
STOCHASTIC PROCESSES, AND DEVELOPMENT OF THE BARNDORFF-NIELSEN AND

SHEPHARD MODEL FOR FINANCIAL MARKETS

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Austin Uden

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Mathematics

April 2022

Fargo, North Dakota



NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

STOCHASTIC PROCESSES, AND DEVELOPMENT OF THE

BARNDORFF-NIELSEN AND SHEPHARD MODEL FOR FINANCIAL

MARKETS

By

Austin Uden

The supervisory committee certifies that this paper complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Prof. Indranil SenGupta

Chair

Prof. Artem Novozhilov

Prof. Nikita Barabanov

Prof. Somnath Banerjee

Approved:

04/14/2022

Date

Friedrich Littmann
Department Chair



ABSTRACT

In this paper, we introduce Brownian motion, and some of its drawbacks in connection to the

financial modeling. We then introduce geometric Brownian motion as the basis for European call

option pricing as we navigate our way through the Black-Scholes-Merton equation. Lévy Processes

round out the background information of the paper as we discuss Poisson and compound Poisson

processes and the pricing of European call options using the stochastic calculus of jump processes.

Ornstein-Uhlenbeck processes are then constructed. Finally we review and analyze the Barndorff-

Nielsen and Shepard model. We provide its application to price European call options using the

fast Fourier transform and the direct integration method.
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2.3. Itô’s integral for general integrands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1. BROWNIAN MOTION

1.1. Introduction

In 1827 Robert Brown witnessed the random movement of pollen molecules suspended in

fluid and decided he needed to write about his observations. His writing lead Louis Bachelier

to apply this observed randomness to the stock market around 1900 and it was expanded on by

Norbert Wiener in the 1920s. Wiener created a rigorous framework using probability to describe the

movements of pollen suspended in fluid. The contributions of Brown and Wiener to this framework

has lead to Wiener’s framework being called Brownian motion/Wiener process. Thanks to the

probability framework that Wiener created, Brownian motion is widely used in option modeling

today.

1.2. Definition and properties

In this section Brownian motion (Wiener Process), which we will denote Wt, will be in-

troduced. We will then go through important properties of Brownian motion and corresponding

results.

Definition. Brownian motion: A stochastic process {Wt}t≥0, is called a Brownian motion if:

1) W0 = 0.

2) It has continuous sample paths.

3) It has independent, stationary increments.

4) Wt ∼ N(0, t).

The above definition gives Brownian motion the following probability density with x denot-

ing the value of Wt:

f(x) =
1√
t
√
2π

exp(
−1

2
(
x√
t
)2), (1.1)

where as the probability distribution of Wt+u −Wt is:

P [Wt+u −Wt ≤ a] =

∫ a

−∞

1
√
u
√
2π

exp(
−1

2
(
x√
u
)2) dx. (1.2)

1



Since our probability distribution depends solely on the amount of time our process has been

running, and we set W0 = 0, using the fact that Wt is normally distributed, we get V ar[Wt] =

E [W 2
t ] − E [Wt]

2 = t, where E [Wt]
2 = 0 and the standard deviation is

√
t. If we have a short

increment of time, we expect the process to be close to the mean and as our increment of time

increases we expect a more spread out density.

Theorem 1. [Covariance of two Brownian motions] For s < t, Cov[Ws,Wt]=s.

Proof. From the definition of covariance and the expected values of Brownian motion, we get the

following:

Cov[Ws,Wt]=E[{Ws-E [Ws]}{Wt-E[Wt]}]

=E[WsWt].

Since our time intervals are [0, s] and [0, t], they are overlapping so we can consider the Brownian

motion on the interval [0, t] as the sum of the Brownian motion on [0, s] and the Brownian motion

on [s, t], which means they are independent time increments. This means thatWt =Ws+Wt −Ws.

Therefore, we get the following:

E[WsWt]=E[Ws]
2 + E [Ws(Wt-Ws)]

=E[Ws
2] + E [Ws(Wt-Ws)]

=E[Ws
2] + E [Ws]E[Wt-Ws]=s.

1.3. Brownian motion and the stock market

Most of us, when we buy stocks, really only want to know if we will make or lose money on

the stock with the former being preferred. One way to do this is to evaluate the dynamics of the

stock, will it go up or down, and how much is will change in either direction so we can buy other

stocks to balance out our portfolios to increase on average. We do need to realize that generally

this is a long term decision and our portfolios might not always indicate that we made the correct

decision even if they will long term. We can use Brownian motion to model this evolving stock

price through the following:

2



S(t+∆t)− S(t)

S(t)
= µ∆t+ σ∆Wt, (1.3)

where ∆t is our time interval, S(t) and S(t+∆t) are our current and future time stock prices, ∆Wt

is the Brownian motion increment over ∆t, µ and σ are constants. This equation denotes a growth

of our stock value at a set rate µ per time increment as well as a random change proportionate to

our Brownian motion over the same time increment and proportionality parameter σ.

However, for modeling stock price the above equation does not make sense as it can take

on negative values. The reason this does not make sense is a stock price bottoms out at a value of

zero which is when a company has a market evaluation that says there will be no return on that

company and the limited liability of shareholders says that a shareholder can not owe a company

money for its own failings.

1.4. Building Brownian motion from a random walk

Let us consider a symmetric random walk on the time interval [0, T ] and partition the walk

into n intervals of length ∆t = T/n. At each node we have two options. The first option is to

increase by
√
∆t and the second option is to decrease by

√
∆t. In order for this to be a symmetric

walk, there is an equal probability for each outcome at every node of our walk. This means that

previous data does not affect the outcome of the next step.

We will consider a particle that starts at position 0 at time 0 that follows the rules set forth

for this walk. At the first time point, our particle is either at
√
∆t or -

√
∆t and at our second

time point the particle is at 2
√
∆t, 0, or -2

√
∆t. Note, at each time point j, there are 2j paths to

the possible nodes so some paths lead to the same node increasing the probability of landing on

that node. For example, in our path above, at the second time interval, there are 4 paths with two

paths leading to the value 0 so based on the equal probabilities, we have a 1/2 chance of reaching

0. Below we can see the sample path system with n = 5 and the probability of reaching each node.

We notice that the nodes of these walks follow Pascal’s triangle for the partition of how many paths

reach individual nodes.

3



Figure 1.1. A random walk with 5 time steps and the probability of reaching each node

We will now show that our random walk does produce a Brownian motion. We will do this

by first assuming a finite number of time steps and show the expected value and variance hold true

to the requirements of Brownian motion. We will then consider our random walk as we approach

an infinite number of time steps and show that we are still in the confines of Brownian motion.

Between time points tk and tk+1 we will consider a two valued random variable Xk. As

noted above we know that we have equal probability of moving up or down so the expected value

is:

E[Xk]=
1
2

√
∆t+1

2(−
√
∆t)=0.

We will now check that the variance between consecutive time points is ∆t:

V ar[Xk]=E [Xk
2]-(E [Xk])

2

=E[Xk
2] = 1

2(
√
∆t)2 + 1

2(−
√
∆t)2

=∆t.

4



In order to view our entire process from time 0 to time T , we can add n of the above

processes together such that our random walk is Sn = X0 + X1 + . . . + Xn−1. Note, each Xi is

independent as the time intervals are independent, this will allow the manipulations in the following

calculations of the expected value and variance of Sn.

The expected value of Sn is:

E [Sn]=E [X0+X1+. . .+Xn−1]

=E [X0]+E [X1]+. . . +E [Xn−1]=n0=0.

The variance is as follows:

V ar[Sn]=V ar[
∑n−1

k=0 Xk]

=
∑n−1

k=0 V ar[Xk]

=n∆t=n(T/n)=T.

Theorem 2. As n→ ∞, the probability distribution of Sn converges to the probability distribution

of Brownian motion at time T .

Proof. See [38] pg. 9-10

We will now use the random walk formulation of Brownian motion to show that Brownian

motion is not differentiable using ∆t = 1/n and starting at time t. Let,

Xn =
Wt+∆t −Wt

∆t
=
Wt+1/n −Wt

1/n
= n[Wt+1/n −Wt]. (1.4)

Thus, Xn is normally distributed as it is a scalar of the difference of normal distributions with the

same mean. Also,

E [Xn]=n
2[Wt+1/n −Wt] = n0 = 0,

V ar[Xn]=n
2V ar[Wt+1/n −Wt] = n2( 1n)=n.

Based on the expected value and variance, Xn has the same probability distribution as
√
nZ,

where Z is the standard normal distribution. Also, since the definition of Xn is the difference

quotient, we can look at what happens as ∆t → 0 which occurs when n → ∞ to determine the

differentiability of Xn. A stochastic process is said to be differentiable if its sample paths are almost

surely differentiable. Let K > 0, then:

5



P [|Xn| >K]=P[|
√
nZ| > K]

=P [
√
n|Z| > K]=P [|Z| > K√

n
]

→ P [|Z| > 0] = 1.

Since K can be chosen arbitrarily large, we have an infinite rate of change which implies that the

path of our Brownian motion is not differentiable at time t. Since t is an arbitrary time, Brownian

motion is nowhere differentiable. This can be seen in the random walk as there is always an equal

chance that our walk increases or decreases which means we never know which direction the walk

is moving.

1.5. Correlated Brownian motions

Thus far, we have only looked at Brownian motions that are independent and therefore a

lot of the probability equations can be split using this independence. What do we do, if instead, our

Brownian motions are correlated? This section will focus on this question by building a Brownian

motion using two independent Brownian motions and looking at what happens when we use our

newly constructed Brownian motion and one of the two Brownian motions that are combined to

produce it.

Let us consider two independent Brownian motions Wt and Wt
∗ and a given number −1 ≤

ρ ≤ 1. For 0 ≤ t ≤ T we will define a new process,

Zt = ρWt +
√
1− ρ2W ∗

t . (1.5)

Theorem 3. The process Zt is a Brownian motion with respect to the filtration on Wt and W
∗
t .

Proof. See [38] pg 14-15.

Now we will discuss the correlation between the Brownian motions Wt and Zt. Since Zt

was built with Wt as one of the foundational Brownian motions, the correlation between them is

nonzero.

Theorem 4. Corr[Zt, Wt]=ρ.

Proof. Corr[Zt,Wt] =
Cov[Zt,Wt]√

V ar[Zt]
√

V ar[Wt]

Substituting for Zt and using independence of our Brownian motions, we get:

6



Cov[Zt,Wt] = Cov[ρWt +
√
1− ρ2W ∗

t ,Wt]

= Cov[ρWt,Wt] + Cov[
√
1− ρ2W ∗

t ,Wt]

= ρCov[Wt,Wt] +
√
1− ρ2Cov[W ∗

t ,Wt]

= ρV ar[Wt,Wt] +
√
1− ρ20

= ρt.

Therefore,

Corr[Zt,Wt] =
ρt√
t
√
t
= ρ.

1.6. Brownian motion as a martingale

Given a sequence of random variables X1, X2, . . . , Xn, . . . on a probability space (Ω,F ,P),

which, at successive time points, measures some phenomena. Then we have a random process with

values that will become known in order as time passes. When X1 becomes known, we obtain a

set of information about our process, we will denote this information as F1. Similarly, X2 will

become known and the accumulated information that became known with X1 and X2 will be

denoted F2. The process of our random variables becoming known will continue and at each step

we know the information that became known when the random variable was realized as well as

all previous information that had been obtained. This preservation of information is written as

F1 ⊆ F2 ⊆ . . . ⊆ Fn and this sequence of information is called a filtration. With the information

that becomes known at each time instance, we have a filtered probability space (Ω,Ft≥0,P).

Let |X| be the sum of the positive and negative parts of a random variable X, then X is

said to be integrable if the unconditional expected value E [|X|] exists and is finite. What happens

if we know X is integrable and we have a conditional expectation Y = E [X|F ]? Then we get:

E [Y ]=E [E [X|F ]]=E [X].

This allows us to also convert a normal expected value into a conditional expectation. When we

need to find the expected value of the product of two random variables, we will do this conversion.

Given a random variable Z that is known given F , then:

E [XZ]=E [E [XZ|F ]]=E [ZE [X |F ]].

7



Typically we will know E [X|F ] and substitute it into the above equation. This leads to the tower

property when a random variable is conditioned on the history up to time s and then conditioning

the resulting variable on the history up to time r, where r < s < t:

E [E [Xt |Fs ]|Fr ]=E [Xt|Fr].

Definition. (martingale) A sequence of random variables {Xn} on the probability space (Ω, {Ft}t≥0,P)

is a martingale if the following hold:

a) E [|Xn|] <∞ for all n,

b)E [Xn+1|Fn] = Xn for all n.

Theorem 5. Brownian motion is a martingale on (Ω,F ,P).

Proof. Let Wt be our future time Brownian motion and Ws be the Brownian motion that we

know with Fs as the information determined through time s. We can then decompose Wt into

two independent time intervals of Brownian motion in the same way we did previously: Wt =

Ws + (Wt −Ws). Therefore, our conditional probability for our martingale is:

E [Wt|Fs]=E [Ws + (Wt −Ws)|Fs]

=E [Ws|Fs] + E [Wt −Ws|Fs].

Since our Brownian motion is known at time s, Ws is a known value and not a random variable.

From the definition of Brownian motion, the time increment from s to t is independent of the

time increment prior to s. Thus, the expected value of the Brownian motion from time s to t is

independent of the information up until time s. Therefore, E [Wt −Ws|Fs]=E [Wt −Ws]=0. So we

get the following:

E [Ws|Fs] + E [Wt −Ws|Fs] =Ws + E [Wt −Ws]

=Ws + 0=Ws.

Therefore, Brownian motion is a martingale.

8



1.7. Construction of a non-negative Brownian motion

The main drawback of the previous sections is that nothing stops a Brownian motion, in

the traditional sense, from being negative. In this section, we will introduce stochastic differential

equations (SDEs) and use them to build a type of Brownian motion that is always positive and

therefore, is a better representation of the price of a stock.

Given a variable X, which is driven by one or more random processes, for our purposes,

these random processes will be Brownian motions, the equation that describes the increment of X

is called a SDE. We will specifically focus on X when only one Brownian motion is present which

gives us the specification with µ and σ as given continuous functions:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (1.6)

Our initial time is taken as t = 0 and X0 is known. We will also utilize the integral representation

of the SDE given as:

∫ T

t=0
dX = XT −X0 =

∫ T

t=0
µ(t,Xt)dt+

∫ T

t=0
σ(t,Xt)dWt,

XT = X0 +
∫ T
t=0 µ(t,Xt)dt+

∫ T
t=0 σ(t,Xt)dWt. (1.7)

This latter integral expression is the exact specification of the SDE. The continuous function µ is

called the drift coefficient and σ is called the diffusion coefficient which measures the scaling of the

randomness presented by the Brownian motion. At times, the values of X in the coefficients of

the above function might only depend on the history of X. The first integral in our representation

is an ordinary pathwise integral whereas the second integral is an Itô stochastic integral. Due to

the randomness in the second integral, the solution to a SDE is a random process which has a

stochastic differential of the same form as the SDE when the Brownian motion process is given. A

unique pathwise solution X to a SDE exists when the following two conditions are met for positive

constants K and L for any time 0 ≤ t ≤ T :

Growth condition: µ(t, x)2 + σ(t, x)2 ≤ K(1 + x2).

Lipschitz condition: |µ(t, x1)− µ(t, x2)|+ |σ(t, x1)− σ(t, x2)| ≤ L|x1 − x2|.
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1.7.1. Arithmetic Brownian motion

Arithmetic Brownian motion is a specification of a SDE when both of the continuous func-

tions µ and σ are constant. This produces the following SDE and its corresponding integral form:

dXt = µdt+ σdWt.

∫ T
t=0 dXt =

∫ T
t=0 µdt+

∫ T
t=0 σdWt. (1.8)

Since there are no unknowns on the right hand side of the integral equation, we get the solution:

Xt = X0 + µT + σWT .

The first two terms in our solution are non-random and the third term is a normally distributed

random variable, thus our solution X is normally distributed. This leads to the expected value and

variance, to be linear scalings of T and be represented by:

E [XT ] = X0 + µT .

V ar[XT ] = σ2T .

The solution X in this model can still take on negative values which means that it cannot be used

in full effectiveness for stock prices. However, we can use these results to build our model in the

next section called Geometric Brownian motion (GBM).

1.7.2. Geometric Brownian motion

In GBM, we look into a proportional change of X in comparison to its current value. The

SDE governing this proportional change, when µ and σ are known constants with σ > 0 is:

dXt

Xt
= µdt+ σdWt.

dXt = µXtdt+ σXtdWt. (1.9)

Both our drift and diffusion coefficients are proportional to the latest known value Xt. Since Xt

is constantly changing, so are our drift and diffusion coefficients. As the latest X becomes larger,

the drift and diffusion also grows. This leads to a Brownian motion with a greater variance being

needed to generate the random term in the solution. GBM is now considered the standard model

for stock prices and is thus denoted S. We will now solve dSt = µStdt + σStdWt for S, we will
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assume S is deterministic so dS(t)/S(t) would be the derivative of ln[S(t)] with respect to S. This

leads to the following equation:

d ln[S] = d ln[S]
dS dS + 1

2
d2 ln[S]
dS2 (dS)2.

Where the following are the substitutions that will be made:

d ln[S]
dS = 1

S .

d2 ln[S]
dS2 = −1

S2 .

(dS)2 = σ2S2dt.

With these substitutions, we get the following:

d ln[S] = 1
S (µSdt+ σSdWt) +

1
2
−1
S2 σ

2S2dt

=µdt+ σdWt − 1
2σ

2dt

=(µ− 1
2σ

2)dt+ σdWt.

Solving this equation for S(T ) obtains:

∫ T
t=0 d ln[S(t)] =

∫ T
t=0(µ− 1

2σ
2)dt+

∫ T
t=0 σdWt

ln[S(T )]− ln[S(0)] = (µ− 1
2σ

2)T + σWT

ln
[
S(T )
S(0)

]
= (µ− 1

2σ
2)T + σWT

S(T ) = S(0) exp((µ− 1
2σ

2)T + σWT ).

Thus ln[S(T )/S(0)] is a constant plus a normally distributed variable and therefore is normally

distributed. Since WT is our Brownian motion at t = T , the mean and variance are:

E

{
ln
[
S(T )
S(0)

]}
= (µ− 1

2σ
2)T .

V ar

{
ln
[
S(T )
S(0)

]}
= σ2T .

Since S(T ) is an exponential, it cannot become negative and is therefore a suitable candidate for

a stock price. GBM is the traditional model for the stock price due to overcoming this obstacle of

Brownian motion.
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1.8. Ornstein-Uhlenbeck SDE

The description of the bombardment of pollen particles by molecules was postulated by

Ornstein-Uhlenbeck (OU). Given two positive constants λ and σ, the representation is:

dX(t) = −λX(t)dt+ σdWt. (1.10)

In this equation, X(t) is the one-dimensional velocity of the particle and dX(t) is the acceleration

of the particle modelled by a frictional force proportional to velocity −λX(t), with the addition of

a random turbulence Wt with intensity σ caused by the molecules interacting with the particle.

We will use the transformation Y (t) = X(t) exp(λt) and apply Itô’s formula to Y as a

function of X and t. The dynamics of Y are as follows:

dY =
∂Y

∂t
dt+

∂Y

∂X
dX +

1

2

∂2Y

∂X2
(dX)2 +

∂2Y

∂X∂t
dtdX. (1.11)

To simplify this expression we can use the following substitutions:

∂Y
∂t = X exp(λt)λ = Y λ.

∂Y
∂X = exp(λt).

∂2Y
∂X2 = 0.

dtdX = dt(−λXdt+ σdW ) = 0.

Which result in the simplified equation:

dY = Y λdt+ exp(λt)dX

= Yλdt+ exp(λt)(−λXdt+ σdW )

= Yλdt− λY dt+ σ exp(λt)dW

=σ exp(λt)dWt (1.12)

Solving this equation and reverting back to X(T ) using X(T ) = exp(−λT )Y (T ), we get:

Y (T ) = Y (0) + σ
∫ T
t=0 exp(λt)dWt

X(T ) = exp(−λT )X(0) + exp(−λT )σ
∫ T
t=0 exp(λt)dWt

E [X(T )] = exp(−λT )X(0).
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1.9. Mean-reversion SDE

When a process fluctuates around a mean level, the random process used to model it is

called a mean-reversion process. The canonical example is continuously compounded interest rate

given by the following SDE with λ, σ, and r̄ known positive constants:

drt = −λ[rt − r̄]dt+ σdWt. (1.13)

We will now show that the long-term mean is r̄, so r reverts to the mean. Using the transformation

Xt = rt − r̄, we get from Itô’s formula dX = dr, thus dX = −λXdt+ σdW with the solution:

XT = exp(−λT )X0 + exp(−λT )σ
∫ T
t=0 exp(λt)dWt.

Since rT = XT + r̄ and X0 = r0 − r̄, we obtain:

rT = exp(−λT )[r0 − r̄] + exp(−λT )σ
∫ T
t=0 exp(λt)dWt + r̄

= r0 exp(−λT ) + r̄[1− exp(−λT )] + exp(−λT )σ
∫ T
t=0 exp(λt)dWt.

With the expected value:

E [rT ] = r0 exp(−λT ) + r̄[1− exp(−λT )].

As T increases, the expected value approaches r̄.

For further study of the material presented in this section, see [38].
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2. STOCHASTIC CALCULUS

2.1. Introduction

Now that we have developed Brownian motion, the next logical question is what can be

done with this development? We have discussed how Brownian motions are used in stock and asset

pricing and in this section we will discuss the calculus techniques developed by Kiyosi Itô. These

techniques differ from ordinary calculus because while we will be performing the same techniques,

integrating with respect to a non-differentiable function had to be developed.

2.2. Itô’s integral for simple integrands

How can we make sense of the following function:

∫ T

0
∆tWt? (2.1)

We have our Brownian motion Wt, t ≥ 0 and its corresponding filtration, as well as our integrand

∆t which we will let be an adapted (Ft-measurable ∀t) stochastic process so that it can take on the

value of our asset at time t. As with Brownian motion, we cannot determine anything about ∆t in

the future as it is also a random variable, but at each time instant, we have enough information to

evaluate its value at that time. Also, due to ∆′
ts measurability, it must be independent of future

increments of the Brownian motion driving the prices of our assets.

In order to construct Itô integration, consider a simple integrand ∆t and a partition P =

{t0, t1, . . . , tn} of [0, T ] with ∆t constant in t on each interval [ti, ti+1) so ∆t is a simple process.

We will choose these processes to take a value at ti and retain that value until, but not necessarily

including, time ti+1. Our process ∆t depends on the same ω as our Brownian motion and while

each process for differing ω might be different at time t, all processes have the same value at t = 0

as there is no past information to influence the current value, but each future time can depend on

past observations.

How do the processes discussed interact with our Brownian motion? If we consider our

Brownian motion as the price per share of an asset as before, our partition can be thought about

as the trading dates for the asset with ∆t0 ,∆t1 , . . . ,∆tn−1 as the number of shares the asset takes
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in during each trading date that is held until the next trading date. We will let It denote the gain

from trading at each time t where if tk ≤ t ≤ tk+1, It is given by:

It =
k−1∑
i=0

∆ti [Wti+1 −Wti ] + ∆tk [Wt −Wtk ]. (2.2)

The process given by It is the Itô integral of the process ∆t. Also stated as:

It =

∫ t

0
∆udWu. (2.3)

If we take t = tn = T , then we have a definition for our original integral.

2.2.1. Properties of Itô’s integral

The way we have defined the Itô integral, it is the gain from trading in Wt. This means

we have Itô’s integral defined by a martingale which has no tendency to change and it should be

expected that by its definition, It also does not have a tendency to change.

Theorem 6. It is a martingale with respect to the filtration {Ft}t≥0 of the underlying Brownian

motion.

Proof. Let 0 ≤ s ≤ t ≤ T be given where s and t are in different subintervals of the partition P .

We then get Itô’s integral as:

It =
∑l−1

j=0∆tj [Wtj+1 −Wtj ] + ∆tl [Wtl+1
−Wtl ] +

∑k−1
j=l+1∆tj [Wtj+1 −Wtj ] + ∆tk [Wt −Wtk ].

For It to be a martingale, we need to show that the expected value at time t given the information

up to time s, is the value of Is. Taking the conditional probability of It with respect to the

information known by time s is the same as taking the conditional probability of each term on the

right hand side. We will begin by taking the conditional expectation of the first two terms and

showing that it is equal to Is. We will then proceed with the final two terms and show that the

conditional probability is 0. For the first two terms we get:

E [
∑l−1

j=0∆tj [Wtj+1 −Wtj ] + ∆tl [Wtl+1
−Wtl ]|Fs]

= E [
∑l−1

j=0∆tj [Wtj+1 −Wtj ]|Fs]+E [
∑l−1

j=0∆tl [Wtl+1
−Wtl ]|Fs].

Notice that the terms in the first expression happen before time s as tl ≤ s as is the ∆tl and the

final term in the second expression so we can simplify the above equation to:
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=
∑l−1

j=0∆tj [Wtj+1 −Wtj ]+∆tl [E [Wtl+1
|Fs]−Wtl ].

Now using the martingale property of Brownian motion, we obtain:

=
∑l−1

j=0∆tj [Wtj+1 −Wtj ]+∆tl [Ws −Wtl ]

=Is.

Since tj ≥ tl+1 > s conditioning with our filtration, that is known up to time s, our third expression

is:

E [∆tj (Wtj+1 −Wtj )|Fs] = E [(E [∆tj (Wtj+1 −Wtj )]|Ftj )|Fs]

=E [∆tj ((E [(Wtj+1)]|Ftj )−Wtj )|Fs]

=E [∆tj (Wtj −Wtj )|Fs]=0.

Using these same techniques for the fourth expression we obtain:

E [∆tk(Wt −Wtk)|Fs]=0.

Summing these together we get that Is is a martingale.

Theorem 7. (Itô isometry) Itô’s integral satisfies

E (I2t ) = E (

∫ t

0
∆2

udu). (2.4)

Proof. See [37] page 130.

From the previous two theorems and I0 = 0, we get the following for the expected value

and variance:

E (It) = 0.

V ar(It) = E (I2t ).

Now we can discuss the quadratic variation of It which is a process in its upper limit of

integration t.

Definition. (Quadratic Variation) Let f(t) be a function defined for 0 ≤ t ≤ T . The quadratic

variation of f up to time T is
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[f, f ](T ) = lim∥Π∥→0
∑n−1

j=0 [ftj+1 − ftj ]
2,

where Π = t0, t1, . . . , tn and 0 = t0 < t1 < . . . < tn = T .

We know that our Brownian motion Wt accumulates quadratic variation at the rate of one per unit

time. Considering how It is defined, we get the quadratic variation of Brownian motion scaled by

a factor of ∆2(u).

Theorem 8. The quadratic variation accumulated up to time t by It is:

[I, I]t =
∫ t
0 ∆

2
udu.

Proof. See [37] pg 131.

Another way to view the same result for the quadratic variation of It is using the following

setup:

dIt = ∆tdWt.

dItdIt = ∆2
tdWtdWt.

= ∆2
tdt.

The previous theorems and results, we have a process in which the variance and quadratic variation

are different. This is due to the fact that the quadratic variation, sometimes regarded as a measure

of risk, depends on how large of positions (∆(u)) we choose in its calculation. On the other hand,

the variance of It depends on all of the possible position sizes that we can choose for quadratic

variation and is taken as the average over all of these possible paths and thus, cannot be random.

2.3. Itô’s integral for general integrands

How does Itô’s integral change if ∆t is not simple (changes continuously with time and/or

has jumps)? We will do a very common idea in probability theory and approximate ∆t by simple

processes. First, it is assumed that ∆t, t ≥ 0 is adapted to some filtration for t ≥ 0 and that the

square-integrability condition holds:

E (

∫ T

0
∆2

tdt) <∞. (2.5)
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First, we will partition the time interval where 0 = t0 < t1 < t2 < t3 < . . . < tn = T and form our

approximation on the intervals [tj , tj+1). The simple processes that we will choose to approximate

∆t will be assumed to be constant and equal to ∆tj on the interval [tj , tj+1). This can be seen in

figure 2.1:

Figure 2.1. Approximating the integrand [38].

As n→ ∞, the sequence ∆n
t of simple processes will converge to ∆t., i.e.:

limn→∞ E (
∫ T
0 |∆n

t −∆t|2dt) = 0,

in probability. Therefore, since the Itô integral is defined for simple processes, we now define the

Itô integral for the general integrand as:

∫ t

0
∆udWu = lim

n→∞

∫ t

0
∆n

udWu, (2.6)

where, again, the limit can be shown to converge in probability. Since the right hand side is the

limit of an Itô integral of a simple process, the Itô integral of a general process inherits the same

properties.

Theorem 9. Let T be a positive constant and let ∆t, 0 ≤ t ≤ T , be an adapted stochastic process

satisfying the square-integrability condition. Then It has the following properties.

a) As a function of the upper limit of integration t, the paths of It are continuous.
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b) For each t, It is Ft −measurable.

c) If It =
∫ t
0 ∆udWu and Jt =

∫ t
0 ΓudWu, then It ± Jt =

∫ t
0(∆u ± Γu)dWu and for every

constant c, cIt =
∫ t
0 c∆udWu.

d) It is a martingale.

e) E (I2t ) = E (
∫ t
0 ∆

2
udu).

f) [I, I]t =
∫ t
0 ∆

2
udu.

For an example see [37] pages 134-137.

2.4. Itô’s formula

What occurs if we want to differentiate expressions of the form f(Wt)? One’s first thought

is perform the chain rule as in ordinary calculus, but as discussed earlier, Brownian motion is not

differentiable. To coincide with the integration that he created, Itô also formed the chain rule for

Brownian motion as follows:

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt. (2.7)

This is known as the Itô formula. As with previous formulas, there is an analogous integral form:

f(Wt)− f(W0) =

∫ t

0
f ′(Wu)dWu +

1

2

∫ t

0
f ′′(Wu)du. (2.8)

In the integral form, we have talked in the previous couple of sections how to compute the first

term on the right hand side and the second term on the right hand side is an ordinary integral with

respect to time. Therefore, we know how to calculate the entire integral form of the Itô formula

even though there are not precise definitions of some of the terms in the differential form.

Theorem 10. (Itô formula for Brownian motion) Let f(t, x) be a function with partial derivatives

ft(t, x), fx(t, x), and fxx(t, x) that are defined and continuous and with Wt a Brownian motion.

Then, ∀T ≥ 0,

f(T,WT ) = f(0,W0) +
∫ T
0 ft(t,Wt)dt+

∫ T
0 fx(t,Wt)dWt +

1
2

∫ T
0 fxx(t,Wt)dt.

Proof. For a sketch of the proof see [37] pages 138-141.

We will now extend Itô’s formula to an Itô process.
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Definition. (Itô Process) Let Wt, t ≥ 0 be a Brownian motion, and let F , t ≥ 0 be an associated

filtration. An Itô process is a stochastic process of the following form where X0 is nonrandom and

∆u and Θu are adapted stochastic processes.

Xt = X0 +
∫ t
0 ∆udWu +

∫ t
0 Θudu.

Theorem 11. The quadradic variation of the Itô process is:

[X,X]t =
∫ t
0 ∆

2
udu.

Proof. See [37] pages 143-144.

The conclusion of this theorem can be remembered by computing dXtdXt when:

dXt = ∆tdWt +Θtdt.

We can then use the following to find dXtdXt:

dWtdWt = dt.

dtdWt = dWtdt = 0.

dtdt = 0.

Therefore, we obtain:

dXtdXt = ∆2
tdWtdWt + 2∆tΘtdWtdt+Θ2

tdtdt

= ∆2
tdt.

So at each instant of time, the Itô process is accumulating ∆2
t quadratic variation and hence we

get the conclusion of the previous theorem. We are now ready to generalize Itô’s formula for any

Itô process.

Definition. Let Xt, t ≥ 0 be an Itô process and let Γt, t ≥ 0 be an adapted process. Then the

integral with respect to an Xt is:∫ t

0
ΓudXu =

∫ t

0
Γu∆udWu +

∫ t

0
ΓuΘudu. (2.9)

We can now generalize Itô’s formula for any Itô process.
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Theorem 12. Let Xt, t ≥ 0 be an Itô process and let f(t, x) be a function whose partial derivatives

ft(t, x), fx(t, x), and fxx(t, x) are defined and continuous. Then, ∀T ≥ 0:

f(T,Xt) = f(0, X0) +
∫ T
0 ft(t,Xt)dt+

∫ T
0 fx(t,Xt)dXt +

1
2

∫ T
0 fxx(t,Xt)d[X,X]t

= f(0, X0) +
∫ T
0 ft(t,Xt)dt+

∫ T
0 fx(t,Xt)∆tdWt +

∫ T
0 fx(t,Xt)Θtdt+

1
2

∫ T
0 fxx(t,Xt)∆

2
tdt.

The differential form is:

df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1
2fxx(t,Xt)dXtdXt

= ft(t,Xt)dt+ fx(t,Xt)∆tdWt + fx(t,X)t)Θtdt+
1
2fxx(t,Xt)∆

2
tdt.

For further study of the material presented in this section, see [37].
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3. BLACK-SCHOLES-MERTON EQUATION

3.1. Option Types

Definition. Options are financial derivatives that give the buyer the right to buy or sell the under-

lying asset at a stated price within a specified period.

In this section, we introduce the following vanilla options [39]: call options and put options.

How do they differ and why choose one over the other?

3.1.1. European call option

The European call option is the simplest of the financial options available and is a contract

with the following conditions:

At a prescribed time in the future, known as the expiry date, the holder of the option can either

1) purchase a prescribed asset, known as the underlying asset, for a prescribed amount, or

2) pass on the purchase of the underlying asset.

This implies that for the person who owns the European call option, the contract is a right and not

an obligation. As this is a contract, there are two parties, the holder, who decides whether or not

to execute the option, and the writer, whom does have the obligation to sell the asset if the holder

decided to buy. Due to this obligation to sell if the holder chooses to buy, contracts for options

have a premium in order to purchase them. This helps ensure that the writer does not assume all

of the risk for the underlying asset. We will use European call options throughout this paper.

What happens if the holder wants to sell before the expiry date due to a massive profit

margin? For a European call option, this is not allowed as the holder can only exercise the option

on the expiry date. This leads to the next type of option, the American call option.

3.1.2. American call option

An American call option is similar to the holder/writer description of the European call

option, but the holder can choose to exercise the option at any time prior to the expiry date. We

still need to be able to assign a value to this option, but the holder must determine when it is best

to exercise the option. This final aspect is unique to the American call option. For further study

of pricing and exercising American call options, see [39] chapters 7-9.
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3.1.3. European put option

We have discussed the option to buy assets above, namely call options. The right to sell

an asset is known as a put option and flips the payoff properties of a call option. A European put

option allows the holder to sell assets on a specified date for a predetermined (at the time of buying

the option) amount. The writer would then be obligated to buy the assets that they have agreed to

in the option contract. Unlike a European call option, the holder of a European put option wants

the price of the asset to diminish in value. This allows the holder to buy the asset at a lower price

on the day of expiry and sell it to the writer at the contracted price and that difference in price is

the holder’s profit.

3.1.4. American put option

An American put option is similar to the holder/writer description of the European put

option, but the holder can choose to exercise the option at any time prior to the expiry date. We

still need to be able to assign a value to this option, but the holder must determine when it is best

to exercise the option.

3.2. Portfolio value evaluation

How should we approach investing between a money market account and the stock market

based on the amount of money available to us? We will consider that at time t, our portfolio has a

value of Xt and we invest into a money market account with a constant interest rate r and a stock

modeled by geometric Brownian motion:

dSt = αStdt+ σStdWt,

where α is the drift coefficient and σ is the diffusion coefficient. We will assume for each time t,

we hold ∆t shares of the aforementioned stock which can be random as long as it is adapted to the

same filtration as our Brownian motion Wt. We then invest the remaining value of our portfolio,

Xt −∆tSt, into the money market account. As with most investments, we want to know how the

value of our portfolio is changing with time which in our setup relies on two factors, the change in

the stock price and the interest earned on our money market account. With these being the two

factors that affect our portfolio value, we arrive at the differential for our portfolio value being:

dXt = ∆tdSt + r(Xt −∆tSt)dt
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=∆t(αStdt+ σStdWt) + r(Xt −∆tSt)dt

=rXtdt+∆t(α− r)Stdt+∆tσStdWt. (3.1)

To make sense of this equation, we need to understand what the terms on the right hand side

measure. The first term, rXtdt, is an underlying return on the portfolio. This return does not take

into consideration how much of the portfolio is put into the stock and how much is in the money

market account so we are guaranteed a set return rate based solely on the amount of money we

have invested. The second term, ∆t(α − r)Stdt, takes into account the risk premium, α − r for

investing in the stock. We consider this a risk because their is always the chance that the stock

does worse than just a straight investment into the money market account. In this scenario, it

would have been more beneficial to us to have invested solely in the money market. There is no

way to know if this is the case until after we know the stock price at the later time at which point

it is too late to switch our investment which is the risk we take on. The final term, ∆tStdWt,

represents the volatility of our investments proportional to the size of the stock investment. This

volatility is due to our stock being modeled by a geometric Brownian motion which as we know is

a random process. What this means is that since our money market investment has a fixed return

rate r, then the sole piece of our investment that is driving our portfolio’s price volatility is our

investments into the stock market. This can be understood because if we solely invested in the

money market, we would know exactly how much money is in our portfolio at any time due to the

fixed return rate.

The discounted stock price, e−rtSt, and the discounted portfolio value, e−rtXt are often

considered. The reason for this consideration is that the mean rate of return will be reduced

from α to α − r or the risk premium term from the original consideration. We will also see that

considering the discounted stock price will also remove the underlying rate of return so that we

get our return as a function of St, t, and ∆t. To determine the differential of the discounted stock

price, let f(t, St) = e−rtSt. We will now use Itô’s formula to determine the differential:

d(e−rtSt) = −re−rtStdt+ e−rtdSt

=(α− r)e−rtStdt+ σe−rtStdWt. (3.2)
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We can do a similar procedure for the discounted portfolio value and we obtain:

d(e−rtXt) = −re−rtXtdt+ e−rtdXt

=∆t(α− r)e−rtStdt+∆tσe
−rtStdWt

=∆td(e
−rtSt). (3.3)

3.3. Option value evolution

We will now consider a European call option that pays out (St −K)+ = max(0, St −K) at

time T where K is the strike price which is a nonnegative constant. Black, Scholes, and Merton

argued that the value of this option relies on the time remaining until expiration and the value of

the stock at the time we are evaluating the value. It should also depend on the model parameters

r and σ, and finally the strike price K. If we let c(t, St) denote the value of the call at time t,

then we have a stochastic process as the stock price is random. Therefore, as with the stock price

discussed early, we do not know any future value of the stock price and therefore, we do not know

any future value of c(t, St). Even though we cannot calculate an exact value, our goal is to find a

formula of the future call option for when we know the future stock price.

We will proceed as in the previous section with our European call option price in place of

our stock price. Using Itô’s formula on the call price, we obtain:

dc(t, St) = ct(t, St)dt+ cx(t, St)(αStdt+ σStdWt) +
1

2
cxx(t, St)σ

2S2
t dt

=

[
ct(t, St) + αStcx(t, St) +

1
2σ

2S2
t cxx(t, St)

]
dt+ σStcx(t, St)dWt. (3.4)

We will now consider the discounted European call price e−rtc(t, St) and let f(t, x) = e−rtx, then

using Itô’s formula, we obtain:

d(e−rtc(t, St)) = −re−rtc(t, St)dt+ e−rtdc(t, St)

=e−rt

[
− rc(t, St) + ct(t, St) + αStcx(t, St) +

1
2σ

2S2
t cxx(t, St)

]
dt+ e−rtσStcx(t, St)dWt. (3.5)

3.4. Equality of the evolutions

A hedging portfolio starts with an initial capital X0 and invests in the stock and money

markets such that Xt and c(t, St) agree ∀t ∈ [0, T ]. This occurs if and only if the discounted
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portfolio value is equal to the discounted call option value for all t. One way to ensure this equality

is to have the following equivalence:

d(e−rtXt) = d(e−rtc(t, St),∀t ∈ [0, T ), (3.6)

and X0 = c(0, S0). If we integrate (3.6) from 0 to t, we obtain:

e−rtXt −X0 = e−rtc(t, St)− c(0, S0),∀t ∈ [0, T ). (3.7)

Since we know that the equality only holds if X0 = c(0, S0), we can make a cancellation and obtain

our desired equality. Making the comparison between (3.3) and (3.5), we know that (3.6) holds if

and only if the following equality holds:

∆t(α− r)e−rtStdt+∆tσe
−rtStdWt

=e−rt

[
− rc(t, St) + ct(t, St) + αStcx(t, St) +

1
2 σ

2S2
t cxx(t, St)

]
dt+ e−rtσStcx(t, St)dWt. (3.8)

We will now examine what is required for the above equation to hold by equating parts of the

equation. First, equating the dWt terms gives:

∆t = cx(t, St), ∀t ∈ [0, T ). (3.9)

This is referred to as the delta-hedging rule. The number of shares of stock held by the hedge

at each time t prior to expiration is the partial derivative of the option value with respect to the

stock’s price. The quantity cx(t, St) is called the delta of the option. We will now equate the dt

terms of (3.8), using (3.9), to obtain

(α− r)Stcx(t, St) = −rc(t, St) + ct(t, St) + αStcx(t, St) +
1

2
σ2S2

t cxx(t, St), ∀t ∈ [0, T ) (3.10)

Cancelling the αStcx(t, St) on both sides of the equation we obtain:

rc(t, St) = ct(t, St) + rStcx(t, St) +
1

2
σ2S2

t cxx(t, St), ∀t ∈ [0, T ). (3.11)

Therefore, we seek a continuous function c(t, x) that solves the Black-Scholes-Merton partial dif-

ferential equation:

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x) = rc(t, x), ∀t ∈ [0, T ), x ≥ 0, (3.12)
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and satisfies:

c(T, x) = (x−K)+. (3.13)

Once found, the function that solves this equation will meet all requirements for our portfolio

equation as well as the requirements for our option equation. Therefore, this function will give

us equality ∀t ∈ [0, T ). If we take the limit as t ↑ T and the fact that both Xt and c(t, St) are

continuous, we can conclude that XT = c(T, ST ) = (St −K)+. Therefore, our portfolio has a value

that agrees with the option payoff.

3.5. Solution to the Black-Scholes-Merton equation

In this section, rather than deriving the solution to the Black-Scholes-Merton equation, we

will present a solution and check that it meets all criteria. We want the Black-Scholes-Merton

equation to hold for all x ≥ 0 and t ∈ [0, T ) so (3.12) holds regardless of the stock’s price path. If

the stock starts at a value of zero, then it will remain at a value of zero, but if the starting price

is positive, then it remains positive and can take on any value, both of these cases are covered by

requiring (3.12) to hold for x ≥ 0.

The Black-Scholes-Merton equation (3.12), is a backward parabolic partial differential equa-

tion. Therefore, we need boundary conditions at x = 0 and x = ∞ to determine the solution.

Substituting x = 0 into (3.12), we obtain:

ct(t, 0) = rc(t, 0). (3.14)

This is an ordinary differential equation with solution:

c(t, 0) = ertc(0, 0).

Since c(T, 0) = (0−K)+ = 0, we have:

c(t, 0) = 0 ∀t ∈ [0, T ]. (3.15)

One way to specify the boundary condition at x = ∞ is:

limx→∞[c(t, x)− (x− e−r(T−t)K)] = 0, ∀t ∈ [0, T ]. (3.16)

Which means that c(t, x) grows at the same rate as x as x→ ∞.
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Taking into consideration the terminal condition (3.13) along with the boundary conditions

(3.15) and (3.16), the solution to the Black-Scholes-Merton equation is [37], pg 159:

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x)), 0 ≤ t < T, x > 0 (3.17)

where

d±(τ, x) =
1

σ
√
τ

[
log(

x

K
) +

(
r ± σ2

2

)
τ

]
, (3.18)

and N is the cumulative standard normal distribution

N(y) =
1√
2π

∫ y

−∞
e−x2/2dz =

1√
2π

∫ ∞

−y
e−x2/2dz. (3.19)

Note that (3.17) does not define c(t, x) when t = T or when x = 0 as we divide by 0 and have log(0)

respectively. However, (3.17) defines c(t, x) such that limt→T c(t, x) = (x−K)+ and limx↓0c(t, x) =

0.

For further study of the material presented in this section, see [37].
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4. LÉVY PROCESSES

4.1. Introduction

As we look at data for asset pricing, especially stock pricing, we see jumps or spikes that

occur that need to be accounted for. These spikes can happen for various reasons, companies

getting major contracts, massive stock dumping of a companies stocks, etc, but no matter why

they happen, models based off of Brownian motion are not the most accurate to describe these

instances. In order to overcome these situations, we will introduce Lévy processes which have

independent and stationary increments.

Definition. [Lévy process] A càdlàg stochastic process {Xt}t≥0 on (Ω,F ,P) with values in Rd such

that X0 = 0 is called a Lévy process if it satisfies the following properties:

1) Independent increments: for every increasing sequence of times t0, . . . , tn, the random

variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

2) Stationary increments: the law of Xt+h −Xt does not depend on t.

3) Stochastic continuity: ∀ε > 0, limh→0P(|Xt+h −Xt| ≥ ε) = 0.

In the following sections we will discuss two processes, the Poisson process and the Com-

pound Poisson process. We will then discuss how the stochastic calculus we have done previously

changes to include processes with jumps.

4.2. Poisson process

4.2.1. Construction

Consider a sequence of independent exponential random variables τ1, τ2, . . ., all with the

same mean 1
λ . For each τi, the density function is:

f(t) =

 0 t < 0

λe−λt t ≥ 0.

Now we will build a process that allows jumps to occur. The first jump will occur at time τ1, there

will then be a time span of τ2 units before the second jump, and similarly, a time span of τi units

between the (i− 1)th jump and the ith jump. In this process, the τi are called interarrival times

and the arrival times are:
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Sn =
∑n

i=1 τi.

The Poisson process Nt counts the number of jumps prior to time t:

Nt =



0 S0 ≤ t < S1

1 S1 ≤ t < S2

. . .

n Sn ≤ t < Sn+1

. . .

(4.1)

We will denote the σ-algebra of information given by Nt for 0 ≤ s ≤ t by Ft. Also note, the jumps

of the Poisson process average λ jumps per time unit and we say that Nt has intensity λ.

4.2.2. Poisson process increments

In order to begin to understand the increments of the Poisson process, we need to understand

the distribution of the jump times.

Theorem 13. For n ≥ 1, the random variable Sn has the gamma density

gn(s) =
(λs)n−1

(n−1)! λe
−λs, s ≥ 0.

Proof. See [37] pg. 464.

Theorem 14. The Poisson process Nt with intensity λ has the distribution:

P [Nt = k] = (λt)k

k! e
−λt, k = 0, 1, . . ..

Proof. For k ≥ 1, Nt ≥ k if and only if there are at least k jumps prior to time t, thus:

P [Nt ≥ k] = P [Sk ≤ t] =
∫ t
0

(λs)k−1

(k−1)! λe
−λsds.

Similarly,

P [Nt ≥ k + 1] = P [Sk+1 ≤ t] =
∫ t
0

(λs)k

(k)! λe−λsds.

Integration by parts of the previous expression yields:
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P [Nt ≥ k + 1] = − (λs)k

(k)! e
−λs|s=t

s=0 +
∫ t
0

(λs)k−1

(k−1)! λe
−λsds

= − (λt)k

(k)! e−λt + P [Nt ≥ k].

This implies for k ≥ 1,

P [Nt = k] = P [Nt ≥ k]− P [Nt ≥ k + 1] = (λt)k

k! e−λt.

For k = 0, we get,

P [Nt = 0] = P [S1 > t] = P [τ1 > t] = e−λt,

which is the needed equation with k = 0.

What can be determined about the distribution of Nt+s−Ns conditioned on the information

up to and including at time s? Since Nt+s tells us how many jumps have occurred up to and

including time t+ s and Ns tells us how many jumps occurred up to time s, then Nt+s −Ns tells

us the number of jumps in an interval of length t. Therefore, the interval does not depend on s

and keeps the same exponential distribution with mean 1
λ . Thus, Nt+s −Ns is independent of Fs

and is the same as the distribution of Nt.

Theorem 15. Let Nt be a Poisson process with intensity λ > 0 and let 0 = t0 < t1 < . . . < tn be

given. Then Nt1 −Nt0, Nt2 −Nt1,. . . , Ntn −Ntn−1 are stationary and independent. Also,

P[Ntj+1 −Ntj = k] =
λk(tj+1−tj)

k

k! e−λ(tj+1−tj), k = 0, 1, . . . .

Proof. For an outline of this proof, see [37] pg 466.

4.2.3. Poisson process as a martingale

The expected value of the poison increment Nt −Ns is as follows:

E [Nt −Ns] =
∑∞

k=0 ke
−λ(t−s) λ

k(t−s)k

k!

= λ(t− s)e−λ(t−s)∑∞
k=1

λk−1(t−s)k−1

(k−1)!

= λ(t− s)e−λ(t−s)eλ(t−s)

= λ(t− s)

Consider the compensated Poisson processMt = Nt−λt whereNt is a Poisson process with intensity

λ.
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Theorem 16. Mt is a martingale with respect to the filtration {Ft}t≥0 on Nt.

Proof. Let 0 ≤ s < t be given, then Nt −Ns is independent of Fs and has expected value λ(t− s).

Then,

E [Mt|Fs] = E [Mt −Ms|Fs] + E [Ms|Fs]

= E [Nt −Ns − λ(t− s)|Fs] +Ms

= E [Nt −Ns]− λ(t− s) +Ms

=Ms.

4.3. Compound Poisson process

Let Nt be a Poisson process with intensity λ, and let Y1, Y2, . . . be a sequence of independent

identically distributed random variables with β = E (Yi) that are also independent of Nt. A

compound Poisson process is defined as,

Qt =
Nt∑
i=1

Yi, t ≥ 0. (4.2)

Comparing Nt and Qt, the jumps occur at the same, but the jumps in Qt are random in size. The

ith jump of Qt has size Yi. Also, the increments of the compound Poisson process are independent,

for 0 < t,

Qs =
∑Ns

i=1 Yi

Which sums up the first Ns jumps, thus

Qt −Qs =
∑Nt

i=Ns+1 Yi,

which sums up jumps Ns + 1 to Nt, are independent. Since Nt −Ns has the same distribution as

Nt−s, Qt −Qs has the same distribution as Qt−s.

4.3.1. Compound Poisson process as a martingale

The expected value of the compound Poisson process is as follows:

E [Qt] =
∑∞

k=0 E

[∑k
i=1 Yi

∣∣∣∣Nt = k

]
P [Nt = k]

=
∑∞

k=0 βke
−λt (λt)

k

k!
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=βλte−λt∑∞
k=1

(λt)k−1

(k−1)!

=βλt.

Consider the compensated compound Poisson process Qt − βλt.

Theorem 17. Qt − βλt is a martingale.

Proof. Let 0 ≤ s < t be given, then Qt−Qs is independent of Fs and has expected value βλ(t− s).

Then,

E [Qt − βλt|Fs] = E [Qt −Qs|Fs] +Qs − βλt

=βλ(t− s) +Qs − βλt

=Qs − βλs.

4.4. The calculus of jump processes

Our jump processes in this section will consist of Brownian motion, a Poisson process, and

a compound Poisson process all adapted to the same filtration F . This means that for t ≥ 0 Wt,

Nt, and Qt are Ft−measurable and for every u > t the incrementsWu−Wt, Nu−Nt, and Qu−Qt

are independent of Ft. Using this, we will determine the stochastic integral:

∫ t

0
ϕsdXs, (4.3)

where X can have jumps and is right-continuous. We will consider integrators X that have the

following form:

Xt = X0 + It +Rt + Jt

where X0 is a nonrandom initial condition. The process

It =
∫ t
0 ΓsdWs

is an Itô integral where Ws is a Brownian motion and Γs is a process adapted to Ws. The process

Rt =
∫ t
0 Θsds
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is a Riemann integral for some adapted process Θt. Therefore, the continuous part of Xt is defined

to be

Xc
t = X0 + It +Rt = X0 +

∫ t
0 ΓsdWs +

∫ t
0 Θsds.

The quadratic variation of this process is:

dXc
t dX

c
t = Γ2

tdt.

The final part of Xt is Jt which is a right-continuous pure jump process with J0 = 0. If J has

a jump at time t, then Jt is the value of J immediately after the jump, whereas Jt− is the value

immediately before the jump. We will assume that J does not jump at time zero, has finitely many

jumps in each finite time interval (0, T ], and is constant between jumps.

We will call the process Xt as defined above a jump process. Since It and Rt are continuous,

the left-continuous version of Xt is:

Xt− = X0 + It +Rt + Jt−. (4.4)

Definition. Let Xt be a jump process and ϕs an adapted process. Then the stochastic integral of

ϕ with respect to X is defined as:

∫ t

0
ϕsdXs =

∫ t

0
ϕsΓsdWs +

∫ t

0
ϕsΘsds+

∑
0<s≤t

ϕs∆Js. (4.5)

In differential notation we have:

ϕtdXt = ϕtdIt + ϕtdRt + ϕtdJt

=ϕtdX
c
t + ϕtdJt, (4.6)

where

ϕtdIt = ϕtΓtdWt, ϕtdRt = ϕtΘtdt.

Similar to Brownian motion, we want to ensure that the integral for a jump process is a martingale so

that we can replace the integrand by a position in an asset. Consider an investor in the compensated

Poisson process Mt who chooses his position according to the formula ϕs = ∆Ns. This means the

only time his investment could change value is when jumps occur and since all of the jumps of Ms
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are always positive, then the investor would become extremely rich. At the same time however,

if any investor were able to do this, then they would have to have insider knowledge and would

be caught for insider trading so we want to find a way to manipulate this scenario such that the

investor can still be successful while remaining out of prison. Note that ϕs only depends on the

path of the underlying process M up to and including time s and does not depend on anything

that happens after. The following theorem is given without proof.

Theorem 18. Assume that the jump process Xs is a martingale, the integrand ϕs is left-continuous

and adapted, and

E [
∫ t
0 Γ

2
sϕ

2
sds] <∞ ∀t ≥ 0.

Then the stochastic integral
∫ t
0 ϕsdXs is also a martingale.

4.4.1. Itô’s formula for a one jump process

If we had a continuous-path process, then the Itô formula is as follows:

Xc
t = Xc

0 +
∫ T
0 ΓsdWs +

∫ t
0 Θsds,

with the differential notation being:

dXc
s = ΓsdWs +Θsds,

dXc
sdX

c
s = Γ2

sds.

Now, let f(x) be a function with continuous first and second derivatives. Then,

df(Xc
s) = f ′(Xc

s)dX
c
s +

1

2
f ′′(Xc

s)dX
c
sdX

c
s

=f’(Xc
s)ΓsdWs + f ′(Xc

s)Θsds++1
2f

′′(Xc
s)Γ

2
sds. (4.7)

The integral notation is:

f(Xc
t ) = f(Xc

0) +

∫ t

0
f ′(Xc

s)ΓsdWs +

∫ t

0
f ′(Xc

s)Θsds+
1

2

∫ t

0
f ′′(Xc

s)Γ
2
sds. (4.8)

Now let Xt = X0 + It +Rt + Jt, where J is a right-continuous pure jump term and It =
∫ t
0 ΓsdWs

and Rt =
∫ t
0 Θsds. Between jumps of J , X is continuous and thus we can use the above, but if

there is a jump in X from Xs− to Xs, then there typically will be a resultant jump in f(X) from
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f(Xs−) to f(Xs). Therefore, we need to add the jumps in when we integrate both sides from 0 to

t. Thus, we get the following theorem.

Theorem 19. (Itô formula for a one jump process) Let Xt be a jump process and f(x) a function

for which f ′(x) and f ′′(x) are defined and continuous. Then,

f(Xt) = f(X0) +
∫ t
0 f

′(Xs)dX
c
s +

1
2

∫ t
0 f

′′(Xs)dX
c
sdX

c
s +

∑
0<s≤t[f(Xs)− f(Xs−)].

Proof. See [37] page 485.

4.4.2. Itô-Doeblin formula for multiple jump processes

In this section, we will give the two-dimensional version of the Itô-Doeblin formula for

processes with jumps. To extend this to higher dimensions, it will follow the same pattern.

Theorem 20. Let X1
t and X2

t be jump processes, and let f(t, x1, x2) be a function whose first and

second partial derivatives appearing in the following are defined and continuous. Then,

f(t,X1
t , X

2
t ) = f(0, X1

0 , X
2
0 ) +

∫ t
0 ft(s,X

1
s , X

2
s )ds+

∫ t
0 fx1(s,X

1
s , X

2
s )dX

1c
s

+
∫ t
0 fx2(s,X

1
s , X

2
s )dX

2c
s + 1

2

∫ t
0 fx1,x1(s,X

1
s , X

2
s )dX

1c
s dX

1c
s

+
∫ t
0 fx1,x2(s,X

1
s , X

2
s )dX

1c
s dX

2c
s + 1

2

∫ t
0 fx2,x2(s,X

1
s , X

2
s )dX

2c
s dX

2c
s

+
∑

0<s≤t[f(s,X
1
s , X

2
s )− f(s,X1

s−, X
2
s−)].

Theorem 21. (Itô’s product rule for jump processes). Let X1
t and X2

t be jump processes. Then,

X1
tX

2
t = X1

0X
2
0 +

∫ t
0 X

2
sdX

1c
s +

∫ t
0 X

1
sdX

2c
s

+[X1c, X2c](t) +
∑

0<s≤t[X
1
sX

2
s −X1

s−X
2
s−]

= X1
0X

2
0 +

∫ t
0 X

2
s−dX

1
s +

∫ t
0 X

1
s−dX

2
s + [X1, X2](t).

Proof. Take f(x1, x2) = x1x2 so that

fx1 = x2, fx2 = x1, fx1x1 = 0, fx1x2 = 1, fx2x2 = 0.

Then, the two-dimensional It0̂-Doeblin formula implies,

X1
tX

2
t = X1

0X
2
0 +

∫ t
0 X

2
sdX

1c
s +

∫ t
0 X

1
sdX

2c
s +

∫ t
0 1dX

1c
s dX

2c
s +

∑
0<s≤t[X

1
sX

2
s −X1

s−X
2
s−].
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In the above equation,
∫ t
0 1dX

1c
s dX

2c
s = [X1c, X2c](t), thus the first equality of the theorem is true.

We will denote the pure jump parts ofX1
t andX2

t as J1
t = X1

t −X1c
t and J2

t = X2
t −X2c

t respectively.

Thus, we can use the last line of the theorem to obtain:

X1
0X

2
0 +

∫ t
0 X

2
s−dX

1
s +

∫ t
0 X

1
s−dX

2
s + [X1, X2](t)

= X1
0X

2
0 +

∫ t
0 X

2
s−dX

1c
s +

∫ t
0 X

2
s−dJ

1
s +

∫ t
0 X

1
s−dX

2c
s +

∫ t
0 X

1
s−dJ

2
s + [X1c, X2c](t) +

∑
0<s≤t∆J

1
s∆J

2
s

= X1
0X

2
0 +

∫ t
0 X

2
sdX

1c
s +

∫ t
0 X

1
sdX

2c
s + [X1c, X2c](t) +

∑
0<s≤t[X

2
s−∆X

1
s +X1

s−∆X
2
s +∆X1

s∆X
2
s ].

We now need to show that

∑
0<s≤t[X

2
s−∆X

1
s +X1

s−∆X
2
s +∆X1

s∆X
2
s ] =

∑
0<s≤t[X

1
sX

2
s −X1

s−X
2
s−].

Expanding the term inside of the sum on the right hand side we obtain:

X1
sX

2
s −X1

s−X
2
s− = (X1

s− +∆X1
s )(X

2
s− +∆X2

s )−X1
s−X

2
s−

= X1
s−X

2
s− +X1

s−∆X
2
s +∆X1

sX
2
s− +∆X1

s∆X
2
s −X1

s−X
2
s−

= X1
s−∆X

2
s +∆X1

sX
2
s− +∆X1

s∆X
2
s .

For a process without jumps, we can use Girsanov’s Theorem to change the measure using

the Radon-Nikodým derivative process

Zt = exp

{
−
∫ t
0 ΓsdWs − 1

2

∫ t
0 Γ

2
sds

}
.

This process satisfies the stochastic differential equation

dZt = −ΓtZtdWt = ZtdX
c
t

where Xc
t = −

∫ t
0 ΓsdWs and [Xc, Xc](t) =

∫ t
0 Γ

2
sds. Therefore,

Zt = exp

{
Xc

t − 1
2 [X

c, Xc](t)

}
.

This can be used for processes with jumps using the analogous stochastic differential equation:

dZX
t = ZX

t−dXt.
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The integrator X is allowed to have jumps and whenever there is a jump in X, ZX also has a jump

of size

∆ZX
s = ZX

s−∆Xs.

Thus,

ZX
s = ZX

s− +∆ZX
s = ZX

s−(1 + ∆Xs).

Theorem 22. Let Xt be a jump process. The Doleans-Dade exponential of X is defined to be the

process

ZX
t = exp

{
Xc

t − 1
2 [X

c, Xc](t)

}∏
0<s≤t(1 + ∆Xs)

This process is the solution to dZX
t = ZX

t−dXt with Z
X
0 = 1. In integral form we get,

ZX
t = 1 +

∫ t
0 Z

X
s−dXs.

Proof. See [37] page 492.

4.5. Change of measure

4.5.1. Change of measure for a Poisson process

Consider the Poisson process Nt with filtration Ft, t ≥ 0 on the probability space (Ω,F ,P).

We will let Nt have intensity λ. Then, Mt = Nt − λt is a martingale. Let λ̃ be a positive number

and define Zt as follows:

Zt = e(λ−λ̃)t(
λ̃

λ
)Nt . (4.9)

Zt allows us to change to a measure P̃ where Nt has intensity λ̃.

Theorem 23. The process Zt satisfies:

dZt =
λ̃−λ
λ Zt−dMt.

Particularly, Zt is a martingale under P and E (Zt) = 1, ∀t.

Proof. Define Xt =
λ̃−λ
λ Mt, which is martingale with continuous part Xc

t = (λ− λ̃)t and pure jump

part Jt =
λ̃−λ
λ Nt. Then [Xc, Xc](t) = 0, and if there is a jump at time t, then ∆Xt =

λ̃−λ
λ , so:
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1 + ∆Xt =
λ̃
λ .

Thus, Zt can be rewritten as:

Zt = eX
c
t−

1
2
[Xc

t ,X
c
t ](t)

∏
0<s≤t(1 + ∆Xs).

Therefore, Zt is the Doleans-Dade exponential, particularly:

Zt = 1 +
∫ t
0 Zs−dXs.

Since X is a martingale and Zs− is left-continuous, Zt is a martingale. Also, Z(0) = 1, therefore,

E (Zt) = 1,∀t ≥ 0.

Fixing time T , we can now use ZT to change the measure by the following:

P̃A =
∫
A ZTdP , ∀A ∈ F .

Theorem 24. Under the new probability measure, P̃ , Nt, 0 ≤ t ≤ T , is Poisson with intensity λ̃.

Proof. See [37] page 494.

4.5.2. Change of measure for a compound Poisson process

Consider the compound Poisson process Qt =
∑Nt

i=1 Yi. We will change the measure so that

the intensity of Nt and the distribution of jump sizes both change. We will consider the case where

each Yi takes one of the nonzero values y1, y2, . . . , yM and p(ym) is the probability that a jump is

of size ym. We will assume that p(ym) > 0,∀m, and
∑M

m=1 p(ym) = 1. Let Nm
t denote the number

of jumps in Qt of size ym up to and including time t. Thus,

Nt =
∑M

m=1N
m
t and Qt =

∑M
m=1 ymN

m
t .

Thus, N1, . . . , NM are independent Poisson processes and each Nm has intensity λm = λp(ym). Let

λ̃1, . . . , λ̃M be given positive numbers, then, similar to the Poisson process,

Zm
t = e(λm−λ̃m)t( λ̃m

λm
)N

m
t and Zt =

∏M
m=1 Z

m
t .

Theorem 25. The process Zt is a martingale with E (Zt) = 1, ∀t.
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Proof. From the martingale proof for the Poisson process, we have:

dZm
t = λ̃m−λm

λm
Zm
t−dM

m
t ,

where

Mm
t = Nm

t − λmdt.

Thus, Zm is a martingale. Also, by construction, if m ̸= n, then Nm and Nn have no simultaneous

jumps, thus [Zm, Zn] = 0. Itô’s product rule implies:

d(Z1
t Z

2
t ) = Z2

t−dZ
1
t + Z1

t−dZ
2
t .

Since both Z1 and Z2 are martingales and the integrands are left-continuous, then Z1Z2 is a

martingale. We can then repeat this process with Z3 to get Z1Z2Z3 is a martingale. Therefore,

by continuing this process, Zt = Z1
t Z

2
t · · · Zm

t is a martingale.

Fixing time T , we can now use ZT to change the measure by the following:

P̃A =
∫
A ZTdP , ∀Z ∈ F .

Theorem 26. Under the new probability measure, P̃ , Zt is a compound Poisson process with

intensity λ̃ =
∑M

m=1 λ̃m and Y1, Y2, . . . are independent, identically distributed random variables

with:

P [Yi = ym] = p̃(ym) = λ̃m

λ̃
.

Proof. See [37] page 497.

The Radon-Nikodým derivative of Zt is,

Zt = exp

{
M∑

m=1

(λm − λ̃m)t

}
M∏

m=1

(
λ̃p̃(ym)

λp(ym)

)Nm
t

= e(λ−λ̃)t
Nt∏
i=1

λ̃p̃(Yi)

λp(Yi)
. (4.10)

Therefore, if Y1, Y2, . . . are not discrete and instead all have density f(y), then we could change the

measure such that Qt has intensity λ̃ and Y1, Y2, . . . have density f̃(y) using the Radon-Nikodým

process

Zt = e(λ−λ̃)t∏Nt
i=1

λ̃f̃(Yi)
λf(Yi)

.
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We will assume that if f(y) = 0, then f̃(y) = 0 in order to not have a division by zero.

Theorem 27. The process Zt is a martingale with E (Zt) = 1 ∀t ≥ 0.

Proof. See [37] pages 498-499.

We can again fix a positive T and define a new probability measure,

P̃A =
∫
A ZTdP ∀A ∈ F .

Theorem 28. Under the probability measure Ẽ , Qt, 0 ≤ t ≤ T , is a compound Poisson process

with intensity λ̃. The jumps in Qt are independent and identically distributed with density f̃(y).

Proof. For the key steps in the proof, see [37] pages 500-502.

4.5.3. Change of measure for a compound Poisson process with a Brownian motion

Consider a probability space (Ω,F ,P) and a Brownian motion Wt defined on the space.

Also, let a compound Poisson process,

Qt =
∑Nt

i=1 Yi

be defined on the same space with intensity λ and jumps with density f(y). Let the filtration Ft,

t ≥ 0 be used for both the Brownian motion and the compound Poisson process so that they are

independent.

Consider λ̃ > 0, f̃(y) is another density function such that if f(y) = 0, then f̃(y) = 0, and

let Θt be an adapted process. We define the following:

Z1
t = exp

{
−
∫ t
0 ΘudWu − 1

2

∫ t
0 Θ

2
udu

}
,

Z2
t = e(λ−λ̃)t∏Nt

i=1
λ̃f̃(Yi)
λf(Yi)

,

Zt = Z1
t Z

2
t .

Theorem 29. The process Zt is a martingale (with respect to the filtration of the Brownian motion)

with E (Zt) = 1,∀t ≥ 0.

Proof. We know that Z1
t is a martingale from stochastic calculus for continuous processes. Also,

from the previous section, Z2
t is a martingale. According to Itô’s product rule, since Z1

t is continuous

and Z2
t has no Itô integral part, [Z1, Z2](t) = 0, therefore,
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Z1
t Z

2
t = Z1

0Z
2
0 +

∫ t
0 Z

1
s−dZ

2
s +

∫ t
0 Z

2
s−dZ

1
s .

Since both integrals are martingales, we know Zt is a martingale. Also, since Z0 = 1, we know

E (Zt) = 1, ∀t ≥ 0.

Fix a positive T and define P̃A =
∫
A ZTdP , ∀A ∈ F . We then have the following.

Theorem 30. Under the probability measure P̃, the process

W̃t =Wt +
∫ t
0 Θsds

is a Brownian motion, Qt is a compound Poisson process with intensity λ̃ and independent, iden-

tically distributed jump sizes having density f̃(y), and the processes W̃t and Qt are independent.

Proof. For the key steps in the proof, see [37] pages 503-504.

We will now consider a compound Poisson process Qt whose jumps take on finitely many

nonzero values y1, y2, . . . , yM , with p(ym) = P [Yi = ym] such that p(ym) > 0 and
∑M

m=1 pm = 1.

Let λ̃ > 0 and let p̃(y1), . . . , p̃(yM ) > 0 such that
∑M

m=1 p̃m = 1. We now replace Z2
t with,

Z2
t = e(λ−λ̃)t∏Nt

i=1
λ̃p̃(Yi)
λp(Yi)

.

We will let Z1
t and Zt be defined the same as above. Then we get the following modification of the

previous theorem.

Theorem 31. Under the probability measure P̃, the process

W̃t =Wt +
∫ t
0 Θsds

is a Brownian motion, Qt is a compound Poisson process with intensity λ̃ and independent, identi-

cally distributed jump sizes satisfying P̃ [Yi = ym] = p̃(ym), ∀i and m = 1, . . . ,M, and the processes

W̃t and Qt are independent.
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4.6. Pricing a European call in a jump model

In section 3, we looked at the pricing of a European Call Option done by Black, Scholes, and

Merton. How does this pricing change when we change our driving process to be a single Poisson

process? What about a Brownian motion and a compound Poisson process?

4.6.1. A Poisson process driven asset

Let the underlying asset price be given by:

St = S0 exp(αtNtlog(σ + 1)− λσt)

= S0e
(α−λσ)t(σ + 1)Nt ,

which has the differential form,

dSt = αStdt+ σSt−dMt.

Let us fix a time T and say that we want our option’s payoff at time T to be,

VT = (ST −K)+.

To avoid arbitrage, assume λ > α−r
σ which gives, λ̃ = λ − α−r

σ > 0 and a unique risk-neutral

measure,

P̃A =
∫
A ZTdP , ∀A ∈ F ,

where

Zt = e(λ−λ̃)t( λ̃λ)
Nt .

Under our new risk-neutral measure, the compensated Poisson process
˜

Mt = Nt − λ̃t is a martin-

gale. Our differential for the stock price is now,

dSt = rStdt+ σSt−dM̃t

or,

d(e−rtSt) = σe−rtSt−dM̃t.

Under P̃ , we can rewrite St as follows,
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St = S0e
(r−λ̃σ)t(σ + 1)Nt .

The discounted European call price is a martingale under the risk-neutral measure. Therefore, Vt

satisfies,

e−rtVt = Ẽ [e−rTVT |Ft] = Ẽ [e−rT (ST −K)+|Ft].

We have,

ST = Ste
(r−λ̃σ)(T−t)(σ + 1)NT−Nt ,

thus,

Vt = Ẽ [e−r(T−t)(Ste
(r−λ̃σ)(T−t)(σ + 1)NT−Nt −K)+|Ft].

Note that St is Ft-measurable and e(r−λ̃σ)(T−t)(σ + 1)NT−Nt is independent of Ft. Now, let Vt =

c(t, St), where,

c(t, x) = Ẽ [e−r(T−t)(xe(r−λ̃σ)(T−t)(σ + 1)NT−Nt −K)+]

=
∑∞

j=0 e
−r(T−t)(xe(r−λ̃σ)(T−t)(σ + 1)j −K)+ λ̃j(T−t)j

j! e−λ̃(T−t)

=
∑∞

j=0(xe
−λ̃σ(T−t)(σ + 1)j −Ke−r(T−t))+ λ̃j(T−t)j

j! e−λ̃(T−t).

The first term in the expansion of the sum, i.e. when j = 0 is,

(xe−λ̃σ(T−t) −Ke−r(T−t))+e−λ̃(T−t).

When t = T , this term becomes (x−K)+, and is the only non-zero term. Therefore, the terminal

condition is,

c(T, x) = (x−K)+, ∀x ≥ 0.

Also,

e−rt = Ẽ [e−rT (ST −K)+|Ft]

is a martingale under P̃ . We can then compute the derivative and set the dt term equal to zero.

We can rewrite dSt as,
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dSt = (r − λ̃σ)Stdt+ σSt−dNt,

thus the continuous part of the stock price satisfies,

dSc
t = (r − λ̃σ)Stdt.

If there is a jump at time t, then

∆St = St − St− = σSt−, St = (σ + 1)St−.

The Itô-Doeblin formula implies (for all steps see [37] page 508),

e−rtc(t, St) = c(0, S0) +
∫ t
0 e

−ru[−rc(u, Su) + ct(u, Su) + (r − λ̃σ)Sucx(u, Su)]du

+
∫ t
0 e

−ru[c(u, (σ + 1)Su−)− c(u, Su−)]λ̃du

+
∫ t
0 e

−ru[c(u, (σ + 1)Su−)− c(u, Su−)]dM̃u.

However, we can use the following equality to combine the first two integrals,

∫ t
0 e

−ru[c(u, (σ + 1)Su−)− c(u, Su−)]λ̃du =
∫ t
0 e

−ru[c(u, (σ + 1)Su)− c(u, Su)]λ̃du.

Therefore,

e−rtc(t, St) = c(0, S0) +
∫ t
0 e

−ru[−rc(u, Su) + ct(u, Su) + (r − λ̃σ)Sucx(u, Su)

+λ̃(c(u, (σ + 1)Su)− c(u, Su))]du

+
∫ t
0 e

−ru[c(u, (σ + 1)Su−)− c(u, Su−)]dM̃u.

Since M̃u is a martingale and the integrand is left-continuous as well as the left hand side is a

martingale, we can solve for,

c(0, S0) +
∫ t
0 e

−ru[−rc(u, Su) + ct(u, Su) + (r − λ̃σ)Sucx(u, Su)

+λ̃(c(u, (σ + 1)Su)− c(u, Su))]du.

Since this is this is the difference of two martingales, it is itself a martingale. Thus, the integrand

must be zero,

−rc(u, Su) + ct(u, Su) + (r − λ̃σ)Sucx(u, Su) + λ̃(c(u, (σ + 1)Su)− c(u, Su)) = 0.
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We will proceed by replacing the stock price with a dummy variable x. Therefore,

−rc(u, x) + ct(u, x) + (r − λ̃σ)xcx(u, x) + λ̃(c(u, (σ + 1)x)− c(u, x)) = 0,

which must hold for 0 ≤ t < T and x ≥ 0. Since e−rtc(t, St) is a martingale under P by construction,

then c(t, x) satisfies the above equation. Using this equation, we get:

e−rtc(t, St) = c(0, S0) +
∫ t
0 e

−ru[c(u, (σ + 1)Su−)− c(u, Su−)]dM̃u.

We want to know what happens at the end of the hedging time, i.e. at time t = T . At time T , we

get:

e−rT (ST −K)+ = e−rT c(T, ST )

= c(0, S0) +
∫ T
0 e−ru[c(u, (σ + 1)Su−)− c(u, Su−)]dM̃u.

What happens if we sell the European call at time zero in exchange for initial capital X0 = c(0, S0)?

We want Xt = c(t, St) for all t or for Xt to satisfy,

e−rtXt = e−rtc(t, St), ∀t ∈ [0, T ].

We will accomplish this task by matching differentials. We can see that the differential of e−rtc(t, St)

is,

d(e−rtc(t, St) = e−rt[c(t, (σ + 1)St−)− c(t, St−)]dM̃t.

The differential of the value of the portfolio (Xt) which holds Γt shares of stock at any time t is,

dXt = Γt−dSt + r[Xt − ΓtSt]dt.

Therefore,

d(e−rtXt) = e−rt[−rXtdt+ dXt]

= e−rt[Γt−dSt − rΓtStdt]

= e−rtσΓt−St−dM̃t.

Since we cannot predict when jumps will occur, we want to know what happens prior to a jump

taking place. We will determine the value of Γt− using the fact,
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σΓt−St− = c(t, (σ + 1)St−)− c(t, St−)

→ Γt− = c(t,(σ+1)St−−c(t,St−)
σSt−

.

We should hold this hedging position at all times since we do not know when the jumps will occur.

More specifically, if we define

Γt =
c(t,(σ+1)St−c(t,St)

σSt
, ∀t ∈ [0, T ],

then, we obtain the following:

e−rtXt = X0 +
∫ t
0 e

−ru[c(u, (σ + 1)Su−)− c(u, Su−)]dM̃u.

Therefore, Xt = c(t, St), ∀t and specifically, XT = (ST − K)+, so the short position has been

hedged.

4.6.2. Brownian motion and a compound Poisson process driven asset

Consider the probability space (Ω,F ,P) on which a Brownian motion Wt is defined for

0 ≤ t ≤ T , and M independent Poisson processes N1
t , . . . , N

M
t are defined on the same interval.

Let Ft, 0 ≤ t ≤ T , be the filtration generated by the Brownian motion and theM Poisson processes.

Also, we will let λm > 0 be the intensity of the mth Poisson process and −1 < y1 < . . . < yM be

nonzero numbers. Define the following,

Nt =
∑M

m=1N
m
t , Qt =

∑M
m=1 ymN

m
t .

Then, as seen before, N is a Poisson process with intensity λ =
∑M

m=1 λm and Q is a compound

Poisson process. As done previously, let Yi denote the size of the ith jump of Q such that the Yi

random variables take the values y1, . . . , yM . Then Qt can be written as

Qt =
∑Nt

i=1 Yi.

Define p(ym) = λm
λ . Then the random variables Y1, Y2, . . . are independent and identically dis-

tributed, with P [Yi = ym] = p(ym).

Set β = E [Yi] =
∑M

m=1 ymp(ym) = 1
λ

∑M
m=1 λmym. Then the following is a martingale,

Qt − βλt = Qt − t
∑M

m=1 λmym.
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For this section, we will model the stock price using the following stochastic differential equation:

dSt = αStdt+ σStdWt + St−d(Qt − βλt)

= (α− βλ)Stdt+ σStdWt + St−dQt.

The mean rate of return for the stock, under the original probability measure P , is α. The restriction

that yi > −1 allows the stock price to jump down, but if the price is positive, it will remain positive.

Thus, we will begin with a positive stock price S0 and the stock price will remain positive at all

future times. If S0 = 0, then St = 0 for all t.

Theorem 32. The solution to the stock price model is,

St = S0 exp[σWt + (α− βλ− 1
2σ

2)t]
∏Nt

i=1(Yi + 1).

Proof. See [37] pages 513-514.

Now our goal is to construct a measure that is risk-neutral. Let θ be a constant and let

λ̃1, . . . , λ̃M be positive constants. Define the following:

Z0
t = exp[−θWt − 1

2θ
2t],

Zm
t = e(λm−λ̃m)t( λ̃m

λm
)N

m
t , m = 1, . . . ,M ,

Zt = Z0
t

∏M
m=1 Z

m
t ,

P̃A =
∫
A ZTdP , ∀A ∈ F .

Therefore, under the probability measure P̃ , the following hold:

i) the process W̃t =Wt + θt is a Brownian motion,

ii) each Nm is a Poisson process with intensity λ̃m, and

iii) W̃ and N1, . . . , Nm are independent.

Define

λ̃ =
∑M

m=1 λ̃m, p̃(ym) = λ̃m

λ̃
.

As previously for P , under P̃ , the process Nt =
∑M

m=1N
m
t is Poisson with intensity λ̃, the jump-size

random variables Y1, Y2, . . . are independent and identically distributed with P̃ [Yi = ym] = p̃(ym),

and Qt − β̃λ̃t is a martingale, with
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β̃ = Ẽ [Yi] =
1

λ̃

∑M
m=1 λ̃mym.

The only way for P̃ to be risk-neutral is for the mean rate of return of the stock under P̃ to be the

interest rate r. This only occurs if,

dSt = (α− βλ)Stdt+ σStdWt + St−dQt

= rStdt+ σStdW̃t + St−d(Qt − β̃λ̃t).

This is equivalent to:

α− βλ = r + σθ − β̃λ̃,

which is known as the market price of risk equation for the model. We can rewrite this equation

and use the definitions of β and β̃ to obtain:

α− r = σθ + βλ− β̃λ̃

= σθ +
∑M

m=1(λm − λ̃m)ym.

Let us choose some θ and λ̃1, . . . , λ̃M satisfying the market price of risk equation. Then, we obtain:

dSt = rSt + σStdW̃t + St−d(Qt − β̃λ̃t)

= (r − β̃λ̃)dt+ σStdW̃t + St−dQt.

This is in the same form of the equation with solution given by the previous theorem and therefore,

has solution:

St = S0 exp[σW̃t + (r − β̃λ̃− 1
2σ

2)t]
∏Nt

i=1(Yi + 1).

Now, we will compute the risk-neutral price of an option on the stock with this price process. Let

us choose λ̃1, . . . , λ̃M to be positive constants such that our process is risk-neutral and then choose

θ so the market price of risk equation is satisfied. It is assumed moving forward that some choice

was made for our parameters which allows calibration of our model to market data.

We now need some new notation. Define

κ(τ, x) = xNd+(τ,x) −Ke−rτNd−(τ,x),
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where

d±(τ, x) =
1

σ
√
τ

[
log x

K + (r ± 1
2σ

2)τ
]

and Ny is the cumulative standard normal distribution,

Ny = 1√
2π

∫ y
∞ e−

1
2
z2dz.

Thus, κ(τ, x) is the standard Black-Scholes-Merton European call price on a geometric Brownian

motion. Therefore, we have:

κ(τ, x) = Ẽ
[
e−rτ

(
x exp

[
− σ

√
τY +

(
r − 1

2σ
2
)
τ
]
−K

)+]
,

where Y is a standard normal random variable under P̃ .

Theorem 33. For 0 ≤ t < T , the risk-neutral price of a call,

Vt = Ẽ [e−r(T−t)(ST −K)+|Ft],

is given by Vt = c(t, St), where

c(t, x) =
∑∞

j=0 e
−λ̃(T−t) λ̃

j(T−t)j

j! Ẽ (κ(T − t, xe−β̃λ̃(T−t)∏j
i=1(Yi + 1)).

Proof. See [37] pages 517-519.

Theorem 34. The European call price c(t, x) satisfies the following equation,

−rc(t, x) + ct(t, x) + (r − β̃λ̃)xcx(t, x) +
1
2σ

2x2cxx(t, x)

+λ̃
[∑M

m=1 p̃(ym)c(t, (ym + 1)x)− c(t, x)
]
= 0, 0 ≤ t < T, x ≥ 0,

with terminal condition,

c(T, x) = (x−K)+, x ≥ 0.

Proof. See [37] pages 520-521.

Furthermore, as in the previous section, we want to hedge the short position of our option whose

discounted stock price satisfies,
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d(e−rtc(t, S − t)) = e−rtσStcx(t, St)dW̃t

+
∑M

m=1 e
−rt[c(t, (ym + 1)St−)− c(t, St−)]d(N

m
t − λ̃mt)

= e−rtσStcx(t, St)dW̃t + e−rt[c(t, St)− c(t, St−)]dNt

−e−rtλ̃
[∑

−m = 1M p̃(ym)c(t, (y + 1)St−)− c(t, St−)
]
dt.

We will start with a portfolio that has initial capital X0 = c(0, S0) and compare the differential of

the discounted European call price with the differential of the discounted portfolio value. We will

once again let Γt represent the number of shares of stock that are held at each time t. We then get,

dXt = Γt−dSt + r[Xt − ΓtSt]dt.

Therefore,

d(e−rtXt) = e−rt[−rXtdt+ dXt]

= e−rt[Γt−dSt − rΓtStdt]

= e−rt[ΓtσStdW̃t + Γt−St−d(Qt − β̃λt)]

= e−rt[ΓtσStdW̃t + Γt−St−
∑M

m=1 ym(dNm
t − λ̃mdt)].

We will look at the typical delta-hedging strategy,

Γt = cx(t, St).

This equates the dW̃t terms so we hedge perfectly against the risk introduced by the Brownian

motion. However, we are left with:

d[e−rtc(t, St)− e−rtXt]

=
∑M

m=1 e
−rt[c(t, (ym + 1)St−)− ymSt−cx(t, St−)]× (dNm

t − λ̃mdt).

Since κ(τ, x) is convex, c(t, x) is strictly convex. Therefore, we have

c(t, x2)− c(t, x1) > (x2 − x1)cx(t, x1), ∀x1 ≥ 0, x2 ≥ 0 such that x1 ̸= x2.

Thus,

c(t, (ym + 1)St−)− c(t, St−) > ymSt−cx(t, St−)

where the strict inequality is due to ym + 1 > 0 from our restrictions on ym. Also, between jumps
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d[e−rtc(t, St)− e−rtXt] < 0.

We are therefore in a scenario in which our hedging outperforms the option between jumps, but

the option outperforms our hedging at the time of jumps.

Since both e−rtc(t, St) and e
−rtXt are martingales, then their difference is also a martingale.

At t = 0, the difference is c(0, S0)−X0 = 0, so the expected value of the difference is always zero,

which gives us:

E [e−rtc(t, St)] = E [e−rtXt], 0 ≤ t ≤ T .

So, we have hedged the option on average using the delta-hedging formula under the risk-neutral

measure. By taking λ̃m = λm, as far as the jumps are concerned, the average under the risk-neutral

measure coincides with the average under the actual measure.

For further study of the material presented in this section, see [37].
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5. ORNSTEIN-UHLENBECK PROCESS CONSTRUCTION

5.1. Introduction

We can now construct jump processes, which are driven by Lévy processes, that stay around

their long term mean (mean-reverting) with linear dynamics on which we can impose various

properties. These contructed processes are known as non-Gaussian Ornstein-Uhlenbeck processes

or OU processes. Consider the following model of a stock-price process St:

St = S0e
Xt ,

such that,

dXt = (µ+ βσ2t )dt+ σtdWt + ρdZλt,

where Wt is a standard Brownian motion, Zt is a Lévy process, µ, β, ρ, λ are constants with λ > 0

and ρ ≤ 0. The dynamics are said to be linear since the Brownian motion and the Lévy process

appear as a linear combination above. We now need a way to deal with the volatility (σt) since

it changes overtime and sometimes in unpredictable ways. We will accomplish this by making σt

stochastic and finding a process σ2t that will describe the shifts in the market. In particular, we

will let the following hold:

dσ2t = −λσ2t dt+ dZλt.

This is an example of a Lévy driven OU process. The reason for the negative sign is to make the

process mean-reverting.

5.2. Self-decomposability

Definition. (Self-decomposability, [7]) A probability distribution F on R is said to be self-

decomposable or belonging to Lévy class L if, for each λ > 0, there exists a probabiility distribution

Fλ on R such that

ϕ(u) = ϕ(e−λu)ϕλ(u), u ∈ R

where ϕ and ϕλ denote the characteristic functions of F and Fλ respectively. A random variable X

is self-decomposable if, for each λ > 0, there exists an independent random variable Yλ such that
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X := eλX + Yλ.

If F is self-decomposable, then Fλ is infinitely divisible. The following theorem gives a

characterization of the class L as a subclass of all infinitely divisible distributions.

Theorem 35. (Schoutens, [31] pg. 47) Let ν(dx) denote the Lévy measure of an infinitely divisible

distribution F on R. Then the following statements are equivalent:

(1) F is self-decomposable

(2) The functions ν((−∞,−es]) and ν([es,∞)), s > 0 are both convex.

(3) ν(dx) is of the form ν(dx) = u(x)dx with |x|u(x) increasing on (−∞, 0) and decreasing

on (0,∞).

If u is differentiable, (2) is equivalent to,

u(x) + xu′(x) ≤ 0, for x ̸= 0.

A proof of this theorem can be found in [5]. If u(x) is known, then using the equivalence of (2) is

useful for checking whether the distribution is self-decomposable. See [24] pages 29-30 to see the

derivation of the equivalence of (2).

5.3. Ornstein-Uhlenbeck processes

The general OU process σ2t is the solution to the following stochastic differential equation,

[24] pg 30,

dσ2t = −λσ2t dt+ dZt, σ20 > 0. (5.1)

If Z is a Brownian motion, then we have the usual Gaussian OU process, but if Z is a pure jump

Lévy process, then we have a non-Gaussian analogue of the usual Gaussian OU process. We will

say that σ2 is the OU process driven by Z, i.e. Z is the background driving Lévy process of σ2.

The positive Lévy process Z, (if Z is not positive, we can simply exponentiate or square the σ2

process), has bounded variation on finite intervals so if f is a deterministic continuous function,

integrals of the form
∫ t
0 fsdZt are well defined as Riemann-Stieljes integrals.

We will now solve the equation explicitly when t > 0 and λ > 0.

dσ2t + λσ2t dt = dZt

eλt(dσ2t + λσ2t dt) = eλtdZt
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d(eλtσ2t ) = eλtdZt.

We can now integrate both sides and divide by eλt to obtain the solution:

σ2t = e−λtσ20 +
∫ t
0 e

−λ(t−s)dZs.

Since Z is an increasing process and σ20 > 0, σ2 is strictly positive. We also know that σ2 is bounded

below by σ20e
−λt. Based on the equation for σ2, the process has the same jump times as Zt, but

exponentially decays between jumps. The result is a closer approximation of real world volatility

that gradually decreases when the process it is measuring is steady.

As suggested by Barndorff-Nielsen and Shephard, we will now use positive OU processes to

directly represent σ2. Thus, the model for the squared volatility process σ2 becomes:

dσ2t = −λσ2t dtdZλt, σ20 > 0.

Notice the change in time of the background driving Lévy process and we get the solution

σ2t = e−λtσ20 +
∫ t
0 e

−λ(t−s)dZλs.

By a change of variable, we get:

σ2t = e−λtσ20 + e−λt
∫ λt
0 esdZs.

There is often a distribution S, called the stationary distribution, that we can make σ2 follow for all

t if σ20 is chosen according to S. If S is one-dimensional, then we know that there exists an OU type

process with S as its stationary distribution if and only if S is self-decomposable (Barndorff-Nielsen

and Shephard, [7], p. 17).

Theorem 36. (Stationarity, Wolfe, [41]) If X is self-decomposable, then there exists a stationary

stochastic process σ2t and a Lévy process Zt, independent of σ
2
0, such that σ2t := X for all t ≥ 0 and

σ2t = e−λtσ20 +
∫ t
0 e

−λ(t−s)dZλs, ∀λ > 0.

Conversely, if σ2t is a stationary stochastic process and Zt is a Lévy process, independent of σ20,

such that σ2t and Zt satisfying the stochastic differential equation for squared volatility for all λ > 0,

then σ2t is self-decomposable.
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We will now define some useful notation for the log-characteristic function and log-Laplace

transform of a random variable X. The derivation of these equations can be found in [24], pages

43-45.

CX(u) = log
(
E [eiuX ]

)
= log(ϕX(u)) = ψX(u),

LX(u) = log
(
E [e−uX ]

)
= log(ϕX(iu)),

where ϕ denotes the characteristic function and ψ denotes the characteristic exponent of the random

variable X. We can now relate Z and σ2 through the following:

Cσ2
t
(u) =

∫∞
0 CZ1(e

−su)ds

and

CZ1(u) = u d
duCσ2

t
(u) = u(Cσ2

t
(u))′.

Similarly,

Lσ2
t
(u) =

∫∞
0 LZ1(e

−su)ds

and

LZ1(u) = u d
duLσ2

t
(u) = u(Lσ2

t
(u))′.

Theorem 37. (Key Formula, Barndorff-Nielsen and Shephard [7], pg. 5) Let f denote a continuous

function, Z a Lévy process and set Y =
∫
R+ ftdZt. Then

CY (u) =
∫
R+ CZ1(uf(τ))dτ .

Proof.

exp(CY (u)) = E
[
exp(iu

∫
R+ fτdZτ )

]
= E

(
exp

(
iu
∫
R+ fτdZτ

))
= E

(∏
τ∈R+ exp(iufτdZτ )

)
=
∏

τ∈R+ E (exp(iufτdZτ ))

=
∏

τ∈R+(exp(CdZτ (ufτ ))

=
∏

τ∈R+(exp(CZ1(ufτ )dτ)

= exp(
∫
R+ CZ1(uf(τ))dτ)

and taking a logarithm of both sides will give us the desired result.
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6. THE BARNDORFF-NIELSEN AND SHEPARD (BN-S)

MODEL AND HOW TO PRICE OPTIONS

6.1. The BN-S model

Looking back to the Black-Scholes-Merton equation, we are missing the volatility of the

stock market. Volatility (or the environment) is what can cause the sudden jumps and dips that

we can see if we look at real world data and changes stochastically over time. Therefore, we will

build a model that not only takes into account the asset price process, but we must also include a

suitable model for the volatility process.

In order to encapsulate what was discussed in the previous section, we will consider volatil-

ity models whose squared volatility process is a Lévy-driven Ornstein-Uhlenbeck process. This

approach will allow our volatility to include jumps and gives the availability of closed form expres-

sions for the integrals of the squared volatility process and returns. One advantage of a model with

this setup is the ability to accomplish the statistical analysis of price series on scales from several

minutes to several days.

Let the price process of the stock S = {St}t≥0 be defined on a filtered probability space

(Ω,F , {Ft}0≤t≤T ,P). Let W = {Wt}t≥0 be a standard Brownian motion and Z = {Zλt}t≥0 be a

positive and nondecreasing Lévy process independent of the Brownian motion. Then,

St = S0e
Xt , (6.1)

and the dynamics for the logarithmic return satisfy:

dXt = (µ+ βσ2t )dt+ σtdWt + ρdZλt, (6.2)

with instantaneous variance process satisfying:

dσ2t = −λσ2t dt+ dZλt. (6.3)

The parameters µ, β, ρ, and λ are real constants with λ > 0 and ρ ≤ 0. Note that the drift depends

on the volatility. This is due to investors requiring a “risk premium” for holding stochastic assets.
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This premium is due to the fact that they could just decide to keep their assets in a regular bank

account which has no risk, but also has a very low interest rate. The term βσ2 corresponds to this

”risk premium” and increases the drift as the volatility increases. The term ρdZλt links the upward

jumps in volatility with the downward jumps in asset price. Using Nicolato and Venados [25], we

require that Z satisfies the following assumptions:

1) Z has no deterministic drift (γ = 0) and its Lévy measure has density ω(x). Therefore, the

cumulant transform KZ1(u) = log
[
E [euZ1 ]

]
, when it exists takes the form:

KZ1(u) =
∫
R+(eux − 1)ω(x)dx;

2) letting û = sup[u ∈ R : KZ1(u) <∞], then û > 0;

3) limu↑ûKZ1(u) = ∞.

The model satisfying the previous three assumptions is the BN-S model. Recall from the previous

section, volatility jumps when the driving process jumps and exponentially decays between con-

secutive jumps. When ρ ̸= 0, each jump in the volatility is associated with a jump in the price

process. The jump within the price process is proportional to the size of the jump in volatility and

can be thought of as new (bad) information entering the market causing volatility to increase and

thus stock prices fall. If ρ = 0, the volatility still has jumps, but the price process is continuous.

Using Itô’s formula, the dynamics of the stock price process St = eXt are given by:

dSt = St−dYt

= St−(btdt+ σtdWt + dMt),

where bt is the appreciation rate and is given by:

bt = µ+ λKZ1(ρ) + (β + 1
2)σ

2
t ,

and M = {Mt}t≥0 is the martingale Lévy process

Mt =
∑

0≤s≤t(e
ρ∆Zλs − 1)− λKZ1(ρ)t.

We will adopt the notation of Jacob and Shiryaev [20] moving forward, thus:

Mt =
∫
[0,t]×R(e

ρx − 1)(µZ − νZ)(ds, dx)

= (eρx − 1) ⋆ (µZ − νZ)t,
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where µZ is the random measure associated with the jumps of Z and

νZ(ω, dt, dx) = λw(x)dxdt

is its compensator.

For the proof of this equation, see Jacob and Shiryaev [20].

6.2. Market completeness

As stated by Marshall [24], derivatives should be priced using a martingale measure. Let Q

be an equivalent measure that transforms the discounted asset price S̃ = {S̃t = exp(−rt)St}t≥0 into

a martingale. For Q to be an equivalent martingale measure (EMM), it must satisfy the following

conditions:

1) Q is equivalent to the real world measure P , i.e. they have the same null sets;

2) the discounted stock price process S̃ is a martingale under Q .

In order to be risk-neutral, e−rt, t ≥ 0 must be a martingale, thus:

E (e−rTST ) = S0.

A risk-neutral world is impossible to reach, but in one, all individuals are indifferent to risk and

thus require no compensation for risk. Also, the expected return for all assets is the risk-free rate

which would be similar to just dumping your money into a savings account with a set interest rate.

Theorem 38. (First Fundamental theorem of asset pricing, Applebaum [1], pg. 270) If the market

is free of arbitrage opportunities, then there exists a probability measure Q, which is equivalent to

P, with respect to which the discounted process S̃ is a martingale.

Definition. (Completeness, Etheridge [13], pg 16) A market is said to be complete if every con-

tingent claim can be exactly replicated by a self-financing portfolio, i.e. if every possible derivative

can be perfectly hedged.

Theorem 39. (Second Fundamental theorem of asset pricing, Applebaum [1], pg. 271 ) An

arbitrage-free market is complete if and only if there exists a unique probability measure Q, which

is equivalent to P, with respect to which the discounted process S̃ is a martingale.

Therefore, if we can show that the martingale measure is unique, then we know that the market

is complete. The uniqueness is linked with the predictable representation property (PRP) of a

martingale stated below.
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Definition. (Predictable Representation Property, Schoutens [31], pg 46) Every square integral

random variable F ∈ FT has a representation of the form

F = E [F ] +
∑∞

i=1

∫ T
0 a

(i)
s d(H

(i)
s − E [H

(i)
s ]),

where a(i) = {a(i)s }0≤s≤T is predictable and H(i) = {H(i)
s }0≤s≤T is the power jump process of order

i, i.e., H
(1)
s = Xs and

H
(i)
s =

∑
0<u≤s(∆Xu)

i, i = 2, 3, . . ..

As a result of Brownian motion having continuous paths, there are no jumps and H
(i)
s = 0 for i ≥ 2.

Thus, the sum only has one term and we obtain the following PRP for Brownian motion:

F = E [F ] +

∫ T

0
asdWs, (6.4)

where a = a(1) is predictable. Therefore, the Black-Scholes model is complete. Only the Poisson

case can be simplified in a similar manner. This implies that even though most stochastic models

used in option pricing are arbitrage free, most are not complete. The problem that this causes is

that to more realistically model the real world market, we will get an incomplete model.

When we use a Lévy market model, there are many equivalent martingale measures we can

choose leading to multiple prices for European options. Eberlein and Jacob [12] have shown that,

for models based on infinite-variation Lévy processes, we can calculate the potential option prices

such that we get the entire no-arbitrage interval. The boundary prices are set when there is a

simple buy/sell-and-hold strategy that allows riskless arbitrage.

The question that arises is, how do we change from measure P to the risk-neutral measure

Q?

Theorem 40. (Girsanov Theorem for asset prices with jumps, Etheridge [13], pg. 178) Let

{Wt}t≥0 be a standard P-Brownian motion and {Nt}t≥0 a (possibly time-inhomogeneous) Poisson

process with intensity {λt}t≥0 under P. We write Ft for the σ-field generated by FW
t

⋃
FN
t . Suppose

that {θt}t≥0 and {ϕt}t≥0 are {Ft}t≥0-predictable processes with ϕt positive for each t, such that

∫ t
0 ||θs||2ds <∞ and

∫ t
0 ϕsλsds <∞.

Then under the measure Q whose Radon-Nikodym derivative with respect to P is given by
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dQ
dP

∣∣∣
Ft

= Lt,

where L0 = 1 and

dLt
Lt−

= θtdWt + (ϕt − 1)dMt,

the process {Xt}t≥0 defined by Xt =Wt −
∫ t
0 θsds is a Brownian motion and {Nt}t≥0 has intensity

{ϕtλt}t≥0.

6.3. The equivalent martingale measure

The BN-S model given earlier is arbitrage free, as proven by Barndorff-Nielsen and Shephard

in [6], pg. 194-195, but incomplete. This leads to multiple equivalent martingale measures (EMM)

existing. The structure for a general EMM for a BN-S model is covered in detail in Nicolato and

Venardos [25]. We will be interested in the structure-preserving class of EMMs which have log

returns that can also be described by a BN-S model, but with different parameters and potentially

different stationary distributions. The following two theorems from Nicolato and Venardos [25] give

a complete characterization of both classes.

Theorem 41. (The set of EMMs for the BN-S model) Denote by M the set of EMMs for the BN-S

model. Let Q ∈ M. Then the density process Lt =
dQ
dP |Ft

is given by the Doléans-Dade exponential

process

Lt = ε(ψ •W + (Y − 1) ⋆ (µZ − νZ))t

= ε
( ∫ t

0 ψsdWs +
∫ t
0

∫
R+(Y (s, x)− 1)(µZ − νZ)(dx, ds)

)
where µZ , νZ are from Jacob and Shiryaev [20], ψ = {ψt} is a predictable process and Y = Y (ω, t, x)

is a strictly positive predictable process such that

∫ t
0 ds

∫
R+(

√
Y (s, x)− 1)2w(x)dx <∞ P − a.s.

The function Y and the process ψ are linked by

µ+ (β + 1
2)σ

2
t + σtψt + λ

∫
R+ Y (t, x)(eρx − 1)w(x)dx− r = 0

dP ⊗ dt almost surely.
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Proof. For a detailed derivation see Nicolato and Venardos [25] pg 8.

We now move on to the subclass of EMMs which preserve the BN-S structure. We will call

this class M′, using the notation of Nicolato and Venardos [25]. This subclass has the property, for

Q ∈ M′, the log-price process and its volatility can be described by the second and third charac-

teristics of a BN-S model, with different parameters and possibly different distribution increments

of the Lévy process Z.

Theorem 42. (The Structure-Preserving EMM) Let y ∈ Y ′ where

Y ′ :=
{
y : R+ → R+

∣∣∣ ∫R+(
√
y(x)− 1)2w(x)dx <∞

}
.

Then the process

ψt = ω−1
(
r − µ− (β + 1

2)σ
2
t − λKy

Z1
(ρ)
)

where

Ky
Z1
(u) =

∫
R+(eux − 1)wy(x)dx and wy(x) = y(x)w(x),

for Re(u) < 0, is such that

P
( ∫ T

o ψ2
sds <∞

)
= 1,

and

Ly
t = ε(ψ •W + (y − 1) ⋆ (µZ − νZ))t 0 ≤ t ≤ T

is a density process. The probability measure Qy defined by

dQy

dP = Ly
T

is an EMM and the dynamics under Qy are given by

dXt = (r − λKy
Z1
(ρ)− 1

2σ
2
t )dt+ σtdW

y
t + ρdZλt,

dσ2t = −λσ2t dt+ dZλt,

where W y
t =Wt−

∫ t
0 ψsds is a Qy-Brownian motion, Zλt is a Qy-Lévy process. Z1 has Lévy density

wy(x) and cumulant transform Ky
Z1
(u). In addition, the processes W y and Z are independent under

Qy. Hence Qy ∈ M′.
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6.4. Characteristic functions for the BN-S model

Our end goal has remained the same, compute the value of a derivative, now we are doing

so under any given EMM. There are a myriad of methods used to do this including: analytical

or numerical integration when the density function is known explicitly, Monte Carlo simulation

estimation, and using finite difference methods when the price is described using partial differential

equations. However, there are a lot of times we do not have an explicit expression for the density,

but we do for its characteristic function. We can then use Fourier inversion techniques to rewrite

the price of the derivative using the characteristic function of the terminal price of the underlying

asset. This is the method we will focus on in this section.

6.4.1. The characteristic function

The log-asset price process, which appears in the BN-S model, has a characteristic function

which we can derive a general expression for. The following theorems will accomplish this derivation

for the characteristic function.

Theorem 43. (Characteristic function for the BN-S model, Marshall, [24] pg. 79) In the case

of the general OU-type model described by the BN-S model, the characteristic function ϕ(u) =

E [exp(iuXT )|Ft] is given by

ϕ(u) = exp
(
iu(Xt + µ(T − t))− 1

2
(u2 − 2βiu)ϵ(t, T )σ2t + λ

∫ T

t
KZ1(f(s, u))

)
ds (6.5)

where

ϵ(s, T ) = λ−1(1− e−λ(T−s))

f(s, u) = ρiu− 1
2(u

2 − 2βiu)ϵ(s, T ).

Proof. See Marshall [24] pages 101-102.

Whether we have an IG-OU or Γ-OU specification of the BN-S model, we can explicitly calculate

the integral part of the previous theorem.

Theorem 44. (Nicolato and Venardos [25], pg. 451) Set

f1 = ρiu− 1
2(u

2 − 2βiu)(1− e−λ(T−t)),

f2 = ρiu− 1
2(u

2 − 2βiu),

f(s, u) = ρiu− 1
2(u

2 − 2βiu)ϵ(s, T ).
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Then for a Γ(a, b)-OU process, the integral is:

∫ T

t
KZ1(f(s, u))ds =

(
blog

[ b− f1
b− ρiu

]
+ f2λ(T − t)

)
× a

λ(b− f2)
; (6.6)

similarly, for an IG(a,b)-OU process, we get:

∫ T

t
KZ1(f(s, u))ds =

a

λ
(
√
b2 − 2f1 −

√
b2 − 2ρiu) +

2af2

λ
√
2f2 − b2

×
(
arctan

(√
b2−2ρiu
2f2−b2

)
− arctan

(√
b2−2f1
2f2−b2

))
. (6.7)

6.5. The risk-neutral characteristic function

Using the structure-preserving EMM, we can determine the characteristic function of the

terminal risk-neutral log asset price. We will let β = −1
2 and µ = r−λKy

Z1
(ρ) in the characteristic

function model. The risk-neutral characteristic function will be denoted by ϕQ(u) and is given by

Marshall [24] as:

ϕQ(u) = exp
(
iu(Xt + [r − λKy

Z1
(ρ)](T − t))− 1

2
(u2 + iu)λ−1(1− e−λ(T−t))σ2t

)

× exp
( ∫ T

t λKZ1(f(s, u))ds
)
. (6.8)

Therefore, we have related the risk-neutral characteristic function to the BN-S model with a S-OU

specification for the squared volatility process. When given a specific choice for the martingale dis-

tribution S, the risk-neutral characteristic function for the log-asset price process can be explicitly

stated.

Theorem 45. (Risk-Neutral Characteristic Functions, Marshall [24], pg 81) Set

f1 = ρiu− 1
2(u

2 − 2βiu)(1− e−λ(T−t))

f2 = ρiu− 1
2(u

2 − 2βiu).

Then the characteristic function for a terminal risk-neutral log-asset price process under the BN-S

model with squared volatility following a Γ(a, b)-OU process is

ϕQΓ (u) = exp
(
iu(Xt + [r − aλρ(b− ρ)−1](T − t))− 1

2
(u2 + iu)λ−1(1− e−λ(T−t))σ2t

)

× exp
((
blog

[
b−f1
b−ρiu

]
+ f2λ(T − t)

)
a

b−f2

)
. (6.9)
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Similarly with an IG(a,b)-OU process for the squared volatility,

ϕQIG(u) = exp
(
iu(Xt + [r − λaρb−1(1− 2b−2ρ)−

1
2 ](T − t))− 1

2
(u2 + u)λ−1(1− e−λ(T−t))σ2t

)

× exp (a(
√
b2 − 2f1 −

√
b2 − 2ρiu))

× exp
(

2af2√
2f2−b2

[
arctan

(√
b2−2ρiu
2f2−b2

)
− arctan

(√
b2−2f1
2f2−b2

)])
. (6.10)

Proof. See Marshall [24] pages 102-104.

6.6. Computational methods for the BN-S model

In this section, we will look at two methods used to compute the value of a European call

option. Both of these methods utilize Fourier transform and Fourier inversion techniques. In the

literature, (Heston [17], Raible [26], and Carr and Madan [9]), these techniques are referred to as

transform-based methods.

6.6.1. Option pricing through the FFT

According to Casella and Berger [10], pg. 84, every cumulative distribution function has a

unique characteristic function.

Theorem 46. (Convergence of Characteristic Functions, Casella and Berger [10], pg. 84) Suppose

Xk, k = 1, 2, . . . , is a sequence of random variables, each with characteristic function ϕXk
(u).

Furthermore, suppose that

limk↑∞ϕXk
(u) = ϕX(u),

for all u in a neighborhood of 0, and ϕX(u) is the characteristic function of a random variable X.

Then, for all x where the cumulative distribution function FX(x) is continuous,

limk↑∞FXk
(x) = FX(x).

Let St be the asset price at time t ≥ 0 under risk neutrality, FSt the cumulative distribution

function of St and fSt the density function of St. We can then price a European call option which

has a strike price K, T time to maturity, and a risk-free rate r by:

CT (K) = e−rTE (ST −K)+

=e−rT
∫
R(s−K)+dFST

(s)
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=e−rT
∫
s>K sdFST

(s)− e−rT
∫
s>K KdFST

(s)

=e−rtE (ST )

∫
s>K

sdFST
(s)

E(ST ) −Ke−rT
∫
s>K dFST

(s)

=S0

∫
s>K

sdFST
(s)

E(ST ) −Ke−rT
∫
R 1s>KdFST

(s)

=S0
∫∞
K

(
s

E(ST )

)
fST

(s)ds−Ke−rT
(
1−

∫K
0 fST

(s)ds
)
. (6.11)

Letting g(s) = ( s
E(ST ))fST

(s), a density function, Π1 =
∫∞
K g(s)ds, and Π2 = 1 −

∫K
0 fST

(s)ds, we

get:

CT (K) = S0Π1 −Ke−rTΠ2. (6.12)

As K → −∞, Π1 tends to 1 and Π2 = 1. When K → ∞, Π1 tends to 0 and Π2 = 0.

Since Π1 and Π2 both involve density functions, if we know their corresponding charac-

teristic functions, ϕΠ1 and ϕΠ2 respectively, then Π1 and Π2 can be uniquely determined. If the

characteristic functions are known analytically, authors such as Bakshi and Madan [4] and Scott

[32] have numerically determined the risk-neutral probability of finishing in the money as:

Pr(ST > K) = Π2 =
1
2 + 1

π

∫∞
0 Re

(
exp(−iuln(K))ϕ(u)

iu

)
du.

For a derivation see Marshall [24] pg. 104-105. The delta of the option is:

Π1 =
1
2 + 1

π

∫∞
0 Re

(
exp(−iuln(K))ϕ(u−i)

iuϕT (−i)

)
du,

where ϕ(u) is the characteristic function of the random variable logST .

We will now look at the Fast Fourier Transform (FFT). Studies by Bakshi and Chen [3],

Bates [8], Chen and Scott [11], and Heston [17] have applied Fourier Analysis to option price

computation by decomposing the option price in a similar fashion as above. We need to overcome

the singularity at u = 0 in order to apply the FFT in order to take advantage of its efficiency and

computer implementation.

We will now discuss an approach introduced by Carr and Madan [9] which is based on the

FFT. Since the density is often not known in closed form, but the characteristic function of the

terminal log price is, we can utilize the FFT.

Let CT (k) denote the price of a European call option with maturity T and strikeK = exp(k):

CT (k) =

∫ ∞

k
e−rT (es − ek)qT (s)ds, (6.13)
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where qT (s) denotes a risk-neutral density of sT = logST . As k → −∞, CT (k) converges to S0 and

therefore not square-integrable. We will therefore consider the modification:

cT (k) = exp(αk)CT (k), (6.14)

which is square-integrable for a suitable α > 0 which may depend on the model for St. The Fourier

transform of cT is:

ψT (v) =
∫∞
−∞ eivkcT (k)dk.

Interchanging the integrals gives:

ψT (v) =
∫∞
−∞ eivk

∫∞
k eαke−rT (es − ek)qT (s)dsdk

=
∫∞
−∞ e−rT qT (s)

∫ s
−∞(eαk+s − e(α+1)k)eivkdkds

=
∫∞
−∞ e−rT qT (s)

(
e(α+1+iv)s

α+iv − e(α+1+iv)s

α+1+iv

)
ds

= e−rTϕ(v−(α+1)i)
α2+α−v2+i(2α+1)v

,

where ϕ(u) is the characteristic function of the risk-neutral log-asset price process. If α = 0, then

the denominator in the final equality vanishes when v = 0, which induces a singularity like we saw

previously. Since the FFT is evaluated with v = 0, this is a requirement. In order for cT to be

square-integrable, it is sufficient for ψT (0) to be finite which happens when ϕ(−(α + 1)i) is finite.

Since,

ϕ(−(α+ 1)i) = E (ei[−(α+1)i]logST )

= E (e(α+1)logST )

= E (Sα+1
T ).

It was found by Schoutens et. al [30]. that α = .075 leads to stable algorithms, i.e. the prices are

well replicated for many model parameters and the conditions are satisfied. Now, using Fourier

inversion,

CT (k) =
exp(−αk)

π

∫ ∞

0
e−ivkψT (v)dv. (6.15)
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From numerical computation, if vj = ηj, j = 0, . . . , N − 1 and η > 0 is the width of a rectangle

making up the area of integration, then:

CT (k) ≈ exp(−αk)
π

∑N−1
j=0 e−ivjkψT (vj)η.

Since the FFT is an efficient algorithm for computing sums of the type,

X(u) =
∑N−1

j=0 e−i 2π
N

juxj , for u = 0, . . . , N − 1,

then the FFT should be used to calculate the approximation of CT (k).

Generally, options are traded most frequently around the spot price. This means we want

to consider log-strike prices around the log spot price s0:

ku = −1
2Nζ + ζu+ s0, for u = 0, . . . , N − 1,

where ζ > 0 is the distance between the log strikes. Therefore, our approximation for CT (k)

becomes:

CT (ku) ≈ exp(−αk)
π

∑N−1
j=0 eiζηjuei[(

1
2
Nζ−s0)vj ]ψ(vj)η.

Provided that

ζη = 2π
N ,

and letting

xj = ei[(
1
2
Nζ−s0)vj ]ψ(vj),

we can apply the FFT. Since N controls the computation time and is often determined by compu-

tational setup, we face the trade-off between accuracy and the number of strikes around the spot

price. This is due to having to choose a larger η if ζ is small.

To improve the integration, we can incorporate Simpson’s rule weightings into our summa-

tion. We then obtain:

CT (ku) ≈
exp(−αk)

π

N−1∑
j=0

e−i 2π
N

jueibvjψ(vj)
η

3
[3 + (−1)j − δj ], (6.16)

where b = (12Nζ − s0) and δn is the Kronecker delta function.

68



6.6.2. Option pricing through the direct integration method

Heston [17] was the first to make use of the characteristic function of the terminal asset price

in an analytical formula for option pricing (in stochastic volatility models). Bakshi and Madan [4]

then extended Heston’s approach and showed generally we can write the price of a European call

at time t, with strike price K and maturity T as:

CT (K) = StΠ1 −Ke−r(T−t)Π2 (6.17)

where Π1 and Π2 are as in the previous section.

These techniques where further improved by Attari [2] and Lewis [22] whose work reduced

the work needed into a single numerical integration. We will adopt the naming of Kilin [21] and

refer to this as the direct integration (DI) method.

Theorem 47. (The Direct Integration (DI) Method, Attari [2], pg. 3) The value of a European

call option at time t ≤ T is given by:

CT (K) = St − 1
2e

−r(T−t)K − e−r(T−t)Kb

where

b =

(
1
π

∫∞
0

(Re(ϕ(ω))+
Im(ϕ(ω))

ω
)cos(ωl)+

(
Im(ϕ(ω))−Re(ϕ(ω))

ω

)
sin(ωl)

1+ω2 dw

)
.

Here, St is the underlying price at time t, K is the strike price, T is the maturity of the option, r

is the risk-free interest rate, ϕ(ω) is the risk-neutral characteristic function of:

x = log
(
ST
St

)
− r(T − t),

and

l = log(Ke−r(T−t)

St
).

Proof. See Marshall [24] pages 105-109.

The advantages of this formula are the single integral contained within it and the quadratic

term in the denominator results in a faster rate of decay.
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6.7. Some recent improvements on classical BN-S model

The classical BN-S model has some disadvantages and those lead to the exploration of mod-

ifications and refinements of that model. For example, the classical model has just one background

driving Lévy process for both the log-return and volatility. This may not accurately reflect empir-

ical data. There are some recent works that address this issue. For instance, in [33], the authors

proposed a generalized model that incorporated the log-return and volatility in a correlated way.

In effect, this incorporated the “lag-time” of volatility reaction to market fluctuations. It turns

out that such models are effective in modeling various swap prices in the financial market. To

that end, ([15] and [16]), developed an analysis of variance, volatility, and covariance swaps based

on the BN-S model. The mathematical analysis for the BN-S model is further extended in ([18]

and [19]), where the authors developed a concept of volatility/variance modulated price index and

expressed transition probability density functions in terms of various special functions. This is

further analyzed in [14], where stocks are modeled by a superposition of non-Gaussian OU-type

processes.

In more recent works ([27] and [28]), it is shown that some sequential hypothesis testing-

based improvements on the BN-S model are possible. In addition, there are two desirable properties

of the variance process suggested by the empirical data: (i) long-term memory and (ii) jumps. In

[29], the authors introduced and analyzed the fractional BN-S stochastic volatility model that

incorporates both these properties. The model primarily depends on a Brownian motion, a Lévy

subordinator, and a fractional Brownian motion. The BN-S-based models are also implemented

to the improvement of the portfolio of financial assets. For example, [23], considered a BN-S

model-based portfolio optimization problem in a financial market under a general utility function.

Even with the above generalizations, there remains one significant problem for the resulting

BN-S models - the resulting models usually lack the long-range dependence property. In [34], the

authors have shown that for some empirical data, there is a hidden deterministic component in

the “‘jumps”, that can be analyzed through various data-science-based techniques. In effect, when

this component is fed back to the BN-S model, the model incorporates a long-range dependence.

However, there is no unique way to extract this deterministic component. In [36], the authors
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have shown a couple of different approaches of extracting the deterministic component (viz. the

volatility approach and the duration approach). Research in this area is active and ongoing.

Finally, it is worth mentioning that in addition to the derivative markets (e.g. stock mar-

kets), the BN-S model is applicable to commodity markets. For instance, in [35], the authors

applied a machine/deep learning-based refined BN-S model (as described in the last paragraph)

and analyzed optimal hedging strategies in a commodity market - oil market. In addition to that,

the “quantity” of a commodity is also known to be stochastic. In [40], the authors provided a BN-S

model-based mathematical way of handling the quantity risk in connection to the BN-S model.
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