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Abstract: 

The Chemical Movement through Layered Soils (CMLS) model was 
modified and combined with the USDA-SCS State Soil Geographic Data 
Base (STATSGO) and Montana Agricultural Potentials System (MAPS) 
digital databases to assess the likelihood of groundwater contamination 
from selected herbicides in Teton County, MT. The STATSGO and 
MAPS databases were overlaid to produce polygons with unique soil and 
climate characteristics and attribute tables containing only those data 
needed by the CMLS model. The Weather Generator (WGEN) computer 
simulation model was modified and used to generate daily precipitation 
and evapotranspiration values. A new algorithm was developed to estimate 
soil carbon as a function of soil depth. The depth of movement of the ap-
plied chemicals at the end of the growing season was estimated with 
CMLS for each of the soil series in the STATSGO soil mapping units and 
the results were entered into ARC/INFO to produce the final hazard maps 
showing best, weighted average, and worst case results for every unique 
combination (polygon) of soil mapping unit and climate. County weed in-
festation maps for leafy spurge and spotted knapweed were digitized and 
overlaid in ARC/INFO with the CMLS model results for picloram to illus-
trate how the results might be used to evaluate the threat to groundwater 
posed by current herbicide applications. 

                                                 
1 Received for publication Apr. 20, 1992 and in revised form Oct. 19, 1992. Montana Agric. Exp. Stn. Journal Series 
No. J-2807. 
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Nomenclature: 

Picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid); leafy spurge, 
Euphorbia esula L. #2 EPHES; spotted knapweed, Centaurea maculosa 
Lam. # CENMA. 

Additional index words: 

Groundwater contamination, computer model, Centaurea maculosa,  
Euphorbia esula, CENMA, EPHES. 

Introduction 
Most Montana county weed districts conduct noxious weed mapping programs. 

Counties are required to maintain inventories of weed distributions for management and 
educational purposes. A county-scale weed inventory can help district weed supervisors 
estimate the kinds and quantities of herbicides that are needed, schedule control activities, 
and plan control routes. A continually updated weed inventory keeps track of changes in 
weed distributions. It can be used to show the effectiveness of weed control programs 
when compared with maps showing areas where controls have been applied. Weed maps 
are also useful tools for informing the public about noxious weed problems when in-
cluded in news releases and other public educational activities. 

Most Montana county weed control programs continue to emphasize herbicide appli-
cations at a time when public concern for the potential contamination of groundwater re-
sources is increasing. Approximately 50% of Montana�s population obtains its drinking 
water from wells that tap groundwater; consequently, the transport of agricultural chemi-
cals, including nitrates and pesticides, through soils into groundwater represents a poten-
tial threat to water quality in Montana and elsewhere. The U.S. Environmental Protection 
Agency reported that 17 pesticides had been detected in the groundwater of 23 states at 
concentrations ranging from trace amounts to several hundred parts per million (19). Lo-
cally, the Environmental Management Division of the Montana Department of Agricul-
ture reported detectable quantities of picloram, 2,4-D [(2,4-dichlorophenoxy)acetic acid], 
MCPA [(4-chloro-2-methylphenoxy)acetic acid], dicamba (3,6-dichloro-2-methoxyben-
zoic acid), and aldicarb [2-methyl-2(methylthio) propionaldehyde 0-methylcarbamoyl 
oxime] in ground-waters around the state (4). Public health risks increase and environ-
mental problems occur when groundwater becomes polluted with these chemicals. 
County weed control programs may contribute to these problems because county weed 
supervisors currently lack the tools and databases required to identify weed-infested areas 
where herbicide applications are likely to contaminate groundwater. 

                                                 
2 Letters following this symbol are a WSSA-approved computer code from Composite List of Weeds, Revised 1989. 
Available from WSSA, 309 W. Clark St., Champaign, IL 61820. 
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This paper describes a procedure for identifying potential pesticide contamination 
problems and some sample results. The methods combine modified versions of the 
CMLS model (10, 11) and WGEN weather generator (18) with the STATSGO (1, 17) 
and MAPS (10) databases. CMLS3 is a one-dimensional solute transport model that util-
izes piston flow theory to simulate the vertical movement of selected chemicals in and 
beyond the agricultural root zone in a layer-by-layer manner. Although this model was 
written primarily as a management and educational tool, it has been tested favorably and 
used in many parts of the country (5, 9). Current studies are underway at two field sites in 
Montana to compare CMLS output to observed transport of nonsorbing tracers and sev-
eral herbicides. The WGEN weather generator4 was designed to estimate daily weather at 
locations with no weather stations and/or to extend daily records at locations with 
weather stations. The model provides daily precipitation, maximum and minimum tem-
peratures, and solar radiation values with the same statistical characteristics as the actual 
weather at specified locations. 

The STATSGO5 database was developed at a scale of 1:250,000 by generalizing more 
detailed soil survey maps and is used primarily for regional resource planning, manage-
ment, and monitoring (17). MAPS6 is a computer-driven database that divides Montana 
into approximately 18,000 20-km2 cells and stores more than 200 different land and cli-
mate characteristics for each of these geographic units. This new method was used to as-
sess the likelihood of groundwater contamination from selected herbicides in Teton 
County, MT. County weed infestation maps for leafy spurge and spotted knapweed were 
digitized and overlaid in ARC/ INFO7 with the CMLS model results for picloram to illus-
trate the threat to groundwater posed by current applications. 

Models and data sources 

CMLS model. The CMLS model was developed by Nofziger and Hornsby (11, 12) 
to interactively simulate chemical movement through soil with easily obtained soil, 
chemical, and weather inputs. CMLS divides the soil into as many as 20 layers and esti-
mates the position of the chemical in the soil at different times using an algorithm first 
proposed by Rao et al. (15). The soil properties affecting chemical movement (soil tex-
ture, bulk density, field capacity and permanent wilting point volumetric water contents, 
and soil organic-carbon content) may vary among the layers, but are assumed to be uni-
form within each layer. Two chemical properties (the partition coefficient (Koc) normal-
ized to soil organic carbon and degradation half-life) and the climatic and cultural factors 

                                                 
3 4For more information about CMLS and a copy of the software, contact Dr. David L. Nofziger, Dep. Agron., Okla-
homa State Univ., Stillwater, OK 74078. 
4 The WGEN manual includes the FORTRAN code for the model and some sample input data. 
5 The STATSGO and soil interpretative attribute databases can be obtained from the USDA-SCS National Cartographic 
Center, P.O. Box 6567, Fort Worth, TX 76115. 
6 For more information about MAPS or how to build a MAPS-style raster database for your state, contact Dr. Gerald A. 
Nielsen, Dep. Plant Soil Sci., Montana State Univ., Bozeman, MT 59717. 
7 Geographic information system produced and sold by Environmental Systems Research lnstitute, Inc., 390 New York 
St., Redlands, CA 92373. 
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known to affect chemical movement (plant root depth, daily rainfall/irrigation and daily 
evapotranspiration amounts) are also required by the model. 

These input data are used in conjunction with the following six model assumptions: 
(a) all soil water residing in pore spaces participates in the transport process, (b) water 
entering the soil redistributes instantaneously to field capacity, (c) water is removed by 
evapotranspiration from each layer in the root zone in proportion to the relative amount 
of water available in that layer, (d) upward movement of water does not occur anywhere 
in the soil profile, (e) the adsorption process, can be described by a linear, reversible, 
equilibrium model, and (f) the half-life for biological degradation of the chemical is con-
stant with time. Nofziger and Hornsby (11) explain why these assumptions are valid for 
many soils and when they are likely to be violated. 

The CMLS model calculates the fraction of the applied chemical remaining in the en-
tire soil profile and the position of the solute front at time intervals specified by the user. 
The PC8 version of the CMLS mode, is menu-driven and requires the user to specify the 
chemical and soil of interest, the names of the data files containing chemical and soils 
data, the depth to the bottom of the root zone for the crop being grown, the names of the 
data files containing weather data for the location of interest, and the date and depth of 
application of the chemical. The mainframe version was used for this study because of 
the large variety of soil and weather conditions experienced in a county-sized area. This 
version requires the same data files for each and every location (i.e., unique climate and 
soil polygon) to which the model is applied. 

The soils data files were prepared from the STATSGO database and the weather data 
files were compiled from U.S. Weather Service climate records for the Town of Choteau 
and the MAPS database. The weather files were then matched with the soils records with 
ARC/INFO and a series of FORTRAN programs written by the authors. The chemical 
data file was compiled from published literature (7, 12). Digital copies of the county 
weed infestation maps and the final overlays and maps were prepared with ARC/INFO. 
The overall approach is summarized with the schematic diagram in Figure 1 and the indi-
vidual steps are described in more detail in the four subsections, which follow. 

Soil attributes. The STATSGO database divides the landscape into map units (i.e., 
polygons) and the percentage compositions of the soil series that occur in these general 
map units are recorded. A series of geocodes is provided for linkage with the national 
Soil Interpretations Record database that provides detailed information on the properties 
for each soil, usually as ranges of high and low values by soil layer (1). The soils which 
compose each map unit will have generally formed in similar kinds of parent material and 
have a similar repeating pattern of landforms, but will vary in one or more characteristics 
(texture, available water holding capacity, etc.). This arrangement means that simple 
maps cannot be used to present information on a specific soil series attribute because 
there is no map delineation for the locations of individual soil series which make up each 
STATSGO mapping unit. Bliss and Reybold (1) have described the general process that 
should be used for linking soil attributes to soil maps and also provide a series of exam-
ples to illustrate the wealth of attribute data that can be accessed through the STATSGO 
                                                 
8 Abbreviations: PC, personal computer; BD, bulk density, OC soil organic carbon content. OM, soil organic matter 
content; AWC available water holding capacity; ET. evapotranspiration; PET, potential evapotranspiration. 
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products. Our approach, summarized in Figure 1, generally follows their schematic dia-
gram linking geographic information systems and the two STATSGO database compo-
nents. 

Our work with the STATSGO database started with the four STATSGO coverages 
(i.e., ARC/INFO versions of the 1:250,000-scale soil maps) containing parts of Teton 
County. These coverages were combined and �clipped� to match the Teton County 
boundary with ARC/INFO to form a new coverage containing 145 polygons (i.e., STA-
TSGO mapping units). A series of FORTRAN programs was written and used to: (a) read 
the STATSGO Component data file and write the STATSGO soil mapping unit code and 
soil series sequence (component) numbers, codes and names to an indexed file, (b) com-
bine this indexed file with the STATSGO Layer file based on soil mapping unit and soil 
series codes and (c) extract and write the soil layer attributes required to calculate CMLS 
soil inputs to a new file. Another FORTRAN program was then written and used to 
calculate the actual CMLS model inputs. This program checked the layer records for 
missing data and computed the CMLS inputs for each layer and soil series with complete 
information in each of the STATSGO mapping units. Eight soil inputs (percent clay, silt, 
and sand; bulk density; organic matter content; and -0.01 MPa, -1.5 MPa, and saturation 
volumetric water contents) were computed for our version of the CMLS model as fol-
lows. 

Bulk density (BD)8 and percent clay were obtained by computing the midpoints of the 
ranges specified for each soil layer in the STATSGO database. Percent sand was com-
puted as: 

% sand = 100 [(n10 - n200)/n10]  (1) 

where n10 and n200 are the average percentages of soil passing through the no. 10 and 
200 soil sieves, respectively. The percent clay and percent sand were then subtracted 
from 100 to estimate percent silt. 

Surface and subsurface soil layer organic-carbon contents (OC)8 were computed by 
different methods. The average organic matter content (OM)8 was multiplied by 0.5 to 
obtain OC values for surface layers. Because STATSGO reports only OM contents for 
surface layers, subsurface OC values were estimated by the following methods. 

The Montana Soil Pedon Database (6) was used to access laboratory determined soil 
OC values by profile depth for over 60 agricultural soils in Montana (Figure 2). Linear 
regression analysis of soil OC values with profile depth produced equation 2 (r2 = 0.71), 
which was used to compute subsurface OC values for soil with surface OC values ex-
ceeding 0.8%. 

OCi = 1.71 + 0.117 (OCs) - 0.367 [ln(Di)]  (2) 

where OCi is the organic carbon content of the ith layer in percent, OCs is the average 
organic carbon content of the surface layer in percent, and Di is the average depth of the 
ith layer in meters divided by profile depth in meters times 100. 

For soils with surface OC values below 0.8%, equations developed by Jury et al. (7) 
were found to best estimate subsurface OC values (based on comparisons with the Mon-
tana Soil Pedon data). These equations, originally developed to estimate subsurface mi-
crobial populations, are as follows: 
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OC2 = OCs e-γ (Z-L)  (3) 

OCi = OCs e -γ(H-L)  (4) 

where, OC2 is the organic carbon content of the second layer, γ is a depth constant of 
3 m-1, Z is the average depth of the second layer in meters, L is the depth of the surface 
layer in meters, OCi is the organic carbon content in horizons below the second layer, and 
H is the depth from the surface to the top of the ith layer in meters. 

Standard equations reported in the literature (16) were used to compute the three 
volumetric water contents needed by the CMLS model as follows: 

Θv.1 = (n10/100) * [0.4118 - 0.0030(% sand) 

+ 0.0023(% clay) + 0.0317(% OM)] (5) 

Θv.15 = (nl0/100) * [0.25 + 0.005(% clay) 

+ 0.0158(% OM)] (6) 

ΘvSAT = (n10/100) * [0.7899 - 0.0037(% sand) 

+ 0.01(% OM) - 0.1315(BD)]  (7) 

where Θv.1, Θv15 and ΘvSAT are the -0.01 MPa, -1.5 MPa and saturation volumetric 
water contents, respectively, n10 is the average percentage of soil particles passing 
through a no. 10 soil sieve, % OM is average organic matter content expressed as a per-
centage, and BD is the average bulk density in g cm-3. 

These eight soil parameters were computed for each soil layer and printed to a file for 
input to our workstation version of CMLS. The same FORTRAN program was also used 
to compute the available water holding capacity (AWC)8 of the entire soil profile for each 
soil series (in cm) as this information was needed to compute the daily evapotranspiration 
(ET)8 values in cm required by CMLS. The profile AWC values were estimated by mul-
tiplying the widths of the individual soil layers (cm) by their AWCs (cm of water per cm 
of soil) and summing these subtotals. Profile AWCs of less than 2.54 cm (1 inch) were 
arbitrarily assigned a value of 2.54 cm for the ET computations described in the next sub-
section. 

Weather attributes. Our application of the CMLS model required daily precipitation 
and evapotranspiration (ET) totals for 324 MAPS cells located in Teton County. The 
MAPS cell boundaries were converted to a polygon coverage with the PC ARC/INFO 
�gridpoly� command and �clipped� to include only those cells within Teton County. At-
tribute tables consisting of mean monthly precipitation totals and temperatures were 
transferred from the MAPS database (10) to ARC/ INFO attribute tables as well. The Te-
ton STATSGO and MAPS coverages were overlaid by using the �intersect� command in 
the ARC/INFO Overlay module to produce a new countywide coverage consisting of 
1215 unique soil mapping unit and climate polygons. 

The WGEN weather simulator (18) was then modified and expanded to generate the 
weather parameters required by CMLS. WGEN generates daily values of precipitation, 
minimum and maximum temperatures, and solar radiation for an n-year period at a given 
location. The WGEN PAR option was used to generate parameters from the long-term 
daily records available for the Choteau (in Teton County) and Great Falls (the nearest sta-
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tion with daily total solar radiation data) climate stations maintained by the U.S. Weather 
Service. WGEN PAR reads daily precipitation, minimum and maximum temperatures, 
and total solar radiation values and writes the generation parameters (probabilities, long-
term averages, etc.) required by WGEN to another data file. This approach was used in 
conjunction with WGEN to compute daily weather values for the MAPS cell containing 
the Town of Choteau. Another WGEN option was used to generate daily weather values 
for the other 323 MAPS cells. Mean monthly minimum and maximum temperatures and 
precipitation totals for these cells were transferred to an ASCII file with the �dump� 
command in the PC ARC/INFO Tables module so they could be used as correction fac-
tors within WGEN to prepare daily weather variables for these locations. 

 

 
 

Figure 1. Schematic diagram showing linkages between individual models and 
databases. 

 

The original WGEN model produced the daily precipitation but not the daily ET val-
ues needed by CMLS. Two additional steps were required to generate spatially-variable 
daily ET data: (a) the original WGEN model was used to compute daily potential 
evapotranspiration (PET)8 values by adding a solar thermal unit model developed by Ca-
prio (3) which used the daily mean temperature and total solar radiation values that were 
produced by the original version of WGEN as inputs, and (b) we estimated daily ET val-
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ues from these PET values and the profile AWC for every unique combination of MAPS 
cell and STATSGO soil series. A separate FORTRAN program was written for this last 
step because the ARC/INFO �joinitem� command could not achieve the desired geo-
graphic linkage because the common (relate) attribute was not unique in at least one of 
two files. Our FORTRAN program combined soils and climate records for all 5698 
unique combinations of MAPS cells and soil series occurring in the STATSGO soil map-
ping unit(s). The PET output produced with the expanded WGEN model for all 324 
MAPS cells was read one cell at a time and the appropriate soil parameters for that cell 
were accessed sequentially and used with the ETalgorithm from the Palmer drought index 
model (13) to generate 15 yr of daily ET data for each accessed record. The ET data were 
written to a file, which also contained the daily precipitation data generated by WGEN. 
This data file served as the climate input for the CMLS model. 

 

 

 
 

Figure 2. Soil organic-carbon content by profile depth for Montana agricultural soils (6). 
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Chemical attributes. The chemical attributes required for CMLS input include the 
partition coefficient normalized to soil organic carbon (Koc, L kg-1) and the half-life (t1/2, 
days). For picloram, we used a Koc, of 48 L kg-1 and a surface half-life value (t1/2, 0) of 
100 days (7, 12). For soil horizons below the surface layer we used a biodegradation 
depth function developed by Jury et al. (7): 

t1/2 (i) = t1/2 (0) eγ(Z-L)  (8) 

where t1/2 (i) is the half-life for the ith layer, γ is a depth constant equal to 1.5 m-l, Z is 
the average depth of the ith layer in meters, and L is the depth of the surface layer in me-
ters. Using a γ value of 1.5 m-l resulted in maximum t1/2 values 10 times the surface hori-
zon values. This relationship is generally consistent with the effects of soil depth on 
herbicide degradation rates (t1/2) observed in other studies (2, 8, 14). 

Weed infestation maps. Maps supplied by the Teton County Weed Supervisor show-
ing specific locations and areas infested with leafy spurge and spotted knapweed were 
digitized in ARC/INFO as point and polygon coverages, respectively. These maps were 
overlaid with the CMLS model results with the �union� command in the ARC/INFO 
Overlay module. The final tabular output was prepared from the resulting overlays and 
attribute tables with several commands available in the ARC/INFO Tables module. 

Results and discussion 

The three maps reproduced in Figure 3 show the 324 MAPS cells, 145 STATSGO 
soil mapping units, and the leafy spurge and spotted knapweed infestations in Teton 
County. The reference made earlier to 5698 unique combinations of MAPS cells and soil 
series occurring in the STATSGO soil mapping units meant that an average of 4.7 soil 
series with complete layer files occurred in each mapping unit. This arrangement (i.e., the 
way in which the STATSGO records are organized and linked) and the large number of 
unique polygons limited the types of spatial and tabular output that could be effectively 
reproduced here.  

The scatter plots reproduced in Figures 4a and 4b show the depth of movement of pi-
cloram estimated by the CMLS model for each of the unique combinations of MAPS 
cells and soil series occurring in the STATSGO soil mapping units and 15 yr of weather 
data (i.e., there are 15 different annual estimates for each MAPS cell/soil series combina-
tion). The first graph shows the movement of picloram in response to precipitation events 
and the second graph shows the combined effects of precipitation and irrigation water 
inputs. There is no carry-over from one growing season to the next because we started 
and ended our CMLS runs on 15 April and 15 October each year. The field capacity soil 
moisture content was used to start each year�s simulation. Figure 4a indicates that the 
model did not predict movement of picloram beyond the root zone for the vast majority 
(99.5%) of MAPS cell/soil series combinations (polygons) in most of the simulated water 
years. The application of 10.2 cm (4 inches) of irrigation water on three occasions during 
the growing season in each simulated weather year moved picloram to greater depths. 
Approximately 10.6% of the MAPS cell/soil series polygons had predicted picloram 
movement below the root zone. 
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Figure 3. Maps of: (a) 324 MAPS cells, (b) 145 STATSGO soil-mapping units, (c) leafy 
spurge and spotted knapweed infestations in Teton County. 
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Figure 4. Depth of movement of picloram for every unique combination of MAPS cell and 
soil series occurring in the STATSGO soil mapping units: (a) without irrigation, and (b) 
with 30.5 cm of irrigation water applied to entire county. 

 

 

 

Figure 5. Overlay of MAPS, STATSGO, and weed infestation maps for portion of Teton 
County shown in Figure 3(c) inset. 
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Figure 5 shows the leafy spurge infestations occurring within the inset box (shown 
with a dashed line in Figure 3c). This map indicates that parts of the four STATSGO soil 
mapping unit and MAPS cell combinations labeled MT162/4155, MT162/4156, 
MT502/4155 and MT502/4156 are infested with leafy spurge. The results reported in Ta-
bles 1 through 3 indicate that each of these STATSGO soil mapping unit and MAPS cell 
combinations consisted of several components (i.e., phases of soil series) and some fur-
ther explanation will be required to show how the �best� (least movement), �weighted 
average�, and �worst� (most movement) predictions were derived. 

Table 1 shows: (a) the MAPS cell and STATSGO soil mapping unit identifiers (i.e., 
geocodes) that are required to reference the different map polygons, and (b) the sizes of 
the polygons and the percentages covered with leafy spurge. The second entry in this ta-
ble, for example, records that 17.7% of the polygon combining MAPS cell 4155 and 
STATSGO soil mapping unit MT162 in Figure 5 is covered with leafy spurge. 

Table 1. Geocodes, areas, and leafy spurge infestations for the MAPS cell and STATSGO 
soil mapping unit combinations shown in Figure 5. 

MAPS cell 
identifier 

STATSGO soil 
mapping unit Polygon area 

% of polygon covered 
with leafy spurge 

  km2  
4154 MT162 1.12 0 
4155 MT162 8.30 17.7 
4156 MT162 4.47 0.9 
4394 MT162 0.56 0 
4395 MT162 0.17 0 
4155 MT502 2.66 28.3 
4156 MT502 7.04 5.5 
4157 MT502 2.89 0 
4395 MT502 14.68 0 
4396 MT502 20.17 0 
4397 MT502 17.86 0 
4398 MT502 13.57 0 
4399 MT502 13.44 0 
4400 MT502 11.48 0 
4635 MT502 1.75 0 
4636 MT502 2.94 0 
4637 MT502 8.08 0 
4638 MT502 17.34 0 
4639 MT502 12.00 0 
4640 MT502 10.36 0 
4641 MT502 0.78 0 
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The data in Table 2 show the STATSGO soil mapping unit components and the 
CMLS model predictions for each unique combination of MAPS cell and soil series for 
which there was a complete record in the STATSGO Layer data file. Several of the indi-
vidual records in the STATSGO Layer data file lacked measured or estimated bulk densi-
ties; consequently, the soil, components listed in Table 2 represent only partial lists of the 
components (i.e., 16 and 68% of the individual soil series by area, respectively) that 
compose the MT162 and MT502 STATSGO mapping units. Three sets of predictions are 
provided: the �best� or least movement year, the average depth of movement over 15 
weather years, and the �worst� or maximum movement year assuming no irrigation water 
was applied. However, these predictions provide only a partial view of the potential for 
groundwater contamination in that the leafy spurge may not cover the same proportion of 
all of the soil series that compose a particular STATSGO mapping unit. This uncertainty 
cannot be eliminated because the STATSGO database does not delineate the locations of 
the individual soil series within each mapping unit (as noted earlier). 

 
Table 2. Predicted depths of picloram movement for every unique combination of MAPS 
cell and STATSGO soil mapping unit component (i.e., soil series without missing data). 

 

 

 

CMLS predictions MAPS 
cell 
identifier 

STATSGO 
mapping 

unit 

STATSGO
component

number 

Soil 
series 

identifier 
percentage

composition
�Best� 
case 

�Avg.� 
case 

�Worst� 
case 

     �������������� cm ��������������
4155 MT162 5 MT0069 8 9.5 17.2 23.9 
4155 MT162 8 MT0138 4 11.2 20.5 28.2 
4155 MT162 10 MT0745 2 11.2 21.5 31.7 
4155 MT162 11 MT0122 2 6.9 12.5 17.7 
4155 MT502 1 MT0122 40 6.8 12.2 17.4 
4155 MT502 3 MT0088 13 11.3 21.7 30.2 
4155 MT502 4 MT0374 8 7.3 13.6 19.8 
4155 MT502 5 MT0122 5 6.8 12.2 17.4 
4155 MT502 8 MT0088 2 11.3 21.7 30.2 
4156 MT162 5 MT0069 8 8.5 18.4 31.4 
4156 MT162 8 MT0138 4 10.0 22.2 38.4 
4156 MT162 10 MT0745 2 10.0 23.5 47.2 
4156 MT162 11 MT0122 2 5.4 13.5 25.7 
4156 MT502 1 MT0122 40 5.4 13.2 25.2 
4156 MT502 3 MT0088 13 10.4 23.8 39.5 
4156 MT502 4 MT0374 8 6.6 14.7 27.0 
4156 MT502 5 MT0122 5 5.4 13.2 25.2 
4156 MT502 8 MT0088 2 10.4 23.8 39.5 
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Table 3 summarizes the final CMLS predictions by MAPS cell and STATSGO soil 
mapping unit, such that the �best� and �worst� cases here represent the best soil compo-
nents and weather years and the worst soil components and weather years, respectively. 
We adjusted the percentage compositions of the soil components listed in Table 2 up-
wards so that they �accounted� for 100 percent of the areas of the STATSGO soil map-
ping units used for these computations; however, we will in the future be able to use the 
Grossman/Baumer soil texture/bulk density ternary diagram reproduced by Wilson et al. 
(20) to estimate the missing bulk densities and ensure that all of the appropriate soil se-
ries are considered in these assessments. 

 

Table 3. Predicted depths of picloram movement for selected soil series and weather years 
as a function of MAPS cell and STATSGO soil mapping unit. 

 

For the current assessment, the �best� case prediction reported in Table 3 for the 
MAPS cell and STATSGO soil mapping units labeled 4155 and MT162, respectively was 
derived from the predictions for the soil components labeled 11 (12.5% of total) and 5 in 
Table 2 (50% of total; 6.2% used here to make up remainder of infested area) in the 
�best� weather years (i.e., the year that produced the smallest depth of movement). This 
example assumed that the 17.7 percent of the STATSGO soil-mapping unit covered with 
leafy spurge was composed entirely of the two �best� soil series (i.e., those soil series that 
produced the smallest depth of movement). The �worst� case predictions favored the 
�worse� soil components in the appropriate STATSGO soil mapping units and the 
�worst� weather years; whereas, the weighted average case assumed that the soil compo-
nents were represented within the weed infestation area according to their average per-
centage composition (adjusted from those reported in Table 2 to compensate for those 
components (i.e., soil series) with missing data that were omitted from the analysis per-
formed for this study) within the entire STATSGO soil-mapping unit. The weighted av-
erage case also averaged the predicted picloram movement over all 15 weather years. The 
composite results reported in Table 3 not only describe the threat to groundwater posed 
by the current herbicide applications at this site, but also indicate the variability that 
could be expected due to variations in soil and weather conditions. Hence, these results 
indicate the �best� and �worst� results that could be expected notwithstanding the uncer-
tainty noted earlier. 

 

CMLS Model Predictions MAPS 
cell 
identifier 

STATSGO 
mapping 

unit 
�Best� 
case 

�Weighted 
avg.� case 

�Worst� 
case 

  ------------------------------------ cm -----------------------------------
4155 MT162 7.7 18.0 30.7 
4156 MT162 6.8 14.5 30.2 
4155 MT502 7.1 19.4 42.3 
4156 MT502 5.4 15.7 39.5 
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Our choice of the MAPS and STATSGO databases for input data was important be-
cause the information content and level of precision captured in maps are to a large extent 
scale-dependent. The models, input data, and results that we have described are suited to 
regional (i.e., county-scale and larger area) assessments of the threat to groundwater 
posed by current herbicide applications. Approximately two person-months might be re-
quired for each application, assuming that: (a) the CMLS model has been validated for 
local conditions, (b) the appropriate software are accessible and known to the user, and 
(c) digital copies of the databases required to run CMLS are available. Our methods are 
capable of identifying areas that deserve further study and we are now exploring: (a) the 
possibility of adding roadways to the regional-scale assessments (because most county 
weed board spraying occurs along roadsides and overlapping coverages may provide in-
formation on potential areas of surface and subsurface water contamination), and (b) the 
viability of using 1: 24,000-scale input data with the same procedures to produce maps 
and tabular output consistent with USDA-SCS management units. 
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