
MINING APPROXIMATE FREQUENT DENSE MODULES FROM MULTIPLE GENE

EXPRESSION DATASETS

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

San Ha Seo

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

December 2020

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

MINING APPROXIMATE FREQUENT DENSE MODULES FROM MULTIPLE

GENE EXPRESSION DATASETS

By

San Ha Seo

The supervisory committee certifies that this thesis complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Saeed Salem
Chair

Dr. Simone Ludwig

Dr. Maŕıa de los Ángeles Alfonseca-Cubero

Approved:

14 April 2021

Date

Dr. Simone Ludwig

Department Chair

ABSTRACT

Large amount of gene expression data has been collected for various environmental and

biological conditions. Extracting dense modules that are recurrent in multiple gene coexpression

networks has been shown to be promising in functional gene annotation and biomarkers discov-

ery. In this thesis, we propose a biclustering-based approach for mining approximate frequent

dense modules. This approach reports a large number of modules with many duplicate modules.

Thus, we build on this approach and propose two extended approaches for mining dense modules,

which mine set of representative patterns using post-processing and on-line pattern summarization

methods. The extended approaches report smaller number of modules and less duplicate modules.

Experiments on real gene coexpression networks show that frequent dense modules are biologically

interesting as evidenced by the large percentage of biologically enriched frequent dense modules.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Dr. Saeed Salem, for all his support and guidance

that he has given me. He has been extremely patient with me and has been a great mentor, both

in academia and in life. I would like to thank the members of my thesis committee, Dr. Simone

Ludwig, and Dr. Mukhlesur Rahman, for taking the time to serve on my thesis committee. I also

would like to tank North Dakota State University and the Department of Compputer Science for

giving me the opportunity to study and learn. Finally, I would like to thank my family for the love

and support they have given me throughout writing this thesis and my life in general.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . x

1. INTRODUCTION . 1

1.1. Contribution . 2

1.2. Thesis Overview . 3

2. RELATED WORK . 4

2.1. Frequent Itemset Mining . 4

2.1.1. GenMax Algorithm . 6

2.2. Clustering . 7

2.3. Biclustering . 9

2.3.1. BiBit Algorithm . 10

2.4. Graph Mining . 12

2.4.1. DME Algorithm . 14

2.5. Clustering Gene Expression Data . 15

2.5.1. Gene Coexpression Networks . 15

2.5.2. Mining Single Gene Expression Dataset . 16

2.5.3. Integrating Multiple Gene Expression Datasets 17

3. GENERAL APPROACH . 20

3.1. Problem Description . 20

3.2. Mining Frequent Edgesets . 24

3.2.1. Frequent Itemset Mining . 24

3.2.2. Biclustering (BiBit) . 25

v

3.2.3. Biclustering with Noise (BiBitN) . 25

3.2.4. Biclustering with Post-Processing Summarization 26

3.2.5. Biclustering with On-Line Summarization . 26

3.3. Mining Dense Subgraphs . 26

3.4. Mining Frequent Dense Subgraphs . 26

4. BICLUSTERING WITH NOISE (BIBITN) . 29

4.1. Biclustering with Noise . 29

4.2. BiBitN Algorithm . 29

4.3. Experimental Results . 30

4.3.1. Dataset . 30

4.3.2. Topological Analysis of Frequent Edgesets . 31

4.3.3. Topological Analysis of Frequent Dense Modules 33

4.3.4. Gene Ontology Enrichment Analysis . 34

5. BICLUSTERING WITH POST-PROCESSING SUMMARIZATION 37

5.1. Mining Representative Frequent Edgesets . 37

5.1.1. Similarity Measure . 38

5.1.2. Similarity Graph . 38

5.1.3. Dominating Set . 38

5.2. Algorithm . 40

5.3. Experimental Results . 41

5.3.1. Effect of Edgeset Similarity Threshold . 41

5.3.2. Topological Analysis of Frequent Edgesets . 43

5.3.3. Topological Analysis of Frequent Dense Modules 43

5.3.4. Gene Ontology Enrichment Analysis . 45

6. BICLUSTERING WITH ON-LINE SUMMARIZATION 49

6.1. Mining Representative Frequent Edgesets . 49

vi

6.2. Algorithm . 49

6.3. Experimental Results . 50

6.3.1. Effect of Edgeset Similarity Threshold . 50

6.3.2. Topological Analysis of Frequent Edgesets . 52

6.3.3. Topological Analysis of Frequent Dense Modules 53

6.3.4. Gene Ontology Enrichment Analysis . 54

7. CONCLUSION AND FUTURE WORK . 59

REFERENCES . 60

vii

LIST OF TABLES

Table Page

4.1. Topological properties of the frequent edgesets for BiBitN approach. M is the number
of frequent edgesets and E is the average number of edges in each frequent edgeset. . . . 33

4.2. Topological properties of the frequent dense modules for BiBitN approach. M ′ is the
number of frequent edgesets that have at least one dense module, DM is the average
number of dense modules in each edge-induced subgraph, and V ′ is the average size of
the dense modules. 34

4.3. Number of all frequent dense modules, unique frequent dense modules, and the percent-
age of the unique frequent dense modules for BiBitN approach. 35

4.4. GO term enrichment analysis for frequent dense modules for BiBitN approach. EMF

and EKEGG denote the percent enriched in molecular functions and KEGG pathways
respectively. 35

4.5. Top enriched biological signatures in the reported modules for sup = 20, noise = 0.1,
and density = 0.5 for BiBitN approach. 36

5.1. Comparison of the number of edgesets for support 20 for varying similarity thresholds . 42

5.2. Topological properties of the frequent edgesets for biclustering with post-processing
summarization approach with edgeset similarity threshold 0.6. M is the number of
frequent edgesets and E is the average number of edges in each frequent edgeset. 43

5.3. Topological properties of the frequent dense modules for biclustering with post-processing
summarization approach with edgeset similarity threshold 0.6. M ′ is the number of fre-
quent edgesets that have at least one dense module, DM is the average number of dense
modules in each edge-induced subgraph, and V ′ is the average size of the dense modules. 45

5.4. Number of all frequent dense modules, unique frequent dense modules, and the percent-
age of the unique frequent dense modules for biclustering with post-processing summa-
rization approach with similarity threshold 0.6. 46

5.5. GO term enrichment analysis for frequent dense modules for biclustering with post-
processing summarization approach with edgeset similarity threshold 0.6. EMF and
EKEGG denote the percent enriched in molecular functions and KEGG pathways re-
spectively. 47

5.6. Top enriched biological signatures in the reported modules for sup = 17, noise = 0.1,
and density = 0.5 for biclustering with post-processing summarization approach with
edgeset similarity threshold 0.6. 48

6.1. Comparison of the number of edgesets for support 20 for varying similarity thresholds . 52

viii

6.2. Topological properties of the frequent edgesets for biclustering with on-line summa-
rization approach with edgeset similarity threshold 0.6. M is the number of frequent
edgesets and E is the average number of edges in each frequent edgeset. 53

6.3. Topological properties of the frequent dense modules for biclustering with on-line sum-
marization approach with edgeset similarity threshold 0.6. M ′ is the number of frequent
edgesets that have at least one dense module, DM is the average number of dense mod-
ules in each edge-induced subgraph, and V ′ is the average size of the dense modules. . . 55

6.4. Number of all frequent dense modules, unique frequent dense modules, and the percent-
age of the unique frequent dense modules for biclustering with on-line summarization
approach with similarity threshold 0.6. 56

6.5. GO term enrichment analysis for frequent dense modules for biclustering with on-line
summarization approach with edgeset similarity threshold 0.6. EMF and EKEGG denote
the percent enriched in molecular functions and KEGG pathways respectively. 57

6.6. Top enriched biological signatures in the reported modules for sup = 17, noise = 0.1,
and density = 0.5 for biclustering with on-line summarization approach with edgeset
similarity threshold 0.6. 58

ix

LIST OF FIGURES

Figure Page

2.1. (a) Transaction database and (b) all frequent itemsets in the database for minsup = 2. 4

2.2. Execution of GenMax algorithm on the database in Figure 2.1 (a) for minsup = 2.
Maximal itemsets are shown with red outlines, and pruned branches are shown with
diagonal lines. 7

2.3. Clustering and biclustering in matrix representation. (a) shows a cluster {2, 4, 5}. (b)
shows a bicluster {2, 4, 5, 7, 8} (for columns {3, 6, 7}) which is a local pattern not found
in (a). 8

2.4. Pattern extension in BiBit. Rows i and j produce seed S(i, j) = {2, 3, 7, 9}. Row k is
added to the pattern because S(k) ∩ S(i, j) = S(i, j), while row l is not added to the
pattern because S(l) ∩ S(i, j) 6= S(i, j). 11

2.5. Two types of graph mining problems. (a) Mining interesting subgraphs from a single
large graph. (b) Mining frequently occurring interesting subgraphs from a set of multiple
graphs. 12

2.6. Parent-child relationship in DME algorithm. The left subgraph is a child of the graph
above, because the degree of the new node a is less than or equal to every other node
already in the graph. The right subgraph is not a child of the graph above, because the
degree of the new node e is greater than some nodes already in the graph. 14

2.7. (a) Gene expression dataset of six genes and five samples. (b) Gene coexpression network
constructed from a dataset of six genes. 16

2.8. Integrating multiple gene expression datasets. Multiple datasets are represented as a
set of gene coexpression networks, where each dataset corresponds to one coexpression
network. 17

3.1. (a) Relation graph set of six graphs with six nodes. (b) Summary graph and the binary
edge occurrence matrix for the relation graph set in (a). 21

3.2. G′(E′) is the subgraph of G induced by the edgeset E′ = {(a, b), (a, c), (c, f)}. 21

3.3. Approximate frequent subgraph of the relation graph set in Figure 3.1 (a) for minsup =
4 and r = 0.25. 21

3.4. Steps in mining frequent dense subgraphs. (a) Relation graph set. (b) Summary graph
and the binary edge occurrence matrix generated from the relation graph set. (c) Bi-
clusters/edgesets mined from the edge occurrence matrix. (d) Subgraphs induced by
the edgesets. (e) Dense modules mined from edge-induced subgraphs. 27

x

4.1. Pattern extension in BiBitN for r = 0.25. Rows i and j produce seed S(i, j) = {2, 3, 7, 9}.
Both rows k and l are added to the pattern because |S(k) ∩ S(i, j)|/|S(i, j)| = 1 and
|S(l) ∩ S(i, j)|/|S(i, j)| = 0.75. 31

4.2. Number of frequent edgesets for varying noise thresholds for BiBitN approach. 32

4.3. Average edgeset size for varying noise thresholds for BiBitN approach. 32

5.1. Steps in mining representative frequent subgraphs from set of all frequent subgraphs: (a)
Set of all frequent edgesets/subgraphs; (b) Similarity graph for the set in (a) with simi-
larity threshold 0.5 (Jaccard similarity coefficient); (c) Dominating set of the similarity
graph in (b); (d) Set of representative frequent edgesets/subgraphs 39

5.2. Number of frequent edgesets for varying edgeset similarity thresholds for biclustering
with post-processing summarization approach. 41

5.3. Average edgeset size for varying edgeset similarity thresholds for biclustering with post-
processing summarization approach. 42

5.4. Number of frequent edgesets for varying noise thresholds for biclustering with post-
processing summarization approach with edgeset similarity threshold 0.6. 44

5.5. Average edgeset size for varying noise thresholds for biclustering with post-processing
summarization approach with edgeset similarity threshold 0.6. 44

5.6. Sample frequent edgeset for minsup = 19 and noise = 0.2, and dense modules in the
edgeset for density = 0.5 . 47

6.1. Number of frequent edgesets for varying edgeset similarity thresholds for biclustering
with on-line summarization approach. 51

6.2. Average edgeset size for varying edgeset similarity thresholds for biclustering with on-
line summarization approach. 51

6.3. Number of frequent edgesets for varying noise thresholds for biclustering with on-line
summarization approach with edgeset similarity threshold 0.6. 53

6.4. Average edgeset size for varying noise thresholds for biclustering with on-line summa-
rization approach with edgeset similarity threshold 0.6. 54

6.5. Sample frequent edgeset for minsup = 17 and noise = 0.1, and dense modules in the
edgeset for density = 0.5 . 56

xi

1. INTRODUCTION

The analysis of complex networks plays an important role in various scientific domains, in-

cluding transportation, sociology, computer science, electrical engineering, chemistry, and bioinfor-

matics. Many real-world systems in these domains are naturally modelled as graphs. For example,

an airway system is a network of airports connected via air routes. An electrical circuit may be

modelled as a network of circuit elements connected by wires. The World Wide Web (WWW) is

a network of web pages connected through hyperlinks. Other examples include social networks,

chemical compounds, protein-protein interaction networks, and gene coexpression networks. In

the field of biology and medicine, network analysis has many applications including identifying

drug targets, gene function prediction, designing containment strategies for diseases, and detecting

neurological disorders [22].

Adavances in DNA microarray technology made it easier and cheaper to collect and analyze

tremendous amount of gene expression data. Analysis of gene expression data is useful in under-

standing gene function and gene regulation. Coexpressed gene are likely to be co-functional and

co-regulated. Clustering genes based on coexpression has proven helpful in predicting unknown

gene functions and identifying regulatory motifs [5, 2].

Gene coexpression networks, which describe the similarities in expression profiles between

different genes, have attracted much attention among researchers. Graph-theoretic approaches have

been applied to gene coexpression networks to analyze gene expression data. Sharan et al. [30]

proposed a method to discover clusters in the gene coexpression network using graph partitioning

algorithm based on minimum cut.

Due to the complex procedure of microarray experiments and the simultaneous perturbation

of multiple biological pathways in the experiments, gene expression data often contains many

spurious coexpression links, that is, coexpression links that have no biological significance [13]. To

overcome this problem, researchers have focused on integrating multiple gene expression datasets.

In this approach, each gene expression dataset is represented as a gene coexpression network and

we aim to discover modules that occur frequently in the set of coexpression networks.

1

Several enumeration algorithms for mining frequent modules in a set of networks have been

proposed [18, 33, 28]. However, pattern enumeration approaches do not scale well when applied

to massive biological networks, especially when there are large frequent modules. The time and

memory complexities increase exponentially with the size of modules and the number of networks

[13]. To overcome this problem, many researchers have directed their attention to aggregating

the networks together into a summary graph and discovering modules from it. Lee et al. [20]

applied graph clustering algorithms on the summary graph to discover highly connected modules,

and showed that coexpression links present in many datasets are more likely to be biologically

significant.

Directly clustering a summary graph, however, may result in false positive modules, which

are highly connected in the summary graph but neither frequent nor highly connected in the

original networks [13]. Several algorithms have been proposed to address this problem [14, 28].

These algorithms mine frequent modules from a graph set by constructing a binary edge occurrence

matrix, which is a binary matrix that describe the edge occurrences in the graph set. Then biclusters

in the matrix are mined, which correspond to frequent subgraphs in the graph set.

1.1. Contribution

In this thesis, we propose a two-step algorithm to mine approximate frequent dense modules,

that is, frequent dense modules that may contain noise. We mine approximate frequent modules as

opposed to exact frequent modules, because mining exact frequent modules may be too strict and

may fail to discover some biologically significant modules. In the first step, we construct a binary

edge occurrence matrix from the graph set and then mine approximate biclusters from the matrix.

In the second step, dense modules are extracted from the subgraphs induced by the biclusters.

We build on BiBit [26] algorithm to mine approximate biclusters, which are biclusters

containing noise. This approach mines many edgesets with high overlap, which results in many

duplicate modules. Thus we further extend the algorithm and propose two extended algorithms,

which summarize the edgesets using post-processing and on-line methods respectively. The ex-

tended approaches reduce the number of edgesets and duplicate modules significantly, enabling

analysis for lower support thresholds.

To demonstrate the effectiveness of our algorithm, we conducted experiments on real-world

gene expression networks. Our result shows that frequent dense subgraphs are biologically interest-

2

ing, as large percentage of these subgraphs are biologically enriched with known KEGG pathways

and molecular functions.

1.2. Thesis Overview

The remainder of the thesis is organized as follows. In Chapter 2, we present related

work, including related concepts and algorithms used in our work, as well as previous algorithms

proposed to mine frequent subgraphs. In Chapter 3, we present general approach, including the

problem description, the general two-step framework of our algorithm, and brief description of the

various techniques for mining frequent edgesets. In Chapter 4, we present the detailed description

of the first approach, biclustering with noise, and the associated BiBitN algorithm, followed by

the experimental results. In Chapter 5, we present the detailed description of the biclustering

with post-processing summarization method, an extension of the BiBitN method, followed by the

experimental results. In Chapter 6, we present the detailed description of the biclustering with on-

line summarization method, another extension of the BiBitN method, followed by the experimental

results. Finally, Chapter 7 presents the conclusion and future work.

3

2. RELATED WORK

In this chapter, we present related concepts and algorithms used in our work, including

frequent itemset mining, clustering and biclustering, and graph mining. We then present previous

algorithms proposed to mine frequent subgraphs in the context of biological data.

The fast growing pace of digital data collection and accumulation has necessitated the devel-

opment of data mining techniques. Data mining is a process of discovering insightful and interesting

patterns from large-scale data. The process generally involves collection, extraction, warehousing,

and analysis of data, as well as statistics. Data mining research has evolved from, and continues to

grow in various fields such as machine learning, pattern recognition, databases, statistics, artificial

intelligence, business, medical, etc. Several data mining techniques have been developed, including

frequent itemset mining, association rule mining, sequence mining, classification, clustering, and

graph mining.

2.1. Frequent Itemset Mining

Frequent itemset mining is one of the most commonly used techniques in pattern mining.

Its goal is to find sets of objects that frequently occur together. Frequent itemset mining has many

applications in various areas including marketing, social media, and bioinformatics, among others.

A typical application of frequent itemset mining is market basket analysis, which is mining set

of items that customers frequently purchase together in supermarkets. From frequent itemsets,

we can identify association rules, which are statements about the likelihood of co-occurrences of

two itemsets. In the context of market basket analysis, an example of an association rule is: If

tid Itemset

1 A B E

2 A C D E

3 B D E

4 A B C E

5 C D

sup Itemsets

4 E

3 A, B, C, D, AE, BE

2 AB, AC, CD, CE, DE, ABE, ACE

(a) (b)

Figure 2.1. (a) Transaction database and (b) all frequent itemsets in the database for minsup = 2.

4

a customer purchased items a and b, she is likely to purchase item c. Frequent itemsets and

association rules can then be utilized to help plan marketing strategies.

Here we briefly explain frequent itemset mining. Let I = {x1, x2, . . . , xm} be a set of all

items. Any subset of I is called an itemset. A transaction is a tuple of the form 〈t,X〉, where t is

a unique transaction id or tid, and X is an itemset. A set of transactions is called a transaction

database. Figure 2.1 (a) shows an example of a transaction database containing five transactions.

Note that we drop the set notation for convenience.

Given a transaction database D, the support of an itemset X, denoted sup(X), is the

number of transactions in D that contains X. An itemset X is frequent if sup(X) ≥ minsup,

where minsup is a user-defined minimum support threshold. Figure 2.1 (b) shows all frequent

itemsets, grouped by support values, in the given transaction database for minsup = 2. Given

a minimum support threshold minsup, the task of frequent itemset mining is to find all frequent

itemsets in the database.

The brute-force approach of enumerating all possible itemsets to find frequent itemsets has

exponential time complexity, which is too expensive for large databases. In order to overcome this

problem, we can employ the anti-monotone property of the support of an itemset, which states

that the support of an itemset is monotone decreasing as the itemset gets expanded to a larger

itemset [9]. In other words, all subsets of a frequent itemset must be frequent, and all supersets of

an infrequent itemset must be infrequent. This property allows to prune all supersets of infrequent

itemsets and significantly reduce the search space.

For a large database or a low minimum support threshold, the number of frequent itemsets

may be too large to report, and it is necessary to report a condensed representation of the frequent

itemsets. One such representation is called the maximal frequent itemsets. A maximal frequent

itemset is a frequent itemset that does not have a frequent superset. Due to the anti-monotone

property of the support of an itemset, every subset of a maximal frequent itemset is frequent.

Thus, from the set of all maximal frequent itemsets, M, we can recover the set of all frequent

itemsets. However, we are unable to determine the support of each frequent itemset from M.

If we are only interested in mining the set of all frequent itemsets without their support values,

reporting M would suffice. In the exmaple given in Figure 2.1, the maximal frequent itemsets are

CD,DE,ABE, and ACE.

5

Algorithm 1 GenMax Algorithm

Initial Call:
M = ∅
P = {〈i, t(i)〉|i ∈ I, sup(i) ≥ minsup}

GenMax(P,minsup,M):
1. Y = ∪Xi

2. if ∃Z ∈M, such that Y ⊆ Z then
3. return
4. end if
5. for each 〈Xi, t(Xi)〉 ∈ P do
6. Pi = ∅
7. for each 〈Xi, t(Xi)〉 ∈ P,withj > i do
8. Xij = Xi ∪Xj

9. t(Xij) = t(Xi) ∩ t(Xj)
10. if sup(Xij) ≥ minsup then
11. Pi = Pi ∪ {〈Xij , t(Xij)〉}
12. end if
13. end for
14. if Pi 6= ∅ then
15. GenMax(Pi,minsup,M)
16. else if @Z ∈M, Xi ⊆ Z then
17. M =M∪Xi

18. end if
19. end for

2.1.1. GenMax Algorithm

GenMax [11] is a maximal frequent itemset mining algorithm used in this work. Here we

briefly explain the GenMax algorithm. We define an itemset-tidset pair, or IT-pair, as a tuple of

the form 〈X, t(X)〉 where X is an itemset and t(X) is the tidset of transactions containing X. The

support of an itemset X is the cardinality of its tidset, that is, sup(X) = |t(X)|. The algorithm

keeps track of tidsets of candidate itemsets to help compute support values. For example, in the

transaction database in Figure 2.1 (a), t(AE) = {1, 2, 4} (124 for short), and sup(AE) = |t(AE)| =

3. In general, the tidset of the union of two itemsets is equal to the intersection of the tidsets

of the individual itemsets, that is, given two itemsets Xa and Xb, t(Xab) = t(Xa) ∩ t(Xb), where

Xab = Xa ∪Xb. This property is used to quickly compute tidset of a candidate itemset from the

tidsets of its subsets.

The GenMax algorithm is illustrated in Algorithm 1. The recursive GenMax method takes

a set of frequent itemsets (with tidsets), P , and the set of discovered maximal itemsets, M. As

we will see, all itemsets in P share a common prefix. The algorithm first checks if the union of all

itemsets in P has a superset inM. If so, the current branch is pruned because no maximal itemset

6

A B C D E

124 134 245 235 1234

AB AC AE

14 24 124

BE

134

CD CE

25 24

DE

23

ABE

14

ACE

24

PA PB PC PD

PAB PAC

Figure 2.2. Execution of GenMax algorithm on the database in Figure 2.1 (a) for minsup = 2.
Maximal itemsets are shown with red outlines, and pruned branches are shown with diagonal lines.

can be generated from the current branch. If not, the algorithm extends each itemset Xi in P by

taking the union with all other itemsets Xj in P to generate new candidates Xij . The tidset t(Xij)

is computed by intersecting t(Xi) and t(Xj), and we compute the support from the tidset. That

is, sup(Xij) = |t(Xij)| = |t(Xi) ∩ t(Xj)|. The candidates Xij are added to the set Pi, if frequent.

If Pi is not empty, GenMax is called recursively with Pi to find potential extensions of Xi. If Pi

is empty, Xi is potentially maximal, so it is added to M if it has no superset in M. GenMax is

initially called with the set of all frequent items (with tidsets) as P and empty set M. After the

run, the set M will contain all maximal frequent itemsets.

Figure 2.2 illustrates the execution of GenMax alogrithm on the database in Figure 2.1 (a)

for minsup = 2. The root of the tree represents the initial call with the set of all frequent single

items and their tidsets. The maximal frequent itemsets are indicated by the red outlines and the

pruned candidates are indicated by the diagonal lines. For example, the candidate AE is pruned

because it cannot be extended and its superset ACE is already in M. Infrequent itemsets are not

shown.

2.2. Clustering

In order to learn from data, we define a set of features that describe data objects and

compare the data objects based on similarities/dissimilarities among them with respect to these

features. In clustering, also called unsupervised learning, we try to separate the dataset into groups

7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) Clustering (b)Biclustering

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 2.3. Clustering and biclustering in matrix representation. (a) shows a cluster {2, 4, 5}.
(b) shows a bicluster {2, 4, 5, 7, 8} (for columns {3, 6, 7}) which is a local pattern not found in (a).

such that elements have high intra-group similarities and low inter-group similarities. In clustering,

the data objects are not labeled with predefined classes, as is the case in supervised learning. The

goal is to find ’natural’ hidden clusters in the dataset. Here we explain several commonly used

clustering approaches.

K-means [21] clustering algorithm starts out by partitioning the dataset into k random

nonempty clusters and computing the centroid of each cluster. Then each data object is assigned

to the nearest cluster and new centroids are computed. The process repeats until it converges.

K-means algorithm is efficient but has many limitations. For instance, the algorithm requires the

prior specification of the number of clusters, and is unable to discover overlapping clusters.

Hierarchical clustering algorithms produce a set of nested clusters organized as a hierarchical

tree. The reults of hierarchical clustering can be visualized as a dendrogram, and it can be cut at

different levels to obtain different number of clusters. Two main types of hierarchical clustering

algorithms are agglomerative and divisive. Agglomerative clustering starts with each data object

as an individual cluster, and repeatedly merges the closest pair of clusters until only one cluster

is left. Divisive clustering starts with the entire dataset as a single cluster, and repeatedly split

clusters until each cluster contains one data object.

Other approaches cluster datasets based on density. As an example, the DBSCAN [6]

algorithm builds a cluster by including data objects that have dense neighborhood in the data

space (core points), and all objects in their neighborhood (border points). The density-based

8

clustering algorithms are highly scalable, able to discover clusters of arbitrary shapes, and able to

handle noisy data.

A dataset are typically represented by a matrix in which each row represents a data object

and each column represents an attribute(feature) that the data objects may have. Data matri-

ces can be real valued or binary valued. Real matrices are useful for representing experimental

measurements, as they are usually real valued. For example, a gene expression dataset is usually

represented as a real matrix where each entry is the gene expression level of the corresponding

gene in the corresponding sample. Binary matrices are useful when representing relationships be-

tween data objects and their possible attributes. For example, a binary matrix can be used to

simplify a gene expression dataset to represent relationships between genes and samples based on

expression/non-expression [25]. In another example, a binary matrix is used to represent relation-

ships between genes and proteins based on coding/non-coding [19].

In matrix represetation, the similarity between two data objects correspond to the similarity

between the two corresponding rows. Different row similarity measures may be employed in different

contexts. High row similarity means the rows have similar profiles. In matrix representatoin,

clustering a dataset means grouping highly similar rows together. Figure 2.3 (a) shows an example

of clustering in matrix representation. Rows 2, 4, and 5 have high similarities, thereby forming

a cluster {2, 4, 5}. It is also possible to cluster based on columns, which would correspond to

clustering based on attributes across all data objects.

2.3. Biclustering

The effectiveness of the standard clustering methods is limited because, in general, a group

of data objects may exhibit similar patterns under only a subset of attributes. The same limitation

exists when clustering based on attributes. In gene expression data, for instance, a subset of genes

is generally coexpressed under only a subset of samples. This limitation has led to the development

of biclustering algorithms. A biclustering algorithm clusters rows and columns simultaneously, and

thus is able to extract local patterns that are not discovered by the standard clustering methods.

In matrix representation, biclustering a dataset means finding submatrices with high row (or

column) similarities, as illustrated in Figure 3b. Figure 2.3 (b) shows an example of biclustering

in matrix representation. Rows 2, 4, 5, 7, and 8 have high similarities in columns 3, 6, and

7, thereby forming a bicluster {{2, 4, 5, 7, 8}, {3, 6, 7}}, which is a local pattern not found in (a).

9

Algorithm 2 BiBit Algorithm

Input:
B: m× n binary matrix; m edges × n graphs
mnr: minimum number of rows
mnc: minimum number of columns

Output:
X : set of final biclusters

1. for every edge pair (i, j) do
2. S(i, j) = S(i) ∩ S(j)
3. if S(i, j) is new and |S(i, j)| ≥ mnc then
4. 〈I, S(i, j)〉 = 〈{i, j}, S(i, j)〉
5. for every remaining edge, q ∈ E \ I do
6. if S(q) ∩ S(i, j) = S(i, j) then
7. I = I ∪ q
8. end if
9. end for
10. if |I| ≥ mnr then
11. X = X ∪ 〈I, S(i, j)〉
12. end if
13. end if
14. end for

Different approaches are employed for extracting biclusters from real datasets and binary datasets.

Some biclustering algorithms for real datasets are described in [17, 31]. We will not describe these

algorithms here, since we are primarily interested in biclustering binary data in this work.

Several biclustering algorithms for binary datasets have been developed [19, 32, 26]. In [19]

and [32], biclusters are defined as submatrices with high density of ones. The common theme of

these algorithms is to define an objective function such that a bicluster with a high score tends to be

large in size and have high density of ones. In an iterative process, a bicluster that maximizes the

objective function is found. These algorithms can only find one bicluster in each run. Therefore,

the discovered bicluster is masked from the input matrix in the subsequent runs. As the result,

these algorithms are unable to discover overlapping biclusters.

BiBit [26] is another biclustering algorithm for binary data. BiBit algorithm is capable of

discovering overlapping biclusters and is easily extended to handle noisy data. Modified versions

of BiBit (BiBitN and BiBitNS) are used in this work.

2.3.1. BiBit Algorithm

BiBit (Bit-Pattern Biclustering) [26] is a biclustering algorithm for binary datasets. It is

relatively efficient and robust to density and size of input data. The algorithm is illustrated in

10

1 2 3 4 5 6 7 8 9

:

i 0 1 1 0 1 0 1 0 1

:

j 1 1 1 0 0 0 1 1 1

:

k 0 1 1 1 0 1 1 0 1

:

l 1 1 0 0 1 0 1 1 1

:

S(i, j) = {2, 3, 7, 9}

S(k) S(i, j) = S(i, j)

S(l) S(i, j) ≠ S(i, j)

Figure 2.4. Pattern extension in BiBit. Rows i and j produce seed S(i, j) = {2, 3, 7, 9}. Row k
is added to the pattern because S(k) ∩ S(i, j) = S(i, j), while row l is not added to the pattern
because S(l) ∩ S(i, j) 6= S(i, j).

Algorithm 2. Given an m × n binary matrix B in which rows correspond to edges and columns

correspond to graphs, let S(i) denote the set of column (graph) indices j such that Bij = 1, i.e.,

S(i) = {j | Bij = 1}, and let S(i, j) = S(i) ∩ S(j). For example in Figure 2.4, S(i) = {2, 3, 5, 7, 9},

S(j) = {1, 2, 3, 7, 9}, and S(i, j) = {2, 3, 7, 9}. BiBit algorithm selects a pair of rows i and j

and generates the bit-pattern 〈{i, j}, S(i, j)〉. A bit-pattern is a tuple of the set of rows and its

supporting columns. The bit-pattern 〈{i, j}, S(i, j)〉 is used as a seed for a bicluster and S(i, j)

represents the column set for the bicluster. Each remaining row q is added to the bicluster if

S(q) ∩ S(i, j) = S(i, j), that is, if the set of columns in which object q appears is a superset of the

set of columns in which both objects i and j appear. In Figure 2.4, row k is added to the bicluster

from seed S(i, j) because S(k) ∩ S(i, j) = S(i, j), and row l is not added to the bicluster because

S(l) ∩ S(i, j) 6= S(i, j). The result is a bicluster that consists of all ones, and its columns is the

seed S(i, j). This process is repeated for every pair of rows as a seed. Only bicluster with at least

mnc columns and mnr rows are returned.

While the BiBit algorithm is efficient, it has several limitations. One problem is that it

may not discover every bicluster that satisfies the given condition. This happens because when

the size of a seed is much larger than mnc, it will miss rows that satisfy the mnc requirement but

do not match the seed. For example, if the seed appear in 90% of the graphs, this seed can only

be extended with edges that appear in the same set of graphs, and thus limiting the number of

11

a c e

b fd

a c

b

a c e

b fd

G2

a c e

b fd

G3

a c e

b fd

G1

a c

b

(a) Mining subgraphs from a single graph

(b) Mining subgraphs from multiple graphs

Figure 2.5. Two types of graph mining problems. (a) Mining interesting subgraphs from a single
large graph. (b) Mining frequently occurring interesting subgraphs from a set of multiple graphs.

possible extensions available for the seed. This is a minor problem if the number of columns in

the input binary matrix is small, but it becomes more apparent if the number of columns is large.

Another limitation of the BiBit algorithm is that it is only able to discover exact biclusters, which

are biclusters consisting of all ones. The BiBit algorithm may be extended to discover approximate

biclusters, that is, biclusters that may contain some noise, by relaxing the condition for extending

the bicluster.

2.4. Graph Mining

In traditional data analyses, data objects are assumed to be independent of one another.

However, this is not the case in reality, since data objects are often connected to one another by

various relationships to form a network. Networks are ubiquitous in today’s world. The internet,

the World Wide Web, and social networks are some examples of networks. Interactions among

proteins in biological processes can be modelled as a network of proteins [18]. A gene expression

data can be represented as a network of coexpressed genes [33]. Network data can be modelled as

a graph. Graph is a mathematical structure consisting of a set of nodes, and edges that connect

the nodes. In graph representation of a network, each node corresponds to a data object and each

edge corresponds to a connection between two objects.

Due to the increasing availability of network data, graph mining has become an important

reserch area in data mining. The goal of graph mining is to discover interesting subgraphs from a

single or multiple graphs. We are usually interested in finding highly connected subgraphs (dense

12

Algorithm 3 DME Algorithm

Input:
V : node set
M : adjacency matrix
θ: minimum density
U : current module (DME is called with U = ∅)

Output:
locally maximal modules that satisfy the density threshold

1. DME (V,M, θ, U):
2. locallyMaximal = true
3. for each v ∈ V nU do
4. if ρ(U ∪ {v}) ≥ θ then
5. locallyMaximal = false
6. if U ∪ {v} is child of U then
7. DME (V,M, θ, U ∪ {v})
8. end if
9. end if
10. end for
11. if locallyMaximal then
12. output U
13. end if

modules, cliques, etc.). The highly connected subgraphs may represent different concepts in dif-

ferent contexts. For example in a social network, a highly connected subgraph may represent a

social community. In a gene coexpression network, one may represent a group of genes that are

co-functional and/or co-regulated [5, 2].

There are two main types of graph mining problems. One type is mining subgraphs from a

single large graph, as shown in Figure 2.5 (a). Several approaches have been proposed to tackle this

type of problems [3, 23, 1, 7, 8]. [3] and [23] recursively partition the graph based on betweenness and

modularity, respectively, into a set of modules. [1] and [7] define module criteria and use heuristic

search techniques to find modules. The DME [8] algorithm uses an enumeration technique to find

the complete set of modules that satisfy a user-defined density threshold.

Another type of graph mining problems is mining subgraphs from a set of multiple graphs,

as shown in Figure 2.5 (b). The goal here is to discover subgraphs that occur frequently in the set

of graphs. Methods to tackle this type of problems are described in Section 2.5.3 in the context of

biological data.

13

c

b fd

a c

b fd

c e

b fd

Figure 2.6. Parent-child relationship in DME algorithm. The left subgraph is a child of the graph
above, because the degree of the new node a is less than or equal to every other node already in
the graph. The right subgraph is not a child of the graph above, because the degree of the new
node e is greater than some nodes already in the graph.

2.4.1. DME Algorithm

The DME (Dense Module Enumeration) [8] algorithm mines dense subgraphs in a single

large graph. Given a user-defined density threshold, DME returns all locally maximal subgraphs

that satisfy the threshold. The original DME algorithm is applicable to weighted graphs and is

capable of integrating constraints from additional data sources. In this work, we apply DME on

unweighted graphs without additional constraints. Thus, we describe a simplified version of DME,

which applies to unweighted graphs and does not consider additional constraints.

DME is an enumeration algorithm, which starts with the empty set and iteratively grows

the set by adding one element at a time. Conventional pruning strategies do not work because, in

general, a superset of a module may have a higher density than the module itself. The key idea of

DME is to use the parent-child relationship for modules, which makes pruning possible.

The parent-child relationship for modules is defined as follows: A unique parent of a module

is obtained by removing the node with the minimum degree. A strict total ordering (e.g. lexico-

graphic order) on nodes is defined, in order to break ties when there are multiple nodes with the

minimum degree. Graph has a convenient property that adding a node with degree less than or

equal to the degree of every other node already in the module will not increase the density of the

module. In terms of parent-child relationship, this means the density of a child module is always

less than or equal to its parent’s. The parent-child relationship in DME algorithm is illustrated in

14

Figure 2.6. The left subgraph is a child of the graph above, because the degree of the new node a

is less than or equal to every other node already in the graph. The right subgraph is not a child of

the graph above, because the degree of the new node e is greater than some nodes already in the

graph. The density of the parent graph is 0.67, while the densities of the left and right subgraphs

are 0.5 and 0.7 respectively, therefore the property holds.

The DME algorithm is illustrated in Algorithm 3. In each iterations, it only generates the

children of each module, instead of all possible extensions of the module. This way, the module

density decreases monotonically along each path from root to leaf in the enumeration tree. The

children that violate the density threshold can be pruned. The discovered modules are locally

maximal, but in practice they are likely to be globally maximal as well.

2.5. Clustering Gene Expression Data

Adavances in DNA microarray technology have enabled the collection and analysis of huge

amount of gene expression data. Gene expression datasets can be clustered by genes, samples,

or both genes and samples simultaneously. In gene-based clustering, each cluster of genes may

correspond to co-functional and/or co-regulated genes. In sample-based clustering, each cluster

may correspond to disease or cancer types. In general, only a subset of genes and a subset of

samples are related to a particular biological process [16]. Therefore, in biclustering, genes and

samples are clustered simultaneously. In this work, we focus on gene-based clustering.

Clustering coexpressed genes have proven useful in understanding gene function and gene

regulation. Coexpressed genes are likely to have similar biological functions, and clustering coex-

pressed genes can help predict previously unknown gene functions based on the genes with known

functions in the same cluster [5]. Coexpressed genes are also likely to be co-regulated. Clustering

coexpressed genes can help identify regulatory motifs by searching for common DNA sequences at

the promoter regions of the genes in the same cluster [2].

2.5.1. Gene Coexpression Networks

Gene expression data from DNA microarray experiments are typically presented as real

matrix whose rows correspond to genes and columns to samples. The value of the matrix entry

Mij represents the expression level of gene i in sample j, and row i represents the expression profile

of gene i. Figure 2.7 (a) shows the structure of a gene expression dataset with six genes and five

samples.

15

a

b

c

d

e

f

Samples

G
en

e
s

a c e

b fd

(a) Gene expression dataset (b) Gene coexpression network

Figure 2.7. (a) Gene expression dataset of six genes and five samples. (b) Gene coexpression
network constructed from a dataset of six genes.

Gene expression datasets are often represented as gene coexpression networks for analysis.

A gene coexpression network is a graph in which each node corresponds to a gene and there is an

edge between two nodes if the two genes have similar expression profiles in the dataset. Typcially,

Pearson correlation coefficient is used as the similarity measure for expression profiles [34]. If the

similarity value between two genes is greater than a user-defined similarity threshold, then we add

an edge between the two genes in the coexpression network. Figure 2.7 (b) shows an example of a

gene coexpression network constructed from a dataset of six genes. The presence of the edge (a, b),

for example, implies that the genes a and b have similar expression profiles in the dataset. A gene

coexpression network can be weighted. In the case of weighted network, each edge weight is the

similarity value between the two genes that the edge connects.

After constructing gene coexpression networks, graph-theoretic methods can be used to an-

alyze the data. For example, a highly connected region in the coexpression network may correspond

to a module of coexpressed genes.

2.5.2. Mining Single Gene Expression Dataset

Various conventional clustering methods have been used to identify gene groups in gene ex-

pression data, including k-means and hierarchical approaches [12, 5]. While these general-purpose

algorithms have proven useful in some applications, they have not been effective in many appli-

cations [16]. Several algorithms designed specifically for gene expression data have been proposed

[15, 30]. The DHC [15] algorithm proposed a density-based approach to identify clusters from gene

expression data. In [30], a weighted gene coexpression network was constructed from the gene

16

a c e

b fd

G1

a c e

b fd

G2

a c e

b fd

G3Dataset 1
Dataset 2

Dataset 3

Figure 2.8. Integrating multiple gene expression datasets. Multiple datasets are represented as a
set of gene coexpression networks, where each dataset corresponds to one coexpression network.

expression data and was split recursively based on minimum cut to find clusters. It has been shown

that these algorithms perform better than the conventional approaches on some datasets.

2.5.3. Integrating Multiple Gene Expression Datasets

For experimental reasons, many coexpression links are of questionable biological relevance.

Due to the complex procedure of microarray experiments, gene expression data often contains a

lot of noise, leading to a significant number of spurious coexpression links [13]. Additionally, some

coexpression may be caused by the simultaneous perturbation of multiple biological pathways in

the particular experiment rather than by biological relevance [14]. These spurious coexpression

links may lead to the discovery of false modules.

To overcome the problem of spurious links, recent studies have focused on integrating mul-

tiple gene expression datasets to discover gene clusters that appear across multiple datasets. It is

based on the expectation that biological modules are active across multiple datasets. Many of these

studies used graph-theoretic approach, where multiple gene expression datasets are represented as a

set of gene coexpression networks. Each dataset corresponds to one coexpression network, as shown

in Figure 2.8. The gene clustering task is then equivalent to mining frequently occurring modules

in the set of multiple gene coexpression networks. Biological networks often have the convenient

property where each node has a unique label. This property can be exploited to avoid the subgraph

isomorphism problem and greatly simplify the task.

17

Several enumeration algorithms for mining frequent modules in a set of graphs have been

proposed. MULE [18] is a pattern enumeration algorithm based on a depth-first frequent itemset

mining approach. We are usually interested in mining modules that are not only frequent but also

highly connected, because data objects (genes, proteins, etc.) in a highly connected module may

have higher biological relevance than those that are not. Therefore, some algorithms have imposed

additional constraints to mine frequent highly-connected modules. In [33], a connectivity constraint

was imposed to mine frequent closed subgraphs. In [15], a density constraint was imposed to mine

frequent quasi-cliques.

Pattern enumeration approaches do not scale well when applied to massive biological net-

works, especially when there are large frequent modules. The time and memory complexities of

these algorithms increase exponentially with the size of modules and the number of networks [13].

To address the scalability issue, many studies have focused on aggregating the networks together

and discovering modules in the aggregated graph. In [20], the authors combined frequent coexpres-

sion links in multiple coexpression networks to build a summary graph, and applied hierarchical

clustering and the MCODE [1] algorithms on the summary graph to discover highly connected

modules. It was shown that coexpression links present in many datasets are more likely to repre-

sent known functional relevance. However, directly clustering an aggregated graph may result in

the discovery of false positive modules, which are not dense in the original set of networks. The

edges in these modules may be scattered across the networks such that they are highly connected

in the aggregated graph, but neither frequent nor highly connected in the original networks [13].

Several algorithms have been proposed to address this problem [13, 14, 28].

The CODENSE [13] algorithm efficiently mines coherent dense subgraphs across large num-

ber of graphs. A coherent subgraph is a subgraph whose edges show highly correlated occurrences

across the whole graph set. The algorithm first builds a summary graph and mines the dense

subgraphs in the summary graph. Then for each dense summary subgraph, it constructs the

second-order graph, which illustrates the co-occurrence of edges across the original graph set. Fi-

nally, dense subgraphs in the second-order graph are extracted as the final results. The algorithm

is able to overcome the false positive module problem by exploiting the property that a coherent

subgraph’s second-order graph must be dense. Another notable feature of CODENSE is its ability

18

to mine overlapping modules. It is important because, in general, one gene may be involved in

multiple biological processes.

In the approach proposed by Huang et al. [14], the coexpression graphs are represented

as a binary edge occurrence matrix, which is a binary matrix where each row corresponds to an

edge, each column corresponds to a graph, and each entry indicates the presence of the edge in

the graph. Frequent itemset mining technique is employed to mine frequent edgesets from the edge

occurrence matrix. These frequent edgesets serve as seeds for a biclustering algorithm, which uses

simulated annealing to maximize an objective function such that the discovered biclusters are large

and have high density of ones. Connected components in the biclusters are returned as the final

output modules. The discovered modules are frequent but not necessarily highly connected.

The MFMS [28] algorithm mines maximal frequent collections of k-cliques and percolated

k-cliques across many coexpression networks. The coexpression networks are first represented as the

binary edge occurrence matrix. Maximal itemset mining algorithm (GenMax [11]) is then used on

the edge occurrence matrix to mine maximal frequent edgesets. Cliques and percolated cliques are

extracted from the subgraph induced by each maximal frequent edgeset. Mining maximal frequent

edgesets is equivalent to mining exact biclusters, that is, biclusters whose entries are all ones. This

means the discovered modules cannot contain noise. This condition may be too strict and may fail

to identify biologically relevant modules that contain some noise due to the noisy nature of gene

expression data. Salem et al. [29, 27] proposed an approach that constructs a weighted network

whose nodes corresponds to the original edges in the coexpression networks. The weight between

two edges is calculated as a combined score based on the topological similarity between the edges

and the occurrence similarity.

19

3. GENERAL APPROACH

In this chapter, we present the problem description and the general two-step framework

of our algorithm. We also present brief description of the various techniques for mining fre-

quent edgesets, including frequent itemset mining, biclustering (BiBit), biclustering with noise

(BiBitN), biclustering with post-processing summarization, and biclustering with on-line summa-

rization. BiBitN and the two extended algorithms (post-processing and on-line summarization) are

described in more detail in chapters 4, 5, and 6.

3.1. Problem Description

In this section, we introduce preliminary definitions that we use throughout the paper, and

describe the problem of mining approximate frequent dense modules from a relation graph set.

Gene coexpression networks have a property that each gene occurs only once in the network.

This type of network can be modelled as a relation graph, where each node has a unique label. A

relation graph set is a set of graphs that share a common set of nodes.

Relation Graph Set: A relation graph set is a set of n graphs G = {G1, G2, . . . , Gn} where

Gi = (V,Ei) and Ei ⊆ V × V . A common set of nodes V is shared by all graphs.

Figure 3.1 (a) shows an example of a relation graph set of six graphs. Note they share a

common set of nodes. To set a common framework for the discussion of the different methods,

we represent the n graphs as a summary graph G(V,E) and an associated binary edge occurrence

matrix, B. Each row of the matrix is a binary vector whose entries represent the presence/absence

of the edge in the corresponding graph.

Summary Graph and Edge Occurrence Matrix: Given a relation graph set G = {G1, G2, . . . , Gn}

where Gi = (V,Ei), let E = {e1, e2, . . . , em} =
n⋃

i=1
Ei. The edge occurrence matrix B is an m × n

binary matrix where Bij = 1 if ei ∈ Ej ; 0 otherwise. The relation graph set can be represented as

G = (V,E,B).

20

a c e

b fd

G1

a c e

b fd

G2

a c e

b fd

G3

a c e

b fd

G4

a c e

b fd

G5

a c e

b fd

G6

a c e

b fd

G1 G2 G3 G4 G5 G6

a-b 1 1 0 0 1 1

a-c 1 0 0 0 1 1

a-d 0 0 1 1 0 0

b-c 1 1 0 1 1 1

b-d 0 0 1 1 1 0

b-e 1 0 0 0 0 1

c-d 0 1 1 0 1 0

c-e 0 1 1 1 0 0

c-f 1 1 1 1 1 0

d-e 0 1 0 0 1 1

d-f 1 1 0 0 0 1

e-f 0 1 1 1 1 1

(a) Relation Graph Set (b) Summary Graph and Edge Occurrence Matrix

Figure 3.1. (a) Relation graph set of six graphs with six nodes. (b) Summary graph and the
binary edge occurrence matrix for the relation graph set in (a).

a c e

b fd

G

a c

b f

G’(E’)

Figure 3.2. G′(E′) is the subgraph of G induced by the edgeset E′ = {(a, b), (a, c), (c, f)}.

a c e

b fd

G1

a c e

b fd

G2

a c e

b fd

G3

a c e

b fd

G4

a c e

b fd

G5

a c e

b fd

G6

c e

b fd

Figure 3.3. Approximate frequent subgraph of the relation graph set in Figure 3.1 (a) for
minsup = 4 and r = 0.25.

21

Figure 3.1 (b) illustrates the summary graph and the associated binary edge occurrence

matrix for the relation graph set in (a). For example, the first row of the edge occurrence matrix

shows that the edge (a, b) is present in graphs {G1, G2, G5, G6}.

Edge-Induced Subgraph: Given a graph G(V,E) and an edgeset E′ ⊆ E, the edge-induced

subgraph G′(V ′, E′) of G (induced by edgeset E′) is a graph whose edgeset is E′ and the node set

is V ′ =
⋃

V (e) for all e ∈ E′ where V (e) denotes the endpoints of e.

Figure 3.2 shows an example of an edge-induced subgraph. G′(E′) is the subgraph of G

induced by the edgeset E′ = {(a, b), (a, c), (c, f)}.

Note that an edge-induced subgraph does not have isolated nodes since each node that is

present in the induced subgraph is an endpoint of at least one edge. Since an edge-induced subgraph

is uniquely identified by its edgeset, we refer to the frequent edge-induced subgraph as a frequent

edgeset.

Frequent Subgraph: Given a graph set G = {G1, G2, . . . , Gn}, a minimum support threshold

minsup, an edge-induced subgraph G′ is a frequent subgraph if it is a subgraph of at least minsup

graphs. A subgraph G′(V ′, E′) is a subgraph of G = (V,E), denoted as G′ ⊆ G, if V ′ ⊆ V and

E′ ⊆ E. The supporting graphs of a subgraph is the set of graphs in which the subgraph appears.

sup(G′,G) = {Gi1, Gi2, · · · , Gik}

such that G′ is a subgraph of Gi for each Gi in sup(G′,G) and k is the number of graphs in which the

subgraph appears. When the graph dataset is understood from the context, we denote sup(G′,G)

simply as sup(G′). A subgraph G′ is frequent in a graph set G if the number of supporting graphs

is at least minsup graphs, i.e., |sup(G′,G)| >= minsup.

The definition of frequent subgraphs requires all the edges of a subgraph to appear in all

the supporting graphs. Given that some of edges might be missing from a coexpression network

due to noise and correlation cutoff, we should change the definition of the occurrence of a subgraph

22

in a coexpression network. Thus we relax the occurrence constraint and introduce the approximate

frequent subgraph that is a relaxed form of the frequent subgraph by allowing missing edges (noise).

An edge is approximately supported by a graph set if the edge appears in most of the graphs,

and a subgraph is approximately supported by a graph set if all the edges of the subgraph are

approximately supported by the same graph set.

Approximate Frequent Subgraph: Given a relation graph set G = {G1, G2, . . . , Gn}, a mini-

mum support threshold minsup, and a noise ratio r, an edge-induced subgraph G′[E′] is an approx-

imate frequent subgraph if and only if there exists a graph set D ⊆ G such that |D| >= minsup

and for every edge e ∈ E′, e occurs in at least [
]
|D| ∗ (1− r) graphs in D, the nearest integer to

|D| ∗ (1− r).

The noise ratio r is a real number between 0 and 1, and represents the ratio of the allowed

noise. A higher value of r means more noise is allowed. In our definition of approximate frequent

subgraph, an edge e need not be present in every graph in D, as long as it occurs in most of them.

For example, the graph in Figure 3.3 is an approximate frequent subgraph of the relation graph set

in 3.1 (a) for minsup = 4 and r = 0.25, because every edge in the graph occurs in at least three

out of the four graphs in {G2, G3, G4, G5}.

In this work, we are interested in discovering frequent subgraphs that are dense. Both the

density and the recurrence of the subgraph increase the likelihood that the subgraph is biologically

meaningful.

Graph Density: The density of a graph G is 2m/(n(n− 1)) where m is the number of edges and

n is the number of nodes in G. G is dense if its density is greater than or equal to a minimum

density threshold.

Our problem is formulated as follows: Given a relation graph set G = {G1, G2, . . . , Gn},

minimum support, noise, and density thresholds, find subgraphs that are both approximate frequent

and dense.

23

We follow a two-step approach to mine frequent dense subgraphs. The first step is to mine

frequent subgraphs from the relation graph set, and the second step is to mine dense modules from

the subgraphs.

3.2. Mining Frequent Edgesets

The first step in our two-step approach is to mine frequent subgraphs from the relation

graph set. The general approach we take to mine frequent subgraphs is to first represent the

relation graph set as the summary graph and the associated binary edge occurrence matrix. The

problem is then equivalent to mining frequent edgesets (row sets) from the edge occurrence matrix,

since the subgraphs induced by the frequent edgesets are the frequent subgraphs of the relation

graph set.

In this section, we introduce five approaches to mine frequent edgesets: frequent itemset

mining, biclustering (BiBit), biclustering with noise (BiBitN), biclustering with post-processing

summarization, and biclustering with on-line summarization. In the later chapters, we describe in

detail the BiBitN, post-processing summarization, and on-line summarization methods, which are

the main methods we propose in this work.

3.2.1. Frequent Itemset Mining

Here, we briefly describe how frequent edgesets are mined using frequent itemset mining.

Let E = {e1, e2, . . . , e|E|} be the set of the union of all the edges in the graphs. The graph set

is represented as a set of transactions defined over the set of edges in the graphs. Each graph is

essentially a subset of edges from the entire edgesets, i.e., Ei ⊆ E. Given a minimum support

threshold minsup, a set of edges E′ ⊆ E is called a frequent edgeset if it appear in at least minsup

graphs in the relation graph set. Let S(E′) denote the set of graph ids of the graphs that contain

E′. The support of an edgeset E′ is |S(E′)|.

Because of the anti-monotone property of the support of an edgeset, all subsets of a frequent

edgeset are frequent. The frequent edgesets would have large overlap between the patterns and

the number of these frequent patterns will be large. To overcome this problem, only the maximal

frequent patterns are mined. An edgeset is a maximal frequent edgeset if it is frequent and none of

its superset is maximal. We employ the GenMax algorithm for mining all maximal frequent edgesets

from the graphs [11]. The set of maximal frequent edgesets is defined as M = {M1,M2, · · · ,M|M |},

where each Mi is a maximal frequent edgeset.

24

Frequent itemset mining method finds exact frequent edgesets, as opposed to approximate

frequent edgesets, which may be too strict. It mines all maximal frequent edgesets, resulting in

finding too many edgesets which are difficult to analyze. Many edgesets are highly similar with

other edgesets, that is, they have high overlap, producing many duplicate modules in the final

result.

3.2.2. Biclustering (BiBit)

Here, we briefly describe how biclustering technique is used to mine frequent edgesets from

binary edge occurrence matrix. Let B be a binary edge occurrence matrix that represents a relation

graph set G = {G1, G2, . . . , Gn} with edgeset E = {e1, e2, . . . , em}. Then column j of B corresponds

to a relation graph Gj and row i corresponds to an edge ei.

A biclustering algorithm can be applied to B to mine biclusters, that is, submatrices that

have high density of ones. A bicluster is an exact bicluster if it contains no noise, i.e., it consists

of all ones. A bicluster is an approximate bicluster if it contains noise. Let B′ be a bicluster of B

such that E′ ⊆ E is the edgeset that corresponds to the rows of B′ and G′ ⊆ G is the graph set

that corresponds to the columns of B′. If an edge occurrence matrix B contains the bicluster B′, it

means the edgeset E′ occurs in the graphs in G′. Given a minimum support threshold minsup, if

|G′| ≥ minsup, then edgeset E′ is a frequent edgeset. Therefore, frequent edgesets can be mined

from binary edge occurrence matrix by mining biclusters with at least minsup columns.

BiBit [26] is a greedy biclustering algorithm for mining exact biclusters from binary matrix.

Because BiBit mines exact biclusters, it still has the problem, as with the frequent itemset mining

method, that mining condition is too strict. Apart from mining slightly less number of edgesets

due to the greedy nature of the algorithm, BiBit method is essentially the same as the frequent

itemset mining method in that they both mine exact edgesets and too many edgesets with high

similarity among each other.

3.2.3. Biclustering with Noise (BiBitN)

Here, we briefly describe biclustering with noise (BiBitN) method. BiBitN algorithm is an

extension of BiBit algorithm that mines approximate biclusters, that is, biclusters that may contain

noise. Because it mines approximate biclusters, the discovered edgesets are approximate frequent.

This may lead to the discovery of interesting modules not found with the above methods. However,

25

the algorithm still mines too many edgeset with high similarity. The detailed description of the

method is given in Chapter 4.

3.2.4. Biclustering with Post-Processing Summarization

Here, we briefly describe biclustering with post-processing summarization method. This

algorithm extends the BiBitN algorithm and returns a summarized set of biclusters. The above

methods mine too many similar edgesets, which are computationally expensive to analyze and

lead to mining many duplicate modules. To overcome this problem, we summarize the edgesets to

return a set of representative edgesets. The summarized set of edgesets is much smaller in size,

producing much less duplicate modules. Here we use on-line summarization process to produced

the representative set of edgesets. The detailed description of the method is given in Chapter 5.

3.2.5. Biclustering with On-Line Summarization

Here, we briefly describe biclustering with on-line summarization method. Similar to the

post-processing method, this algorithm extends the BiBitN algorithm and returns a summarized

set of biclusters. For pattern summarization method, we use an on-line summarization method

instead of post-processing. The post-processing summarization method produces more optimal

results but may be computationally expensive, while the on-line summarization is less optimal but

less expensive. Additionally, for the on-line summarization, it is guaranteed that no two edgesets

in the repersentative set are similar. The detailed description of the method is given in Chapter 6.

3.3. Mining Dense Subgraphs

The second step in our two-step approach is to mine dense modules from the subgraphs

extracted from the first step. In this work, we use DME [8] algorithm described in section 2.4.1.

For each subgraph mined in the first step, we apply DME algorithm to mine dense modules. The

result is a list of frequent dense modules in the original set of relation graphs.

3.4. Mining Frequent Dense Subgraphs

In this section, we summarize our general two-step algorithm for mining frequent dense

subgraphs from a relation graph set. The outline of our proposed algorithm is illustrated in Al-

gorithm 4. (Line 1) First the binary edge occurrence matrix is generated from the input relation

graph set. (Line 2) Then we mine frequent edgesets from the edge occurrence matrix for a given

support threshold and, if we allow noise, the noise ratio. Different methods for mining edgesets can

be used in this step, including the five methods discussed earlier, which are frequent itemset mining

26

a c e

b fd

G1

a c e

b fd

G2

a c e

b fd

G3

a c e

b fd

G4

a c e

b fd

G5

a c e

b fd

G6

a c e

b fd

G1 G2 G3 G4 G5 G6

a-b 1 1 0 0 1 1

a-c 1 0 0 0 1 1

a-d 0 0 1 1 0 0

b-c 1 1 0 1 1 1

b-d 0 0 1 1 1 0

b-e 1 0 0 0 0 1

c-d 0 1 1 0 1 0

c-e 0 1 1 1 0 0

c-f 1 1 1 1 1 0

d-e 0 1 0 0 1 1

d-f 1 1 0 0 0 1

e-f 0 1 1 1 1 1

(a) Relation Graph Set

(b) Summary Graph and Edge Occurrence Matrix

G1 G2 G3 G4 G5 G6

a-b 1 1 0 0 1 1

a-c 1 0 0 0 1 1

a-d 0 0 1 1 0 0

b-c 1 1 0 1 1 1

b-d 0 0 1 1 1 0

b-e 1 0 0 0 0 1

c-d 0 1 1 0 1 0

c-e 0 1 1 1 0 0

c-f 1 1 1 1 1 0

d-e 0 1 0 0 1 1

d-f 1 1 0 0 0 1

e-f 0 1 1 1 1 1

G1 G2 G3 G4 G5 G6

a-b 1 1 0 0 1 1

a-c 1 0 0 0 1 1

a-d 0 0 1 1 0 0

b-c 1 1 0 1 1 1

b-d 0 0 1 1 1 0

b-e 1 0 0 0 0 1

c-d 0 1 1 0 1 0

c-e 0 1 1 1 0 0

c-f 1 1 1 1 1 0

d-e 0 1 0 0 1 1

d-f 1 1 0 0 0 1

e-f 0 1 1 1 1 1

a c e

b fd

c e

b fd

a c e

b fd

c

b d

c e

f

(c) Biclusters/Edgesets in Edge

Occurrence Matrix

(d) Edge-induced Subgraphs

(e) Frequent Dense Modules

Figure 3.4. Steps in mining frequent dense subgraphs. (a) Relation graph set. (b) Summary
graph and the binary edge occurrence matrix generated from the relation graph set. (c) Biclus-
ters/edgesets mined from the edge occurrence matrix. (d) Subgraphs induced by the edgesets. (e)
Dense modules mined from edge-induced subgraphs.

27

Algorithm 4 Mining Frequent Dense Subgraphs

Input:
G: relation graph set
α: minimum support threshold
θ: module density threshold
r: noise ratio

Output:
X : list of frequent dense subgraphs

1. M = edgeOccurrenceMatrix(G)
2. E = frequentEdgesets(M,α, r) / mine frequent edgesets
3. for each edgeset E in E do
4. G = edgeInducedSubgraph(E)
5. D = DME(G, θ) / mine dense modules
6. X = X ∪D
7. end for

(GenMax [11]), biclustering (BiBit [26]), biclustering with noise (BiBitN), biclustering with post-

processing summarization, and biclustering with on-line summarization. (Line 4) For each edgeset

found, we generate an edge-induced subgraph. These subgraphs are frequent but not necessarily

dense. (Line 5) Finally, we mine dense modules the edge-induced subgraphs using DME [8]. Note

that since the subgraphs of a frequent subgraph are themselves frequent, the output dense modules

are frequent. The final subgraphs are exact for frequent itemset mining and biclustering meth-

ods, whereas they are approximate for biclustering with noise (BiBitN) method and its extension

methods (post-processing and on-line summarizations).

Figure 3.4 shows an outline of the steps in the algorithm. (a) is the original relation graph set

from which we mine frequent dense subgraphs. In step (b), we generate the summary graph and the

binary edge occurrence matrix from the relation graph set. In step (c), we mine biclusters/edgesets

from the edge occurrence matrix, and one of the four methods discussed earlier can be used.

The frequent itemset mining and biclustering methods would produce exact biclusters, while the

biclustering with noise (BiBitN) method and its extension methods would produce approximate

biclusters, as is the case in this example. In step (d), we generate subgraphs induced by the edgesets

in (c). Finally in step (e), we mine dense modules from the edge-induced subgraphs in (d). Since

the edge-induced subgraphs in (d) are frequent, the final dense modules in (e) are also frequent.

28

4. BICLUSTERING WITH NOISE (BIBITN)

In this chapter, we present a detailed description of the biclustering with noise method and

the associated BiBitN algorithm, followed by the experimental results.

4.1. Biclustering with Noise

As explained earlier, the first two methods described in section 3.2, frequent itemset mining

and biclustering, mine exact edgesets. This means the edgesets cannot contain any noise, which

may be too strict. Due to the complex procedure of microarray experiments, gene expression data

often contains a lot of noise. Because of the noise, there may be some missing coexpression links that

have biological significant in reality. Relaxing the condition to mine approximate frequent edgesets,

that is, allowing edgesets to contain noise, may help discover biologically significant modules that

are otherwise missed.

4.2. BiBitN Algorithm

BiBitN (BiBit with Noise) algorithm is an extension of the BiBit [26] algorithm. Although

BiBit is relatively efficient, it is only able to mine exact biclusters, and we extend the algorithm to

mine approximate biclusters. The BiBitN algorithm is shown in Algorithm 5. It is mostly the same

as the BiBit algorithm shown in Algorithm 2. The main modification is that BiBitN algorithm

takes an extra parameter r, which represents the ratio of the maximum allowed noise, and takes

it into account when adding rows to seeds. We add a row to a seed if the row matches the seed

within the noise limit, even if the row does not match the seed exactly. The maximum allowed

number of violating bits per row is determined by the noise ratio r and the size of the particular

seed. More precisely, for a given noise ratio r, a row q is considered a valid extension of the seed

S(i, j), if |S(q) ∩ S(i, j)|/|S(i, j)| ≥ 1 − r, as shown in line 6 of the algorithm. Consequently, the

BiBitN algorithm mines approximate biclusters with noise ratio of at most r.

Figure 4.1 illustrates how a pattern is extended in BiBitN algorithm. Rows i and j produce

the seed S(i, j) = {2, 3, 7, 9}. For the noise ratio r = 0.25, both rows k and l are added to the

pattern because |S(k)∩S(i, j)|/|S(i, j)| = 1 and |S(l)∩S(i, j)|/|S(i, j)| = 0.75. Note that in BiBit

algorithm the row l is not added to the pattern because S(l) ∩ S(i, j) 6= S(i, j), as illustrated in

Figure 2.4. In other words, BiBit algorithm does not allow row l to be added to the pattern because

29

Algorithm 5 BiBitN Algorithm

Input:
B: m× n binary matrix; m edges × n graphs
mnr: minimum number of rows
mnc: minimum number of columns
r: noise ratio

Output:
X : set of final biclusters/frequent edgesets

1. for every edge pair (i, j) do
2. S(i, j) = S(i) ∩ S(j)
3. if S(i, j) is new and |S(i, j)| ≥ mnc then
4. 〈I, S(i, j)〉 = 〈{i, j}, S(i, j)〉
5. for every remainder edge, q ∈ E \ I do
6. if |S(q) ∩ S(i, j)|/|S(i, j)| ≥ 1− r then
7. I = I ∪ q
8. end if
9. end for
10. if |I| ≥ mnr then
11. X = X ∪ 〈I, S(i, j)〉
12. end if
13. end if
14. end for

the column 3 of row l is zero, whereas BiBitN algorithm allows it because three out of the four

columns {2, 3, 7, 9} of row l are one.

In line 3, the seed S(i, j) is considered visited (not new) if it is similar to an already visited

seed. We use Jaccard similarity as the similarity measure. Note that the seed pattern 〈{i, j}, S(i, j)〉

must consist of all ones. A notable feature of the algorithm is that it requires noise to be distributed

across the rows. This is a desirable feature because it prevents the discovery of biclusters in which

all noise is concentrated in few rows, which may lead to the discovery of subgraphs with false edges.

4.3. Experimental Results

To evaluate the effectiveness of the proposed approach, we mined approximate frequent

dense modules from real gene coexpression networks for varying parameter values. Moreover, to

assess the biological significance of the reported modules, we conducted Gene Ontology enrichment

analysis.

4.3.1. Dataset

We used 35 tissue gene coexpression networks constructed by the Genetic Network Analysis

Tool [24]. The coexpression networks were inferred from Genotype-Tissue Expression (GTEx)

30

1 2 3 4 5 6 7 8 9

:

i 0 1 1 0 1 0 1 0 1

:

j 1 1 1 0 0 0 1 1 1

:

k 0 1 1 1 0 1 1 0 1

:

l 1 1 0 0 1 0 1 1 1

:

S(i, j) = {2, 3, 7, 9}

|S(k) S(i, j)| / |S(i, j)| = 1

|S(l) S(i, j)| / |S(i, j)| = 0.75

Figure 4.1. Pattern extension in BiBitN for r = 0.25. Rows i and j produce seed S(i, j) =
{2, 3, 7, 9}. Both rows k and l are added to the pattern because |S(k) ∩ S(i, j)|/|S(i, j)| = 1 and
|S(l) ∩ S(i, j)|/|S(i, j)| = 0.75.

data 1. Each coexpression network is constructed from the gene expression of non-diseased tissue

samples. On average there are 14, 415 links in each network among 9, 998 genes. In total, there are

1, 548, 622 unique links that appear in at least one network, 4, 127 edges that appear in at least 20

networks, and on average each link appears in 3.28 networks.

4.3.2. Topological Analysis of Frequent Edgesets

We constructed the binary edge occurrence matrix from the 35 gene coexpression networks

and ran the BiBitN algorithm for support thresholds from 20 to 24, and for noise thresholds 0,

0.1, 0.2, and 0.3. We used 0.7 as the seed similarity threshold. Table 4.1 shows the topological

properties of the frequent edgesets for various support and noise thresholds. M is the number of

frequent edgesets and E is the average number of edges in each frequent edgeset. Figure 4.2 shows

how the number of frequent edgesets varies for different parameter values. We can see that the

number of frequent edgesets decreases with increasing support threshold. We can also see that the

number increases slightly with increasing noise, but not by much. Figure 4.3 shows how the average

edgeset size varies for different parameter values. We get noticeably larger frequent edgesets for

larger noise thresholds. This is expected because increasing noise threshold allows more edges to

be added to the patterns.

Notice that the edgeset size is expected to be smaller for larger support threshold, but it is

not shown in the results. This is because when calculating the allowed number of zeros per row in

1https://www.gtexportal.org/

31

https://www.gtexportal.org/

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 0.1 0.2 0.3

N
u

m
b
er

 o
f

E
d

g
es

et
s

Noise

Support

20
21
22
23
24

Figure 4.2. Number of frequent edgesets for varying noise thresholds for BiBitN approach.

 0

 200

 400

 600

 800

 1000

 1200

0 0.1 0.2 0.3

A
v

er
ag

e
E

d
g

es
et

 S
iz

e

Noise

Support

20
21
22
23
24

Figure 4.3. Average edgeset size for varying noise thresholds for BiBitN approach.

32

Table 4.1. Topological properties of the frequent edgesets for BiBitN approach. M is the number
of frequent edgesets and E is the average number of edges in each frequent edgeset.

noise 0 0.1 0.2 0.3

minsup M E M E M E M E

20 3 K 79.6 3.2 K 224 3.2 K 490 3.2 K 1.1 K

21 2.3 K 76.7 2.4 K 212.8 2.4 K 463.4 2.5 K 963.4

22 1.6 K 73.4 1.7 K 197.7 1.8 K 418.6 1.8 K 1.1 K

23 436 75.4 458 197.5 472 528.9 476 998.2

24 279 74.5 292 190.9 300 501 301 916

each bicluster, we round the number to the nearest integer. More precisely, n = int(d ∗ r), where

n is the allowed number of zeros per row, d is the number of columns in the bicluster, r is the

noise threshold, and int(x) denotes the nearest integer to x. For example for noise 0.2, the average

edgeset size is smaller for support 22 than for 23, because a bicluster with 22 columns allowes 4

zeros while one with 23 columns allows 5 zeros.

4.3.3. Topological Analysis of Frequent Dense Modules

We mined dense modules from the subgraphs induced by the frequent edgesets. We used

density thresholds 0.5 and 0.6, and only modules with at least four nodes were considered. The

topological properties of the frequent dense modules for various parameter values are shown in

Table 4.2. M ′ denotes the number of approximate frequent edgesets that have at least one dense

module for the specified density threshold, DM denotes the average number of dense modules in

edge-induced subgraph of each edgeset, and V ′ denotes the average size of the dense modules. As

the minimum support is increased, the number of approximate frequent edgesets decreases, and the

average number of dense modules also decreases. For larger density thresholds, the average size of

the dense modules decreases. As the noise threshold is increased we get larger dense modules.

Because many frequent edgesets have large overlap, there are many duplicate dense modules.

Table 4.3 shows the number of all frequent dense modules, unique frequent dense modules, and the

percentage of the unique frequent dense modules. We can see that the percentage of the unique

dense modules increases with increasing support threshold.

33

Table 4.2. Topological properties of the frequent dense modules for BiBitN approach. M ′ is the
number of frequent edgesets that have at least one dense module, DM is the average number of
dense modules in each edge-induced subgraph, and V ′ is the average size of the dense modules.

noise 0 0.1 0.2

minsup density M ′ DM V ′ M ′ DM V ′ M ′ DM V ′

20
0.5 1.7 K 10.6 4 2.9 K 46.8 4.1 3.1 K 219.8 4.2

0.6 26 1 4 895 2.9 4.2 2.1 K 12 4.4

21
0.5 1.3 K 9.9 4 2.2 K 41.7 4.1 2.4 K 198.4 4.2

0.6 16 1.1 4 594 2.6 4.1 1.6 K 10.5 4.3

22
0.5 899 9.6 4 1.6 K 36 4.1 1.7 K 165.1 4.2

0.6 8 1 4 362 2.5 4.1 1.1 K 9 4.3

23
0.5 248 9.3 4 426 35.3 4.1 460 249.4 4.2

0.6 1 1 4 107 2.4 4.1 342 13.9 4.3

24
0.5 167 8.4 4 274 32.6 4.1 294 224.7 4.2

0.6 2 1 4 64 2.2 4.1 216 12.6 4.3

4.3.4. Gene Ontology Enrichment Analysis

To assess the biological significance of the reported modules, we conducted Gene Ontology

enrichment analysis of the reported unique frequent dense modules. The analysis shows that the

modules are enriched with KEGG pathways and molecular functions. A frequent dense module

is enriched if it overlaps with the geneset of a known molecular signature. We used the overrep-

resentation of genes with a specific annotation in a gene set using the hybergeometric test (with

pvalue = 0.01). For biological terms, we used the KEGG pathway database (186 sets covering

5, 241 genes) and the GO Molecular Function Ontology (1, 645 sets covering 15, 599 genes). Ta-

ble 4.4 shows the percentage of frequent dense modules that are biologically enriched. EMF and

EKEGG denote the percent enriched in molecular functions and KEGG pathways respectively. As

shown in the results, frequent dense modules with smaller noise ratios have higher enrichment.

Enrichment with GO molecular functions is higher than KEGG pathways since there are much

more molecular functions and they cover more genes. Table 4.5 shows the top biological signatures

that were enriched the most in the reported modules for sup = 20, noise = 0.1, and density = 0.5.

34

Table 4.3. Number of all frequent dense modules, unique frequent dense modules, and the per-
centage of the unique frequent dense modules for BiBitN approach.

noise 0 0.1 0.2

minsup density all unique % all unique % all unique %

20
0.5 18.3 K 259 1.4 137.9 K 2 K 1.5 687.4 K 12.2 K 1.8

0.6 27 6 22.2 2.6 K 115 4.4 25.8 K 922 3.6

21
0.5 12.7 K 218 1.7 93.1 K 1.6 K 1.7 468.9 K 8.6 K 1.8

0.6 17 6 35.3 1.6 K 79 5.1 17 K 618 3.6

22
0.5 8.6 K 167 1.9 58.5 K 1.2 K 2 285 K 6.1 K 2.1

0.6 8 2 25 904 56 6.2 9.9 K 449 4.5

23
0.5 2.3 K 103 4.5 15 K 729 4.8 114.7 K 5.6 K 4.9

0.6 1 1 100 252 28 11.1 4.7 K 424 8.9

24
0.5 1.4 K 71 5.1 8.9 K 523 5.9 66.1 K 3.7 K 5.7

0.6 2 2 100 139 18 12.9 2.7 K 289 10.6

Table 4.4. GO term enrichment analysis for frequent dense modules for BiBitN approach. EMF

and EKEGG denote the percent enriched in molecular functions and KEGG pathways respectively.

noise 0 0.1 0.2

minsup density EMF EKEGG EMF EKEGG EMF EKEGG

20
0.5 83.4 63.7 75.1 63 59.9 49.9

0.6 100 33.3 84.3 53 75.5 54.2

21
0.5 84.4 64.2 77.1 63.9 62.8 52.4

0.6 100 33.3 84.8 59.5 77.5 52.4

22
0.5 86.8 65.9 77.5 62.5 65.8 54.4

0.6 100 0 91.1 57.1 78.6 50.3

23
0.5 84.5 61.2 82 63.8 64.3 53.2

0.6 100 0 96.4 50 77.1 48.6

24
0.5 81.7 50.7 81.6 66.7 68.4 55.5

0.6 100 0 94.4 61.1 80.6 47.8

35

Table 4.5. Top enriched biological signatures in the reported modules for sup = 20, noise = 0.1,
and density = 0.5 for BiBitN approach.

GO Molecular Function Count

STRUCTURAL CONSTITUENT OF RIBOSOME 832

RRNA BINDING 214

5S RRNA BINDING 144

ANTIGEN BINDING 135

ELECTRON TRANSFER ACTIVITY 127

IMMUNOGLOBULIN RECEPTOR BINDING 123

OXIDOREDUCTASE ACTIVITY ACTING ON NAD P H 99

NADH DEHYDROGENASE ACTIVITY 95

OXIDOREDUCTASE ACTIVITY ACTING ON A HEME GROUP OF DONORS 91

KEGG pathway Count

RIBOSOME 834

HUNTINGTONS DISEASE 235

PARKINSONS DISEASE 216

OXIDATIVE PHOSPHORYLATION 215

ALZHEIMERS DISEASE 213

CARDIAC MUSCLE CONTRACTION 109

AUTOIMMUNE THYROID DISEASE 32

VIRAL MYOCARDITIS 23

MAPK SIGNALING PATHWAY 22

AMINOACYL TRNA BIOSYNTHESIS 20

36

5. BICLUSTERING WITH POST-PROCESSING

SUMMARIZATION

In this chapter, we present a detailed description of the biclustering with post-processing

summarization method, followed by the experimental results.

5.1. Mining Representative Frequent Edgesets

The BiBitN algorithm reports huge number of frequent connected subgraphs, especially

for low support thresholds. This makes the downstream analysis of these frequent subgraphs very

difficult. Moreover, when these subgraphs are used for graph clustering and classification, this large

number of subgraphs can have a negative impact on the accuracy of the methods. Moreover, many

edgesets have large overlap with each other, producing many duplicate modules in the final set of

frequent dense modules. To overcome this problem, we need to report a summarized set of edgesets.

This set would be representative of the reported edgesets such that every edgeset not included in

the representative set has at least one similar edgeset in the representative set. The definition of

the set of representative edgesets follows:

Set of Representative Edgesets: Given a set of edgeset patterns P and an edgeset similarity

threshold s, a subset P ′ ⊆ P is a set of representative edgesets if for every edgeset E ∈ P \P ′, there

exists an edgeset E′ ∈ P ′ such that sim(E,E′) ≥ s, where sim(E,E′) is the similarity between the

two sets. Each edgeset in P is either in P ′ or is similar to an edgeset in P ′.

In order to reduce the number of reported patterns and decrease the overlap between the

reported patterns, we use a post-processing data summarization method to mine a set of represen-

tative frequent edgesets. In the proposed post-processing data summarization method, all frequent

edgesets are first mined and then a subset of these frequent edgesets is chosen such that every

edgeset not in the set has at least one similar edgeset in the set. The summarization method uses

the concept of similarity graph and dominating set to choose the representative frequent edgesets

[10].

37

5.1.1. Similarity Measure

We use the Jaccard similarity coefficient to measure the similarity between edgesets. The

Jaccard similarity coefficient between two sets is defined as the cardinality of the intersection of

the two sets divided by the cardinality of the union of the two sets. More precisely, the Jaccard

similarity coefficient of the two sets A and B is

sim(A,B) =
|A ∩B|
|A ∪B|

The similarity score ranges between 0 and 1. Roughly, it is the measure of the degree of overlap

between the two sets, with 0 indicating no similarity and 1 indicating identical sets. In general,

the size of the representative set is smaller for lower value of edgeset similarity threshold. For the

special case when the similarity threshold is set to 1, the set of representative frequent edgesets is

the same as the set of all frequent edgesets. And for the special case when the similarity threshold

is set to 0, the first encountered frequent edgeset is the only pattern in the set, as it is ‘similar’ to

all other edgesets.

5.1.2. Similarity Graph

We first mine all the frequent edgesets using the BiBitN algorithm. Once we mine the set

of all frequent edgesets, we construct the similarity graph to represent the similarities between the

edgesets. In the similarity graph, each node corresponds to an edgeset, and there is an edge between

two nodes if the similarity between the two corresponding edgesets exceeds a user-defined similarity

threshold. More formally, given a set of m frequent edgeset patterns P = {P1, P2, · · · , Pm} and a

user-defined similarity threshold s, the similarity graph GP (VP , EP) is a graph such that each node

vi ∈ VP corresponds to pattern Pi ∈ P and there is an edge (vi, vj) ∈ EP if sim(Pi, Pj) ≥ s, where

sim(Pi, Pj) is the similarity between patterns Pi and Pj . Figure 5.1 (b) shows the similarity graph

constructed from the set of edgeset patterns in (a) with similarity threshold 0.5. For example, the

similarity graph in (b) has the edge (P1, P2) because the similarity between edgesets P1 and P2 is

0.5.

5.1.3. Dominating Set

A dominating set of a graph G(V,E) is a subset S ⊆ V such that every node not in S is

connected to at least one node in S. A minimum dominating set is the smallest such set. A graph

38

P2 P3

P5P4

1 3

42

P1

1 3

42

P2

1 3

42

P3

1 3

42

P4

1 3

42

P5

(a) Frequent Edgesets/Subgraphs

P1

(b) Similarity Graph

P2 P3

P5P4

P1

(c) Dominating Set

1 3

42

P2

1 3

42

P5

(d) Representative Frequent

Edgesets/Subgraphs

Figure 5.1. Steps in mining representative frequent subgraphs from set of all frequent subgraphs:
(a) Set of all frequent edgesets/subgraphs; (b) Similarity graph for the set in (a) with similarity
threshold 0.5 (Jaccard similarity coefficient); (c) Dominating set of the similarity graph in (b); (d)
Set of representative frequent edgesets/subgraphs

can have multiple minimum dominating sets. Since the similarity graph for the set of all frequent

edgesets represents edgeset similarities, a minimum dominating set of the similarity graph is the

smallest node set which corresponds to the set of representative frequent edgesets. Figure 5.1 (c)

shows a minimum dominating set for the the similarity graph in (b). The corresponding represen-

tative frequent edgesets are shown in (d). For the similarity graph GP (VP , EP), the goal is to find

a subset of vertices (patterns) SP ⊆ VP that dominates all the remaining vertices (patterns). The

problem of finding a minimum dominating set of a graph is NP-hard. There are linear reductions

between the set cover problem, a well-known NP-hard problem, and the minimum dominating set

problem [4]. Therefore, we employ an approximation greedy algorithm whose solution is optimal

up to a certain factor. The greedy algorithm starts with an empty set, S = ∅, and adds vertices

to S until S is a dominating set of the graph. The most common greedy algorithm is to select the

vertex that has the maximum number of neighbors that are not dominated. The number of un-

dominated vertices that a vertex v dominates is denoted by du(v). Initially each vertex dominates

itself and its neighbors. So the vertex with the largest degree is chosen as the first vertex to add

39

Algorithm 6 BiBitN with Post-Processing Summarization

Input:
B: m× n binary matrix; m edges × n graphs
mnr: minimum number of rows
mnc: minimum number of columns
r: noise ratio
s: edgeset similarity threshold

Output:
X : set of representative frequent edgesets

1. X ′ = BiBitN(B,mnr,mnc, r)
2. G = similarityGraph(X ′, s)
3. X = minimumDominatingSet(G)

to S. Next the du score is updated for all vertices and the algorithm selects the vertex with the

largest du score. If there are multiple vertices with the largest score, a vertex is chosen randomly.

This process is repeated until all vertices are dominated. For the similarity graph in Figure 5.1

(b), the greedy algorithm selects P2 as the first vertex in the dominating set S since P2 dominates

four vertices including itself. After updating the du score, both P3, and P5 have the same score

of 1. The algorithm chooses one of them randomly. Note that P3 is still a candidate to be added

to the dominating set even though it is dominated. The algorithm then selects P5 and terminates

since all vertices are dominated now. The final dominating set is S = {P2, P5}, indicating that the

corresponding patterns are the representative frequent edgesets.

5.2. Algorithm

The algorithm extends BiBitN algorithm and incorporates the post-processing summariza-

tion method to reduce the number of reported frequent edgesets. It is illustrated in Algorithm 6.

It takes an additional input parameter s, which is the edgeset similarity threshold. We first run the

BiBitN algorithm on the given parameters B,mnr,mnc, and r to mine set of all frequent edgesets

X ′. Instead of returning the set of all frequent edgesets, we mine the set of representative edgesets

using the post-processing summarization method in line 2-3. The similarity graph G is constructed

from the set of all frequent patterns X ′ and the similarity threshold s. Then the minimum domi-

nating set of G is computed. The frequent edgesets in the set X ′ that correspond to the elements

of the minimum dominating set are returned as the set of representative frequent edgesets X .

40

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0.5 0.6 0.7 0.8

N
u
m

b
er

 o
f

E
d

g
es

et
s

Edgeset Similarity Threshold

Support

16
17
18
19
20

Figure 5.2. Number of frequent edgesets for varying edgeset similarity thresholds for biclustering
with post-processing summarization approach.

5.3. Experimental Results

To evaluate the effect of the post-processing data summarization, we mined approximate

frequent edgesets for various similarity threshold values. Moreover, to evaluate the overall effec-

tiveness of the proposed approach, we mined approximate frequent dense modules from the 35 gene

coexpression network described in section 4.3.1. We also conducted Gene Ontology enrichment

analysis to assess the biological significance of the reported modules.

5.3.1. Effect of Edgeset Similarity Threshold

To see the effect of the data summarization, we ran the post-processing summarization al-

gorithm on the binary edge occurrence matrix constructed from the 35 gene coexpression networks,

for support threshold values from 16 to 20, noise threshold 0.1, and edgeset similarity threshold

values 0.5, 0.6, 0.7, and 0.8. Figure 5.2 shows hows the number of frequent edgesets varies for differ-

ent edgeset similarity threshold values. We can see that the number of frequent edgesets decreases

with increasing support threshold and increases with increasing edgeset similarity threshold. This

is expected because less number of representative edgesets is needed for lower similarity threshold.

Figure 5.3 shows how the average edgeset size varies for different edgeset similarity threshold values.

We see that the average edgeset size increases with increasing edgeset similarity threshold.

41

 50

 100

 150

 200

 250

 300

 350

0.5 0.6 0.7 0.8

A
v

er
ag

e
E

d
g
es

et
 S

iz
e

Edgeset Similarity Threshold

Support

16
17
18
19
20

Figure 5.3. Average edgeset size for varying edgeset similarity thresholds for biclustering with
post-processing summarization approach.

Table 5.1. Comparison of the number of edgesets for support 20 for varying similarity thresholds

noise 0 0.1 0.2 0.3

Without summarization 3,004 3,153 3,224 3,244

With summarization (s = 0.5) 113 73 62 81

With summarization (s = 0.6) 407 360 341 453

With summarization (s = 0.7) 1,226 2,044 2,310 2,894

With summarization (s = 0.8) 2,693 3,131 3,220 3,243

To evaluate the effect of the post-processing summarization for frequent edgesets, we mined

the frequent frequent edgesets for minsup = 20, and used edgeset similarity thresholds 0.5 to 0.8

for mining representative frequent edgesets. The number of reported frequent edgesets for various

edgeset similarity thresholds is shown in Table 5.1. It shows that the number of representative

frequent edgesets increases with increasing similarity threshold. For a large similarity threshold,

fewer edgesets are similar to each other and therefore the number of representative patterns is

larger. For a small similarity threshold, less number of patterns is needed to represent the entire

set.

42

5.3.2. Topological Analysis of Frequent Edgesets

We ran the post-processing summarization algorithm on the binary edge occurrence matrix

for support threshold values from 16 to 20, noise threshold values from 0 to 0.3, and edgeset simi-

larity threshold 0.6. Table 5.2 shows the topological properties of the frequent edgesets for varying

parameter values. M is the number of frequent edgesets and E is the average number of edges in

each frequent edgeset. Figure 5.4 shows how the number of frequent edgesets varies for different

noise threshold values. Figure 5.5 shows how the average edgeset size varies for different noise

threshold values. We see that the average edgeset size increases with increasing noise threshold, as

expected.

We can see that compared to the BiBitN approach, this approach produces much smaller

number of frequent edgesets, especially for low values of edgeset similarity threshold. This makes

analysis with lower values of support threshold more feasible.

Table 5.2. Topological properties of the frequent edgesets for biclustering with post-processing
summarization approach with edgeset similarity threshold 0.6. M is the number of frequent edgesets
and E is the average number of edges in each frequent edgeset.

noise 0 0.1 0.2 0.3

minsup M E M E M E M E

16 3.3 K 45 4.4 K 230.8 4.2 K 405.4 6.9 K 1.1 K

17 1.3 K 40.7 1.5 K 178.5 1.6 K 384 2.1 K 857.6

18 945 36.2 963 154.6 1.1 K 411.8 1.5 K 774.9

19 697 32.8 660 133.3 604 349.8 980 833.3

20 407 32.7 360 119.2 341 287.5 453 711.4

5.3.3. Topological Analysis of Frequent Dense Modules

We mined dense modules from the subgraphs induced by the frequent edgesets, using density

thresholds 0.5 and 0.6, and only modules of size four or larger were considered. Table 5.3 shows

the topological properties of the frequent dense modules for varying parameter values and edgeset

similarity threshold 0.6. M ′ denotes the number of approximate frequent edgesets that have at

least one dense module for the specified density threshold, DM denotes the average number of

dense modules in edge-induced subgraph of each edgeset, and V ′ denotes the average size of the

43

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0 0.1 0.2 0.3

N
u
m

b
er

 o
f

E
d

g
es

et
s

Noise

Support

16
17
18
19
20

Figure 5.4. Number of frequent edgesets for varying noise thresholds for biclustering with post-
processing summarization approach with edgeset similarity threshold 0.6.

 0

 200

 400

 600

 800

 1000

 1200

0 0.1 0.2 0.3

A
v
er

ag
e

E
d
g
es

et
 S

iz
e

Noise

Support

16
17
18
19
20

Figure 5.5. Average edgeset size for varying noise thresholds for biclustering with post-processing
summarization approach with edgeset similarity threshold 0.6.

44

dense modules. We can see that the number of edgesets with at least one dense module decreases

as the support threshold is increased.

Table 5.4 shows the number of all frequent dense modules, unique frequent dense modules,

and the percentage of the unique frequent dense modules. As with the BiBitN approach, the

percentage of the unique dense modules increases with increasing support threshold. We can see

that the percentages of the unique dense modules are much higher compared to the BiBitN results,

which means there are much smaller number of duplicate modules.

Table 5.3. Topological properties of the frequent dense modules for biclustering with post-
processing summarization approach with edgeset similarity threshold 0.6. M ′ is the number of
frequent edgesets that have at least one dense module, DM is the average number of dense mod-
ules in each edge-induced subgraph, and V ′ is the average size of the dense modules.

noise 0 0.1 0.2

minsup density M ′ DM V ′ M ′ DM V ′ M ′ DM V ′

17
0.5 250 10.2 4 1.3 K 43.6 4.2 1.4 K 181.8 4.3

0.6 9 1 4 312 4.4 4.2 751 15.3 4.4

18
0.5 164 8.8 4 780 35.5 4.1 949 211.7 4.3

0.6 1 1 4 162 4 4.1 509 17.6 4.4

19
0.5 107 7.1 4 515 28.1 4.1 526 171.1 4.3

0.6 1 1 4 79 3.3 4.2 262 15.4 4.4

20
0.5 66 7.4 4 269 23.5 4.1 291 130.4 4.2

0.6 1 1 4 36 2.6 4 128 11.5 4.3

5.3.4. Gene Ontology Enrichment Analysis

To assess the biological significance of the reported modules, we conducted Gene Ontology

enrichment analysis the same way as described in section 4.3.4. Table 5.5 shows the percentage

of frequent dense modules that are biologically enriched. EMF and EKEGG denote the percent

enriched in molecular functions and KEGG pathways respectively. As with the BiBitN results,

modules with smaller noise ratio have higher enrichment, and the enrichment with GO molecular

functions is higher than the enrichment with KEGG pathways. Table 5.6 shows the top biological

signatures that were enriched the most in the reported modules for sup = 17, noise = 0.1, and

density = 0.5.

45

Table 5.4. Number of all frequent dense modules, unique frequent dense modules, and the per-
centage of the unique frequent dense modules for biclustering with post-processing summarization
approach with similarity threshold 0.6.

noise 0 0.1 0.2

minsup density all unique % all unique % all unique %

17
0.5 2.5 K 313 12.3 55 K 4.1 K 7.5 262.1 K 20.6 K 7.9

0.6 9 3 33.3 1.4 K 242 17.6 11.5 K 1.6 K 13.5

18
0.5 1.4 K 165 11.4 27.7 K 2.5 K 9.1 200.9 K 19.8 K 9.9

0.6 1 1 100 641 146 22.8 8.9 K 1.5 K 16.6

19
0.5 765 96 12.5 14.5 K 1.5 K 10.3 90 K 11.6 K 12.8

0.6 1 1 100 263 72 27.4 4 K 814 20.2

20
0.5 491 71 14.5 6.3 K 870 13.8 37.9 K 6.1 K 16

0.6 1 1 100 92 28 30.4 1.5 K 407 27.6

Figure 5.6 shows an example of a frequent edgeset for sup = 19, noise = 0.2. (a) show

the submatrix of the binary edge occurrence matrix which represents the edge occurrences in the

frequent edgeset in the 35 networks. Each row corresponds to an edge in the edgeset, and each

column corresponds to a gene coexpression network. (b) shows the dense modules mined from the

subgraph induced by the edgeset for density threshold 0.5. Nodes are labeled by their corresponding

gene identifiers. The genes in this representative approximate edgeset are enriched with five KEGG

pathways; Oxidative Phosphorylation, Cardiac Muscle Contraction, Alzheimers Disease, Parkinsons

Disease, and Huntingtons Disease, and two molecular functions; Electron Transfer Activity, and

Oxidoreductase Activity.

46

(a) Submatrix for Frequent Edgeset (b) Frequent Dense Modules

Figure 5.6. Sample frequent edgeset for minsup = 19 and noise = 0.2, and dense modules in the
edgeset for density = 0.5

Table 5.5. GO term enrichment analysis for frequent dense modules for biclustering with post-
processing summarization approach with edgeset similarity threshold 0.6. EMF and EKEGG denote
the percent enriched in molecular functions and KEGG pathways respectively.

noise 0 0.1 0.2

minsup density EMF EKEGG EMF EKEGG EMF EKEGG

17
0.5 81.5 61.3 66.8 56.7 51.7 44.2

0.6 100 33.3 79.8 59.1 71.5 52.7

18
0.5 82.4 62.4 72.7 60.9 52.3 44.2

0.6 100 0 79.5 56.8 70.2 51.8

19
0.5 86.5 62.5 75.1 63.1 55.6 47

0.6 100 0 87.5 62.5 74.4 54.2

20
0.5 80.3 57.7 80.3 67.1 62.7 52.2

0.6 100 0 89.3 75 78.9 56.5

47

Table 5.6. Top enriched biological signatures in the reported modules for sup = 17, noise = 0.1,
and density = 0.5 for biclustering with post-processing summarization approach with edgeset
similarity threshold 0.6.

GO Molecular Function Count

STRUCTURAL CONSTITUENT OF RIBOSOME 1509

RRNA BINDING 389

5S RRNA BINDING 219

ELECTRON TRANSFER ACTIVITY 187

ANTIGEN BINDING 149

UBIQUITIN PROTEIN TRANSFERASE REGULATOR ACTIVITY 146

OXIDOREDUCTASE ACTIVITY ACTING ON NAD P H 137

IMMUNOGLOBULIN RECEPTOR BINDING 135

NADH DEHYDROGENASE ACTIVITY 132

KEGG pathway Count

RIBOSOME 1511

HUNTINGTONS DISEASE 368

OXIDATIVE PHOSPHORYLATION 362

PARKINSONS DISEASE 344

ALZHEIMERS DISEASE 337

CARDIAC MUSCLE CONTRACTION 167

AUTOIMMUNE THYROID DISEASE 50

AMINOACYL TRNA BIOSYNTHESIS 46

MAPK SIGNALING PATHWAY 43

LEISHMANIA INFECTION 30

48

6. BICLUSTERING WITH ON-LINE SUMMARIZATION

In this chapter, we present a detailed description of the biclustering with on-line summa-

rization method, followed by the experimental results.

6.1. Mining Representative Frequent Edgesets

The post-processing approach for mining the set of representative frequent edgeset produces

(nearly) optimal results. However, this approach has its drawback. The problem with the post-

processing approach is that it is computationally expensive. The construction of the similarity

graph requires similarity computation of every pair of patterns, which has O(n2) time complexity

where n is the number of patterns. Thus, this approach is not feasible for low support thresholds,

where the number of patterns is large.

Therefore, we propose the on-line summarization method for mining the set of representative

frequent edgesets. In the on-line approach, we process the patterns as they are produced. We begin

with an empty set of representative patterns. When a pattern is found, we check whether or not

it has a similar pattern in the representative set. If there is no similar pattern, we add the pattern

to the set of representative patterns. As a result, the final set contains patterns such that every

pattern not in the set has least one similar pattern in the set. Moreover, no two patterns in the set

are similar. In general, the on-line approach does not produce an optimal result, that is, the set

with the minimum number of representative patterns. The result depends on the order in which

the patterns are mined. The on-line approach is much more efficient in time complexity.

6.2. Algorithm

The algorithm extends the BiBitN algorithm and incorporates the on-line summarization

method to mine the set of representative frequent edgesets. It is illustrated in Algorithm 7. It

takes an additional input parameter s, which is the edgeset similarity threshold. In lines 10-12, an

addition condition is required to add the edgeset I to the final set of edgesets X . The edgeset I is

not added to X if there is at least one edgeset I ′ in X that is similar to i. sim(I, I ′) is the similarity

between I and I ′. When the algorithm finishes running, the set X contains representative edgesets

and no two edgesets in X are similar. For the similarity measure, we use the Jaccard similarity

coefficient described in Section 5.1.1.

49

Algorithm 7 BiBitN with On-Line Summarization

Input:
B: m× n binary matrix; m edges × n graphs
mnr: minimum number of rows
mnc: minimum number of columns
r: noise ratio
s: edgeset similarity threshold

Output:
X : set of representative frequent edgesets

1. for every edge pair (i, j) do
2. S(i, j) = S(i) ∩ S(j)
3. if S(i, j) is new and |S(i, j)| ≥ mnc then
4. 〈I, S(i, j)〉 = 〈{i, j}, S(i, j)〉
5. for every remainder edge, q ∈ E \ I do
6. if |S(q) ∩ S(i, j)|/|S(i, j)| ≥ 1− r then
7. I = I ∪ q
8. end if
9. end for
10. if |I| ≥ mnr and sim(I, I ′) < s for every edgeset I ′ in X then
11. X = X ∪ 〈I, S(i, j)〉
12. end if
13. end if
14. end for

6.3. Experimental Results

To evaluate the effect of the data summarization, we mined approximate frequent edge-

sets for various similarity threshold values. Moreover, to evaluate the overall effectiveness of the

proposed approach, we mined approximate frequent dense modules from the 35 gene coexpression

network described in section 4.3.1. We also conducted Gene Ontology enrichment analysis to assess

the biological significance of the reported modules.

6.3.1. Effect of Edgeset Similarity Threshold

To see the effect of the data summarization, we ran the on-line summarization algorithm

on the binary edge occurrence matrix constructed from the 35 gene coexpression networks, for

support threshold values from 16 to 20, noise threshold 0.1, and edgeset similarity threshold values

0.5, 0.6, 0.7, and 0.8. Figure 6.1 shows hows the number of frequent edgesets varies for different

edgeset similarity threshold values. We can see that the number of frequent edgesets decreases

with increasing support threshold and increases with increasing edgeset similarity threshold. This

is expected because less number of representative edgesets is needed for lower similarity threshold.

50

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 0.6 0.7 0.8

N
u
m

b
er

 o
f

E
d

g
es

et
s

Edgeset Similarity Threshold

Support

16
17
18
19
20

Figure 6.1. Number of frequent edgesets for varying edgeset similarity thresholds for biclustering
with on-line summarization approach.

 100

 150

 200

 250

 300

 350

0.5 0.6 0.7 0.8

A
v
er

ag
e

E
d
g
es

et
 S

iz
e

Edgeset Similarity Threshold

Support

16
17
18
19
20

Figure 6.2. Average edgeset size for varying edgeset similarity thresholds for biclustering with
on-line summarization approach.

51

Figure 6.2 shows how the average edgeset size varies for different edgeset similarity threshold values.

We see that the average edgeset size increases with increasing edgeset similarity threshold.

Table 6.1. Comparison of the number of edgesets for support 20 for varying similarity thresholds

noise 0 0.1 0.2 0.3

Without summarization 3,004 3,153 3,224 3,244

With summarization (s = 0.3) 17 13 14 16

With summarization (s = 0.4) 61 38 31 38

With summarization (s = 0.5) 215 141 127 145

With summarization (s = 0.6) 579 613 599 826

With summarization (s = 0.7) 1,546 2,341 2,569 2,993

With summarization (s = 0.8) 2,789 3,138 3,221 3,244

To evaluate the effect of online frequent edgeset summarization, we mined approximate

frequent edgesets and representative frequent edgesets for minsup = 20 We used edgeset similarity

thresholds 0.3 to 0.8 for mining representative approximate frequent edgesets. Tables 6.1 shows the

reported number of frequent edgesets for various similarity thresholds. The number of representative

frequent edgeset increases as we increase the similarity thresholds. For a small similarity threshold,

a small number of edgesets can claim to represent the entire set of approximate frequent edgesets.

And for a large similarity threshold, fewer edgesets are similar to each other and thus the number

of representative patterns is larger.

6.3.2. Topological Analysis of Frequent Edgesets

We ran the on-line summarization algorithm on the binary edge occurrence matrix for

support threshold values from 16 to 20, noise threshold values from 0 to 0.3, and edgeset similarity

threshold 0.6. Table 6.2 shows the topological properties of the frequent edgesets for varying

parameter values. M is the number of frequent edgesets and E is the average number of edges in

each frequent edgeset. Figure 6.3 shows how the number of frequent edgesets varies for different

noise threshold values. There is a more noticeable increasing trend of the number of edgesets with

increasing noise threshold, as compared with the BiBitN approach. Figure 6.4 shows how the

average edgeset size varies for different noise threshold values. We see that the average edgeset size

increases with increasing noise threshold, as expected.

52

 0

 2000

 4000

 6000

 8000

 10000

 12000

0 0.1 0.2 0.3

N
u
m

b
er

 o
f

E
d

g
es

et
s

Noise

Support

16
17
18
19
20

Figure 6.3. Number of frequent edgesets for varying noise thresholds for biclustering with on-line
summarization approach with edgeset similarity threshold 0.6.

We can see that compared to the BiBitN approach, this approach produces much smaller

number of frequent edgesets, especially for low values of edgeset similarity threshold. This makes

analysis with lower values of support threshold more feasible.

Table 6.2. Topological properties of the frequent edgesets for biclustering with on-line summa-
rization approach with edgeset similarity threshold 0.6. M is the number of frequent edgesets and
E is the average number of edges in each frequent edgeset.

noise 0 0.1 0.2 0.3

minsup M E M E M E M E

16 5.3 K 55.8 7.6 K 251.4 8.1 K 446.9 11.5 K 1.2 K

17 1.9 K 51.6 2.5 K 210.3 3 K 442.9 3.7 K 982.8

18 1.4 K 47 1.7 K 183.9 1.9 K 482.6 2.6 K 928.1

19 999 43.8 1.1 K 157.6 1.1 K 401.3 1.7 K 967.7

20 579 43.7 613 145.5 599 349.8 826 848.1

6.3.3. Topological Analysis of Frequent Dense Modules

We mined dense modules from the subgraphs induced by the frequent edgesets, using density

thresholds 0.5 and 0.6, and only modules of size four or larger were considered. Table 6.3 shows

53

 0

 200

 400

 600

 800

 1000

 1200

0 0.1 0.2 0.3

A
v

er
ag

e
E

d
g
es

et
 S

iz
e

Noise

Support

16
17
18
19
20

Figure 6.4. Average edgeset size for varying noise thresholds for biclustering with on-line sum-
marization approach with edgeset similarity threshold 0.6.

the topological properties of the frequent dense modules for varying parameter values and edgeset

similarity threshold 0.6. M ′ denotes the number of approximate frequent edgesets that have at

least one dense module for the specified density threshold, DM denotes the average number of

dense modules in edge-induced subgraph of each edgeset, and V ′ denotes the average size of the

dense modules. It shows the same general trend as the BiBitN results. That is, the number of

edgesets with at least one dense module and the average number of dense modules both decrease

as the support threshold is increased.

Table 6.4 shows the number of all frequent dense modules, unique frequent dense modules,

and the percentage of the unique frequent dense modules. As with the BiBitN approach, the

percentage of the unique dense modules increases with increasing support threshold. We can see

that the percentages of the unique dense modules are much higher compared to the BiBitN results,

which means there are much smaller number of duplicate modules.

6.3.4. Gene Ontology Enrichment Analysis

To assess the biological significance of the reported modules, we conducted Gene Ontology

enrichment analysis the same way as described in section 4.3.4. Table 6.5 shows the percentage

of frequent dense modules that are biologically enriched. EMF and EKEGG denote the percent

enriched in molecular functions and KEGG pathways respectively. As with the BiBitN results,

54

Table 6.3. Topological properties of the frequent dense modules for biclustering with on-line
summarization approach with edgeset similarity threshold 0.6. M ′ is the number of frequent edge-
sets that have at least one dense module, DM is the average number of dense modules in each
edge-induced subgraph, and V ′ is the average size of the dense modules.

noise 0 0.1 0.2

minsup density M ′ DM V ′ M ′ DM V ′ M ′ DM V ′

17
0.5 513 11.2 4 2.3 K 51.8 4.2 2.9 K 206.7 4.3

0.6 20 1.2 4 646 4.7 4.2 1.7 K 15.2 4.4

18
0.5 346 10.6 4 1.4 K 42.8 4.1 1.8 K 252 4.3

0.6 6 1.2 4.2 362 4 4.2 1.1 K 18.9 4.4

19
0.5 238 9.3 4 941 32.7 4.1 1.1 K 187.8 4.3

0.6 6 1 4 190 3.2 4.2 579 14.6 4.4

20
0.5 134 9.9 4 499 29.5 4.1 540 153.6 4.2

0.6 3 1 4 84 3.3 4.2 265 13.1 4.3

modules with smaller noise ratio have higher enrichment, and the enrichment with GO molecular

functions is higher than the enrichment with KEGG pathways. Table 6.6 shows the top biological

signatures that were enriched the most in the reported modules for sup = 17, noise = 0.1, and

density = 0.5.

Figure 6.5 shows an example of an approximate frequent edgeset for sup = 17, noise = 0.1.

(a) show the submatrix of the edge occurrence matrix that shows the occurrences of edges of the

edgeset in the 35 networks. The rows correspond to the edges in the edgeset, and the columns cor-

respond to coexpression networks. (b) shows the dense modules mined from the subgraph induced

by the edgeset, using density 0.5. Nodes are labeled by their corresponding gene identifiers. The

genes in this representative approximate edgeset are enriched with five KEGG pathways; Oxida-

tive Phosphorylation, Cardiac Muscle Contraction, Alzheimers Disease, Parkinsons Disease, and

Huntingtons Disease, and two molecular functions; Electron Transfer Activity, and Oxidoreductase

Activity.

55

Table 6.4. Number of all frequent dense modules, unique frequent dense modules, and the per-
centage of the unique frequent dense modules for biclustering with on-line summarization approach
with similarity threshold 0.6.

noise 0 0.1 0.2

minsup density all unique % all unique % all unique %

17
0.5 5.8 K 434 7.5 117.5 K 5.7 K 4.8 591.1 K 26.6 K 4.5

0.6 25 11 44 3 K 343 11.4 25.4 K 2 K 8

18
0.5 3.7 K 305 8.3 61.3 K 3.5 K 5.7 449.5 K 25.7 K 5.7

0.6 7 6 85.7 1.4 K 217 15.1 20 K 1.9 K 9.7

19
0.5 2.2 K 203 9.2 30.8 K 2 K 6.6 198 K 15.3 K 7.7

0.6 6 4 66.7 599 111 18.5 8.4 K 1.1 K 13.3

20
0.5 1.3 K 155 11.6 14.7 K 1.3 K 9 83 K 8.4 K 10.2

0.6 3 3 100 274 57 20.8 3.5 K 602 17.3

(a) Submatrix for Frequent Edgeset (b) Frequent Dense Modules

Figure 6.5. Sample frequent edgeset for minsup = 17 and noise = 0.1, and dense modules in the
edgeset for density = 0.5

56

Table 6.5. GO term enrichment analysis for frequent dense modules for biclustering with on-
line summarization approach with edgeset similarity threshold 0.6. EMF and EKEGG denote the
percent enriched in molecular functions and KEGG pathways respectively.

noise 0 0.1 0.2

minsup density EMF EKEGG EMF EKEGG EMF EKEGG

17
0.5 80.4 64.3 65.5 55.7 51 43.4

0.6 90.9 45.5 80.5 60.3 68.9 49.8

18
0.5 81.6 62.6 71.1 59.6 51.3 43

0.6 100 50 83.9 56.7 68.5 49.5

19
0.5 87.2 66.5 75 61.9 55.2 46.7

0.6 100 50 83.8 54.1 71.7 53.3

20
0.5 85.8 67.1 77.5 66.5 61.6 52

0.6 100 33.3 91.2 66.7 76.4 56.1

57

Table 6.6. Top enriched biological signatures in the reported modules for sup = 17, noise = 0.1,
and density = 0.5 for biclustering with on-line summarization approach with edgeset similarity
threshold 0.6.

GO Molecular Function Count

STRUCTURAL CONSTITUENT OF RIBOSOME 1996

RRNA BINDING 503

5S RRNA BINDING 277

ELECTRON TRANSFER ACTIVITY 271

OXIDOREDUCTASE ACTIVITY ACTING ON NAD P H 214

NADH DEHYDROGENASE ACTIVITY 208

ANTIGEN BINDING 194

IMMUNOGLOBULIN RECEPTOR BINDING 175

KEGG pathway Count

RIBOSOME 2001

HUNTINGTONS DISEASE 503

OXIDATIVE PHOSPHORYLATION 493

PARKINSONS DISEASE 472

ALZHEIMERS DISEASE 464

CARDIAC MUSCLE CONTRACTION 240

AUTOIMMUNE THYROID DISEASE 58

MAPK SIGNALING PATHWAY 54

AMINOACYL TRNA BIOSYNTHESIS 52

PROTEIN EXPORT 41

58

7. CONCLUSION AND FUTURE WORK

Mining frequent dense modules from multiple gene coexpression networks has applications

in functional gene annotation and biomarker discovery. In this thesis, we proposed biclustering-

based approaches for mining such modules. In the first algorithm, we first mine biclusters with

high density of ones, which correspond to approximate frequent edgesets, and then extract dense

modules from these edgesets. In this approach, a large number of frequent edgesets have high

overlap, resulting in many duplicate modules in the final result. Thus, we proposed two algorithms

that extend the first algorithm and use post-processing and on-line data summarization methods to

mine set of representative frequent edgesets. These extended algorithms mine reduced number of

duplicate modules, which makes analyses feasible for lower support thresholds. Since the proposed

approaches only explore a small part of the frequent patterns search space, the running times are

extremely fast. Experiments on real gene coexpression networks show that the reported frequent

dense modules are biologically enriched with known KEGG pathways and molecular functions.

Future work can include incorporating the edge connectivity in biclustering process. In

the proposed algorithms, we mine edgesets by only considering edge occurrences in relation graph

set, and not the edge connectivity. If we can efficiently incorporate the edge connectivity in the

biclustering process, we can mine connected edgesets. This will likely speed up the biclustering run

time, since only the edges connected to the patterns need to be considered. It may also reduce the

size of the edgesets, making analyses easier. Moreover, if we can incorporate density constraint in

the process, we may be able to skip the dense module mining step.

59

REFERENCES

[1] Gary D. Bader and Christopher W.V. Hogu. An automated method for finding molecular

complexes in large protein interaction networks. BMC Bioinformatics, 4(2), 2003.

[2] Alvis Brazma and Jaak Vilo. Gene expression data analysis. FEBS Letters, 480(1):17–24,

2000.

[3] Jingchun Chen and Bo Yuan. Detecting functional modules in the yeast protein–protein in-

teraction network. Bioinformatics, 22(18):2283–2290, 2006.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. The MIT Press, 2nd edition, 2001.

[5] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. Cluster analysis

and display of genome-wide expression patterns. Proceedings of the National Academy of

Sciences, 95(25):14863–14868, 1998.

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for

discovering clusters a density-based algorithm for discovering clusters in large spatial databases

with noise. In Proceedings of the Second International Conference on Knowledge Discovery

and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996.

[7] Logan Everett, Li-San Wang, and Sridhar Hannenhalli. Dense subgraph computation via

stochastic search: Application to detect transcriptional modules. Bioinformatics (Oxford,

England), 22:e117–23, 08 2006.

[8] Elisabeth Georgii, Sabine Dietmann, Takeaki Uno, Philipp Pagel, and Koji Tsuda. Enumer-

ation of condition-dependent dense modules in protein interaction networks. Bioinformatics,

25(7):933–940, 2009.

[9] B. Goethals. Survey on frequent pattern mining. University of Helsinki, 19:840–852, 2003.

60

[10] Aditya Goparaju, Tyler Brazier, and Saeed Salem. Mining representative maximal dense

cohesive subnetworks. Network Modeling Analysis in Health Informatics and Bioinformatics,

4(1):1–11, 2015.

[11] Karam Gouda and Mohammed J. Zaki. GenMax: An efficient algorithm for mining max-

imal frequent itemsets. Data Mining and Knowledge Discovery: An International Journal,

11(3):223–242, Nov 2005.

[12] Laurie J. Heyer, Semyon Kruglyak, and Shibu Yooseph. Exploring expression data: identifi-

cation and analysis of coexpressed genes. Genome research, 9 11:1106–15, 1999.

[13] Haiyan Hu, Xifeng Yan, Yu Huang, and Xianghong Jasmine Zhou. Mining coherent dense

subgraphs across massive biological networks for functional discovery. Bioinformatics, 21 Suppl

1:i213–i221, 2005.

[14] Yu Huang, Haifeng Li, Haiyan Hu, Xifeng Yan, Michael S. Waterman, Haiyan Huang, and

Xianghong Jasmine Zhou. Systematic discovery of functional modules and context-specific

functional annotation of human genome. Bioinformatics, 23(13):i222–i229, 2007.

[15] Daxin Jiang, Jian Pei, and Aidong Zhang. Dhc: A density-based hierarchical clustering method

for time series gene expression data. In Proceedings of the 3rd IEEE Symposium on BioIn-

formatics and BioEngineering, BIBE ’03, pages 393–, Washington, DC, USA, 2003. IEEE

Computer Society.

[16] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expression data: A

survey. IEEE Trans. on Knowl. and Data Eng., 16(11):1370–1386, November 2004.

[17] Yuval Kluger, Ronen Basri, Joseph Chang, and Mark Gerstein. Spectral biclustering of mi-

croarray data: Coclustering genes and conditions. Genome research, 13:703–16, 05 2003.

[18] Mehmet Koyuturk, Ananth Grama, and Wojciech Szpankowski. An efficient algorithm for

detecting frequent subgraphs in biological networks. Bioinformatics, 20(Suppl 1):i200–i207,

2004.

[19] Mehmet Koyutürk, Wojciech Szpankowski, and Ananth Grama. Biclustering gene-feature

matrices for statistically significant dense patterns. pages 480 – 484, 09 2004.

61

[20] Homin K. Lee, Amy K. Hsu, Jon Sajdak, Jie Qin, and Paul Pavlidis. Coexpression analysis of

human genes across many microarray data sets. Genome Res., 14(6):1085–1094, 2004.

[21] J. MacQueen. Some methods for classification and analysis of multivariate observations. In

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol-

ume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. University of California Press.

[22] Oliver Mason and Mark Verwoerd. Graph theory and networks in biology. IET systems biology,

1:89–119, 04 2007.

[23] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the

National Academy of Sciences, 103(23):8577–8582, 2006.

[24] Emma Pierson, the GTEx Consortium, Daphne Koller, Alexis Battle, and Sara Mostafavi.

Sharing and specificity of co-expression networks across 35 human tissues. PLOS Computa-

tional Biology, 11(5):1–19, 05 2015.

[25] Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann, Wilhelm

Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. A systematic comparison and

evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9):1122–1129,

02 2006.

[26] Domingo S. Rodriguez-Baena, Antonio J. Perez-Pulido, and Jesus S. Aguilar-Ruiz. A biclus-

tering algorithm for extracting bit-patterns from binary datasets. Bioinformatics, 27(19):2738–

2745, October 2011.

[27] Saeed Salem. Template edge similarity graph clustering for mining multiple gene expression

datasets. International Journal of Data Mining and Bioinformatics, 18(1):28–39, 2017.

[28] Saeed Salem and Cagri Ozcaglar. MFMS: Maximal frequent module set mining from multiple

human gene expression data sets. In Proceedings of the 12th International Workshop on Data

Mining in Bioinformatics, BioKDD ’13, pages 51–57, New York, NY, USA, 2013. ACM.

[29] Saeed Salem and Cagri Ozcaglar. Hybrid coexpression link similarity graph clustering for

mining biological modules from multiple gene expression datasets. BioData Mining, 7(1):16,

2014.

62

[30] Roded Sharan and Ron Shamir. Center click: A clustering algorithm with applications to

gene expression analysis. In Proceedings of the Eighth International Conference on Intelligent

Systems for Molecular Biology, pages 307–316. AAAI Press, 2000.

[31] Heather L. Turner, Trevor C. Bailey, and Wojtek J. Krzanowski. Improved biclustering of

microarray data demonstrated through systematic performance tests. Computational Statistics

Data Analysis, 48:235–254, 2005.

[32] Miranda Uitert, Wouter Meuleman, and Lodewyk Wessels. Biclustering sparse binary genomic

data. Journal of computational biology : a journal of computational molecular cell biology,

15:1329–45, 01 2009.

[33] Xifeng Yan, Xianghong Jasmine Zhou, and Jiawei Han. Mining closed relational graphs with

connectivity constraints. In Proceedings of the eleventh ACM SIGKDD international conference

on Knowledge discovery in data mining, KDD ’05, pages 324–333, New York, NY, USA, 2005.

ACM.

[34] Bin Zhang and Steve Horvath. A general framework for weighted gene co-expression network

analysis. Statistical Applications in Genetics and Molecular Biology, 4, 2005.

63

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Contribution
	Thesis Overview

	Related Work
	Frequent Itemset Mining
	GenMax Algorithm

	Clustering
	Biclustering
	BiBit Algorithm

	Graph Mining
	DME Algorithm

	Clustering Gene Expression Data
	Gene Coexpression Networks
	Mining Single Gene Expression Dataset
	Integrating Multiple Gene Expression Datasets

	General Approach
	Problem Description
	Mining Frequent Edgesets
	Frequent Itemset Mining
	Biclustering (BiBit)
	Biclustering with Noise (BiBitN)
	Biclustering with Post-Processing Summarization
	Biclustering with On-Line Summarization

	Mining Dense Subgraphs
	Mining Frequent Dense Subgraphs

	Biclustering with Noise (BiBitN)
	Biclustering with Noise
	BiBitN Algorithm
	Experimental Results
	Dataset
	Topological Analysis of Frequent Edgesets
	Topological Analysis of Frequent Dense Modules
	Gene Ontology Enrichment Analysis

	Biclustering with Post-Processing Summarization
	Mining Representative Frequent Edgesets
	Similarity Measure
	Similarity Graph
	Dominating Set

	Algorithm
	Experimental Results
	Effect of Edgeset Similarity Threshold
	Topological Analysis of Frequent Edgesets
	Topological Analysis of Frequent Dense Modules
	Gene Ontology Enrichment Analysis

	Biclustering with On-Line Summarization
	Mining Representative Frequent Edgesets
	Algorithm
	Experimental Results
	Effect of Edgeset Similarity Threshold
	Topological Analysis of Frequent Edgesets
	Topological Analysis of Frequent Dense Modules
	Gene Ontology Enrichment Analysis

	Conclusion and Future Work
	REFERENCES

