 73.23±0.8 81.22±0.3 225 83.78±1.1 90.89±1.2 495 73.6±1.1 82.87±1.2 2526 72.57±0.5 81.17±0.4
9 1111 80.72±1.0 86.93±0.7 100 86.3±1.9 93.9±3.6 282 81.35±2.6 88.55±1.5 1548 80.28±0.7 87.57±1.0

2010
5 2578 72.11±0.6 79.46±0.8 523 79.73±0.9 87.93±0.9 856 75.13±1.1 83.71±1.0 4094 70.11±0.4 77.7±0.6
7 1799 79.13±0.7 86.01±0.5 310 85.71±1.3 92.06±1.3 567 82.15±1.1 89.21±1.1 2852 77.58±0.7 84.2±0.5
9 1094 85.62±0.6 90.67±0.6 150 89.33±1.8 94.87±2.3 336 89.2±1.6 95.0±0.9 1771 82.59±0.6 88.75±0.5

2011
5 3794 73.86±0.2 80.92±0.6 789 78.1±1.0 87.9±0.8 1375 68.35±0.8 76.72±1.1 6018 72.26±0.4 80.03±0.4
7 2902 80.63±0.6 87.23±0.3 491 85.44±1.1 92.2±0.9 946 75.36±1.3 83.41±0.9 4423 79.14±0.5 86.24±0.3
9 2018 86.16±0.5 91.27±0.6 271 89.34±1.9 95.57±1.3 609 83.68±1.5 89.16±0.9 2986 85.5±0.5 90.95±0.5

2012
5 3360 72.48±0.9 79.51±0.7 786 77.06±0.9 84.95±0.8 1253 67.12±1.1 75.11±0.9 5530 70.65±0.6 77.9±0.5
7 2136 80.81±0.3 86.98±0.6 361 84.32±1.7 91.25±1.5 618 75.11±1.1 83.37±1.4 3234 78.39±0.4 85.19±0.3
9 1258 86.14±0.8 91.16±0.9 168 88.99±1.7 94.4±1.9 338 81.54±1.7 89.38±1.2 1844 84.61±0.4 90.09±0.5

2013
5 4641 73.66±0.5 80.51±0.5 1316 74.67±0.8 83.09±0.7 1956 66.27±0.7 73.83±0.8 8137 69.62±0.4 76.95±0.4
7 2965 81.42±0.6 87.71±0.5 694 82.55±0.8 89.77±1.0 1076 75.42±1.2 82.98±0.8 5004 77.96±0.3 84.73±0.3
9 1831 86.88±0.8 92.04±0.5 334 88.77±1.6 93.23±0.6 595 81.14±0.9 88.64±1.1 2997 84.07±0.4 89.58±0.4

2014
5 5242 73.29±0.3 80.04±0.4 1531 72.93±1.0 82.31±0.5 1937 65.56±0.8 74.02±1.0 8809 70.3±0.4 78.05±0.4
7 3344 80.99±0.2 87.38±0.4 782 80.06±1.1 87.92±0.9 1037 73.98±1.1 82.71±1.2 5299 78.39±0.4 85.3±0.3
9 2195 86.36±0.6 91.5±0.6 386 85.93±1.6 92.46±1.7 596 80.81±0.8 88.17±1.1 3304 84.09±0.5 89.85±0.6

2015
5 4690 76.87±0.3 83.5±0.5 1103 77.09±1.2 85.11±1.1 1344 70.58±0.8 78.81±0.7 7208 74.36±0.3 81.82±0.2
7 3373 82.15±0.5 88.58±0.6 665 84.05±0.9 91.07±0.7 829 77.47±0.5 85.89±1.0 4995 80.42±0.5 87.28±0.3
9 2307 86.57±0.6 91.86±0.5 382 88.61±1.3 94.11±1.1 500 83.38±1.2 90.1±1.3 3309 85.25±0.6 90.87±0.3

2016
5 6623 72.54±0.4 79.55±0.4 2914 60.45±0.5 70.79±0.8 2607 57.82±0.6 66.7±0.4 12353 64.62±0.3 72.96±0.2
7 4730 79.78±0.5 86.16±0.5 1847 68.79±0.7 79.23±0.6 1689 67.67±1.4 76.02±0.9 8599 72.9±0.4 80.86±0.3
9 3314 85.37±0.6 90.79±0.3 1125 75.88±1.1 85.31±1.2 1058 75.54±0.7 83.44±1.1 5801 79.37±0.3 86.11±0.5

2017
5 5929 77.44±0.3 83.87±0.3 2095 67.26±0.9 77.79±0.8 1701 64.4±0.8 72.56±0.7 9858 71.81±0.3 79.37±0.2
7 4088 84.59±0.2 90.24±0.3 1190 77.22±0.9 86.32±1.1 976 75.74±0.9 83.15±1.0 6411 80.75±0.4 87.34±0.2
9 2761 89.33±0.6 93.9±0.4 672 82.23±0.8 89.91±1.2 548 83.54±1.4 89.54±1.3 4141 86.01±0.4 91.54±0.4

2018
5 7857 74.46±0.4 79.8±0.3 3641 57.53±0.5 66.49±0.3 2720 58.9±1.1 66.29±0.8 14093 66.01±0.3 72.39±0.3
7 6399 80.2±0.3 85.38±0.2 2737 63.45±0.5 73.27±0.5 2080 65.22±0.8 73.38±0.9 11278 71.99±0.4 78.72±0.3
9 5293 83.49±0.6 88.07±0.3 2155 67.94±0.9 77.24±0.7 1602 70.26±1.0 77.27±1.0 9164 76.48±0.4 82.46±0.4

2019
5 10581 74.9±0.4 79.72±0.3 7771 51.74±0.5 60.16±0.4 3912 57.63±0.6 64.21±0.5 21554 60.87±0.3 67.17±0.3
7 8464 81.06±0.4 85.37±0.4 5996 58.96±0.6 67.33±0.4 3059 65.2±0.8 71.64±0.7 17490 67.89±0.3 74.08±0.2
9 6783 85.06±0.2 88.83±0.2 4658 63.94±0.7 71.51±0.5 2372 69.97±0.5 75.4±0.7 14168 72.85±0.2 78.16±0.2

2020
5 16925 72.59±0.2 77.71±0.3 9471 42.84±0.4 51.4±0.5 3974 52.44±0.8 59.96±0.4 30153 58.95±0.2 65.2±0.3
7 13743 78.63±0.2 83.57±0.3 7457 49.51±0.4 58.8±0.5 3112 60.21±1.2 67.75±0.5 24644 65.57±0.3 72.24±0.3
9 11220 82.98±0.3 87.2±0.3 5827 55.19±0.5 63.83±0.6 2377 66.28±0.8 73.45±0.6 19905 70.76±0.2 76.97±0.2

83

Table A.7. TH: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under obfuscated setting.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2008
5 1548 69.3±0.6 76.82±0.6 258 73.88±1.7 84.53±2.0 608 64.61±2.0 74.62±1.7 2442 68.2±0.6 75.97±0.7
7 1064 74.59±1.0 82.99±0.7 113 83.45±2.1 91.59±1.9 306 71.54±1.2 82.12±2.0 1508 74.68±0.8 82.63±1.1
9 807 79.53±1.2 86.8±0.6 39 91.28±3.7 96.67±2.8 176 79.03±2.2 88.01±1.9 1043 78.24±1.1 86.37±1.1

2009
5 2407 63.96±0.4 72.66±0.7 399 66.54±1.6 78.3±1.3 790 60.25±1.5 69.16±1.2 3644 62.45±0.5 71.03±0.4
7 1735 72.48±0.5 80.32±1.1 225 79.02±2.3 89.33±2.2 495 71.8±1.2 80.46±1.6 2526 71.32±0.9 79.73±0.6
9 1111 79.54±0.9 87.03±0.7 100 85.1±3.3 91.8±2.1 282 80.6±2.1 87.94±1.8 1548 79.92±0.8 86.61±0.7

2010
5 2578 70.8±0.8 78.09±0.4 523 75.81±1.7 85.32±1.7 856 73.87±0.8 81.83±1.2 4094 68.74±0.6 76.67±0.5
7 1799 78.48±0.9 85.28±0.5 310 83.13±1.5 90.45±1.5 567 80.21±1.5 88.24±1.4 2852 75.55±0.7 82.89±0.5
9 1094 85.16±0.8 90.06±0.5 150 87.33±3.1 94.2±1.5 336 87.98±1.2 93.93±1.5 1771 82.15±0.6 87.37±0.8

2011
5 3794 72.74±0.5 79.98±0.6 789 75.27±1.9 84.64±1.0 1375 64.87±0.9 74.8±0.6 6018 70.27±0.4 78.62±0.5
7 2902 79.3±0.6 86.36±0.6 491 82.48±1.0 90.77±1.4 946 73.11±1.1 81.97±0.9 4423 77.55±0.4 85.33±0.6
9 2018 84.62±0.4 91.03±0.6 271 87.31±1.9 93.8±1.2 609 81.86±0.7 89.08±0.6 2986 83.59±0.4 90.42±0.5

2012
5 3360 71.36±0.9 78.32±0.5 786 74.03±1.3 83.75±1.1 1253 65.02±0.6 73.27±1.3 5530 69.26±0.4 76.72±0.3
7 2136 79.41±0.5 85.81±0.8 361 82.71±1.4 90.17±1.9 618 73.25±0.9 80.71±1.6 3234 77.31±0.4 84.16±0.3
9 1258 85.06±1.1 90.5±0.9 168 88.39±2.0 94.4±1.7 338 81.51±2.2 88.67±1.0 1844 83.34±0.5 89.06±0.7

2013
5 4641 72.16±0.6 79.14±0.4 1316 70.15±0.4 80.38±1.2 1956 65.19±1.0 72.46±0.9 8137 67.92±0.4 75.59±0.4
7 2965 79.9±0.5 86.89±0.3 694 80.48±1.4 88.54±1.5 1076 73.98±0.5 80.73±0.7 5004 76.25±0.7 83.18±0.5
9 1831 85.7±0.8 91.43±0.5 334 85.27±1.4 91.56±1.3 595 80.35±1.0 86.54±0.9 2997 82.53±0.4 88.64±0.5

2014
5 5242 71.94±0.4 79.15±0.4 1531 68.47±0.7 79.83±0.5 1937 62.9±0.7 72.13±0.6 8809 68.07±0.4 76.46±0.4
7 3344 79.72±0.6 86.2±0.4 782 77.53±1.4 86.8±1.0 1037 72.47±1.2 80.98±1.2 5299 76.47±0.3 84.06±0.2
9 2195 85.24±0.7 90.62±0.4 386 83.78±1.6 91.17±1.4 596 79.35±1.6 86.74±1.3 3304 82.54±0.6 88.77±0.5

2015
5 4690 75.69±0.6 82.01±0.3 1103 73.99±1.3 83.54±1.0 1344 68.35±1.1 76.47±0.7 7208 72.47±0.5 80.15±0.2
7 3373 81.1±0.4 87.21±0.4 665 80.99±1.2 89.29±1.0 829 75.04±1.1 83.99±0.7 4995 78.58±0.5 85.83±0.3
9 2307 85.61±0.6 91.31±0.5 382 86.6±1.4 93.43±0.9 500 82.02±1.0 88.56±0.8 3309 83.95±0.5 89.97±0.3

2016
5 6623 71.18±0.5 78.1±0.6 2914 55.64±0.5 67.31±0.9 2607 55.54±1.1 64.09±0.6 12353 62.32±0.3 70.84±0.4
7 4730 78.32±0.4 84.81±0.5 1847 64.87±0.6 76.48±0.8 1689 64.77±0.6 73.78±0.6 8599 70.61±0.4 79.08±0.3
9 3314 83.52±0.5 89.57±0.4 1125 72.55±0.8 82.89±1.2 1058 72.8±1.3 81.57±1.0 5801 77.46±0.4 84.67±0.3

2017
5 5929 75.74±0.5 82.47±0.4 2095 64.81±0.8 75.85±0.7 1701 62.1±0.8 69.9±0.6 9858 69.6±0.3 77.62±0.2
7 4088 83.3±0.5 89.12±0.5 1190 74.24±0.7 84.65±0.8 976 74.17±0.9 81.07±0.9 6411 79.02±0.4 85.89±0.3
9 2761 88.01±0.4 92.77±0.5 672 80.54±1.3 88.44±1.2 548 81.17±1.2 88.05±1.2 4141 84.41±0.4 90.73±0.3

2018
5 7857 72.77±0.3 78.25±0.5 3641 54.77±0.6 64.02±1.0 2720 55.56±1.0 64.09±0.8 14093 63.7±0.3 70.71±0.3
7 6399 78.81±0.4 83.91±0.4 2737 60.56±0.7 70.33±0.7 2080 61.87±0.6 70.78±1.0 11278 70.13±0.4 76.86±0.1
9 5293 82.17±0.4 86.88±0.5 2155 65.94±0.9 74.54±0.7 1602 67.4±1.0 74.7±1.0 9164 74.65±0.5 80.91±0.4

2019
5 10581 73.6±0.4 78.7±0.3 7771 48.05±0.4 56.37±0.6 3912 54.78±0.6 62.21±0.6 21554 58.54±0.3 65.07±0.3
7 8464 79.81±0.3 84.47±0.2 5996 54.65±0.4 63.92±0.4 3059 61.51±0.6 69.27±0.5 17490 65.76±0.3 72.08±0.3
9 6783 84.14±0.6 87.99±0.4 4658 59.88±0.7 68.59±0.6 2372 66.45±1.0 73.39±0.8 14168 70.5±0.4 76.26±0.3

2020
5 16925 71.05±0.3 76.19±0.3 9471 39.12±0.4 47.79±0.6 3974 49.26±0.6 57.32±0.9 30153 56.66±0.2 63.05±0.2
7 13743 77.64±0.4 82.44±0.2 7457 45.73±0.5 55.11±0.5 3112 57.33±0.5 65.58±1.0 24644 63.34±0.2 70.07±0.2
9 11220 81.96±0.2 86.15±0.3 5827 50.94±0.5 60.22±0.5 2377 63.49±0.9 71.16±0.9 19905 68.59±0.4 74.79±0.2

84

Table A.8. TH-soft: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under obfuscated setting.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Accuracy

2008
5 1548 71.25±1.0 79.04±0.9 258 80.08±2.4 88.26±1.2 608 66.74±1.5 75.38±1.6 2442 70.01±0.4 77.88±0.9
7 1064 77.65±1.0 84.72±0.8 113 88.58±2.6 95.66±1.2 306 73.86±2.2 83.4±1.3 1508 76.37±0.6 84.64±0.7
9 807 81.64±1.2 87.98±1.0 39 92.05±4.0 95.9±2.1 176 80.45±1.6 89.09±2.4 1043 80.98±0.9 87.73±0.9

2009
5 2407 65.77±0.6 73.84±0.7 399 72.36±2.0 82.76±1.3 790 60.06±1.2 68.13±0.9 3644 63.92±0.8 72.72±0.5
7 1735 73.8±0.9 81.86±0.9 225 85.33±2.1 92.49±1.4 495 70.51±1.1 80.46±1.8 2526 72.91±1.1 81.5±0.8
9 1111 82.15±0.9 87.66±0.9 100 89.0±3.0 93.7±2.4 282 80.57±2.0 87.38±1.3 1548 81.74±0.9 87.8±0.4

2010
5 2578 74.88±0.8 81.67±0.6 523 82.62±2.0 88.91±1.1 856 74.66±1.4 81.89±1.0 4094 71.98±0.6 79.56±0.4
7 1799 81.86±0.6 87.88±0.5 310 88.03±1.0 93.74±1.3 567 80.9±1.0 89.26±1.0 2852 79.15±0.5 85.72±0.5
9 1094 87.21±0.8 92.05±0.7 150 93.13±1.7 96.87±0.9 336 88.78±1.2 94.38±1.0 1771 84.6±0.5 89.86±0.6

2011
5 3794 77.0±0.7 84.01±0.3 789 81.03±1.2 89.58±0.6 1375 67.4±0.9 76.57±0.9 6018 74.47±0.3 82.21±0.3
7 2902 83.17±0.7 89.59±0.5 491 87.68±1.4 93.52±0.8 946 75.5±0.8 83.69±1.7 4423 81.54±0.6 88.03±0.3
9 2018 88.49±0.7 93.04±0.4 271 92.32±1.2 96.57±0.9 609 82.79±0.8 90.57±1.2 2986 87.05±0.5 92.12±0.3

2012
5 3360 74.51±0.5 81.43±0.7 786 80.53±1.1 87.34±1.3 1253 66.42±0.8 74.13±0.6 5530 72.48±0.5 78.99±0.5
7 2136 81.98±0.6 88.68±0.6 361 85.68±1.5 93.16±0.7 618 74.13±1.5 81.83±0.9 3234 79.85±0.9 86.54±0.6
9 1258 87.5±0.7 92.73±0.5 168 92.38±2.1 94.52±1.3 338 81.48±1.7 88.49±0.8 1844 85.77±0.9 91.16±0.5

2013
5 4641 76.4±0.4 83.01±0.6 1316 76.93±1.2 85.2±0.9 1956 64.89±1.1 73.02±0.6 8137 71.38±0.3 78.85±0.3
7 2965 84.07±0.5 89.88±0.4 694 85.13±0.8 91.97±1.0 1076 74.23±1.3 82.34±1.0 5004 79.65±0.5 86.04±0.3
9 1831 88.77±0.6 93.6±0.6 334 89.94±1.5 93.86±0.7 595 80.34±0.9 86.57±0.8 2997 85.52±0.5 90.24±0.5

2014
5 5242 76.47±0.3 82.95±0.4 1531 74.76±0.6 84.15±0.4 1937 65.14±1.1 74.18±0.7 8809 72.5±0.4 80.0±0.3
7 3344 83.56±0.4 89.26±0.3 782 82.81±1.2 89.78±1.1 1037 74.26±1.1 82.64±1.0 5299 80.08±0.4 87.01±0.3
9 2195 88.51±0.5 92.93±0.3 386 88.08±1.6 93.81±1.1 596 80.47±1.1 87.89±1.2 3304 85.74±0.4 91.23±0.3

2015
5 4690 79.71±0.6 85.65±0.3 1103 79.21±1.1 87.41±1.1 1344 70.16±0.9 78.36±0.8 7208 76.83±0.4 83.62±0.3
7 3373 85.48±0.7 90.75±0.3 665 85.19±1.1 91.92±0.8 829 76.95±1.3 85.97±0.7 4995 82.57±0.4 88.8±0.3
9 2307 89.09±0.4 93.5±0.4 382 89.48±1.2 95.08±0.9 500 81.4±1.0 89.26±1.1 3309 87.34±0.5 92.15±0.4

2016
5 6623 75.29±0.4 81.9±0.3 2914 63.12±0.9 73.7±0.7 2607 56.85±0.5 66.44±0.8 12353 66.63±0.3 74.79±0.2
7 4730 82.0±0.3 88.16±0.2 1847 72.06±0.9 81.71±1.0 1689 66.48±0.8 76.2±1.2 8599 74.82±0.4 82.38±0.4
9 3314 86.96±0.4 92.04±0.4 1125 79.64±0.9 87.8±0.6 1058 75.19±1.3 83.02±0.7 5801 81.22±0.5 87.71±0.5

2017
5 5929 80.26±0.2 86.33±0.3 2095 69.75±1.0 79.88±0.8 1701 65.88±1.1 75.28±0.7 9858 74.23±0.4 81.57±0.2
7 4088 86.97±0.5 92.19±0.3 1190 79.08±1.3 87.1±0.7 976 77.15±1.2 84.85±0.8 6411 82.82±0.4 89.0±0.3
9 2761 91.13±0.6 95.25±0.2 672 84.88±0.9 91.38±1.1 548 84.74±1.3 90.53±1.2 4141 88.07±0.3 93.01±0.4

2018
5 7857 75.98±0.4 81.14±0.4 3641 63.89±0.7 71.88±0.3 2720 65.15±0.8 71.54±0.6 14093 69.51±0.4 75.53±0.5
7 6399 81.55±0.4 86.6±0.6 2737 69.52±0.8 77.61±0.7 2080 71.74±0.8 77.96±0.6 11278 75.95±0.2 81.42±0.3
9 5293 84.96±0.4 89.2±0.4 2155 74.33±0.7 81.41±0.9 1602 76.0±0.8 81.02±0.7 9164 79.36±0.3 84.78±0.3

2019
5 10581 76.68±0.3 81.29±0.3 7771 60.4±0.3 67.0±0.4 3912 63.49±0.6 69.46±0.5 21554 65.89±0.4 71.07±0.3
7 8464 82.45±0.3 86.71±0.3 5996 67.58±0.6 73.86±0.5 3059 70.55±0.7 76.21±0.5 17490 72.69±0.3 77.93±0.3
9 6783 86.53±0.3 89.57±0.3 4658 72.07±0.7 77.71±0.5 2372 75.47±0.6 79.89±1.1 14168 77.33±0.4 81.81±0.3

2020
5 16925 74.08±0.4 78.9±0.3 9471 50.95±0.4 58.69±0.4 3974 56.63±0.6 63.25±0.5 30153 62.88±0.2 68.83±0.1
7 13743 80.25±0.3 85.08±0.2 7457 59.04±0.5 66.2±0.4 3112 64.11±0.7 71.53±0.5 24644 69.87±0.2 75.57±0.2
9 11220 84.53±0.3 88.36±0.3 5827 64.28±0.5 71.3±0.5 2377 70.03±0.6 76.41±0.6 19905 74.71±0.2 79.99±0.3

85

Table A.9. LS: Accuracy of authorship attribution across different number of source code files per
author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 2204 79.64±0.5 87.23±0.5 473 81.69±1.9 88.73±1.1 1109 64.94±1.1 77.39±1.1 3777 75.2±0.7 83.96±0.5
7 1878 84.68±0.8 91.41±0.7 367 89.13±1.4 94.03±1.1 836 74.84±1.5 85.25±1.3 3097 81.49±0.5 89.65±0.3
9 1548 87.76±0.7 93.17±0.7 257 91.17±1.2 95.1±1.1 609 79.93±1.3 88.23±1.1 2442 85.98±0.6 92.04±0.6

2009
5 3161 75.51±0.8 83.77±0.6 636 77.81±1.5 86.34±1.7 1236 61.15±1.9 74.35±1.4 5016 71.18±0.4 80.77±0.4
7 2766 82.32±0.7 89.45±0.5 503 83.76±1.4 91.29±1.1 988 69.23±1.7 81.47±1.0 4273 78.72±0.7 86.89±0.6
9 2407 86.4±0.6 91.95±0.4 395 88.0±1.1 93.29±1.3 791 74.84±1.2 85.35±1.3 3642 83.37±0.6 89.66±0.4

2010
5 3636 80.09±0.6 87.82±0.2 826 84.96±1.0 91.62±0.8 1355 72.02±1.1 83.04±1.3 5790 76.42±0.6 84.63±0.5
7 3018 85.67±0.4 92.23±0.3 636 89.48±0.7 94.73±0.8 1044 79.86±1.0 88.72±0.4 4772 82.04±0.8 89.31±0.3
9 2559 88.81±0.5 93.99±0.4 500 91.26±1.2 96.02±0.9 862 84.32±1.1 91.65±0.9 4061 85.79±0.4 91.62±0.5

2011
5 4782 82.34±0.5 89.78±0.4 1218 84.15±1.1 91.61±0.5 1943 69.36±0.7 80.45±0.8 7880 78.7±0.6 86.94±0.4
7 4301 87.11±0.4 93.59±0.3 990 89.55±0.8 95.18±0.8 1673 75.73±0.8 86.13±0.8 6960 84.28±0.4 91.28±0.2
9 3792 90.04±0.4 95.1±0.4 780 91.71±0.8 96.22±0.7 1375 80.42±0.9 88.72±0.8 6012 87.69±0.5 93.39±0.3

2012
5 5339 80.61±0.3 88.18±0.4 1799 81.66±1.4 89.55±0.5 2678 63.43±0.4 75.2±0.8 9812 74.96±0.4 83.76±0.2
7 4134 85.87±0.7 92.33±0.3 1166 88.05±0.9 93.77±0.7 1770 73.77±0.8 84.03±0.6 7155 82.4±0.5 89.58±0.4
9 3359 89.18±0.5 94.3±0.3 780 91.36±0.7 95.59±0.6 1253 79.89±1.0 88.03±0.8 5518 86.58±0.3 92.25±0.4

2013
5 7139 80.74±0.6 88.33±0.3 2508 79.36±0.7 88.03±0.4 3487 64.45±0.5 74.92±0.4 13069 74.64±0.4 83.14±0.4
7 5773 86.27±0.5 92.66±0.2 1796 86.44±0.5 92.4±0.5 2577 73.33±1.0 83.07±0.4 10269 81.52±0.3 88.86±0.3
9 4640 89.66±0.4 94.61±0.3 1309 90.05±0.7 94.35±0.6 1959 78.9±0.8 87.87±0.6 8133 85.62±0.3 91.56±0.2

2014
5 8529 78.99±0.4 87.48±0.2 2945 79.22±0.5 88.19±0.4 3690 65.59±0.6 76.54±0.4 15105 75.17±0.3 84.24±0.2
7 6552 85.58±0.3 92.21±0.2 2080 84.4±0.9 92.07±0.3 2619 73.14±0.5 83.72±0.6 11301 81.77±0.3 89.37±0.2
9 5238 89.61±0.5 94.45±0.3 1511 88.16±0.8 93.98±0.6 1939 79.63±1.0 87.35±0.5 8791 86.43±0.2 92.33±0.2

2015
5 7502 83.76±0.3 90.38±0.4 2323 83.45±0.5 90.82±0.3 2894 70.55±0.8 80.22±0.7 12673 79.88±0.3 87.39±0.2
7 5774 87.85±0.3 93.71±0.4 1493 87.32±0.5 93.7±0.3 1831 77.44±0.5 86.0±0.5 9110 84.98±0.4 91.46±0.3
9 4674 90.59±0.3 95.22±0.3 1074 89.99±0.8 94.96±0.6 1346 81.29±0.6 89.64±0.7 7166 88.11±0.3 93.31±0.2

2016
5 9366 81.22±0.4 88.1±0.4 4340 69.53±0.5 79.74±0.6 4067 63.25±0.5 73.97±0.6 17592 73.02±0.2 81.51±0.2
7 8077 86.5±0.4 92.39±0.3 3553 76.92±0.7 85.92±0.5 3366 71.68±0.5 81.36±0.7 15042 79.7±0.4 87.27±0.3
9 6607 89.48±0.4 94.07±0.2 2794 81.55±0.7 89.08±0.4 2607 76.41±0.8 85.39±0.7 12239 83.7±0.3 89.96±0.2

2017
5 8923 84.42±0.3 90.87±0.3 3702 76.73±0.6 86.4±0.3 3122 65.98±0.6 77.36±0.5 15716 77.94±0.2 86.4±0.2
7 7315 89.17±0.3 94.51±0.2 2750 83.25±0.8 90.59±0.5 2366 75.7±0.4 85.25±0.9 12529 84.21±0.3 91.36±0.2
9 5929 92.2±0.4 96.23±0.2 2061 86.79±0.3 92.93±0.3 1703 81.34±0.8 89.69±0.3 9831 88.32±0.2 93.83±0.2

2018
5 10090 82.75±0.4 89.03±0.3 4885 74.76±0.5 82.94±0.4 3734 68.29±0.6 77.17±0.6 18231 76.78±0.4 84.06±0.3
7 8852 87.5±0.4 92.52±0.2 4169 80.54±0.5 87.35±0.4 3152 75.49±0.8 83.44±0.7 15922 82.24±0.3 88.49±0.2
9 7850 89.9±0.2 94.06±0.2 3611 83.41±0.3 89.68±0.4 2726 79.56±0.6 86.39±0.5 14070 85.56±0.3 90.64±0.2

2019
5 13523 80.15±0.3 85.91±0.3 9597 68.22±0.4 75.63±0.4 5152 64.0±0.5 71.3±0.6 26224 70.36±0.2 77.05±0.2
7 11832 85.28±0.2 90.41±0.3 8236 74.92±0.4 81.49±0.4 4475 71.52±0.6 78.14±0.6 23321 76.8±0.2 83.01±0.2
9 10432 88.62±0.3 92.29±0.3 7123 79.21±0.3 84.37±0.4 3925 76.54±0.6 82.0±0.2 20833 81.13±0.3 85.83±0.2

2020
5 20677 76.54±0.3 83.14±0.2 11800 56.43±0.5 65.73±0.2 5032 59.26±0.5 67.34±0.4 36157 66.37±0.2 73.95±0.1
7 18818 82.2±0.1 87.98±0.2 10499 63.95±0.4 72.82±0.3 4510 66.84±0.3 74.96±0.6 33174 73.02±0.2 80.05±0.1
9 16916 85.98±0.3 90.44±0.2 9373 69.3±0.4 77.25±0.3 3985 72.78±0.5 79.58±0.7 30084 77.29±0.2 83.3±0.1

86

Table A.10. TSH: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 2204 73.27±0.7 82.27±0.8 473 80.15±1.2 89.34±0.9 1109 58.46±0.8 69.97±1.1 3777 69.37±0.7 78.58±0.4
7 1878 78.46±0.7 86.99±0.4 367 88.56±1.2 93.65±1.1 836 69.23±1.1 79.58±0.9 3097 76.7±0.6 85.22±0.5
9 1548 82.29±0.8 88.93±1.0 257 89.96±1.3 94.79±1.2 609 75.89±1.0 83.84±1.3 2442 81.27±0.9 87.8±0.5

2009
5 3161 67.61±0.7 77.25±0.6 636 76.26±1.1 86.04±1.2 1236 56.84±0.7 68.71±1.1 5016 65.45±0.5 75.55±0.6
7 2766 74.19±0.8 83.06±0.6 503 83.32±1.5 90.48±0.6 988 64.86±1.7 77.26±1.2 4273 72.74±0.5 81.92±0.2
9 2407 78.75±0.6 85.75±0.6 395 87.22±1.4 92.15±1.8 791 72.25±1.2 82.23±0.9 3642 77.28±0.5 84.82±0.4

2010
5 3636 72.21±0.6 81.09±0.4 826 84.07±1.1 90.77±1.0 1355 68.07±0.8 77.65±0.5 5790 70.4±0.6 79.02±0.3
7 3018 78.74±0.6 86.75±0.5 636 88.21±0.8 93.82±0.9 1044 77.23±1.0 85.59±0.6 4772 76.64±0.5 84.58±0.3
9 2559 82.51±0.8 89.11±0.5 500 90.7±1.4 95.78±0.7 862 81.61±0.7 89.15±1.0 4061 80.76±0.5 87.47±0.4

2011
5 4782 74.31±0.5 82.7±0.4 1218 82.95±1.1 90.59±0.9 1943 63.46±0.7 73.49±1.0 7880 71.85±0.4 80.68±0.3
7 4301 79.52±0.4 87.25±0.4 990 87.34±0.9 93.64±0.8 1673 71.46±1.0 80.87±0.7 6960 78.14±0.5 86.14±0.3
9 3792 82.9±0.4 89.51±0.4 780 90.09±0.9 95.22±0.5 1375 76.63±1.1 84.23±0.7 6012 81.91±0.7 88.68±0.4

2012
5 5339 72.44±0.3 81.32±0.3 1799 79.77±0.8 87.84±0.5 2678 56.28±1.3 66.65±0.9 9812 68.48±0.4 77.43±0.2
7 4134 78.66±0.4 86.65±0.3 1166 85.1±0.6 92.68±0.6 1770 67.71±0.9 77.93±0.8 7155 76.2±0.5 84.62±0.2
9 3359 82.63±0.5 89.57±0.4 780 89.26±1.1 94.59±0.7 1253 75.32±1.1 83.07±0.6 5518 81.42±0.4 88.12±0.4

2013
5 7139 72.39±0.5 81.11±0.2 2508 76.87±0.5 85.55±0.7 3487 56.93±0.7 66.62±0.5 13069 67.55±0.3 76.52±0.2
7 5773 78.74±0.4 86.61±0.3 1796 83.13±0.6 91.0±0.8 2577 67.18±0.7 75.88±0.7 10269 75.26±0.3 83.32±0.4
9 4640 83.22±0.4 89.79±0.5 1309 87.25±0.9 92.84±0.8 1959 73.86±0.7 81.31±0.8 8133 80.04±0.3 86.88±0.1

2014
5 8529 70.15±0.3 79.38±0.2 2945 77.05±0.7 86.3±0.5 3690 58.85±0.6 68.54±0.5 15105 68.04±0.3 77.32±0.2
7 6552 77.79±0.4 85.83±0.4 2080 82.56±0.6 90.16±0.7 2619 67.94±0.6 77.79±0.6 11301 75.6±0.2 84.0±0.2
9 5238 83.04±0.2 89.41±0.2 1511 85.59±0.7 92.38±0.4 1939 74.82±0.6 82.33±0.6 8791 80.82±0.5 87.74±0.3

2015
5 7502 76.33±0.5 83.99±0.2 2323 80.63±0.8 88.42±0.6 2894 64.84±0.6 73.84±0.5 12673 73.68±0.2 81.9±0.4
7 5774 81.36±0.6 88.93±0.5 1493 84.55±0.5 92.06±0.6 1831 72.91±0.4 81.47±0.9 9110 79.4±0.3 87.14±0.3
9 4674 84.85±0.5 91.11±0.4 1074 87.72±0.8 93.71±0.6 1346 78.86±1.0 86.03±0.9 7166 83.38±0.2 89.75±0.2

2016
5 9366 72.18±0.2 80.13±0.3 4340 65.5±0.7 76.42±0.5 4067 54.05±0.6 63.7±0.5 17592 65.13±0.3 74.17±0.4
7 8077 78.55±0.3 85.8±0.3 3553 72.81±0.5 82.67±0.5 3366 63.37±0.7 72.72±0.6 15042 72.58±0.3 80.91±0.3
9 6607 82.16±0.5 88.46±0.3 2794 77.64±0.6 85.46±0.8 2607 68.95±0.4 78.11±0.5 12239 76.71±0.5 84.49±0.2

2017
5 8923 74.99±0.4 83.03±0.2 3702 70.99±0.3 81.31±0.7 3122 56.26±0.7 67.26±0.7 15716 69.46±0.2 78.57±0.3
7 7315 81.33±0.5 88.33±0.2 2750 77.6±0.4 86.85±0.5 2366 67.05±0.8 77.0±0.5 12529 76.87±0.2 85.14±0.2
9 5929 85.19±0.4 91.39±0.2 2061 82.09±0.5 89.62±0.6 1703 73.81±1.4 81.8±0.6 9831 81.93±0.3 88.64±0.2

2018
5 10090 72.09±0.3 79.35±0.4 4885 61.08±0.5 71.03±0.4 3734 53.71±0.5 61.23±0.7 18231 64.49±0.3 72.56±0.2
7 8852 78.34±0.3 84.46±0.3 4169 67.74±0.5 76.93±0.3 3152 61.45±0.6 69.49±0.9 15922 71.06±0.2 78.61±0.2
9 7850 81.77±0.4 87.26±0.4 3611 71.65±0.7 79.6±0.5 2726 66.85±0.7 73.27±0.6 14070 75.34±0.3 81.82±0.4

2019
5 13523 71.32±0.2 77.42±0.3 9597 56.21±0.5 64.46±0.4 5152 52.01±0.7 58.7±0.7 26224 59.82±0.2 66.7±0.2
7 11832 77.52±0.3 83.31±0.2 8236 63.06±0.5 70.9±0.5 4475 60.05±0.5 66.91±0.8 23321 66.95±0.2 73.73±0.2
9 10432 81.58±0.4 86.23±0.3 7123 67.83±0.4 74.35±0.4 3925 65.6±0.8 71.56±0.5 20833 71.65±0.3 77.41±0.2

2020
5 20677 67.97±0.3 74.76±0.2 11800 45.79±0.3 54.41±0.5 5032 47.34±0.6 54.98±0.5 36157 56.87±0.3 64.43±0.2
7 18818 74.25±0.2 80.72±0.2 10499 52.9±0.3 61.86±0.3 4510 55.6±0.4 63.03±0.7 33174 63.63±0.1 70.94±0.1
9 16916 78.63±0.2 84.01±0.2 9373 57.64±0.3 66.02±0.4 3985 61.59±0.4 68.31±0.5 30084 68.17±0.2 74.75±0.1

87

Table A.11. TH: Accuracy of authorship attribution across different number of source code files
per author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 2204 72.6±0.8 81.31±0.7 473 79.51±2.1 87.44±1.1 1109 55.88±1.0 67.05±1.5 3777 67.66±0.4 77.23±0.6
7 1878 78.23±0.7 86.61±0.8 367 85.78±1.9 92.34±1.3 836 66.7±1.4 77.61±1.2 3097 75.26±0.7 83.95±0.5
9 1548 81.43±1.1 88.54±0.8 257 89.14±1.3 94.12±1.5 609 73.66±1.8 81.9±1.8 2442 79.24±0.8 87.15±0.5

2009
5 3161 66.68±0.5 76.49±0.5 636 73.14±1.5 84.12±1.0 1236 53.41±0.8 65.76±1.3 5016 63.62±0.5 74.12±0.5
7 2766 73.5±0.4 82.56±0.6 503 79.44±1.1 88.41±1.2 988 62.67±1.2 74.19±1.0 4273 70.86±0.6 80.53±0.4
9 2407 78.29±0.7 85.92±0.5 395 84.41±1.6 91.97±1.1 791 68.47±1.1 79.63±1.4 3642 75.58±0.6 83.97±0.5

2010
5 3636 71.16±0.5 80.28±0.4 826 80.9±0.9 88.93±0.9 1355 65.72±1.2 76.01±1.3 5790 68.59±0.3 77.63±0.5
7 3018 77.66±0.6 85.93±0.4 636 85.93±0.9 92.83±0.9 1044 74.03±0.7 83.44±1.2 4772 75.38±0.5 83.34±0.4
9 2559 81.66±0.7 88.13±0.4 500 88.22±1.5 94.26±1.2 862 80.49±1.7 87.63±0.8 4061 79.41±0.5 86.48±0.4

2011
5 4782 73.03±0.6 81.68±0.6 1218 79.37±1.0 88.02±0.9 1943 60.5±0.7 70.47±1.0 7880 70.3±0.3 79.26±0.3
7 4301 78.29±0.5 86.82±0.5 990 84.47±0.7 91.75±0.8 1673 68.68±0.7 78.41±0.7 6960 76.44±0.3 84.96±0.4
9 3792 82.15±0.5 89.0±0.4 780 87.09±1.0 93.85±0.7 1375 73.91±1.1 82.35±0.5 6012 80.65±0.4 87.36±0.4

2012
5 5339 71.77±0.3 80.47±0.4 1799 76.66±0.9 86.01±0.5 2678 54.06±0.7 63.83±0.6 9812 66.66±0.4 76.03±0.2
7 4134 78.02±0.4 86.04±0.5 1166 83.28±0.8 90.73±0.5 1770 65.73±0.9 75.89±0.5 7155 75.01±0.3 83.13±0.2
9 3359 82.18±0.6 88.9±0.3 780 87.38±1.1 93.51±0.6 1253 73.34±1.2 81.47±1.1 5518 79.85±0.4 87.24±0.2

2013
5 7139 71.17±0.3 80.16±0.3 2508 73.09±0.7 82.81±0.7 3487 54.36±0.6 64.38±0.5 13069 65.44±0.3 74.71±0.2
7 5773 77.81±0.4 85.87±0.4 1796 79.85±0.8 88.54±0.7 2577 64.4±0.9 73.39±1.0 10269 73.3±0.5 81.88±0.3
9 4640 82.18±0.4 88.79±0.5 1309 84.2±0.8 91.15±0.8 1959 71.56±0.9 79.42±0.6 8133 78.41±0.3 85.69±0.2

2014
5 8529 69.47±0.5 78.61±0.4 2945 73.77±0.7 84.01±0.4 3690 55.84±1.0 66.25±0.5 15105 65.98±0.3 75.63±0.2
7 6552 76.57±0.7 85.02±0.3 2080 78.7±0.8 88.16±0.7 2619 64.38±0.9 75.17±0.8 11301 73.55±0.4 82.43±0.2
9 5238 82.12±0.5 88.74±0.5 1511 82.42±1.2 90.87±0.6 1939 71.95±1.1 80.35±1.0 8791 79.18±0.3 86.54±0.4

2015
5 7502 75.35±0.4 83.12±0.3 2323 77.68±0.7 86.39±0.5 2894 62.25±0.5 71.43±0.5 12673 71.96±0.3 80.35±0.2
7 5774 80.27±0.5 87.8±0.3 1493 82.68±0.7 90.74±0.7 1831 71.04±0.8 79.78±1.2 9110 77.73±0.4 85.95±0.3
9 4674 83.66±0.6 90.07±0.4 1074 85.41±0.6 92.96±0.5 1346 75.92±0.5 83.56±0.7 7166 81.81±0.4 88.7±0.3

2016
5 9366 70.97±0.5 79.39±0.3 4340 61.54±0.4 73.06±0.8 4067 50.6±0.7 60.79±0.7 17592 62.89±0.3 72.47±0.3
7 8077 77.4±0.3 84.96±0.3 3553 69.14±0.4 79.85±0.5 3366 60.54±0.4 70.56±0.7 15042 70.53±0.4 79.34±0.2
9 6607 80.79±0.3 87.65±0.3 2794 73.88±0.6 83.33±0.5 2607 65.84±0.7 75.24±0.4 12239 74.77±0.3 82.79±0.3

2017
5 8923 73.16±0.4 81.48±0.3 3702 67.5±0.2 78.68±0.5 3122 53.57±0.6 64.26±0.6 15716 67.06±0.2 76.58±0.2
7 7315 79.87±0.4 87.33±0.2 2750 74.95±0.6 84.44±0.5 2366 64.64±0.6 74.64±0.6 12529 74.87±0.4 83.55±0.3
9 5929 83.99±0.3 90.34±0.3 2061 79.33±0.7 87.94±0.5 1703 71.96±0.7 80.27±0.6 9831 80.02±0.2 87.1±0.1

2018
5 10090 70.77±0.4 77.66±0.4 4885 58.67±0.4 68.42±0.5 3734 50.84±0.6 59.3±0.6 18231 62.52±0.2 70.52±0.3
7 8852 76.77±0.4 83.31±0.4 4169 65.0±0.6 75.03±0.5 3152 59.51±0.6 67.13±0.7 15922 69.06±0.3 76.92±0.3
9 7850 80.64±0.5 85.75±0.3 3611 68.99±0.7 77.49±0.6 2726 64.33±0.7 71.5±0.7 14070 73.39±0.4 80.17±0.1

2019
5 13523 70.0±0.2 76.39±0.3 9597 52.68±0.4 61.1±0.4 5152 49.88±0.8 56.55±0.6 26224 57.66±0.3 64.72±0.2
7 11832 76.38±0.3 82.23±0.3 8236 59.67±0.5 68.01±0.4 4475 57.79±0.6 64.14±1.0 23321 64.85±0.2 71.79±0.2
9 10432 80.56±0.2 85.54±0.2 7123 64.43±0.5 72.02±0.4 3925 63.43±0.4 69.44±0.6 20833 69.62±0.4 75.74±0.3

2020
5 20677 66.54±0.2 73.54±0.2 11800 42.35±0.3 50.79±0.3 5032 45.32±0.9 53.04±0.5 36157 54.84±0.2 62.3±0.2
7 18818 72.99±0.3 79.38±0.3 10499 49.2±0.3 57.96±0.3 4510 53.0±0.8 60.86±0.4 33174 61.46±0.2 68.88±0.2
9 16916 77.38±0.1 82.92±0.2 9373 54.29±0.4 62.43±0.5 3985 59.72±0.5 66.7±0.8 30084 66.24±0.2 72.87±0.2

88

Table A.12. TH-soft: Accuracy of authorship attribution across different number of source code
files per author, different years and programming languages under simulated real-world constraint.

C++ Python Java All Languages
Year Files Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3 Authors Accuracy Top 3

2008
5 2204 75.77±0.7 83.63±0.6 473 85.71±1.8 91.59±1.1 1109 63.91±1.2 75.59±1.1 3777 72.43±0.6 81.35±0.5
7 1878 80.91±0.6 88.7±0.6 367 91.53±0.8 95.72±0.8 836 73.31±0.9 82.99±0.9 3097 79.67±0.7 87.57±0.6
9 1548 84.91±0.6 90.7±0.4 257 93.11±1.2 96.07±0.9 609 78.95±1.2 87.57±0.9 2442 83.42±0.6 89.59±0.5

2009
5 3161 69.82±0.5 78.97±0.4 636 81.27±1.0 88.6±0.7 1236 61.2±1.0 72.97±0.5 5016 67.81±0.4 77.72±0.5
7 2766 77.0±0.7 85.42±0.7 503 86.1±1.5 92.39±0.8 988 70.29±1.3 81.42±1.2 4273 75.71±0.4 84.17±0.6
9 2407 81.19±0.4 87.95±0.5 395 89.16±1.2 94.46±0.9 791 75.74±0.6 84.88±1.0 3642 80.12±0.5 87.1±0.3

2010
5 3636 76.12±0.6 84.22±0.5 826 86.46±1.2 92.78±0.8 1355 71.51±1.1 80.6±0.9 5790 73.74±0.4 82.22±0.6
7 3018 82.46±0.6 89.19±0.2 636 90.35±1.1 95.63±0.6 1044 78.62±0.9 87.71±1.1 4772 79.72±0.5 87.18±0.3
9 2559 85.58±0.5 91.61±0.5 500 92.26±1.3 96.9±0.8 862 83.91±1.0 90.49±0.9 4061 83.91±0.6 89.6±0.4

2011
5 4782 78.24±0.4 86.45±0.4 1218 86.37±0.5 92.38±0.7 1943 67.31±0.8 77.81±0.8 7880 76.34±0.3 84.34±0.3
7 4301 83.74±0.5 90.43±0.4 990 89.74±0.8 95.34±0.4 1673 74.54±0.6 84.02±0.9 6960 81.77±0.4 89.13±0.3
9 3792 87.04±0.4 92.54±0.4 780 92.56±0.6 96.55±0.6 1375 79.47±1.0 86.4±0.9 6012 85.4±0.6 91.37±0.2

2012
5 5339 76.35±0.6 84.43±0.5 1799 82.73±0.9 90.48±0.5 2678 61.15±0.5 71.82±0.5 9812 72.46±0.4 81.08±0.4
7 4134 82.24±0.4 89.62±0.6 1166 88.81±0.4 94.3±0.8 1770 71.3±0.9 81.19±0.5 7155 79.76±0.5 87.46±0.3
9 3359 85.93±0.5 91.82±0.4 780 92.22±0.9 95.78±0.6 1253 78.41±0.9 85.84±0.7 5518 84.14±0.4 90.48±0.3

2013
5 7139 76.68±0.5 85.01±0.3 2508 81.24±0.4 88.4±0.4 3487 60.65±1.0 71.15±0.8 13069 71.62±0.3 80.35±0.3
7 5773 82.6±0.3 89.88±0.5 1796 86.94±0.5 92.57±0.7 2577 69.78±0.5 79.59±0.5 10269 78.58±0.3 86.35±0.3
9 4640 86.72±0.4 92.47±0.3 1309 90.47±0.8 94.68±0.4 1959 75.89±1.2 84.55±0.5 8133 83.38±0.4 89.59±0.3

2014
5 8529 74.94±0.3 83.45±0.4 2945 81.2±0.6 89.11±0.5 3690 63.18±0.6 73.5±0.6 15105 72.46±0.2 81.14±0.2
7 6552 81.63±0.3 89.18±0.2 2080 85.7±0.5 92.22±0.6 2619 70.89±0.8 81.46±0.8 11301 79.3±0.3 87.13±0.3
9 5238 86.38±0.6 92.14±0.4 1511 88.71±0.7 94.1±0.4 1939 77.7±0.8 85.16±0.6 8791 84.14±0.3 90.25±0.3

2015
5 7502 80.37±0.4 87.69±0.3 2323 85.06±0.5 91.16±0.5 2894 68.67±0.9 77.93±0.6 12673 77.81±0.3 85.43±0.2
7 5774 85.07±0.5 91.78±0.3 1493 88.11±0.6 93.82±0.4 1831 75.48±0.8 84.59±0.8 9110 82.98±0.4 90.03±0.3
9 4674 88.16±0.4 93.27±0.3 1074 90.05±0.9 94.65±0.6 1346 80.47±0.9 88.22±0.8 7166 86.38±0.5 92.07±0.2

2016
5 9366 75.58±0.4 83.78±0.2 4340 70.75±0.7 79.88±0.3 4067 58.27±0.8 69.11±0.6 17592 69.29±0.2 77.95±0.2
7 8077 81.76±0.4 88.97±0.3 3553 77.82±0.3 85.93±0.3 3366 67.0±0.6 76.96±0.7 15042 76.4±0.2 84.56±0.2
9 6607 85.45±0.2 91.19±0.2 2794 82.13±0.7 88.67±0.6 2607 72.8±0.7 81.29±0.4 12239 80.75±0.3 87.24±0.3

2017
5 8923 79.14±0.3 86.42±0.2 3702 76.5±0.5 85.19±0.5 3122 61.94±0.6 72.79±0.5 15716 74.22±0.2 82.72±0.2
7 7315 84.86±0.3 91.43±0.3 2750 83.05±0.6 90.12±0.6 2366 72.17±0.5 81.17±0.8 12529 81.04±0.3 88.48±0.2
9 5929 88.71±0.3 93.84±0.3 2061 85.98±0.6 92.09±0.3 1703 78.39±1.0 86.66±0.7 9831 85.61±0.3 91.46±0.3

2018
5 10090 75.66±0.3 82.43±0.4 4885 70.12±0.3 78.4±0.4 3734 61.36±0.8 69.71±0.7 18231 70.14±0.2 77.7±0.2
7 8852 81.33±0.4 87.37±0.3 4169 75.96±0.5 83.25±0.5 3152 69.11±0.7 76.53±0.6 15922 76.45±0.2 83.28±0.3
9 7850 84.54±0.4 89.63±0.3 3611 79.2±0.6 86.13±0.5 2726 73.89±1.0 80.12±0.7 14070 80.15±0.3 85.76±0.2

2019
5 13523 74.66±0.5 80.75±0.2 9597 65.93±0.6 72.9±0.3 5152 58.68±0.4 66.05±0.3 26224 65.84±0.2 72.61±0.2
7 11832 80.63±0.3 86.01±0.3 8236 72.53±0.5 78.88±0.3 4475 66.52±0.7 73.2±0.5 23321 72.73±0.2 78.98±0.3
9 10432 84.41±0.3 88.74±0.2 7123 76.69±0.6 82.15±0.4 3925 71.64±0.4 77.29±0.7 20833 77.15±0.3 82.37±0.2

2020
5 20677 71.3±0.3 78.02±0.1 11800 54.75±0.4 63.62±0.4 5032 53.24±0.5 61.3±0.7 36157 62.23±0.1 69.63±0.3
7 18818 77.22±0.2 83.57±0.2 10499 62.23±0.4 70.63±0.4 4510 60.69±0.7 68.93±0.4 33174 68.74±0.2 75.98±0.2
9 16916 81.55±0.3 86.4±0.3 9373 67.37±0.4 74.73±0.4 3985 66.72±0.7 73.92±0.7 30084 73.47±0.2 79.6±0.1

89

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDIX TABLES
	Introduction
	Overview
	Contributions and outline
	Large scale authorship attribution
	Multi-lingual scenario
	Obfuscated constraint
	Simulated real-world constraint
	Close world assumption and open world assumption

	Theoretical Background for Deep Metric Learning
	Deep metric learning
	Contrastive loss
	Triplet loss
	Miners for finding interesting triplets
	Semi-hard triplet loss
	Soft margin variant of triplet loss

	Lifted structure loss

	Source Code Authorship Attribution
	Related work
	Authorship attribution system
	Source code representation
	Dataset collection
	Dataset preparation
	Obfuscation tools
	Dataset preprocessing
	Dataset analysis
	Problem framing
	Loss functions
	Train, validation, and test split for NNs
	Model architecture
	Optimizer
	Batching methodology
	Training parameters
	Classification using embeddings
	Attribution evaluation

	Experiment results
	Embedding evaluation
	Closed world source code authorship attribution
	Performance on original source code only dataset
	Performance on obfuscated source code dataset
	Performance on simulated real-world dataset
	Discussion

	Open world setting
	Are the different models language oblivious?

	Future Work
	Conclusion
	REFERENCES
	APPENDIX. SUPPLEMENTARY TABLES

