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ABSTRACT 

Human trust in autonomous vehicles is built upon their safe and secure operability in the 

most ethical, law abiding manner possible. Despite the technological advancements that 

autonomous vehicles are equipped with, their perplexing operation on roads often give away 

telltale signs of underlying vulnerabilities to threats and attack strategies which can flag their anti-

autonomous traits. Anti-autonomy refers to any conduct of autonomous vehicles that goes against 

the principles of autonomy and subsequently resulting in their immobilized operations during 

unexpected roadway situations. The concept of trust is fluid, which is made complicated by anti-

autonomous behavior of autonomous vehicles and affects the dimensions of intentionality, human 

interaction, and adoption of autonomous vehicles. Trust is impacted by intentionality, safety and 

risks associated with autonomous vehicles and their overall perception by human drivers, 

pedestrians and bicyclist sharing the roads with them. The presence of collision data involving 

human drivers of other cars, pedestrian, bicyclists, resulting in injuries and damages poses a 

significant negative impact on trust in autonomous vehicle technology. This dissertation presents 

and evaluates a new and innovative anti-autonomy NoTrust Artificial Neural Network model by 

utilizing collision data reports involving autonomous vehicles provided by California DMV from 

October 2014 to March 2020, which is the latest reported data. This data was augmented, labelled, 

classified, pre-processed, and then applied towards creation of the NoTrust ANN model using 

linear sequential model libraries in Keras over Tensorflow. This model was used to predict trust 

in autonomous vehicles. The trained model was able to achieve 100% accuracy, which was evident 

in the results of model compilation and training, plots of validation and training accuracies and 

losses. Model evaluations and predictions were used to comprehend characteristics of trust, 

intentionality and anti-autonomy and helped establish a relationship between them and reflected 
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inter-dependencies among trust, intentionality, anti-autonomy, risk, and safety. Additional 

analyses of collision reports data was performed and the impact of several contributing factors of 

collisions such as vehicle driving mode, damages sustained by the vehicle, pedestrian and bicyclist 

involved in collisions, weather conditions, roadway surface, lighting conditions, movement of 

vehicle preceding collision and type of collisions was illustrated.  
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CHAPTER 1. INTRODUCTION 

Autonomous vehicles were launched with a promise to proudly establish a safe and low 

effort driving experience that would significantly aid humans in travel to assist with many daily 

chores. However, many benefits of automation have a plethora of cybersecurity issues, threat 

vulnerabilities, ethical and legal issues. The behaviors of human drivers, pedestrians, and bicyclists 

with which autonomous vehicles share the roads, are capable of paralyzing the internal mechanics 

of autonomous vehicles, leading to chaos, confusion, collisions, and related traffic issues on the 

roads. Situations like these highlight the anti-autonomous, non-intuitive, unethical and collision 

prone attribute of autonomous vehicles. In order to expand the knowledge and understanding of 

the concept of anti-autonomy, learn about its impact on human trust in autonomy along with 

gaining insights on the potential threats that autonomous vehicles are prone to, extensive research 

work was performed and published as journal and conference proceeding articles. The 

contributions made in these published articles progressed into leading towards the quest to search 

for collision data caused by autonomous vehicles. Once the data was procured, an extensive in-

depth analysis of data was performed, and the data was appropriately conditioned to be utilized 

towards generation of anti-autonomy model.  The purpose of the research work in this dissertation 

is to develop and demonstrate an anti-autonomy model to help  

• disseminate well researched information about the factors responsible behind 

autonomous vehicle collisions and accidents and help manufacturers to improve upon 

the implementation criteria of sensors, vehicle internal dynamics and mechanics and so 

on 



 

2 

• people gather information about autonomous vehicles through the model predictions 

and evaluations and make informed decisions before adopting and owning autonomous 

vehicles 

This chapter describes the purpose of this research study and the motivation behind it. It 

then describes the problem statement and then lays out the overall organization of the entire 

dissertation. 

1.1. Purpose 

Autonomous vehicles are designed to operate safely and securely without any human 

intervention while also strictly abiding the traffic laws. Manufacturers of these vehicles work 

vehemently towards the safety and security aspects by actively employing white-hat hackers to 

effectively minimize threats, vulnerabilities and hacking attacks, but is it enough for common 

human drivers to give them a peace of mind and place their trust into adopting these vehicles? 

Even with the most advanced automation technology with state of the art ethics incorporated into 

it, these vehicles may still not be fail-safe when their ethical behavior and intuitiveness is 

challenged while sharing the roads with human drivers, pedestrians, and bicyclists. Despite the 

most advanced technological features, a single accident and/or collision report can surface the 

negative and anti-autonomous aspect of autonomous vehicles. Hence, it becomes paramount to 

carefully study, investigate, and explore the factors and attributes of autonomous vehicles that are 

capable of highlighting the anti-autonomous aspect of autonomous vehicles and negatively impact 

their associated intentionality, safety and security and lead to diminishing trust in their potential 

adoption.    
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1.2. Motivation 

Autonomous vehicles are a present day reality with thousands of millions of miles of 

recorded driving logs with or without the presence of a human driver in the car on standby to 

disengage and take control in the event of unprecedented situation on the road. Abundance of 

literature in detailed analysis of the automated driving data and surveys on the adoption of 

autonomous vehicles have tried to bring forth the best of technological advancements in 

automation, however, seldom research has been done to bring forth the anti-autonomous side of 

these autonomous vehicles. The motivation behind this research study is to bring forward the anti-

autonomous side of the autonomous vehicles and establish a quantifiable relationship of anti-

autonomy with multidimensional concepts of trust, intentionality, risk, and safety as they relate to 

automation technology. The anti-autonomy trust modelling demonstrated in this dissertation aims 

to disseminate the awareness about the anti-autonomous traits of automation technology with the 

hope to help people make informed decisions while approaching towards trusting and adopting 

autonomous vehicles. 

1.3. Goals and Objectives 

Collisions and accidents caused by human drivers can be judged, explained, and 

rationalized on the basis of consciousness, state of mind of the human driver, whether or not the 

human driver was under influence. However, the collisions and accidents caused by autonomous 

vehicles cannot be explained and rationalized using the same attributes since these vehicles are 

supposed to eliminate these causes of collisions and provide a safer less congested travel 

experience on the roads. This brings up a question as to how a situation of collision involving 

autonomous system would be explained. Collisions involving autonomous vehicles instigates its 

irrational driving aspect and surfaces the anti-autonomous traits of autonomous vehicles. This 
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encouraged the need to create this anti-autonomy model to effectively help study, analyze and 

understand the reason behind the anti-autonomous trait of autonomous vehicles. 

The research work in this dissertation was commenced with the objective of creating an 

anti-autonomy model to understand and explain the anti-autonomy traits that autonomous vehicles 

exhibit during their erratic driving traits on the roads. While other research in the area of 

autonomous vehicle lean towards the promotion of extra-ordinary features and positive aspects of 

autonomous vehicles, this anti-autonomy model aims to bring forth the significance of exploring 

and understanding the root cause behind the anti-autonomous activities of these vehicles and 

effectively working towards mitigating them.  

The goal of the research work demonstrated in this dissertation is to advance the state of 

the art in anti-autonomy via the development and validation of the anti-autonomy model. This was 

achieved by the fulfilling the several tasks in order. The configuration of the overall model was 

done by acquisition of data from collision reports. Upon acquiring, processing, cleaning, and 

managing data, the model was populated which was capable of ingesting this data and produce 

desired results. These results were then used to make predictions and evaluations which was then 

utilized to establish a relationship between trust, intentionality, anti-autonomy, risk, and safety. 

The evaluations also helped with throwing insights to the overall security aspects associated with 

autonomous vehicles. 

1.4. Problem Statement 

In the context of Autonomous vehicles, despite the extensive prior research on pros and 

adaptability of these vehicles, there is a dire need to understand the underlying security issues, 

explore the avenues of their anti-autonomous capabilities, enlist a myriad of related legal and 

ethical issues and policies and, identify and analyze security threats. Additionally, establish a 
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relationship of anti-autonomous traits of autonomous vehicles with the multi-dimensional aspects 

of trust, intentionality, risk, and safety and quantifying these measures. Pertaining to these needs 

this research study developed and demonstrated a data-centric anti-autonomy/trust ANN model 

with the application of machine learning concepts utilizing TensorFlow with Keras.  

1.5. Peer-Reviewed Publications 

In context of this dissertation, three papers were published out of which two papers were 

published as conference articles and one paper was invited to be published as journal article. 

Aakanksha Rastogi is the primary author of all these published papers and is responsible for 

research work illustrated in them with author’s academic advisor as the co-author. In Dr. Nygard’s 

role as academic advisor, he provided the significance of research problem and research area and 

advised on exposition and helped with editing the document. The actual research contributions and 

the research pertaining to the papers is the full responsibility of Aakanksha Rastogi. The Paper 

titled ‘Trust Issues in Cybersecurity and Autonomy’ in ‘ISCA 27th International Conference on 

Software Engineering and Data Engineering’ [1] was invited for expansion and submission to 

SEDE special edition ICJA journal. Journal article titled ‘Trust and Security in Intelligent 

Autonomous Systems’ was published in ICJA which is used as Chapter Three in this dissertation 

[2]. Conference Proceeding article titled ‘Threat and Alert Analytics in Autonomous Systems’ was 

published in ‘Proceedings of the 35th International Conference on Computers and their 

Applications’ is used as Chapter Four in this dissertation [3].    

1.6. Dissertation Organization 

This dissertation is organized as and composed of eight chapters. Chapter One discusses 

the purpose of developing and demonstrating a NoTrust ANN Model and why is it vital. This 

chapter also includes the problem statement which discusses the main focus of this research work.  
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Chapter Two provides the literature review and the background of this NoTrust ANN 

Model and existing work that has been done in this area.  

Chapter Three is a published journal article titled ‘Trust and Security in Intelligent 

Autonomous Systems’ from SEDE special edition ICJA journal [2]. Aakanksha Rastogi is the sole 

primary author and claims the research work published in this article. The co-author of the article 

is author’s academic advisor who advised on the background literature and helped with editing the 

document. This chapter (journal article) discusses the concepts of trust as they relate to humans 

and autonomous systems, provides an ontology to characterize that relationship and describes the 

trust issues pertaining to the areas of cybersecurity and autonomy. This chapter also establishes 

the concept of anti-autonomy and counter measures that apply to autonomous weapon systems. 

Chapter Four is a published conference proceeding article titled ‘Threat and Alert Analytics 

in Autonomous Systems’ from Proceedings of the 35th International Conference on Computers and 

their Applications [3]. Aakanksha Rastogi is the sole primary author and claims the research work 

published in this article. The co-author of the article is author’s academic advisor who helped with 

editing the document. This chapter (conference proceeding article) explores, identifies, and 

addresses popular threats, vulnerabilities, and hacking attacks to which autonomous vehicles are 

prone to and establishes a relationship between threats, trust, and reliability. It also presents an 

analysis of the alert systems in autonomous vehicles.  

Chapter Five discusses the ethical relationship between humans and autonomous systems 

and identifies, studies, and characterizes the policies, ethical and moral values and, legal issues as 

they relate to autonomous vehicles.   

Chapter Six presents a data-centric NoTrust ANN model to understand, characterize and 

analyze collision reports of traffic incidents involving autonomous vehicles with the help of deep 
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learning and machine learning concepts and algorithms. The model evaluation and predictions are 

utilized to identify, derive, and quantify a relationship between trust, intentionality, anti-autonomy, 

risk, and safety. 

Chapter Seven concludes the research work in this dissertation.  

Chapter Eight discusses the limitations of this work and future work that can be done in 

this area. 

An Appendix enlists the comprehensive information about the dataset generated from the 

PDF versions of the collision reports provided by California DMV which involved autonomous 

vehicles, screen capture of sample PDF reports and screen capture of CSV data file. 

1.7. References 

[1]  A. Rastogi, K. E. Nygard, “Trust Issues in Cybersecurity and Autonomy”, 27th 

International Conference on Software Engineering and Data Engineering, 2018. 

[2]  A. Rastogi, K. E. Nygard, “Trust and Security in Intelligent Autonomous Systems”, 

International Journal of Computers and their Applications, IJCA, vol. 26, no. 1, 

March 2019. 

[3]  A. Rastogi, K. E. Nygard, “Threat and Alert Analytics in Autonomous Systems”, 

Proceedings of 35th International Conference on Computers and Their Applications, vol. 

69, pp. 48-59, 2020.  
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CHAPTER 2. LITERATURE REVIEW 

Vehicles with no automation and semi-autonomous vehicles, provide us with a thrill to 

drive them through traffic situations in cities of less traffic areas on freeways, allowing us to 

develop an interaction relationship with them. However, with the case of autonomous vehicles, 

them becoming an agent self-reliantly navigating themselves, changes the interaction relationship 

between human and machine. According to Daily et. al., “the design of intelligent driver-assistance 

systems, especially those that activate controls of the car to prevent accidents, requires an accurate 

understanding of human behavior as well as modeling of human–vehicle interactions, driver 

activities while behind the wheel, and predictable human intent” [4]. Brown and Laurier studied 

publicly available videos of Tesla auto-pilot and Google self-driving cars to infer the interaction 

of drivers of these cars with the drivers of other cars in terms of actions of these cars while sharing 

the road with other drivers [3]. Considering the challenges that drivers with autopilots experience, 

and while focusing on the social interaction on the road, communication among drivers and their 

interpretation of the movement of cars; they suggested increasing the transparency of the actions 

of autopilots for both the drivers of these cars as well as other cars that are sharing the road [3]. 

Their study aimed to insinuate avoidance of the dangers of badly designed autopilots while 

promoting the benefits of HCI in helping design better autopilots [3]. 

Wolf studied human interaction with autonomous vehicles by looking into the cognitive-

psychological effects of the interaction of machine with humans [11]. He described the human 

factors in autonomous vehicles and stated that human knowledge and learning experiences in 

forms of mental models (a cognitive psychology concept) helps understand and design the 

interaction between technical systems and humans [11]. Mental models help describe human 

information processing and serve as a means to conceptualize functional assumptions and 
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representations of knowledge in turn helping understand and predict how users behave while 

interacting with automated systems [11]. In a similar study by Surden and Williams, authors 

utilized concept of ‘theory of mind’ to describe human ability and possession of an internal mental 

model in reliably predicting and assessing the motivations, beliefs, mental states, actions, 

intentions, and future conduct of other people [9]. This ability to predict the behavior of others is 

one aspect of theory of mind which can significantly help reduce risk of collision and physical 

harm. Humans can observe the gestures, facial expressions, and movements, interpret them and 

react accordingly [9]. However, the complexity, abstractness and opacity of machine learning 

models employed in autonomous vehicles makes it hard for the programmers to predict and 

understand their next move, thus posing difficulties in human-autonomous vehicle understanding 

and cooperation. 

Despite the complexity of autonomous vehicles, their involvement in collisions in recent 

years, has severely implications in their trust and adoption. Reports of traffic collisions involving 

autonomous vehicles has been generated, made publicly available, explored, studied, analyzed and 

worked on by some researchers in distinct ways. Yu and Grembek presented an end-to-end data 

processing and collision analysis system for autonomous vehicle crash reports from October 2014 

to 2018 [12]. They first created a web crawler application and used data scraping techniques to 

download the crash reports from California DMV website and then used convolution and optical 

character recognition (OCR) techniques to extract the data. This OCR text file was then used to 

extract more information using natural language processing [12]. They then analyzed 41 crash 

reports from 2018 where vehicles were operating in autonomous mode and reported that 76% 

collisions happened at intersections, 20% of collisions were side-swipe and 66% were rear-end 

where autonomous vehicle was stopped [12]. Authors deduced this to be the impatience or 
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misunderstanding of other human drivers due to conservativeness of autonomous vehicles or its 

abrupt behavior of slowing or braking [12].  

Dixit et. al. studied the collision reports data to understand the trust in autonomous vehicles, 

disengagement and accident exposure and driver reaction times and deduced a correlation between 

collisions and autonomous miles travelled that was significant enough to be potentially used as a 

measure of exposure for disengagements [6]. They also found evidence which suggested that lack 

of trust caused an increased likeliness of taking manual control of the vehicle and reduction in 

reaction times [6]. In their study on examination of accident reports involving autonomous vehicles 

in collision, Favarò et. al. reported 62% of collisions in autonomous diving mode, 19% collisions 

in conventional driving mode, 15% collisions when manual disengagement was made before 

collision and 15% collisions when manual disengagement was made after collision [8]. In another 

study on disengagement reports data, Favarò et. al. analyzed and provided a comprehensive 

overview of disengagements data provided by the autonomous vehicle manufacturers from their 

testing on California public roads from 2014 and 2017 to comprehend the safety-critical role of 

autonomous vehicle disengagement as it requires the control of the vehicle to transferred to the 

human driver in a safe and timely manner [7]. Authors presented trends in reporting 

disengagements, preliminary estimations of disengagement frequencies, average mileage driven 

before failure and disengagement and an examination of triggers, reported contributory factors and 

causes of the disengagements with the aim of highlighting limitations of the current regulations 

[7].  

To understand the interactions of autonomous vehicles and conventional vehicles driven 

by human drivers, Boggs et. al. conducted a text analysis of the crash report narratives from the 

124 collision reports and analyzed injury and rear-end crashes in a full Bayesian setup and 
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estimated hierarchical-Bayes fixed and random parameter logit models for each crash type [2]. 

Their results revealed that the likeliness of rear-end crashes involving autonomous vehicles when 

automated driving system was engaged was substantially higher as opposed to the vehicle where 

automated driving system was disengaged prior to crash or autonomous vehicle was being driven 

by human driver [2]. They reported 13.3% injury crashes associated with autonomous vehicles and 

61.1% rear-end collisions [2]. As far as the tendency of injury crash involving autonomous vehicle 

was concerned, a significantly positive statistical correlation between the speed at which 

conventional vehicle was travelling and injury crash tendency was revealed with a lower likeliness 

of injury crash involving autonomous vehicle at roadways with marked centerlines [2]. Moreover, 

clear weather conditions were also found to be associated with a lower likeliness of injury crash 

tendency involving autonomous vehicles [2]. Another study analyzed crash narratives from the 

collision reports to identify and understand safety concerns and gaps between crash types during 

transferring of controls between automation and human drivers and automation interactions on 

roadways [2]. Authors used probabilistic topic modeling of open-ended crash narratives to analyze 

the crash database and identified five themes viz. sideswipe crashes during overtakes from left 

side, transition crashes initiated by the driver, rear-end collisions that happened when vehicle was 

stopped at an intersection, in turn lane, and when crash involved oncoming traffic [2]. They 

discovered that a significant number of crashes associated with side swipe collisions involved 

motorcycles and were also represented by transitions initiated by the driver [2]. Their findings 

highlighted formerly raised safety concerns with transitions of control by the driver and 

interactions between vehicles in automated mode and social network of transportation [2].  

Wang and Li investigated the autonomous vehicle crash reports from 2014 to 2018 using 

statistical modeling approaches which involved both classification and regression trees (CART) 
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algorithm for classification tree and ordinal logistic regression with the goal of statistically 

analyzing and understanding autonomous vehicles’ safety issues [10]. They explored the 

mechanism of crashes related to autonomous vehicles through perspectives of collision types and 

crash severity by performing a quantitative analysis using these modeling approaches [10]. With 

the help of CART model, they revealed and visualized the hierarchical structure of the autonomous 

vehicle crash mechanism while understanding the contribution of roadway, traffic, and 

environmental factors in causing crashes of different severities and collision types [10]. The results 

of the statistical analysis indicated a significant increase of crash severity when autonomous 

vehicle is responsible for the crash. Authors also identified highway to be the primary location 

where severe injuries most likely happen and the fact that vehicle operation in autonomous mode, 

crashes involving pedestrians/cyclists and roadway environment affects autonomous vehicle 

collision types [10].   

Das et. al. collected scanned collision reports filed by different manufacturers from 

September 2014 and May 2019 to study factors that contribute to autonomous vehicle collisions, 

in order to understand and identify risk safety factors related to autonomous vehicle collisions [5]. 

They performed a comprehensive analysis of critical variables to demonstrate a variational 

inference algorithm for Bayesian latent class models and applied clustering algorithm to the 

collision data. The Bayesian latent class model that they used identified six classes based on 

collision characteristics [5]. The variables they used based on collision traits included type of 

collision, vehicle damage, severity of operator injury, number of vehicles involved in collision, 

lighting conditions and weather conditions, whether the vehicle was stopped or moving, and the 

events before the collision. Their results illustrated a higher percentage of injury severity level 

linked to the classes associated with multi-vehicle collisions, turning, dark lighting conditions with 
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street-lights, rear-end collisions and side swipe [5]. Another finding was a high probability of 

occurrence of adverse weather collisions when the vehicle was operating in autonomous mode and 

its previous driving condition was stopped [5].  

Gaps in literature in terms of converting the collision data pdf reports into csv file (see 

Appendix figure B9 for screen capture of the CSV data file) to extract meaningful structured data; 

classifying, labelling and evaluating it, and developing a linear sequential ANN model to produce 

valuable information has been fulfilled by this dissertation. 
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CHAPTER 3. TRUST AND SECURITY IN INTELLIGENT AUTONOMOUS SYSTEMS1 

3.1. Abstract 

Autonomy is defined in terms of the degree of capability of a system or machine to function 

without human intervention. Degrees of autonomy can vary from requiring fully engaged human 

involvement at one extreme to having none at the other extreme. Levels of trust on the part of 

humans concerns the extent of belief or confidence in the system. When a system with some degree 

of autonomy makes decisions and carries out its functions, trust in the system may rise or fall in 

accordance with perceptions or measurements of the system performance. Measurement of trust is 

typically related to ethical, moral, social and legal norms of society, along with metrics related to 

taking responsibility. Trust is related to cybersecurity in that insecure systems inherently have low 

trust. The work of this paper surveys and explores concepts of trust in terms of relationships 

between humans and systems. An ontology that characterizes this relationship is provided. Trust 

issues as they pertain to the areas of cybersecurity and autonomy are characterized. The concept 

of anti-autonomy and counter measures that apply to autonomous weapon systems is also included.  

Key Words: Autonomy, security, trust, intentionality, semi-autonomy, anti-autonomy, 

vulnerabilities, human-in-the-loop, and human-on-the-loop.  

3.2. Introduction 

Advances in the use of Artificial Intelligence (AI) in autonomous systems is 

revolutionizing decision making in society. Human-centric decisions have long been the norm in 

many application domains such as medical diagnosis, financial operations, driving cars, flying 

 
1 The material in this chapter was co-authored by Aakanksha Rastogi and Kendall Nygard. Aakanksha Rastogi is the 

primary author responsible for actual contributions and research work illustrated in this journal article. Aakanksha 

Rastogi was the primary developer of the conclusions that are advanced here. Aakanksha Rastogi also drafted and 

revised all versions of this chapter. Kendall Nygard advised on the background literature and helped with editing the 

document. 
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airplanes, and legal case research. However, in many domains, at a fast rate of change, humans are 

relinquishing decision making to autonomous systems that have intelligent capabilities. The quest 

for fully autonomous self-driving cars is a good example of machines undergoing a steady march 

toward increasing levels of autonomy and intelligence over time. Anti-lock brakes are now an old 

technology, but for many years some drivers viewed them with fear and regarded them as an 

inappropriate encroachment on driver control. More recently, some new cars are equipped with 

lane following assist technology, which automatically does things like keeping the vehicle in a 

lane, maintaining offset distances, accelerating, braking, etc. At some point self-driving cars may 

be fully autonomous. Many cyber-physical systems are heavily equipped with sensors, actuators, 

and controllers, but unlike earlier generation machines, in the march toward intelligent autonomy, 

also involve integrated symbolic or sub-symbolic AI to do their work.  

When systems with some level of autonomous operation deviate from their expected 

behavior in negative ways, humans tend to decrease their level of trust in intelligent machine 

performance. In the other direction, it can also be true that repeated positive performance can 

incrementally increase a trust level. In some cases, autonomy is adjustable, and the machine itself 

may call for human intervention. For example, some robots are programmed to request human 

intervention under certain circumstances.  

By definition, autonomous systems are capable of changing their behavior in response to 

unanticipated events during operations [41]. According to Hancock, “autonomous systems are 

generative and learn, evolve and permanently change their functional capacities as a result of the 

input of operational and contextual information. Their actions necessarily become more 

indeterminate across time” [16]. They can decide for themselves what to do and when to do it [13]. 

These systems can achieve their assigned goals by constructing and executing a plan without 
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requiring any human intervention even in the face of unexpected events [45]. They can be deployed 

in remote environments where direct human control is not feasible or in environments that are 

hostile and dangerous to humans [13]. When compared to human-centric systems, some 

autonomous systems can have advantages of providing faster response times at lower cost. In 

addition, autonomous systems may not require as much training and monitoring as people often 

do. People also need things like medical support, guaranteed safe environments, and legal 

oversights. Most autonomous systems have a decision-making agent that is responsible for making 

decisions that simulate the human mind. Machine learning has opened new possibilities for 

systems to become intelligent enough to autonomously operate under widely varied circumstances 

with minimal or no human intervention. In a broad sense, such capabilities explain much of the 

rise of artificial intelligence (AI) in our society.  

In some cases, systems may be semi-autonomous systems inherently requiring human 

intervention to be successful in completing certain tasks. Even though inter-device communication 

may play a role, these systems require human operators to control higher levels of decision making 

[45]. Zilberstein refers to semi-autonomous systems as “systems that can operate autonomously 

under some conditions but cannot always complete an entire task as their own” [45]. Semi-

autonomous systems can be classified as of SAS-I type if their planning process does not take 

human intervention into consideration. SAS-II types have planning processes that include 

knowledge of human intervention into consideration [45]. To coordinate with semi-autonomous 

systems, it is often important that they are aware of human interventions and can recognize the 

conditions under which autonomous actions cannot solely perform the operation to complete the 

tasks without human input. Moreover, humans must be thorough and precise with the decision-



 

18 

making processes and AI protocols with which these systems are equipped. This paper addresses 

key questions, understanding, and clarification of human-machine relationships.  

The paper is organized as follows. Section 3.3 describes the concepts of trust in 

autonomous systems. Section 3.4 describes human interfaces with autonomous systems. Section 

3.5 describes the measurement of trust in autonomous systems related to cybersecurity. Section 

3.6 describes the understanding of the concept of anti-autonomy. Within Section 3.6 concerning 

drones, a description of counter measures or anti-drone technologies that help avert potential 

collateral damage and casualties caused by autonomous weapon systems is given. Section 3.7 

describes the relation of security with autonomy. Section 3.8 provides conclusions.  

3.3. Trusting Autonomous Systems 

Humans have created intelligent machines and systems using AI protocols and advanced 

machine learning concepts and techniques. When the singularity occurs, intelligent machines are 

expected to create ever more intelligent machines, triggering an unrelenting escalation. 

Autonomous systems that use advanced AI techniques have shown improvements in deception 

and the use of experience, interventions, and control. With these changes in the nature of 

autonomous functionalities, trusting these systems has become more complex and challenging. In 

defining trust, there are often references to attitudes, beliefs, intentions, and behaviors. In the many 

definitions of trust offered, there is typically reference to expectations regarding outcomes or 

behaviors [28]. Specific to automation, trust can be described as “the attitude that an agent will 

help achieve an individual’s goal in a situation characterized by uncertainty and vulnerability” 

[28]. Dutta et. al. defined trust in an autonomous system as “the ability of the system to successfully 

carry out a task, at a particular time, and in a situation characterized by vulnerability and 

uncertainty” [11].  
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Trust among humans and between human and automation are fundamentally different due 

to a lack of intentionality in autonomous systems [28]. Since human-centered trust is related to 

concepts of benevolence, value congruence and loyalty, human-automation trust presents 

difficulties concerning purpose [28]. Lee and See pointed out that trust between people is a part of 

a social exchange relationship which makes trust between humans different from trust in 

automation [28]. There is also a lack of symmetry (where trustor and trustee are aware of behavior, 

intents, and trust of others) between humans and machines [28]. Trust in automation is an 

attribution process whereby trust can be derived from direct observation of behaviors 

(performance), an understanding of the underlying mechanisms (process), or from the intended 

use of a system. Trust is an important mediator of relationship between humans and automation. 

Choi and Ji described trust to be a major determinant of reliance on and acceptance of automation, 

standing between people’s beliefs toward automation and their intention to use it [4]. For instance, 

while investigating the importance of trust while adopting autonomous vehicles, the following 

dimensions are prominent: 1) transparency, for understanding and predicting vehicle operations, 

2) technical competence, for perceiving vehicle performance, and 3) situation management, for 

confidence in the vehicle adaptively maintaining control in an unanticipated situation [4]. 

Anthropomorphism, which is attributing human characteristics to a nonhuman entity, can be an 

important determinant of trust [42]. Anthropomorphism can be viewed as a process of inductive 

inference, particularly concerning capacity for rational thought or agency and conscious feeling 

[42]. Trust is a multifaceted concept that refers to a belief in another behaving with integrity, 

benevolence, predictability or competence, a prediction of anthropomorphism increases 

confidence and trust [42]. To establish an assertion that anthropomorphism affects user trust, an 

experiment was conducted in which participants using a National Advanced Driving Simulator 
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were instrumented for psychological assessment and randomly assigned to degrees of autonomy 

corresponding to normal, agentic, and anthropomorphic driving conditions. Human voices and 

gender information were a part of the anthropomorphic features [17] [42]. In terms of overall trust, 

participants who drove their vehicle in anthropomorphic condition had the highest trust, followed 

by Agentic, then by Normal [42]. This established statistically that the degree of 

anthropomorphism mediated the relationship between the vehicle condition and overall trust in the 

vehicle. These findings strengthen the concept that trust is related to perceptions of human mental 

capacities. Similar results on the effectiveness in the elicitation of positive perceptions of the agent 

upon introducing humanlike appearance and high autonomy in self-driving cars have also been 

reported. Additionally, mediation analyses revealed that the introduction of humanlike appearance 

and high autonomy induced by greater levels of anthropomorphism introduced feelings of social 

presence which imposed a positive impact on perceived intelligence, safety, and trust in the agent. 

This suggests that feelings of social presence during interaction with an agent is a determinant of 

the extent to which users perceive a driving agent as safe, trustworthy, and intelligent [27]. Even 

when automation is limited but anthropomorphism is high, an elevated feeling of trust and safety 

followed and resulted in positive perceptions of the system [26].  

The concept of trust is somewhat elusive in the sense that intentionality, purpose, belief 

and reputation play a role, but so do credibility, consciousness, empathy, sympathy and 

responsibility. Correlations and relationships of these concepts with trust takes on importance 

when we analyze human-machine relationships. Again, in the self-driving car example, all of these 

concepts are in the minds of people when they consider peace of mind when riding in such a car 

and influence the level of trust a person has that the vehicle will safely and efficiently get them to 

their destination. One factor that influences the level of trust that a person has in any vehicle even 
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if a driver is in control concerns the possibility of encountering unforeseen situations and the need 

to react appropriately and safely. Examples include encountering drunken drivers, construction 

zones, or a vehicle failure such as a tire spontaneously going flat. If software is handling such 

situations, there are serious questions about updates, such as how effective and how frequently 

they are done to account for new information. Apart from self-driving cars, robots and robotic 

humanoid assistants must deal with similar problems.  

If data-centric machine learning methodologies are used for intelligent training, the ever-

present issues surrounding the appropriateness and completeness of the data that is employed are 

encountered. In addition, there is a significant challenge that lies in supporting consciousness in a 

machine, and the attendant need for the machine to be fully aware and have an understanding of 

the human ways of doing things and reacting to their own stimuli as they conduct their activities. 

Seamlessly merging such machines into our daily lives as people will require these kinds of 

capabilities. It is also the case that humans are far from infallible. Every person has made decisions 

for which they thought twice or multiple times, agonized over whether they made the right 

decision, or wished that they had been able to predict unforeseen consequences. Advanced sensors, 

massive data sets, and rapid communication capabilities have resulted in great strides in machine 

awareness. Given that awareness is only one necessary ingredient of trust, and that trust is a key 

component of responsibility, it is clear that developing truly responsible machines is still in the 

future. Research concerning interactions among humans has established that high levels of trust 

drive responsible behaviors. This suggests that there is potential to build responsible systems 

whose behavior sympathetically and empathetically complement our expectations.  

It is widely held that autonomous systems lack human emotions such as happiness, sadness, 

fear, anger, surprise and disgust. The concept of empathy concerns awareness and sensitivity to 
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the feelings and thoughts of another, even if not fully communicated in an objectively explicit 

manner [8]. Empathy is often thought of as a vicarious experiencing of those feelings and thoughts 

of the other person. The related concept of sympathy is an affinity, association, or relationship 

between persons or things wherein whatever affects one similarly affects the other [7]. Robotic 

humanoid assistants can use speech recognition software to mimic human emotions. Software uses 

digitally converted speech waves as parameters, turns them into words and then uses a semantic 

decoder to convert words into meaning. Though there has been significant research into developing 

socially and emotionally adept robots with the help of speech recognition software, the software 

still makes mistakes, which can leave these robots with failures to understand human intent and 

emotions [14].  

Trusting autonomous systems and delegating tasks to them to gain realization of their full 

values also requires a belief that these systems are going to be truly effective [33]. Once these 

systems are trusted, delegated tasks that are then fulfilled can help reduce associated personnel 

costs and improve safety. Developers who program the AI engines of autonomous systems can 

focus on providing the ability to carry out complex tasks, which can help to minimize the number 

of people tied to operations, resulting in money saved [33]. When the level of autonomy in weapon 

systems is increased there are improvements in war fighting capabilities while reducing the need 

for human operators [24]. However, the high level of autonomy in such systems in using advanced 

algorithms to detect targets and deploy attacks comes with major trust issues. Groups such as 

Human Rights Watch are constantly attentive to the issue and promote negotiations to impose 

preemptive bans on the development, production, and usage of fully autonomous weapons on the 

battlefields. Once deployed, autonomous weapons can be difficult to recall if a scenario changes, 

new information is obtained, or there is misidentification of a target [24]. The infamous 1991 
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failure of a Patriot missile system to track and intercept an incoming Scud missile resulted in the 

deaths of 28 soldiers and was caused by a subtle programming error.  

3.4. Humans Interfacing with Autonomous Systems 

Partial, sliding and semi–autonomous systems often require humans to interface with them 

during their operations. This introduces the concepts of human-in-the-loop and human-on-the-loop 

[31]. Human-in-the-loop (HITL) or semiautonomous robotic systems (RAS) autonomously 

perform a task for a certain time, then pause and wait for commands from a human operator before 

continuing. For instance, in autonomy used by HITL autonomous systems for searching, detecting, 

and evaluating threats; selection and engaging of targets are controlled and decided by humans. 

Human-on-the-loop (HOTL) systems can execute a task fully and independently but have a human 

in a monitoring or supervisory role, with an ability to intervene if the system fails or if an error 

condition arises. They are capable of being fully autonomous in performing an entire function on 

their own if allowed by their human supervisors. By keeping a human-on-the-loop, a need for 

interactive human and system interfaces is eliminated. However, deadly outcomes can occur. An 

example is the recent similar crashes of Boeing 737 Max aircraft in Indonesia and Ethiopia that 

killed 346 people. The trigger of the crashes was the failure of a sensor intended to accurately 

report the attack angle of the aircraft. Each aircraft was equipped with an autonomous system 

called the Maneuvering Characteristics Augmentation System, or MCAS, which is intended to use 

sensor input and autonomously take corrective action that down points the nose of the aircraft if it 

is about to stall. In each case, when the human pilot intervened, the MCAS system reacted by again 

initiating the down pointing action. Back and forth interactions of the automated system with pilot 

corrective action meant that eventually the multiple down pointing actions resulted in a crash 

known in the industry as uncontrolled flight into terrain. Many pilots have expressed frustration at 
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being caught off guard by automated sudden descents of the aircraft. In the autonomy employed 

by HOTL weapons systems, RAS systems select and engage targets that were not decided upon 

by human supervisors. Humans can monitor the intention and performance of the weapon system 

and can cancel, interfere, or stop its operations if necessary. Applications where humans use 

supervisory control to directly control the system either involves an autonomously running process 

where human intervention includes a control algorithm which adjusts set points whenever 

necessary; or a process accepting a command, carrying it out autonomously, reporting results and 

waiting to receive further commands from the human [30].  

A human who has an in-depth knowledge and understanding of technical details of code, 

algorithms, functionality, and behavior of a machine he/she is operating can better handle critical 

situations while averting or overriding machine decisions and taking control. This raises a concern 

as to how a situation should be dealt with when, for example, an autonomous vehicle is 

compromised by a malicious user while a non-technical human was interfacing with the vehicle. 

Little research has addressed this kind of question, which results in attack vulnerabilities. 

Predicting human behaviors in unavoidable situations is difficult given that autonomous systems 

are typically preprogrammed to not make choices that can be construed as dangerous [9]. 

Extending system modelling techniques to capture human behavior is extremely difficult due to 

complex psychological, physiological, and behavioral aspects of human beings. 

3.5. Measuring Trust in Autonomous Systems 

Trust assessment, measurement, and management require a thorough understanding of the 

concept of trust, often uncovering degrees of, and multi-dimensional nature of trust. Trust 

management concerns collecting, analyzing, and presenting trust related evidence and making 

assessments and decisions regarding trust relationships between entities in a network [22]. 
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Measuring trust relies upon quantitative values for traits such as reliability, competence, security 

vulnerabilities and robustness as well as transparency of control. Trust assessment is furthered 

when these factors are measured in uncertain and certain environments [11].  

As autonomous systems become more complex, instability and uncertainty in workplace 

situations can increase due to increased cognitive complexity [32]. Accompanying feelings can be 

unsettling to people. When comprehension of an intricate automation system becomes difficult or 

impossible, high levels of trust are helpful in coping with uncertainty, particularly when situations 

are dynamically changing and there is little basis for decision making or means of exercising 

control by humans who are in or on the loop. The degree of trust influences the performance of 

the systems and affects acceptance and reliance on automation, along with the strategies that 

operators use during automation. Hence, measurement of situations of trust and mistrust are 

necessary in predicting system performance [32]. One example of the cognitive process is 

illustrated by work of Oh et al. [32] analyses in which electroencephalograms (EEGs) were used 

to measure brainwaves in situations that involved trust and mistrust. Trust levels were found to be 

associated with effective decision-making and performance elevation through measurable 

increases in concentration. When mistrust was evident, stress and anxiety interrupted and was 

inimical to effective decision-making. A study by Wang et al. [40] used EEG signals and facial 

images to establish that human identity is important is assessing trust and assurance and drives 

effective human-machine interaction. In a tie-in with the Software Development Life Cycle, the 

study in [18] asserts that human trust in autonomy can be achieved by applying formal methods. 

Basically, a formal model of the autonomy software can help to verify that critical properties such 

as safety and service are in place, providing assurance that an autonomous system will satisfy 

requirements. As trust applies to autonomous vehicles, formal methods in conjunction with 
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simulations and employing the Software Cost Reduction (SCR) toolset have been used to establish 

elevated levels of trust [18].  

Another method of measuring trust in self-driving cars was described in [19]. The approach 

uses gaze behavior and eye-tracking in a visually demanding nondriving-related task during highly 

automated driving. Situational, dispositional, and learned automation settings were configured, 

and trust levels were self-reported. Associations between gaze behaviors and the level of trust in 

the automation were established. The work sets the stage for further studies in which trust is 

evaluated by quantitative methods apart from self-reporting. There is an advantage in being non-

invasive. In a further study a real-time sensing of trust levels was based upon an innovative model 

that maps psychophysiological measurements of human trust levels into human-machine 

interactions [20]. Finally, in the domain of self-driving cars, aircraft, and pharmaceuticals, trust 

levels can be derived from standards utilized by regulatory bodies that provide certifications for 

safety and reliability of safety-critical technologies that are employed [9].  

3.6. Anti-Autonomy 

When the integrity, behaviors and functionalities of an autonomous system is compromised 

in an attack, not only does it become vulnerable to future attacks, but also becomes a potential 

source of danger or a threat to other autonomous systems, agents, and humans. Lack of 

intentionality makes it more difficult for humans to establish trust. A constant concern is that a 

wrong piece of code can make a system potentially dangerous and capable of wreaking havoc in 

their surroundings. One such example is the use of autonomous robots on battlefields. Potentially 

blamed for noncombatant casualties and collateral damages [2, 12], the usage of fully autonomous 

robotic weapons systems is banned by military operations in the United States. Autonomous 

weapon systems are accused of violating fundamental human values from an ethical point of view, 
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including the ethical standards established by International Law of War [36]. Since battlefield 

robots and weapon systems do not experience anger, fear, or frustration in ways that humans do, 

they potentially pose greater risks towards noncombatants [2]. Similarly, in self-driving cars in 

situations where decisions must be made as to who is saved and who is killed it poses ethical 

dilemmas. The fundamental question of how to impart ethical and moral values into such systems 

arises. This gives rise to the concept of anti-autonomy, which leads to the perplexities of decision 

making in the event of the behavior of an autonomous system going awry.  

Anti-autonomy basically considers how to counter attacks by autonomous systems. The 

work of Huang and Wicks [21] begins with analysis of attack strategies, then applied to a large-

scale distributed intrusion detection framework to address issues of work division, information 

exchange and coordination among available Intrusion Detection Systems (IDS). One approach 

employs autonomous local IDS agents to perform event processing coupled with cooperative 

global problem resolution. The idea is to discern enemy intent as pioneered by Howard and use 

the framework to drive a basis for how different IDS components work together [21]. It has also 

been established that cooperation of a single detection system with remote detection systems 

located in other parts of the network can improve detection performance. The Cooperating 

Autonomous Detection Systems (CATS) is an instantiation of the approach [10]. A distributed 

monitoring environment can improve detection results. To increase the availability of the overall 

systems and to avoid instances of a detection system falling victim to itself, it is important that 

each subsystem performs attack detection autonomously. Although, detection accuracy may be 

increased by the intercommunication between subsystems, this is not a pre-requisite for global 

detection functionality and hence, autonomous behavior of systems should possess self-

configuration, self-maintenance, self-healing, and self-optimization capabilities. Intrusion 
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detection approaches using inclusion and distribution of agents on a network-wide basis to monitor 

the system effectively and efficiently and improve detection has also been reported by Crosbie and 

Spafford [5, 6].  

3.6.1. Automation of Anti-Autonomy 

Robots on the battlefield traditionally carry out tasks like detecting and neutralizing 

improvised explosive devices (IEDs); using sensors to detect hazards like radiation, biological 

agents, or chemicals; or conducting surveillance. The complexity of what robots are capable of is 

rapidly increasing. Unmanned Aerial Vehicles (UAVs) or drones are showing the way in terms of 

technological advancements, including the decision making and deploying of weapons. However, 

autonomous weapons systems are still largely designed for human-in-the-loop decision making. It 

is now common for a UAV to support military operations with both onboard weapons and 

surveillance capacities. Such systems can identify, locate, and eliminate targets in combat zones. 

Equipped with radar antennas, navigation systems and satellite communication, they can identify, 

lock study, and attack targets, with weapons dispatched under human control. In some cases, 

remote operators are working from very distant locations. Newer generations of battlefield 

weaponry can autonomously assess a battle zone much faster and more thoroughly than a human 

can and react very quickly if authorized to do so. UAVs are often carrying out missions that include 

coverage of non-combat zones, increasing the risk of collateral damage to civilian populations, 

which often raise special social and ethical concerns. Unlike replacing human forces in a 

battlefield, UAVs that are lost in battle can often easily be replaced with spares. Forecasts indicate 

that as many as 7 million drones will take flight by the year 2020. This is in contrast to a figure of 

under 40,000 piloted aircraft in operation today.  
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Given the enormous investment in technologically advanced UAVs and automated robotic 

systems, it is natural to consider ways to develop counter measures and protect against automated 

attacks. Terminology like anti-UAV and anti-drone technologies have entered the military 

vernacular. Basic approaches focus on detecting and intercepting unmanned aircrafts, with 

similarities to how Patriot missile systems have functioned for many years. Approximately 235 

counter-drone products have been developed by 155 manufactures in 33 countries [29]. Products 

can be ground-based, hand-held or airborne. Detection strategies include radar, Radio Frequency, 

Electro-Optical, and Infrared. Interdiction methodologies include GPS spoofing and jamming of 

tracking systems and communication devices on enemy systems. For anti-drone systems 

specifically, trade and technology names include DroneGun, Advanced Test High Energy Asset, 

Laser Weapon Systems, Radar-guided missiles, DroneCatcher, SkyWall, SkyFence, Eagle Power 

and Drone Malware [35]. Challenges in the design and development of such systems include issues 

of precision, performance, practicality, detection, tracking and interdiction effectiveness. An 

example of a complication is that a C-UAS jamming system designed to stop UAV communication 

can also jam networks in small or commercial airplanes in the vicinity. Electro-optical systems 

and acoustic sensors have been known to confuse drones with birds or other airplanes. When used 

near airports, electromagnetic and radio frequency interference can cause air traffic control issues. 

In addition, many counter-measures are illegal or restricted in certain countries [37]. 

3.7. Security in Autonomy 

Since autonomous systems are potentially threatening to humans, security and privacy 

issues are of importance, and lapses often require immediate attention and rectification. Hacking 

of these systems can also cause casualties and collateral damage. When autonomous weapon 

systems accept and process commands on the battlefield, although intended to respond and act 
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within laws of war and rules of engagement, significant damage can be caused if victimized by 

hacking attacks [25]. When the software involves complex algorithms and control systems, 

software testing is often incomplete and vulnerabilities are present, offering invitations to hacking 

and hijacking. Internet connectivity opens other avenues for hacking. Networks of autonomous 

systems are supported by the interdomain routing protocol called the Border Gateway Protocol 

(BGP). Because the dynamic nature of the routing infrastructure that includes competitive, self-

interested autonomous nodes, the BGP network is prone to vulnerabilities, failures, 

communication interruptions and malicious attacks [3, 23]. Multiple approaches have been 

developed to enhance BGP network security. Pretty good BGP (PGBGP) can detect anomalies and 

respond, including assessing the minimum number of autonomous systems that are required to 

adopt a distributed security solution that would provide protection against known exploits [23]. 

Other secured versions of BGP include secure-origin BGP, secure-BGP and pretty-secure BGP 

[3]. IP routing infrastructure is susceptible to critical security vulnerabilities and malicious attacks. 

Shue et. al. [38] found multiple autonomous systems with high concentrations of malicious IP 

addresses, and others that were disproportionately experienced high malicious activities in 

comparison with their equivalently sized peers. To determine which internet service providers and 

autonomous systems reveal high malicious behavior they used 10 blacklists, extensive DNS 

solutions, and local spam data. The blacklists, exploited hosts, phishing sites, bot command and 

control and malware downloads were used as inputs. Malicious activities were found among 

autonomous systems that were peering with other systems on a regular basis [38]. While malicious 

attacks are frequently launched by botnets, the originating autonomous systems, and the systems 

with higher degrees of maliciousness resulted in penalizing legitimate traffic on the internet and 

causing extensive collateral damage.  
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Vulnerabilities and malicious attacks have reached into the world of autonomous and 

unmanned vehicles. Most vehicles are equipped with automation features such as satellite 

navigation, anti-lock braking systems (ABS), cruise control, lane departure assist, moving object 

detection (MOD) and parking assist, which provide at least semi-autonomous functionalities to 

these vehicles. The software behind these features are vulnerable to failures caused by 

cyberattacks, software and hardware anomalies, and defects that have been accidently introduced 

by the developers [44]. Yağdereli et al. [43, 44] provided a classification of threats and attacks and 

proposed development guidelines and mitigation strategies to use in the development of 

autonomous and unmanned vehicle systems [44]. Security of autonomous vehicles has also been 

discussed by Thing and Wu where they presented a comprehensive taxonomy to categorize 

security vulnerabilities, threats, attacks, and potential defenses in an autonomous vehicle in order 

for its infrastructure to be more secure and dependable [39]. To implement the quality, security, 

and safety during the development of autonomous embedded electronic systems inside 

autonomous vehicles, Gifei and Salceanu [15] proposed a Quality Safety Cyber Security Integrated 

Management System (QSCSIMS) which enhances security and safety aspects and also decreases 

time spent on following standards and associated costs. Autonomy systems are surrounded by 

security issues, vulnerabilities, and attacks induced by human elements who introduced bugs while 

programming; by hackers invading systems or implementing complex algorithms that produces 

self-manifesting bugs.  

3.8. Conclusion 

This work provides a characterization of trust issues as they pertain to the areas of 

cybersecurity and intelligent autonomous systems. Self-driving cars and drones are prototypical 

examples of intelligent autonomous systems that are widely viewed as having positive impacts on 
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human lives. However, such systems have not been completely successful in establishing that 

humans will fully trust that their behaviors always follow ethical, social, and legal norms of 

society. For self-driving cars in particular, people express concerns underlying safety, security, 

and decision-making, especially during critical situations and circumstances. Anthropomorphic 

characteristics are helpful in elevating trust, especially in robotic humanoid assistants. There is 

substantial technical progress in making these types of systems more reliable and in modeling and 

training them to be compliant with human values. Consciousness, empathy, and sympathy are 

characteristics that are difficult to support in intelligent autonomous systems, yet humans want 

these characteristics. Battlefield robots and weapon systems are advancing rapidly yet are still 

largely operated with human-in-the-loop designs. Fully autonomous weapons systems that make 

strike decisions have not achieved the high level of trust needed for deployment, even in settings 

where they can be shown to exceed human decision-making performance. As weapons systems 

exhibit more autonomy, systems to counter them with anti-autonomy designs are becoming more 

prevalent. It is widely held that one small mishap can translate into disasters with collateral damage 

and loss of life, including non-combat civilian casualties. Autonomous systems are not limited to 

physical machines and devices, but also exist throughout the internet in the form of smart software 

agents and botnets accepting and executing commands. While some of these systems have gained 

some measure of trust by humans, measurement of trust is hampered by a lack of established 

standard measurement procedures. In addition, since such systems are developed and programmed 

by humans, they are prone to security issues, attacks, vulnerabilities, and threats, for which 

researchers have been exploring intrusion detection techniques, approaches, and methods to avert 

failures, outsmart hacking attacks, and prevent disasters.  
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CHAPTER 4. THREAT AND ALERT ANALYTICS IN AUTONOMOUS VEHICLES2 

4.1. Abstract 

Autonomous vehicles or self-driving cars emerged with a promise to deliver a driving 

experience that is safe, secure, law-abiding, alleviates traffic congestion and reduces traffic 

accidents. These self-driving cars predominantly rely on wireless technology, vehicular ad-hoc 

networks (VANETs) and Vehicle to Vehicle (V2V) networks, Road Side Units (RSUs), Millimeter 

Wave radars, light detection and ranging (LiDAR), sensors and cameras, etc. Since these vehicles 

are so dexterous and equipped with such advanced driver assistance technological features, their 

dexterity invites threats, vulnerabilities, and hacking attacks. This paper aims to understand and 

study the technology behind these self-driving cars and explore, identify, and address popular 

threats, vulnerabilities, and hacking attacks to which these cars are prone. This paper also 

establishes a relationship between these threats, trust, and reliability. An analysis of the alert 

systems in self-driving cars is also presented.  

keywords: Self-driving cars, advanced driver assistance systems, trust, reliability, ethics, security, 

threats, vulnerabilities 

4.2. Introduction 

In recent years, human imagination, creativity, artificial intelligence, and a relentless quest 

to expand dexterity of automobiles has led automobile engineers to design and engineer an 

automobile that is self-reliant, self-sufficient, and self-driving. Imagining a future where a self-

driving car run errands (such as picking up clothes from dry-cleaning) while you are still at work 

and reaching office just in time to pick you up when you are done, is not a far-fetched dream. 

 
2 The material in this chapter was co-authored by Aakanksha Rastogi and Kendall Nygard. Aakanksha Rastogi is the 

primary author responsible for actual contributions and research work illustrated in this article. Aakanksha Rastogi 

was the primary developer of the conclusions that are advanced here. Aakanksha Rastogi also drafted and revised all 

versions of this chapter. Kendall Nygard helped with editing the document. 
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Automobile industries are already on a haul to launch their self-driving cars while still competing 

amongst themselves towards constantly improving their cars. While attempting to design a self-

driving car that is fully autonomous, they perform rigorous testing of their vehicles and prepare 

them for adverse road conditions, simulate driving conditions and environments. Waymo self-

driving cars have claimed to have been driven for over 8 million miles on road, averaging about 

25,000 miles per day, and over 5 billion miles in simulation. However, with all the testing 

techniques these engineers employ in making these self-driving cars to ensure their safety, security 

and minimally risky, employing ethics into these cars is still a bigger concern. Ethics relates to 

morality, conscience, self-awareness, and responsibility which are an integral part of 

humans/drivers. These qualities are self-learned and cannot be leveraged to train a self-driving car 

into taking ethical decisions while encountering adverse situations on the road. Despite the efforts 

put together in incorporating ethical decision making systems, there are still several examples of 

countless situations, circumstances and driving conditions where ethical systems of self-driving 

cars can be challenged. Trappl brought up the concept of utilitarianism and cited several such 

scenarios which arguably questioned the ethical decision making capabilities of self-driving cars 

[24]. To which, Borenstein et. al. sought to discuss the ethical responsibilities of hardware and 

software design engineers throughout the process of design, development and testing of 

autonomous or self-driving cars and that each designer is ethically obligated towards creating safer 

technology [4]. Yet another thought-provoking concern is factoring in driver’s stress levels while 

encountering challenging situations on the road. For instance, a situation where a bus driver driving 

on a slippery road encounters a deer jumping right in front of the bus. In this case, the bus driver 

could end up slowing the bus just enough to let the deer pass while trying not to skid or ending up 

killing the deer just for the sake of saving the lives of the passengers. Irrespective of the decision 
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the bus driver takes, he can still be excused in lieu of the stressful situation he/she was in. Self-

driving car/bus, on the contrary, would not be excused for any decision it makes since it lacks 

creativity and ethical decision making capabilities, like human drivers do.  

Autonomous vehicles or self-driving cars and semi-autonomous cars are equipped with 

advanced technology and driver assistance features enabling safe and easier driving experience 

that abides by the law, rules and regulations and alleviate traffic congestion. However, since these 

features leverage wireless network, sensors, and cameras, it also opens windows to threats, 

vulnerabilities and hacking attacks. This paper aims to understand and study technology behind 

self-driving cars and explore, identify, and address threats, vulnerabilities, and hacking attacks that 

these vehicles are exposed to. This paper also establishes a relationship between these threats, trust, 

and reliability. An analysis of the alert systems in self-driving cars is also presented.  

The rest of the paper is organized as follows. Section 4.3 identifies the underlying threats 

to self-driving cars. Section 4.4 presents the strategies availed to mitigate and address these threats. 

Section 4.5 relates these underlying threats, their mitigation strategies, and resolutions to the 

concepts of overall trust and reliability in autonomous systems. Section 4.6 provides analytics on 

the alert-systems in self-driving cars. Section 4.7 concludes this chapter.  

4.3. Identifying Threats 

Almost every car on the road today comes with advanced semi-autonomous features such 

as infotainment system (provides vehicle information and entertainment), Traffic Jam Assist in 

BMW or Traffic Jam pilot in Audi (coordinates live traffic information with satellites and provides 

alternate routes using car’s navigation system), adaptive cruise control (automatically intervenes 

brakes when needed to maintain safe driving distance with other cars while driving in cruise 

control mode), self-parking and lane centering steering, Drive Pilot in Mercedes Benz or Autopilot 
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in Tesla (where the driver can keep their hands off the steering wheel and car can lock lane 

markings and drive itself within the lanes for up to 30 seconds), etc. The basic underlying principle 

for engineering and managing these semi-autonomous features in these cars is by configuring car’s 

own computers that has car’s operating system software which works behind the scenes 

collaborating with car’s electronics, mechanics, power train, wiring, ignition, chassis, etc. Since, 

these car computers are code behind the scenes, it exposes all semi-autonomous features of the 

cars to threats and vulnerabilities. It makes these cars prone to hacking attacks. A car’s 

infotainment system can be hacked to gain access to any unit or component inside the car such as 

ignition, brakes, drive-train, steering wheel, audio/video systems, parking cameras, door locks, 

wiper blades, etc., allowing hackers to take full control over the car and wreak havoc while the car 

is still in operation on the road. This can result in highway mayhems, destruction and casualties. 

Moreover, almost every car has capabilities to sync driver’s phone with car’s software system via 

Bluetooth or WiFi which further opens doors to countless attack strategies. Furthermore, 

Bluetooth, Remote key entry, On-Board Diagnostics (OBD), Dedicated Short Range 

Communications (DSRC), USB, ABS, sensors [8] and Automobile applications also serve as 

attack entry points for hackers [9]. Presence of several car hacking demonstration videos and 

tutorials on the internet second the fact that incorporation of semi-autonomous features aiding car’s 

futuristic appeal is indeed also opening doors to new attack strategies and techniques that can be 

employed to hack these cars. This can cause destruction to the car itself, the people travelling in it 

and others sharing the road. Many automobile industries understand and acknowledge these 

cybersecurity vulnerabilities and threats and even employ white-hat hackers to discover security 

vulnerabilities in vehicle software. However, with ever increasing technological features being 
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launched in these vehicles, it gets harder to keep up with these security vulnerabilities and address 

them just in time.  

In July 2015, two cybersecurity researchers Charlie Miller and Chris Valasek used their 

hacking skills to remotely hack into Jeep Cherokee’s electrical systems and gained wireless control 

of the vehicle’s computer. They wirelessly accessed the entertainment system which enabled them 

to send commands to steering wheel, brakes, transmission, and other dashboard functions and 

killed the Jeep on the highway. According to them, Chrysler’s vehicles are designed in such a way 

that their computer networks and electrical systems behave like smartphones being connected to 

the internet. This opens them to vast variety to vulnerabilities since these car computers can then 

be wirelessly hacked as they are already connected to the internet via driver’s mobile network Wi-

Fi hotspot. After successfully hacking the vehicle, they concluded the factors that hackers use to 

determine the vulnerabilities of vehicles. These included the types and number of radio devices 

that connect the vehicle’s computer systems to the Internet, whether vehicle’s critical driving 

systems were properly isolated from vehicle’s on-board computers and, whether the actions of the 

cyber-physical components could be triggered by digital commands.  

The following month, another hacking demonstration was made by the researchers from 

the University of California at San Diego. The hackers used a small gadget that is placed on the 

vehicle’s dashboard by the insurance firms to monitor location, speed and efficiency of the vehicle. 

They used this gadget which was connected to Corvette’s dashboard to send carefully crafted SMS 

messages for transmitting commands to the Controller Area Network (CAN) bus of the car and 

turned on the windshield wipers and even enabled/disabled its brakes. Another hacking threat was 

reported on Tesla Model X during summer of 2017 where some Chinese researchers managed to 

remotely hack Model X’s brakes while simultaneously opening the doors and the trunk and timed 
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the blinking of lights to the music streaming from vehicle’s audio system. This led Tesla to send 

out security updates to all of it Model X cars.  

As these vehicles are gradually progressing from semi-autonomy towards complete 

autonomy, hacking threats and vulnerabilities become more of a priority than ever. However, it is 

still a question as to who would be to blame in the even that a self-driving car goes rogue on the 

road while driving since it was remotely hacked and causes accidents. 

4.4. Addressing Threats 

Autonomous vehicles (self-driving cars) and semi-autonomous vehicles (cars with some 

self-driving features) rely on external communication systems such as Vehicular Ad hoc Networks 

(VANETs) to exchange control data and sensitive information with road side units. As previously 

mentioned, autonomous and semi-autonomous vehicles are prone to wireless hacking attacks since 

their advanced driving features are connected over the wireless network, making them more 

vulnerable and prone to remote hacking attacks. To ensure the success of technology based on 

security of networks of these vehicles, they are equipped with VANETs. However, certain 

characteristics of VANETs exposes these vehicles to threats and vulnerabilities at all their 

communication layers and cause security issues such as high dynamic topology, speed of the car, 

mobility, open medium wireless communication, and absence of a fixed security system [1][2]. 

This leads hackers and intruders to plant their attack strategies and taking control of these cars 

remotely over wireless network. In a quest to protect the external network of autonomous and 

semi-autonomous vehicles from attacks such as Denial of Service (DoS), Black hole, Grey hole 

and Sybil attacks [1][2], Alheeti and McDonald-Maiser proposed an intrusion detection system 

that is based on Integrated Circuit Metric technology [1][2]. Their detection system called, 

ICMetric-IDS was based on features generated from bias values of magnetometer sensors and the 
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features extracted from the trace files generated using network simulator [1][2]. Their proposed 

scheme was able to demonstrate an efficient detection of malicious behavior in external 

communication of autonomous and semi-autonomous vehicles [1][2].  

Apart from being connected to the network, these vehicles also heavily rely on sensors and 

cameras to support several advanced driver assistance features. This opens doors to another variety 

of attacks involving sensors and cameras. Sensors and cameras of these cars can be hacked to gain 

control of the advanced features such as blind spot detection, lane departure assistance, moving 

object detection, parking sensors and cameras, to name a few. Hence, it is important to carefully 

consider technical and security aspects of each component that is used during the manufacturing 

of these cars.  

Multiple types of threats, vulnerabilities and attacks have been investigated and described 

in the literature. Several detection and defense mechanisms have been developed. These attacks, 

threats and vulnerabilities are categorized in terms of types of attacks and their detection and 

defense as listed in Table 1.  
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Table 1: List of Threats/Vulnerabilities/Attacks with Their Detection/Defense 

Type of 

Attack 

Attacks/Threats/Vul

nerabilities 

Detection and Defense 

Cyber 

attack 

Sybil attack [18] [22] Social Graph-based Sybil detection (SGSD) (includes Social Network-Based 

Sybil Defense, Social Community-Based Sybil Detection) [19], SybilGuard [19], 

SybilLimit [19], SumUp [19], GateKeeper [19], SybilDefender [19], SybilShield 

[19], VoteTrust [19], Behavior Classification-based Sybil detection (BCSD) [19], 

Mobile Sybil detection (includes Friend Relationship-Based Sybil Detection, 

Cryptography-Based Mobile Sybil Detection [19], Feature-Based Mobile Sybil 

Detection) [19], Intelligent Intrusion Detection System (IDS) [18] [22], IDS using 

Deep Neural Network [20], IDS using Outlier Detection [21], Over-the-Air 

(OTA) updates [25] [25], Ericsson Connection Vehicle Cloud (CVC) system [25] 

, layer-based solution [25], signature based IDS and anomaly based IDS [26] 

Cyber 

attack 

Black hole attack [18] 

[22] 

Intelligent Intrusion Detection System (IDS) [18] [22], IDS using Deep Neural 

Network [20] , IDS using Outlier Detection [21], Over-the-Air (OTA) updates 

[25], Ericsson Connection Vehicle Cloud (CVC) system [25] , layer-based 

solution [25], signature based IDS and anomaly based IDS [26] 

Cyber 

attack 

Worm hole attack 

[18] [22] 

Intelligent Intrusion Detection System (IDS) [18] [22], IDS using Deep Neural 

Network [20], IDS using Outlier Detection [21], Over-the-Air (OTA) updates 

[25], Ericsson Connection Vehicle Cloud (CVC) system [25] , layer-based 

solution [25], signature based IDS and anomaly based IDS [26] 

Cyber 

attack 

Grey hole attack [18] 

[22] 

Intelligent Intrusion Detection System (IDS) [18] [22], IDS using Deep Neural 

Network [20] , IDS using Outlier Detection [21], Over-the-Air (OTA) updates 

[25], Ericsson Connection Vehicle Cloud (CVC) system [25], layer-based 

solution [25], signature based IDS and anomaly based IDS [26] 

Cyber 

attack 

Denial of Service 

(DoS) attack [18] 

[22] 

Intelligent Intrusion Detection System (IDS) [18] [22], IDS using Deep Neural 

Network [20] , IDS using Outlier Detection [21], authentication [24],revocation 

[24], Over-the-Air (OTA) updates [25], Ericsson Connection Vehicle Cloud 

(CVC) system [25] , layer-based solution [25], signature based IDS and anomaly 

based IDS [26] 

Cyber 

attack 

Distributed Denial of 

Service (DDoS) 

attack [18] [22] 

Intelligent Intrusion Detection System (IDS) [18] [22], IDS using Deep Neural 

Network [20], IDS using Outlier Detection [21], Over-the-Air (OTA) updates 

[25], Ericsson Connection Vehicle Cloud (CVC) system [25] , layer-based 

solution [25] , signature based IDS and anomaly based IDS [26] 

Cyber 

attack 

GPS spoofing [24] Authentication [24], Over-the-Air (OTA) updates [25], Ericsson Connection 

Vehicle Cloud (CVC) system [25], layer-based solution [25], signature based IDS 

and anomaly based IDS [26] 

Cyber 

attack 

GPS jamming [24] Anti-Jam GPS techniques, high quality inertial measurement units [24], Over-the-

Air (OTA) updates [25], Ericsson Connection Vehicle Cloud (CVC) system [25], 

layer-based solution [25], signature based IDS and anomaly based IDS [26] 

Cyber 

attack 

Malware attack [25] Over-the-Air (OTA) updates [25], Ericsson Connection Vehicle Cloud (CVC) 

system [25], layer-based solution [25], signature based IDS and anomaly based 

IDS [26] 

Sensor 

attack 

Jamming [23]  Ultrasonic MIMO system [23], attack detection system [23], logic check [23], 

adding randomness to control parameters [23], confidence priority [23] 

Sensor 

attack 

Spoofing [23] Ultrasonic MIMO system [23], attack detection system [23], logic check [23], 

adding randomness to control parameters [23], confidence priority [23] 

Sensor 

attack 

Acoustic Quieting 

[23] 

Ultrasonic MIMO system [23], attack detection system [23], logic check [23], 

adding randomness to control parameters [23], confidence priority [23], spectrum 

analysis [24], other source of data such as radar or lidar [24]  

Sensor 

attack 

Relay Attack [23] Ultrasonic MIMO system [23], attack detection system [23], logic check [23], 

adding randomness to control parameters [23], confidence priority [23] 

Camera 

attack 

Attacking Cameras 

[23] 

Ultrasonic MIMO system [23], attack detection system [23], logic check [23], 

adding randomness to control parameters [23], confidence priority [23] 
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4.5. Relating Threats with Trust and Reliability in Autonomous Systems 

The emergence of self-driving cars started a few years ago with the hopes of achieving full 

autonomy (level 5 of the levels defined by Society of Automotive Engineers, shown in Table 3). 

However, in the race to at least get closer full autonomy, manufacturers of popular automobiles, 

began delivering vehicles with advanced driver assistance systems which brought them closer to 

level 2 or partial autonomy. These systems were built upon the concepts of artificial intelligence 

(AI) and machine learning and meant to promise safety of these vehicles on the road. When 

effectively implemented and thoroughly tested, they hoped to reduce accidents and crashes in turn 

aiding lesser crash and damage reports to the insurance companies. However, trusting and adopting 

these autonomous vehicles isn’t that easy.  

Tussyadiah et. al. conducted a study to investigate how attitude and trust in technology 

influences the intentions of people to adopt and use self-driving taxi [25]. They conducted a survey 

with 325 residents and demonstrated that adoption and usage of self-driving taxis is positively 

influenced by its reliability, functionality and helpfulness and negatively influenced by the 

perception of technology being dehumanizing [25]. Part of this study with the mention of 

dehumanizing nature of technology also coincides with the concepts of singularity which is 

perplexing enough to influence people’s trust in self-driving cars. Another study on resistance of 

users towards radical innovation of self-driving cars showed a psychological barrier of car drivers 

towards self-driving cars [19]. Several studies have concluded that people are reluctant when it 

comes to handing over control of their cars to technology because of safety concerns that are 

caused by fear of system malfunction or potential hacking attacks [12] [13].  

Moreover, recently publicized crashes have also questioned the trust and reliability of these 

self-driving cars. Crash reported in Tempe, Arizona where Uber’s self-driving car hit and killed a 
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49-year-old woman since the system that was supposed to engage emergency stops in dangerous 

situations was disabled. This led Uber to suspend their self-driving cars. Crashing of Tesla Model 

S in 2016 also created headlines where the car crashed into an on-coming white truck at the speed 

of 74 mph killing the car driver. Apart from the actual crash reports and publicity of these self-

driving vehicles, other factors such as safety, risk, predictability, trust in engineers that designed 

the system, technical capabilities of these vehicles and system failures also account for overall user 

trust and reliance on self-driving vehicles [5].  

Even though engineers employ engineering best practices, thoroughly researched and 

practiced concepts from data mining, machine learning and AI, what they fail to factor in are the 

social learning skills. Social learning is derived from the terms of responsibility, liability 

distribution, thresholds of acceptable safety or lines that divide recklessness from negligence that 

the institutions of society determine [23]. Self-driving cars can only religiously follow the lines of 

code governing its functionality and operability, but will always fail to apply the knowledge, 

learning and skills derived from the experiences from complexities and inconsistencies of 

behaviors of human drivers and pedestrians on the road. Moreover, the lack of standards in the 

design and implementation of technology behind these self-driving cars, makes it even more 

difficult for them to operate on the road and survive in the society.  

Trust and reliability in self-driving cars also depend on the constantly judging attitude of 

human drivers in terms of zero-tolerance in the event of mistakes these vehicles are bound to make. 

Also, the fact that these cars will never be able to predict the behavior of other human drivers on 

the road, makes it even more difficult to confide in these self-driving cars. Since, there is always 

so much complex lines of code behind these vehicles that they can accomplish, they are written by 

a human, and hence are bound to be erroneous and in constant needs of improvement. A possible 



 

49 

workaround would be to have designers/developers constantly pushing out software updates to 

these vehicles wirelessly but determining a set time to push these software updates could be a 

challenge. Another challenge would be to determine if the updates could be pushed while the 

vehicle is in motion. Moreover, other than regular software updates to enhance the overall safety 

of the vehicle, it is also important to consider the security updates which are direly needed to keep 

up with the hacking attacks, threats, and vulnerabilities these vehicles are prone to.  

4.6. Analytics on Alert System in Self-Driving Cars 

To ensure the safety of drivers, pedestrians and other vehicles sharing the road, most of the 

automobile manufacturers are designing cars with advanced driver assistance features, safety 

features and alert systems. These systems are meant to alert the drivers in the event of unfortunate 

and unfavorable road conditions. To monitor the alertness of the drivers while driving, automobile 

manufactures use steering wheel monitors, sensors, and tiny cameras, to name a few. However, 

these advanced driver assistance features still exist in most of the cars these days as a semi-

autonomous addition.  

An illustration of these advanced driver assistance systems in cars is presented in Figure 1. 

A comprehensive list of some popular safety, security, and advanced driver assistance system 

(ADAS) features are listed in Table 2. 
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Figure 1: Advanced Driver Assistance Systems (adopted from [8]) 

Table 2: List of Advanced Driver Assistance Systems (ADAS) (adopted from [5][6][7][8]) 

ADAS features Description 

Anti-lock braking system  Safety anti-skid braking system 

Adaptive Cruise Control  Allows the vehicle to automatically slow down or speed up in response to the speed of 

the vehicle in front of it 

Adaptive Light Control  Controls the headlamps to adjust the lighting in accordance to the natural lighting on the 

road and illuminate the roads in darkness 

Adaptive Lighting  While driving on a darker street, vehicle’s headlights are automatically switched to low 

beam when an oncoming vehicle is passing by and back to high beam when the 

oncoming vehicle has already passed by 

Automatic Braking  Allows the vehicle to intervene and engage brakes automatically to reduce the speed to 

avert high-speed collisions in the event of driver attention lapse 

Automatic Parking  Allows the vehicle to parallel park itself without requiring the driver to do so. Some 

vehicles park themselves completely while others advice drivers on turning the steering 

wheel and stopping. 

Automatic Crash 

Notification  

Notifies the emergency responders of the crash along with its location 

Automatic Emergency 

Braking  

Automatically applies brakes when forward collision is about to happen 

Backup Camera  Provides image of the area behind the vehicle and helps prevent back-over crashes 

Blind Spot Detection  Allows the vehicles to utilize sensors to help drivers with vital information on moving 

objects around them 

Collision Avoidance 

Systems  

Allows vehicles to utilize sensors to determine vehicle’s danger of colliding with another 

object. In the event of potential collision, system accordingly warns the driver or take 

preventative actions such as pre-charging brakes, applying tension to the seat belts, 

adjusting the seats just in time for the airbags to deploy for passenger safety 

Crosswind stabilization  Sensors are used to compensate for strong crosswinds 

Driver Drowsiness 

Detection  

Allows vehicles to utilize sensors or mini-cameras to determine driver’s attention while 

driving 

GPS Navigation  GPS navigation with voice instructions, interactive maps and 3D maps 

 

https://www.lifewire.com/adaptive-cruise-control-definition-534813
https://www.lifewire.com/what-are-adaptive-headlights-534820
https://www.lifewire.com/what-is-automatic-braking-system-534823
https://www.lifewire.com/automatic-parking-systems-534801
https://www.lifewire.com/decoding-blind-spot-detection-534803
https://www.lifewire.com/automobile-collision-avoidance-systems-534805
https://www.lifewire.com/automobile-collision-avoidance-systems-534805
https://www.lifewire.com/drivers-alter-systems-534806
https://www.lifewire.com/drivers-alter-systems-534806
https://www.lifewire.com/oem-infotainment-systems-navigation-534746
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Table 2: List of Advanced Driver Assistance Systems (ADAS) (adopted from [5][6][7][8]) 

(continued) 

ADAS features Description 

Hands-free steering  Keeps the vehicle in the center of the lane without driver having his/her hands on the 

steering wheel 

Hill Descent Control  Allows vehicle to easily descend steep inclines by automatically activating breaks, the 

mechanism for which is like anti-lock braking system or traction control system 

Intelligent Speed 

Adaptation  

Allows driver to maintain legal speed limit on the road by monitoring the current speed, 

comparing it to the local speed limit and delivering warnings 

Intersection assistant  System monitors cross traffic on an intersection and prompts the driver to apply 

emergency brakes or automatically engages emergency brakes by activating acoustic and 

visual warnings 

Lane Departure Warning 

Systems  

System uses a variety of sensors to alert the driver while changing lanes. 

Lane Keep Assist  If the vehicle is drifting, this system will vibrate the steering wheel or sound an alarm to 

alert driver to take corrective action to avoid colliding with another vehicle. Some 

systems even position the car back in its driving lane. 

Night Vision  Allows the cars to adjust the brightness of the headlights in several ways including active 

night vision projecting infrared light or passive night vision relying on the thermal 

energy from other cars, animals, pedestrians or other objects 

Omni-view technology  System turns on the surround and rear cameras allowing the driver to see a 360° view 

Parking Sensors  Proximity sensors in the vehicles that alert the driver of the obstacles while parking 

Pedestrian Automatic 

Emergency Braking  

System warns the driver of the pedestrian crossing in front of the vehicle or 

automatically engages brake if the collision is imminent 

Rain Sensing  System switches speeds of wiper blades on the windshield depending upon the amount 

and intensity of rain 

Tire Pressure Monitoring  Provides information about inflation level of each tire 

Traffic Jam assist  Provides live traffic information during GPS navigation and accordingly suggest 

alternate routes 

Traffic-sign recognition  Recognizes the traffic signs and speed limit signs on the road 

Turning assistant  Monitors the oncoming traffic while turning left at low speeds and engages brake in 

critical situations 

Wrong-way driving 

warning  

Emits acoustic and visual warnings in case of signs imposing access restrictions 

Figure 2 demonstrates the comparison between number of cars that have key self-driving 

features over the past 5 years [3][7][15][16][17][18][19][29][22]. 

https://www.lifewire.com/hill-descent-control-systems-534812
https://www.lifewire.com/what-are-lane-departure-warning-systems-534822
https://www.lifewire.com/what-are-lane-departure-warning-systems-534822
https://www.lifewire.com/what-is-automotive-night-vision-534824
https://www.lifewire.com/monitoring-tire-pressure-534815
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Figure 2: Car Models with ADAS 

Researchers at Society of Automotive Engineers (SAE International) introduced levels of 

self-driving that cars can reach [30]. These levels are described in Figure 3. Almost all of the 

advanced driver assistance systems that present cars or semi-autonomous cars are equipped with 

fall under Level 2 driving automation. 

 

Figure 3: Levels of Driving Automation (adopted from [17]) 
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Given the reputation of autonomous vehicles considering crashes and casualties they have 

caused, rigorous testing is still underway for these autonomous cars before they are rolled out on 

the roads again with confidence, which is not a possibility for at least next 5 years. 

4.7. Conclusion 

There is over hundreds of thousands of lines of code in the car’s computer system that 

accounts for modern semi-autonomous features of the cars and autonomous cars themselves. This 

opens millions of possibilities to infect the code with bugs and defects and mess with different 

components of the car simultaneously while the car is being driven on the road. Since self-driving 

cars leverage wireless technology, Bluetooth, VANETs, V2V communication, Milimeter Wave 

radar, LiDAR, sensors, and cameras, etc., they are exposed to countless threats, vulnerabilities, 

and hacking attacks. Any of these technologies can be twisted with some malicious piece of code 

to gain remote access to the components of a self-driving car making it a potential hazard on the 

road and demeaning its concept of safe and secure mode of transportation. This paper presented 

an understanding and study of these technological features behind these autonomous or self-

driving cars. This paper also explored, identified, and addressed some popular threats, 

vulnerabilities, and hacking attacks in self-driving cars. A relationship between these threats, trust 

and reliability was also established. An analysis of alert systems in self-driving cars was also 

presented. 
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CHAPTER 5. ETHICAL AND LEGAL ISSUES IN HUMAN INTERACTION WITH 

INTELLIGENT AUTONOMOUS SYSTEMS 

5.1. Introduction 

Evolution of technology and the advancement of artificial intelligence has led to the 

creation of autonomous systems allowing them to function with minimal to no human 

involvement. With the assimilation of governing protocols, manuals and procedures, these 

autonomous systems have carried out their daily activities in an efficient and effective approach. 

Amalgamation of machine learning algorithms have furthered their seamless integration into 

human day to day human activities and lifestyle. Ongoing research and a strong urge to stand out 

competing technological advancements is improving upon the complexities and robustness of 

these autonomous systems. However, since it is the human brains behind them, it is bound to err 

and fail to achieve a behavior, working pattern and decision making sense, that of a human brain. 

Several academic, industry research studies and technical white papers have documented and 

published achievements of designing and testing autonomous vehicles and has successfully gained 

interest of National Highway Traffic Safety Administration (NHTSA) and Department of 

Transportation (DOT).  

NHTSA categorized safety features into five eras as they were introduced into vehicles 

which depicted a significant improvement in vehicle operability on the roads and a promise 

towards overall reduction of crashes and accidents. Along with the acknowledgement of six levels 

of automation levels as deduced by the Society of Automotive Engineers (SAE) and with the 

interest in an anticipated integration of Autonomous vehicles on U.S roadways by 2035 [8], 

NHTSA has begun seeking inputs on testing vehicles that are equipped with automated driving 

systems technologies [12]. The path to this anticipated future has been paved by the extant 
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conscientious literature on the research of autonomous vehicles which holds surplus amounts of 

information in terms of concepts, studies, theories, hypothesis, testing data and so forth.  

Studies have also been reported to work in the direction of incorporating understanding of 

emotions and decision making capabilities into these autonomous systems, all of which is yet to 

be trusted to operate autonomously amongst us humans. Another importance aspect is the 

incorporation of moral and ethical values into these autonomous systems, the concept of which is 

relative. Lack of standard development and operating procedures makes it even more difficult to 

integrate these moral and ethical values. Moreover, these autonomous systems are also ensued by 

the legal issues and policies associated to their operability.   

This chapter aims to understand and study the ethical relationship between human and 

autonomous vehicles (one aspect of autonomous systems) while exploring the avenues of research 

work and literature in this area. Another goal of this chapter is to identify, study and characterize 

the policies, ethical and moral values and, legal issues as they relate to autonomous vehicles.   

The rest of the chapter is organized as follows. Section 5.2 explores the moral and ethical 

relationship between human and machine as it relates to autonomous vehicles. Section 5.3 

describes policies and legal issues associated with autonomous vehicles. 

5.2. Moral and Ethical Relationship between Human and Machine 

Existing and current development of autonomous vehicles utilizes non-standard operating 

procedures which may lead to conflicting decision-making while sharing the road with human 

drivers. Ethical values and morals correlate with intentionality, a behavior solely possessed by 

humans. In addition to lack of standard programming procedures, differences in the concepts of 

intentionality makes it further challenging to incorporate morals into autonomous vehicles. While 

acknowledging the technical and other related complexities of autonomous vehicles, Borenstien 
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et. al. stated that each designer has ethical obligations that they should consider in terms of creating 

a safer technology and that “People who design, develop, deploy, promote, or evaluate a 

computing artifact should not explicitly or implicitly deceive users about the artifact or its 

foreseeable effects” [2]. They also proposed a value-sensitive design approach that incorporates 

this thinking and would encourage designers to consider the fact that autonomy, being user’s 

cherished value, can be sustained during the process of creating their technologies [2]. 

Amongst the design, development, and successful operation of autonomous vehicles, 

understanding human machine interaction holds utmost importance which also assimilates morals 

and ethics. Morals might apply to a situation when conflicting decision-making capabilities of 

autonomous vehicles are at display. For instance, while merging on a freeway, a human driver 

might slow down giving way to a merging autonomous vehicle or may speed up not giving way to 

merging autonomous vehicle. Although, effective ways of programming human morality into 

software has not been established, there still are several studies that corroborate with each other in 

deducing methods, techniques, and examples of incorporating morals and ethics into autonomous 

vehicles. Given the complex nature of real-world scenarios associated with autonomous vehicles, 

Holstein et. al. segregated and categorized the ethical dilemmas into two categories, viz. technical 

challenges, and social challenges [4]. Technical challenges focused on safety, security, privacy, 

trust, transparency, reliability, quality assurance process and responsibility and accountability 

whereas social challenges covered stakeholders in terms of interest of general public and possible 

new selling points [4].  

Human-machine interaction becomes paramount while human drivers are sharing the roads 

with autonomous vehicles. However, when two autonomous vehicles are sharing the road, 

consideration of morals and ethical values and interaction between different autonomous vehicles 
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or two different artificial intelligences becomes important. For instance, while trying to avoid a 

possible collision with another autonomous vehicle, vehicle A might choose to save the passenger 

and hit the fire hydrant on the curb, while vehicle B might choose a similar course of action and 

hit the traffic signal pole. In this situation, if the passengers from both the vehicles get hurt, the 

moral and ethical values of the vehicles are subject to questioning and criticism. However, if 

vehicle A does not have any passengers, it might seem ethical for vehicle A to crash itself and 

engage V2V or V2I communication with vehicle B and allow it to safely pass. Several other such 

scenarios may exist, all of which would call for a need understand and consider ethical 

responsibilities of communication between different autonomous vehicles.   

In the twentieth century, a renowned biochemist and futurist Isaac Asimov first proposed 

three robotics laws that are still esteemed and well recognized since they specified that robots must 

prevent human harm, stipulated obedience to humans and incorporated robotic self-protection. As 

these laws focused on human-robot interactions, they fell short into addressing ethical inevitability 

of future interactions and communication between different artificial intelligences [1]. In an 

attempt to propose humanitarian laws for the protection of rights of robots, with the consideration 

that they shall not contradict fundamental robotics laws, Ashrafian proposed AIonAI law for robots 

to support the moral nature of AI to AI interactions [1]. 

5.3. Policies and Legal Issues with Autonomous Vehicles 

Autonomous vehicles were designed with a promise to deliver safe and secure driving 

operations on roads. However, with the lack of standard design, architecture, and development 

processes, it has opened loopholes to fall into erroneous situations and opened doors to several 

legal issues. When human drivers get into accidents or fender benders on the road, they have 

discussions, rebuttals, and arguments in their defense. Whereas, in the cases of self-driving cars 
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getting into accidents, would it be the owner of the vehicle or the manufacturer of the vehicle 

facing the legal ramifications, is a greater question. Legal implications apply to these vehicles 

during the programming and development of these cars as well as while they are operating on the 

roads. Most of the legal aspects of autonomous vehicles are reliant on vehicle’s predictability in 

arduous situations. 

Most countries around the world have been operating autonomous trains and buses for 

almost a decade now. However, technological developments in the automobile industry and the 

deployment of autonomous vehicles in the past few years has pressurized the governments to 

establish policies and regulations to accommodate testing of these vehicles. Nevada (USA) became 

the first state where the government made regulatory changes to permit on-road testing of 

autonomous vehicles. Figure 4 illustrates the automated vehicle test sites in US as identified by 

NHTSA as of March 2019. 

 

Figure 4: Map of U.S. Automated Vehicle Test Sites (adopted from [8]) 

Per NHTSA, all automated vehicles and their equipment will be highly regulated by them 

and that all vehicles will be subject to existing Federal Motor Vehicle Safety Standards (FMVSS). 

They issued a preliminary statement of policy concerning autonomous vehicles which focused on 

describing developments in automated driving and explained different levels of automation 

defined by NHTSA along with providing an overview of automated research program conducted 
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by NHTSA. This statement also provided “recommended principles that States may wish to apply 

as part of their considerations for driverless vehicle operation, especially with respect to testing 

and licensing” [9]. 

Hanna and Kimmel studied and surveyed US government policies and activities that impact 

the development of automated driving systems while especially emphasizing on cybersecurity, 

user data privacy, safety regulation, energy and environment, and ethical issues [3]. They credited 

agencies like US Department of Transportation (USDOT), US Department of Energy (DOE), 

National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) 

that have been funding research that helped create economic opportunities by enabling security, 

safety assurance, energy efficiency, and data sharing [3].  

DOE led the Systems and Modeling for Accelerated Research in Transportation (SMART) 

Mobility Consortium in pursuit of understanding system level impacts aimed to deliver new 

Energy Efficient Mobility Systems (EEMS) data, modeling tools, analysis, and create new 

knowledge for supporting smarter mobility systems [7]. Another initiative by DOE for developing 

energy efficient vehicle automation technologies is NEXTCAR (Next-Generation Energy 

Technologies for Connected and Automated On-Road Vehicles) which claims to reduce energy 

consumption of future and automated vehicles by 20% by co-optimizing vehicle dynamic controls 

and powertrain operation with the use of connectivity and automation [5]. The understanding of 

impacts has also been second by the pursuit of Smart Cities Challenge and University 

Transportation center programs. 

On June 28, 2017, in a joint effort, NHTSA and Federal Trade Commission (FTC) held a 

workshop to discuss several issues related to data collected by connected and automated vehicles 

as well as the consumer privacy and security issues posed by these vehicles [6]. These included 
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types of data collected, stored, transmitted and shared by the vehicles with wireless interfaces; 

potential challenges posed by this data collection and possible benefits; security and privacy 

practices that the vehicle manufacturer follows; the role that NHTSA, FTC and other government 

agencies play concerning security and privacy issues related to connected and automated vehicles; 

and other self-regulatory standards [6]. In July 2017, U.S. Government Accountability Office 

(GAO) issued a vehicle data privacy report in a wake to review consumer privacy issues that are 

related to connected vehicles [13]. 

In September 2017, Senate and the House of Representatives passed SELF DRIVE Act 

(Safely Ensuring Lives Future Deployment and Research In Vehicle Evolution Act, H.R. 3388) 

with the purposes of memorializing “the Federal role in ensuring the safety of highly automated 

vehicles as it relates to design, construction, and performance, by encouraging the testing and 

deployment of such vehicles” [11]. It expected DOT to require submission of safety certifications 

for the development of automated driving systems (ADS) or highly automated vehicles (HAVs). 

It also required the manufactures of HAVs and ADS to provide written cybersecurity policy and 

privacy plans (including manufacturer’s practices for detecting and responding to unauthorized 

intrusions, cyberattacks, false or spurious messages or vehicle control commands) before offering 

these vehicles for sales [11].          

In November 2017, American Vision for Safer Transportation Through Advancement of 

Revolutionary Technologies (AV START) Act was introduced with the purposes of providing 

enhanced safety oversight (requiring automobile manufacturers to submit safety evaluation report 

to DOT); reinforcing Federal, State and local roles (ensuring DOT’s responsibility for regulating 

ADS and HAVs with respect to safety evaluation report); reducing barriers to deployment of 

vehicles; providing DOT with technical expertise required to set new and updated safety 
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regulations; help DOT modernize existing Federal Motor Vehicle Safety Standards with regards 

to HAVs; strengthening cybersecurity protections and increase awareness and; improving vehicle 

safety and data sharing [10].  

The existence of these policies and inclusion of several government agencies enforce strict 

regulations on automobile industries and manufactures towards safe and secure development and 

deployment of autonomous vehicles.  
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CHAPTER 6. TRUST, INTENTION AND ANTI-AUTONOMY MODELLING 

6.1. Introduction 

Trust in autonomous vehicles is driven by several factors such as the level of automation 

incorporated in the vehicle (partially autonomous or fully autonomous), its ability to operate safely 

while sharing the roads with other autonomous vehicles, human drivers, pedestrians, bicyclists, 

other moving or stationary objects. Other factors include driving through construction zones, 

weather conditions with limited visibility, the ethical decision making ability of vehicles driving 

in autonomous driving mode when they encounter situations where other 

drivers/pedestrians/bicyclists break traffic laws; to name a few. When higher percentage of 

collisions involving autonomous vehicles surface, it discourages overall intention of people trying 

to own and adopt autonomous vehicles. It also sparks the notions of anti-autonomy (conduct of 

autonomous vehicles that goes against the principles of autonomy). In order to expand the 

knowledge and understanding of the concept of anti-autonomy, learn about its impact on human 

trust in autonomy along with gaining insights on the potential threats that autonomous vehicles are 

prone to, extensive research work was performed and published as journal and conference 

proceeding articles. The contributions made in these published articles inspired, progressed and 

lead to the quest to search for collision data caused by autonomous vehicles. Despite the fact that  

collision reports were submitted by the manufacturers licensed to perform testing of their 

autonomous vehicles in the state of California, they still accounted for significant amount of 

collisions, injuries and property damage while involving a human-in-the-loop who were frightened 

even when the vehicle was operating autonomously. The very essence of feeling unsafe and 

doubtful about the vehicle operation add enough cause for not relying on technology behind the 

idea of autonomous vehicles.  
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Several studies have been conducted to understand the preliminary factors responsible for 

trusting and adopting technologies offered by autonomous vehicles. Trust has been known to be 

an important determinant of relying on automation and accepting it mediating beliefs of people 

towards automation and their intentions of taking advantage of it [3]. Choi and Ji utilized trust 

theory for predicting and examining users’ adoption of autonomous vehicles and presented an 

extension of technology acceptance model. They used 10 constructs in their model viz. trust, 

perceived ease of use, perceived usefulness, perceived risk, technical competence, system 

transparency, locus of control, situation management and sensation seeking as prevailing variables 

and used behavioral intention as dependent variable [3]. The results of their study suggested trust 

and perceived usefulness as important determinants of intention to use autonomous vehicles while 

locus of control among driving-related personality traits to be significantly affecting behavioral 

intention. Also, the fact that trust negatively impacted perceived risk [3]. In their study to explore 

the use, adoption and appeal of new vehicle technologies and transportation alternatives, Abraham 

et. al. conducted a survey across users of all ages to assemble information on their satisfaction with 

current technologies in their vehicles, their inclination on using different levels of automation and 

transportation alternatives to driving their own cars and methods of learning to use technology in 

their vehicles [1]. Their survey results concluded that even though older respondents (who could 

benefit from the technology the most) were willing to use some level of automation, they showed 

some hesitation in comfort with full autonomy as opposed to younger drivers. Most of the older 

drivers were also found to have discomfort to surrender control to a system which they believed 

was less experienced as compared to their lifetime of driving experience or a system they could 

not fully comprehend [1]. 
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Autonomous vehicles being involved in collisions often questions its autonomous behavior 

when sharing the roads with human drivers, pedestrians, bicyclists, other objects, and other 

autonomous vehicles. Even when the analysis of the collision reports pronounces them not guilty, 

despite the vehicle operating in autonomous mode or conventional mode when human took the 

control of the vehicle; the fact that the existence of autonomous vehicles - which was supposed to 

save lives and reduce traffic accidents, itself gets involved in a collision, it does put a dent on 

overall trust in the vehicle. Collision reports involving autonomous vehicles also brings in the topic 

of liability of the manufacturer of the vehicle. In their work on liability and regulation of 

autonomous vehicle technologies, Kalra et. al. evaluated the assignment of responsibility in 

crashes that involved autonomous vehicle technologies under the existing liability regime [5]. 

Upon identifying the legal principles that control the crashes which involve autonomous vehicle 

technologies and examining further development and adoption implications [5], authors concluded 

the likelihood of autonomous vehicle technologies in reducing liability for drivers but increasing 

liability for manufacturers since perceived responsibility for crashes move from drivers to the 

vehicle [4] [5] [7]. To this, they suggested that a standardized operation of these technologies 

among manufacturers in order for the technologies to function consistently regardless of the 

vehicle manufacturer, will help in reducing the collisions that stem from consumer confusion [5].  

Another potential challenge is to blend the autonomous vehicles into a society with human 

drivers. There are incidents where human drivers can trick the autonomous vehicle on an 

intersection into paralyzing the internal system of the vehicle [8] which could lead to gridlocks 

and congestion on intersections. This unexpected operational behavior of the autonomous vehicle 

can spark notions of their anti-autonomous capabilities. If autonomous vehicles are often found to 

behave mysteriously beyond the comprehension of fellow human drivers or their behavior could 
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not be aligned with local governing traffic laws, it raises suspicions towards either a faulty non-

standardized design of the autonomous vehicle or the fact that the internal controls of the vehicles 

had been remotely hacked and compromised. The fact that technology behind the autonomous 

vehicle comprises of complex lines of code prone to hacking attacks, it opens a myriad of questions 

on trust and reliability on autonomous vehicles. An autonomous vehicle can be hacked and re-

programmed to be self-destructive, not only causing harm and injuries to the driver and passenger 

but also causing accidents with other drivers around it. This circles back to the concept of who to 

be held responsible for the wrong actions and behavior of an autonomous vehicle. 

Design, development, and manufacturing of autonomous vehicles incorporated with 

advanced state-of-the-art technologies does not always give user enough confidence to trust and 

an intention to adopt and potentially own these vehicles. Reason being higher levels of associated 

risk, safety, and liability issues. Trust and adoption intentionality of the user and trusting the 

intentionality of the manufacturer’s promise to deliver advanced safe and secure technological 

features in autonomous vehicles that not only minimize the collisions but also relieve traffic 

congestions can only be achieved through a thorough in-depth analysis of existing collision data 

via application of AI, deep learning and machine learning concepts. This chapter presents a data-

centric NoTrust ANN model to understand, characterize and analyze collision reports of traffic 

incidents involving autonomous vehicles with the help of deep learning and machine learning 

concepts and algorithms. This chapter also aims to utilize the model evaluation and predictions to 

identify, derive and quantify a relationship between trust, intentionality, anti-autonomy, risk and 

safety.    

The rest of the chapter is organized as follows. Section 6.2 describes the NoTrust ANN 

model including environment setup, dataset information and augmentation, data labelling, 
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classification and pre-processing, development of sequential ANN model, model training, 

predictions, and performance. Section 6.3 utilizes the model evaluations and predictions and data 

analysis to draw a relationship between trust, intentionality, anti-autonomy, risk, and safety. 

6.2. NoTrust ANN Model 

A NoTrust anti-autonomy artificial neural network (ANN) model was created from 

autonomous vehicle collision reports obtained from California DMV in PDF format (see Appendix 

figures B1 through B8 for screen capture of sample PDF reports) between October 2014 and March 

2020. This data was converted into tabular data in CSV format (see Appendix figure B9 for screen 

capture of the CSV data file). Conversion into tabular data in CSV format is important for data 

labelling, classification, pre-processing, and subsequent model generation. Tabular data from CSV 

or the structured data was first labelled. Keras was used to define the model and feature columns 

were used as a bridge to map from the columns in CSV file (see Appendix figure B9 for screen 

capture of the CSV data file) to features which were used to train the model. The CSV was first 

uploaded as a dataframe using Pandas. Then after, an input pipeline to batch was built and rows 

were shuffled using tf.data API which enabled data handling, reading from CSV format, and 

performing data transformations. The columns in the CSV were then mapped to features which 

were used to train the model using feature columns. These feature columns were used to create 

layers that produced dense Tensor to input into the model. A linear sequential model was built by 

assembling a stack of layers from Keras library using supervised machine learning concepts. 

Data labelling and pre-processing created basis for teaching the model for it to be able to 

predict future instances. Labelled data was stored in a separate feature column in the dataframe 

which is also a separate column in the same CSV data file (see Appendix figure B9 for screen 

capture of the CSV data file). When this data was plotted and a single data point on the plot was 
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looked at, it had all the attributes that made a row in that chart which is also referred to as an 

observation [2]. This new column contained numeric data which stored binaries to represent trust 

and do not trust values based on the conditions imposed on other feature columns in the CSV 

data file (see Appendix figure B9 for screen capture of the CSV data file). Classification 

supervised learning techniques were then applied on this labelled data to work towards building, 

evaluating, and predicting a linear sequential model as depicted in Figure 5. 

Figure 5: Classified Supervised Learning Techniques for Building a Linear Sequential Model 

6.2.1. Environment Setup 

TensorFlow with Keras was used to develop the model in Python language since Python is 

the most widely used language for machine learning algorithms and deep learning problems. And 

since TensorFlow provides the most stable APIs for Python as compared to other programming 

languages, it provides seamless integration and implementation.  TensorFlow is an open source 

platform for machine learning which provides tools, libraries and community resources for 
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building and deploying machine learning applications. It was developed by researchers and 

engineers from Google Brain team within Google's Machine Intelligence Research organization 

for conducting machine learning and deep neural networks research [13] [14]. TensorFlow works 

on both CPU and GPU. TensorFlow was installed using pip (python package manager) install 

using Anaconda command prompt. Python program to build and train the model was written in 

Jupyter notebook IDE which was also launched using Anaconda prompt. Anaconda is an open 

source Python data science which manages environment, packages, libraries, and dependencies 

and helps develop and train machine learning and deep learning models with TensorFlow [11]. 

Keras was used with Tensorflow backend to develop linear sequential model. Keras is a high-level 

neural networks API written in Python which provides a deep learning library that allows easy and 

fast prototyping through user friendliness, extensibility, and modularity; and runs smoothly on 

CPU and GPU. It also provides standalone modules such as neural layers, cost functions, 

optimizers, initialization schemes, activation functions and regularization schemes which can be 

combined to create new models [10]. Keras offers two main types of models – sequential and 

model with functional API. Sequential model is a linear stack of layers whereas functional API is 

used for defining complex multi-output models, models with shared layers, or directed acyclic 

graphs [10]. However, for generating NoTrust model, Keras linear sequential model was used. 

Pandas was used for data analysis from the CSV data file since it takes the tabular data 

from the CSV and creates a dataframe which is a Python object with rows and columns. Pandas is 

an open source Berkeley Software Development library that provides high-performance data 

structures and data analysis tools for Python. Anaconda for Python version 3.8.1 was first installed 

on Windows operating system which provided the environment to use Pandas. Pandas and 

TensorFlow libraries were imported from which DataFrame, Keras and feature columns were 
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imported. From Keras, layers and sequential model libraries were imported. Matplotlib was 

imported to plot the graphs. These imported libraries are shown in Figure 6. 

 

Figure 6: Imported Tensorflow Keras Libraries 

6.2.2. Dataset Information and Augmentation 

Dataset was obtained from public reports of traffic collisions involving autonomous 

vehicles between October 2014 and March 2020 (which is the latest reported data), that was 

provided by California Department of Motor Vehicles in PDF format (see Appendix figures B1 

through B8 for screen capture of sample PDF reports) [12]. This data was then converted into CSV 

format in the form of tabular data to be read and processed into Pandas dataframe. A concise list 

of data attributes is listed in Table 3. All of these data attributes are of Categorical feature type and 

Object data type. Complete list of these data attributes is listed table A1 in the appendix section of 

this dissertation. 
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Table 3: Data Attributes Table  

Attribute Type Attribute Name 

PDF File number PDF file Number 

Autonomous 

vehicle details 

Manufacturer Name, Business Name, Vehicle Year, Vehicle Make, Vehicle Model, 

Vehicle was (stopped in traffic/moving)  

Accident Details  Date of Accident, Time of Accident 

Involved in 

Autonomous 

vehicle accident 

Involved in Autonomous Vehicle Accident (Pedestrian/Bicyclist/Other), Number of 

vehicles involved with Autonomous Vehicle 

Autonomous 

vehicle damage 

Vehicle Damage, Damaged Area  

Details of other 

vehicle involved in 

accident 

Vehicle 2 Year, Vehicle 2 Make, Vehicle 2 Model, Vehicle 2 was (stopped in 

traffic/moving) 

Involved in Other 

vehicle accident 

Involved in Vehicle 2 Accident Pedestrian, Involved in Vehicle 2 Accident Bicyclist, 

Involved in Vehicle 2 Accident Other, Number of vehicles involved with Vehicle 2  

Injuries Injured, Injured Driver, Injured Passenger, Injured Bicyclist 

Vehicle driving 

mode 

Vehicle Driving Mode 

Weather 

conditions for both 

vehicles 

Clear, Cloudy, Raining, Snowing, Fog/Visibility, Other, Wind 

Lighting conditions 

for both vehicles 

Daylight, Dusk-Dawn, Dark Street Lights, Dark-No Street Lights, Dark-Street Lights Not 

Functioning 

Roadway surface 

for both vehicles 

Dry, Wet, Snowy-Icy, Slippery/Muddy/Oily/etc, Holes-Deep-Rut, Loose Material on 

Roadway, Obstruction on Roadway, Construction/Repair Zone, Reduced Roadway Width, 

Flooded, Other, No Unusual Conditions 

Preceding 

Movement of 

Autonomous 

Vehicle before 

collision 

Stopped, Proceeding Straight, Ran Off Road, Making Right Turn, Making Left Turn, 

Making U Turn, Backing, Slowing/Stopping, Passing Other Vehicle, Changing Lanes, 

Parking Manuever, Entering Traffic, Unsafe Turning, Xing Into Opposing Lane, Parked, 

Merging, Travelling Wrong Way, Other 

Preceding 

Movement of 

Other Vehicle 

before collision 

Stopped, Proceeding Straight, Ran Off Road, Making Right Turn, Making Left Turn, 

Making U Turn, Backing, Slowing/Stopping, Passing Other Vehicle, Changing Lanes, 

Parking Manuever, Entering Traffic, Unsafe Turning, Xing Into Opposing Lane, Parked, 

Merging, Travelling Wrong Way, Other 

Type of Collision Head On, Side Swipe, Rear End, Broadside, Hit Object, Overturned, Vehicle/Pedestrian, 

Other 

Other CVC Sections Violated Cited, Vision Obscurement, Inattention, Stop and Go Traffic, 

Entering/Leaving Ramp, Previous Collision, Unfamiliar With Road, Defective WEH Equip 

Cited,  

Uninvolved Vehicle, Other, None Apparent, Runaway Vehicle 

There was a total of 256 collision reports reported by the autonomous vehicle 

manufacturers to the California DMV (between October 2014 and March 2020) which was 

converted into CSV format which amounted to 256 rows of data in 140 columns (Figure 7). Since 

there were only 256 vehicle crash reports, data in the CSV was augmented to yield a model with 
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minimal noise. Data was augmented to 5256 rows based upon the augmentation criteria as 

described in Table 4.  

Table 4: Data Augmentation Criteria 

Column Name Augmentation Criteria 

PDF_file_Number Row index concatenated to the name of the PDF file  

Manufacturer_Name A string randomly selected from the following existing Manufacturer names – 

Aimotive Inc., Apple Inc., Aurora Innovation Inc., Cruise LLC, Cruise Automation 

Inc., Delphi Automotive Systems Inc, Drive.ai Inc., GM Cruise LLC, Lexus, Google 

Auto LLC, Jingchi Corp, Lyft Inc., Nissan North America INC, Pony.AI Inc., Toyota 

Research Institute Inc., UATC LLC, Waymo LLC, Zoox Inc. 

Business_Name Business_Name = Manufacturer_Name 

Date_of_Accident start_date = datetime.date(2014, 10, 1) 

end_date = datetime.date(2020, 3, 31) 

time_between_dates = end_date - start_date 

days_between_dates = time_between_dates.days 

random_number_of_days = random.randrange(days_between_dates) 

random_date = start_date + datetime.timedelta(days=random_number_of_days) 

Date_of_Accident = random_date.strftime("%m/%d/%Y") 

Time_of_Accident random_hour = random.randrange(0,23) 

random_min = random.randrange(0,59) 

Time_of_Accident = str(random_hour) + ':' + str(random_min)   

Vehicle_1_Year Vehicle1Year = random.randrange(2010,2020) 

Vehicle_1_Make Vehicle_1_Make was mapped to its respective Manufacturer as follows –  

Manufacturer Vehicle 1 Make 

Delphi Automotive Systems Inc Audi 

Cruise LLC or GM Cruise LLC Chevrolet 

Waymo LLC Chrylser 

Lyft Inc. Ford 

Google Auto LLC a random string between Google and 

prototype 

Apple Inc. or Lexus or Google Auto 

LLC or Toyota Research Institute Inc         

Lexus 

Aurora Innovation Inc. or Jingchi Corp 

or Pony.AI Inc. 

Lincoln 

 

Cruise Automation Inc. or Drive.ai Inc. 

or Nissan North America INC 

Nissan 

Aimotive Inc. or Zoox Inc. Toyota 

UATC LLC Volvo 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Model Vehicle_1_Model was mapped to its respective Vehicle_1_Make as follows –  

Vehicle 1 Make Vehicle 1 Model 

Chevrolet Bolt 

Ford A random string between Fusion and Fusion Hybrid 

Toyota Highlander 

Nissan A random string between Leaf and NV200 Taxi 

Lexus LX 600H L 

Lincoln MKZ 

Chrylser Pacifica 

Toyota Prius 

prototype Prototype 

Lexus RX450h 

Google Self Driving Car 

Audi SQ5 

Volvo XC90 
 

Vehicle_1_was A random generated string between Moving, Stopped in Traffic and Unknown 

Involved_in_Vehicle_1_Accid

ent_Pedestrian 

A random generated string between Yes and No 

Involved_in_Vehicle_1_Accid

ent_Bicyclist 

A random generated string between Yes and No 

Involved_in_Vehicle_1_Accid

ent_Other 

A random generated string between Yes and No 

Number_of_vehicles_involve

d_with_Vehicle_1 

A random generated string between 1, 2, 3 and Unknown 

Vehicle_Damage A random generated string between Major, Minor, Moderate, None and 

Unknown 

Damaged_Area if Vehicle_Damage is 'None': 

       Damaged_Area = 'None' 

else: 

       Damaged_Area = random.choice(['Front', 'Front and Left Side', 'Left 

Front', 'Left Rear', 'Left Side', 'Rear', 'Right Front', 'Right Rear', 'Right Side', 

'Unknown']) 

Vehicle_2_Year if Number_of_vehicles_involved_with_Vehicle_1 is '1': 

        Vehicle_2_Year = 'Not Applicable' 

else:  

        Vehicle_2_Year = random.choice (['1984', '1993', '1994', '1995', '1996', 

'1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', 

'2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', 

'2019', 'Unknown']) 

Vehicle_2_Make if Number_of_vehicles_involved_with_Vehicle_1 is '1': 

        Vehicle_2_Make = 'Not Applicable' 

else:  

        Vehicle_2_Make = random.choice (['All Weather Architectural 

Aluminum Frieghtliner/Hino Truck','Audi','Bicycle','BMW','Buick',                                 

'Bus','Cadillac','Chevrolet','Chrysler','Dodge','Ford','Genuine', 'Genza 2.0f 

electric scooter', 'Gillig Low Floor 

Bus','Honda','Hyundai','Infinity','Isuzu','Jeep', 'Kawasaki', 'Kia', 'Lexus', 

'Mazda', 'Mercedes', 'Mitsubishi', 'Newflyer', 'Nissan', 'NPR', 'Pickup Truck', 

'Porsche', 'Scion', 'Subaru', 'Tesla', 'Toyota', 'Unknown', 'Vespa', 'Volkswagen', 

'Volvo', 'Yamaha']) 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Mode

l 

Vehicle_2_Model was mapped to its respective Vehicle_1_Make as follows –  

Vehicle 2 Make Vehicle 2 Model 

All Weather Architectural 

Aluminum Frieghtliner/Hino 

Truck 

Unknown 

Audi A random string between A4, A6, Q4, Q5 and Unknown  

Bicycle Unknown 

BMW A random string between 3 Series, 325i, 328 IX, 328ci, 328i, 528i, 

535i, 633 Csi, Unknown and X5M 

Buick LaSabre 

Bus Unknown 

Cadillac A random string between Seville and Unknown 

Chevrolet A random string between Bolt, Cobalt, Equinox, Silverado, 

SuburbanK1500, Traverse and Unknown 

Chrysler Town & Country 

Dodge A random string between Charger, Journey and Sprinter 

Ford A random string between C-Max, Econoline E-150, Escape, 

Expedition, Explorer, Explorer XLT, F-250, F250 Super Duty, 

Fiesta, Fusion, Ranger, Taurus, Transit, Transit 250 Low Roof and 

Unknown 

Genuine Scooter 

Genuine 2.0f electric scooter Unknown 

Gillig Low Floor Bus Unknown 

Honda A random string between Accord, CB300F, Civic, Civic EX, Civic 

LX, Clarity, CRV, Cr-V Ex, Odyssey, PCX 150, Rebel, Ridgeline, 

S90 and Unknown  

Hyundai A random string between Accent, Elantra, Ioniq and Unknown 

Infinity M35 

Isuzu A random string between NPR and Unknown 

Jeep A random string between Cherokee, Wrangler and Unknown  

Kawasaki Ninja 300 

Kia A random string between Sportage and Soul Sport 

Lexus A random string between ES, IS250, IS350, LS400, RX350 and 

Unknown 

Mazda A random string between 2, 3, 5, 3 SW S, B2300, CX-5 Grand 

Touring 4D UTV, Protégé 5 and Unknown 

Mercedes A random string between Benz, Benz C300, Benz E Class 4D 2WD 

350, ML350, Sprinter and Sprinter 25004X2 

Mitsubishi Unknown 

Newflyer Lowfloor Articulated Bus, Series 2300 

Nissan A random string between Altima, Altima XL, Armada, Frontier, 

Leaf, NV200S, Sentra and Versa 

None None 

Not Applicable Not Applicable 

NPR, Pickup Truck, Vespa Unknown 

Porsche Panamera 

Scion xA 

Subaru A random string between Forester, Impreza and Outback  

Tesla A random string between Model 3 and Model S 

Toyota A random string between 86, 4Runner, Avalon, Camry, Camry SE, 

Celica, Corolla, Highlander, Prius, RAV4, RAV4 EV, Sienna, 

Tacoma, Yaris and Unknown 

Unknown A random choice between Minivan and Unknown 

Volkswagen Jetta, Passat, Tiguan and Unknown 

Volvo V40 

Yamaha YZF-R3 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_was A random generated string between Moving, Moving and Stopped in Traffic, 

Not Applicable, Stopped in Traffic and Unknown 

Involved_in_Vehicle_2_Accid

ent_Pedestrian 

if Number_of_vehicles_involved_with_Vehicle_1 is '1':  

        Involved_in_Vehicle_2_Accident_Pedestrian = 'Not Applicable' 

else: 

        Involved_in_Vehicle_2_Accident_Pedestrian = 

Involved_in_Vehicle_1_Accident_Pedestrian 

Involved_in_Vehicle_2_Accid

ent_Bicyclist 

if Number_of_vehicles_involved_with_Vehicle_1 is '1':  

        Involved_in_Vehicle_2_Accident_Bicyclist = 'Not Applicable' 

    else: 

        Involved_in_Vehicle_2_Accident_Bicyclist = 

Involved_in_Vehicle_1_Accident_Bicyclist 

Involved_in_Vehicle_2_Accid

ent_Other 

if Number_of_vehicles_involved_with_Vehicle_1 is '1':  

        Involved_in_Vehicle_2_Accident_Other = 'Not Applicable' 

    else: 

        Involved_in_Vehicle_2_Accident_Other = 

Involved_in_Vehicle_1_Accident_Other 

Number_of_vehicles_involve

d_with_Vehicle_2 

if Number_of_vehicles_involved_with_Vehicle_1 is '1':  

        Number_of_vehicles_involved_with_Vehicle_2 = random.choice (['0', '1', 

'Not Applicable', 'Unknown']) 

elif Number_of_vehicles_involved_with_Vehicle_1 is '2': 

        Number_of_vehicles_involved_with_Vehicle_2 = random.choice (['2', 

'Unknown']) 

elif Number_of_vehicles_involved_with_Vehicle_1 is '3': 

        Number_of_vehicles_involved_with_Vehicle_2 = '3' 

else:  

        Number_of_vehicles_involved_with_Vehicle_2 = random.choice (['1', '2', 

'Not Applicable', 'Unknown']) 

Injured A random generated string between Yes, No and Unknown. 

if Involved_in_Vehicle_1_Accident_Bicyclist is 'Yes': 

        Injured = 'Yes' 

Injured_Driver if Injured is 'Unknown': 

        Injured_Driver = 'Unknown' 

elif Involved_in_Vehicle_1_Accident_Bicyclist is 'Yes': 

        Injured_Driver = random.choice (['Yes', 'No']) 

elif Injured is 'Yes': 

        Injured_Driver = random.choice (['Yes', 'No']) 

Injured_Passenger if Injured is 'Unknown': 

        Injured_Passenger = 'Unknown' 

elif Involved_in_Vehicle_1_Accident_Bicyclist is 'Yes': 

        Injured_Passenger = random.choice (['Yes', 'No']) 

elif Injured is 'Yes': 

        Injured_Passenger = random.choice (['Yes', 'No']) 

Injured_Bicyclist if Injured is 'Unknown': 

        Injured_Bicyclist = 'Unknown' 

elif Involved_in_Vehicle_1_Accident_Bicyclist is 'Yes': 

        Injured_Bicyclist = 'Yes' 

elif Injured is 'Yes': 

        Injured_Bicyclist = Involved_in_Vehicle_1_Accident_Bicyclist 

Vehicle_Driving_Mode A random generated string between Autonomous Mode and Conventional 

Mode 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Weather_Clear 

 

 

Vehicle_1_Weather_Clear = random.choice(['Yes', 'No']) 

if Vehicle_1_Weather_Cloudy is 'Yes': 

        Vehicle_1_Weather_Clear = 'No' 

elif Vehicle_1_Weather_Raining is 'Yes': 

        Vehicle_1_Weather_Clear = 'No' 

if Vehicle_Damage is 'Unknown':  

        Vehicle_1_Weather_Clear = 'Unknown' 

Vehicle_2_Weather_Clear if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Weather_Clear = Vehicle_1_Weather_Clear 

elif Vehicle_Damage is 'Unknown':  

        Vehicle_2_Weather_Clear = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Weather_Clear = 'Not Applicable' 

Vehicle_1_Weather_Cloudy Vehicle_1_Weather_Cloudy = random.choice(['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Yes': 

        Vehicle_1_Weather_Cloudy = 'No' 

elif Vehicle_1_Weather_Raining is 'Yes': 

        Vehicle_1_Weather_Cloudy = 'No' 

if Vehicle_Damage is 'Unknown':  

        Vehicle_1_Weather_Cloudy = 'Unknown' 

Vehicle_2_Weather_Cloudy if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Weather_Cloudy = Vehicle_1_Weather_Cloudy 

 elif Vehicle_Damage is 'Unknown':  

        Vehicle_2_Weather_Cloudy = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Weather_Cloudy = 'Not Applicable' 

Vehicle_1_Weather_Raining Vehicle_1_Weather_Raining = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Yes': 

        Vehicle_1_Weather_Raining = 'No' 

elif Vehicle_1_Weather_Cloudy is 'Yes': 

        Vehicle_1_Weather_Raining = 'No' 

if Vehicle_Damage is 'Unknown':  

        Vehicle_1_Weather_Raining = 'Unknown' 

Vehicle_2_Weather_Raining if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Weather_Raining = Vehicle_1_Weather_Raining 

elif Vehicle_Damage is 'Unknown':  

        Vehicle_2_Weather_Raining = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Weather_Raining = 'Not Applicable' 

Vehicle_1_Weather_Snowing Vehicle_1_Weather_Snowing = 'No' 

if Vehicle_Damage is 'Unknown':  

        Vehicle_1_Weather_Snowing = 'Unknown' 

Vehicle_2_Weather_Snowing if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Weather_Snowing = Vehicle_1_Weather_Snowing   

elif Vehicle_Damage is 'Unknown':  

        Vehicle_2_Weather_Snowing = 'Unknown'  

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Weather_Snowing = 'Not Applicable' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Weather_Fog/Visi

bility 

if Vehicle_1_Weather_Clear is 'Yes': 

        Vehicle_1_Weather_Fog/Visibility = 'No' 

elif Vehicle_1_Weather_Cloudy is 'Yes': 

        Vehicle_1_Weather_Fog/Visibility = 'No' 

elif Vehicle_1_Weather_Raining is 'Yes': 

        Vehicle_1_Weather_Fog/Visibility = 'No' 

else: 

        Vehicle_1_Weather_Fog/Visibility = 'Yes' 

if Vehicle_Damage is 'Unknown':  

        Vehicle_1_Weather_Fog/Visibility = 'Unknown' 

Vehicle_2_Weather_Fog/Visi

bility 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Weather_Fog/Visibility = Vehicle_1_Weather_Fog/Visibility 

elif Vehicle_Damage is 'Unknown':  

        Vehicle_2_Weather_Fog/Visibility = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Weather_Fog/Visibility = 'Not Applicable' 

Vehicle_1_Weather_Other Vehicle_1_Weather_Other = 'No' 

if Vehicle_Damage is 'Unknown':  

        Vehicle_1_Weather_Other = 'Unknown' 

Vehicle_2_Weather_Other if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Weather_Other = Vehicle_1_Weather_Other 

elif Vehicle_Damage is 'Unknown':  

        Vehicle_2_Weather_Other = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Weather_Other = 'Not Applicable' 

Vehicle_1_Weather_Wind Vehicle_1_Weather_Wind = 'No' 

elif Vehicle_Damage is 'Unknown':  

        Vehicle_1_Weather_Wind = 'Unknown' 

Vehicle_2_Weather_Wind if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Weather_Wind = Vehicle_1_Weather_Wind 

 elif Vehicle_Damage is 'Unknown':  

        Vehicle_2_Weather_Wind = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Weather_Wind = 'Not Applicable' 

Vehicle_1_Lighting_Daylight Vehicle_1_Lighting_Daylight = random.choice (['Yes', 'No']) 

if Vehicle_1_Lighting_Dusk-Dawn is 'Yes': 

        Vehicle_1_Lighting_Daylight = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Lighting_Daylight = 'Unknown' 

Vehicle_2_Lighting_Daylight if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Lighting_Daylight = Vehicle_1_Lighting_Daylight 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Lighting_Daylight = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Lighting_Daylight = 'Not Applicable' 

  

 

 



 

83 

Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Lighting_Du

sk-Dawn 

Vehicle_1_Lighting_Dusk-Dawn = random.choice (['Yes', 'No']) 

if Vehicle_1_Lighting_Daylight is 'Yes': 

        Vehicle_1_Lighting_Dusk-Dawn = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Lighting_Dusk-Dawn = 'Unknown' 

Vehicle_2_Lighting_Du

sk-Dawn 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Lighting_Dusk-Dawn = Vehicle_1_Lighting_Dusk-Dawn 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Lighting_Dusk_Dawn = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Lighting_Dusk-Dawn = 'Not Applicable' 

Vehicle_1_Lighting_Da

rk-Street-Lights 

 if Vehicle_1_Lighting_Daylight is 'Yes': 

        Vehicle_1_Lighting_Dark-Street-Lights = 'No' 

elif Vehicle_1_Lighting_Dusk-Dawn is 'Yes': 

        Vehicle_1_Lighting_Dark-Street-Lights = 'No' 

else: 

        Vehicle_1_Lighting_Dark-Street-Lights = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Lighting_Dark-Street-Lights = 'Unknown' 

Vehicle_2_Lighting_Da

rk-Street-Lights 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Lighting_Dark-Street-Lights = Vehicle_1_Lighting_Dark-Street-

Lights 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Lighting_Dark-Street-Lights = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Lighting_Dark-Street-Lights = 'Not Applicable' 

Vehicle_1_Lighting_Da

rk-No-Street-Lights 

Vehicle_1_Lighting_Dark-No-Street-Lights = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Lighting_Dark-No-Street-Lights = 'Unknown' 

Vehicle_2_Lighting_Da

rk-No-Street-Lights 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Lighting_Dark-No-Street-Lights = Vehicle_1_Lighting_Dark-No-

Street-Lights 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Lighting_Dark-No-Street-Lights = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Lighting_Dark-No-Street-Lights = 'Not Applicable' 

Vehicle_1_Lighting_Da

rk-Street-Lights-Not-

Functioning 

Vehicle_1_Lighting_Dark-Street-Lights-Not-Functioning = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Lighting-Dark-Street-Lights-Not-Functioning = 'Unknown' 

Vehicle_2_Lighting_Da

rk-Street-Lights-Not-

Functioning 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Lighting_Dark-Street-Lights-Not-Functioning = 

Vehicle_1_Lighting_Dark-Street-Lights-Not-Functioning 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Lighting_Dark-Street-Lights-Not-Functioning = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Lighting_Dark-Street-Lights-Not-Functioning = 'Not Applicable' 

Vehicle_1_Roadway_Su

rface-Dry 

Vehicle_1_Roadway_Surface-Dry = random.choice (['Yes', 'No'])    

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Surface-Dry = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Roadway_Surface

-Dry 
if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Roadway_Surface-Dry = Vehicle_1_Roadway_Surface-Dry 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Surface-Dry = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Surface-Dry = 'Not Applicable' 
Vehicle_1_Roadway_Surface

-Wet 

if Vehicle_1_Roadway_Surface-Dry is 'Yes': 

        Vehicle_1_Roadway_Surface-Wet = 'No' 

else: 

        Vehicle_1_Roadway_Surface-Wet = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Surface-Wet = 'Unknown' 

Vehicle_2_Roadway_Surface

-Wet 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Roadway_Surface-Wet = Vehicle_1_Roadway_Surface-Wet 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Surface-Wet = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Surface-Wet = 'Not Applicable' 

Vehicle_1_Roadway_Surface

-Snowy-Icy 

Vehicle_1_Roadway_Surface_Snowy-Icy = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Surface_Snowy-Icy = 'Unknown' 

Vehicle_2_Roadway_Surface

-Snowy-Icy 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Roadway_Surface_Snowy-Icy = 

Vehicle_1_Roadway_Surface_Snowy-Icy 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Surface_Snowy-Icy = 'Unknown'     

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Surface_Snowy-Icy = 'Not Applicable' 

Vehicle_1_Roadway_Surface

-Slippery-Muddy-Oily-etc 

Vehicle_1_Roadway_Surface-Slippery-Muddy-Oily-etc = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Surface-Slippery-Muddy-Oily-etc = 'Unknown' 

Vehicle_2_Roadway_Surface

-Slippery-Muddy-Oily-etc 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'):  

        Vehicle_2_Roadway_Surface-Slippery-Muddy-Oily-etc = 

Vehicle_1_Roadway_Surface-Slippery-Muddy-Oily-etc 

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Surface-Slippery-Muddy-Oily-etc = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Surface-Slippery-Muddy-Oily-etc = 'Not 

Applicable' 

Vehicle_1_Roadway_Conditi

ons-Holes-Deep-Rut 

Vehicle_1_Roadway_Conditions-Holes-Deep-Rut = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Holes-Deep-Rut = 'Unknown' 

Vehicle_2_Roadway_Conditi

ons-Holes-Deep-Rut 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-Holes-Deep-Rut = 

Vehicle_1_Roadway_Conditions-Holes-Deep-Rut  

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions_Holes-Deep-Rut = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-Holes-Deep-Rut = 'Not Applicable’ 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Roadway_Conditi

ons-Loose-Material-on-

Roadway 

Vehicle_1_Roadway_Conditions-Loose-Material-on-Roadway = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Loose-Material-on-Roadway = 

'Unknown' 
Vehicle_2_Roadway_Conditi

ons-Loose-Material-on-

Roadway 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-Loose-Material-on-Roadway = 

Vehicle_1_Roadway_Conditions-Loose-Material-on-Roadway     

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Loose-Material-on-Roadway = 

'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-Loose-Material-on-Roadway = 'Not 

Applicable' 

Vehicle_1_Roadway_Conditi

ons-Obstruction-on-

Roadway 

Vehicle_1_Roadway_Conditions-Obstruction-on-Roadway = 'No'        

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Obstruction-on-Roadway = 'Unknown'     

Vehicle_2_Roadway_Conditi

ons-Obstruction-on-

Roadway 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-Obstruction-on-Roadway = 

Vehicle_1_Roadway_Conditions-Obstruction-on-Roadway     

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Conditions-Obstruction-on-Roadway = 'Unknown'     

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-Obstruction-on-Roadway = 'Not 

Applicable'     

Vehicle_1_Roadway_Conditi

ons-Construction-Repair-

Zone 

Vehicle_1_Roadway_Conditions-Construction-Repair-Zone = random.choice 

(['Yes', 'No'])   

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Construction-Repair-Zone = 'Unknown'    

Vehicle_2_Roadway_Conditi

ons-Construction-Repair-

Zone 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-Construction-Repair-Zone = 

Vehicle_1_Roadway_Conditions-Construction-Repair-Zone    

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Conditions-Construction-Repair-Zone = 'Unknown'    

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-Construction-Repair-Zone = 'Not 

Applicable'    

Vehicle_1_Roadway_Conditi

ons-Reduced-Roadway-

Width 

 

 

if Vehicle_1_Roadway_Conditions-Construction-Repair-Zone is 'Yes': 

        Vehicle_1_Roadway_Conditions-Reduced-Roadway-Width = 'No' 

else: 

        Vehicle_1_Roadway_Conditions-Reduced-Roadway-Width = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Reduced-Roadway-Width = 'Unknown'     

Vehicle_2_Roadway_Conditi

ons-Reduced-Roadway-

Width 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-Reduced-Roadway-Width = 

Vehicle_1_Roadway_Conditions-Reduced-Roadway-Width     

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Conditions-Reduced-Roadway-Width = 'Unknown'     

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-Reduced-Roadway-Width = 'Not 

Applicable'     
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Roadway_Conditi

ons-Flooded 
Vehicle_1_Roadway_Conditions-Flooded = 'No'     

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Flooded = 'Unknown'     
Vehicle_2_Roadway_Conditi

ons-Flooded 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-Flooded = 

Vehicle_1_Roadway_Conditions-Flooded     

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Conditions-Flooded = 'Unknown'     

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-Flooded = 'Not Applicable'     

Vehicle_1_Roadway_Conditi

ons-Other 

Vehicle_1_Roadway_Conditions-Other = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-Other = 'Unknown' 

Vehicle_2_Roadway_Conditi

ons-Other 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-Other = 

Vehicle_1_Roadway_Conditions-Other     

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Conditions-Other = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-Other = 'Not Applicable' 

Vehicle_1_Roadway_Conditi

ons-No-Unusual-Conditions 

Vehicle_1_Roadway_Conditions-No-Unusual-Conditions = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_1_Roadway_Conditions-No-Unusual-Conditions = 'Unknown' 

Vehicle_2_Roadway_Conditi

ons-No-Unusual-Conditions 

if Number_of_vehicles_involved_with_Vehicle_1 in ('1', '2', '3'): 

        Vehicle_2_Roadway_Conditions-No-Unusual-Conditions = 

Vehicle_2_Roadway_Conditions-No-Unusual-Conditions     

elif Vehicle_1_Weather_Clear is 'Unknown': 

        Vehicle_2_Roadway_Conditions-No-Unusual-Conditions = 'Unknown' 

elif Number_of_vehicles_involved_with_Vehicle_2 is 'Not Applicable': 

        Vehicle_2_Roadway_Conditions-No-Unusual-Conditions = 'Not 

Applicable' 

Vehicle_1_Movement_Prece

ding_Collision-Stopped 

 

 

Vehicle_1_Movement_Preceding_Collision-Stopped = 'No'   

randommovement1 = random.choice 

(['Vehicle_1_Movement_Preceding_Collision-Stopped', 

'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Stopped':   

        Vehicle_1_Movement_Preceding_Collision-Stopped= 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Stopped = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_Prece

ding_Collision-Stopped 

Vehicle_2_Movement_Preceding_Collision-Stopped = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision_Stopped': 

        Vehicle_2_Movement_Preceding_Collision_Stopped = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Stopped = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Stopped = 'Not Applicable' 

Vehicle_1_Movement_Prece

ding_Collision-Proceeding-

Straight 

 

 

Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight = 'No' 

randommovement1 = random.choice 

(['Vehicle_1_Movement_Preceding_Collision-Stopped', 

'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-

Proceeding-Straight': 

        Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight = 

'Unknown'  

if Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight = 'Not 

Applicable'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Proceeding-Straight 

Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Proceeding-

Straight': 

        Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight = 'Unknown'     

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Ran-Off-Road 

Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road': 

        Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Ran-Off-Road 

Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road': 

        Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road = 'Not Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Making-Right-Turn 

Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Making-Right-

Turn': 

        Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn = 'Unknown'         
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Making-Right-Turn 

Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Making-Right-

Turn': 

        Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Making-Left-Turn 

Vehicle_1_Movement_Preceding_Collision_Making_Left_Turn = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Making-Left-

Turn': 

        Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn = 'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Making-Left-Turn 

Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Making-Left-

Turn': 

        Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Making-U-Turn 

Vehicle_1_Movement_Preceding_Collision-Making-U-Turn = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Making-U-

Turn': 

        Vehicle_1_Movement_Preceding_Collision-Making-U-Turn = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Making-U-Turn = 'Unknown' 

 

 



 

92 

Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Making-U-Turn 

Vehicle_2_Movement_Preceding_Collision-Making-U-Turn = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Making-U-

Turn': 

        Vehicle_2_Movement_Preceding_Collision-Making-U-Turn = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Making-U-Turn = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Making-U-Turn = 'Not Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Backing 

Vehicle_1_Movement_Preceding_Collision-Backing = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Backing': 

        Vehicle_1_Movement_Preceding_Collision-Backing = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Backing = 'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Backing 

Vehicle_2_Movement_Preceding_Collision-Backing = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Backing': 

        Vehicle_2_Movement_Preceding_Collision-Backing = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Backing = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Backing = 'Not Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Slowing/Stopping 

 

 

 

 

Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-

Slowing/Stopping': 

        Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Slowing/Stopping 

Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-

Slowing/Stopping': 

        Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Movement_Preceding_Collision_Slowing/Stopping = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Passing-Other-Vehicle 

Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Passing-Other-

Vehicle': 

        Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle = 'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Passing-Other-Vehicle 

Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Passing-Other-

Vehicle': 

        Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Changing-Lanes 

Vehicle_1_Movement_Preceding_Collision-Changing-Lanes = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Changing-

Lanes': 

        Vehicle_1_Movement_Preceding_Collision-Changing-Lanes = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Changing-Lanes = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Changing-Lanes 

Vehicle_2_Movement_Preceding_Collision-Changing-Lanes = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Changing-

Lanes': 

        Vehicle_2_Movement_Preceding_Collision-Changing-Lanes = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Changing-Lanes = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Changing-Lanes = 'Not Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Parking-Manuever 

Vehicle_1_Movement_Preceding_Collision-Parking-Manuever = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Parking-

Manuever': 

        Vehicle_1_Movement_Preceding_Collision-Parking-Manuever = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Parking-Manuever = 'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Parking-Manuever 

Vehicle_2_Movement_Preceding_Collision-Parking-Manuever = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Parking-

Manuever': 

        Vehicle_2_Movement_Preceding_Collision-Parking-Manuever = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Parking-Manuever = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Parking-Manuever = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Entering-Traffic 

Vehicle_1_Movement_Preceding_Collision-Entering-Traffic = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Entering-Traffic = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Entering-Traffic 

Vehicle_2_Movement_Preceding_Collision-Entering-Traffic = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Entering-

Traffic': 

        Vehicle_2_Movement_Preceding_Collision-Entering-Traffic = 'Yes' 

 if Vehicle_1_Weather_Clear is 'Unknown':   

       Vehicle_2_Movement_Preceding_Collision-Entering-Traffic = 'Unknown'  

if Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Entering-Traffic = 'Not Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Other-Unsafe-Turning 

Vehicle_1_Movement_Preceding_Collision-Other-Unsafe-Turning = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Other-Unsafe-Turning = 'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Other-Unsafe-Turning 

Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-

Turning': 

        Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Xing-Into-Opposing-

Lane 

Vehicle_1_Movement_Preceding_Collision-Xing-Into-Opposing-Lane = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Xing-Into-Opposing-Lane = 

'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Xing-Into-Opposing-

Lane 

Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Xing-Into-

Opposing-Lane': 

        Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane = 

'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Parked 

Vehicle_1_Movement_Preceding_Collision-Parked = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Parked': 

        Vehicle_1_Movement_Preceding_Collision-Parked = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Parked = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Parked 

Vehicle_2_Movement_Preceding_Collision-Parked = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Parked': 

        Vehicle_2_Movement_Preceding_Collision-Parked = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Parked = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Parked = 'Not Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Merging 

 

 

 

 

Vehicle_1_Movement_Preceding_Collision-Merging = 'No' 

randommovement1 = random.choice (['Vehicle_1_Movement_Preceding_Collision-

Stopped', 'Vehicle_1_Movement_Preceding_Collision-Proceeding-Straight',                                     

'Vehicle_1_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_1_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Making-U-Turn', 

'Vehicle_1_Movement_Preceding_Collision-Backing', 

'Vehicle_1_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_1_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_1_Movement_Preceding_Collision-Changing-Lanes',                           

'Vehicle_1_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_1_Movement_Preceding_Collision-Parked',                                      

'Vehicle_1_Movement_Preceding_Collision-Merging']) 

if randommovement1 is 'Vehicle_1_Movement_Preceding_Collision-Merging': 

        Vehicle_1_Movement_Preceding_Collision-Merging = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Merging = 'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movement_

Preceding_Collision-

Merging 

Vehicle_2_Movement_Preceding_Collision-Merging = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping',                                     

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked',                                    

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Merging': 

        Vehicle_2_Movement_Preceding_Collision-Merging = 'Yes'     

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Merging = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Merging = 'Not Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Travelling-Wrong-

Way 

Vehicle_1_Movement_Preceding_Collision-Travelling-Wrong-Way = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Movement_Preceding_Collision-Travelling-Wrong-Way = 

'Unknown'  

Vehicle_2_Movement_

Preceding_Collision-

Travelling-Wrong-

Way 

Vehicle_2_Movement_Preceding_Collision-Travelling-Wrong-Way = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Travelling-Wrong-Way = 

'Unknown'      

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision-Travelling-Wrong-Way = 'Not 

Applicable'  

Vehicle_1_Movement_

Preceding_Collision-

Other 

Vehicle_1_Movement_Preceding_Collision-Other = 'No'  

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Other = 'Unknown'  
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_2_Movemen

t_Preceding_Collisio

n-Other 

Vehicle_2_Movement_Preceding_Collision-Other = 'No' 

randommovement2 = random.choice 

(['Vehicle_2_Movement_Preceding_Collision_Stopped', 

'Vehicle_2_Movement_Preceding_Collision-Proceeding-Straight', 

'Vehicle_2_Movement_Preceding_Collision-Ran-Off-Road', 

'Vehicle_2_Movement_Preceding_Collision-Making-Right-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-Left-Turn', 

'Vehicle_2_Movement_Preceding_Collision-Making-U-Turn',                                     

'Vehicle_2_Movement_Preceding_Collision-Backing', 

'Vehicle_2_Movement_Preceding_Collision-Slowing/Stopping', 

'Vehicle_2_Movement_Preceding_Collision-Passing-Other-Vehicle', 

'Vehicle_2_Movement_Preceding_Collision-Changing-Lanes',                                     

'Vehicle_2_Movement_Preceding_Collision-Parking-Manuever', 

'Vehicle_2_Movement_Preceding_Collision-Entering-Traffic',                                     

'Vehicle_2_Movement_Preceding_Collision-Other-Unsafe-Turning', 

'Vehicle_2_Movement_Preceding_Collision-Xing-Into-Opposing-Lane',                                

'Vehicle_2_Movement_Preceding_Collision-Parked', 

'Vehicle_2_Movement_Preceding_Collision-Merging', 

'Vehicle_2_Movement_Preceding_Collision-Other']) 

if randommovement2 is 'Vehicle_2_Movement_Preceding_Collision-Other': 

        Vehicle_2_Movement_Preceding_Collision-Other = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Movement_Preceding_Collision-Merging = 'Unknown'  

elif Vehicle_2_Weather_Clear is 'Not Applicable': 

        Vehicle_2_Movement_Preceding_Collision_Other = 'Not Applicable' 

Vehicle_1_Type_of_

Collision-Head-On 

 

 

 

 

Vehicle_1_Type_of_Collision-Head-On = 'No' 

randomtype1 = random.choice (['Vehicle1TypeofCollisionHeadOn', 

'Vehicle1TypeofCollisionSideSwipe', 'Vehicle1TypeofCollisionRearEnd', 

'Vehicle1TypeofCollisionBroadside', 'Vehicle1TypeofCollisionHitObject', 

'Vehicle1TypeofCollisionOther']) 

if randomtype1 is 'Vehicle_1_Type_of_Collision-Head-On': 

        Vehicle_1_Type_of_Collision-Head-On = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Type_of_Collision-Head-On = 'Unknown' 

Vehicle_2_Type_of_

Collision-Head-On 

Vehicle_2_Type_of_Collision-Head-On = 'No' 

randomtype2 = random.choice (['Vehicle2TypeofCollisionHeadOn', 

'Vehicle2TypeofCollisionSideSwipe', 'Vehicle2TypeofCollisionRearEnd', 

'Vehicle2TypeofCollisionBroadside', 'Vehicle2TypeofCollisionHitObject', 

'Vehicle2TypeofCollisionVehiclePedestrian', 'Vehicle2TypeofCollisionOther']) 

if randomtype2 is 'Vehicle_2_Type_of_Collision_Head-On': 

        Vehicle_2_Type_of_Collision-Head-On = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision-Head-On = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision-Head-On = 'Not Applicable' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Type_of_Co

llision-Side-Swipe 

Vehicle_1_Type_of_Collision-Side-Swipe = 'No' 

randomtype1 = random.choice (['Vehicle1TypeofCollisionHeadOn', 

'Vehicle1TypeofCollisionSideSwipe', 'Vehicle1TypeofCollisionRearEnd', 

'Vehicle1TypeofCollisionBroadside', 'Vehicle1TypeofCollisionHitObject', 

'Vehicle1TypeofCollisionOther']) 

if randomtype1 is 'Vehicle_1_Type_of_Collision_Side_Swipe': 

        Vehicle_1_Type_of_Collision-Side-Swipe = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Type_of_Collision-Side-Swipe = 'Unknown' 

Vehicle_2_Type_of_Co

llision-Side-Swipe 

Vehicle_2_Type_of_Collision-Side-Swipe = 'No' 

randomtype2 = random.choice (['Vehicle2TypeofCollisionHeadOn', 

'Vehicle2TypeofCollisionSideSwipe', 'Vehicle2TypeofCollisionRearEnd',                                 

'Vehicle2TypeofCollisionBroadside', 'Vehicle2TypeofCollisionHitObject', 

'Vehicle2TypeofCollisionVehiclePedestrian', 'Vehicle2TypeofCollisionOther']) 

if randomtype2 is 'Vehicle_2_Type_of_Collision-Side-Swipe': 

        Vehicle_2_Type_of_Collision-Side-Swipe = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision-Side-Swipe = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision-Side-Swipe = 'Not Applicable' 

Vehicle_1_Type_of_Co

llision-Rear-End 

Vehicle_1_Type_of_Collision-Rear-End = 'No' 

randomtype1 = random.choice (['Vehicle1TypeofCollisionHeadOn', 

'Vehicle1TypeofCollisionSideSwipe', 'Vehicle1TypeofCollisionRearEnd',                                  

'Vehicle1TypeofCollisionBroadside', 'Vehicle1TypeofCollisionHitObject', 

'Vehicle1TypeofCollisionOther']) 

if randomtype1 is 'Vehicle_1_Type_of_Collision-Rear-End': 

        Vehicle_1_Type_of_Collision-Rear-End = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Type_of_Collision-Rear-End = 'Unknown' 

Vehicle_2_Type_of_Co

llision-Rear-End 

Vehicle_2_Type_of_Collision-Rear-End = 'No' 

randomtype2 = random.choice (['Vehicle2TypeofCollisionHeadOn', 

'Vehicle2TypeofCollisionSideSwipe', 'Vehicle2TypeofCollisionRearEnd',                                 

'Vehicle2TypeofCollisionBroadside', 'Vehicle2TypeofCollisionHitObject', 

'Vehicle2TypeofCollisionVehiclePedestrian', 'Vehicle2TypeofCollisionOther']) 

if randomtype2 is 'Vehicle_2_Type_of_Collision-Rear-End': 

        Vehicle_2_Type_of_Collision-Rear-End = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision-Rear-End = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision-Rear-End = 'Not Applicable' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Type_of_Co

llision-Broadside 

Vehicle_1_Type_of_Collision-Broadside = 'No' 

randomtype1 = random.choice (['Vehicle1TypeofCollisionHeadOn', 

'Vehicle1TypeofCollisionSideSwipe', 'Vehicle1TypeofCollisionRearEnd',                                  

'Vehicle1TypeofCollisionBroadside', 'Vehicle1TypeofCollisionHitObject', 

'Vehicle1TypeofCollisionOther']) 

if randomtype1 is 'Vehicle_1_Type_of_Collision-Broadside': 

        Vehicle_1_Type_of_Collision-Broadside = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Type_of_Collision-Broadside = 'Unknown' 

Vehicle_2_Type_of_Co

llision-Broadside 

Vehicle_2_Type_of_Collision-Broadside = 'No' 

randomtype2 = random.choice (['Vehicle2TypeofCollisionHeadOn', 

'Vehicle2TypeofCollisionSideSwipe', 'Vehicle2TypeofCollisionRearEnd',                                 

'Vehicle2TypeofCollisionBroadside', 'Vehicle2TypeofCollisionHitObject', 

'Vehicle2TypeofCollisionVehiclePedestrian', 'Vehicle2TypeofCollisionOther']) 

if randomtype2 is 'Vehicle_2_Type_of_Collision-Broadside': 

        Vehicle_2_Type_of_Collision-Broadside = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision-Broadside = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision-Broadside = 'Not Applicable' 

Vehicle_1_Type_of_Co

llision-Hit-Object 

Vehicle_1_Type_of_Collision-Hit-Object = 'No' 

randomtype1 = random.choice (['Vehicle1TypeofCollisionHeadOn', 

'Vehicle1TypeofCollisionSideSwipe', 'Vehicle1TypeofCollisionRearEnd',                                  

'Vehicle1TypeofCollisionBroadside', 'Vehicle1TypeofCollisionHitObject', 

'Vehicle1TypeofCollisionOther']) 

if randomtype1 is 'Vehicle_1_Type_of_Collision-Hit-Object': 

        Vehicle_1_Type_of_Collision-Hit-Object = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Type_of_Collision-Hit-Object = 'Unknown' 

Vehicle_2_Type_of_Co

llision-Hit-Object 

Vehicle_2_Type_of_Collision-Hit-Object = 'No' 

randomtype2 = random.choice (['Vehicle2TypeofCollisionHeadOn', 

'Vehicle2TypeofCollisionSideSwipe', 'Vehicle2TypeofCollisionRearEnd',                                 

'Vehicle2TypeofCollisionBroadside', 'Vehicle2TypeofCollisionHitObject', 

'Vehicle2TypeofCollisionVehiclePedestrian', 'Vehicle2TypeofCollisionOther']) 

if randomtype2 is 'Vehicle_2_Type_of_Collision-Hit-Object': 

        Vehicle_2_Type_of_Collision-Hit-Object = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

       Vehicle_2_Type_of_Collision-Hit-Object = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision-Hit-Object = 'Not Applicable' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vehicle_1_Type_of_Co

llision-Overturned 

Vehicle_1_Type_of_Collision-Overturned = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Type_of_Collision-Overturned = 'Unknown' 

Vehicle_2_Type_of_Co

llision-Overturned 

Vehicle_2_Type_of_Collision-Overturned = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision-Overturned = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision-Overturned = 'Not Applicable' 

Vehicle_1_Type_of_Co

llision-

Vehicle/Pedestrian 

Vehicle_1_Type_of_Collision-Vehicle/Pedestrian = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_1_Type_of_Collision_Vehicle/Pedestrian = 'Unknown' 

Vehicle_2_Type_of_Co

llision-

Vehicle/Pedestrian 

Vehicle_2_Type_of_Collision_Vehicle/Pedestrian = 'No' 

randomtype2 = random.choice (['Vehicle2TypeofCollisionHeadOn', 

'Vehicle2TypeofCollisionSideSwipe', 'Vehicle2TypeofCollisionRearEnd',                                 

'Vehicle2TypeofCollisionBroadside', 'Vehicle2TypeofCollisionHitObject', 

'Vehicle2TypeofCollisionVehiclePedestrian', 'Vehicle2TypeofCollisionOther']) 

if randomtype2 is 'Vehicle_2_Type_of_Collision_Vehicle/Pedestrian': 

        Vehicle_2_Type_of_Collision_Vehicle/Pedestrian = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision_Vehicle/Pedestrian = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision_Vehicle/Pedestrian = 'Not Applicable' 

Vehicle_1_Type_of_Co

llision-Other 

Vehicle_1_Type_of_Collision-Other = 'No' 

randomtype1 = random.choice (['Vehicle1TypeofCollisionHeadOn', 

'Vehicle1TypeofCollisionSideSwipe', 'Vehicle1TypeofCollisionRearEnd',                                  

'Vehicle1TypeofCollisionBroadside', 'Vehicle1TypeofCollisionHitObject', 

'Vehicle1TypeofCollisionOther']) 

if randomtype1 is 'Vehicle_1_Type_of_Collision-Other': 

        Vehicle_1_Type_of_Collision-Other = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision-Other = 'Unknown' 

Vehicle_2_Type_of_Co

llision-Other 

Vehicle_2_Type_of_Collision-Other = 'No' 

randomtype2 = random.choice (['Vehicle2TypeofCollisionHeadOn', 

'Vehicle2TypeofCollisionSideSwipe', 'Vehicle2TypeofCollisionRearEnd',                                 

'Vehicle2TypeofCollisionBroadside', 'Vehicle2TypeofCollisionHitObject', 

'Vehicle2TypeofCollisionVehiclePedestrian', 'Vehicle2TypeofCollisionOther']) 

if randomtype2 is 'Vehicle_2_Type_of_Collision-Other': 

        Vehicle_2_Type_of_Collision-Other = 'Yes' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vehicle_2_Type_of_Collision-Other = 'Unknown' 

elif Vehicle_2_Weather_Clear is 'Not Applicable':  

        Vehicle_2_Type_of_Collision-Other = 'Not Applicable' 

CVC_Sections_Violate

d_Cited 

 

 

CVC_Sections_Violated_Cited = random.choice (['Yes', 'No', 'Unknown']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        CVC_Sections_Violated_Cited = 'Unknown' 
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Table 4: Data Augmentation Criteria (continued) 

Column Name Augmentation Criteria 

Vision_Obscurement Vision_Obscurement = 'No' 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Vision_Obscurement = 'Unknown' 

Inattention Inattention = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Inattention = 'Unknown' 

Stop_and_Go_Traffic Stop_and_Go_Traffic = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Stop_and_Go_Traffic = 'Unknown' 

Entering/Leaving_Ra

mp 

Entering/Leaving_Ramp = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Entering/Leaving_Ramp = 'Unknown' 

Previous_Collision Previous_Collision = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Previous_Collision = 'Unknown' 

Unfamiliar_With_Ro

ad 

Unfamiliar_With_Road = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Unfamiliar_With_Road = 'Unknown' 

Defective_WEH_Equ

ip_Cited 

Defective_WEH_Equip_Cited = random.choice (['Yes', 'No', 'Unknown']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Defective_WEH_Equip_Cited = 'Unknown' 

Uninvolved_Vehicle Uninvolved_Vehicle = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Uninvolved_Vehicle = 'Unknown' 

Other Other = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Other = 'Unknown' 

None_Apparent None_Apparent = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        None_Apparent = 'Unknown' 

Runaway_Vehicle Runaway_Vehicle = random.choice (['Yes', 'No']) 

if Vehicle_1_Weather_Clear is 'Unknown':  

        Runaway_Vehicle = 'Unknown' 
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Figure 7: Augmented Data 

6.2.3. Data Labelling, Classification, and Pre-Processing 

The criteria for labelling the data is depicted in Figure 8. 

Figure 8: Criteria for Data Labelling 

Upon labelling the data, a new classified column ‘TrustMe’ was created in the CSV file 

(see Appendix figure B9 for screen capture of the CSV data file) as shown in Figure 9. A snippet 

of dataset with TrustMe column is shown in Figure 10. This column stored the binary values 

where 1 is ‘Trust’ and 0 is ‘Do Not Trust’. This classification of data was used by the model to 

predict whether to trust the autonomous vehicles or not.  
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Figure 9: Code Snippet for adding New Classified Column TrustMe to the Dataset 

 

Figure 10: Dataset with TrustMe Classified Column 

Attributes of TrustMe column are mentioned in Table 6.  

Table 5: Attributes of 'TrustMe' Column 

Column Name Description Feature Type Data Type 

TrustMe Labelled Classification Numerical 

A seed of the random number generator was initialized to get repeatable results as shown 

in Figure 11. 

 

Figure 11: Code Snippet for Initializing Random Number Generator 
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The dataset was then divided into train, validation, and test set at the ratio of 0.2 for 

validation and test set each and the rest as training set as shown in Figure 12. The training and 

validation data sets were used for designing the architecture, training the model, and 

hyperparameter optimization. The test set was used for reporting accuracy. 

 

Figure 12: Code Snippet for Splitting Dataframe into Train, Validation, and Test Sets 

Target value (TrustMe) or label was separated from the features by using 

dataframe.pop(‘TrustMe’). This target value or label was then used to train the model to make 

predictions. The dataframe was then wrapped with tf.data which enabled the use of feature columns 

as a bridge for mapping the columns in the Pandas dataframe to the features that are used train the 

model. The tf.data API enabled building of complex input pipelines from simple and reusable 

pieces. It also allowed large data handling, reading from different data formats, and performing 

complex transformations. The tf.data.Dataset abstraction was used which represented a sequence 

of elements wherein each element consisted of one or more components. It created a source dataset 

from the input data, applied transformations to preprocess the data and then iterated over the 

dataset and processed elements. The from_tensor_slices method from tf.data.Dataset was used to 

create a dataset whose elements were slices of the given tensors. Tensors are dataset elements, 

each component of which, has the same size in the first dimension. The tensors used were the 

dataframe dictionary which were sliced along their first dimension. This operation removed the 

first dimension of each tensor and used it as the dataset dimension in turn preserving the structure 

of the input tensors. Dataframe dictionary was used to preserve the column structure of the 
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dataframe. The dataset was then shuffled (using buffer size of the length of the dataframe) to 

improve the training accuracy. Consecutive elements of the dataset were then combined into 

batches. These batches were divided into training, validation, and test datasets. From the input 

pipeline that was created, the dataset returned a dictionary of column names from the dataframe 

that mapped to the column values from rows in the dataframe as depicted in Figure 13. Outputs of 

every feature, batch of vehicle driving mode, batch of vehicle damage, batch of pedestrian involved 

in autonomous vehicle accident, batch of bicyclist involved in autonomous vehicle accident, batch 

of others involved in autonomous vehicle accident, batch of pedestrian involved in second vehicle 

accident, batch of bicyclist involved in second vehicle accident, batch of others involved in second 

vehicle accident, batch of injured, batch of injured driver, batch of injured passenger, batch of 

injured bicyclist and batch of TrustMe classified column are shown in Figures 14 through 27. 

 

Figure 13: Code Snippet of Method for Creating tf.data Dataset from Pandas Dataframe 

 

Figure 14: Output Snippet of Feature Batch 
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Figure 15: Output Snippet of Batch of Vehicle Driving Mode  

 

Figure 16: Output Snippet of Batch of Vehicle Damage 

 

Figure 17: Output Snippet of Batch of Pedestrian Involved in Autonomous Vehicle Accident 

 

Figure 18: Output Snippet of Batch of Bicyclist Involved in Autonomous Vehicle Accident 

 

Figure 19: Output Snippet of Batch of Others Involved in Autonomous Vehicle Accident 

 

Figure 20: Output Snippet of Batch of Pedestrians Involved in Second Vehicle Accident 

 

Figure 21: Output Snippet of Batch of Bicyclist Involved in Second Vehicle Accident 
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Figure 22: Output Snippet of Batch of Others Involved in Second Vehicle Accident 

 

Figure 23: Output Snippet of Batch of Injured 

 

Figure 24: Output Snippet of Batch of Injured Driver 

 

Figure 25: Output Snippet of Batch of Injured Passenger 

 

Figure 26: Output Snippet of Batch of Injured Bicyclist 

 

Figure 27: Output Snippet of Batch of TrustMe 

Iterator was generated on the training dataset iterable object and was then run through the 

loop to return the next item in the sequence. This created a batch of feature columns. Categorical 

feature column was created to transform a batch of data. Since strings cannot be directly fed to the 



 

114 

model, they were first mapped to numeric values. Categorical vocabulary columns provided a way 

to represent strings as a one-hot vector and were passed as a list 

using categorical_column_with_vocabulary_list. All the feature columns required to train the 

model were appended to the feature columns iterable as shown in figures 28 through 31 and the 

output is shown in figure 32. 

 

Figure 28: First Code Snippet of Iterable Feature Columns 

 

Figure 29: Second Code Snippet of Iterable Feature Columns 
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Figure 30: Third Code Snippet of Iterable Feature Columns 

 

Figure 31: Fourth Code Snippet of Iterable Feature Columns 

 

Figure 32: Output of Iterable Feature Columns 
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Once the feature columns were defined, a feature layer was created using DenseFeatures 

which produced a dense Tensor to be used as input to the Keras model as shown in figure 33. 

 

Figure 33: Feature Layer Creation 

6.2.4. Developing Sequential ANN Model 

The feature layer created earlier was used to build a linear sequential Keras model where 

the layers were stacked on top of each other (figure 34). Layers are the basic building blocks of 

neural networks and they extract representations of the data that is fed into them. input_shape 

argument was used to provide shape tuple to the first Dense layer so that the model receives 

information about its input shape. This first layer with the input shape was then used by the 

following layers as automatic shape inference. The first two layers were densely connected hidden 

layers with 32 hidden units (nodes or neurons), and third layer was an output layer that returned a 

single continuous value. Rectified Linear Unit (relu) activation function was used for first two 

layers since it is linear for positive values and zero for negative values. Linear activation function 

was used for the output layer for numerical stability. This model had two hidden layers between 

input and output where the output referred to the amount of freedom that the network was allowed 

when learning an internal representation. Smaller number of hidden units and layers were chosen 

to avoid the network from learning complex representations and unwanted patterns in turn 

preventing overfitting of training data.  
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Figure 34: Creating a Sequential Model and Adding Layers  

6.2.5. Model Training, Predictions and Performance  

The model was configured to use optimizer and loss function for training. 

binary_crossentropy loss function was used since this was a binary classification problem where 

the model output was a probability of single-unit layer with linear activation along with adam (a 

stochastic optimization method) optimizer. Accuracy metrics was used for judging the 

performance of the model. The model was trained on Numpy arrays of input data and labels by 

passing the training dataset to model’s fit function.  

The number of epochs or the iterations on dataset were set to 15. This was stored in a 

history object which is a dictionary that recorded and returned training loss and accuracy values 

and validation loss and validation accuracy values at each successive epoch. The training loss 

decreased with each epoch and the training accuracy increased with each epoch. This was expected 

since gradient descent optimization was used which was supposed to minimize the desired quantity 

on every iteration.   

During the model training, current state of the model at each step of the training algorithm 

was evaluated. Both training loss and validation loss decreased with the increasing number of 

epochs. There was a sudden drop in the training loss between 6th and 7th epoch and a sudden drop 

of validation loss between 5th and 6th epoch. After 8th epoch, the difference between the rate at 

which training loss decreased and the rate at which the validation loss decreased was minimal. At 

7th epoch, the model had an accuracy of 98.45% and 98.57% on validation set which means that 
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the model performed with the accuracy of close of 98.57%. Although, this validation accuracy 

decreased by 0.05% on the 8th epoch but increased again in the 9th epoch to 99.88% and by the 10th 

epoch, the validation accuracy was 100%. Between 11th and 12th epoch, the training accuracy 

fluctuated a little bit but finally stabilized at the 14th epoch and increased on the 15th epoch while 

the validation accuracy was still at a 100%. This meant that the model was fitting the training set 

better while still retaining its ability to predict on new data and was generalizing the data properly. 

Model compilation, training and model summary is depicted in Figure 35 and the epochs are 

depicted in Figures 36 through 38 and model summary output is shown in Figure 39. 

 

Figure 35: Model Compiling, Training, and Model Summary 

 

Figure 36: Epochs 1-5 

 

Figure 37: Epochs 6-10 
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Figure 38: Epochs 11-15 

 

Figure 39: Model Summary 

Training and validation loss curves were plotted as shown in Figure 40. Training learning 

curve helped evaluate training dataset to understand how well the model was learning. Validation 

learning curve helped evaluate validation dataset to understand how well the model was 

generalizing. Both the train learning and validation learning curves were plotted on the same graph. 

From the graph it is evident that after 10th epoch, both the curves began to converge and the training 

and validation losses decreased to a point of stability with a minimal gap between those two final 

loss values which indicated that the model is a good fit. 
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Figure 40: Plot of Training and Validation Loss Curves 

Training and validation accuracy curves were also plotted on the same graph as depicted 

in Figure 41. The graph showed good performance on validation data as opposed to training data. 

Trends for both training and validation accuracy increased initially and then stabilized around 10th 

epoch after which the curves began to converge with a minimal gap between those two final 

accuracy values indicating that the model is a good fit.   

 

Figure 41: Plot of Training and Validation Accuracy Curves 

Upon training the model, it was evaluated with test data and a test accuracy of 100% was 

achieved as shown in Figure 42. 
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Figure 42: Evaluating the Model on Test Set 

Predictions were made on the trained model which indicated higher percentages of 

diminished trust in autonomous vehicle technology as shown in Figure 43. 

 

Figure 43: Predictions Made on Trained Model 

6.3. Trust, Intention and Anti-Autonomy 

Anti-autonomous nature of autonomous vehicle is exhibited by its unexpected driving 

behavior on the road. While human drivers can exercise their cognitive and intuitive abilities and 

react to unprecedented situations while driving, autonomous vehicles often lack similar abilities 

which causes them to behave irrationally and leads to collisions. Erratic behavior of autonomous 

vehicles is counted as its anti-autonomous nature and is subject to judgement until these vehicles 

are incorporated with skills, ethics, morals, and emotions akin humans. This generates an inversely 

proportional relationship between trust and anti-autonomy (Figure 44). When autonomous 

vehicles are involved in accidents, irrespective of whoever is at fault, it declines overall trust in 
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them since it recalls risk and safety factors. Instabilities in autonomous vehicle operations also 

cause trust to decline and increases risk of damages to property and human life, thus creating an 

inversely proportional relationship between trust and risk (Figure 44). However, since the 

autonomous vehicles are designed with the insertion of myriad of technological and safety 

features, it helps build a directly proportional relationship of trust with safety (Figure 44).  

 

Figure 44: Relationship between Trust, Anti-Autonomy, Intentionality, Safety and Risk 

Inclusion of higher levels of safety features in terms of advanced driver assistance systems 

also corroborates with intentionality of manufacturers for promoting trust in autonomous vehicles, 

thus creating a directly proportional relationship of trust with positive intentionality (Figure 44). 

It has been observed that trust affects acceptance, utilization and reliance and has been considered 

a key determining factor of the intention to use autonomous vehicle [6].  Intentionality has been 

an argumentative multidirectional concept as it not only brings forth the positive intentions of 

manufacturers striving to promote trust, but also the intentions of people in terms of adopting and 

owning autonomous vehicles. Yet another dimension is the intention of the autonomous vehicle 

on the road while operating in autonomous driving mode. Even though autonomous vehicles have 

logged countless hours and millions of miles of safe operation on roads, there still are situations 

where drivers sitting inside them have had to take control of the vehicle in dubious situations of 

collisions, unfavorable weather conditions and construction zones. Drivers behind the wheel in 



 

123 

these situations mentioned their discomfort as it was evident in the autonomous vehicles’ 

disengagement reports provided by California DMV [9]. Driver’s discomfort could also be linked 

to his/her sudden engagement in taking control after a period of lack of attention due to 

overreliance on vehicle automation. These disengagement reports accounted and reported the 

situations in which the autonomous control of the car operations was taken over by the human 

driver to take control. Apart from the discomfort of the driver sitting in the autonomous vehicle 

geared up to disengage and take control, drivers of other vehicle sharing the road may also have 

their fair share of discomfort sharing the roads with autonomous vehicles. 

Relationship between trust, intentionality, anti-autonomy, risk, and safety was precisely 

explained and clarified from the reference point of the NoTrust model and the data analysis of the 

collision dataset. Since the dataset used to build and train the model accounts for reports of traffic 

collisions involving autonomous vehicles, records with vehicles operating in autonomous driving 

mode which involved vehicle damage greater than minor and involved pedestrian/bicyclist injuries 

or damages was flagged as unsafe and not to be trusted.  

 

Figure 45: Graph of Vehicle Driving Mode with Trust Score 

100% vehicles driving in autonomous mode (given the fact that all of the collision reports 

involved autonomous vehicles) and 49.12% vehicles which were initially driving in the 
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autonomous mode and drivers had to later disengage and take control to drive in conventional 

mode were found not be trusted due to the intensity of reported injuries and damages (Figure 45).  

 

Figure 46: Graph of Vehicle Driving Mode with Trust Score (after Data Augmentation) 

Upon data augmentation, 100% vehicles driving in autonomous mode and 94.47% vehicles 

which were initially driving in the autonomous mode and drivers had to later disengage and take 

control to drive in conventional mode were found not be trusted due to the intensity of reported 

injuries and damages (Figure 46). This also results in a perception of autonomous vehicles to be 

unsafe and risky and hence support the analogy of inversely proportional relationship of trust with 

risk and a directly proportional relationship of trust with safety implying reduced trust due to 

reduced safety. 

 

Figure 47: Graph of Vehicle Driving Mode and Bicyclist Involved in Accident 
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Figure 48: Graph of Vehicle Driving Mode and Injured Bicyclist 

Collisions caused by vehicle driving in autonomous mode which involved bicyclists were 

49.92% where bicyclist were injured in 50.48% collisions (Figures 47 and 48). Collisions caused 

by vehicle driving in conventional mode which involved bicyclists were 50.08% where bicyclist 

were injured in 49.52% collisions (Figures 48 and 49).  

 

Figure 49: Graph of Vehicle Driving Mode and Bicyclist Involved in Accident when Vehicle 

was Moving/Stopped in Traffic 

From the collisions which involved bicyclist when vehicle was driving in autonomous 

mode, vehicle was moving in 52.30% collisions and was stopped in traffic in 50.84% collisions 

whereas when vehicle was driving in conventional mode, vehicle was moving in 47.70% collisions 

and was stopped in traffic in 49.16% collisions (Figure 49). These results support the analogy of 

inversely proportional relationship of trust with anti-autonomy and negative intentionality. 
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Figure 50: Graph of Vehicle Driving Mode and Pedestrian Involved in Accident 

 

Figure 51: Graph of Vehicle Driving Mode and Pedestrian Involved in Accident when Vehicle 

was Moving/Stopped in Traffic 

Collisions which involved pedestrian and were caused by vehicle driving in autonomous 

mode were 50.22% whereas those caused by vehicle driving in conventional mode were 49.78% 

(Figure 50). From the collisions which involved pedestrian when vehicle was driving in 

autonomous mode, vehicle was moving in 52.08% collisions and was stopped in traffic in 49.30% 

collisions whereas those caused by vehicle driving in conventional mode, vehicle was moving in 

47.92% collisions and was stopped in traffic in 50.70% collisions (Figure 51).  
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Figure 52: Graph of Bicyclist Involved in Accident when Vehicle's Movement Preceding 

Collision was Slowing/Stopping 

 

Figure 53: Graph of Pedestrian Involved in Accident when Vehicle's Movement Preceding 

Collision was Parking Maneuver 

It was observed that moving and stopped in traffic state of the vehicle while driving in 

autonomous mode still caused collisions involving pedestrian and bicyclist, and some other cars 

or objects. This could be indicative of the fact that behavior and actions of the autonomous vehicle 

while sharing the roads with others are often perceived to be perplexing. This perplexing behavior 

often produces a perception of anti-autonomous nature of autonomous vehicles in the minds of 

other drivers sharing the road. This belief is strengthened by the analysis of the impact of preceding 

movements on the collisions which revealed that slowing/stopping movement caused by the 

vehicle operating in autonomous mode which also involved bicyclist led to 55.13% collisions as 

compared to 44.87% collisions caused when vehicle was operating in conventional mode and had 
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a slowing/stopping preceding movement (Figure 52). However, slowing/stopping preceding 

movement did not have significant impact on pedestrian involved in these collisions. On the 

contrary, parking maneuver movement preceding collisions caused by the vehicle operating in 

autonomous mode which also involved pedestrian were 55.84% as compared to 44.16% collisions 

caused when vehicle was operating in conventional mode and had a parking maneuver preceding 

collision (Figure 53). Parking maneuver preceding movement did not have significant impact on 

bicyclist involved in these collisions. These results support the analogy of inversely proportional 

relationship of trust with anti-autonomy and negative intentionality. 

 

Figure 54: Graph of Vehicle Driving Mode and Rear End Collision 

Elusive actions and behavior of the autonomous vehicle when stopping at an intersection 

were evidently expressed in the analysis of the type of collision autonomous vehicle sustained 

while driving in autonomous mode. The results confirmed that in 50.92% of collisions when 

vehicle was driving in autonomous mode, autonomous vehicle sustained rear-end collision as 

opposed to 49.08% collisions when vehicle was driving in conventional mode (Figure 54). This 

also supports the analogy of inversely proportional relationship of trust with anti-autonomy and 

negative intentionality. 
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Figure 55: Graph of Bicyclist Involved in Accident during Fog/Visibility Weather Condition 

 

Figure 56: Graph of Pedestrian Involved in Accident during Fog/Visibility Weather Condition 

Analysis of the impact of weather conditions on the collisions revealed that collisions 

during fog/visibility weather condition caused by the vehicle operating in autonomous mode which 

also involved bicyclist were 54.28% as compared to 45.72% collisions caused when vehicle was 

operating in conventional mode during the same fog/visibility weather condition (Figure 55). 

Likewise, collisions during fog/visibility weather condition caused by the vehicle operating in 

autonomous mode which also involved pedestrian were 51.71% as compared to 48.29% collisions 

caused when vehicle was operating in conventional mode during the same fog/visibility weather 

condition (Figure 56). This indicated that foggy weather conditions with limited visibility led to 

significant amount of collisions involving pedestrians and bicyclist when vehicle was operating in 

autonomous mode. These results support the analogy of inversely proportional relationship of trust 
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with anti-autonomy, negative intentionality and risk and propose higher amounts of associated 

safety concerns leaning towards a decline in trust. 

 

Figure 57: Graph of Bicyclist Involved in Accident during Dark Street Lights Lighting Condition 

 

Figure 58: Graph of Pedestrian Involved in Accident during Dark Street Lights Lighting 

Condition 

Analysis of the impact of lighting conditions on the collisions revealed that collisions at 

night with street lights on caused by the vehicle operating in autonomous mode which also 

involved bicyclist were 50.68% as compared to 49.32% collisions caused when vehicle was 

operating in conventional mode at night with street lights on (Figure 57). Likewise, collisions at 

night with street lights on caused by the vehicle operating in autonomous mode which also 

involved pedestrian were 53.18% as compared to 46.82% collisions caused when vehicle was 

operating in conventional mode at night with street lights on (Figure 58). This indicated that higher 
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number of collisions happening at night when vehicle was operating in autonomous mode involved 

pedestrians. These results support the analogy of inversely proportional relationship of trust with 

anti-autonomy, negative intentionality and risk and propose higher amounts of associated safety 

concerns leaning towards a decline in trust. 
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CHAPTER 7. CONCLUSION 

Autonomous vehicles are not yet functionally equipped to comprehend and analyze 

behavior and intention of human drivers. This befalls them into tricks of human drivers and 

compromises their internal systems into often harming themselves or the drivers, pedestrians, and 

bicyclists, or hitting objects around them. Unfavorable weather conditions, road surface conditions 

and lighting conditions also often impact safe operations of autonomous vehicles. Nevertheless, 

this nature of these vehicles very well works in conjunctions with the laws of robotics yet falls 

short in putting forth the best of the autonomous vehicle functionality, convenience, and 

usefulness. The unpredictability of autonomous vehicles during unprecedented roadway 

conditions, abrupt driving behavior of human drivers, and sudden appearance of moving objects 

in front of them often leads them into collisions and highlights their anti-autonomous capabilities. 

A strong urge to effectively help study, analyze, understand, and explain the reason behind the 

anti-autonomous trait of autonomous vehicles fueled the inspiration for this research work. This 

led to the goal of advancing the state of the art in anti-autonomy via the development and validation 

of the anti-autonomy model.    

Autonomous vehicles were launched with a promise to deliver safe and secure driving 

environment while minimizing traffic congestions, however, collision reports involving 

autonomous vehicles provided by the California DMV painted a different picture. Collision reports 

involving autonomous vehicles from October 2014 to March 2020 (which is the latest reported 

data) was utilized to present an innovative anti-autonomy NoTrust ANN model. This data was 

augmented, labelled, classified, and pre-processed and then applied towards the creation of 

NoTrust model using linear sequential model libraries in Keras over Tensorflow. NoTrust model 

was then used to predict trust in autonomous vehicles. Trained model was able to achieve a 100% 
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accuracy which was evident in the results of the model compilation and training, plots of validation 

and training accuracies and losses. Model evaluations and predictions made were used to 

comprehend the characteristics of trust, intention and anti-autonomy and helped establish a 

relationship between them. It also aided a sketch of inter-dependencies between trust, 

intentionality, anti-autonomy, risk, and safety. Furthermore, this dissertation demonstrated an 

extensive analysis of the original collision reports data and augmented data in terms of illustrations 

of the impact of several contributing factors of collisions such as vehicle driving mode, damages 

sustained by the vehicle, pedestrian and bicyclist involved in collisions, weather conditions, 

roadway surface, lighting conditions, movement of vehicle preceding collision and type of 

collisions. Following interpretations were drawn from the evaluation of the NoTrust model, 

predictions, and a thorough analysis of the collision data reports –  

• Inability of the autonomous vehicle to communicate to the human driver to disengage and 

take control just in time 

• Unclear intentions of autonomous vehicle in its ability to handle the situation resulting in 

confusion for the pedestrian/bicyclist on the road  

• Pedestrian/bicyclist misunderstanding sudden brake intervention by the autonomous 

vehicle 

• Unclear intentions of the autonomous vehicle in its ability to engage brakes upon 

encountering pedestrians/bicyclist 

• Pedestrian/Bicyclist/other vehicles obliviously paralyzing the sensor mechanics of the 

autonomous vehicle while trying to understand the actions of the vehicle 

• Complex decision making capabilities of the autonomous vehicle architecture in the event 

of sudden appearance of pedestrian/bicyclist in front of them 



 

135 

• Elusive actions and behavior of the autonomous vehicle when stopping at an intersection 

• Autonomous vehicle being over cautious 

• Evaluation of the NoTrust model and predictions supported the analogy of inversely 

proportional relationship of trust with anti-autonomy, negative intentionality and risk and 

proposed higher amounts of associated safety concerns leaning towards a decline in trust 

• Inclusion of higher levels of safety features in terms of advanced driver assistance systems 

corroborated with intentionality of manufacturers for promoting trust in autonomous 

vehicles and encouraged a directly proportional relationship of trust with positive 

intentionality 

• Analysis of collision data on injuries and vehicle damage caused a perception of 

autonomous vehicles to be unsafe and risky and hence supported the analogy of inversely 

proportional relationship of trust with risk and a directly proportional relationship of trust 

with safety implying reduced trust due to reduced safety 

• Analysis of collisions which involved bicyclist when vehicle was driving in autonomous 

mode versus conventional mode supported the analogy of inversely proportional 

relationship of trust with anti-autonomy and negative intentionality 

• Analysis of collisions involving pedestrian and bicyclist, caused by autonomous vehicle 

when moving or stopped in traffic state while operating in autonomous mode, impact of 

slowing/stopping preceding movements prior to collisions, parking maneuver, foggy 

weather conditions with limited visibility and vehicle operating on dark street with street 

lights on, supported the analogy of inversely proportional relationship of trust with anti-

autonomy,  negative intentionality and risk and proposed higher amounts of associated 

safety concerns leaning towards a decline in trust 
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• Analysis of rear-end collisions sustained by the autonomous vehicle uncovered its elusive 

actions and behavior when stopping at an intersection which supported the analogy of 

inversely proportional relationship of trust with anti-autonomy and negative intentionality.  

The inception, concept and evolution of autonomous vehicles envisions a delivery of safety 

benefits. Autonomous vehicles are not just a mere compilation of millions of lines of code 

executing and exhibiting their safe operations on the road from point A to point B; it’s also about 

taking the interests of other human drivers sharing the road, following policies and moral values, 

making ethical decisions, while escaping the legal issues one may get into in the events of accidents 

and collisions. However, as promising technological advancements in artificially intelligent 

autonomous vehicles sound, effective encoding of human moral values and ethics have still not 

been showcased. A thorough review of extant literature and an understanding and study of a 

connection of human ethical and moral values with that of an autonomous vehicle has been 

presented in this dissertation while exploring legal implications associated with these vehicles and 

pre-established legal policies, bills and acts.  This dissertation also provides a characterization of 

trust issues as they pertain to the areas of cybersecurity and intelligent autonomous systems. 

Additionally, an understanding and study of advanced features behind autonomous or self-driving 

cars which leverage wireless technology, Bluetooth, VANETs, V2V communication, Milimeter 

Wave radar, LiDAR, sensors, and cameras, etc. was also presented. An exploration, identification 

and addressing of some popular threats, vulnerabilities and hacking attacks in self-driving cars is 

also included along with an establishment of a relationship between these threats, trust, and 

reliability. An analysis of alert systems in self-driving cars is also presented. 



137 

CHAPTER 8. LIMITATIONS AND FUTURE WORK 

The dataset that was augmented, labelled, classified, pre-processed, and applied towards 

the creation of the NoTrust ANN model was sourced from PDF versions of collision reports 

involving autonomous vehicles (see Appendix figures B1 through B8 for screen capture of sample 

PDF reports), as provided by California DMV.  For the purposes of this research, only the data 

between October 2014 and March 2020 was taken into consideration. This dataset only consisted 

of 256 collision reports which was converted to 256 rows of CSV file (see Appendix figure B9 

for screen capture of the CSV data file) and then augmented to 5256 rows of data. For 

future research, data from collision reports post March 2020 can also be included towards 

model generation and a combination of several other attributes of the dataset can be 

taken into consideration during data labelling, classification, and pre-processing. Additionally, 

meaningful data can also be extracted from disengagement reports provided by California 

DMV and used towards model generation and enhancement of this linear sequential 

model. In addition to enhancing this linear sequential model, several other types of 

models can be explored and generated using different algorithms and compilation techniques. 

Data analysis and visualization of the data based upon model evaluation and predictions can also 

be enhanced using combination of other attributes from the dataset that are not mentioned in the 

analysis and visualizations claimed by this research study.  

Further information about the autonomous vehicle and the other vehicle involved in 

collision in terms of the vehicle attributes, characteristics, number of sensors and the type of 

sensors that the vehicle is equipped with, can be procured from the vehicle manufacturers, and 

utilized towards model generation. Moreover, information about the roadway conditions and the 

operation of the vehicle sensor mechanics on unprecedented roadway conditions in which the 
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vehicle is being driven in, can also be gathered, and analyzed. Another enhancement can be made 

to this research study by exploring official autonomous vehicle datasets, as/when, provided by 

autonomous vehicles manufacturers or DMV from other states in the US. This research study can 

also be expanded and internationalized to included autonomous vehicle collision data from other 

countries.  
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APPENDIX A. SUPPLEMENTAL TABLES 

Table A1: Comprehensive Data Attributes Table 

Column Name Description Feature Type Data Type 

PDF_file_Number Name of the PDF file (String) Categorical Object 

Manufacturer_Name Manufacturer of Autonomous vehicle involved 

in crash (String) 

Categorical Object 

Business_Name Business name of the Manufacturer (String) Categorical Object 

Date_of_Accident Date of accident (String) Categorical Object 

Time_of_Accident Time of accident (String) Categorical Object 

Vehicle_1_Year Year Autonomous vehicle was manufactured 

(String) 

Categorical Object 

Vehicle_1_Make Make of Autonomous Vehicle (String) Categorical Object 

Vehicle_1_Model Model of Autonomous Vehicle (String) Categorical Object 

Vehicle_1_was State of autonomous vehicle – Moving or 

Stopped in Traffic (String) 

Categorical Object 

Involved_in_Vehicle_1_Acc

ident_Pedestrian 

Pedestrian involved in Autonomous vehicle 

crash (String) 

Categorical Object 

Involved_in_Vehicle_1_Acc

ident_Bicyclist 

Bicyclist involved in Autonomous vehicle crash 

(String) 

Categorical Object 

Involved_in_Vehicle_1_Acc

ident_Other 

Anything other than pedestrian or bicyclist 

involved in Autonomous vehicle crash (String) 

Categorical Object 

Number_of_vehicles_involv

ed_with_Vehicle_1 

Number of vehicles involved in crash with 

autonomous vehicle (String) 

Categorical Object 

Vehicle_Damage Damage sustained by autonomous vehicle 

(String) 

Categorical Object 

Damaged_Area Autonomous vehicle damage area (String) Categorical Object 

Vehicle_2_Year Year other vehicle involved in crash was 

manufactured (String)  

Categorical Object 

Vehicle_2_Make Make of second vehicle involved in crash 

(String) 

Categorical Object 

Vehicle_2_Model Model of second vehicle involved in crash 

(String) 

Categorical Object 

Vehicle_2_was State of second vehicle involved in crash (String) Categorical Object 

Involved_in_Vehicle_2_Acc

ident_Pedestrian 

Pedestrian involved in second vehicle crash 

(String) 

Categorical Object 

Involved_in_Vehicle_2_Acc

ident_Bicyclist 

Bicyclist involved in second vehicle crash 

(String) 

Categorical Object 

Involved_in_Vehicle_2_Acc

ident_Other 

Anything other than pedestrian or bicyclist 

involved in second vehicle crash (String) 

Categorical Object 

Number_of_vehicles_involv

ed_with_Vehicle_2 

Number of vehicles involved in crash with 

second vehicle (String) 

Categorical Object 

Injured Any injuries (String) Categorical Object 

Injured_Driver Injuries sustained by Driver (String) Categorical Object 

Injured_Passenger Injuries sustained by Passenger (String) Categorical Object 

Injured_Bicyclist Injuries sustained by Bicyclist (String) Categorical Object 

Vehicle_Driving_Mode Driving mode of autonomous vehicle (String) Categorical Object 

Vehicle_1_Weather_Clear Clear weather condition for Autonomous vehicle 

(String) 

Categorical Object 

Vehicle_2_Weather_Clear Clear weather condition for second vehicle 

(String) 

Categorical Object 

Vehicle_1_Weather_Cloud

y 

Cloudy weather condition for Autonomous 

vehicle (String) 

Categorical Object 
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Table A1: Comprehensive Data Attributes Table (continued) 

Column Name Description Feature 

Type 

Data 

Type 

Vehicle_2_Weather_Cloud

y 
Cloudy weather condition for second vehicle 

(String) 
Categorical Object 

Vehicle_1_Weather_Rainin

g 
Raining weather condition for Autonomous 

vehicle (String) 
Categorical Object 

Vehicle_2_Weather_Rainin

g 
Raining weather condition for second vehicle 

(String) 
Categorical Object 

Vehicle_1_Weather_Snowi

ng 

Snowing weather condition for Autonomous 

vehicle (String) 

Categorical Object 

Vehicle_2_Weather_Snowi

ng 

Snowing weather condition for second vehicle 

(String) 

Categorical Object 

Vehicle_1_Weather_Fog/Vi

sibility 

Fog/Visibility weather condition for 

Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Weather_Fog/Vi

sibility 

Fog/Visibility weather condition for second 

vehicle (String) 

Categorical Object 

Vehicle_1_Weather_Other Weather condition for Autonomous vehicle other 

than the one already listed before (String) 

Categorical Object 

Vehicle_2_Weather_Other Weather condition for second vehicle other than 

the one already listed before (String) 

Categorical Object 

Vehicle_1_Weather_Wind Wind weather condition for Autonomous vehicle 

(String) 

Categorical Object 

Vehicle_2_Weather_Wind Wind weather condition for second vehicle 

(String) 

Categorical Object 

Vehicle_1_Lighting_Daylig

ht 

Daylight lighting condition for Autonomous 

vehicle (String) 

Categorical Object 

Vehicle_2_Lighting_Daylig

ht 

Daylight lighting condition for second vehicle 

(String) 

Categorical Object 

Vehicle_1_Lighting_Dusk-

Dawn 

Dusk/Dawn lighting condition for Autonomous 

vehicle (String) 

Categorical Object 

Vehicle_2_Lighting_Dusk-

Dawn 

Dusk/Dawn lighting condition for second vehicle 

(String) 

Categorical Object 

Vehicle_1_Lighting_Dark-

Street-Lights 

Dark Street with Lights lighting condition for 

Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Lighting_Dark-

Street-Lights 

Dark Street with Lights lighting condition for 

second vehicle (String) 

Categorical Object 

Vehicle_1_Lighting_Dark-

No-Street-Lights 

Dark Street without Lights lighting condition for 

Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Lighting_Dark-

No-Street-Lights 

Dark Street without Lights lighting condition for 

second vehicle (String) 

Categorical Object 

Vehicle_1_Lighting_Dark-

Street-Lights-Not-

Functioning 

Dark Street with non-functional Lights lighting 

condition for Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Lighting_Dark-

Street-Lights-Not-

Functioning 

Dark Street with non-functional Lights lighting 

condition for second vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Surfa

ce-Dry 

Dry Roadway Surface condition for Autonomous 

vehicle (String) 

Categorical Object 

Vehicle_2_Roadway_Surfa

ce-Dry 

Dry Roadway Surface condition for second 

vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Surfa

ce-Wet 

Wet Roadway Surface condition for 

Autonomous vehicle (String) 

Categorical Object 
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Table A1: Comprehensive Data Attributes Table (continued) 

Column Name Description Feature 

Type 

Data 

Type 

Vehicle_2_Roadway_Surfa

ce-Wet 
Wet Roadway Surface condition for second 

vehicle (String) 
Categorical Object 

Vehicle_1_Roadway_Surfa

ce-Snowy-Icy 
Snowy/Icy Roadway Surface condition for 

Autonomous vehicle (String) 
Categorical Object 

Vehicle_2_Roadway_Surfa

ce-Snowy-Icy 
Snowy/Icy Roadway Surface condition for 

second vehicle (String) 
Categorical Object 

Vehicle_1_Roadway_Surfa

ce-Slippery-Muddy-Oily-

etc 

Slippery (Muddy,Oily,etc) Roadway Surface 

condition for Autonomous vehicle (String) 
Categorical Object 

Vehicle_2_Roadway_Surfa

ce-Slippery-Muddy-Oily-

etc 

Slippery (Muddy,Oily,etc) Roadway Surface 

condition for second vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Condi

tions-Holes-Deep-Rut 

Holes, Deep Rut Roadway Surface condition for 

Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Roadway_Condi

tions-Holes-Deep-Rut 

Holes, Deep Rut Roadway Surface condition for 

second vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Condi

tions-Loose-Material-on-

Roadway 

Loose Material on Roadway Surface condition 

for Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Roadway_Condi

tions-Loose-Material-on-

Roadway 

Loose Material on Roadway Surface condition 

for second vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Condi

tions-Obstruction-on-

Roadway 

Obstruction on Roadway Surface condition for 

Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Roadway_Condi

tions-Obstruction-on-

Roadway 

Obstruction on Roadway Surface condition for 

second vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Condi

tions-Construction-Repair-

Zone 

Construction on Roadway Surface condition for 

Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Roadway_Condi

tions-Construction-Repair-

Zone 

Construction on Roadway Surface condition for 

second vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Condi

tions-Reduced-Roadway-

Width 

Reduced Width on Roadway Surface condition 

for Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Roadway_Condi

tions-Reduced-Roadway-

Width 

Reduced Width on Roadway Surface condition 

for second vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Condi

tions-Flooded 

Flooded Roadway Surface condition for 

Autonomous vehicle (String) 

Categorical Object 

Vehicle_2_Roadway_Condi

tions-Flooded 

Flooded Roadway Surface condition for second 

vehicle (String) 

Categorical Object 

Vehicle_1_Roadway_Condi

tions-Other 

Roadway Surface condition for Autonomous 

vehicle other than the one already listed before 

(String) 

Categorical Object 

Vehicle_2_Roadway_Condi

tions-Other 

Roadway Surface condition for second vehicle 

other than the one already listed before (String) 

Categorical Object 
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Table A1: Comprehensive Data Attributes Table (continued) 

Column Name Description Feature 

Type 

Data 

Type 

Vehicle_1_Roadway_Condi

tions-No-Unusual-

Conditions 

No Unusual Roadway Surface condition for 

Autonomous vehicle (String) 
Categorical Object 

Vehicle_2_Roadway_Condi

tions-No-Unusual-

Conditions 

No Unusual Roadway Surface condition for 

second vehicle (String) 
Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Stopped 
Vehicle Movement of Autonomous vehicle 

Preceding Collision - Stopped (String) 
Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Stopped 
Vehicle Movement for second vehicle Preceding 

Collision - Stopped (String) 
Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-

Proceeding-Straight 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Proceeding Straight 

(String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-

Proceeding-Straight 

Vehicle Movement for second vehicle Preceding 

Collision – Proceeding Straight (String) 
Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Ran-Off-

Road 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Ran Off Road (String) 
Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Ran-Off-

Road 

Vehicle Movement for second vehicle Preceding 

Collision – Ran Off Road (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Making-

Right-Turn 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Making Right Turn 

(String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Making-

Right-Turn 

Vehicle Movement for second vehicle Preceding 

Collision – Making Right Turn (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Making-

Left-Turn 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Making Left Turn (String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Making-

Left-Turn 

Vehicle Movement for second vehicle Preceding 

Collision – Making Left Turn (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Making-U-

Turn 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Making U Turn (String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Making-U-

Turn 

Vehicle Movement for second vehicle Preceding 

Collision – Making U Turn (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Backing 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Backing (String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Backing 

Vehicle Movement for second vehicle Preceding 

Collision – Backing (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-

Slowing/Stopping 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Slowing/Stopping (String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-

Slowing/Stopping 

Vehicle Movement for second vehicle Preceding 

Collision – Slowing/Stopping (String) 

Categorical Object 
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Table A1: Comprehensive Data Attributes Table (continued) 

Column Name Description Feature 

Type 

Data 

Type 

Vehicle_1_Movement_Prec

eding_Collision-Passing-

Other-Vehicle 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Passing Other Vehicle 

(String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Passing-

Other-Vehicle 

Vehicle Movement for second vehicle Preceding 

Collision – Passing Other Vehicle (String) 
Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Changing-

Lanes 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Changing Lanes (String) 
Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Changing-

Lanes 

Vehicle Movement for second vehicle Preceding 

Collision – Changing Lanes (String) 
Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Parking-

Manuever 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Parking Manuever (String) 
Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Parking-

Manuever 

Vehicle Movement for second vehicle Preceding 

Collision – Parking Manuever (String) 
Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Entering-

Traffic 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Entering Traffic (String) 
Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Entering-

Traffic 

Vehicle Movement for second vehicle Preceding 

Collision – Entering Traffic (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Other-

Unsafe-Turning 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Other Unsafe Turning 

(String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Other-

Unsafe-Turning 

Vehicle Movement for second vehicle Preceding 

Collision – Other Unsafe Turning (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Xing-Into-

Opposing-Lane 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Crossing into Opposing 

Lane (String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Xing-Into-

Opposing-Lane 

Vehicle Movement for second vehicle Preceding 

Collision – Crossing into Opposing Lane 

(String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Parked 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Parked (String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Parked 

Vehicle Movement for second vehicle Preceding 

Collision – Parked (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Merging 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Merging (String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Merging 

Vehicle Movement for second vehicle Preceding 

Collision – Merging (String) 

Categorical Object 

Vehicle_1_Movement_Prec

eding_Collision-Travelling-

Wrong-Way 

Vehicle Movement of Autonomous vehicle 

Preceding Collision – Travelling Wrong Way 

(String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Travelling-

Wrong-Way 

Vehicle Movement for second vehicle Preceding 

Collision – Travelling Wrong Way (String) 

Categorical Object 
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Table A1: Comprehensive Data Attributes Table (continued) 

Column Name Description Feature 

Type 

Data 

Type 

Vehicle_1_Movement_Prec

eding_Collision-Other 
Vehicle Movement of Autonomous vehicle 

Preceding Collision other than the one list before 

(String) 

Categorical Object 

Vehicle_2_Movement_Prec

eding_Collision-Other 
Vehicle Movement for second vehicle Preceding 

Collision other than the one listed before (String) 
Categorical Object 

Vehicle_1_Type_of_Collisi

on-Head-On 
Type of Collision that Autonomous vehicle was 

involved in was – Head On (String) 
Categorical Object 

Vehicle_2_Type_of_Collisi

on-Head-On 
Type of Collision that second vehicle was 

involved in was - Head On (String) 
Categorical Object 

Vehicle_1_Type_of_Collisi

on-Side-Swipe 
Type of Collision that Autonomous vehicle was 

involved in was – Side Swipe (String) 
Categorical Object 

Vehicle_2_Type_of_Collisi

on-Side-Swipe 
Type of Collision that second vehicle was 

involved in was – Side Swipe (String) 
Categorical Object 

Vehicle_1_Type_of_Collisi

on-Rear-End 
Type of Collision that Autonomous vehicle was 

involved in was – Rear End (String) 
Categorical Object 

Vehicle_2_Type_of_Collisi

on-Rear-End 
Type of Collision that second vehicle was 

involved in was – Rear End (String) 
Categorical Object 

Vehicle_1_Type_of_Collisi

on-Broadside 
Type of Collision that Autonomous vehicle was 

involved in was – Broadside (String) 
Categorical Object 

Vehicle_2_Type_of_Collisi

on-Broadside 
Type of Collision that second vehicle was 

involved in was - Broadside (String) 
Categorical Object 

Vehicle_1_Type_of_Collisi

on-Hit-Object 
Type of Collision that Autonomous vehicle was 

involved in was – Hit Object (String) 
Categorical Object 

Vehicle_2_Type_of_Collisi

on-Hit-Object 

Type of Collision that second vehicle was 

involved in was – Hit Object (String) 

Categorical Object 

Vehicle_1_Type_of_Collisi

on-Overturned 

Type of Collision that Autonomous vehicle was 

involved in was – Overturned (String) 

Categorical Object 

Vehicle_2_Type_of_Collisi

on-Overturned 

Type of Collision that second vehicle was 

involved in was - Overturned (String) 

Categorical Object 

Vehicle_1_Type_of_Collisi

on-Vehicle/Pedestrian 

Type of Collision that Autonomous vehicle was 

involved in was – Vehicle/Pedestrian (String) 

Categorical Object 

Vehicle_2_Type_of_Collisi

on-Vehicle/Pedestrian 

Type of Collision that second vehicle was 

involved in was – Vehicle/Pedestrian (String) 

Categorical Object 

Vehicle_1_Type_of_Collisi

on-Other 

Type of Collision that Autonomous vehicle was 

involved in was other than the one listed before 

(String) 

Categorical Object 

Vehicle_2_Type_of_Collisi

on-Other 

Type of Collision that second vehicle was 

involved in was other than the one listed before 

(String) 

Categorical Object 

CVC_Sections_Violated_Ci

ted 

Other Associated Factors – Was there any 

citation for CVC Section Violation (String) 

Categorical Object 

Vision_Obscurement Other Associated Factors – Vision Obscurement 

(String) 

Categorical Object 

Inattention Other Associated Factors – Inattention (String) Categorical Object 

Stop_and_Go_Traffic Other Associated Factors – Stop and Go Traffic 

(String) 

Categorical Object 

Entering/Leaving_Ramp Other Associated Factors – Was the vehicle 

entering or leaving ramp (String) 

Categorical Object 

Previous_Collision Other Associated Factors – Was there any 

previous collision (String) 

Categorical Object 
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Table A1: Comprehensive Data Attributes Table (continued) 

Column Name Description Feature 

Type 

Data 

Type 

Unfamiliar_With_Road Other Associated Factors – was the vehicle 

unfamiliar with road (String) 

Categorical Object 

Defective_WEH_Equip_Cit

ed 

Other Associated Factors – Was there any 

citation for Defective WEH Equipment (String) 

Categorical Object 

Uninvolved_Vehicle Other Associated Factors – Uninvolved Vehicle 

(String) 

Categorical Object 

Other Other Associated Factors other than the one 

listed before (String) 

Categorical Object 

None_Apparent Other Associated Factors – None Apparent 

(String) 

Categorical Object 

Runaway_Vehicle Other Associated Factors – Runaway Vehicle 

(String) 

Categorical Object 
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APPENDIX B. SUPPLEMENTAL FIGURES 

 

 

Figure B1: Screen Capture of Sample PDF Report Page 1 
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Figure B2: Screen Capture of Sample PDF Report Page 2 
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Figure B3: Screen Capture of Sample PDF Report Page 3 
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Figure B4: Screen Capture of Sample Scanned PDF Report Page 1 
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Figure B5: Screen Capture of Sample Scanned PDF Report Page 2 
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Figure B6: Screen Capture of Sample Scanned PDF Report Page 3 
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Figure B7: Screen Capture of Sample Scanned PDF Report Page 4 

 



 

153 

 

Figure B8: Screen Capture of Sample Scanned PDF Report Page 5 
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Figure B9: Screen Capture of CSV File Data 




