
COMPUTATIONAL SIMULATIONS OF FLOW PAST A ROTATING ARRANGEMENT OF

THREE CYLINDERS USING HYBRID TURBULENCE MODELS

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Nick Leonard Thomas

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Mechanical Engineering

November 2020

Fargo, North Dakota



NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

COMPUTATIONAL SIMULATIONS OF FLOW PAST A ROTATING

ARRANGEMENT OF THREE CYLINDERS USING HYBRID TURBULENCE

MODELS

By

Nick Leonard Thomas

The supervisory committee certifies that this thesis complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Y. Bora Suzen
Chair

Dr. Jordi Estevadeordal

Dr. Yan Zhang

Dr. Om Yadav

Dr. Forrest Ames

Approved:

11/20/20

Date

Dr. Alan Kallmeyer

Department Chair



ABSTRACT

Over the past 25 years, advances in the field of turbulence modeling have been made in an

effort to resolve more scales, preserving unsteadiness within a flow. In this research two hybrid

models, Scale-Adaptive Simulation (SAS) and Stress-Blended Eddy Simulation (SBES) are imple-

mented in solving the highly unsteady flow over a rotating arrangement of three cylinders. Results

are compared to those from wind tunnel experiments carried out at North Dakota State University.

Both models show close agreement with first and second order turbulence quantities, and SBES

shows much greater flow structure detail due to its ability to resolve smaller scales. The Strouhal

number for the flow is found to be a function of the rotational speed of the arrangement with von

Kármán-like structures resulting from each cylinder’s wake over a full rotation. SAS shows a con-

stant computational cost as Re increases while the SBES’s computational cost increases relatively

linearly.
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1. INTRODUCTION AND RESEARCH OBJECTIVES

One of the most challenging aspects of computational fluid dynamics (CFD) is accurately

solving turbulent flows. A number of strategies have been used to do so, ranging from using an

extremely fine grid and resolving all scales of turbulence (Direct Numerical Solution, DNS), to

applying averaging to the entire flow and modeling all turbulent scales (Reynolds-averaged Navier-

Stokes, RANS), as well as compromises in-between those “extremes” (e.g. Large Eddy Simulation,

LES, and hybrid models). In this thesis, two recently developed scale-resolving models (Stress-

Adaptive Simulation, SAS and Stress-Blended Eddy Simulation, SBES) are implemented in the

simulation of an unsteady flow over three equilaterally spaced cylinders rotating about a common

central axis.

Flows over cylinders, arrangements of cylinders, and other bluff bodies are of great interest

for engineering and research applications. The present arrangement of three equilaterally spaced

cylinders has been studied both experimentally and computationally, but without rotation (Bao

et al., 2010; Lam & Cheung, 1988; Tatsuno et al., 1998; Zdravkovich, 1968). These studies have

identified flow patterns as a function of cylinder spacing and arrangement angle. For example, at

small cylinder spacings the overall flow acts similarly to a blunt body of the arrangement’s size

while large cylinder spacings results in the individual wakes of the cylinders being represented.

Intermediate spacings show a combination of the two effects. PIV has also been performed on this

rotating arrangement of cylinders, but this study uses a very large cylinder spacing in comparison

to this research (Rostad, 2018).

There are several objectives for this work. First, a greater understanding of the aforemen-

tioned scale-resolving models including best practices, limitations, and benefits is desired. While

SAS is slightly older and versions of it have existed for ∼15 years, SBES is an exciting new de-

velopment in the world of turbulence modeling, and there is still much to learn about using it

practically. Additionally, the flow problem being computed has not been studied computationally

with rotation in previous research. In fact, there has been very limited research with such models

on highly unsteady flows with rotation or other motion present, a situation that they would be
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well-suited for. Finally, insight and characterization of the physics of the present flow problem are

desired for future research and possible implementation for applications such as airfoil testing.
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2. REVIEW OF TURBULENCE AND TRANSITION

2.1. Turbulent Flow

Fluid flows are often categorized as being within one of two broad categories—laminar or

turbulent. Laminar flow is characterized as being smooth and well-ordered with little to no mixing

between ‘layers’ in the flow. In contrast, turbulent flow is random and chaotic in nature, with

fluctuations in the flow properties such as velocity and pressure. In reality however, nearly all real

flows are turbulent to a degree and often need to be treated as such during analysis.

2.1.1. Introduction to Turbulent Flow

While turbulence is often described as random and chaotic, a more comprehensive definition

is more difficult to find. Osborne Reynolds described turbulence as “eddying about in sinuous

paths the most indirect possible” as opposed to laminar flow “following one another along lines

of motion which lead in the most direct manner to their destination” (Reynolds, 1883). Similar

to calling turbulence “random and chaotic”, this description is effective intuitively, but lacks in

comprehension of a true definition. Another attempt to define turbulence is given by Hinze as “an

irregular condition of the flow in which the various quantities show a random variation with time

and space coordinates, so that statistically distinct average values can be discerned” (Hinze, 1959).

Although these random variations exist, there is a structure to the chaos as well. Frank White

describes five separate characteristics of turbulent flows, including fluctuations in flow properties,

eddies of a large range of sizes, random variations in flow properties, self-sustaining motion, and

strong mixing within the flow (White, 2006).

2.1.2. Turbulent Scales

In White’s description of turbulence, he describes eddies as fluid ‘packets’ intermingling

with each other. The behavior of eddies can be informally described as in the famous poem of

English meteorologist Lewis Fry Richardson (Richardson, 1922),

Big whorls have little whorls

Which feed on their velocity,
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And little whorls have lesser whorls

And so on to viscosity.

Eddies exist in a large, continuous range of scales, with larger eddies producing larger random

fluctuations of flow properties. Eddies go through a process of stretching and pulling called vortex

stretching where increases in the rotational velocity of the eddies accompany decreases in the size, or

diameter of the eddies in order to conserve angular momentum. This results in a transfer in kinetic

energy from the largest to smallest scales until the smallest scales result in viscous dissipation and

is coined the energy cascade, visualized in Figure 2.1 (Pope, 2000). Figure 2.2 shows the turbulent

energy spectrum, which displays the distribution of low wave-numbers to high wave-numbers within

a flow. The smallest scales possible can be determined using Kolmogorov’s universal equilibrium

theory, which states that the smallest scales are receiving kinetic energy from larger scales and

dissipating viscous heat at an equal rate. Based on this premise, the Kolmogorov length (ηk), time

(τk), and velocity (υk) scales are developed using dimensional analysis to be

ηk ≡
(
ν3

ε

) 1
4

, (2.1a)

τk ≡
(ν
ε

) 1
2
, and (2.1b)

υk ≡ (νε)
1
4 , (2.1c)

where the quantities ε and ν are the rate of energy transfer and kinematic viscosity, respec-

tively (Wilcox, 2006). As these represent the smallest possible scales for eddies, ηk can be compared

to the mean free path, ` using the Knudsen number by

Kn =
`

ν
. (2.2)

ν is indeed small, but still orders of magnitude larger than ` (Tennekes & Lumley, 1972). Thus, a

continuum approach is valid for the modeling of turbulence.

2.2. Laminar to Turbulent Transition

Treating a flow as fully turbulent or fully laminar is advantageous in simplification for

modeling, but the reality is that many flows undergo a transition from laminar to turbulent flow.
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Figure 2.1. Richardson energy cascade (P. A. Davidson, 2013)

Figure 2.2. Turbulent energy spectrum (Sinha, 2013)

While this transition can be of negligible effect for some flows, it plays a significant role in oth-

ers. Therefore, understanding the transition within a flow is necessary for effective and accurate

modeling.

A good starting point for determining the degree of turbulence within a flow is found using

the Reynolds number,

Re =
ρU∞L

µ
, (2.3)

where ρ is density, U∞ is freestream velocity, L is characteristic length, and µ is dynamic viscosity.

The Reynolds number relates the significance of a flow’s inertial forces to its viscous forces. While

guidelines exist for estimating turbulence of certain types of flows (external flows, pipe flows,

etc.) based on the Reynolds number, they are merely guidelines, and vary largely under different

conditions. Furthermore, even a flow that is highly turbulent may contain a region of transition

before turbulence is achieved.
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2.2.1. Modes of Transition

Generally, the transition to turbulence can be categorized in one of three modes—natural

transition, bypass transition, or separated-flow transition. Additionally, periodic-unsteady transi-

tion can exist in some flows with interaction of wakes between wall boundaries.

2.2.1.1. Natural Transition

Natural transition, as the name implies, is the natural and gradual transition to turbulence

that occurs when not accelerated by some external factor. This is often demonstrated as it occurs

on a flat plate, seen in Figure 2.3. For the initially laminar flow, the boundary layer grows until a

critical value of the Reynolds number based on the momentum thickness is reached. The boundary

layer becomes unstable, and 2-D disturbances known as Tollmien-Schlicting waves begin to form.

Flow instability continues to grow, resulting in the formation of 3-D eddies and vortices. The eddies

and vortices break down into large fluctuations, and then progress to turbulent spots, or arrowhead-

shaped “packets” of fluid. Finally, fully turbulent flow is reached, the end of transition (White,

2006).

Figure 2.3. Process of natural transition (White, 2006)

2.2.1.2. Bypass Transition

Bypass transition is similar to natural transition, but the early stages (formation of Tollmien-

Schlicting waves, initial formation of 3-D vortices) are bypassed due to some external factor. Typ-
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ically, factors such as a high surface roughness, noisy freestream, or vibrations within the flow can

cause bypass transition (White, 2006).

2.2.1.3. Separated-Flow Transition

Separated-flow transition is common in the flow over bluff bodies such as cylinders as

presented in this thesis. When the laminar boundary layer separates from a body, possibly due

to a tripping mechanism or adverse pressure gradient, a separation bubble of recirculating flow

forms and likely reattaches as turbulent flow (White, 2006). This separation and reattachment is

illustrated in Figure 2.4. Depending on the situation, separated-flow transition may contain some

or all of the steps of natural transition.

Figure 2.4. Process of separated-flow transition (Zilli et al., 2017)

2.2.1.4. Periodic-Unsteady Transition

Periodic-unsteady transition, also known as “wake-induced transition”, occurs when there

is an interaction of wakes within a flow, resulting in sudden transitions to turbulence. One example

of this is the flow within a gas turbine, where the wakes from an upstream blade row interacts with

the next stage of blades downstream (Mayle, 1991). In this research, the rotation of an arrangement

of cylinders means at different points throughout the rotation, the wake of an upstream cylinder

may affect a cylinder downstream.

2.2.2. Factors Affecting Transition

Many different factors can affect a flow’s transition to turbulence. A few of these most

applicable to the flow in question are explored below, including pressure gradient, the existence of

freestream turbulence, and surface curvature.
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2.2.2.1. Pressure Gradient

Depending on the freestream turbulence intensity, TI, pressure gradient can have a large

impact on a flow’s transition to turbulence. Generally, the lower TI is, aka the “more laminar”

the freestream is, the greater the impact of pressure gradient will be. For low TI, a favorable

pressure gradient in the flow can delay or prevent transition, while an adverse pressure gradient

can accelerate transition (Mayle, 1991). For high TI (TI > 1%), pressure gradient is of less

importance and other factors dominate in significance (White, 2006).

2.2.2.2. Freestream Turbulence

Several aspects of the freestream turbulence have a significant effect on transition. Most

noteworthy is the turbulence level or intensity, TI, which directly affects the rate of turbulent spot

production. This in turn accelerates the process of natural transition, even to the point of causing

bypass transition (Mayle, 1991).

2.2.2.3. Surface Curvature

Convex and concave surfaces can affect the transition to turbulence. At low TI, a slight

delay in transition can be induced on a convex surface. Concave surfaces can either slow or speed

transition depending on TI and the severity of the curvature. While finite, these effects pale in

comparison to the effects of pressure gradient and freestream turbulence on transition.
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3. TURBULENCE MODELING

3.1. Governing Equations of Fluid Motion

A logical starting point for modeling turbulence is the basic conservation equations of fluid

motion. These three equations include the conservation of mass, conservation of momentum, and

conservation of energy. The conservation of mass simply states that mass can not be created or

destroyed, and can be written by

∂ρ

∂t
+

[
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

]
= 0 (3.1)

for a compressible, three-dimensional flow field.

The conservation of momentum originates from Newton’s second law, stating that forces on

an object must balance with its mass times its acceleration. The three momentum equations (one

for each dimension),

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

1

ρ

[
−∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

]
, (3.2a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=

1

ρ

[
−∂p
∂y

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

]
, (3.2b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
=

1

ρ

[
−∂p
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

]
, (3.2c)

are also known as the Navier-Stokes equations, named after their 19th century derivers. For the

sake of condensing these equations, the conservation of mass and momentum can be cast into a

more generalized vector form by

Dρ

Dt
+ ρ∇ ·UUU = 0, (3.3)

ρ
DUUU

Dt
= ρggg −∇p+

∂

∂xj

[
µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijµb∇ ·UUU

]
(3.4)

Finally, many flow problems use several common assumptions to reduce and simplify these equa-

tions. For a flow with constant density (incompressible) and constant viscosity, (3.3) and (3.4) can
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be simplified to

∇ ·UUU = 0, and (3.5)

ρ
DUUU

Dt
= ρggg −∇p+ µ∇2UUU. (3.6)

It should be noted that using the above assumption of constant density and viscosity for

the continuity and Navier-Stokes equations removes their effect on temperature (White, 2006).

However, the conservation of energy can still be used to solve for temperature within the flow. The

conservation of energy uses the First Law of Thermodynamics and balances the energy change of a

system with the net flux of energy and work through the boundaries. For a compressible, 3-D flow

this can be written as

ρ
D

Dt

(
e+

p

ρ

)
=
Dp

Dt
+∇ · (κ∇T ) + τ ′ij

∂ui
∂xj

. (3.7)

Again, certain assumptions can greatly simplify this equation. First, substitutions can be made by

replacing the internal energy with enthalpy by

h = e+
p

ρ
, (3.8)

and the final term of (3.7) by the dissipative function, φ,

φ = τ ′ij
∂ui
∂xj

(3.9)

resulting in

ρ
Dh

Dt
=
Dp

Dt
+∇ · (κ∇T ) + φ. (3.10)

If the flow is assumed incompressible as above, (3.10) can be rewritten as

ρcp
DT

Dt
= ∇ · (κ∇T ). (3.11)
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Finally, thermal conductivity can be assumed constant if there are very small changes in tempera-

ture within the flow (White, 2006). By doing so, (3.11) becomes

ρcp
DT

Dt
= κ∇2T. (3.12)

In summary, under the assumptions of constant density (incompressible), constant viscosity,

and constant thermal conductivity, the governing equations of fluid motion are

∇ ·UUU = 0, (3.13)

ρ
DUUU

Dt
= ρggg −∇p+ µ∇2UUU, and (3.14)

ρcp
DT

Dt
= κ∇2T. (3.15)

Of course, the conditions of a particular flow need to be considered to determine whether these

assumptions are reasonable or if a more general form of the governing equations is necessary.

3.2. Reynolds-Averaging

Because of the random fluctuations inherent to turbulent flows, statistical methods are often

used to solve the governing equations derived in the previous section. One such approach uses a

technique known as Reynolds averaging in which all fluctuating flow properties are split into two

components—a mean component and a fluctuating component (Hoffmann & Chiang, 2000). By

this, any flow property, f , can be defined at an instant as the sum of the two components,

f = f + f ′. (3.16)

This can be done for both steady and unsteady flows as shown in Figure 3.1. However, there is

a slight difference in the traditional steady state Reynolds-averaged Navier-Stokes (RANS) and

unsteady RANS (URANS) procedures. This difference lies within the concept of time averaging.

Time averaging is one of three averaging procedures used in RANS along with spatial

averaging and ensemble averaging (Wilcox, 2006). Consider first a steady flow in which turbulence

can be considered stationary—its mean not varying with time (for example the left illustration of

Figure 3.1). For stationary turbulence, classical time averaging is an appropriate technique. For
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Figure 3.1. Illustration of the average and fluctuating quantities for steady (left) and unsteady
(right) flows (Hoffmann & Chiang, 2000)

an instantaneous flow variable, f(xxx, t), its time average, FT (xxx) can be defined by

FT (xxx) = lim
T→∞

1

T

∫ t+T

t
f(xxx, t)dt. (3.17)

Spatial averaging is also commonly used when appropriate. If turbulence is homogeneous—

its mean is uniform in all directions—the spatial average, FV– (t) can be defined by integrating over

the volume by

FV– (t) = lim
V–→∞

1

V–

∫ ∫ ∫
V–
f(xxx, t)dV– . (3.18)

Finally, ensemble averaging is commonly used for flows that decay with time, and is an

average over a number of identical experiments, N , with tiny variations of initial conditions. The

ensemble average, FE(xxx, t) can be defined by

FE(xxx, t) = lim
N→∞

1

N

N∑
n=1

fn(xxx, t). (3.19)

As previously mentioned, the classical approach to time averaging is only valid for steady

flows with stationary turbulence. However, other approaches to the notion of time averaging for

unsteady flows do exist. For example, consider a flow with a periodic nature such as the von

Kármán effect behind a cylinder. Such a flow can be described with two, distinct ‘timesteps’, or

time scales—a small time step, T1 describing the fluctuations of the turbulence and a large time

step, T2 describing the periodicity of the vortex shedding. So long as T2 is much larger than T1 (by
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several orders of magnitude), time averaging for such a flow can be defined by

Fi(xxx, t) =
1

T

∫ t+T

t
fi(xxx, t)dt, for T1 � T � T2. (3.20)

Again, this time averaging relies heavily on orders of magnitude in difference between T1 and T2,

something that cannot be said for many unsteady flows. A third type of time averaging called

phase averaging can be used on unsteady periodic flows such as the one described above, without

the necessity that T2 � T1. Phase averaging is essentially an extension of ensemble averaging over

each period defined by

< f(xxx, t) >≡ lim
N→∞

1

N

N−1∑
n=1

f(xxx, t+ nτ) (3.21)

where τ is the necessary known value of period for the flow and f(xxx, t) is a typical Reynolds-

averaged flow property with the addition of a term representing the imposed phasal unsteadiness,

f̂(xxx, t), so that

f(xxx, t) = f(xxx) + f̂(xxx, t) + f ′(xxx, t). (3.22)

Clearly there are several options to use RANS on unsteady flows. However, the inherent

challenges from averaging unsteadiness, especially if it is non-periodic, make accurate URANS

simulations difficult if not impossible for many flows (F. Menter & Egorov, 2005). This is one of

the leading reasons for the recent interest in turbulence models that provide better resolution of

flow structure such as LES or the scale-resolving models investigated in detail in this thesis.

3.3. Reynolds-averaged Navier-Stokes Equations

To derive the RANS equations, time averaging will be used as expressed in (3.17). However,

for a proper choice of T and a flow where T2 � T1 the process is identical for using the time averaging

described in (3.20). Consider the previously derived equations of motion for an incompressible, 3-D
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flow with constant viscosity,

∇ ·UUU = 0, (3.23)

ρ
DUUU

Dt
= ρggg −∇p+ µ∇2UUU. (3.24)

Using the viscous stress tensor,

τij = 2µsij , (3.25)

where the strain-rate tensor, sij is given as

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.26)

and expanding the divergence and gradient functions, (3.23) and (3.24) can be expressed in the

form

∂ui
∂xi

= 0, (3.27)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (3.28)

where ui is velocity, xi is position, p is pressure, ρ is density, and µ is viscosity. Assuming a simple

isotropic viscous fluid, sji = sij and τji = τij . The convective term of the momentum equation can

be rewritten using the conservation of mass (3.27) by

uj
∂ui
∂xj

=
∂

∂xj
(ujui)− ui

∂uj
∂xj

=
∂

∂xj
(ujui) (3.29)

to simplify the process of time averaging. Using (3.25), (3.26), (3.28), and (3.29), the Navier-Stokes

equation is found in conservation form to be

ρ
∂ui
∂t

+ ρ
∂

∂xj
(ujui) = − ∂p

∂xi
+

∂

∂xj
(2µsji) (3.30)
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The process of time averaging begins by replacing flow properties with their mean and

fluctuating components as in (3.16). By doing so with (3.27) and (3.30) results in

∂ui
∂xi

= 0 (3.31)

ρ
∂ui
∂t

+ ρ
∂

∂xj

(
ujui + u′ju

′
i

)
= − ∂p

∂xi
+

∂

∂xj
(2µsji). (3.32)

Finally, (3.32) can be rewritten in its most recognizable form, often referred to as the Reynolds-

averaged Navier-Stokes equation,

ρ
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
2µsji − ρu′ju′i

)
. (3.33)

Within (3.33) is a term containing the specific Reynolds-stress tensor,

τij = −u′iu′j , (3.34)

which as a symmetric tensor contains six unknown quantities. Prior to Reynolds-averaging, only

four unknowns existed (pressure and three velocity components). However, the act of Reynolds-

averaging the equations creates six additional unknowns without gaining any equations. Herein

lies the turbulence closure problem—a lack of equations to solve for all unknowns. In the following

chapter, several RANS turbulence models will be explored that address this issue to solve the

governing equations.

3.4. Filtering and the Large Eddy Simulation Decomposition

While RANS modeling is characterized by the Reynolds time-averaging technique, Large

Eddy Simulation (LES) is characterized by a filtering, or spatial-averaging technique. This filtering

allows for a separation between the large scales to be resolved and the small scales to be modeled.

The filtering operation for an arbitrary variable, φ, can be expressed in one dimension as follows,

φ̃(x, t) =
1

∆x

∫ x−0.5∆x

x+0.5∆x
φ(ξ, t)dξ (3.35)

φ = φ̃+ φ′′ (3.36)
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Because this filtering does not include any time-averaging, φ̃ is a function of both space and time

(L. Davidson, 2020). Again, similar to Reynolds-averaging, filtering reduces flow quantities into

two components as seen in (3.36); the LES decomposition. The first component, φ̃ represents the

larger scales that will be resolved. The second component, φ′′ represents the smaller scales that will

be modeled instead of resolved. Taking the velocity vector as an example, the LES decomposition

is as follows. (3.36) becomes

U(x, t) = ũ(x, t) + u′(x, t) (3.37)

The spatial filter component, ũ is essentially a low-pass filter that allows resolution of the large

scales and can be expressed in the form

Ũ(x, t) =

∫
Ωi

G(x|ξ)U(ξ, t)dξ ≡ ũ(x, t) (3.38)

where G is the filter function, and Ωi is an appropriately sized subdomain of the domain Ω (Mc-

Donough, 2007). Several filters are used in LES, including Gaussian, box, and Fourier cut-off filters.

The second component, u′ contains the high frequency filtered scales that should be smaller than

the grid size. These will be modeled in a fashion unique to the particular LES model being used.

3.5. Large Eddy Simulation Equations

In a fashion similar to that of developing the RANS equations, the filtering process can be

applied to the conservation of mass and momentum to develop the LES equations, separating what

is resolved explicitly from that which must be modeled. To begin, consider again the continuity

equation,

∇ ·UUU = 0. (3.39)

Applying the filtering operation, the conservation of mass simply becomes

∇ · ũ̃ũu = 0 (3.40)
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which can be implemented with little difficulty. Filtering of the momentum equation is a less trivial

pursuit however, and will ultimately result in the nonlinear terms that will be modeled. Applying

filtering, the momentum equation assumes the form of

∂ũ

∂t
+∇ ·

(
ŨU

)
= −∇p̃+ ν∆ũ. (3.41)

For the nonlinear terms, the LES decomposition can be applied as follows.

∇ ·
(
ŨU

)
= ∇ ·

(
(ũ+ u′)(ũ+ u′)
:)

(3.42)

The terms can be then written in matrix form,

(ũ+ u′)(ũ+ u′)
:

=


(ũ+ u′)(ũ+ u′)
:

(ũ+ u′)(ṽ + v′)
:

(ũ+ u′)(w̃ + w′)
:

(ũ+ u′)(ṽ + v′)
:

(ṽ + v′)(ṽ + v′)
:

(ṽ + v′)(w̃ + w′)
:

(ũ+ u′)(w̃ + w′)
:

(ṽ + v′)(w̃ + w′)
:

(w̃ + w′)(w̃ + w′)
:

 . (3.43)

For purpose of demonstration, consider the following expansion of one of the matrix terms,

(ũ+ u′)(ṽ + v′)
:

= ˜̃uṽ + ˜̃uv′ + ũ′ṽ + ũ′v′. (3.44)

This can be further generalized to apply to the rest of the terms,

(ũi + u′i)(ũj + u′j)
:

= ˜̃uiũj + ˜̃uiu′j + ũ′iũj + ũ′iu
′
j . (3.45)

Within (3.45) exists three unique forms of terms—the first term, the middle pair of terms, and the

final term. The first term, ˜̃uiũj , is a portion of the Leonard stress. This is the only term that can

be computed without the necessity of modeling as we have equations for ũi and ũj . The next two

terms, ˜̃uiu′j + ũ′iũj , are known as the cross stress. Because these contain small scales, they require

the use of modeling. Finally, the last term, ũ′iu
′
j , is called the Reynolds stress due to its similar

form to its Reynolds-Averaging counterpart. Aside from their common name and appearance, it is

important to consider that the “Reynolds Stresses” of RANS and LES are fundamentally different

due to the nature of the Reynolds-Averaging and filtering processes.
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In summary, the Leonard, cross, and Reynolds stress terms are given below respectively,

Lij = ˜̃uiũj − ũiũj , (3.46)

Cij = ˜̃uiu′j + ũ′iũj , (3.47)

Rij = ũ′iu
′
j . (3.48)

Finally, the momentum equation can be rewritten. It is desired that the term ∇ · (ũũ) is within

the equation, so the nonlinear terms become

ũũ+

[
(ũ+ u′)(ũ+ u′)
:

− ũũ
]
≡ ũũ+ τSGS (3.49)

Substituting back into the momentum equation, we have

ũt +∇ · (ũũ) = −∇p̃+ ν∆ũ−∇ · τSGS (3.50)

where τSGS is the LES subgrid-scale stress,

τSGS ≡ Lij + Cij +Rij . (3.51)

Now the only terms needing to be modeled (containing the smallest scales) are contained within

τSGS . The way this is done will depend on the specific LES model chosen. In the following section,

different turbulence modeling techniques will be presented, including several RANS models relevant

to this research, the LES model most commonly used in hybrid approaches, as well as the hybrid

models themselves.
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4. TURBULENCE MODELS

As discussed in the previous section, Reynolds-averaging the Navier-Stokes equations is one

approach to turbulence modeling, as well as the filtering process of Large Eddy Simulation (LES).

Another method of solving the Navier-Stokes equations is Direct Numerical Simulation (DNS),

which fully resolves all scales down to the Kolmogorov scale. Finally, the focus of this thesis lies

within the recent development of hybrid turbulence models which typically combine RANS and LES

models in an effort to reap the benefits of each while minimizing their drawbacks. In this chapter,

an overview of several RANS and LES models, DNS, and several hybrid models will be given. An

illustration of the hierarchy of these model approaches with respect to their computational cost

and scale resolution is shown in Figure 4.1.

Figure 4.1. Hierarchy of CFD turbulence models considering resolved vs. modeled structure and
computational cost (Xiao & Cinnella, 2019)

4.1. Direct Numerical Simulation

While not used in this research, a brief review of Direct Numerical Simulation (DNS)

provides proper context for the necessity of the RANS, LES and hybrid modeling techniques utilized.

As mentioned above, DNS uses numerical methods to resolve all scales of motion within a flow,

from the largest to the smallest at the Kolmogorov length scale (2.1a). Because of this, a grid fine

enough to properly carry out DNS needs to be of the same order of magnitude at any point as the

scales that exist there. In addition, the time step used must be of the same order of magnitude
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of the Kolmogorov time scale, (2.1b). As all space and time scales are resolved and none are left

to be modeled, DNS is in a sense the inherent lack of turbulence modeling. The requirements

to accommodate the minuscule grid size and time step necessary however quickly result in an

extremely high computational cost that increases rapidly with the Reynolds number. In fact,

estimates have put the computational cost of DNS solutions proportional to Re3 as opposed to Re2

for LES solutions and Re for RANS solutions (McDonough, 2007). To illustrate this point, rough

estimations show that to perform DNS for an external flow over an airfoil at Re = 1, 000, 000 would

require approximately 4 trillion mesh points and 600 TB of RAM, while the same problem could

be done using LES with 52 million mesh points and 8 GB of RAM (Choi & Moin, 1995; DeLeon,

2016). In the future, it is possible that quantum computing and algorithms will make the use of

DNS more common, but for the time being it remains a seldom-used technique for low-Reynolds

number academic cases (Rodriguez, 2019).

4.2. Reynolds-averaged Navier-Stokes Models

Models that utilize the RANS equations can largely be categorized into one of three groups—

zero-equation models, one-equation models, and two-equation models. Zero-equation models (aka

algebraic models) use the concepts of the Boussinesq eddy-viscosity approximation and Prandtl’s

mixing-length hypothesis to compute the Reynolds stress tensor (Wilcox, 2006). The essence of the

Boussinesq approximation is in the comparison of the shear stress in a turbulent flow (subscript t)

to the relationship found in laminar flow (subscript l),

τl = µ
∂ui
∂xj

= ρν
∂ui
∂xj

(4.1)

τt = µt
∂ui
∂xj

= ρνt
∂ui
∂xj

. (4.2)

This introduces the concept of an eddy viscosity, denoted µt or νt (Hoffmann & Chiang, 2000).

The Prandtl hypothesis also likens a property of laminar flow to turbulence, considering that

‘lumps’ of fluid in a turbulent flow travel a finite distance before they collide and lose their identity,

similarly to the concept of molecules in a laminar flow traveling a mean-free path distance before

colliding (Hoffmann & Chiang, 2000). In relation to the Reynolds stress tensor, this is expressed
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by

τt = −ρu′iu′j

= ρl2m

(
∂ui
∂xj

)2

(4.3)

where lm is the Prandtl mixing length. Zero-equation models are simple, but incomplete in the sense

that they require known values of the eddy viscosity and mixing length prior to simulation (Wilcox,

2006).

One-equation models also use the Boussinesq approximation along with either the turbu-

lence kinetic equation or an eddy viscosity equation. Those using an eddy viscosity equation are

complete due to automatically providing the turbulence length and are therefore more commonly

used (Wilcox, 2006). One of the most popular eddy viscosity based one-equation models is the

Spalart-Allmaras model. Although two-equation models have gained increasing popularity since

their creation, one-equation models such as Spalart-Allmaras retain their place in CFD usage for

certain flows, and have even been implemented with scale-resolving models such as Menter’s Scale-

Adaptive Simulation (F. Menter, Kuntz, & Bender, 2003).

Finally, two-equation models provide equations for the computation of the turbulence kinetic

energy, k, as well as for a necessary length scale such as the turbulence length scale (Wilcox, 2006).

Therefore, they are complete and require no prior knowledge of the flow field for computation.

Several two-equation models are briefly discussed below.

4.2.1. k-ε Model

There are many variations of k−ε models available today, characterized as such by consisting

of a PDE for both the turbulent kinetic energy, k, and dissipation, ε (hence, a two-equation model).

The specific model presented here, developed by Tennekes and Lumley, uses dimensional analysis

to link eddy viscosity to k and ε by

νt = Cν
k2

ε
, (4.4)
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where Cν is a constant. The equations for k and ε can be given as

∂k

∂t
+

∂

∂xj
(ūjk) =

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − ρε (4.5)

∂ε

∂t
+

∂

∂xj
(ūjε) =

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+
ε

k
(Cε1Pk − Cε2ε) (4.6)

where the turbulence production due to viscosity, Pk, is modeled for incompressible flows by

Pk = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

(4.7)

The closure coefficients are given to be

Cν = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 (4.8)

for the standard model used in ANSYS CFX (ANSYS, 2017; McDonough, 2007).

4.2.2. k-ω Model

Similarly to the k − ε model, there are several variations of k − ω models available, all

characterized by equations solving for the specific dissipation rate, ω. Here the Wilcox model, also

used in ANSYS CFX is presented. k − ω models first assume that eddy viscosity is related to k

and ω by

νt =
k

ω
. (4.9)

The equations for k and ω are given as

∂k

∂t
+

∂

∂xj
(ūjk) =

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − β∗kω (4.10)

∂ε

∂t
+

∂

∂xj
(ūjε) =

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ α

Pk
νt
− βω2 (4.11)

where the production term is calculated as for the k − ε model using (4.7). The closure constants

are given by
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β∗ = 0.09, α = 5/9, β = 0.075, σk = 2, σω = 2 (4.12)

for the Wilcox model (ANSYS, 2017; Wilcox, 2006).

4.2.3. Shear Stress Transport Model

Menter’s k−ω SST Model was created in an effort to combine the best qualities of both the

k− ε and k−ω models (F. R. Menter, 1994). It utilizes a blending function to use the k−ω model

nearest to walls and the k− ε model farther away. In addition, a shear stress limiter is included in

regions of adverse pressure gradients (L. Davidson, 2020).

To combine the k−ω and k− ε models, the k− ε model is first transformed into the form of

a k−ω model by use of ω = ε/(β∗k), where β∗ = cµ (L. Davidson, 2020). The transport equations

for turbulent kinetic energy, k, and specific dissipation rate, ω, are given below in (4.13) and (4.14).

∂k

∂t
+

∂

∂xj
(v̄jk) =

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ P k − β∗kω (4.13)

∂ω

∂t
+

∂

∂xj
(v̄jω) =

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+ α

P k

νt
− βω2 + 2(1− F1)σω2

1

ω

∂k

∂xi

∂ω

∂xi
(4.14)

The key difference in the k − ε and k − ω models is the inclusion of the final term in (4.14). The

degree of this term’s influence is controlled using the blending function F1 given in (4.15), where

d is the distance to the nearest wall node. A value of F1 = 0 reverts to the k − ε formulation (far

from walls), and a value of F1 = 1 reverts to the k − ω formulation (near walls).

F1 = tanh (ξ4), ξ = min

[
max

{ √
k

β∗ωd
,
500ν

d2ω

}
,
4σωk−εk

CDωd2

]
,

CDω = max

{
2σωk−ε

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

}
(4.15)

Constants in the transport equations (α, β, σk, and σω) are blended linearly between their k − ε

and k − ω values according to F1,
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x = F1xk−ω + (1− F1)xk−ε (4.16)

for an arbitrary constant x.

Similarly, a second blending function, F2, is used in computation of the eddy viscosity, νt,

as seen in (4.17). The inclusion of the max function in the denominator is the previously mentioned

shear stress limiter, which reverts to the k − ω formulation for eddy viscosity if the production is

too large (when s̄ is large) (L. Davidson, 2020).

νt =
a1k

max(a1ω, |s̄|F2)
, F2 = tanh (η2), η = max

{
2
√
k

β∗ωd
,
500ν

d2ω

}
(4.17)

The constants for the SST model used in this study are given below (ANSYS, 2017; L. Davidson,

2020):

β∗ = 0.09, a1 = 0.31

αk−ω = 5/9, βk−ω = 3/40, σk,k−ω = 0.85, σω,k−ω = 0.5

αk−ε = 0.44, βk−ε = 0.0828, σk,k−ε = 1, σω,k−ε = 0.856 (4.18)

While the SST model is a considerable improvement over a single k − ε or k − ω model

for many flows, as a URANS model it still struggles to display the correct spectrum of turbulence

scales, particularly the large scales (F. Menter & Egorov, 2005).

4.3. Large Eddy Simulation Models

Large Eddy Simulation (LES) is another approach to turbulence modeling that resolves all

but the smallest turbulence scales, only modeling those smaller than the size of the computational

cell itself. Ideally, this results in about 80% of the energy contained by the turbulence scales being

resolved, and about 20% being modeled. Because of this, much unsteadiness remains within the

flow and simulations with extremely high accuracy and detail are possible. However, this is only

possible with extremely fine meshing, particularly near wall boundaries where the smallest scales

exist, and therefore LES comes at a high computational cost. As with RANS, there are a number
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of LES models that have been developed over the years, ranging in complexity and in modeling

techniques. The Wall-Adapted Local Eddy Viscosity model (WALE) is commonly used with hybrid

models such as Stress-Blended Eddy Simulation, and is therefore described below.

4.3.1. Wall-Adapted Local Eddy Viscosity Model

The Wall-Adapted Local Eddy Viscosity (WALE) model is a LES model commonly used by

itself as well as with RANS models in hybrid approaches. It is similar to the classic zero-equation

Smagorinsky model, but offers improvements in several areas (ANSYS, 2017; Nicoud & Ducros,

1999). The eddy-viscosity is calculated as follows,

νSGS = (Cw∆)2

(
SdijS

d
ij

)3/2

(
SijSij

)5/2
+
(
SdijS

d
ij

)5/4
. (4.19)

Sdij is the traceless symmetric part of the velocity gradient tensor squared, given by

Sdij =
1

2

(
g2
ij + g2

ji

)
− 1

3
δijg

2
kk, (4.20)

where

g2
ij = gikgkj , gij =

∂ui
∂xj

, (4.21)

and δij is the Kronecker delta. Using these relations, and Ω as the anti-symmetric part of g,

Ωij =
1

2

(
∂U i
∂xj
− ∂U j
∂xi

)
, (4.22)

(4.20) can be rewritten as follows:

Sdij = SikSkj + ΩikΩkj −
1

3
δij
(
SmnSmn − ΩmnΩmn

)
. (4.23)

Note that in the ANSYS CFX implementation of the WALE model, the constant Cw is set to

Cw = 0.5.

As mentioned above, the WALE model offers several advantages over the traditional Smagorin-

sky model. One such advantage is its ability to accurately model the laminar to turbulent transition
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of wall-bounded flows due to the design of its invariant, SdijS
d
ij (Nicoud & Ducros, 1999). It also

does not include secondary filtering as models such as the Dynamic Smagorinsky-Lilly model do.

4.4. Hybrid Models

Over the past ∼25 years, new turbulence modeling techniques have been developed that aim

to combine RANS and LES models in a strategic fashion. The general goal of these models is to

implement RANS at and near wall boundaries (especially within the boundary layer) while using

LES (or similar scale-resolving techniques) away from wall boundaries. By doing so, the extreme

computational costs associated with using LES to resolve near-wall turbulence scales are avoided

while the benefits of resolving the larger scales away from the walls are kept.

4.4.1. Scale-Adaptive Simulation

Scale-Adaptive Simulation (SAS) is characterized by the introduction of the von Kármán

length scale, LvK , shown in (4.24) (F. Menter & Egorov, 2005). This scale contains the second

velocity gradient and is therefore suitable for detecting unsteadiness within a flow (L. Davidson,

2020).

LvK = κ

∣∣∣∣ U ′U ′′
∣∣∣∣, U ′ =

√
2SijSij , U ′′ =

√
∂2Ui
∂x2

k

∂2Ui
∂x2

j

(4.24)

The “Scale-Adaptive” nature of this method comes from the ratio of turbulence length scale, Lt =

k1/2/(ωc
1/4
µ ), to von Kármán length scale, LvK , which is key to the transition from SST to SAS

“modes”. To implement SAS with SST, the source term PSAS shown below is added into (4.14).

PSAS = FSAS max(T1 − T2, 0), T1 = ζ̃2κS
2 Lt
LvK

, T2 =
2k

σφ
max

(
1

ω2

∂ω

∂xj

∂ω

∂xj
,

1

k2

∂k

∂xj

∂k

∂xj

)
(4.25)

The essence of SAS is captured in T1, while T2 exists to ensure that in steady flow, SST mode will

be used. The addition of this source term (which will always be >= 0 due to the max function)

will increase ω, decreasing the eddy viscosity νt. This allows unsteadiness in the flow to remain

without being over-dissipated, one of the reasons this is preferable for unsteady flows.

It should be noted that while this model introduces an increased degree of scale-resolving

capability to URANS models such as SST, it is still essentially a URANS model with an additional
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production term. The next several models presented fit the classical definition of a hybrid model—

blending RANS and LES models together in some fashion.

4.4.2. Detached Eddy Simulation

Detached Eddy Simulation (DES) was the first attempt at a hybrid model that blends

a RANS model close to wall boundaries into a LES model farther from wall boundaries. Several

versions of this model exist, including those implementing the Spalart-Allmaras one-equation RANS

model as well as Menter’s SST RANS model. Here the formulation of Strelets using the SST model

is presented (Strelets, 2001).

The essence of of DES is a grid-dependent switch between RANS and LES modes based on

the local turbulent length scale represented by

CDES∆max > Lt → RANS

CDES∆max ≤ Lt → LES (4.26)

where ∆max is the maximum edge length of each cell and CDES is typically chosen as CDES = 0.61.

Intuitively, this means that when the grid size is sufficiently small (to a degree modifiable by the

constant CDES) in comparison to the local turbulent length scale, the LES formulation will be used

to resolve turbulence. Otherwise, the RANS formulation will be used to model the turbulence (F.

Menter, 2015). The turbulent length scale, Lt, for a k− ω model such as the SST model is defined

as

Lt =
k3/2

ε
=

√
k

β∗ω
. (4.27)

To implement this into the SST model, take the k equation previously described for the k − ω

model,

∂k

∂t
+

∂

∂xj
(ūjk) =

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − β∗kω, (4.28)
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and substitute the relevant relationship for the turbulent length scale, implementing the DES limiter

in (4.26), resulting in

∂k

∂t
+

∂

∂xj
(ūjk) =

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk −

k3/2

min(Lt, CDES∆max)
. (4.29)

Ideally, DES uses the RANS model within the boundary layer and attached flow regions. Because

of the grid-dependent switch described above however, this can easily go awry without proper care

of grid size and selection of CDES . For example, grid refinement within the boundary layer can

cause a premature transition to the LES formulation, in turn reducing eddy viscosity and causing

separation arbitrarily. This is commonly known as Grid-Induced Separation, and is the primary

downfall of the traditional DES model (F. Menter, 2015). The following section describes two

approaches to dealing with this issue.

4.4.3. Delayed and Shielded Detached Eddy Simulation

Delayed Detached Eddy Simulation (DDES) addresses the issue of Grid-Induced Separation

in DES by ‘protecting’ the boundary layer from the DES limiter. Similar to DES, DDES has been

applied to both the Spalart-Allmaras and SST models; once again the SST formulation is presented

here (F. Menter, 2015; F. Menter, Kuntz, & Langtry, 2003).

Considering the dissipation term of the k equation modified by the DES limiter, the DDES

version is derived as follows

EDES =
k3/2

min(Lt, CDES∆)
(4.30)

=
k3/2

Lt min(1, CDES∆/Lt)
(4.31)

=
k3/2

Lt
max

(
1,

Lt
CDES∆

)
(4.32)

EDDES =
k3/2

Lt
max

(
1,

Lt
CDES∆

(1− FDDES)

)
, (4.33)

where FDDES is a function that attempts to shield the boundary layer while still allowing turbulence

to be resolved after separation. Despite its improvements upon DES, Grid-Induced Separation is

still possible when using DDES.
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Shielded Detached Eddy Simulation (SDES) is yet another approach to shielding the bound-

ary layer, implementing a new shielding function and grid scale. Implementing into the k equation,

the dissipation term becomes

ESDES =
k3/2

Lt

[
max

(
1,

Lt
CSDES∆SDES

(1− FSDES)

)
− 1

]
, (4.34)

(F. Menter, 2015). Because the new shielding function FSBES provides stronger shielding, the grid

scale, ∆ is reduced as follows.

∆SDES = max
(

3
√
V ol, 0.2∆max

)
(4.35)

4.4.4. Stress-Blended Eddy Simulation

Stress-Blended Eddy Simulation (SBES) is a further improvement upon the SDES model.

It utilizes the same proprietary blending function (FSBES = FSDES) but includes an explicit model

switch. Using the shielding function, the stresses can be linearly blended accordingly, by

τSBESij = FSBESτ
RANS
ij + (1− FSBES) τLESij (4.36)

where τRANSij and τLESij are the RANS and LES modeled portions of the stress tensor, respectively

(F. Menter, 2016). If both the RANS and LES models are eddy-viscosity based models, such as

the SST RANS model and WALE LES model, this further simplifies to a blending of the eddy

viscosities,

νSBESt = FSBESν
RANS
t + (1− FSBES) νLESt (4.37)

SBES features many improvements over other scale-resolving hybrid models, including an explicit

switch between desired RANS and LES models, asymptotic shielding of the boundary layer, and a

rapid transition between RANS and LES models.
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5. FLOW EXPERIMENTS

In this research, computations were done in conjunction with wind tunnel experiments done

by Ullah, Fabijanic and Estevadeordal at North Dakota State University (Thomas et al., 2021;

Ullah et al., 2020; Ullah, 2020). These experiments shared a similar purpose to the computations

in researching the nature of the flow around the cylinders. In addition they provide verification to

the accuracy of the CFD results. The nature of these experiments, including the wind tunnel, PIV

setup, and other equipment are presented in this section.

5.1. Wind Tunnel Characteristics

A FloTek 1440 subsonic, open return wind tunnel was used for all experimentation. The

wind tunnel features a 12” by 12” square test section with transparent side panels to allow PIV

measurements and visual inspection. At the test section, the wind tunnel is able to deliver a

freestream velocity of U∞ = 36 m/s. The wind tunnel is shown in Figure 5.1.

Figure 5.1. FloTek 1440 wind tunnel
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5.2. Three-Cylinder Experiments

At the core of these experiments is the setup of three cylinders spaced equilaterally and

rotating about a common axis. The diameter of each cylinder is 3.1 mm, and the spacing between

each cylinders’ surfaces is 5.3 mm. Nondimensionalizing by the cylinder diameter results in a

spacing ratio of S = 1.70. Rotation is counterclockwise from the point of view of the PIV results.

The cylinder geometry and setup within the wind tunnel is shown in Figure 5.2 with each cylinder

labeled as it is referred to in this study.

Figure 5.2. Three-cylinder setup (a) geometry and (b) wind tunnel setup (Ullah et al., 2020)

Three measurement techniques were used in these experiments—hotwire anemometry, 2D

PIV, and 3D tomography. Velocity measurements were taken from three distinct locations using

a hotwire. Two locations were chosen immediately behind the rotating cylinders—one centered

vertically and the second near the top of the setup. The third location was centered vertically but

much further downstream. The locations of these points relative to the common axis of rotation are

shown in Figure 5.3. Nondimensionalizing once again by a single cylinder diameter, these locations

are given in Table 5.1. The time series velocity data collected via hotwire was used to create

Table 5.1. Hotwire measurement point locations

Point x y

A 2.39 0
B 2.39 2.21
C 33.03 0
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Figure 5.3. Hotwire measurement locations

frequency spectra using Fast Fourier Transformations (FFTs). From this, the Strouhal number

for each experiment was calculated using the dominant frequencies and single cylinder diameter

as characteristic length. A series of these experiments were performed with no rotation of the

cylinders. The Reynolds number ranged from 57 to 7470, and three different cylinder orientations

were used.

2D PIV was used to obtain instantaneous velocity fields for rotating and static cases. Imag-

ing was done at two separate field-of-views (FOVs), in both cases with two separate cameras

combining for the entire domain. In the first, “far” view, each camera produced a 80 mm FOV

for a combined FOV of 160 mm. In the second, “close” view, each camera produced a 40 mm

FOV for a combined FOV of 80 mm, showing greater detail in the flow near the cylinders. These

experiments ranged in Reynolds number from 57 to 7150, and in rotation speed from 120 RPM to

3000 RPM (2 Hz to 50 Hz), as well as static cases. From the velocity fields, instantaneous contours

of Z vorticity were produced as well as time-averaged velocity, vorticity, and standard deviation

contours.

3D tomography was performed over a calibrated volume approximately 6 mm in depth using

four cameras. As with the 2D PIV results, several filters were passed over the raw data to make

remove unphysical characteristics. From these results, iso-surfaces of Z vorticity were produced as

well as contour slices of Z vorticity at three locations spanning the depth (Z = 2.5 mm, Z = 0

mm, and Z = −2.5 mm).

Full details of these experiments and the results found are available in Al Habib Ullah’s

thesis (Ullah, 2020).
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6. CFD COMPUTATION METHODS

6.1. Software

All computations in this research were run with the commercial CFD software ANSYS CFX

18.2. CFX is a Navier-Stokes solver using Finite Volume Method based on Elements (EbFVM)

with a Cell Vertex Formulation with a wide availability of turbulence models ranging from algebraic

models to hybrid and LES models (ANSYS, 2017). In addition it offers a large amount of control

to the user in tuning model constants and implementing model extensions where desired. It scales

extremely well in parallel, bringing computational times down significantly. It also interfaces well

with ANSYS ICEM, a robust and powerful meshing software used for all mesh generation in the

research. Geometry was created using Creo Parametric 4.0 and further modified within ANSYS

ICEM. Tecplot 360 EX 2018 R2 was used for most of the post-processing, including all contours,

iso-surfaces, and many of the plots generated. In addition, Tecplot’s Python API (PyTecplot) was

used to automate much of this post-processing of transient .trn and .cgns files. Other plots and

results processing was done with Python using packages such as Numpy, Matplotlib, and Pandas

for array operations, plotting, and file processing.

6.2. Hardware

This work made use of computing resources at the Center for Computationally Assisted

Science and Technology (CCAST) at North Dakota State University. CCAST’s Thunder Cluster

contains several condos of computing nodes for running the CFX jobs. For the cases run, 7–10

20–core nodes were used in parallel, each with 42 GB of available RAM and 2x Intel Ivy Bridge

E5–2670 v2 10C 2.5GHz processors (for Computationally Assisted Science & Technology, 2017).

Computational cost for each run ranged in the order of 2 × 104 to 2 × 105 CPU hours, largely

dependent on variables such as Reynolds number and setup rotational velocity, model selection,

and number of nodes requested.

6.3. Fluid Domain Geometry

Several iterations of the fluid domain were created before settling upon the final version. All

geometries created consisted of a rectangular, stationary domain and a cylindrical, rotating domain

containing the setup of cylinders to allow rotation in the simulations. Geometry modifications were
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done primarily to reduce the size of the domain in preservation of computational cost without

sacrificing accuracy. The original domain is shown in Figure 6.1.

Figure 6.1. Original geometry

Nondimensionalizing by the setup diameter (of a circle circumscribing all three cylinders),

this domain has a vertical dimension of 23.813, spanwise dimension of 23.813, and streamwise

dimensions of 7.813 and 15.625 upstream and downstream of the setup central axis, respectively.

The diameter of the rotating interface between stationary and rotating domains is 18. Dimensions of

the cylinder setup itself match the specifications of the wind tunnel setup and remained the same

throughout modifying other aspects of the geometry. More detailed dimensions of the rotating

domain are shown in Figure 6.2.

The vertical dimension was originally chosen to match the height of the wind tunnel used

in the experiments. However, after running several test simulations it was found that much of

the domain in this direction is unnecessary as the flow is nearly uniform for much of its height.
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The final geometry was reduced to a vertical dimension of 4. The spanwise dimension was also

originally chosen to match the wind tunnel’s size, but a first attempt at mesh generation found

this to be far too computationally prohibitive. Instead, the spanwise dimension was reduced to

use periodic boundary conditions instead of walls based on the suggestion of Menter to provide

at least two characteristic lengths in the spanwise direction to properly allow scale resolution (F.

Menter, Kuntz, & Bender, 2003). This begs the question of what to use as characteristic length for

this estimate—the setup diameter or individual cylinder diameter. Research has shown that the

behavior of the flow downstream of three-cylinder flows, including the size of the flow structures, is

largely dependent on the spacing ratio, s, between cylinders (spacing non-dimensionalized by single

cylinder diameter). In a study of the flow over equilateral three-cylinder arrangements by Bao et

al., intermediate gap spacings of 0.5 < S < 4 were characterized by wakes that while immediately

individual to each cylinder, interacted in different ways further downstream, even combining to

form new flow structures (Bao et al., 2010). It is worth noting that in this study all cylinder

arrangements remained static as opposed to the rotating setup of the present research. Taking

these considerations, the entire arrangement diameter was chosen conservatively as characteristic

length in determining spanwise dimension to ensure flow structures are not stifled. The upstream

streamwise dimension was reduced to 3 as tests showed the inlet flow any farther upstream. The

downstream streamwise dimension was modified to 8.359 to be just large enough to match PIV

imagery of the close-up shots (with two cameras). The final geometry is shown in Figure 6.2.

Figure 6.2. Final geometry
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6.4. Mesh Generation and Refinement

Mesh refinement took place throughout the geometry iteration process as well as after the

final geometry was selected. The final mesh is shown in Figure 6.3 with its node and element counts

tabulated in Table 6.1. In the spanwise dimension are 161 evenly spaced nodes, which was found to

be adequate to resolve instabilities in the flow. Mesh sizing around the cylinders is no larger than

∼0.155 mm, per recommendation of 20 cells per characteristic length of the flow (for this estimation

characteristic length was conservatively chosen as single cylinder diameter) (F. Menter, 2015). A

first-layer height of 0.002 mm was inflated 36 cells from the cylinder walls, transitioning into the

rest of the mesh. The y+ value was checked on solutions at the highest Reynolds number and was

found to have a maximum value of 1.01 (and even lower for lower Re runs), confirming this choice.

At the rotor-stator interface, sizing was matched between domains at ∼0.155 mm, inflating slightly

into the stationary domain O-grid. 160 nodes were distributed evenly surrounding each cylinder in

the circumferential direction as recommended (Bao et al., 2010).

Figure 6.3. Final mesh
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Table 6.1. Mesh parameters

Domain Nodes Elements

Stationary 21,404,160 21,106,456
Rotating 8,413,000 8,253,354

Total 29,817,160 29,359,810

6.5. Boundary Conditions and Setup

6.5.1. Boundary Conditions

A uniform normal velocity inlet boundary condition is specified according to the Reynolds

number desired for each run, with medium (5%) turbulence intensity. Downstream of the flow,

an outlet with zero average static pressure is specified. Entrainment opening boundary conditions

are specified at the top and bottom of domain. Translational periodicity is applied on each side

in the spanwise directions. A transient rotor stator interface is created linking the stationary and

rotating domains. No-slip walls are specified at each cylinder’s surface. An illustration of the

boundary conditions defined is shown in Figure 6.4.

Figure 6.4. Boundary conditions
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6.5.2. Solver and Timestep Options

Timesteps are estimated for each Reynolds number by

∆t =
Ttf

N · CFL
, Ttf =

L

U∞
, (6.1)

where L is the domain length, U∞ is the freestream velocity, and N is the number of cells passed

in the domain length trajectory (F. Menter, 2015). A CFL of 1 was specified and monitored so

that the timesteps could be adjusted. The final timesteps used are given in Table 6.2. A bounded

central difference scheme is used for convection terms to reduce wiggles in the solution (F. Menter,

2015). A second order backward Euler transient scheme is used for time differencing.

Table 6.2. Timesteps used

Re ∆t (s)

57 1.2× 10−4

858 1.7× 10−5

7150 1.5× 10−6
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7. RESULTS AND DISCUSSION

Here, the results of the study are presented and discussed. Essential to the discussion is the

effect of differing Reynolds number and cylinder rotational speed on the flow, as well as the effect

of the different CFD models used, SAS and SBES. The first several sections present the results of

the primary three-cylinder simulations, including time-averaged quantities such as the statistical

Reynolds stresses and velocity profiles, and instantaneous/time-dependent results such as the lift

and drag coefficients on each cylinder and vortex visualization using quantities such as vorticity

and Q-Criterion. Much experimental data from Ullah et al. is presented in conjunction with these

results for comparison and validation (Ullah et al., 2020). The several sections following serve to

bring together a discussion on the effect of the key variables—Reynolds number, rotation rate, and

turbulence model selection. Finally, an analysis of the computational cost is given for the different

cases run.

Unless otherwise denoted, results are shown in non-dimensional form for clarity as well as

ease of comparison between different cases. Characteristic length is chosen as the entire cylinder

arrangement’s size as defined by a circle circumscribing all three cylinders; D = 12.8 mm. Velocities

are non-dimensionalized by the freestream velocity based on the Reynolds number of the run, shown

in Table 7.1. Note that in the experimental results freestream velocities were found to be slightly

higher than expected, so these slightly higher values found from examining the results were used

in non-dimensionalization. Statistical Reynolds stresses are non-dimensionalized by the freestream

velocity squared.

Table 7.1. Freestream velocity values for CFD and PIV

Re (U∞)CFD (m/s) (U∞)Exp (m/s)

57 0.29 0.39
858 4.365 4.75
7150 36.376 41.5
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7.1. Statistical Reynolds Stresses

The statistical Reynolds stresses are calculated for both the PIV and CFD results. These

results do not necessarily represent the Reynolds stresses modeled with RANS methods as the CFD

models are hybrid and use LES-like techniques for much of the flow domain. By pure statistical

definition however, these quantities do give a useful representation of the fluctuations within the

flow, which gives an idea of the size of scales within the flow. The statistical Reynolds stresses can

be calculated as follows,

Rij = u′iu
′
j (7.1)

= uiuj − uiuj . (7.2)

For the PIV results, these averages were calculated over a total of 100 frames taken at a frequency

of 15 Hz. While this would theoretically result in PIV stills taken only at specific cylinder locations

throughout the rotation at 25 Hz and 50 Hz rotation rates, visual inspection of the raw PIV stills

confirmed that slight discrepancies in the rotational speeds resulted in the 100 frames representing

the entire cycle. For the CFD results, averages were calculated over all timesteps (several thousand)

across an integer number of full rotations. Calculation was also delayed for the CFD computations

until the flow and turbulent structures were able to initialize.

Note that the CFD results do not show the Reynolds stresses within the rotating domain for

the rotating cases. This is a considerable challenge as the averaged quantities within ANSYS CFX

stay “with the node” throughout the rotation, resulting in meaningless results. It is possible that

this could be fixed by averaging quantities using velocities in the stationary frame instead; however

there are still several challenges with this. First, during every timestep of rotation, the nodes do

not directly replace each other. This creates a challenge in what location to use for averaging. Also,

the ring shaped region that is at some points covered by one of the three cylinders will result in

some areas being averaged over a different amount of timesteps than others. In any case—the PIV

results do not show this region due to the area nearest the cylinders being blocked from the PIV

images, so comparison would be impossible anyway.
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7.1.1. Re=57

7.1.1.1. f=0 Hz

First the statistical Reynolds stresses for the case of Re = 57 and f = 0 are considered.

Shown in Figures 7.1, 7.2, and 7.3 are Reynolds stress components Rxx, Ryy, and Rxy as calculated

for the PIV and both models, SAS and SBES. The stresses from the CFD results were averaged

over a total of 2.25 seconds for each model.

Figure 7.1. Statistical Reynolds stresses Rxx for Re=57, f=0 Hz using a. PIV, b. SAS, and c.
SBES

Figure 7.2. Statistical Reynolds stresses Ryy for Re=57, f=0 Hz using a. PIV, b. SAS, and c.
SBES

Figure 7.1 shows that Rxx is quite accurately predicted in magnitude by the SBES model

while the SAS model over-predicts Rxx. Figure 7.2 shows an opposite trend; the SBES model

slightly over-predicts Ryy’s magnitude while SAS under-predicts. This suggests that while the SAS

model contains larger fluctuations in the streamwise (x) direction, the SBES model contains larger
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Figure 7.3. Statistical Reynolds stresses Rxy for Re=57, f=0 Hz using a. PIV, b. SAS, and c.
SBES

fluctuations in the vertical (y) direction. Figure 7.3 shows similar results for prediction of Rxy

between the models, although the SBES model seems to better predict Rxy further downstream.

The computational results are extremely symmetrical while the PIV results, with the excep-

tion of that for Ryy in Figure 7.2 are not. This could be for several reasons. First, if the 100 frames

averaged disproportionally represented certain phases of the vortex shedding cycle, this would re-

sult in the averages being skewed. For example, in Figure 7.3a Rxy shows a larger magnitude of

the stress below the x-axis, which could result from a large number of frames containing vortices

in that region. Additionally, because of the extremely low Reynolds number, both SAS and SBES

failed to resolve most of the smaller scale fluctuations within the flow while the PIV did capture

some of these. This could also result in some asymmetry, although the primary reason is likely

disproportions in the frame sampling.

With this being said, the magnitudes of the stresses, and their basic patterns in the flow

are remarkably close between the PIV and CFD. This gives confidence that even in regions of flows

where SAS and SBES are not utilizing their scale resolving capabilities, accurate 2D solutions (at

least in terms of time-averaged quantities) are found thanks to the underlying SST model being

used.

Finally, Rzz is shown in Figure 7.4 for comparison between the two CFD models (not

available for the PIV as the experimental data is 2D). The extremely small magnitude of these

stresses (more than 107× smaller than Rxx and Ryy) confirms the two-dimensionality of the flow

simulated. Flow structures are essentially non-resolved in the third direction. This can be visualized

using quantities such as the Q-Criterion as is further down.
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Figure 7.4. Statistical Reynolds stresses Rzz for Re=57, f=0 Hz using a. SAS, and b. SBES

7.1.2. Re=858

Next, consider cases for the mid Reynolds number flow at Re = 858. For the CFD solutions,

averages were taken over a period of one full rotation, with 3–4 full rotations given to initialize the

flow (this was more than enough time to develop the flow; however the averages were not output

in early simulations, and solutions were continued from backups so they could be found).

7.1.2.1. f=25 Hz

First, Rxx, Ryy and Rxy are shown at f = 25 Hz in Figures 7.5, 7.6, and 7.7. There is some

discrepancy in the magnitude of the stresses between the PIV and CFD. In all three plots, the

CFD seems to overpredict their magnitude as compared to the PIV. As seen in Figures 7.5 and 7.7,

there are no significant differences between the SAS and SBES models for prediction of Rxx and

Rxy besides slightly less smooth solutions for SBES as a result if it resolving smaller structures.

However, Figure 7.6 does show SBES predicting Ryy’s magnitude more accurately than SAS. Both

the PIV and CFD suggest an asymmetry of Ryy favoring the top side due to the rotation of the

cylinders.

Rzz is shown in Figure 7.8 for comparison between the two CFD models. Unlike the Re = 57

solutions, the magnitude of Rzz is substantial here, similar to or even greater than Rxy. This is due

to the models utilizing their scale resolving capabilities to resolve structures in three dimensions.

7.1.2.2. f=50 Hz

Next, Rxx, Ryy and Rxy are shown at f = 50 Hz in Figures 7.9, 7.10, and 7.11. Again,

the CFD over-predicts each component of the stress to a degree, and the SBES model outperforms

SAS in matching the magnitude of Ryy as seen in Figure 7.10. While SAS and SBES show similar

43



Figure 7.5. Statistical Reynolds stresses Rxx for Re=858, f=25 Hz using a. PIV, b. SAS, and c.
SBES

Figure 7.6. Statistical Reynolds stresses Ryy for Re=858, f=25 Hz using a. PIV, b. SAS, and c.
SBES

Figure 7.7. Statistical Reynolds stresses Rxy for Re=858, f=25 Hz using a. PIV, b. SAS, and c.
SBES

predictions for Rxy when f = 25 Hz and f = 50 Hz (see Figures 7.7 and 7.11), the PIV shows a

larger magnitude at f = 50 Hz, which results in a closer match to both the SAS and SBES models.

SST matches the magnitude of Rxx closely, but performs less well at predicting Ryy and Rxy. The

more “smoothed” contours of SST are due to the lack of small scales being resolved as are with

SAS and SBES.
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Figure 7.8. Statistical Reynolds stresses Rzz for Re=858, f=25 Hz using a. SAS, and b. SBES

Figure 7.9. Statistical Reynolds stresses Rxx for Re=858, f=50 Hz using a. PIV, b. SAS, c.
SBES, and d. SST

Rzz is shown in Figure 7.12 for comparison between the three CFD models. These are similar

to those found for f = 25 Hz, with the SBES model predicting a slightly larger magnitude of the

stress than the SAS model. Again, both SAS and SBES utilize their scale-resolving capabilities,

resulting in their significant magnitudes. SST however, does not resolve any turbulence in the

spanwise direction as expected, and fluctuations are not seen. Once again this highlights the

benefits of using a hybrid model over a pure RANS model.

7.1.3. Re=7150

CFD computations were run for one rotational speed, f = 50 Hz, at the high Reynolds

number, Re = 7150. Averaging was started after 120 degrees of rotation for flow development
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Figure 7.10. Statistical Reynolds stresses Ryy for Re=858, f=50 Hz using a. PIV, b. SAS, c.
SBES, and d. SST

Figure 7.11. Statistical Reynolds stresses Rxy for Re=858, f=50 Hz using a. PIV, b. SAS, c.
SBES, and d. SST

which was found to be adequate while monitoring the Q-Criterion and various flow quantities.

Averaging continued for a total of one rotation.
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Figure 7.12. Statistical Reynolds stresses Rzz for Re=858, f=50 Hz using a. SAS, b. SBES, and
c. SST

7.1.3.1. f=50 Hz

Rxx, Ryy, and Rxy are shown at f = 50 Hz in Figures 7.13, 7.14, and 7.15. It is immediately

noticeable that the CFD solutions are much more symmetrical and smooth than those at Re = 858.

At a higher Reynolds number, there are far more turbulent structures and scales passing through

the domain over the course of one rotation which is likely the cause of this in addition to the fact

that more timesteps are averaged over one rotation. Over-prediction of the stresses is still present in

the CFD solutions, but not significant. Ryy shows a slight asymmetry similar to that at Re = 858

in the PIV results (see Figures 7.6, 7.10, and 7.14), which is this time not present in the CFD

solution. If more than 100 frames were averaged over a uniform distribution of cylinder positions

this would likely be diminished.

Figure 7.13. Statistical Reynolds stresses Rxx for Re=7150, f=50 Hz using a. PIV, b. SAS, and
c. SBES
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Figure 7.14. Statistical Reynolds stresses Ryy for Re=7150, f=50 Hz using a. PIV, b. SAS, and
c. SBES

Figure 7.15. Statistical Reynolds stresses Rxy for Re=7150, f=50 Hz using a. PIV, b. SAS, and
c. SBES

Rzz is shown in Figure 7.16 for comparison between the two CFD models. Here SBES shows

a clearly larger magnitude of the stress than SBES. This is once again expected as it is able to

resolve more scales in three dimensions than SAS does.

Figure 7.16. Statistical Reynolds stresses Rzz for Re=7150, f=50 Hz using a. SAS, and b. SBES
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7.2. Time Averaged Velocity

In addition to the statistical Reynolds stresses, contours of average velocity are presented.

These averages were taken over the same time as the statistical Reynolds stresses.

7.2.1. Re=57

Figure 7.17 shows the average u velocity for the static Re = 57 case. Note that in much of

the dark blue regions, the average u velocity is actually negative—moving to the left. Both CFD

models match closely with the PIV data. Slight differences can be seen in profiles extracted at

distances of X = 1 and X = 4 downstream from the cylinder arrangement’s central axis, shown

in Figure 7.18. At X = 1, both models match the experiments extremely well, including the two

secondary peaks caused by the wake around the furthest downstream cylinder. At X = 4, SBES

shows a closer match to the experiments, both in the shape of the profile and its peak. This suggests

that the SAS model allows the flow to dissipate more quickly in its return to a more uniform flow.

Figure 7.17. Average velocity u for Re=57, f=0 Hz using a. PIV, b. SAS, and c. SBES

Figure 7.18. Velocity u profile for Re=57, f=0 Hz at downstream distances of a. X=1 and b.
X=4
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7.2.2. Re=858

7.2.2.1. f=25 Hz

Next, average u velocity contours are shown for Re = 858 and f = 25 Hz in Figure 7.19.

Profiles are extracted at distances of X = 1, X = 4, and X = 7 downstream as shown in Figure 7.20.

The contours show close agreement between the experimental results and both CFD models. Closer

inspection of the profiles in Figure 7.20 shows better agreement for SAS at locations of X = 4 and

X = 7 than SBES. Both predict similarly at X = 1, and while the double peak found in the

experiments is seen in the CFD, it is less pronounced. It is important to remember that the

experimental results are from a single center plane while the CFD results are averaged over 25

spanwise planes, which could explain the peaks being less pronounced. It is also worth noting that

both CFD models show a slight “drift” in the average velocity profiles above the central axis at

X = 7. This could be in part due to the opening boundary conditions set in the CFD simulations

allowing flow to freely move towards the top and bottom of the domain, while the experiments may

have a slight suppression imposed on the wake due to the wind tunnel walls

Figure 7.19. Average velocity u for Re=858, f=25 Hz using a. PIV, b. SAS, and c. SBES

7.2.2.2. f=50 Hz

Figure 7.21 shows the average velocity u contours for Re = 858 and f = 50 Hz. The

contours seem to suggest the CFD, especially SAS, widening their wake where the experiments

show a wake of relatively constant width. Looking at the extracted profiles in Figure 7.22 however,

this does not seem to be the case, meaning it is likely just chance that the center frame shows

this trend while other slices are averaging it out. Similar to the results at f = 25 Hz, the furthest
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Figure 7.20. Velocity u profile for Re=858, f=25 Hz at downstream distances of a. X=1, b. X=4,
and c. X=7

downstream profile at X = 7 shows a slight translation upwards of the CFD profiles not matched in

the experiments. Again, this could be a result of the boundary conditions imposed on the CFD not

perfectly matching with the reality of the wind tunnel’s walls. SST shows a much more significant

valley in the profile at X = 1, of approximately u = 0. It matches the experiments closely at X = 4,

but then over-predicts velocity at X = 7. This shows that the SST model is more dissipative in

nature and that even in prediction of average quantities, the hybrid models are superior.

Figure 7.21. Average velocity u for Re=858, f=50 Hz using a. PIV, b. SAS, c. SBES, and d.
SST
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Figure 7.22. Velocity u profile for Re=858, f=50 Hz at downstream distances of a. X=1, b. X=4,
and c. X=7

7.2.3. Re=7150

7.2.3.1. f=50 Hz

Finally, Figure 7.23 shows the contours for the case of Re = 7150 and f = 50 Hz. The

widening of the CFD solutions is not seen here as it was at Re = 858, either in the contours or

profiles of Figure 7.24. The solutions of SAS and SBES are almost indistinguishable here, again

predicting the double peak at X = 1. One observation common to almost all profiles in this study

(especially those closest to the cylinders) is of the CFD solutions “overshooting” the freestream

velocity value near the edge of the wake, and returning to the freestream value at the opening

boundary condition. This is due to the area of higher velocity surrounding the wakes that shed

from cylinders near the top and bottom of the arrangement.

Figure 7.23. Average velocity u for Re=7150, f=50 Hz using a. PIV, b. SAS, and c. SBES
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Figure 7.24. Velocity u profile for Re=7150, f=50 Hz at downstream distances of a. X=1, b.
X=4, and c. X=7

7.3. Time Averaged Velocity and Statistical Reynolds Stress Error

To better quantify the performance of the models in terms of the average velocity and

Reynolds stress, error is calculated on extracted lines along the x-axis (Y = 0) from X = 0.75

to X = 5.75 (at the mid-plane, Z = 0). Table 7.2 shows the errors. In general, u is slightly

better predicted by SAS, although both SAS and SBES show very comparable results for average

velocity. Error is significantly higher in predicting u at Re = 57 than the higher Re flows. This

is primarily due to the fact that the region directly behind the cylinders contains nearly stagnant

flow, numerically inflating the error to a degree because of division by near zero values. Rxx is

better predicted using SBES for all cases, which speaks to its abilities to more accurately resolve

fluctuations present in the flow. Finally, in comparison to both SAS and SBES, the pure RANS

model (SST) shows significantly lower accuracy of u and Rxx.

The values of error for Rxx are seemingly large. This is to be expected to a degree as

they are a second order turbulence quantity as opposed to the velocity components being first

order. Additionally, with these values being close to zero, small differences in magnitude are more

significant in percentage. To visualize these differences more clearly, the extracted profiles are shown

in Figure 7.25. These plots are not entirely smooth as would be expected for averaged quantities.

This is in some part due to the averaging techniques described for both the experimental and CFD

results. For example, Figure 7.25b shows the experimental profile quickly decreasing to a value of

approximately Rxx = 0.02, leveling off, and then decreasing suddenly from X = 2.4 to X = 3. It is

likely that ensemble averaging over even more frames as well as assurance of equal sampling over

the rotation would produce a much smoother profile. The CFD also shows fluctuating profiles.
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Table 7.2. Percent error of average flow properties on an extracted line across the x-axis with
lowest the lowest values of u and Rxx for each combination of Re and f underlined

Re f Model u Rxx

57 0 SAS 31.20 1382.84
57 0 SBES 34.17 94.62

858 25 SAS 8.09 152.86
858 25 SBES 12.67 127.55

858 50 SAS 10.25 95.75
858 50 SBES 9.88 65.78
858 50 SST 15.57 284.97

7150 50 SAS 9.21 162.9
7150 50 SBES 9.31 142.22

Figure 7.25. Rxx along x-axis downstream of the cylindrical arrangement for a. Re=57, f=0 Hz,
b. Re=858, f=25 Hz, c. Re=858, f=50 Hz, and d. Re=7150, f=50 Hz

Allowing the simulation to run for a longer time and averaging over the course of a larger number

of rotations would likely smooth their solutions much more.
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7.4. Turbulence Intensity

If the time-averaged velocity components and Reynolds stresses are known, the turbulence

intensity can be calculated. Turbulence intensity is defined by

TI ≡ u′

U
, (7.3)

where TI is the turbulence intensity, u′ is the RMS of turbulent velocity fluctuations and U is the

mean velocity,

u′ ≡
√

1

3

(
u′2 + v′2 + w′2

)
, (7.4)

U ≡
√
u2 + v2 + w2. (7.5)

To determine mean turbulence intensity for a flow, this is simply done using the normal statistical

Reynolds stresses to calculate u′; for example, u′2 = u′u′.

The turbulence intensity gives a quantitative value to the strength of turbulence at a given

point. Knowledge of this could be useful in an application such as generating turbulence for testing

an airfoil, where the location at which the cylinders are placed could be chosen based on the

desired turbulence intensity over the airfoil. This section shows the turbulence intensity from both

experimental and computational results.

7.4.1. Re=57

7.4.1.1. f=0 Hz

First the case of Re = 57 and f = 0 Hz is shown in Figure 7.26. Figure 7.27 shows an

extracted profile from the x-axis downstream of the cylindrical arrangement. As would be expected

from the over-predicted Reynolds stresses, the turbulence intensity is somewhat over-predicted for

both SAS and SBES. SBES shows a much closer match nearest the cylinders, but SAS seems to

allow the turbulence to dissipate slightly more according to the experiments further downstream

as is evidenced by Figure 7.27. The experiments show a peak turbulence intensity along the x-axis

of about 42% while the SAS and SBES show peaks of 1432% and 185%, respectively. These high

turbulence intensities are explained by looking at the average velocities in this region. As shown in

Figure 7.18, the region of peak turbulence intensity coincides with a stagnant region of near zero
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average u velocity. The average v and w velocity components in this region are also near zero,

resulting in a near zero mean velocity of which the fluctuations are large in comparison, resulting

in a large predicted turbulence intensity.

Figure 7.26. Turbulence intensity (in %) for Re=57, f=0 Hz using a. PIV, b. SAS, and c. SBES

Figure 7.27. Turbulence intensity along x-axis downstream of the cylindrical arrangement for
Re=57, f=0 Hz

7.4.2. Re=858

7.4.2.1. f=25 Hz

Next, consider the case of Re = 858 and f = 25 Hz. Figure 7.28 shows a slight over-

prediction of the turbulence intensity just above the x-axis, similar to the over-predictions seen in

the Reynolds stresses. Figure 7.29 shows close predictions of the peak turbulence intensity around

X = 0.75, with the intensity increasing much more rapidly in the results than in the computations.
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No significant difference is seen between the two models, both showing a slight over-prediction of

turbulence intensity throughout the length of the domain. Some of this can be attributed to the

fact that the turbulence intensity for the experiments was calculated using the 2D PIV results

which do not include fluctuations in the third dimension.

Figure 7.28. Turbulence intensity (in %) for Re=858, f=25 Hz using a. PIV, b. SAS, and c.
SBES

Figure 7.29. Turbulence intensity along x-axis downstream of the cylindrical arrangement for
Re=858, f=25 Hz

7.4.2.2. f=50 Hz

The case of Re = 858 and f = 50 Hz contains results for the CFD models SAS and SBES,

as well as the RANS model SST for comparison. Figure 7.30 shows the contours while Figure 7.31

shows the profiles along the x-axis. A slight over-prediction is seen by SAS and SBES similar to

that for the Re = 858 and f = 25 Hz results, but the over-prediction by the SST model is much
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more significant slightly above the x-axis. The profiles along the x-axis in Figure 7.31 do not reflect

this massive over-prediction, but show similar results for the three models. SST shows a more

gradual reduction in turbulence intensity throughout the domain while SST and SBES decrease

more rapidly between X = 1 and X = 3 before leveling out around 1–2%. This more drastic

reduction in this region reflects that seen in the experiments more closely than SST shows.

Figure 7.30. Turbulence intensity (in %) for Re=858, f=50 Hz using a. PIV, b. SAS, c. SBES,
and d. SST

Figure 7.31. Turbulence intensity along x-axis downstream of the cylindrical arrangement for
Re=858, f=50 Hz
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7.4.3. Re=7150

7.4.3.1. f=50 Hz

Finally, consider the results shown for Re = 7150 and f = 50 Hz in Figures 7.32 and 7.33.

The turbulence intensity is similarly predicted for both models. Again, this is slightly larger than

the experimental results show throughout the length of the domain, which is in part due to the

lack of spanwise fluctuations reflected in the PIV data. Both models predict a peak turbulence

intensity of 16–18%, while the experiments show a peak of 17%.

Figure 7.32. Turbulence intensity (in %) for Re=7150, f=50 Hz using a. PIV, b. SAS, and c.
SBES

Figure 7.33. Turbulence intensity along x-axis downstream of the cylindrical arrangement for
Re=7150, f=50 Hz
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7.5. Lift and Drag

Although the forces on the cylinders are not available from any of the experiments, the lift

and drag as calculated from the two CFD models is discussed below. Lift and drag coefficients can

be found from the forces on the cylinder walls,

CD =
FD

ρU2
∞rb

(7.6)

CL =
FL

ρU2
∞rb

, (7.7)

where FD and FL are the drag and lift forces, respectively, ρ and U∞ are freestream density and

velocity, r is the cylinder radius and b is the span of the cylinder. The coefficient of drag on a

cylinder at varying Re is a commonly researched quantity with an abundance of experimental data

available. Figure 7.34 compiles an abundance of this data. Based on this data, CD is expected to

be just under 2 at Re = 57, around 1 at Re = 858, and just over 1 at Re = 7150. Sucker and

Brauer provide a curve-fit equation for the data with accuracy up to Re = 200, 000,

CD ≈ 1.18 +
6.8

Re0.89
+

1.96√
Re
− 0.0004Re

1 + 3.64E − 7Re2
, (7.8)

which estimates values of CD = 1.60, CD = 0.993, and CD = 1.06 for Re = 57, Re = 858, and

Re = 7150, respectively (Sucker & Brauer, 1975). These values, while useful, should be taken with

a grain of salt as the rotation within the flow will likely have an effect causing differences between

this and a simple single cylinder experiment.

From the lift oscillations, a Fast Fourier Transform (FFT) is applied to find the dominant

frequency and estimate the Strouhal number,

St =
fL

U∞
, (7.9)

where f is frequency, L is characteristic length (single cylinder diameter in this case), and U∞ is

freestream velocity. Many experiments have been performed on the flow over a single cylinder in the

study of their vortex shedding frequency as measured by the Strouhal number. A number of these
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Figure 7.34. Drag coefficient over a circular cylinder as compiled from various experiments at
different Re (White, 2006)

results are compiled in Figure 7.35. From this plot, we expect a Strouhal number of approximately

0.1 at Re = 57, and just over 0.2 at Re = 858 and Re = 7150.

Figure 7.35. Strouhal numbers as compiled from various experiments at different Re (White, 2006)
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7.5.1. Re=57

First, consider the lift and drag at Re = 57. Figures 7.36 and 7.37 both show a very periodic

pattern to the lift and drag. Cylinders 1 and 3 (the two upstream cylinders) show shallow oscillations

in comparison to Cylinder 2 in Figure 7.36. This is because the downstream cylinder’s presence

and wake suppresses the shedding off these cylinders from fully developing. Figure 7.37 shows that

the upstream cylinders have higher drag than Cylinder 2. Interestingly, the drag on Cylinder 2

fluctuates at twice the frequency of the lift, while Cylinders 1 and 3 show the lift and drag oscillating

at the same frequency. The Strouhal numbers as calculated from the dominant frequencies of the

lift curves and time-averaged CD are shown in Table 7.3. The Strouhal numbers are reasonably

close to the value expected for a single cylinder, although some difference is not unexpected due

to the influence of the additional wake interactions in the flow. The drag coefficients of Cylinders

1 and 3 are close to the expected value of 1.60, with that of Cylinder 2 being lower as previously

discussed. There is very little difference between the two models, a result of them both essentially

solving the entire flow in RANS mode.

Figure 7.36. Coefficient of lift for Re=57, f=0 Hz using a. SAS and b. SBES

7.5.2. Re=858

7.5.2.1. f=25 Hz

Figures 7.38 and 7.39 show the lift and drag plots for a full, single rotation cycle for Re = 858

and f = 25 Hz. The drag plots in Figure 7.39 show prevalent patterns for both the SAS and SBES

models over the rotation. For reference, consider the cylinders’ positions for various phases of a

rotation cycle shown in Figure 7.40. For an example, consider the drag on Cylinder 1 throughout
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Figure 7.37. Coefficient of drag for Re=57, f=0 Hz using a. SAS and b. SBES

Table 7.3. Strouhal number and time-averaged CD for each cylinder at Re=57, f=0 Hz

Cylinder
SAS SBES

St CD St CD

1 0.0684 1.453 0.0677 1.454
2 0.0684 1.119 0.0677 1.121
3 0.0684 1.453 0.0677 1.454

Net 1.342 1.343

a cycle. At θ = 30◦, Cylinder 1 is fully blocked from the direct freestream by Cylinder 2. This

coincides with a low point of nearly zero drag in Figure 7.39. From approximately θ = 100◦ to

θ = 200◦, Cylinder 1 shows higher drag than Cylinders 2 and 3. Figure 7.40 makes clear the

reason for this—it is moving forward from the back of the arrangement, effectively adding to the

relative freestream over that cylinder and therefore increasing drag. For the remainder of the cycle,

the drag returns to a relatively constant, more moderate value mostly between Cylinders 2 and

3. This region of the cycle, from approximately θ = 240◦ to θ = 360◦ is its return to the back,

or downstream position, free from any obstructions of the other cylinders that could cause large

fluctuations in its drag. Following the cycle for either Cylinder 2 or 3 will show very similar trends,

suggesting that the periodicity of a cycle is essentially broken into thirds (120◦ semi-cycles) of

repetition between relative cylinders as would be expected due to the equilateral symmetry of the

geometric arrangement.

One additional observation on the drag plots is a difference in the intensity of the fluctuations

between the SAS and SBES models. The SAS model shows larger oscillations while the SBES model

shows a slightly smoother graph, especially in the regions of peak drag for a cylinder. This may be
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Figure 7.38. Coefficient of lift for Re=858, f=25 Hz using a. SAS and b. SBES

Figure 7.39. Coefficient of drag for Re=858, f=25 Hz using a. SAS and b. SBES

Figure 7.40. Cylinder locations throughout rotation cycle

in part due to the scales being resolved in the regions directly behind a cylinder. For example, SAS

only allows somewhat large scales to be resolved directly behind a cylinder, which can play a large

effect on the drag. SBES allows much smaller scales to be resolved directly behind a cylinder, which

could play a role in damping the effects of a single large oscillation. For example, see Figure 7.41.

The cylinder moving forward from the back of the arrangement’s drag is likely considerably affected
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by the large scales behind the cylinder using SAS, while the additional small scales resolved behind

the cylinder in the SBES solution negate any large effects.

Figure 7.41. Vorticity Z contours for Re=858, f=25 Hz using a. SAS and b. SBES

As mentioned above, while the drag coefficient is calculated in the above plots under the

assumption of a constant freestream velocity, the actual relative velocity over each cylinder is

constantly changing throughout the rotation. To investigate this further, an adjusted value of CD

can be calculated by accommodating for the relative freestream over each cylinder,

(CD)adj = CD

(
U2
∞

(Ux + U∞)2

)
, (7.10)

where CD is the drag coefficient calculated using the constant freestream velocity value of U∞, and

Ux is the x component of the velocity for an individual cylinder purely due to rotation,

Ux = 2πfrc sin θ, (7.11)

where f is the rotational frequency in Hz, rc is the radius of a circle coincident with the three

cylinders’ centers, and θ is the cylinder’s phase. Figure 7.42 shows the adjusted drag coefficients.

While similar patterns as those seen in the non-adjusted CD plots are seen, each cylinder shows

a different region throughout the cycle of peak drag. For example, consider Cylinder 1, whose

region of peak drag is now from roughly θ = 270◦ to θ = 15◦. Referencing its position again
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in Figure 7.40, this is the region where it is moving towards the back of the arrangement, in

the streamwise direction. This reduces the local freestream and local Reynolds number over the

cylinder. Figure 7.34 shows that a reduction in Reynolds number is met with an increase in CD

(for Re < 2000 as is the case here). Relative minimums in CD still correlate with regions where a

cylinder is being blocked by a further upstream cylinder—for example at θ ≈ 30◦ and θ ≈ 90◦ for

Cylinder 1.

Figure 7.42. Relative freestream adjusted coefficient of drag for Re=858, f=25 Hz using a. SAS
and b. SBES

Finally, the Strouhal numbers as computed from a FFT applied to the lift oscillations are

shown in Table 7.4. As expected, values are in the range of slightly larger than 0.2. However,

there is not complete agreement between the Strouhal number calculated between each cylinder.

It is likely that running computations for a longer time would result in the dominant frequencies

becoming more defined, and each cylinder would have the same calculated Strouhal number.

Table 7.4. Strouhal number and time-averaged CD for each cylinder at Re=858, f=25 Hz

Cylinder
SAS SBES

St CD St CD

1 0.247 1.027 0.230 0.907
2 0.247 0.963 0.244 0.939
3 0.195 1.036 0.244 0.909

Net 1.001 0.918
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7.5.2.2. f=50 Hz

Next, consider the lift and drag plots for Re = 858 and f = 50 Hz as shown in Figures 7.43

and 7.44. The drag plots in Figure 7.44 show similar trends to those described for f = 25 Hz,

with peak drag occurring while the cylinders approach the front of the arrangement and least drag

occurring when cylinders are obstructed from the freestream by another cylinder. Peak drag is

also predicted slightly higher than at f = 25 Hz. This is due to the impact of increasing the local

Reynolds number on a cylinder during its peak drag phase of the cycle being increased by a higher

rotation rate. Unlike the lower f run however, no significant difference is seen in there being large

fluctuations within the high drag phases.

Figure 7.43. Coefficient of lift for Re=858, f=50 Hz using a. SAS and b. SBES

Figure 7.44. Coefficient of drag for Re=858, f=50 Hz using a. SAS and b. SBES

Relative freestream adjusted drag plots are shown in Figure 7.45. Similar trends are seen

to those of f=25 Hz, but the increase in CD is more significant during a cylinder’s return to the
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back of the arrangement. This is expected because the increase in f results in a much more drastic

reduction in the local freestream and Re over the cylinder, resulting in a larger increase of CD. For

example, given the constant freestream of U∞ = 4.365 m/s for Re = 858, f = 50Hz can reduce

this to as low as Urelative = 2.85 m/s, a reduction of 34.8% compared to a maximum reduction of

17.4% for f = 25 Hz.

Figure 7.45. Relative freestream adjusted coefficient of drag for Re=858, f=50 Hz using a. SAS
and b. SBES

The Strouhal numbers and time-averaged CD are compiled in Table 7.5. Again, as expected

values of St are slightly above 0.2, but perfect agreement is not found between all three cylinders.

This is once again expected to be a product of the limited time for which the simulations were run.

CD is quite close to the calculated value of 0.993 for both models.

Table 7.5. Strouhal number and time-averaged CD for each cylinder at Re=858, f=50 Hz

Cylinder
SAS SBES

St CD St CD

1 0.213 1.035 0.228 1.100
2 0.213 1.011 0.264 1.016
3 0.259 1.077 0.228 0.995

Net 1.041 1.037
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7.5.3. Re=7150

7.5.3.1. f=50 Hz

Finally, consider the lift and drag plots for Re = 7150 and f = 50 Hz as shown in Fig-

ures 7.46 and 7.47. The drag plots show similar trends as those described for the Re = 858 cases,

although the region of peak drag for each cylinder is less pronounced. This is because at a higher

Reynolds number, the impact of the rotation in increasing the local Reynolds number on a cylinder

is less significant.

Figure 7.46. Coefficient of lift for Re=7150, f=50 Hz using a. SAS and b. SBES

Figure 7.47. Coefficient of drag for Re=7150, f=50 Hz using a. SAS and b. SBES

Figure 7.48 shows the relative freestream adjusted drag plots. These look incredibly similar

to the non-adjusted plots of Figure 7.47. This is due to the reduced impact of the velocity due

to rotation on the local freestream—a maximum of only 4.2% change in the Reynolds number is

possible. Only a slight compression of the CD profiles towards their average values is visible.
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Figure 7.48. Relative freestream adjusted coefficient of drag for Re=7150, f=50 Hz using a. SAS
and b. SBES

The Strouhal numbers and time-averaged CD are compiled in Table 7.6. SAS predicts the

Strouhal number in the expected area of slightly greater than 0.2. However, SBES predicts St at

roughly 10× lower. The reason for this can be seen in the lift plots in Figure 7.46. As with the

case of Re = 858 and f = 25 Hz, SAS shows oscillations of much greater magnitude than those

of the same frequency for SBES. In addition, a lower frequency can visibly be seen in the plot

for SBES. These two frequencies can be seen in the frequency spectrum, shown for Cylinder 3 as

an example in Figure 7.49. Two peaks can be clearly seen—one of roughly 200 Hz and the larger

of roughly 2000 Hz. Because the lower frequency dominates in this case, the Strouhal number is

under-predicted.

Table 7.6. Strouhal number and time-averaged CD for each cylinder at Re=7150, f=50 Hz

Cylinder
SAS SBES

St CD St CD

1 0.211 0.866 0.0256 0.839
2 0.198 0.905 0.0256 0.846
3 0.230 0.873 0.0192 0.832

Net 0.881 0.839

Considering the time-averaged CD in Table 7.6, it is less than the calculated estimate of

1.060 in the case of both models. Whereas experiments have shown the drag to increase slightly

between Re = 858 and Re = 7150, the opposite is predicted in the results. It is possible that

implementing a transition model for cases above Re = 858 could benefit in this drag prediction.
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Figure 7.49. Frequency spectra for Cylinder 3 at Re=7150, f=50 Hz, SBES

7.6. Vorticity and Flow Structure Analysis

As mentioned in Section 2, the Kolmogorov length scale, ηk ≡ ν3/4/ε1/4, governs the smallest

possible length scales within a flow. Without knowing the eddy dissipation rate, ε, an inviscid

estimation can be made under the assumption of ε ≈ U3
∞/Λ that

ηk ≈ ΛRe−3/4, (7.12)

where Λ is the largest length scale present in the flow (assumed to be the characteristic length).

Table 7.7 shows the minimum calculated Kolmogorov length scales within the flow for each of the

cases run. ηk is both calculated from the ε found in the flow solutions as well as using the inviscid

approximation for comparison. With the smallest grid spacing present in the flow being 2E − 6 m

within the inflation layer, this suggests that a DNS solution for the highest Reynolds number flow

would require much of that domain to be meshed at nearly that sizing. This emphasizes the impor-

tance of turbulence modeling techniques that do not require this strict of meshing requirements,

leading to huge computational costs.

For analyzing the flow structures present in the rotating flow, the case of Re = 858 and

f = 50 Hz is considered due to the fine time resolution of exported results. In addition, the

SBES model is chosen due to the resolution of smaller scales giving more detail to the flow. 24

instantaneous frames of vorticity in the spanwise direction (Z vorticity) are shown in Figures 7.50–

7.52 throughout the duration of a full rotation. Even in 2D, the vorticity contours offer many
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Table 7.7. Kolmogorov length scales

Re f Model ηk (m) ηk (m) (approximation)

57 0 SAS 4.05E-04 1.49E-04
57 0 SBES 5.49E-04 1.49E-04
858 25 SAS 2.94E-05 1.96E-05
858 25 SBES 4.14E-05 1.96E-05
858 50 SAS 2.42E-05 1.96E-05
858 50 SBES 2.81E-05 1.96E-05
7150 50 SAS 4.02E-06 3.99E-06
7150 50 SBES 4.86E-06 3.99E-06

insights into the complex flow behaviors. For example, large scale vortex shedding can be seen,

especially on the top side where the counterclockwise rotation pushes up the wake coming off the

top-most cylinder. It would be expected then that the Strouhal number of the flow would be

dictated by a frequency of three times of the rotational frequency,

St =
3fD

U∞
, (7.13)

where f is the rotational frequency, D is arrangement diameter, and U∞ is freestream velocity.

The experiments of Ullah et al. contain data on the Strouhal number based on hotwire velocity

measurements at three points in the cylinders’ wake (Ullah et al., 2020). These points are shown

in the description of the experiments in Figure 5.3.

Given the equation for Strouhal number developed, calculated St is compared to the ex-

perimental findings in Table 7.8. Error is calculated based off location A which was found to have

the most consistent findings. This supports the premise that the largest flow structures within the

flow which result from individual wakes of cylinders dictate the shedding frequency of the entire

arrangement.

Table 7.8. Calculated vs. experimental Strouhal number

Re f Stcalc StExpA StExpB StExpC % Error

858 25 0.220 0.225 0.225 0.225 2.23
858 50 0.440 0.450 0.450 0.450 2.23
7150 50 0.053 0.053 0.053 0.053 0
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Figure 7.50. Instantaneous spanwise (Z) vorticity frames from θ = 0.3◦ to θ = 105.1◦ for Re=858,
f=50 Hz, and SBES
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Figure 7.51. Instantaneous spanwise (Z) vorticity frames from θ = 120.1◦ to θ = 224.9◦ for
Re=858, f=50 Hz, and SBES
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Figure 7.52. Instantaneous spanwise (Z) vorticity frames from θ = 239.9◦ to θ = 344.7◦ for
Re=858, f=50 Hz, and SBES
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In addition to this, Figures 7.50–7.52 show many of the 2D flow structures also found by

Ullah et al. such as the spiraling arm vortices. Typically, at phases just after a cylinder was fully

obstructed by another, the commonly rotating wakes align and begin to combine. For example, at

θ = 45.2◦, the wakes of the two lower cylinders begin to mix and form a larger structure. Further

downstream the mixing becomes much greater and harder to predict.

A commonly used parameter for identifying vortices is the Q-Criterion. Q-Criterion iden-

tifies vortices as regions of greater vorticity magnitude than strain-rate magnitude and is defined

by

Q = CQ(Ω2 − S2), (7.14)

where CQ is a constant (CQ=0.5 by default in Tecplot and is therefore used for this analysis), Ω

is the vorticity magnitude, and S is the strain-rate magnitude (Tecplot, 2018). Q-Criterion easily

shows the three-dimensionality of a flow or lack thereof. For example, Figure 7.53 shows Q-Criterion

iso-surfaces for cases of Re = 57, f = 0 Hz. As expected and already determined from quantities

such as w′w′, 2D rollers are produced with negligible spanwise velocity.

Figure 7.53. Q-Criterion iso-surfaces of Q = 2 colored by spanwise velocity for Re=57, f=0 Hz
using a. SAS and b. SBES

It is far more interesting to view the Q-Criterion for three-dimensional turbulent flow.

This can be useful in identifying broad flow patterns and Lagrangian coherent structures within

a flow. The Q-Criterion is shown in Figure 7.54 for a dZ = 0.5 wide slice at the center of the

domain. Circled are two of the large scale structures that shed from the top-most cylinder of the
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arrangement. The rotation of the arrangement causes the wake of the “following” cylinder to push

these structures vertically as the flow continues. This is magnified due to the fact that the wake

shedding off the bottom of the topmost cylinder will be repelled by the anti-rotating wake off the

top-most cylinder. For this instance, the wake shed from cylinder 3 will be repelled by cylinder

1 and pushed in the region of the circled structures. It is this behavior in repetition that likely

contributes to the average velocity contours showing a wake slightly tilted upwards from the x-axis.

Figure 7.54. Q-Criterion iso-surfaces of Q = 10 colored by spanwise velocity for Re=858, f=50
Hz using SBES

Figure 7.55 shows Q-Criterion near the walls where the model transitions from RANS to

SBES. Likewise, Figure 7.56 shows the SDES/SBES blending function at the center plane. In

Figure 7.56, regions of red where FSBES = 1 denote regions where RANS mode is in effect while

blue areas where FSBES = 0 show where LES is used to resolve scales. A short transition region

exists in-between. This boundary is evident in Figure 7.55, which shows 2D sheets coming off the

cylinders that transition into the formation of 3D scales. This is where the main differences of

SBES and pure LES are clear; pure LES would resolve much smaller scales from the point of flow

separation on the cylinder surfaces.
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Figure 7.55. Q-Criterion iso-surfaces of Q = 10 colored by spanwise velocity near the cylinder
walls for Re=858, f=50 Hz using SBES a. viewed from the top and b. viewed from the bottom

Figure 7.56. SDES/SBES blending function for Re=858, f=50 Hz

The Q-Criterion shows that the vortex structures in the flow are primarily streamwise

tube-like structures. However, some additional structures can be identified. Figure 7.57 shows

Q-Criterion looking up from the bottom of the arrangement. Large scale v-shape vortices can be

seen in the circles shown (Ruiz et al., 2015). These are similar in structure to the streamwise

vortex pairs observed by in experiments by Williamson et al. and in computations of Thompson et

al. (Thompson et al., 1996; Williamson et al., 1995). These structures develop from instabilities in
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the shear layer shed from the cylinders. Opposite signed spanwise velocity demonstrates the rotation

of the structures’ “legs”. Figure 7.57b shows the vector field on a v-shape vortex structure.

Figure 7.57. Q-Criterion iso-surfaces of Q = 10 colored by spanwise velocity near the cylinder
walls for Re=858, f=50 Hz using SBES

Another structure found in the flow is a long spanwise structure such as that seen in Fig-

ure 7.58. This kind of structure is likely a remnant of a 2D roller that is shed from the cylinders

that did not break into 3D structures such as the v-shape structures and the prevalent streamwise

tubes. This could be due to a lack of shear or grid size not being fine enough, although it does

show undulations within the structure suggesting that grid size is not the issue.

The high Reynolds number case, Re = 7150 and f = 50 Hz, is also shown in Figure 7.59.

The higher Reynolds number results in much smaller scales being resolved and an even greater

degree of mixing and complexity of the flow. That being said, large scale structures such as the

von Kármán style vortices are still seen such as those circled in Figure 7.59. Shedding off the

top-most cylinder is at a much higher frequency than that of three times the rotational frequency,

yet the 3f frequency still dominates in the experiments’ Strouhal number calculations. Looking

back to the lift oscillations in Figure 7.46, these higher frequencies represent those from which

the expected Strouhal number of ∼0.2 are calculated, while the lower frequencies of 3f result in

the lower Strouhal number calculated (keep in mind that the Strouhal numbers calculated from

Figure 7.46 are based on single cylinder diameter).
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Figure 7.58. Q-Criterion iso-surfaces of Q = 10 colored by spanwise velocity for Re=858, f=50
Hz using SBES

Figure 7.59. Q-Criterion iso-surfaces of Q = 10 colored by spanwise velocity for Re=7150, f=50
Hz using SBES

7.7. Computational Cost Analysis

As one of the primary reasons to use hybrid models is their efficiency, this study would not

be complete without taking into consideration their computational cost. Table 7.9 outlines the cost

of each run, both in total CPU hours and number of CPU hours per timestep. Note also the number

of processors used for each run. The number of processors used varied slightly between runs, from

160 to 200. Parallel scaling is not linear and therefore the cost per timestep will be affected to

some degree by this. In general, fewer processors are more efficient than more processors. In runs

that were restarted from backups several times with a different amount of processors, a weighted
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average of the processors is used, weighted using the amount of timesteps calculated with each

number of processors.

Table 7.9. Computational cost analysis

Re f Model Processors Timesteps $ (CPU Hours) $/timestep

57 0 SAS 190 13,000 24,664 1.90
57 0 SBES 160 9,000 15,025 1.67
858 25 SAS 179 10,308 28,972 2.81
858 25 SBES 180 12,308 40,750 3.31
858 50 SST 200 19,702 27,888 1.42
858 50 SAS 180 10,770 26,972 2.50
858 50 SBES 180 10,770 43,750 4.06
7150 50 SAS 180 17,778 44,583 2.51
7150 50 SBES 179.5 17,778 161,944 9.11

First consider cases run with SAS. They have a relatively consistent computational cost

as Reynolds number increases, ranging from 1.90 to to 2.81 over all cases. SBES sees a more

significant increase in computational cost as Reynolds number increases, peaking at a cost of 9.11

at Re = 7150. At Re = 57, SBES is actually slightly more efficient—however this may be due to

using less processors (160 vs. 190). It is expected that both models would be extremely comparable

if not identical in cost when only their RANS modes are in use. Comparing SAS and SBES at

Re = 858, there is not a significant difference in cost, with SBES being on average 40.1% costlier.

Considering the benefits of resolving more turbulent scales with SBES, this is highly favorable at

this Reynolds number. At Re = 7150, SBES is 3.63× more expensive than SAS. This demonstrates

that at higher Reynolds numbers, the costs must be counted more carefully when selecting a model

considering the desired outcomes and application of the study.

Considering that the same mesh is used for both models, it is interesting that such a

difference in computational cost is seen between SAS and SBES. The reason for this is that SBES

requires more iterations per timestep to converge, a factor that also increases with Reynolds number.

While SAS requires 2–3 iterations per timestep to converge at both Re = 858 and Re = 7150, SBES

increases from 3 iterations per timestep to 10 iterations per timestep from Re = 858 to Re = 7150.

Figure 7.60 plots the cost efficiency as a function of the Reynolds number (scaled logarith-

mically) for all the cases described. Note that the single SST case does show the lowest cost as
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expected. As the only run using 200 processors, it is expected it would have been even more efficient

at 180 processors. This can be considered as a baseline RANS model to compare the efficiencies of

SAS and SBES.

Figure 7.60. Computational cost vs. Reynolds number
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8. CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

Flow computations have been performed on the highly unsteady flow over an arrangement

of three cylinders using SAS and SBES turbulence models. First and second order turbulence quan-

tities of time-averaged velocity components and statistical Reynolds stress show good agreement

with experimental results for both models. SBES shows better prediction of the Reynolds stresses

which may be a result of it resolving more of the small scales present in reality. The Strouhal

number of the individual cylinders throughout the rotation is very similar to the Strouhal number

of a single cylinder in cross-flow. Comparison to a control case using the SST RANS model shows

that SAS and SBES are superior both in average flow property predictions and instantaneous flow

resolution.

The key difference in model performance is evident in comparing instantaneous quantities

of vorticity, Q-Criterion, and so on. SBES is able to resolve more and smaller turbulence scales

than SAS and results in a much more detailed solution. This makes it possible for detailed flow

analysis almost on par with a LES solution which would not be possible with a RANS model or even

SAS. From inspection of the major flow structures and comparison to the experimental results, the

Strouhal number can be found as a function of the rotational frequency, St ∝ 3f . Other structures

identified include v-shape vortices as well as long spanwise vortices.

Finally, computational efficiency is comparable at low Reynolds numbers but SBES becomes

significantly more expensive as the Reynolds number increases. SAS has a relatively constant

computational cost for each Reynolds number while the cost of SBES increases somewhat linearly

with the Reynolds number.

8.2. Future Work

While the WALE LES model used in SBES is capable of handling transition, it is typically

shielded from performing within the boundary layer and therefore its transition capabilities are not

utilized. One area to further improve upon the results in this study could be to implement the use

of a transition model such as the γ−Reθ model in conjunction with the SST model used in SBES.
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Better prediction of the transition to turbulence could lead to more accurate results, albeit at the

cost of an increase in computational time.

Running simulations for longer amounts of time would produce more reliable time-averaged

quantities for comparison with the experiments. In addition, a longer time series would allow more

reliable calculation of the Strouhal number, especially for the large scale fluctuations due to the

von Kármán like shedding of the entire arrangement.

Finally, further analysis can be done into the turbulent flow structures found within the

flow and describing them quantitatively. If found to be computationally feasible, a pure LES run

could also be conducted to compare the structures produced, especially near the cylinders where

the hybrid models start to resolve scales.
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