
TWO APPLICATIONS OF COMBINATORIAL BRANCH-AND-BOUND IN

COMPLEX NETWORKS AND TRANSPORTATION

A Dissertation
submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Saeid Rasti

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Program:
Industrial and Manufacturing Engineering

September 2020

Fargo, North Dakota

Copyright © Saeid Rasti

North Dakota State University
Graduate School

Title

TWO APPLICATIONS OF COMBINATORIAL BRANCH-AND-BOUND IN

COMPLEX NETWORKS AND TRANSPORTATION

By

Saeid Rasti

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Yiwen Xu
Co-Chair

Dr. Chrysafis Vogiatzis

Co-Chair, University of Illinois at Urbana-Champaign

Dr. David Grewell

Dr. Om Prakash Yadav

Dr. Mijia Yang, PE

Approved:

11/08/2020

Date

Dr. David Grewell

Department Chair

ABSTRACT

In this dissertation, we show two significant applications of combinatorial branch-and-

bound as an exact solution methodology in combinatorial optimization problems. In the first prob-

lem, we propose a set of new group centrality metrics and show their performance in estimating

protein importance in protein-protein interaction networks. The centrality metrics introduced here

are extensions of well-known nodal metrics (degree, betweenness, and closeness) for a set of nodes

which is required to induce a specific pattern. The structures investigated range from the “stricter”

induced stars and cliques, to a “looser” definition of a representative structure. We derive the com-

putational complexity for each of the newly proposed metrics. Then, we provide mixed integer

programming formulations to solve the problems exactly; due to the computational complexity

of the problem and the sheer size of protein-protein interaction networks, using a commercial

solver with the formulations is not always a viable option. Hence, we also propose a combinato-

rial branch-and-bound approach to solve the problems introduced. Finally, we conclude this work

with a presentation of the performance of the proposed centrality metrics in identifying essential

proteins in helicobacter pylori. In the second problem, we introduce the asymmetric probabilistic

minimum-cost Hamiltonian cycle problem (APMCHCP) where arcs and vertices in the graph are

possible to fail. APMCHCP has applications in many emerging areas, such as post-disaster recov-

ery and electronic circuit design. For each vertex, we define a chance-constraint to guarantee that

the probability of arriving at the vertex must be greater than or equal to a given threshold. Four

mixed-integer programming (MIP) formulations are proposed for modeling the problem, including

two direct formulations and two recursive formulations. A combinatorial branch-and-bound (CBB)

algorithm is proposed for solving the APMCHCP, where data preprocessing steps, feasibility rules,

and approaches of finding upper and lower bounds are developed. In the numerical experiments,

the CBB algorithm is compared with formulations on a test-bed of two popular benchmark instance

sets. The results show that the proposed CBB algorithm significantly outperforms formulations in

terms of both the size of optimally solved instances and the computing time.

iii

ACKNOWLEDGEMENTS

I wish to thank my committee members who were more than generous with their expertise

and precious time during the past 5 years. A special thanks to Dr. Chrysafis Vogiatzis and Dr. Yiwen

Xu my committee co-chairmans for their countless hours of reflecting, reading, encouraging, and

most of all patience throughout the entire process. Thank you Dr. David Grewell, Dr. Om Yadav,

and Dr. Mijia Yang for agreeing to serve on my committee.

Last but not the least, I would like to acknowledge and thank my school division for allow-

ing me to conduct my research and providing any assistance requested.

Fargo, September 2020

Saeid Rasti

iv

DEDICATION

“I dedicate this dissertation to my loving wife Shiva who has been by my side through all the ups

and downs of my doctorate program and whose words of encouragement has motivated me over

the years. A special feeling of gratitude to my parents who have thought me the value of hard

work and have been a positive light in my life.”

Saeid Rasti

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . xii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xx

LIST OF SYMBOLS . xxii

CHAPTER 1. INTRODUCTION . 1

1.1. Outline . 2

CHAPTER 2. BRANCH-AND-BOUND ALGORITHM 4

2.1. Introduction . 4

2.2. Algorithm . 5

2.3. B&B components . 8

2.4. Search strategies . 9

2.4.1. Depth-first search . 9

2.4.2. Breadth-first search . 12

2.4.3. Best-first search . 13

2.4.4. Cyclic best-first search . 14

2.5. Branching strategies . 15

2.5.1. Binary branching . 15

2.5.2. Non-binary branching . 16

2.6. Pruning strategies . 17

2.6.1. Lower bounds . 17

2.6.2. Dominance rules . 19
vi

2.6.3. Cutting planes . 20

2.6.4. Column generation . 23

CHAPTER 3. PROTEIN-PROTEIN INTERACTION NETWORKS 26

3.1. Introduction . 26

3.2. Graph representations for protein interactions . 30

3.3. Experimental techniques . 31

3.3.1. Yeast two hybrid system (Y2H) . 33

3.3.2. Affinity purification followed by mass spectrometry (AP/MS) 34

3.4. Protein-protein interaction databases . 35

3.5. Reliability of databases . 40

CHAPTER 4. PROTEIN COMPLEXES AND FUNCTIONAL MODULES 45

4.1. Introduction . 45

4.2. Detecting protein complexes and functional modules 46

4.2.1. Identifying protein complexes based on interesting structures 46

4.2.2. Identifying protein complexes by clustering techniques 51

4.2.3. Identifying protein complexes by multiple data integration 58

4.2.4. Identifying protein complexes in dynamic PPINs 64

CHAPTER 5. ESSENTIALITY AND CENTRALITY . 68

5.1. Protein essentiality . 68

5.2. Identification of essential proteins . 68

5.2.1. Topology-based methods . 69

5.2.2. Integrating multiple sources . 75

CHAPTER 6. NOVEL GROUP CENTRALITY METRICS FOR STUDYING ESSEN-
TIALITY IN PROTEIN-PROTEIN INTERACTION NETWORKS 85

6.1. Notation . 85

6.2. Group centrality . 86

vii

6.3. Problem definitions . 87

6.4. Complexity . 89

6.4.1. Structure degree centrality . 90

6.4.2. Structure closeness centrality . 92

6.4.3. Structure betweenness centrality . 98

CHAPTER 7. MATHEMATICAL FORMULATIONS . 103

7.1. Structure degree centrality . 103

7.1.1. Representative structure . 103

7.1.2. Induced star structure . 104

7.1.3. Clique structure . 105

7.1.4. A different formulation for structure degree centrality 105

7.2. Structure closeness centrality . 106

7.2.1. Representative structure . 106

7.2.2. Star and clique structures . 108

7.3. Structure betweenness centrality . 108

7.3.1. Representative structure . 113

7.3.1.1. Star and clique structures . 117

CHAPTER 8. COMBINATORIAL BRANCH-AND-BOUND 118

8.1. Interesting properties . 118

8.2. Structure betweenness centrality . 119

8.2.1. Properties of the betweenness centrality measure 119

8.2.2. Search tree structure . 121

8.2.3. Upper bound . 123

8.3. Structure closeness centrality . 128

8.3.1. Properties of the closeness centrality measure 128

8.3.2. Search tree structure . 130

viii

8.3.3. Lower bound . 130

8.4. Structure degree centrality . 133

8.4.1. Properties of the degree centrality measure 133

8.4.2. Search tree structure . 135

8.4.2.1. Upper bound . 135

CHAPTER 9. COLUMN GENERATION . 139

9.1. Dantzig-Wolfe decomposition . 139

9.1.1. Master problem . 139

9.1.2. Pricing problem . 140

9.2. Column generation . 141

9.2.1. Initial solution . 142

9.2.2. Representative . 143

9.2.3. Clique and star . 143

CHAPTER 10. ASYMMETRIC PROBABILISTIC MINIMUM-COST HAMILTONIAN
CYCLE PROBLEM CONSIDERING ARC AND VERTEX FAILURES . . 144

10.1. Introduction . 144

CHAPTER 11. PROBLEM DEFINITION AND MATHEMATICAL FORMULATIONS . . 148

11.1. Notations . 148

11.2. The probabilistic route and the modified MTZ constraints 148

11.3. The formulations . 153

11.3.1. IP 1 (intuitive direct formulations for the chance constraint) 153

11.3.2. IP 2 (efficient direct formulations for the chance constraint) 155

11.3.3. IP 3 (intuitive recursive formulations for the chance constraint) 157

11.3.4. IP 4 (efficient recursive formulations for the chance constraint) 158

11.3.5. Complete exact MIP formulations for the APMCHCP 160

11.3.5.1. Efficient direct APMCHCP formulation 160

11.3.5.2. Intuitive direct APMCHCP formulation 161
ix

11.3.5.3. Intuitive recursive APMCHCP formulation 161

11.3.5.4. Efficient recursive APMCHCP formulation 161

CHAPTER 12. COMBINATORIAL BRANCH-AND-BOUND 163

12.1. Data preprocessing . 163

12.1.1. Tightening of the probability intervals . 163

12.1.2. Construction of precedences . 163

12.1.3. Elimination of arcs . 164

12.2. The search tree structure . 165

12.3. Feasibility rules . 167

12.4. Lower bound . 169

12.5. Upper bound . 170

12.6. The complete CBB algorithm . 171

CHAPTER 13. COMPUTATIONAL RESULTS . 174

13.1. Novel group centrality metrics for studying essentiality in protein-protein interac-
tion networks . 174

13.1.1. Experimental setup . 174

13.1.2. Protein-protein interaction network . 175

13.1.3. Degree centrality . 175

13.1.3.1. Comparing the CBB algorithm to the mathematical formulations . 175

13.1.3.2. Analysis of top ranked proteins per metric 177

13.1.3.3. Analysis of top ranked proteins per metric using membership
measure . 178

13.1.4. Closeness centrality . 184

13.1.4.1. Comparing the CBB algorithm to the mathematical formulations . 184

13.1.4.2. Analysis of top ranked proteins per metric 185

13.1.4.3. Analysis of top ranked proteins per metric using membership
measure . 188

13.1.5. Betweenness centrality . 191
x

13.1.5.1. Comparing the CBB algorithm to the mathematical formulations . 191

13.1.5.2. Analysis of top ranked proteins per metric 192

13.1.5.3. Analysis of top ranked proteins per metric using membership
measure . 195

13.2. Asymmetric probabilistic minimum-cost Hamiltonian cycle problem considering
arc and vertex failures . 197

13.2.1. Data preprocessing . 199

13.2.2. Comparison of the CBB algorithm and MIP formulations 201

13.2.3. Further Information on the CBB algorithm 208

13.2.4. Impact analysis of the feasibility rules . 209

CHAPTER 14. CONCLUSION . 215

14.1. Novel group centrality metrics for studying essentiality in protein-protein interac-
tion networks . 215

14.2. Asymmetric Probabilistic Minimum-cost Hamiltonian Cycle Problem Considering
Arc and Vertex Failures . 216

REFERENCES . 217

xi

LIST OF TABLES

Table Page

3.1: This table presents some of the most prominently used methods for obtaining
protein-protein interactions. 32

3.2: A list of 21 commonly used sources of proteomic data, available online. 38

4.1: A table summarizing all the methods presented in this section. 47

13.1: Details of the PPIN of the selected organism. 175

13.2: Results of the experiments for degree centrality on the Helicobacter pylori. IP1
is the linear IP developed by Vogiatzis et al., 2015, IP2, CBB and CG are our
proposed linear ILP, CBB algorithm, and CG algorithm, respectively. Gap (%)
represents the optimality gap, and time(s) is the runtime in second. 176

13.3: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group degree centrality and a threshold score of 800. 178

13.4: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group degree centrality and a threshold score of 700. 178

13.5: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group degree centrality and a threshold score of 600. 179

13.6: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using membership measure for group degree centrality and a threshold
score of 800. 181

13.7: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using membership measure for group degree centrality and a threshold
score of 700. 182

13.8: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using membership measure for group degree centrality and a threshold
score of 600. 182

13.9: Results of the experiments for closeness centrality on the Helicobacter pylori.
IP and CBB are our proposed linear IP and algorithm, respectively. Gap (%)
represents the optimality gap, and time(s) is the runtime in seconds. 184

13.10: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group closeness centrality and a threshold score of 800. 186

13.11: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group closeness centrality and a threshold score of 700. 186

xii

13.12: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group closeness centrality and a threshold score of 600. 186

13.13: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 pro-
teins using membership measure for group closeness centrality and a threshold
score of 800. 189

13.14: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 pro-
teins using membership measure for group closeness centrality and a threshold
score of 700. 189

13.15: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 pro-
teins using membership measure for group closeness centrality and a threshold
score of 600. 189

13.16: Results of the experiments for betweenness centrality on the Helicobacter pylori.
IP and CBB are our proposed linear IP and algorithm, respectively. Number of
B&B tree nodes processed, fathomed by bounds and fathomed by feasibility and
running time are presented. 192

13.17: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group betweenness centrality and a threshold score of 800. 193

13.18: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group betweenness centrality and a threshold score of 700. 193

13.19: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group betweenness centrality and a threshold score of 600. 193

13.20: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group betweenness centrality and a threshold score of 800. 195

13.21: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group betweenness centrality and a threshold score of 700. 196

13.22: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500
proteins using group betweenness centrality and a threshold score of 600. 196

13.23: Preprocessing results for Dataset 1. 200

13.24: Preprocessing results for Dataset 2. 200

13.25: Results of the experiments for Dataset 1. 202

13.26: Results of the experiments for Dataset 2. 204

13.27: More information about running the CBB algorithm for Dataset 1. 206

xiii

13.28: More information about running the CBB algorithm for Dataset 2. 207

13.29: Performance of different method configurations for Dataset 1. 210

13.30: Performance of different method configurations for Dataset 2. 213

xiv

LIST OF FIGURES

Figure Page

2.1: components of the B&B algorithm and their relationship. 8

2.2: Subproblem exploration order for different search strategies. The red subproblem
is optimal, numbers inside nodes are subproblem lower bounds, and numbers out-
side the nodes indicate exploration order. The algorithm starts with an incumbent
solution of value 10. BFS and CBFS use the lower bound as the measure-of-best,
with ties broken arbitrarily. Note that this requires a subproblem’s lower bound
is computed prior to inserting it into the list of unexplored subproblems. 10

3.1: The available protein interactions for Saccharomyces cerevisiae, as obtained from
STRING (Szklarczyk et al., 2014), and the resulting PPIN of the largest network
component. All protein-protein interactions with a score of below 750 were re-
moved for visualization purposes. 28

3.2: On the left, if the two (bait and prey) proteins interact, then the activating domain
binds to the binding domain and the reporter gene is activated. On the other hand
(right), if no interaction occurs, then the reporter gene remains disabled and is
not transcribed. 34

3.3: We observe here the original interactions (top), and the obtained interactions by
a binary method (bottom left) and a co-complex method (bottom right). 36

3.4: A screenshot of the S. Cerevisiae proteome file available by STRING. Each in-
teraction is represented by a row in the file. 39

3.5: Two screenshot sof the S. Cerevisiae proteome file available by BioGRID. Each
interaction is represented by a row in the file. The first screenshot (top) presents
the first 11 fields. The second screenshot (bottom) presents the remaining 13
fields. 39

6.1: An example of the three structures we are investigating in this work. 86

6.2: An example of representative degree centrality. The representative set S of u
of maximum degree centrality is marked in red, and the open neighborhood is
marked in blue. 88

6.3: An example of clique betweenness centrality. The induced clique S of vertex u
with maximum betweenness is marked in red. 88

6.4: An example of the star closeness centrality. The induced star S with minimum
average distance to nodes in V \S is marked in red. 89

6.5: An example of the gadget used for transforming an instance of SET COVER to an
instance of STRUCTURE DEGREE CENTRALITY OF A NODE u ∈V 91

xv

6.6: An example of the transformation from CLIQUE (resp., INDEPENDENT SET) to
the CLIQUE CLOSENESS CENTRALITY OF A NODE u∈V (resp., STAR CLOSE-
NESS CENTRALITY OF A NODE u ∈V). 94

6.7: An example of the gadget used for transforming an instance of SET COVER to
an instance of REPRESENTATIVE CLOSENESS CENTRALITY OF A NODE u ∈V .
The nodes in red are the ones in VS , while the ones in blue are in Vu and Vv. The
edges in green are in ES , the ones in purple are in ES×U , and the ones in blue
are in EU . 96

6.8: An example of the transformation from CLIQUE (resp., INDEPENDENT SET) to
the CLIQUE BETWEENNESS CENTRALITY OF A NODE u ∈V (resp., STAR BE-
TWEENNESS CENTRALITY OF A NODE u ∈V). 100

11.1: An example of APMCHCP. The gray vertex is starting point. 150

11.2: An example of a APMCHCP tour when i0 is the starting vertex. 155

12.1: Illustration on the structure of the search tree of an APMCHCP. 166

13.1: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 800. The group centrality metric used is based on degree. 179

13.2: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 800. The group centrality metric used is based on degree. 179

13.3: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 700. The group centrality metric used is based on degree. 180

13.4: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 700. The group centrality metric used is based on degree. 180

13.5: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 600. The group centrality metric used is based on degree. 180

13.6: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 600. The group centrality metric used is based on degree. 180

13.7: The ratio of essential proteins found in the top k ranked proteins using member-
ship measure with a threshold score of 800. The group centrality metric used is
based on degree. 183

13.8: The ratio of essential proteins found in the bottom k ranked proteins using mem-
bership measure with a threshold score of 800. The group centrality metric used
is based on degree. 183

xvi

13.9: The ratio of essential proteins found in the top k ranked proteins using member-
ship measure with a threshold score of 700. The group centrality metric used is
based on degree. 183

13.10: The ratio of essential proteins found in the bottom k ranked proteins using mem-
bership measure with a threshold score of 700. The group centrality metric used
is based on degree. 183

13.11: The ratio of essential proteins found in the top k ranked proteins using member-
ship measure with a threshold score of 600. The group centrality metric used is
based on degree. 184

13.12: The ratio of essential proteins found in the bottom k ranked proteins using mem-
bership measure with a threshold score of 600. The group centrality metric used
is based on degree. 184

13.13: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 800. The group centrality metric used is based on closeness. 187

13.14: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 800. The group centrality metric used is based on closeness. 187

13.15: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 700. The group centrality metric used is based on closeness. 187

13.16: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 700. The group centrality metric used is based on closeness. 187

13.17: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 600. The group centrality metric used is based on closeness. 188

13.18: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 600. The group centrality metric used is based on closeness. 188

13.19: The ratio of essential proteins found in the top k ranked proteins using member-
ship measure with a threshold score of 800. The group centrality metric used is
based on closeness. 190

13.20: The ratio of essential proteins found in the bottom k ranked proteins using mem-
bership measure with a threshold score of 800. The group centrality metric used
is based on closeness. 190

13.21: The ratio of essential proteins found in the top k ranked proteins using member-
ship measure with a threshold score of 700. The group centrality metric used is
based on closeness. 190

xvii

13.22: The ratio of essential proteins found in the bottom k ranked proteins using mem-
bership measure with a threshold score of 700. The group centrality metric used
is based on closeness. 190

13.23: The ratio of essential proteins found in the top k ranked proteins using member-
ship measure with a threshold score of 600. The group centrality metric used is
based on closeness. 191

13.24: The ratio of essential proteins found in the bottom k ranked proteins using mem-
bership measure with a threshold score of 600. The group centrality metric used
is based on closeness. 191

13.25: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 800. The group centrality metric used is based on betweenness. 194

13.26: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 800. The group centrality metric used is based on betweenness. . . . 194

13.27: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 700. The group centrality metric used is based on betweenness. 194

13.28: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 700. The group centrality metric used is based on betweenness. . . . 194

13.29: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 600. The group centrality metric used is based on betweenness. 195

13.30: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 600. The group centrality metric used is based on betweenness. . . . 195

13.31: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 800. The group centrality metric used is based on betweenness. 196

13.32: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 800. The group centrality metric used is based on betweenness. . . . 196

13.33: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 700. The group centrality metric used is based on betweenness. 197

13.34: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 700. The group centrality metric used is based on betweenness. . . . 197

13.35: The ratio of essential proteins found in the top k ranked proteins with a threshold
score of 600. The group centrality metric used is based on betweenness. 197

13.36: The ratio of essential proteins found in the bottom k ranked proteins with a thresh-
old score of 600. The group centrality metric used is based on betweenness. . . . 197

xviii

13.37: Rate of instances solved to optimality by number of customers for Dataset 1. . . . 203

13.38: Rate of instances solved to optimality by number of customers for Dataset 2. . . . 205

13.39: Rate of instances solved to optimality by different method configurations for
Dataset 1. 211

13.40: CPU time (in seconds) under different method configurations for Dataset 1. . . . 211

13.41: Rate of instances solved to optimality by different method configurations for
Dataset 2. 212

13.42: CPU time (in seconds) under different method configurations for Dataset 2. . . . 214

xix

LIST OF ABBREVIATIONS

TSP . Traveling Salesman Problem

GPP. Graph Partitioning Problem

QAP . Quadratic Assignment Problem

B&B . Branch-and-Bound

MIP . Mixed Integer Program

ILP . Integer Linear Programming

CBFS . Cyclic Best-First Search

DFS . Depth-First Search

BrFS . Breadth-First Search

BFS . Best-First Search

SOS . Special Ordered Sets

SOS1 . Special Ordered Sets type 1

SOS2 . Special Ordered Sets type 2

CBB . Combinatorial Branch-and-Bound

LMP . Linear Master Problem

RLMP . Restricted Linear Relaxation of the Master Problem

PPIN . Protein-Protein Interaction Network

GRN . Gene Regulatory Network

MN . Metabolic Network

COBIM . COmplex BIological Modules

ECOBIM . Essential COmplex BIological Modules

Y2H . Yeast 2 Hybrid
xx

AP/MS . Affinity Purification followed by Mass Spectrometry

IPR . Interaction Pathway Reliability index

MCODE . Molecular COmplex DEtection

COACH . COre/AttaCHment-based method

ClusterONE . Clustering with Overlapping Neighborhood Expansion

MCL . Markov Clustering

DECAFF . Dense Neighborhood Extraction using Connectivity
And confidence Features

RNSC . Restricted Neighborhood Search Clustering

GO . Gene Ontology

SWEMODE . Semantic WEights for MODule Elucidation

CEZANNE . Co-Expression Zone Analysis using NEtworks

TC-PINs . Time Course Protein Interaction Network

CoEWCC . Co- Expression Weighted by Clustering Coefficient

HC . Harmonic Centrality

UC . United complex Centrality

NTPGE . Network Topology-based Prediction of Gene Essential-
ity

SVM . Support Vector Machine

RD . Representative Degree

SD . Star Degree

CD . Clique Degree

MCSP . Most Closeness-central Star Problem

xxi

MCCP . Most Closeness-central Clique Problem

MCRP . Most Closeness-central Representative Problem

MDSP . Most Degree-central Star Problem

MDCP . Most Degree-central Clique Problem

MDRP . Most Degree-central Representative Problem

MBSP . Most Betweenness-central Star Problem

MBCP . Most Betweenness-central Clique Problem

MBRP . Most Betweenness-central Representative Problem

MCHCP . Minimum-Cost Hamiltonian Cycle Problem

APMCHCP . Asymmetric Probabilistic Minimum-Cost Hamiltonian
Cycle Problem

PDR . Post-Disaster Recovery

WSN . Wireless Sensor Networks

MTZ . Miller-Tucker-Zemlin

PHC . Probabilistic Hamiltonian Cycle

RAPMCHCP . Restricted APMCHCP

ESPPRC . Elementary Shortest Path Problem with Resource Con-
straints

ESPPCC . Elementary Shortest Path Problem with Chance Con-
straints

SPPCC . Shortest Path Problem with Chance Constraints

PSP . Probabilistic Shortest Path

MPNPR . Maximum Possible Number of Precedence Relationship

xxii

LIST OF SYMBOLS

U . unexplored subproblems

T . search tree

b . branching factor

d . search tree depth

M . bound on the length of time needed to explore a sub-
problem

x∗ . optimal solution

x̂ . feasible solution

µ . measure-of-best function

λ . Lagrange multipliers

µ . measure-of-best function

G . graph

V . set of vertices

E . set of edges

A . set of arcs

N(i) . open neighborhood of vertex i

G[S] . subgraph induced by S in G

γi j . number of shortest paths between vertices i and j

Pi j . all shortest (geodesic) paths connecting vertices i and j

d(i, j) . length of a shortest path between vertices i and j

γi j(S) . number of shortest paths between vertices i and j that
intersect set S

diam(G) . diameter of the graph G
xxiii

Cd(S) . degree centrality of set S

Cc(S) . average closeness centrality of set S

Cb(S) . betweenness centrality of set S

Cb(S) . monotone betweenness centrality of set S

Cc(S) . monotone average closeness centrality of set S

Cd(S) . monotone degree centrality of set S

Sl . set of structure vertices at tree node l

Cl . set of candidate vertices at tree node l

ci j . cost of arc (i, j)

pi j . success probability of arc (i, j)

pi . success probability of vertex i

βi . success arriving probability threshold of vertex i

Pi . arrival probability at vertex i

pR . probability of route R

LAP(j, i) . largest arrival probability at vertex i from vertex j

π j . set of all vertices that must precede vertex j

P . precedence digraph

Rt . ordered set of visited vertices at tree node t

Ct . set of candidate vertices at tree node t

zt . cost of tree node t

SDP(i, j) . smallest departure probability from vertex i such that β j
is satisfied

MPP(i, j) . maximum-probability path from i to j
xxiv

PSPi j . shortest probabilistic path between vertices i and j

a . user-defined scaling parameter

u . loop parameter

xxv

CHAPTER 1. INTRODUCTION

In this dissertation, we investigate two famous problems in complex network and trans-

portation. In the first problem, my research aims to identify essential proteins in protein-protein

interaction networks using group centrality metrics. The main motivation for this research is find-

ing essential proteins using computational methods which are cheaper and faster than common

experimental methods. Extracting essential proteins is of paramount importance because these

proteins are indispensable for growth and development of cells and identifying them is important

for better understanding the minimal requirements for cell life. The proposed centrality metrics

are group degree, betweenness, and closeness which are extensions of well-known nodal metrics.

The structures investigated range from the “stricter” induced stars and cliques, to a “looser” defini-

tion of a representative structure, which only requires that a central node is adjacent to every other

member of the structure. We derive the computational complexity for each of the newly proposed

metrics. Then, we provide MILP formulations to solve the problems exactly; due to the com-

putational complexity of the problem and the sheer size of protein-protein interaction networks,

using a commercial solver with the formulations is not always a viable option. Hence, we also

propose a combinatorial branch-and-bound approach to solve the problems introduced. As all pro-

posed centrality measures here are non-monotone, we introduce monotone centrality measure to

their non-monotone counterparts and take advantage of them to develop upper and lower bounds.

Finally, we conclude this work with a presentation of the performance of the proposed centrality

metrics in identifying essential proteins in Helicobacter Pylori and compare them to their nodal

counterparts. We also compare the performance of combinatorial branch-and-bound with MILP

formulation for each problem.

The second problem is finding the probabilistic minimum-cost Hamiltonian cycle problem

considering arc and vertex failures. post-disaster recovery (PDR) is a key part in a disaster support

system. A way to minimize the impact of a disaster on the victims is to ensure that adequate dis-

aster supplies are available and can be delivered to the victims. Indeed, the conventional planning

1

methods rarely account for the uncertainties that come with disasters. A major problem on de-

livering supplies after a disaster is that many roads may become impassable or passable in highly

reduced speed. Thus, in the planning stage of a PDR system, we need to determine the location to

store the supplies and design the delivery route considering vertex and/or arc failures which is as-

sociated with infrastructure damage. we propose 4 chance constraint-based MILP formulations to

model this problem. The chance constrain guarantees that successful visiting each vertex starting

from depot is greater than or equal to a given threshold. In the first two formulations we explicitly

calculate the probability of reaching each vertex from origin, while in the next two formulations a

recursive formula is developed to find those probabilities. As formulations cannot solve real-life

problems, we propose a combinatorial branch-and-bound (CBB) to tackle the complexity of these

problems. In order to reduce the density of original graph of the problem, we apply preprocessing

which in average eliminates about 50% of arcs of original graph. Moreover, we boost performance

of the CBB algorithm by proposing 5 feasibility rules to eliminate partial routes that do not result

in feasible solutions. Also, we develop a lower bound based on shortest path problem with chance

constraints and an upper bound to make the CBB even more efficient. Computational results using

two popular benchmark instance sets indicate that CBB algorithm outperforms all formulations in

terms of both number of optimally solved instances and the computational time, where CBB can

solve instances with up to 231 vertices, whereas the largest instances solved by formulations has

27 vertices.

An interesting future direction for these two research is finding most central structures con-

sidering probabilistic vertices and edges. The reason of assigning probabilities to each vertex and

edge is that datasets of protein-protein interaction networks are still not error-free, thus these prob-

abilities can indicate the probability of their existence in the protein-protein interaction network.

1.1. Outline

This dissertation contains 14 chapters and is divided into four parts. In the first part, branch-

and-bound is explained in detail (Chapter 2). After an introductory part about the first problem

2

(Chapters 3–5), we address some definitions, complexity analysis, notations, mathematical formu-

lations, and proposed algorithms (Chapters 6–9). In the second part (Chapters 10–12) , we define

the second problem and provide mathematical formulations and proposed algorithm to solve it.

In the last part (Chapters 13 and 14), computational results and conclusions of both problems are

discussed.

Chapter 3 starts with the motivation and application of the first problem and describes

the methods available to extract protein-protein interactions with an overview of the available

databases. Chapter 4 Provides an overview of all prevalent computational methods in detecting

and analyzing protein complexes and functional modules within large-scale PPINs. In Chapter 5,

we provide a review of protein centrality and essentiality and collect centrality and non-centrality

based methods to predicting protein essentiality. Chapter 6 focuses on basic notation we will be

using throughout the first problem, defines the problem, and provides its computational complex-

ity. Then, Chapter 7 presents mathematical programming framework of the first problem. Chapter

8 explains the CBB algorithm for tackling the first problem faster. In Chapter 9, we show how

group degree centrality based problems can be solved by column generation. The second prob-

lem is introduced in Chapter 10, then we provide the definition and mathematical formulations for

this problem in Chapter 11. Chapter 12 explains the proposed CBB algorithm to solve the second

problem. Chapter 13 presents our computational study on both problems. Finally, We conclude

this research with our observations and our insights in Chapter 14.

3

CHAPTER 2. BRANCH-AND-BOUND ALGORITHM

2.1. Introduction

The branch-and-bound (B&B) algorithm is a widely-used methodology to find optimal

solution of NP-hard optimization problems. This algorithm, which was first proposed by Land

et al. (1960), implicitly enumerates all possible solutions to the problem under consideration, by

storing partial solutions called subproblems in a tree structure. Each subproblem is represented

by a node in the search tree. Branching and bounding are two important mechanisms that search

tree works based on them. Branching is generating children for unexplored nodes by partitioning

the solution space into smaller regions that can be solved recursively and bounding is pruning off

regions of the search space that are provably suboptimal. Once the entire tree has been explored,

the best solution found in the search is returned as the optimal solution. An overview of the core

B&B algorithm was provided by Lawler et al. (1966); the solution procedure is also covered in the

excellent texts by Wolsey et al. (1999), Bertsimas et al. (1997), and Papadimitriou et al. (1998).

According to the B&B framework explained above, there are three components which can

have significant impacts on the performance of the algorithm:

(i) Search strategy: the order in which subproblems in the tree are explored,

(ii) Branching strategy: how the solution space is partitioned to produce new subproblems in the

search tree, and

(iii) Pruning rules: rules that prevent exploration of suboptimal regions of the search tree.

Clausen (1999) gives an overview of these different components and how they affect al-

gorithm performance for the traveling salesman problem (TSP), the graph partitioning problem

(GPP), and the quadratic assignment problem (QAP). Morrison et al. (2016) discussed recent re-

search advances in the design of B&B algorithms, particularly with regards to these three compo-

nents.

4

2.2. Algorithm

Let P = (X , f) be an optimization problem, where search space X is the set of all valid

solutions to the problem, and f : X → R is an objective function. The goal is to find an optimal

solution x∗ to the following problem

minimize f (x)

s.t. x ∈ X
(2.1)

B&B algorithm solve 2.1 using an implicit enumeration search tree T of subproblems,

where a subproblem S is simply a subset of the search space. The algorithm operates by itera-

tively selecting an active (or unexplored) subproblem S to explore from a list U of unexplored

subproblems. Additionally, a feasible solution x̂ ∈ X , called the incumbent solution is stored

globally. When a subproblem S is explored, if it can be proved that any x ∈ S is no better than

x̂ (i.e.,∀x ∈ S, f (x) ≥ f (x̂)), then S is immediately pruned (or fathomed). Otherwise, the algo-

rithm tries to find x̄ = argminx∈S f (x), called the candidate incumbent, and compare it to the x̂. If

the B&B algorithm can find x̄, then S is terminal, and if f (x̄)< f (x̂), the global incumbent solution

is replaced by the candidate incumbent. Finally, if S cannot be pruned and is not terminal, child

subproblems S1,S2, . . . ,Sr are generated from S such that
⋃

j S j ⊇ S which ensures that all solutions

contained in S are also contained in some child subproblem. S1,S2, . . . ,Sr are then inserted into U .

Once there are no active subproblem, the best incumbent solution is returned as optimal solution.

Pseudocode for the generic B&B procedure is given in Algorithm 1.

Often, an initial incumbent solution x̂ can be found (Line 1, Algorithm 1) via a heuristic

procedure (see, for example, Malaguti et al. (2011)). Algorithm 1 is guaranteed to terminate when

X is finite and the partitioning procedure creates child subproblems Si that are proper subsets of S

at each subproblem S.

5

Algorithm 1: B&B Algorithm.
1 Set U = X and initialize x̂

2 while U 6= /0 do
3 select S ∈U
4 if S cannot be pruned then
5 if S can be solved to find x̄ then
6 if f (x̄)< f (x̂) then
7 set x̂ = x̄
8 else
9 Partition S into S1,S2, . . . ,Sr

10 insert S1,S2, . . . ,Sr into U
11 remove S from U
12 return x̂

The complexity of B&B algorithms is dependent to two factors: the branching factor b,

which is the maximum number of children generated at any node in the search tree, and the search

depth d, which is the length of the longest path from the root of T to a leaf. Hence, any B&B

algorithm operates in O(Mbd) worst-case running time, where M is a bound on the length of time

needed to explore a subproblem; however, the presence of pruning rules can substantially improve

the algorithm performance.

Any B&B algorithm has two important phases: (1) search phase, a phase during which the

algorithm has not yet found an optimal solution x∗. (2) verification phase, which starts when the

incumbent solution is optimal, but there are still unexplored subproblems in the tree that cannot be

pruned. Note that an incumbent solution cannot be proven optimal when unexplored subproblems

remain; also note that the delineation between the search phase and the verification phase is not

known until the algorithm terminates. A problem P is said to be solved if the B&B algorithm

completes the verification phase. In this case, the algorithm is said to have produced a certificate

of optimality.

The three components of B&B algorithm (search strategy, branching strategy, and pruning

rules) each play a distinct role with respect to these two phases of operation. The first B&B algo-

rithm component, search strategy, primarily impacts the search phase. For example, suppose that

6

the pruning rules only depend on the value of the incumbent solution, e.g., a subproblem of a mini-

mization (maximization) problem is pruned when it’s lower (upper) bound is bigger (smaller) than

the incumbent value. In this setting, any search strategy must explore the same set of subproblems

once an optimal solution is found. The second B&B component, the branching strategy, has sig-

nificant impacts on both the search phase and the verification phase. By branching appropriately

at subproblems, the strategy can guide the algorithm towards optimal solutions. Once the search

phase has concluded, an appropriate branching strategy can help limit the branching decisions that

are made in order to prevent unnecessary work from being performed to produce a certificate of

optimality. Pruning rules as the third component of B&B algorithm, often affect verification phase,

particularly in the case of objective-based bounding which can be relatively weak before an opti-

mal (or near-optimal) solution is known. In this case, if the incumbent solution has a poor objective

value early in the search process the lower bounds will not be able to prune effectively, even if they

are very tight. However, there are also situations in which pruning rules contribute to the search

phase, such as when cutting planes in a mixed integer program (MIP) are used to identify feasible

solutions.

The reason to improve performance of the B&B algorithm during the search phase is

twofold. First, if the algorithm terminates before proof of optimality, the incumbent solution

still can be used as a heuristic solution. An example of this behavior can be seen in Morrison

et al., 2014b where B&B is used to improve upper bounds for large simple assembly line balanc-

ing instances. The second reason is that finding an optimal solution earlier in the search phase

has a direct impact on the size of the search tree, because the nodes with bounds greater than the

optimum value will not be explored (Guzelsoy et al., 2013).

Integer linear programming (ILP) problems form an important class of optimization

problems that are often solved using B&B algorithms. An ILP problem seeks a solution to

min{ f (y) | Ay ≤ b, y ∈ Z}, where f is a linear objective function, A is a constraint matrix, and

b is a set of constraint bounds, and y is a vector of integer variables. In B&B algorithm to solve

ILP problems, bounds at a subproblem are typically computed by solving the LP relaxation, where

7

the integrality constraints on y are relaxed. If all variables in the LP relaxation solution are integral,

then the current subproblem yields a new candidate incumbent; otherwise, the standard branching

rule used for integer programs selects a variable yi with fractional value α in the LP relaxation

solution. Two branches are created, one with yi ≤ bαc, and one with yi ≥ dαe.

Many different optimization problems can be formulated as integer programs, and the LP

relaxation often provides tight bounds in practice. To solve integer programs using B&B tech-

niques, some efficient software packages (both commercial and freeware) have been developed,

such as CPLEX, SYMPHONY, Gurobi, LINDO, SCIP, Xpress-MP, and CBC.

2.3. B&B components

Search Strategies Branching Strategies Pruning Strategies

DFS

BrFS

BFS

CBFS

Binary Branching

Wide Branching

Lower Bound

Dominance Rules

Cutting Planes

Column generation

Figure 2.1: components of the B&B algorithm and their relationship.

Figure 2.1 shows the different types of search, branching, and pruning strategies. The

Cyclic Best-First Search (CBFS) strategy is a generalization of Depth-First Search (DFS), Breadth-

First Search (BrFS), and Best-First Search (BFS) (see Section 2.4.4). Column generation tech-

niques, while are not strictly a generalization of other techniques, are closely connected to lower

bounding and cutting plane techniques (in essence, column generation adds cutting planes to the

dual optimization problem to improve the computed lower bound). This figure also indicates re-

lationships between B&B components using dashed lines. In particular, the choice of pruning

rules often impacts or limits the choices that can be made in the other two areas. For example, as

will discuss in Section 2.6.4, if column generation is used to improve lower bounds, the choice of

8

branching strategies that can be used is limited. Moreover, if dominance relations are used, this

may cause BrFS to become a desirable search strategy, since it has the property of never exploring

a dominated subproblem. Finally, the choice of branching strategy can itself impact the choice of

search strategy. For instance, if the branching strategy chosen produces a particularly unbalanced

tree, the CBFS strategy can balance the search process, or variants of DFS can limit the depth

explored at any stage in the algorithm.

2.4. Search strategies

The search strategy in a B&B algorithm determines the order in which unexplored subprob-

lems in U are explored. Search strategy influences the choice of subproblem to explore in Line 3

of Algorithm 1. The search strategy significantly impact computation time required for the B&B

procedure, as well as the amount of memory used. In some cases, for very large or challenging

problems, it may be necessary to choose a search strategy that requires low memory usage, how-

ever for problems in which memory is not a concern, other search strategies exist which may find

an optimal solution very quickly, and thus explore potentially fewer subproblems. Ibaraki (1976)

reviewed different search strategies. In this section, we explain different search strategies along

with their strengths and weaknesses are given.

2.4.1. Depth-first search

DFS strategy (sometimes called depth-first search with backtracking, or last-in, first-out

search) involves exhaustive search of all the nodes by going forward if possible or backtracking

otherwise. Here, the word backtrack means that when you are moving forward and there are

no more nodes along the current path, you move backwards on the same path to find nodes to

traverse. This search strategy used in many different graph algorithms in addition to B&B (Golomb

et al., 1965; Tarjan, 1972). This strategy uses a stack to explore subproblems in U in the reverse

order that they are generated (Tarjan, 1972). The algorithm removes the top item from the stack

as the next subproblem to explore, and push all its children on the top of U . Thus, the next

subproblem which is explored is the most recently generated subproblem. However, if the children

of a subproblem can be ordered using a criteria, then DFS does not need to store all of them

9

8

9

9

10

10

8

9

9 11

10

1

2

3

4

5

6

7

8 9

10

(a) DFS

8

9

9

10

10

8

9

9 11

10

1

2

4

8

5

3

6

9 10

7

(b) BrFS

8

9

9

10

10

8

9

9 11

10

1

3

4

7

8

2

5

6 10

9

(c) BFS

8

9

9

10

10

8

9

9 11

10

1

5

6

7

8

2

3

4 9

10

(d) CBFS

Figure 2.2: Subproblem exploration order for different search strategies. The red subproblem
is optimal, numbers inside nodes are subproblem lower bounds, and numbers outside the nodes
indicate exploration order. The algorithm starts with an incumbent solution of value 10. BFS
and CBFS use the lower bound as the measure-of-best, with ties broken arbitrarily. Note that this
requires a subproblem’s lower bound is computed prior to inserting it into the list of unexplored
subproblems.

10

(which can occupy a large memory by growing the search tree) during implementation of the

algorithm. Instead, the search strategy at each subproblem only stores the path from the root

of T to the current subproblem and the index of the last-explored child subproblem. Thus, at

the current subproblem, the next unexplored child is selected for exploration. If no unexplored

children remain, the algorithm backtracks to the closest ancestor node with unexplored children.

The next advantage of DFS is its ability to produce complete solutions early in the search

process, because complete solutions are usually at larger depths. Another advantage of DFS arises

when it is used to solve integer programming problems with the LP relaxations as lower bounds.

In particular, when exploring a child subproblem immediately after processing its parent, it is of-

ten possible to reuse information from the parent’s LP relaxation solution to speed up solving the

child’s LP relaxation. Reusing the optimal basis and its LU factorization when solving the child LP

is known as hot starting, while reusing only the optimal basis is known as warm starting (Atamtürk

et al., 2005; Chinneck, 2006). Other search strategies would need to store the appropriate infor-

mation in memory in order to take advantage of these techniques. Since storing factorization is

memory-intensive, hot starting is typically not used with other search strategies.

The DFS strategy has two disadvantages. The first problem is that DFS is often hindered

by an inability to escape from poor regions of the search space and explore more promising areas

that might enable better pruning. A related phenomenon, called thrashing, occurs when different

regions of the search space all fail for the same or similar reasons (Kumar, 1992). The second

problem occurs when search tree is extremely unbalanced. In other words, if some optimal solu-

tions are close to the root, but there exist long paths in T that do not lead to an optimal solution,

DFS can (unluckily) choose many long, bad paths before it explores a path leading to an optimal

solution. However, this computation time often could be avoided via pruning rules if the search

strategy instead chose to explore a short optimal path first. In fact, this behavior of DFS was first

noticed on problems where the search tree had unbounded depth (Slate et al., 1983), but the same

problem exists in trees with a few extremely long paths.

11

Some variants of the DFS strategy has been developed to overcome these limitations. One

common variant is the iterative deepening DFS algorithm (Korf, 1985), which place a limit on

the depth of any path explored by DFS; if the search process is not able to prove optimality using

this depth limit, the depth is increased and the search is restarted from the root. This variant can

decrease the amount of time DFS spends in poor regions of the search space, but requires repeated

exploration of previously generated subproblems. Meseguer (1997) proposed another algorithm

called interleaved DFS to overcome thrashing by performing depth-first search from multiple lo-

cations in the search tree simultaneously. This strategy can be performed by sequentially selecting

exactly one subproblem to explore from each different DFS path in the search tree before returning

to the first search path. DFS with complete branching is another variant of DFS which selects

the next child subproblem to explore as the one with the best computed lower bound. Although

this method explores the search tree more intelligently, it needs more memory space, because all

child subproblems of a subproblem must be generated. However, if the tree has a relatively small

branching factor, this increased memory usage is not likely to be significant.

2.4.2. Breadth-first search

BrFS explores all subproblems at the present depth prior to moving on to the subproblems

at the next depth level. This stratrgy is implemented in first-in, first-out or queue manner. The

advantage of BrFS strategy is finding an optimal solution that is close to the root of the tree, thus

operating well on unbalanced search trees. However, BrFS is usually not used in B&B algorithms

because it does not generate any complete solutions until late in the search process, which limits

pruning and results in extremely high memory usage. There are two exceptions for using BrFS as

search strategy in B&B. If dominance rules (which identify pairs of subproblems S1 and S2 that do

not both need to be explored to find an optimal solution) are employed or a good (heuristic) initial

solution is available (Sewell et al., 2012b).

12

2.4.3. Best-first search

BFS is a search strategy which explores U by expanding the most promising subproblem

chosen according to a specified rule. This strategy estimating the promise of every unexplored sub-

problem by a global “measure-of-best function” µ : 2X →R, which attempts to predict the quality

of any subproblem, and selects the next subproblem to explore as the unexplored subproblem with

the best value of µ . If the measure-of-best function µ assigns to each subproblem a value that is at

least as good as the value of the best complete solution that can be obtained from that subproblem

(i.e., µ provides valid lower bounds when minimizing or valid upper bounds when maximizing),

then BFS is sometimes called the A∗ algorithm (Dechter et al., 1985); such a measure-of-best func-

tion is called admissible. When sufficient memory is available to store the entire unexplored search

tree, BFS strategy is often used. BFS can easily be implemented by storing the list of subproblems

in a heap data structure, using the value of µ as the key (Cormen et al., 2009).

One of the most common choices for the heuristic evaluation function for minimization

(maximization) problem is a lower bound (upper bound) on the value of the best solution of

the subproblem. If the lower bound is strongly correlated with the subproblem objective value,

this heuristic evaluation function will encourage exploration of subproblems with better solutions.

However, one difficulty with this approach is that subproblems with promising LP bounds may not

actually contain good integer solutions. To remedy this, the measure-of-best function µ can use

an estimate of the best integer solution that exists at a given subproblem instead of the LP bound.

Such a search strategy is known as best estimate search (Linderoth et al., 1999; Achterberg, 2007).

Unlike DFS, BFS can move to different regions of the search space if the current region

appears less promising with respect to µ . Under certain assumptions (the absence of ties in the

measure-of-best function), BFS can be shown to explore the smallest number of subproblems of

any search strategy (Dechter et al., 1985). However, the first drawback of BFS is high memory

usage, since it must store all unexplored subproblems in memory at all times. The other disad-

vantage of BFS is delays in finding complete solutions (Sewell et al., 2012b). If there exist many

subproblems in U for which µ(S) = f (x∗), depending on the tie-breaking rule used, BFS may

13

spend much time in middle regions of the search tree and never explore an optimal solution (see

Figure 2.2c, in which nodes 3, 4, and 5 are explored before the optimal solution is found). In

this condition, BFS may be slower than DFS. To overcome these issues, usually a hybrid search

strategy is developed which is a combination of BFS and DFS so as to exploit the benefits of both.

In its most basic form, after exploring a subproblem, this hybrid search strategy will select one of

its children to explore next, as in DFS. This DFS-like behavior continues in a process called diving

, until a leaf subproblem of the search tree is generated. At this point, the measure-of-best function

is queried to select a new subproblem to explore, as in BFS. The diving process then starts from

the chosen subproblem. This algorithm is called BFS with diving .

2.4.4. Cyclic best-first search

The CBFS strategy, originally called distributed best-first search (Kao et al., 2009), can be

viewed as a hybrid algorithm between DFS and BFS. Intuitively, DFS spends much time in inten-

sification, due to the backtracking nature of the algorithm which leads to thrashing as explained

before. In contrast, the BFS strategy potentially performs more diversification by using a measure-

of-best heuristic function. The CBFS strategy attempts to diversify the search process more than

BFS while retaining some of the intensification properties of DFS. Moreover, CBFS attempts to

find good incumbent solutions early in the search process, as this will improve the performance of

B&B both as a heuristic mechanism, and will usually enable better pruning by the solver in later

iterations.

While BFS is implemented by using a single heap data structure to store all unexplored

subproblems, CBFS divides the unexplored subproblems over a collection of heaps, referred to as

contours. When a new subproblem is identified, it is inserted into one of the contours according

to a set of rules (e.g., all subproblems at depth d get stored in a contour associated with depth d).

To explore the search space, the CBFS strategy repeatedly iterates through all of the non-empty

contours, selecting the best subproblem (according to a measure-of-best function µ) from each

contour before moving on to the next one. For example, if contours are organized by depth, CBFS

14

will explore the best subproblem at depth 0, then depth 1, and so on; upon reaching the bottom of

the search tree, it will repeat the process starting from depth 0.

By separating subproblems into contours, the measure-of-best function effectively assigns

to each subproblem a local ranking within a single contour instead of a global ranking. Thus,

contours can be used to group subproblems that are more directly comparable. Cycling ensures that

each contour is visited frequently, which serves to diversify the search and can aid in generating

incumbent solutions (e.g., depth-based contours ensure that a leaf of the search tree is explored

every cycle). See Morrison et al. (2017) for more detail about CBFS.

2.5. Branching strategies

Branching strategies influence how children are generated from a subproblem in Line 9 of

Algorithm 1. Branching strategies can be categorized into two groups: binary branching strategies

and non-binary, or wide, branching strategies.

2.5.1. Binary branching

Binary branching strategies focus on partitioning a subproblem S into two mutually-

exclusive, smaller subproblems. One example for this branching strategy is the knapsack problem,

where one seeks a maximum-value selection of items to fit inside a storage bin with fixed capacity.

Subproblem S for an unassigned item i have two children; one in which the item i is included in the

knapsack, and one in which the item i is excluded from the knapsack (Kolesar, 1967). The integer

branching scheme for integer programming, described in Section 2.2, is another binary branching

example.

In some cases, the mechanism for performing the partitioning is more complicated. In the

graph coloring branch-and-price solver of Mehrotra et al. (1996), branching is performed by either

adding edges or contracting vertices of the graph to force a pair of non-adjacent vertices to either

share the same color or use different colors. Similarly, for the branch-and-price solver for the

generalized assignment problem (Savelsbergh, 1997), in which a series of tasks is assigned to a

group of workers to maximize profit, branching is performed by either including or excluding all

schedules that assign a particular task to a worker.

15

2.5.2. Non-binary branching

Non-binary branching is used when more than two children can be generated for a subprob-

lem. For example, in B&B algorithms to find maximum cliques or independent sets in a graph,

a set of unused vertices is maintained for each subproblem, and each unused vertex generates a

child with that vertex added to the child’s set (Morrison et al., 2014a). This branching method

is also known as wide branching (Babel, 1994; Held et al., 2012). Wide branching methods can

reduce the size of the search tree substantially. For example, if we use binary branching strategy

for maximum clique problem, each unused vertex should be considered individually which creates

a long sequence of subproblems.

Special ordered sets (SOS) (Beale et al., 1970; Beale et al., 1976), is one of the important

applications of wide branching strategy. There are two types of special ordered sets, denoted by

SOS1 and SOS2. A SOS1 is defined to be a set of variables for which not more than one member

from the set may be non-zero in a feasible solution, and a SOS2 is a set of consecutive variables

in which not more than two adjacent members may be non-zero in a feasible solution. Wide

branching strategies can be used in B&B to handle problems with SOS variables; for example,

when an SOS1 is selected for branching, the strategy creates one branch for each element in the

set. The subproblem for this set uses the chosen element and excludes all others. Finally, the

branching strategy creates one subproblem which uses no elements from the set. This strategy can

be generalized to handle SOS2, as well.

There are two potential problems about wide branching strategies. The first is that such

strategies usually do not create mutually-exclusive branches, so it is possible to arrive at the same

subproblem from several different paths. This problem can be resolved using a lexicographic

ordering rule (Geoffrion, 1969) or dominance rules (Section 2.6.2). The second problem arises

if the number of possible branches for a particular subproblem is very large. In this case, the

algorithm could get stuck generating children at a particular subproblem and never move on to

explore new regions of the search space. In addition, if the number of generated children is very

large at every subproblem, the size of the search tree will grow much more quickly. There are two

16

approaches to tackle this problem; the first one sets an arbitrary cap on the number of children that

can be generated at a subproblem. If the branching factor ever exceeds this limit, any additional

children are just discarded. This technique, used in the simple assembly line balancing solver of

Sewell et al. (2012b), can prove optimality if the branching factor is never exceeded, otherwise

it performs as a heuristic. The other method uses a delayed branching technique, where after a

certain number of children have been generated, the strategy delays generation of the remaining

children in the hopes that when it returns to the node, better bounds may have been computed that

allow it to prune children more effectively. This method was used in a branch-and-price solver for

graph coloring by Morrison et al. (2014a).

2.6. Pruning strategies

Pruning rules used to exclude regions of the search space from exploration (line 4 of Algo-

rithm 1). Pruning rules can greatly reduce the size of the search three in both search and verification

phases. Note that all active nodes that cannot be pruned by the pruning rules must be explored no

matter which search strategy is used, even if an optimal solution is known before the search begins.

There are many different classes of pruning rules, but they are usually problem-specific.

2.6.1. Lower bounds

In a minimization problem, lower bound on the objective function value at each subprob-

lem is the most common pruning rule. In this strategy, subproblems with lower bound not better

than the incumbent solution are pruned. In integer programming, the optimal value of the LP

relaxation is the most common lower bound choice. The quality of the LP relaxation value is

measured by the integrality gap of the formulation, that is, the ratio between the best integer so-

lution and the best LP relaxation value. Since, there may be many different MILP formulations

for a problem, some of these formulations may have better LP relaxations than others (higher op-

timal value of the LP relaxation is better and provide tighter lower bound). Thus, one technique

for improving lower bounds is to derive a new formulation with a tighter integrality gap (Arora

et al., 2002). For instance, Öncan et al. (2009) reported 24 asymmetric traveling salesman prob-

lem (ATSP) formulations and compared the strength of their LP relaxations and proposed a graph

17

to show the relationships between all LP relaxations. The branch-and-cut (Sections 2.6.3) and

branch-and-price algorithms (Sections 2.6.4) are common methods for exploiting integer program-

ming formulations with tighter bounds. Reformulation-linearization technique (RLT) transforms

a mathematical program with polynomial objective function and constraints into a linear program,

and uses the resulting LP bound to prune in B&B algorithm to find global optimal solutions to the

polynomial program (Sherali et al., 1992).

Lower bounds can be computed by relaxing various aspects of the MILP problems other

than integrality constraints. Combinatorial B&B (CBB) algorithm is a B&B algorithm in which

lower bound is computed using combinatorial methods other than LP relaxation of the original

MILP problem. For example, in traveling salesman problem and its variants, in which customers

must be visited by a single tour so that each customer must be visited exactly once, one common

relaxation is to drop subtour elimination constraints, called AP relaxation (Carpaneto et al., 1980).

In another research, Rysz et al. (2018) proposed a CBB algorithm to find clique clusters with the

highest betweenness centrality in a graph. They showed that an optimal solution to this problem

is either a maximal clique, or contained in a maximal clique with the same objective value and

propose an analytical upper bound for the betweenness centrality of any maximal clique containing

a given clique, and employed it to develop a CBB algorithm for solving this problem.

The general procedure is to attempt to prune using the easy lower bounds first, and then

move on to the more complex, but tighter, lower bounds if the easy methods are unsuccessful.

Another method for deriving lower bounds on integer programming problems is through duality.

Though there is no strong duality theorem for integer programming, one can still arrive at a notion

of weak duality. Given an integer program min{ f (y) | Ay ≤ b,y ∈ Z}, the Lagrangian relaxation

problem is P(λ) = min{ f (y)+λ (b−Ay) | y ∈ Z}, where λ is a non-positive vector of real-valued

weights called Lagrange multipliers. The optimal solution value for the Lagrangian relaxation is

always bounded above by the value of the optimal solution to the original problem. Thus, the best

bound possible may be computed as the solution to the Lagrangian dual problem, maxλ≤0P(λ).

The Lagrangian dual problem can be solved using subgradient optimization, a modification of

18

Newton’s method for piecewise linear concave functions (Bertsimas et al., 1997). Integer pro-

gramming duality methods have been used in Vila et al. (2014), Desrosiers et al. (2013), Gendron

et al. (2016), and Phan (2012).

2.6.2. Dominance rules

Dominance rules prune a subproblem if it is dominated by another subproblem, in other

words if subproblem S1 dominates subproblem S2, this means that for any solution which is a

descendant of S2, there exists an equal or better solution descending from S1. Thus, we do not

need to explore S2 and it can be pruned. Note that, as shown by Ibaraki (1977), it is not always

true that using dominance relations will improve the quality of the search process; however, there

are many cases in which dominance relations will improve the search.

There are two primary types of dominance rules, memory-based and non-memory-based.

Memory-based dominance rules to dominate an unexplored subproblem compare it to the explored

problems that have been stored previously in the search tree (Sewell et al., 2012a). Thus, they

require all explored subproblems to be stored during running algorithm. However, this may allow

for additional pruning to be performed that would be otherwise impossible. On the other hand,

non-memory-based dominance rules do not require the dominating state to have been previously

generated in the search process, because they are able to imply the existence of a dominating

subproblem, regardless of whether it has been explored or not. The advantage of these rules is

that they do not require additional memory to store the generated search tree, but they may not be

able to prune the same subset of problems that memory-based dominance rules can. Fischetti et al.

(2010) developed non-memory-based dominance rules in a B&B solver for generic mixed integer

programming problems. By solving an auxiliary problem, their solver was able to identify whether

a node in the tree is dominated by some other nodes (which have not been explored yet).

Dominance rules play an important role in B&B algorithms for solving MILPs with a high

degree of symmetry. In such problems, a particular solution may have many equivalent represen-

tations that appear as separate subproblems within the search tree (e.g., in finding the most degree-

central clique in a graph, specific vertices forming a structure can be permuted without changing

19

the solution). If the B&B algorithm fails to recognize this symmetry, it may end up performing

redundant work that can impact the performance of the algorithm greatly. To address this diffi-

culty, Margot (2002) and Margot (2003) introduced isomorphic pruning, which uses lexicographic

inequality tests at each node in the search tree to determine if the node can be pruned. Ostrowski

et al. (2011) proposed orbital branching, which identifies equivalent variables at a particular node

in the search tree using the group-theoretic concept of an orbit.

2.6.3. Cutting planes

Cutting planes for the first time were proposed by Gomory (2010) as a method for solving

integer programming and mixed-integer programming problems. A cutting plane is a constraint

that can be added to an integer program to tighten the feasible region without removing any integer

solutions. This fundamental idea was applied to B&B by Padberg et al. (1991) to develop an

algorithm called branch-and-cut. In this algorithm, new cutting planes (sometimes called valid

inequalities) are added to the LP relaxation at every subproblem in the search tree (note that a

valid inequality is a global constraint-it must apply at the LP relaxation of the root subproblem).

The algorithm of Padberg et al. (1991) was specific to the well-known traveling salesman problem,

but Balas et al. (1996b) proposed a generalization of branch-and-cut for binary integer programs.

Different types of cuts for general mixed integer programs were proposed by researchers (see

Cornuéjols (2008) and Marchand et al. (2002)). Gomory cuts are very efficiently generated from

a simplex tableau, whereas many other types of cuts are either expensive or even NP-hard to

separate. These cuts were shown to be of both practical and theoretical interest by Balas et al.

(1996a). Chvatal (1973) considered these cutting planes from a geometric perspective and showed

that a finite number of such cuts can be added to a pure integer program to yield the convex

hull of the integer feasible solutions. Cook et al. (1990) introduced split cuts, while Nemhauser

et al. (1990) introduced mixed integer rounding (MIR) cuts; the two approaches are equivalent

(Nemhauser et al., 1990). Lovász et al. (1991) and Balas et al. (1993) introduced lift-and-project

cuts for 0-1 mixed integer programming. Lift-and-project operates by lifting the LP relaxation

into a higher-dimensional space by adding additional variables, finding valid inequalities in this

20

higher-dimensional space, and then projecting the valid inequalities back into the original space

by deleting the extra variables. Balas et al. (2003) demonstrated the relationship between lift-and-

project cuts, intersection cuts (Balas, 1971), and Gomory mixed integer cuts.

Cutting planes can also be generated by exploiting local structure in a mixed integer pro-

gram. One well-known set of inequalities are cover inequalities, which are derived from viewing

individual constraints in the MIP as separate knapsack problems (Marchand, 1998; Atamtürk,

2005). Other examples of structural cuts include flow cover inequalities (Padberg et al., 1985) and

weight inequalities (Martin et al., 1997). Marchand et al. (2001) showed that many cuts based

on the structural properties of a MIP can be derived as MIR cuts using only the initial set of con-

straints in the MIP formulation. These results were utilized by Marchand et al. (2001) in a heuristic

procedure for generating cuts for arbitrary mixed integer programs.

Cutting planes for MIP have led to significant improvements in solver performance over

the recent years. Crowder et al. (1983) demonstrated how cover inequalities could be used to solve

large, sparse 0-1 integer programs in a reasonable amount of computing time. Balas et al. (1996a)

showed the effectiveness of Gomory mixed integer cuts in a branch-and-cut framework for 0-1

mixed integer programs; as a result, Gomory cuts are included in all modern MIP solvers today.

Computational results by Balas et al. (2008) have demonstrated the effectiveness of split cuts in

reducing the integrality gap through experiments with the split closure on MIPLIB instances; sepa-

rating such cuts in practice remains computationally difficult but progress is being made (Fischetti

et al., 2013). A computational study of the various cutting plane methods available in CPLEX 12.5

can be found in Achterberg et al. (2013). The results from those experiments indicated that MIR

cuts were the most effective, followed by Gomory cuts.

Another method of generating valid inequalities is through decomposition methods such

as Benders’ decomposition (Flippo et al., 1993). Benders decomposition is a strategy for solving

large-scale optimization problems (BnnoBRs, 1962; Geoffrion, 1972). The variables of the prob-

lem are partitioned into two sets: master problem variables and subproblem (this subproblem is

different from subproblem in the search tree) variables. The Benders algorithm iteratively solves

21

a master problem, which assigns tentative values for the master problem variables, and a subprob-

lem, obtained by fixing the master problem variables to the tentative values. In every iteration, the

subproblem solution provides certain information on the assignment of master problem variables.

Such information is expressed as a Benders cut, cutting off some assignments that are not accept-

able. The Benders cut is then added to the master problem, narrowing down the search space of

master problem variables and eventually leading to optimality. On one hand, Benders method is

employed to exploit the problem structure: the problem is decomposed into a series of indepen-

dent smaller subproblems, reducing the complexity of solving it (Lasdon, 2002). On the other

hand, Benders method opens a dimension for “hybrid algorithms” (Wallace et al., 2002; Eremin

et al., 2001) where the master problem and the subproblems can be solved with different methods.

The generation of Benders cuts is the core of Benders decomposition algorithm. Indeed,

valid Benders cuts guarantee the convergence of the iterations to the optimal solution of the orig-

inal problem, and also the cuts determine how fast the algorithm converges. The classic Benders

decomposition algorithm (Benders, 1962) was proposed for linear programming problems, the cut

generation of which is based on the strong duality property of linear programming (Lasdon, 2002).

Geoffrion has extended it to a larger class of mathematical programming problems (Geoffrion,

1972).

For integer programming, however, it is difficult to generate valid integer Benders cut,

due to the duality gap of integer programming in subproblems. One possible way is to use the

no-good cut to exclude only the current tentative assignment of master problem variables that is

unacceptable. Such no-good Benders cuts will result in an enumerative search and thus a slow

convergence. For some specific problems, better Benders cuts can be obtained (Jain et al., 2001).

For example, in the machine scheduling application, the cut that limits the incompatible jobs in the

same machine is generally stronger. For more general integer programming, logic-based Benders

decomposition (Hooker et al., 2003) was proposed to generate valid integer Benders cuts, but these

cuts contain a large number of disjunctions (Eremin, 2004), the linearization of which leads to huge

22

cuts with many auxiliary variables, complicating the master problem significantly. Hernández-

Pérez et al. (2004) gave an example of using Benders’ cuts in a branch-and-cut context to solve the

traveling salesman problem with both pickups and deliveries.

One interesting question with regards to this method of pruning involves the interplay be-

tween cutting plane generation and branching. In many cases, the set of generated cuts is too large

to allow all of them to be added, and it is often computationally expensive to generate new cuts,

so at some point cutting planes are no longer generated and branching occurs. However, the ques-

tion of when to stop generating cutting planes and start branching is an important problem when

implementing a branch-and-cut algorithm (Jiinger et al., 1995; Mitchell, 2002).

2.6.4. Column generation

Branch-and-price is one of the leading solution procedures for many large-scale integer

programming models (e.g., see Ropke et al., 2009; Barnhart et al., 2000; Belov et al., 2006;

Hwang et al., 2008). Such a method is a branch-and-bound algorithm where the lower bounds

are computed by a column generation algorithm. Column generation is an iterative procedure that

is use for solving linear relaxation of the master problem which is called the linear master problem

(LMP) in this context. For an overview of column generation, the reader is referred to Desaulniers

et al. (2006) and Lübbecke et al. (2005). The optimal solution value of the LMP is a lower bound

of its associated branch-and-bound node. To perform column generation, we use Dantzig-Wolfe

decomposition (Dantzig et al., 1960) to reformulate the MILP as a set-partitioning linear master

problem (LMP) that typically involves a very large number of variables. In fact, the master prob-

lem contains one variable for each extreme point and each extreme ray of the feasible domain of a

so-called subproblem. This domain is defined by a subset of the constraints of the original MILP.

The column generation procedure cannot directly solve the LMP because of its inability of enumer-

ating all variables. Instead, it is an iterative procedure that alternates between solving a restricted

linear relaxation of the master problem (RLMP) and a pricing subproblem. The RLMP is the LMP

restricted to a subset of all variables, which can be optimally solved by the simplex algorithm. The

goal of solving the pricing subproblem is to identify the columns that have negative reduced costs

23

with respect to the dual optimal solution of the current RLMP. If no such column is found, the

column generation procedure is terminated with an optimal solution to the current RLMP, which is

also an optimal solution to the LMP. Otherwise, we introduce one or more columns with negative

reduced costs into the current RLMP and start another column generation iteration.

Moreover, additional complexity is added when attempting to incorporate column genera-

tion with a branching strategy, because typical branching rules usually interfere with the structure

of the pricing problem. In other words, once some branching decisions have been fixed, new

negative-cost variables must be found that respect the branching decisions. This is often related to

the kth-shortest-path problem, which is NP-hard (Hartmanis, 1982). However, despite the apparent

difficulty of incorporating column generation with a branching algorithm, the Dantzig–Wolfe de-

composition procedure can often substantially tighten the lower bounds produced in the tree, while

at the same time reducing problem symmetry leading to thrashing behavior, and thus branch-and-

price has been empirically shown to produce substantial computational gains in practice.

To avoid interfering with the pricing problem structure, most branch-and-price algorithms

use alternative branching strategies that do not disrupt the structure of the pricing problem. The

branching strategy for graph coloring (Mehrotra et al., 1996) or for the generalized assignment

problem (Savelsbergh, 1997) are two such examples. Another general-purpose branching strategy

for branch-and-price algorithms involves branching on the original (non-decomposed) problem

variables (Vanderbeck, 2011). Morrison et al. (2014a) branched on the master problem variables

directly, but used a wide branching strategy to limit the number of branching decisions that interfere

with the pricing problem structure.

Branch-and-cut-and-price algorithm is a variant of Branch-and-price, where the linear re-

laxations are tightened by adding cutting planes. In branch-and-cut-and-price algorithm at each

branch-and-bound node, we first optimally solve the LMP using the column generation procedure

to obtain a lower bound. For the node that cannot be pruned, we next try to identify some inequal-

ities (cuts) that are violated by the current linear solution. If such violated inequalities are found,

we add them into the model and invoke the column generation procedure again to further improve

24

the lower bound. The above procedure is repeated until either the node is pruned or no violated

inequality can be found. These methods suffer from many of the same problems as branch-and-

price algorithms, since now the pricing problem must respect both the branching decisions and the

additional cutting planes added to the problem. However, Aragao et al. (2003) developed a new

method called robust branch-and-cut-and-price which further reformulates the master problem to

eliminate the interference of cuts and branching decisions with the pricing problem. This method

has been used with success in a number of vehicle routing and other graph problems (Fukasawa

et al., 2006; Uchoa et al., 2008).

25

CHAPTER 3. PROTEIN-PROTEIN INTERACTION NETWORKS

3.1. Introduction

Systems biology, or the computational and mathematical study of complex biological sys-

tems, has been an emerging field of modern computer science and engineering. One of its main

objectives is to reveal fundamental, architectural principles that provide us with better insight into

the underlying structure and function of all cells and microorganisms, while simultaneously map-

ping them onto the phenotype of an organism, often through the use of network science (Aittokallio

et al., 2006). In biological systems, genes, proteins, RNA, and metabolites are referred to as bi-

ological molecules. These molecules, or entities, interact with one another forming integrated,

highly complex networks, comprising cells and, consequently, organs and biological systems.

Protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), and

metabolic networks (MNs) are three of the most well-known types of biomolecular networks,

and are commonly used to investigate biological, cellular systems (Junker et al., 2011). Genome-

wide GRNs organize cell proliferation or differentiation into specific cell types, and regulate the

transitions between distinct cell-fates in multi-cellular organisms. GRNs consist of thousands of

genes that regulate one another (i.e., regulate gene expression) within a complex network (Huang

et al., 2005). MNs, on the other hand, are fully connected biochemical networks in which all pro-

cesses generating mass energy, information transfer, and specifying cell-fates are integrated within

a complex network of cellular constituents and biochemical reactions (Jeong et al., 2000).

Proteins are traditionally identified based on their individual role as catalysts, signaling

molecules, or building blocks in microorganisms; however, they also serve as computational

molecules, necessary for the exchange and transfer of information (Bray, 1995). According to the

post-genomic view, they are also responsible for a vast number of cellular processes and functions

based on their roles in a network of all protein-protein interactions (Jeong et al., 2001). In such,

usually dense, PPINs, proteins interact to form protein complexes and functional modules, which

in turn contribute in various cellular processes. Hence, the ability to identify and characterize

protein-protein interactions, as well as their organizing principles through networks, is considered

26

fundamental for understanding the mechanisms of biological processes at the molecular level. Per

Shoemaker et al. (2007), protein interactions can be classified based on strength, specificity, and

location of interacting partners.

Another striking property of PPINs is their modular organization, which represents a func-

tional association between their components. Proteins are organized in two types of cellular mod-

ules, namely protein complexes and functional modules (Han et al., 2004b). With the term protein

complex we refer to a group of proteins that interacts simultaneously and at the same location,

forming a physical object. As an example, consider protein transport and export complexes, or

transcription factor complexes. On the other hand, functional modules are groups of proteins tak-

ing part in the same cellular process, even when interactions might happen in different times and/or

places. Instances of such modules are the CDK/cyclin module (responsible for the cell-cycle pro-

gression), the yeast pheromone response pathway, etc. As proteins are fundamental entities that

control numerous biological activities, information on how they bind and interact to perform said

activities is an important scientific endeavor that can bring to light insight into cell mechanisms.

A protein-protein interaction (PPI) is defined as the physical binding of two or more proteins. A

collection of PPIs in a graph theoretic setting forms a protein-protein interaction network (PPIN).

These interactions provide organism cells with the necessary adaptability to various environmental

disturbances. Because of that, they are central to all biological processes and enable many differ-

ent organism functionalities. Therefore, a systematic analysis of PPINs in a biological system has

been prominent in our understanding of the functional organization of proteins, as well as of the

cell responses to external stimuli and stresses, such as diseases and changing environmental condi-

tions (Hao et al., 2016). PPINs are dense networks, organized in protein complexes and functional

modules (groups of nodes), which, in turn, contribute to various cellular processes and activities

(Han et al., 2004b).

Figure 3.1 illustrates a mapping of protein-protein interactions in Saccharomyces cerevisiae

(yeast), based on interactions provided by the STRING database of protein-protein interactions

27

(Szklarczyk et al., 2014). The visualization of the largest network component of all interactions

with a threshold score of 750 or more was performed using NetworkX (Hagberg et al., 2008).

Figure 3.1: The available protein interactions for Saccharomyces cerevisiae, as obtained from
STRING (Szklarczyk et al., 2014), and the resulting PPIN of the largest network component. All
protein-protein interactions with a score of below 750 were removed for visualization purposes.

The main motivation for this research can be summarized as follows: whether the topolog-

ical prominence of a protein in a proteome may be a good predictor of its biological importance?

the term proteome describes the complete universe of proteins and their interactions in an organ-

ism. The challenge we are focusing on is not new, as it has attracted numerous researchers and has

led to the investigation of various metrics, ranging from graph modularity (Narayanan et al., 2011)

to centrality (Hahn et al., 2005). There exist numerous measures of topological prominence, called

network centrality indices; local centrality indices like degree centrality assign centrality values

based on the topology of the node’s local neighborhood, whereas global centrality indices such as

closeness and betweenness centrality indices assign centrality values based on the the accessibility

of a network’s components and node’s role in maintaining the connectivity between pairs of other

nodes in the network, respectively. Even though by definition degree centrality is a local measure,

depending on the structure of the network, hubs may play an important role in maintaining the

28

overall connectivity of the network. One of the first connections between the two in the context

of a protein interaction network, the so-called centrality-lethality rule, was observed by (Jeong

et al., 2001), who demonstrated that high-degree nodes or hubs in a protein interaction network

of Saccharomyces Cerevisiae contain more essential proteins than would be expected by chance.

Since then the correlation between degree and essentiality was confirmed by other studies [4]–[7],

but until recently there was no systematic attempt to examine the reasons for this correlation. In

particular, what is the main topological determinant of essentiality? Is it the number of immediate

neighbors or some other, more global topological property that essential proteins may have in a

protein interaction network?

According to (Vogiatzis et al., 2019) there are some existing caveats with nodal metrics

which are covered by group centrality measures. First, assigning importance to a single protein

(resp. interaction), instead of a set of proteins (resp. interactions) tends to favor those proteins that

participate in large, dense complexes. Secondly, the datasets of PPINs are still not error-free (Hart

et al., 2006); assuming complete information can lead to significant misattributions of importance.

Last, some proteins that present low co-expression with their interacting partners would be dis-

regarded by such metrics even though they might have a significant role in coordinating different

complexes (e.g., “date" hubs). They proposed star centrality metric and showed it outperforms

nodal centrality metrics (degree, betweenness, and closeness), while at the same time it alleviates

all the above issues.

Also (Hart et al., 2007) demonstrated that essential proteins are distributed unevenly among

groups of densely connected and functionally related proteins, which they called them COmplex

BIological Modules (COBIMs). Therefore, the majority of the essential proteins lie in those CO-

BIMs that are enriched in essential proteins, which they called them Essential COmplex BIological

Modules (ECOBIMs).

Being able to use such objective metrics for studying the proteome is of importance, as

it can lead us to the detection of informal groups in the interaction network (Pereira-Leal et al.,

2004b). With the term “detection of informal groups" we mean the detection of sets or clusters

29

of proteins, based only on their interactions and the topological structure, and no other exter-

nally available information. Such detection techniques would enable us with objective methods

of measuring protein importance in the proteome independently of other biological experiments

and could guide future experimentation. In general, topological importance (also broadly referred

to as centrality) is a well-studied topic in complex networks, including protein-protein interaction

networks. In our work, though, we propose a set of novel centrality metrics for each protein in the

network. These metrics aims to capture both the individual interactions of every protein, as well

as the interactions of its open neighborhood.

In this chapter, we discuss the experimental techniques used to obtain protein-protein inter-

actions, and briefly describe the two most prominent such methods. We also discuss computational

in silico methods that are often used to identify such interactions. Finally, we present a small survey

on the databases currently available for obtaining this data and discuss the reliability and accuracy

of the proteomic data hosted, as well as interaction accuracy improvement techniques.

3.2. Graph representations for protein interactions

In this work, we will primarily focus on binary protein interactions, which constitute the

most commonly used PPIN structures. These interactions are often obtained by experiments such

as the yeast 2 hybrid (Y2H) system, presented later in this chapter. In a binary protein interaction

network, proteins interact in pairs and their corresponding nodes are connected by edges. Contrary

to the other two representations that are used, PPINs do not contain any information on the protein

complexes and how they interact, and hence computational techniques such as the ones discussed

in Sect. 4 are needed.

Another possible representation is through a complex intersection graph. In a complex

intersection graph, nodes now represent protein complexes with edges connecting complexes that

share one or more proteins (Gavin et al., 2002). Hence, edges represent protein memberships in the

same complexes, and are useful for representing common localization or architecture. Moreover,

this representation allows for a different weight of the edges (other than the reliability weight that

30

will be discussed in this research): this weight is higher when the number of common proteins

between two complexes/nodes is bigger.

Finally, a third commonly used representation is with the use of protein complex hyper-

graphs. A hypergraph consists of sets of vertices (proteins) and sets of hyperedges (protein com-

plexes), with each hyperedge containing a subset of the vertices. Protein complex hypergraphs can

be reformulated as bipartite graphs with the complexes connected to multiple proteins depending

on their memberships. In this setup, the degree of a vertex is the number of hyperedges (com-

plexes) it belongs to, and the degree of a hyperedge is the cardinality of the vertices (proteins) it

consists of. Ramadan et al. (2004) modeled the yeast protein complex data as a hypergraph and

showed that the resulting network showcased small-world and power-law properties. They also

proposed an algorithm to identify the core proteome, the maximum core of the protein complex

hypergraph, with their results showing that the core proteome is enriched in essential proteins.

3.3. Experimental techniques

Interactions between proteins can be identified and characterized by a wide variety of ge-

netic, biochemical, physical, and computational methods, as showcased in Table 3.1. These meth-

ods are categorized into two big groups: techniques that allow for screening large numbers of

proteins in a cell (also referred to as high-throughput methods) and ones that are typically used to

identify and characterize specific biochemical and physio-chemical properties of a single protein

complex (Shoemaker et al., 2007). Examples of the first group of high-throughput methods include

the well-known and commonly practiced yeast two-hybrid (Y2H) technique and affinity purifica-

tion followed by mass spectrometry, which are described in subsections 3.3.1 and 3.3.2. Methods

can also be divided into three categories, based on whether they can be applied in vivo, in vitro, or

in silico.

There are mostly two types of methods that lead to the creation and extraction of proteomic

data. Those are (a) binary methods, which extract direct physical interactions between proteins by

testing every pair predicted to exist, and (b) co-complex methods, which identify physical interac-

tions among members of a protein complex without necessarily determining the direct partners of

31

Table 3.1: This table presents some of the most prominently used methods for obtaining protein-
protein interactions.

Technique High/Low In vivo/ References
throughput vitro/silico

Affinity chromatography High In vitro
Cuatrecasas (1970), Gygi et al. (2002),
Peng et al. (2003)

Atomic force mi-
croscopy Low In vitro Yang et al. (2003)

Co-immunoprecipitation High In vitro
Moresco et al. (2010), Borch et al.
(2011)

Domain-pairs-based
methods High In silico

Wojcik et al. (2001), Valente et al.
(2013)

Electron microscopy Low In vitro Baumeister et al. (1999)
Fluorescence resonance
energy transfer Low In vivo Yan et al. (2003)

Gene Neighborhood
(Chromosome Proxim-
ity), Gene Fusion, and
Gene Expression

High In silico
Marcotte et al. (1999b), Enright et al.
(1999), Tsoka et al. (2000), Grigoriev
(2001) Pazos et al. (2008)

Ortholog-based se-
quence approaches High In silico Chen et al. (2006a), Lee et al. (2008)

In silico-2-hybrid High In silico Pazos et al. (2002)

NMR spectroscopy Low In vitro
Gao et al. (2004), Thompson et al.
(2015)

Phage display High In vitro
Tong et al. (2002), Sidhu et al. (2003),
Sidhu et al. (2007)

Phylogenetic Trees and
Profiles High In silico

Pazos et al. (2001), Craig et al. (2007),
Srinivas et al. (2008), Lin et al. (2013)

Protein-fragment com-
plementation High In vitro

Michnick et al. (2011), Remy et al.
(2015), Michnick et al. (2016)

Protein microarrays High In vitro
MacBeath et al. (2000), Templin et al.
(2002), Hall et al. (2007)

Structure-based ap-
proaches High In silico

Lu et al. (2002), Aytuna et al. (2005),
Hosur et al. (2011), Zhang et al. (2012),
Mariano et al. (2017)

Surface plasmon reso-
nance Low In vitro Hart et al. (1999), Cooper (2003)

Synthetic lethality High In vivo
Bender et al. (1991), Rutherford
(2000), Tong et al. (2001), Tong et al.
(2004)

Tandem affinity purifica-
tion – mass spectroscopy
(TAP/MS)

High In vitro
Rigaut et al. (1999), Gavin et al. (2002),
Rohila et al. (2004)

Yeast 2 hybrid (Y2H) High In vivo
Fields et al. (1989), James et al. (1996),
Uetz et al. (2000), Ito et al. (2001)

The methods are characterized by their high or low throughput capabilities, and their application in vivo, in vitro, or in
silico. References to each of the methods are also provided.

32

each interaction. Co-complex methods, unlike binary methods, measure then both direct and indi-

rect interactions between proteins. The yeast two-hybrid (Y2H) system (Fields et al., 1989), and

affinity purification followed by mass spectrometry (AP/MS) (Kumar et al., 2002) are, respectively,

the most commonly used binary and co-complex techniques for extracting protein interactions.

As will be shown in the following subsections, Y2H and AP/MS investigate different key

characteristics of the whole interactome and both (or, similarly structured techniques) are needed

for a high quality view of the full protein-protein interaction network (Yu et al., 2008). We now

proceed to describe these two systems in more detail.

3.3.1. Yeast two hybrid system (Y2H)

As already mentioned, the Y2H system identifies direct physical interactions between pairs

of proteins, represented as binary relationships (Ito et al., 2001; Yu et al., 2008; Venkatesan et al.,

2009). Early Y2H system measurements for Saccharomyces cerevisiae were used to show the

existence of a limited number of highly connected hub proteins (Jeong et al., 2001; Barabasi et al.,

2004) that coordinate cell organization, an impressive result that will be discussed in a later chapter

about essentiality and lethality.

Y2H uses the working principle that eukaryotic transcription activators commonly have

two domains: one directly binding to the DNA (referred to as the binding domain) and another

activating transcription (activating domain). The main idea (illustrated in Figure 3.2) is that the

two proteins being tested for interaction are indicated as fusion proteins (hybrids) with a DNA

binding domain and a transcriptional activating domain, with one of them playing the role of the

bait. The bait is fused to the binding domain, while the other protein (playing the role of the prey)

contains the activating domain. If the two proteins do indeed physically interact, then a reporter

gene is activated which can, in turn, be detected and measured (Fields et al., 1989).

Expectedly, there are some advantages and disadvantages associated with the Y2H system.

First, being an in vivo technique, it is quite simple, fast, and reasonably inexpensive, due to its

minimal requirements, especially when compared to the high volume of purified proteins which

are needed in traditional biochemical approaches. Furthermore, it does not require any previous

33

Bait

Prey

binding
domain

activating
domain

reporter gene

Bait

Prey

binding
domain

activating
domain

reporter gene

Figure 3.2: On the left, if the two (bait and prey) proteins interact, then the activating domain binds
to the binding domain and the reporter gene is activated. On the other hand (right), if no interaction
occurs, then the reporter gene remains disabled and is not transcribed.

knowledge of proteins and can be applied as soon as the matching genes are known. On the

other hand, it can only detect binary interactions and is not able to identify cooperative binding.

Another drawback is its inability to investigate certain types of proteins, such as transcription

factors, as their hybrids can activate the transcription without an interaction actually taking place.

Continuous use of artificial hybrids could lead to false negatives, that is, a true interaction might

escape identification under the Y2H technique. Last, given two interactions between proteins A

and B, and proteins B and C, Y2H does not reveal whether the two interactions do take place

simultaneously or whether they are exclusive to one another. For these main reasons, extracted

interactions by Y2H must be further analyzed in order to assess their biological relevance, as noted

by Yu et al. (2008).

3.3.2. Affinity purification followed by mass spectrometry (AP/MS)

AP/MS is a co-complex method that detects the presence of a protein within a protein

complex. In contrast to the Y2H system, AP/MS identifies physical interactions between proteins

in a complex without distinguishing whether those are direct or indirect (Yu et al., 2008). Hence,

the AP/MS method is dependent upon a pre-selection of a tagged protein with a molecular marker

34

(referred to as a “bait” protein). This protein is used to extract a group of proteins associated

with it (called “prey” proteins), followed by a biochemical technique to separate them through

co-purification (Berggård et al., 2007).

The interaction information obtained by co-complex methods is different than the informa-

tion obtained by employing binary techniques. A small example is provided in Figure 3.3, where

protein 1 directly interacts with proteins 2, 5, and 6, but also participates in the same complex with

every other protein. This is reflected in the interactions obtained by a co-complex method, as op-

posed to a binary one. It should be noted that, upon further processing, interactions that have been

extracted by employing a co-complex method can be “converted” to pairwise (direct) interactions

(Hakes et al., 2006).

It has been generally discussed in the literature that AP/MS more closely reflects the actual

multidirectional complexity of the real PPIN, seeing as it covers more than a mere subspace of

the whole interactome (Gingras et al., 2007), which is what Y2H does. On the other hand, the

probability of false interactions being present in the final PPIN increases with the use of AP/MS,

while the opposite is true for Y2H (Trinkle-Mulcahy et al., 2008; Boulon et al., 2010; Hubner

et al., 2010). This density of interactions also leads to increased difficulty in recognizing the actual

structural topology of protein complexes when using AP/MS (Gingras et al., 2007; Bensimon et

al., 2012).

3.4. Protein-protein interaction databases

The interactions identified by different studies (and using a variety of the techniques men-

tioned earlier) are then collected, documented, and organized in curated databases. This is an

invaluable process that allows scientists to characterize the entire interactome by properly combin-

ing, integrating, and leveraging information from a range of diverse experiments. It also pro-

vides non-domain scientists who are interested in developing novel quantitative methods with

excellent instances on which to test their approaches. A list of the most prominently used

databases for obtaining protein-protein interactions is presented in Table 3.2. Inactive databases

35

1

2

3

4

15 6

1

2

4

5

3

6

AP/
MS

1

2

5

6

Y2H

Figure 3.3: We observe here the original interactions (top), and the obtained interactions by a
binary method (bottom left) and a co-complex method (bottom right).

36

that had attracted significant scientific interest include BIND: the biomolecular interaction net-

work database (Bader et al., 2001; Bader et al., 2003b), which can now be downloaded from

http://download.baderlab.org/BINDTranslation due to the efforts of Isserlin et al. (2011),

who converted the material to the Proteomics Standard Initiative-Molecular Interaction 2.5 format

and made it available for download. Last, an excellent work attempting to help researchers navi-

gate the plethora of publications and data available on protein protein interactions is the web-based

service of iHOP (http://www.ihop-net.org/), created by Hoffmann et al. (2002).

We also provide here a screenshot of two prominent PPIN databases. The screenshots are

provided in Figures 3.4 and 3.5, and present two indicative data files that can be obtained from

STRING and BioGRID. The STRING file is more intuitive in its simplest version, and presents

the two interactors (separated by a space) along with an interaction score. The interactor field

consists of a numeric code (organism identifier, e.g., 6239 in the screenshot) and the interactor

itself. The BioGRID file consists of numerous fields. In the screenshots, we present all 24 fields in

two parts (as they would not fit in a single screenshot). The order the fields appear in is as follows.

First, a BioGRID interaction ID is provided, followed by the Entrez gene IDs for the two interactors

as well as the BioGRID IDs for the interactors. Their systematic names are provided later, and

their official symbols follow. Synonyms for the two interactors are provided immediately after,

and the experimental system that led to the discovery of the interaction and the system type are

presented later. The remaining fields deal with the author of the study, the PubMed identification

for the study, and the organism ID for the two interactors: if they belong to the same organism as

is the case here, these two numbers should be the same. Finally, the throughput (i.e., high/low)

and an interaction confidence score ranging between 0 and 1 are provided. The remaining fields

contain information on other information that is sometimes absent, such as qualifications, tags,

and the source database. The fields in bold would help identify the same interaction between a file

obtained by STRING format and by BioGRID.

37

http://download.baderlab.org/BINDTranslation
http://www.ihop-net.org/

Table 3.2: A list of 21 commonly used sources of proteomic data, available online.

Database Description URL References

3did
Database containing domain-domain interactions with
known 3D structures. An InterpreTS z-score (Aloy et al.,
2003) is provided to describe the interaction specificity.

http://3did.
irbbarcelona.
org

Mosca et al. (2013),
Stein et al. (2010)

APID

Agile Protein Interactomes Data Server contains known
and experimentally validated protein-protein interactions
for more than 400 organisms, combining information from
different sources/databases.

cicblade.
dep.usal.es:
8080/APID/

Alonso-López et al.
(2016), Prieto et al.
(2006)

atBioNet
Web-based network analysis tool integrating seven pub-
licly available protein-protein interaction databases; per-
forms protein complex and functional module detection.

https:
//www.fda.gov/
scienceresearch/
bioinformaticstools/
ucm285284.htm

Ding et al. (2012)

BioGRID
Database that archives and makes available large amounts
of protein interaction data; it completely covers the litera-
ture of S. cerevisiae, S. pombe, and A. thaliana.

http://
thebiogrid.org

Stark et al. (2006),
Oughtred et al. (2016),
Chatr-aryamontri et al.
(2017)

BioProfiling Performs network-based interpretation analyses based on
genetic and proteomic data.

http://www.
bioprofiling.de

Antonov (2011),
Antonov et al. (2009)

DIMA
Domain Interaction MAp (currently at version 3.0) contains
a list of predicted (by four computational methods) and ver-
ified (from other databases) protein domain interactions.

http://webclu.
bio.wzw.tum.de/
dima

Luo et al. (2010b),
Pagel et al. (2007),
Pagel et al. (2004a)

DIP

This Database of Interacting Proteins, curated both manu-
ally and using computational techniques, combines a vari-
ety of sources to list experimentally determined protein in-
teractions.

http://dip.
doe-mbi.ucla.
edu/dip/

Xenarios et al. (2000),
Xenarios et al. (2002)

DOMINE Known and predicted (by eight different computational
techniques) protein domain interaction data.

http://domine.
utdallas.edu

Raghavachari et al.
(2007)

HAPPI Contains physical and functional human protein-protein in-
teractions provided with a confidence score.

http://
discovery.
informatics.
uab.edu/HAPPI/

Chen et al. (2009),
Chen et al. (2017)

HINT High-quality interactomes for 12 organisms, including
Homo sapiens.

http://hint.
yulab.org Das et al. (2012)

HPRD Human protein-protein interaction data, curated manually
after reading the relevant literature.

http://www.
hprd.org

Peri et al. (2003),
Mishra et al. (2006),
Keshava Prasad et al.
(2008), Goel et al.
(2012)

IRView
Proteins interact through their interacting regions, and
IRView aims to serve as a viewer and retriever of such re-
gions for Mus musculus and Homo sapiens.

http://ir.hgc.
jp Fujimori et al. (2012)

MiMI

Michigan Molecular Interactions serves as a data aggrega-
tor for protein-protein interactions from different databases,
properly merged to include all origin information. A Cy-
toscape plugin is also provided.

http://mimi.
ncibi.org

Jayapandian et al.
(2006), Tarcea et al.
(2008), Gao et al.
(2008)

MIntAct
Formerly two different molecular (incl. protein) interaction
databases, MINT and IntAct, combined their efforts to store
and disseminate interaction data.

http://www.ebi.
ac.uk/intact/

Orchard et al. (2013),
Licata et al. (2011),
Kerrien et al. (2011)

MIPS Mammalian
Protein-Protein
Interaction Database

One of the most well-known sources for protein-protein in-
teraction data. It is a carefully curated database consisting
of only interaction data from individually performed exper-
iments.

http://mips.
helmholtz-muenchen.
de/proj/ppi/

Pagel et al. (2004b)

PathwayLinker
Web-based service that integrates protein-protein interac-
tions from multiple sources with statistical significance test-
ing.

http://
PathwayLinker.
org

Farkas et al. (2012)

PINA

Protein Interaction Network Analysis is a web-based re-
source which includes a database of protein-protein inter-
actions from six manually curated sources, along with tools
for visualization and analysis.

http://cbg.
garvan.unsw.
edu.au/pina/

Cowley et al. (2011),
Wu et al. (2009a)

PIPs PIPs is a human protein-protein interaction prediction tool
using a score to assess its plausibility.

http://www.
compbio.dundee.
ac.uk/www-pips

McDowall et al. (2008),
Scott et al. (2007)

ProLinks
ProLinks offers inferred, functional links between proteins
based on phylogenetic profiles, gene cluster, gene fusion,
and gene expression. Protein-protein interaction data

http://prl.
mbi.ucla.edu/
prlbeta/

Bowers et al. (2004)

STRING

STRING is one of the most comprehensive sources for pro-
teomic instances available in the literature. It includes ex-
perimentally validated and predicted protein-protein inter-
actions, along with physical and functional links, over more
than 2,000 organisms.

http://string.
embl.de

Szklarczyk et al.
(2017), Szklarczyk et
al. (2014), Von Mering
et al. (2005), Snel et al.
(2000)

UniHI

The Unified Human Interactome project integrates data on
human protein-protein interactions from different sources,
and using four methods (two computational and two exper-
imental).

http://www.
unihi.org

Kalathur et al. (2013),
Chaurasia et al. (2006),
Futschik et al. (2007)

38

http://3did.irbbarcelona.org
http://3did.irbbarcelona.org
http://3did.irbbarcelona.org
cicblade.dep.usal.es:8080/APID/
cicblade.dep.usal.es:8080/APID/
cicblade.dep.usal.es:8080/APID/
https://www.fda.gov/scienceresearch/bioinformaticstools/ucm285284.htm
https://www.fda.gov/scienceresearch/bioinformaticstools/ucm285284.htm
https://www.fda.gov/scienceresearch/bioinformaticstools/ucm285284.htm
https://www.fda.gov/scienceresearch/bioinformaticstools/ucm285284.htm
https://www.fda.gov/scienceresearch/bioinformaticstools/ucm285284.htm
http://thebiogrid.org
http://thebiogrid.org
http://www.bioprofiling.de
http://www.bioprofiling.de
http://webclu.bio.wzw.tum.de/dima
http://webclu.bio.wzw.tum.de/dima
http://webclu.bio.wzw.tum.de/dima
http://dip.doe-mbi.ucla.edu/dip/
http://dip.doe-mbi.ucla.edu/dip/
http://dip.doe-mbi.ucla.edu/dip/
http://domine.utdallas.edu
http://domine.utdallas.edu
http://discovery.informatics.uab.edu/HAPPI/
http://discovery.informatics.uab.edu/HAPPI/
http://discovery.informatics.uab.edu/HAPPI/
http://discovery.informatics.uab.edu/HAPPI/
http://hint.yulab.org
http://hint.yulab.org
http://www.hprd.org
http://www.hprd.org
http://ir.hgc.jp
http://ir.hgc.jp
http://mimi.ncibi.org
http://mimi.ncibi.org
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/intact/
http://mips.helmholtz-muenchen.de/proj/ppi/
http://mips.helmholtz-muenchen.de/proj/ppi/
http://mips.helmholtz-muenchen.de/proj/ppi/
http://PathwayLinker.org
http://PathwayLinker.org
http://PathwayLinker.org
http://cbg.garvan.unsw.edu.au/pina/
http://cbg.garvan.unsw.edu.au/pina/
http://cbg.garvan.unsw.edu.au/pina/
http://www.compbio.dundee.ac.uk/www-pips
http://www.compbio.dundee.ac.uk/www-pips
http://www.compbio.dundee.ac.uk/www-pips
http://prl.mbi.ucla.edu/prlbeta/
http://prl.mbi.ucla.edu/prlbeta/
http://prl.mbi.ucla.edu/prlbeta/
http://string.embl.de
http://string.embl.de
http://www.unihi.org
http://www.unihi.org

Figure 3.4: A screenshot of the S. Cerevisiae proteome file available by STRING. Each interaction
is represented by a row in the file.

Figure 3.5: Two screenshot sof the S. Cerevisiae proteome file available by BioGRID. Each inter-
action is represented by a row in the file. The first screenshot (top) presents the first 11 fields. The
second screenshot (bottom) presents the remaining 13 fields.

39

3.5. Reliability of databases

One of the most important issues typically associated with interactome databases and their

content is their reliability. A comparison of the PPINs obtained from different databases has re-

vealed surprising discrepancies: small overlap of available interactions, large error rates, even ap-

parent contradictions between datasets (Von Mering et al., 2002; Edwards et al., 2002; Goll et al.,

2006). These discrepancies arise due to a variety of reasons, one of which is the high noise rates

present in the output of the high-throughput techniques used to obtain the interactions in the first

place. Under some circumstances, these discrepancies are attributed to a selection bias, where in-

teractions that are not understood are removed (Mrowka et al., 2001). In any case, coverage is low

enough and the errors are unfortunately still common throughout, which warrants new techniques

to improve reliability (Hart et al., 2006). Many computational strategies have been proposed to

mitigate the impact of false positives and negatives in the obtained interactions, as noted by Peng

et al. (2016). Such techniques work by either predicting interactions that should be present and

adding them (leading to a decrease in the number of false negatives), or by evaluating the accu-

racy of the obtained interactions and removing those considered noise or that stand below a certain

threshold (which leads to a decrease in the number of false positives).

Methods to detect and assess PPIN reliability in the literature are categorized in three main

groups:

1. experimental-based methods;

2. topology-based methods;

3. and sequence-based methods.

Experimental-based methods are similar to the ones discussed in subsection 3.3. They are used to

validate and assess the reliability of the obtained interactions by using either direct bait-prey and

indirect prey-prey relationships, or frequency-based techniques which assume that the higher the

number of times an interaction is reported by different, independent experiments, the more reliable

it is prone to be (Sprinzak et al., 2003; Chua et al., 2006; Chiang et al., 2007).

40

To avoid the weaknesses of using experimental-based methods, topology-based methods

were introduced to either predict new and reliable interactions, or to assess existing interactions.

Saito et al. (2002) and Saito et al. (2003) proposed techniques that helped identify false positives

via computational measures derived from network topology, referred to as “interaction generali-

ties”. Liu et al. (2004) and Liu et al. (2008) used both local and global topological information

to filter reliable interactions as well as predict new, previously unreported, ones. Neighborhood-

based methods have also been used for predicting PPIs, with the average distance or the shortest

path distances between all proteins as a proxy-criterion to assess and predict interactions (Li et al.,

2006a; Fang et al., 2011; Birlutiu et al., 2014). Liu et al. (2009) then presented an iterative scoring

method to setup weighted PPINs, with each interaction weight indicating its reliability. Another

measure referred to as functional similarity weight was introduced by Chua et al. (2006) and is

an extension of using the common neighbors of two proteins to estimate their similarity (Goldberg

et al., 2003); instead, on top of this topological information it also employs a scoring scheme based

on the reliability of the source. FS-Weight, along with other methods that are based on identifying

common interacting partners (neighbors) between proteins, was shown to perform well, especially

when noise reduction schemes are used for preprocessing.

Such a noise reduction method is the one proposed by Kritikos et al. (2011). It works by

properly weighing interactions in a way that assigns higher confidence scores to more probable true

positive interactions. Initially, they applied their own method, along with three other commonly

used weighing techniques, to the S. cerevisiae interactome. Then, they used four weighted-graph

clustering algorithms to cluster the graphs obtained from the first step. This computational ex-

periment finally demonstrated that weighting schemes tend to improve protein complex prediction

remarkably, compared to the same results when using the data as is without any preprocessing.

Other techniques to improve the reliability of the used protein interactions include the PE-

measure proposed by Zaki et al. (2013) and CAPPIC (cluster-based assessment of protein-protein

interaction confidence) introduced by Kamburov et al. (2012a). Both take advantage of the expect-

edly modular nature of PPINs, albeit in different ways. The PE-measure assesses the reliability of

41

the available protein-proteins interactions by considering whether an interaction is supported or not

by its neighboring interactions. On the other hand, CAPPIC uses Markov Clustering on a generated

line graph of the overall PPIN (see Chapter 4 for a discussion of how using line graphs helps iden-

tify protein complexes and modules that are biologically significant, as, e.g., in the work by Pereira-

Leal et al. (2004b)). This clustering allows then for the scoring of interactions depending on

whether they agree (higher confidence) or not (lower confidence) with the expected modular nature

of the network. An implementation of CAPPIC as well as other computational techniques to as-

sess the reliability of the obtained PPIN can be found in http://cpdb.molgen.mpg.de/cappic

as part of intScore, an interaction confidence score tool (Kamburov et al., 2012b).

Chen et al. (2005) hypothesized that a pair of protein that are connected by a short path

of reliable interactions are likely to interact directly. With this working assumption in mind, they

introduced an index, referred to as the interaction pathway reliability index (IPR), on a pair of

candidates of interacting proteins as the maximum reliability of the shortest non-reducible indirect

path connecting them. In subsequent work, Chen et al. (2006b) introduced a method, referred to

as interaction reliability by alternative path, for repurifying the extracted interactions employing

topology-based metrics to identify and remove false positives, as well as to detect and add highly

reliable, but still unobserved, interactions. In the same logic of the underlying assumption that

proteins in the same modules have to share common functional properties, a multitude of clustering

methods can be used to assess interaction reliability and predict new connections (see Chapter 4

for more details on these methods).

Continuing, sequence-based methods consider the full genetic sequence information avail-

able and work under the assumption that high similarity in the sequence information of two proteins

can imply interaction or shared functionality. This kind of information can also be used either to

predict new interactions, as in the work by Guo et al. (2008), or to assess the confidence score

of existing interactions and infer the functions of uncharacterized proteins (Deane et al., 2002).

Methods that are based on gene co-expression typically use the Pearson correlation coefficient as a

criterion to identify high co-expression rates in the genes that encode the interacting proteins, and

42

http://cpdb.molgen.mpg.de/cappic

use this to assess protein-protein interaction reliability (Deng et al., 2002). We keep this discussion

rather brief as our focus with this survey is to present results related to PPINs, rather than delve

into the, admittedly very important and vast, literature of using full gene sequences for deriving

and evaluating such interactions.

Due to the general lack of available data for some of these techniques — an issue associ-

ated especially with those based on sequence information — methods that integrate information

from multiple sources have been successfully proposed and applied. Deane et al. (2002) and Deng

et al. (2002) were among the first contributions to propose methods that used similarity in mRNA

expression profiles to estimate the reliability of perviously observed interactions. Bader et al.

(2004) used additional features of interacting proteins, including their data source, the number of

interacting partners, and topological features, such as network clustering, functional similarity, co-

expression, as well as the presence of genetic interactions to finally assign confidence scores to

protein interactions. The scheme devised by Sharan et al. (2005) assigned probabilities to interac-

tions using a logistic regression model based on clustering, mRNA expression, and the number of

times an interaction had been observed in independent experiments. Myers et al. (2005), Marcotte

et al. (1999a), Jansen et al. (2003), and Von Mering et al. (2005) proposed more methods based

on calculating a log-likelihood score for each interaction to predict new protein interactions, in-

corporating combinations of different information including functional similarity, co-essentiality,

high mRNA expression correlation, and co-evolution. Last, Qi et al. (2005) and Qi et al. (2006)

calculated the probability of proteins interacting by integrating direct evidence (e.g., the type of

experiment used to report the interaction) and indirect evidence (e.g., gene expression, domain-

domain interactions).

Moreover, as it is generally assumed that interacting proteins are expected to be localized

to the same cellular component or to have a common cellular role (Sprinzak et al., 2003; Chua et

al., 2006; Chen et al., 2006b), Chua et al. (2008) categorized interacting proteins into four groups.

Proteins having both common cellular localization and common cellular role are considered the

most reliable, while those having no common cellular role and no common cellular localization

43

are considered least reliable, and those having a common cellular localization or a common cellu-

lar role but not both are considered to be of intermediate reliability. From information derived from

multiple organisms based on the evolutionary conservation principle (Liu et al., 2005), Ramani et

al. (2008) showed that a considerably higher log-likelihood ratio can be obtained by incorporating

co-expression that is conserved in a second genome.Marcotte et al. (1999b), Enright et al. (1999),

and Tsoka et al. (2000) used gene fusion events as a strong indication for underlying protein in-

teractions. The fact that proteins interact through their complementary interacting domains is the

central idea behind proposing approaches based on interacting domains (Sprinzak et al., 2001;

Wan et al., 2002; Han et al., 2004a; Wojcik et al., 2001) or interacting motifs (Tong et al., 2002;

Aytuna et al., 2005; Li et al., 2006b) to identify false negatives. Coevolution-based methods are

another group of methods to predict interacting proteins(Goh et al., 2000; Pazos et al., 2001; Pa-

zos et al., 2005). According to these methods, the interaction sites of proteins tend to coevolve,

which implies that mutations in one protein must be compensated by mutations in the interacting

partner-proteins (Fryxell, 1996; Pazos et al., 1997).

For a thorough review of the computational methods available for predicting interactions

based on sequence, evolution, co-expression, and other structural data, we refer the interested

reader to Keskin et al. (2016). To that same extent, Zahiri et al. (2013) also reviewed computational

methods for predicting and assessing the confidence of protein-protein interactions categorizing

them within network topology-based methods, methods based on genomic context and structural

information, methods based on text mining and literature mining (or database search), and methods

based on machine learning algorithms that use genomic/proteomic properties.

44

CHAPTER 4. PROTEIN COMPLEXES AND FUNCTIONAL MODULES

4.1. Introduction

One of the most striking and impressive topological properties of PPINs is their modular

organization. In general, networks from varied sources (social, biological, information) typically

possess groups of nodes that are very densely connected to one another, while simultaneously

having sparser connections to the rest of the network (Girvan et al., 2002). Such groups are referred

to as communities; for an excellent overview of community detection in graphs, including ones that

arise in computational biology, we refer the interested reader to Fortunato, 2010.

PPINs are no exception to this phenomenon with such communities playing the role of

protein complexes and functional modules. Moreover, it has been observed that proteins that are

involved in the same biological processes do tend to interact more often with one another (Von

Mering et al., 2002), as we also noted earlier in this survey.

Hence, community detection algorithms, also referred to as network clustering algorithms,

can provide us with methods to deconstruct a given PPIN into its “communities”. The general

insight behind identifying such communities is that these protein groups will also correspond to

structurally independent functional units in the proteome (Danon et al., 2005; Brohee et al., 2006).

Clustering is, of course, not applicable to only biological networks and PPINs. However, a simple

application of clustering techniques to PPINs, while suitable for other types of networks, does

not always yield protein complexes that represent functional modules. This is attributed to the

unique features and characteristics of PPINs that require that the employed clustering approaches

be carefully tuned and specifically designed.

Some of these unique PPIN features are summarized by Bhowmick et al. (2016). Among

these characteristics, we note the large-scale nature of the problem (typically including thousands

of proteins and hundreds of thousands of interactions), which requires that the clustering methods

used are scalable, the necessity for full coverage of the overall network, and the existence of both

dense and sparse functional modules within the already identified complexes. Last, another im-

portant feature is the overlapping nature of the obtained clusters, as proteins may possess multiple

45

functionalities (e.g., “housekeeping” proteins that participate in regular cell activities, such as cell

metabolism).

4.2. Detecting protein complexes and functional modules

In this section, the computational methods for detecting protein complexes and functional

modules from PPINs are organized in four general categories, each provided its own subsection:

1. identifying protein complexes based on interesting structures (e.g., cliques, clique relax-

ations, core-periphery, etc.);

2. identifying protein complexes based on clustering techniques;

3. identifying protein complexes through integrating multiple data sources;

4. identifying protein complexes in dynamic PPINs.

Table 4.1 presents all the approaches discussed in this section of the review.

4.2.1. Identifying protein complexes based on interesting structures

As already noted, there exists some correlation between PPIN topology and the functional

role and localization of groups of proteins (Brohee et al., 2006). Proteins with similar functional

properties are observed to interact with one another within relatively separated subgraphs of the

original PPIN (Von Mering et al., 2002). Identifying such protein complexes will then provide

us with a higher level of functional protein annotation, and a better understanding of the large-

scale organization of the cell and its activities (Brohée et al., 2008). Considering the property of

protein complexes to possess relatively high link-density (or, in simpler terms, more internal edges

that external ones), models and approaches to identify either dense subgraphs (King et al., 2004;

Kenley et al., 2011) or clique and clique-like structures (Adamcsek et al., 2006; Li et al., 2005; Cui

et al., 2008) have been developed to detect modules in PPINs.

In contrast, some recent studies have been shifting towards a realization that not all protein

complexes need necessarily form dense structures; instead, they can be sparsely connected as far

as the average degree within the cluster is concerned (Chen et al., 2012). This realization has led

46

Table 4.1: A table summarizing all the methods presented in this section.

Based on structures
Spirin et al. (2003) Maximal clique based
Adamcsek et al. (2006) k-clique based
Zhang et al. (2006a) CPM based
Bader et al. (2003a) Local neighborhood density based
Li et al. (2005) local clique merging
Bu et al. (2003) Quasi-clique based
Gavin et al. (2006) Core/attachments based
Leung et al. (2009) Core/attachments based
Wu et al. (2009b) Core/attachments based
Liu et al. (2009) Maximal clique-based
Nepusz et al. (2012) Cluster cohesiveness based

Based on clustering
Pei et al. (2007) Subgraph refinement based
Kenley et al. (2011) Graph entropy-based
Lian et al. (2010) Graph entropy-based
Chen et al. (2011) Graph entropy-based
Enright et al. (2002) Flow simulation
Srihari et al. (2009) Flow simulation
Satuluri et al. (2010) Flow simulation
Shih et al. (2012) Iterative flow simulation
Asur et al. (2007) Ensemble clustering based
Greene et al. (2008) Ensemble clustering based
Navlakha et al. (2010a) Integer linear programming based
Altaf-Ul-Amin et al. (2006) Local density and periphery based
Li et al. (2008b) Local density and distance based
Jiang et al. (2010) Weighted density based
Girvan et al. (2002) Edge betweenness based
Luo et al. (2006) Hierarchical module based
Mete et al. (2008) Structural clustering based on common neighbors
Rivera et al. (2010) Based on shared neighborhood
Wang et al. (2011) Based on local metric of edge clustering
Li et al. (2008a) and Li et al. (2009) Based on local metric of edge clustering
Rives et al. (2003) Agglomerative average-linkage clustering technique based on shortest path
Arnau et al. (2004) Agglomerative hierarchical clustering based on shortest path
Kim et al. (2010) Module inference by parametriclocal modularity
Zhang et al. (2010) Modularity density based method
Ruan et al. (2008) Based on spectral graph partitioning and a local search subroutine
Li et al. (2010) Based on functional similarity between the interacting proteins
Li et al. (2007) Based on dense neighborhood extraction using connectivity and confidence features

Integrating multiple data sources
Tanay et al. (2004) Biclustering algorithm by integrating PPI, gene expression, transcription factor binding, and phenotypic sensitivity
Snel et al. (2002) Based on network of gene associations
Chen et al. (2006c) Edge betweenness based
King et al. (2004) Local search cost based
Lubovac et al. (2006) Neighborhood search based on functional similarity
Xu et al. (2011) Based on GO annotation-based semantic similarity
Shi et al. (2010) multi-layer neural network
Georgii et al. (2009) dense module enumeration based
Luo et al. (2010a) Baesd on detection of conditional co-regulated protein complexes
Xiong et al. (2005) Based on hyper-clique patterns and GO annotations
Cho et al. (2007) Simulate information Flow based using GO annotations
Cho et al. (2008) Functional flow patterns based
Voevodski et al. (2009) Local protein community and conductance based
Dotan-Cohen et al. (2007) Hierarchical clustering-based method using tree-Sniping
Navlakha et al. (2010b) Hierarchical clustering-based method using variation of certain information metrics
Segal et al. (2003) Gene expression-based
Maraziotis et al. (2007) Density based
Zheng et al. (2008) Bayesian network based
Ulitsky et al. (2007) Confidence-based methodology for detecting co-expressed sub-networks
Zhang et al. (2006b) Kernel-based integration of PPI and protein functional annotation
Zhang et al. (2008a) Maximal clique-based by integrating affinity scores and PPI data
Jansen et al. (2002) Co-expression data-based
Ideker et al. (2002) mRNA expression data-based

Dynamic PPINs
Mucha et al. (2010) Generalized Laplacian dynamic approach
Jin et al. (2007) Mining algorithm
Tang et al. (2011) Markov clustering-based
Lu et al. (2006) Hierarchical clustering-based

47

to the proposal of many core-attachment approaches (Leung et al., 2009; Yu et al., 2011) and star-

like structures (Chen et al., 2012; Vogiatzis et al., 2019) to identify protein complexes of interest

or importance. Note here that with the term cliques we refer to fully connected subgraphs, while

induced star (and star-like) structures are special cases of core-attachment structures with a center

node surrounded by nodes that are pairwise not connected by an edge.

Spirin et al. (2003) proposed three algorithms to detect communities in PPINs of yeast and

were able to find more than 50 real-life protein complexes, including some that were still unchar-

acterized at that time. Their first methodology is based on a scheme of complete enumeration of all

cliques in the network, with the note that this could only be applied in practice in sparser graphs.

The second proposed approach employs superparamagnetic clustering, a technique that was suc-

cessfully applied in a series of clustering problems (Blatt et al., 1996). Last, their third method

aims to maximize the edge density of the obtained cluster/subgraph. The maximization problem is

then solved using a typical Monte Carlo procedure. The results from this work are very significant,

as they strongly support the modular structure of PPINs.

CFinder, proposed by Adamcsek et al. (2006), is another algorithm used to locate densely

connected groups of nodes. The method searches for such overlapping and densely interconnected

groups of proteins using the clique percolation method (Derényi et al., 2005) to identify k-clique

percolation clusters of interest, or modules. This identification is done through defining the adja-

cency of two cliques of size k as their sharing of exactly k− 1 nodes. The obtained cluster then

contains all nodes reachable through adjacent cliques as well as their edges. The performance of

CFinder is highly dependent on the value of k (recommended between 4 and 6), with bigger values

resulting in smaller sized groups. Later, Zhang et al. (2006a) also employed such a clique perco-

lation method and coupled it with an iterative process that takes into consideration the size of the

obtained modules. Based on an observation by Spirin et al. (2003) that most protein modules are of

moderate size, the technique proceeds with getting the modules with a bigger size and applying the

clique percolation method to them for k′ = k+1: this process continues until all obtained modules

are smaller than a (given) module size parameter.

48

Seeing as the performance of computational methods in PPINs is highly dependent on the

quality (accuracy and reliability) of the data (Li et al., 2010), a series of approaches have been

proposed that leverage these issues with appropriately weighing vertices and edges. We begin our

discussion of these methods with molecular complex detection (MCODE), proposed by Bader et al.

(2003a). MCODE is smartly weighing proteins based on their local density, defined as the density

of the highest local k-core in the neighborhood of the given protein, to provide us with a set of

non-overlapping high-density clusters. After the scores for each protein have been calculated, the

process starts from the protein with the highest score, and a cluster is built by recursively moving

outward and including all neighboring vertices whose weight is bigger than a given threshold.

Finally, MCODE refines the obtained clusters through (i) a “haircut” process to filter out complexes

without 2-cores, and (ii) a “fluff” process to add extra vertices to clusters.

Another method is local clique merging, that was proposed by Li et al. (2005), and is also

based on identifying complexes using cliques. Initially, their method generates the local neigh-

borhood graph for each of the proteins in the PPIN, and then iteratively removes neighbors that

are loosely connected. By doing so, the method “mines” local cliques for every protein. Then, the

method proceeds to merge two local cliques based on their affinity, defined as the ratio between the

square of the size of their intersection and the product of their cardinalities. The authors also show

that their method is not sensitive to incomplete protein interaction. Bu et al. (2003) applied spectral

analysis to PPINs in an effort to study their hidden topological structures. They were able to show

that for every eigenvector of the adjacency matrix (with two proteins being adjacent when they

interact with one another), those stemming from a positive eigenvalue reveal proteins that densely

interact (forming a quasi-clique). On the other hand, those stemming from negative eigenvalues

contain proteins that form a quasi-bipartite graph, and hence they interact more “outside” rather

than “inside”.

Requiring the presence of all possible links between nodes of a clique can prove restrictive

for certain applications. This is the insight behind a series of clique relaxations that were presented

49

by Pattillo et al. (2013). In the motivation for the work, the authors immediately provided an exam-

ple from protein-protein interaction networks: they showed that several proteins form complexes

that resemble clique relaxations, including k-cores and quasi-cliques. With the term γ-quasi-clique,

the authors mean complexes where instead of all nodes being pairwise adjacent, instead a fraction

of those edges is present. This fraction is denoted by γ . All clique relaxations offered in this study

are shown to relax at least one of the main parameters that define a clique: for example, a γ-quasi-

clique allows for missing edges, a k-club (a set of nodes whose induced subgraph has a diameter

of k) allows for the distance between two nodes to be higher than 1, and a k-plex allows a node to

be adjacent to fewer than all the other nodes in the complex.

On the other end of cliques, we find the distinction of proteins in “core” and “attachments”

groups. Their definitions, due to Gavin et al. (2006), are highly co-expressed and of similar func-

tionality proteins that serve as the central functional parts of protein complexes, and surrounding

proteins with an assistive functionality, respectively. Core proteins at each protein complex are ex-

pected to possess relatively more common neighbors. Furthermore, we can also anticipate the set

of all core proteins to be disjoint. With these assumptions in mind, Leung et al. (2009) developed

the CORE method to identify protein complexes through searching for their core and attachment

counterparts separately. CORE first predicts a set of disjoint candidates and calculates a p-score as

a measure of how likely a candidate is to be serving as the core of a protein complex. This measure

is calculated by taking into consideration the number of interactions between the potential core

and the rest of the proteome. After selecting a group to serve as a core, all non-candidate proteins

that are adjacent to the selected core are added as attachment proteins. Building on this idea, Wu

et al. (2009b) proposed a core/attachment-based method, referred to as COACH, that takes a simi-

lar route in two stages: first potential cores are identified based on each protein neighborhood, and

then the core is grown outwards to detect its attachments.

Continuing with proposing clustering algorithms on weighted PPINs, Liu et al. (2009) de-

veloped a clustering techniques based on iteratively merging maximal cliques to identify protein

complexes. Their iterative scoring method (called AdjstCD) assigns weights to pairs of proteins

50

with higher weights indicating higher confidence in the existence of their interaction. Their cluster-

ing algorithm begins by enumerating all maximal cliques in the PPIN, and follows it by assigning

a score to each clique based on its weighted density. Then, the cliques are sorted in decreasing or-

der of their scores and are iteratively merged or removed, based on their inter-connectivity scores.

Clique merging to identify clusters is not new: we already mentioned the CFinder (Adamcsek et

al., 2006) and local clique merging (Li et al., 2005) algorithms earlier in this subsection. However,

the advantage of the method by Liu et al. (2009) is its ability to work on weighted networks as well

as its success in also finding relatively low density protein complexes.

Still, one of the main concerns has to do with the overlapping nature of most protein com-

plexes, as multiple proteins participate in more than one functions. To overcome this, Nepusz et al.

(2012) proposed clustering with overlapping neighborhood expansion (ClusterONE), for detecting

overlapping protein complexes in weighted PPINs. The method works with seeding and a greedy

growth mechanism, similar to MCODE (Bader et al., 2003a). Two structural properties are used to

determine how likely a group of proteins is to represent a protein complex: they are the existence

of reliable interactions within the nodes of the cluster, and a good separation (lower reliability of

interactions) outside the cluster. In such a way, the authors can define a cohesiveness score for

a group of proteins by summing all weighted edges within and outside the cluster. Two clusters

obtained by iteratively and greedily growing them can then be merged, if the resulting subgraph

is still above a threshold. ClusterONE was also shown in the same study to have a superior per-

formance in identifying overlapping complexes than MCODE, Markov clustering techniques, and

maximal clique merging.

4.2.2. Identifying protein complexes by clustering techniques

Since proteins tend to exhibit strong interactions with other proteins participating in the

same complex, and weak interactions with proteins outside the complex (Pereira-Leal et al., 2006),

it comes as no surprise that there are many algorithms to discover subgraphs possessing such

properties in PPINs (Pereira-Leal et al., 2004b; King et al., 2004). A heuristic approach to identify

such densely connected inside, but sparsely connected outside clusters, was devised by Pei et al.

51

(2007). Therein, a “seed and refine” approach is proposed to identify promising dense and small

subgraphs that can be further refined or grown. This method was able to tackle the issues inherent

to overlapping cluster detection, as well as the presence of noisy edges, in an efficient way.

Graph entropy is a measure, borrowed from information theory, that reveals the structural

complexity of a graph: it is defined in such a way so as a loss of entropy would signal an increase in

the modularity of the graph. It was employed in multiple instances in PPINs, including the works

by Kenley et al. (2011), Lian et al. (2010), and Chen et al. (2011). In the first two approaches, a

random protein is selected as the seed vertex and its neighborhood as the seed cluster. The process

then iteratively decides to add or remove vertices on the border of the cluster to minimize its graph

entropy metric. Once a cluster of (locally) minimum graph entropy has been built, a new protein

is selected as the seed and the process continues until every protein is assigned to a cluster and

no more proteins can serve as a seed. In the work of Chen et al. (2011), an improved version

appears where the seed cluster is more restrictive than the seed protein neighborhood: instead it

can be selected as a clique of size k around the seed vertex (e.g., a triangle for a clique of size 3).

The logic is that single seed proteins might be insufficient to produce complexes of any biological

meaning; on the other hand, enhancing the seed cluster selection seems to improve the quality of

the obtained clusters.

Markov Clustering (MCL), proposed by Enright et al. (2002), is another, very well-studied,

and broadly applied clustering technique. In a comparison of four clustering methods for extracting

protein complexes from an unweighted PPIN, presented by Brohee et al. (2006), MCL, restricted

neighborhood search clustering, molecular complex detection (MCODE, which is described in the

following subsection), and superparamagnetic clustering were put to the test in six high-throughput

PPINs. The results of this analysis pointed towards the superiority of MCL. However, one of its

caveats, that could potentially prove detrimental is its sensitivity to noisy input which leads to

producing noisy clusters. It is for that reason, that MCL-CA (and its weighted counterpart, MCL-

CAw), were proposed (Srihari et al., 2009). Computational results indicate that MCL-CAw can

more accurately extract better protein complexes that simple MCL.

52

Seeing as Markov clustering is both fast and scalable, it is a natural fit for detecting protein

complexes in weighted PPINs. However, it may generate imbalanced clusters, and hence Satuluri

et al. (2010) proposed the MLR-MCL algorithm in an attempt to build more balanced clusters by

modifying the original Markov clustering algorithm. Another extension of Markov clustering is

to allow for the existence of overlapping clusters. To that extent, Shih et al. (2012) presented the

SR-MCL algorithm that addressed the limitations of other Markov clustering-based approaches and

enabled the detection of protein complexes with shared proteins. Pereira-Leal et al. (2004b) also

used a Markov clustering-based technique to successfully identify overlapping functional modules.

We now continue with multiple clustering-based approaches. The insight here is that gen-

erating multiple, independent, and with varying starting conditions, clusters and then combining

them to obtain a single, comprehensive, “consensus” cluster should yield better leveraged results.

This is the idea behind the ensemble clustering framework by Asur et al. (2007), who combined dif-

ferent topology-based distance metrics with three graph clustering approaches to finally obtain six

different baseline clustering methods. These methods were independently run on and a consensus

method (based on principal component analysis) was employed to deliver the consensus clustering

output. Allowing for overlapping clusters is important, and is allowed in the non-negative ma-

trix factorization-based ensemble method by Greene et al. (2008). Last, the MOD-ILP algorithm

(Navlakha et al., 2010a) exploits the multiple near-optimal clusterings that exist to explore the

dynamics of network clusters. To do that, the problem is formulated as integer linear program.

Overall, this last approach provides us with an ensemble of distinct and highly modular network

partitions.

Smart edge and vertex weighting schemes can also improve several well-known clustering

approaches. Such an idea was employed by Altaf-Ul-Amin et al. (2006) in the development of

DPCLus, based on subgraph edge density and the cluster property of every node. This last notion

is defined as the ratio of the cardinality of the set of edges from a node to a given cluster over

the product of the cluster density and its size. The insight is that the larger the cluster property is

for a given node, the closer it resembles (topologically) the rest of the cluster and thus the higher

53

the chance it is part of it. In the same logic, IPCA was later proposed with a new set of rules for

expanding clusters and weighing vertices (Li et al., 2008b). Subgraphs obtained by IPCA have

a smaller diameter (or, a smaller average intracluster nodal distance), and hence satisfy different

cluster connectivity-density properties.

With PPI data becoming bigger, it is necessary for clustering techniques to be able to handle

large-scale PPINs in a scalable and efficient manner. Such an approach is SPICi, proposed by

Jiang et al. (2010), which is able to handle the computational complexity of clustering large-scale,

weighted PPINs. SPICi works by selecting a pair of seed proteins and builds a cluster by selecting,

at each point, the unclustered protein with the highest weighted sum of edges towards the cluster,

if that sum is above a given threshold. Moreover, the protein is only added to the cluster, if it

keeps the cluster density high enough. It is clear from this description that these two checks are

controlled by user parameters, namely a threshold for admissible node to cluster weighted sum,

and a threshold for the lowest allowable cluster density.

We now focus the discussion towards hierarchical clustering techniques. Hierarchical clus-

tering is prominent in PPINs, both weighted and unweighted. It is the traditional method of choice

for detecting communities in a wide variety of networks, and of course, biological networks and

PPINs are no exception. In the literature, we mainly use two types of hierarchical clustering,

namely agglomerative and divisive algorithms. Agglomerative algorithms calculate a weight for

every pair of nodes, that captures how closely connected these two nodes are. The nodes are then

naturally organized into a hierarchy beginning from the stronger weight pair and iterating over all

of them. In contrast, divisive algorithms work in the opposite way: the whole network is a cluster

that is divided into components through the use of cuts. A good cut would be one that only affects

intra-community edges, but does not touch inter-community ones. For an excellent overview we

refer the interested reader to the work of Radicchi et al. (2004).

Designing a good hierarchical clustering algorithm, then, is akin to making two decisions:

(i) how to define a criterion to select edges when merging or splitting clusters, and (ii) how to

define a measure to assess the quality of the outputted clusters. In their fundamental work, Girvan

54

et al. (2002) proposed a divisive algorithm to detect communities in social and biological networks.

Their approach was based on edge betweenness. More specifically, Girvan et al. (2002) generalized

the classical node betweenness metric to edges: a higher edge betweenness implies that the edge

is used by multiple shortest paths, and hence it is prone to connect two distinct communities.

Luo et al. (2006) proposed an extension to the notion of degree from a single node to a

subgraph and defined a new agglomerative algorithm, called MoNet, by combining the algorithm

of Girvan et al. (2002) with a new definition of modularity. Based on their computational results,

it can be concluded that MoNet complexes demonstrate stronger co-clustering of related genes;

moreover, their clusters are more robust. One more note has to do with calculating betweenness

in large-scale PPINs. This is an expensive calculation (with a quadratic running time), and hence

impractical for many instances. To tackle that, Mete et al. (2008) proposed a linear time algorithm

called SCAN that employs the notion of indirect connections for detecting modules. The basic idea

of the algorithm is that the similarity between two proteins can stems from their shared neighbors.

Last, NeMo (Rivera et al., 2010) is one more shared neighbor-based agglomerative hierarchical

clustering technique that can be used to predict the association between two proteins.

The high presence rates of errors and noise in high-throughput PPI data are also problematic

to the application of hierarchical clustering methods, seeing as they are sensitive to noisy networks.

Thus, Wang et al. (2011) developed a fast hierarchical clustering algorithm by using the local

metric of edge clustering. Their computational experiments revealed that applying this local metric

instead of a global, more expensive, metric of edge-betweenness not only enhanced the efficiency,

but also increased the robustness to increasing levels of false positives. Presenting a new definition

of edge clustering coefficient and using a weighted PPIN, Li et al. (2008a) and Li et al. (2009)

propose an even faster agglomerative algorithm, that is computationally efficient and that can be

applied in very large-scale PPINs.

Continuing with hierarchical clustering methods, Rives et al. (2003) investigated the fol-

lowing three ideas. First, the shortest path between two nodes is more likely to be the one used

to associate two proteins. Secondly, the vector of shortest paths from a vertex to all other vertices

55

constitutes a unique vertex profile. Last, a protein complex would consist of vertices with similar

shortest path profiles. Using the shortest path matrix and defining the association matrix as 1/d2

and applying an agglomerative average-linkage clustering technique revealed the modular orga-

nization of the yeast signaling network. In a similar, distance-related, note, Arnau et al. (2004)

proposed a clustering software called UVCLUSTER, that iteratively explores distance datasets us-

ing a agglomerative hierarchical clustering. This technique converts the shortest distance between

any two proteins of a PPIN into secondary distances that measure the strength of connection be-

tween each pair of proteins at the presence of all group proteins. In all the techniques discussed so

far, a common strength is their capability to build a complete hierarchy of clusters corresponding

to any PPIN that enables the analysis of clustering in multiple levels with a full coverage of the

PPIN. However, as a deterrent to their application, these methods do not allow for overlapping

clusters (Bhowmick et al., 2016).

Regarding the second important decision to be made when designing a hierarchical cluster-

ing algorithm, multiple quantitative measures have been proposed to evaluate the discovered clus-

ters. Modularity maximization is probably the most widely used community structure detection

model for networks (Newman, 2016). Modularity, defined as the number of connections within a

specific community minus the expected number of connections within the same community when

the connections are random (Newman et al., 2004), has been a prominent measure in evaluating

hierarchical clustering. Global modularity is limited in its capability to identify small cardinality

complexes in large-scale networks (Fortunato et al., 2007). Thus, a localized modularity counter-

part was proposed by Muff et al. (2005). Since modularity and localized modularity portray two

extreme case measures to compute connectivity in a PPIN, and it could be that neither provides us

with high quality protein complexes, Kim et al. (2010) presented miPALM (module inference by

parametric local modularity) to extract protein complexes. They predicted 138 new modules in the

yeast network by applying their method.

56

Modularity in PPINs has been such an important property; it is for that reason that a wide

variety of algorithms has been proposed over the last decade to optimize modularity. As an exam-

ple, maximizing modularity via simulated annealing is common, but since the possible divisions of

a network grows to be exponentially large, especially for huge networks, maximizing modularity

is expected to be intractable. Hence, Zhang et al. (2010) developed a metric of modularity density

as an alternative measure to evaluate the quality of clusters which were discovered earlier by Li

et al. (2008c). Clusters with larger values of modular density are also higher quality communities.

However, even optimizing modular density instead of modularity does not come with a tractable

algorithm, hence the authors resorted again to the use of simulated annealing. The obtained results

make the case for using modular density as it provides better quality protein complexes. Ruan

et al. (2008) proposed a QCUT algorithm that combines spectral graph partitioning and a local

search subroutine to optimize modularity. A second algorithm, HQCUT, was also developed to

recursively divide communities into smaller ones. Similarly to the HQCUT algorithm, Sun et al.

(2011) proposed a different iterative network partitioning algorithm.

Proteins in the same complex usually share the same or similar function properties. Hence,

combining such functional annotations with topological information could prove a useful method

to detect protein complexes in PPINs. One way to incorporate this functional information is by

properly scoring interactions based on the functional similarity between the interacting proteins

(Li et al., 2010). An example of such an integration is the dense neighborhood extraction using

connectivity and confidence features (DECAFF) algorithm (Li et al., 2007), which is an extension

of the local clique merging algorithm. DECAFF first extracts local dense neighborhoods on top

of local cliques for each protein in the network using a hub-removal procedure, and then merges

these neighborhoods based on their affinity to form maximal dense sub-graphs that correspond to

protein complexes. By extracting both dense subgraphs and cliques (instead of only cliques) the

algorithm aims to balance the possible data incompleteness (missing interactions) of the PPIN.

To mitigate false complex detection, the authors model the PPIN as a weighted network, with

57

each edge weight representing the interaction reliability. Upon detection of the protein clusters,

complexes consisting of interactions of low weight are filtered out.

4.2.3. Identifying protein complexes by multiple data integration

One of the major issues that keeps coming back is the fact that there exists no single compu-

tational approach with both sensitivity and specificity at 100%, i.e., no false negatives or positives

(Chatr-aryamontri et al., 2008). The intrinsic noisiness of high-throughput methods as well as the

complex connectivity of PPINs requires an integration of data from multiple sources to improve

the effectiveness of module detection algorithms (Tong et al., 2002). As we saw in Chapter 3, the

world of high-throughput protein protein interactions does not stop at Y2H and AP/MS; instead,

we have information on the reliability of these interactions (Deane et al., 2002), gene expression

and protein evolution (Pazos et al., 2008), gene ontology (Ashburner et al., 2000), among other

biological information.

In addition to high-throughput experimental methods such as Y2H and AP/MS there are

other source of information about PPIs such as the reliability of experiments (Deane et al., 2002),

the gene expression profile (Komurov et al., 2007; Li et al., 2012b; Akker et al., 2011), the gene

ontology terms (Ashburner et al., 2000), and the subcellular localization annotations (Friedel et al.,

2008) that can be used to evaluate the reliability of PPIs and their biological properties. Hakes et al.

(2008) underlined that although there are problems with high noise rate in PPIs, the degree of biases

in applying reliable data can be as problematic as the data quality, and hence alter the underlying

structure of PPINs. Considering the fact that different experimental methods do not have the

same reliability, one way to assess the reliability of interactions is the frequency of presence in

different datasets. This implies that interactions observed at multiple datasets are more likely to

be true than those that have only been observed once. Thus, weighting interactions according to

the different experiments they are extracted from and the different times they are reported by a

specific method, one can assess the reliability of PPIs (Chen et al., 2013). Chatr-aryamontri et al.

(2008) stated that using appropriate scoring threshold for the weighted PPIN that produced by

reflecting all experimental supports can led to more biologically relevant conclusions drawn from

58

computational methods. Tan et al. (2010) proposed an algorithm to combine the scores of PPIs

from different experimental methods to identify the core components of complexes.

It is widely used that genomic associations between genes lead to functional associations

between the corresponding proteins. Besides, there is a direct relationship between the strength

of these associations: co-occurring genes in a diverse set of species are more likely to physically

interact than genes that occur together in just two species, and protein that are connected through

gene fusion or gene order conservation are more likely to be member of the same complex than

those that are merely encoded in the same genomes (Snel et al., 2002). Various genomic contexts

such as gene expression profiles, gene fusions, phenotype data, gene co-occurrences, and transcrip-

tion factor binding data have been applied to predict functional connections (Huynen et al., 2000).

Tanay et al. (2004) proposed a biclustering algorithm by integrating a highly heterogeneous set of

experimental data including protein interactions, gene expression, transcription factor binding, and

phenotypic sensitivity. They used a weighted bipartite graph to model all genomic data with nodes

representing genes on one side and properties of genes or encoded proteins by them on the other

side. In this model, an edge between gene node g and property node v with a weight of w repre-

sents that gene g possesses that property v with probability w. In that work, the authors provided

evidence for the hierarchical modular organization of yeast, and showed that smaller modules can

be incorporated into supermodules. Finally, they also predicted the function of more than 800

uncharacterized (at that time) yeast genes.

Different kinds of associations between genes are used to identify functional associations

between proteins. For example, gene fusion, conservation of gene order, and co-occurrence of

genes (phylogenetic profiles) are common (Ge et al., 2001; Dittrich et al., 2008). Snel et al. (2002)

used conserved gene order to connect genes together and form a network of gene associations in

which nodes are orthologous groups and edges represent the genomic relationships between them.

In order to identify such orthologous groups of genes, they clustered the network and found func-

tional categories for groups by comparing them to the clusters of an orthologous groups (COG)

database. Among different types of genomic information used, gene expression profiles are the

59

most common complementary information for data integration. Chen et al. (2006c) used microar-

ray expression profiles to add weights to PPINs: they introduced the idea of “non-redundance” into

the calculation of edge-betweenness to resolve the imbalanced partitioning observed.

Cost-based methods, that assign costs to a partition in the network by defining a proper

cost function, are prominent, too. As an example, the restricted neighborhood search clustering

(RNSC) algorithm combines both topology-based and gene ontology information in order to detect

protein clusters (King et al., 2004). The method is randomized and resembles the well-known

tabu search methodology. The method is initialized randomly and then proceeds to transfer nodes

between clusters with the goal of minimizing the total clustering cost. Clearly, such moves can

lead restricted neighborhood search clustering to converge to a local minimum – to avoid that, the

authors recommend diversification, multiple start points, as well as prohibiting certain moves. As

the resulting complexes can be of average quality, a series of post-processing techniques are used,

ranging from the discarding of smaller sized clusters as well as lower density clusters, to using

known biological data from protein functionality to calculate the functional homogeneity of the

obtained clusters (and discard those falling below a cut-off threshold). However, it is unclear how

the method could be extended to account for the overlapping nature of some protein clusters or the

existence of interaction weights.

The Gene Ontology (GO) database and informatics resource (Gene Ontology Consortium,

2001; Gene Ontology Consortium, 2004) contains information that spans molecular functions,

biological processes, and cellular components. The GO is used as a de facto standard for annotating

gene products (Gene Ontology Consortium, 2001; Deng et al., 2004). Some methods have been

proposed to predict the function of proteins from PPI graphs using GO (Karaoz et al., 2004; Lord

et al., 2003). These GO-based functional annotations are another source of information which can

be used to assign weights to PPINs (Ashburner et al., 2000). Because of the significant correlation

between GO-based semantic similarity of gene products and their sequence similarity, GO was

used for measuring the similarity between gene products. Combining new functional properties

with topological information, Lubovac et al. (2006) proposed two network weighted measures to

60

analyze PPINs referred to as weighted average nearest-neighbors degree and weighted clustering

coefficient. To calculate these measures, they developed a GO-driven semantic similarity method

that used interaction weights as a measure of interaction strength. Then, to prove the usefulness

of their measures they proposed their SWEMODE (Semantic WEights for MODule Elucidation)

algorithm, as a method to identify modules containing functionally similar proteins. SWEMODE

begins by ranking proteins according to their weighted neighborhood cohesiveness, and considers

the nodes with the highest rank as seeds for candidate modules. Then, the algorithm proceeds

to search the neighborhood of each seed protein iteratively, to find densely connected proteins

which have high functional similarity. Xu et al. (2011) developed a GO annotation-based semantic

similarity method to assign reliability values to every interaction. The OIIP algorithm uses the

vertex weight as a measure for selecting seeds. It sorts vertices in a non-increasing order and then

starts with the most highly ranked vertex and grows it to a cluster; the nodes that participate in that

cluster are then removed from consideration and then next highly ranked vertex is picked. OIIP is

similar to IPCA with the difference that it computes vertex weight based on an updated weighted

network, while IPCA calculates weight of a vertex based on the original network.

Another approach that uses a GO-based similarity method to assign weights to interaction

to boost the reliability of PPINs is due to Shi et al. (2010). Considering the fact that modules

may overlap with each other and protein complexes are not necessarily dense subgraphs, they

proposed a multi-layer neural network by integrating both topological and biological properties of

proteins to identify protein complexes. A dense module enumeration algorithm was developed by

Georgii et al. (2009). It enumerates all densely connected modules that satisfy a density criterion

in a weighted PPIN. This enumeration approach has the ability to integrate additional constraints

from phenotypic profiles, evolutionary conservation, and tissue-specific modules, improving its

performance. Recent studies indicate that there is a strong correlation between gene expression,

transcription regulation, and protein interactions (Luo et al., 2010a). In that same work, Luo et

al. (2010a) integrated gene expression data, transcription regulation data, and PPI data to detect

61

successfully a specific kind of protein complexes, referred to as conditional co-regulated protein

complexes.

Xiong et al. (2005) proposed an approach based on hyper-clique patterns to extract func-

tional modules from protein complexes. Exploiting the GO annotations, they found that proteins

within the same pattern are more likely to perform the same function and to participate in the same

biological process. Furthermore, a 3-D structural view of proteins within a detected patten revealed

that a hyper-clique can be shared by different protein complexes performing various functions and

several hyper-cliques with different functions can participate in the same protein complex. Cho

et al. (2007) proposed a flow-based approach to identify overlapping modules in a weighted PPIN.

They developed novel semantic similarity and semantic interactivity metrics that used GO anno-

tations to assign reliability values to protein interactions. Given this weighted PPIN, their method

starts with selecting a small number of informative proteins based on the weighted degree, and

then simulates the information flow from each informative protein through the whole network to

determine proteins that are functionally influenced by that protein. In a follow-up study, Cho et al.

(2008) extended the informative protein-based approach by introducing functional flow patters as

a sequence of the functional influence of a source protein to a set of target proteins. Then, they

exploited a pattern-based clustering algorithm (Wang et al., 2002) to identify their final modules.

Voevodski et al. (2009) developed local protein community finder which used local clustering algo-

rithms called Nibble and PageRank-Nibble (Andersen et al., 2006; Spielman et al., 2008). Starting

from a queried protein, their method looks for a cluster of good conductance in the protein’s neigh-

borhood. To evaluate the functional coherence of identified clusters, they used functional distances

that are derived using the GO classification scheme.

Another group of hierarchical clustering methods, similar to the ones discussed earlier,

is annotation-driven clustering. To improve the biological significance of the computationally

obtained clusters, Dotan-Cohen et al. (2007) proposed a novel partitioning scheme, called Tree-

Sniping, that partitions the hierarchical tree by snipping-cutting edges at different levels so as

to maximize the consistency of induced clusters. To achieve that, background data such as GO

62

annotations and functional classifications were used. Navlakha et al. (2010b) also presented VI-

Cut to decompose a hierarchical tree into clusters with the objective to match the resulting clusters

to a set of known annotations based on their variation of certain information metrics.

In the work by Segal et al. (2003), gene expression and protein interaction data were in-

tegrated within a unified probabilistic model to detect group of genes that are co-expressed and

whose proteins interact in the PPIN. Their model was based on the assumption that genes partic-

ipating in the same pathway are activate at the same time and thus should exhibit similar gene

expression profiles and, thus, the proteins of genes that coordinate to perform a specific function

often interact in PPIN. Using gene expression profiles, Maraziotis et al. (2007) created a weighted

PPIN and then applied their DMSP (detect module from seed protein) method to construct func-

tional modules starting from a “seed” protein. The method then expands the neighborhood, and

the algorithm detects functional modules in two steps. In the first step, and based on the den-

sity of the kernel and its weighted internal and external degrees, a subset of seed neighbors is

selected as the kernel neighborhood. In the second step, adjacent proteins are added to the selected

kernel iteratively based on a specified criterion. Zheng et al. (2008) used a Bayesian network

data integration approach to integrate seven genomic features and four experimental interaction

datasets to generate a more reliable PPIN. Then they used Markov clustering to identify protein

complexes. Another gene expression-based approach Ulitsky et al. (2009) developed CEZANNE

(co-expression zone analysis using networks, a part of the MATISSE software by Ulitsky et al.

(2007)) a novel confidence-based methodology for detecting co-expressed sub-networks.

Zhang et al. (2006b) used a kernel-based integration of PPI data and protein functional

annotation data to develop a protein protein relationship network. They then applied MCODE on

both the original PPIN and the relationship network, and they showed that using functional anno-

tation data improved the complex detection abilities of MCODE. Zhang et al. (2008a) introduced

a multi-step method to identify protein complexes from Mass Spectrometry (MS) data: the main

assumption of their method is that the similarity of co-purification patterns of two proteins derived

from MS can serve as an indicator for evaluating their interaction affinity. They proceeded to create

63

a PPIN by integrating affinity scores and a knowledge-guided information theoretic thresholding

method to find all maximal cliques as possible candidates of protein complexes. Finally, they pro-

posed an algorithm to merge highly overlapped cliques into a single protein complex and divide

the set of proteins of each complex to core and attachment components.

Last, studying known protein complexes, Jansen et al. (2002) found that proteins participat-

ing in a complex exhibit significant co-expression, both in terms of similarities of absolute mRNA

levels and their expression profiles. After dividing the available protein complexes to permanent

and transient, it was concluded that, contrary to transient, permanent complexes have higher co-

expression levels. Usine mRNA expression data (and integrating the PPIN topology), Ideker et al.

(2002) proposed a method to detect connected regions of the network that indicate considerable

changes of expression over a specific set of conditions. Such subnetworks are identified based on a

scoring mechanism that relied on the integration of network topology with mRNA expression data

using simulated annealing.

4.2.4. Identifying protein complexes in dynamic PPINs

Modeling PPINs using static information is a simple and efficient methodology to under-

stand how proteins interact. However, such static networks hide temporal information which are

crucial to our understanding of the functional properties of proteins and complexes (Pereira-Leal

et al., 2006; Zhang et al., 2016d; Ideker et al., 2001; Przytycka et al., 2010). All protein complex

detection methods mentioned up to now focused on static PPINs. PPINs are dynamic and change

over time, depening on surrounding environmental conditions, biotic and abiotic stresses, and the

different stages of cell cycle (Chen et al., 2013; Tang et al., 2011; Terentiev et al., 2009). In order

to fully understand the intricacies of how cellular life functions and has been shaped during evo-

lution, it is important to study the dynamics and evolution of interactions both at the atomic and

network level (Levy et al., 2008).

Currently available high-throughput PPI data are usually unable to reflect the dynamic

properties of PPINs (Hegde et al., 2008). Researchers try to elucidate the dynamic structure of

PPINs by projecting additional information such as gene expression data (Terentiev et al., 2009)

64

and sub-cellular localization annotations (Lichtenberg et al., 2005) into PPINs. Lichtenberg et al.

(2005) integrated PPIs with the timing of the transcription of genes within the cell cycle. They

filtered interactions in two stages: assigning topology-based confidence scores to each interaction

and selecting high-confidence interactions, and using sub-cellular localization to remove interac-

tions between proteins annotated to incompatible sections. They constructed a network containing

both constitutively expressed (static) and periodically expressed (dynamic) proteins that interacted

with one another, and found that most protein complexes contain both kinds of proteins.

In their work, Lu et al. (2007) integrated a biological interaction network with gene expres-

sion data to investigate the relationship between the network and the differentially expressed genes.

Their results demonstrated that genes with low connectivity tend to have a higher level of change

in gene expression, whereas hub proteins (nodes with high connectivity) and superhubs (nodes that

link hubs) are more likely to have a lower level of change in expression. Using gene ontology data

to analyze the correlation between topology and molecular functions, they found that hubs and

superhubs have crucial biological functions, when compared to more peripheral nodes. Dynamic

features of PPINs can be extracted by integrating gene co-expression information with PPIs (Han

et al., 2004b; Ekman et al., 2006). Lin et al. (2010) integrated PPIN, gene expression profiles, and

GO annotations to construct co-expressed PPINs under specific conditions in order to discover dy-

namic functional modules. Their results indicated that proteins encoded by differentially expressed

genes under specific biological conditions are also topologically significant proteins.

Han et al. (2004b) studied the biological roles of hub proteins in dynamic PPINs as far as

both time and space are concerned. In their work, two types of hubs are distinguished: “party”

hubs, that interact with their partner proteins simultaneously, and “date” hubs, that bind their part-

ners at different times or locations. The authors then used gene expression and protein localization

data to investigate the temporal characteristics of hub proteins and their partners. Both additional

sources of data indicated towards a diversity in time and spatial distribution for the partner pro-

teins of “date” hubs, more than partners of “party” hubs. In summary, “date” hubs were shown to

connect modules, whereas “party” hubs function inside modules.

65

Later, Komurov et al. (2007) proposed the existence of “family” hubs, as proteins that tend

to interact with their neighbors, but are not highly co-expressed with them. Thus, “family” and

“party” hubs form static and dynamic modules, respectively, while “date” hubs organize them into

a network. The conclusions drawn from this study point that static modules increase the robustness

of the cell against genetic perturbations or protein expression noise, whereas dynamic modules

regulate the cell behavior under varying conditions. The study of the dynamic structure of human

interactome to determine whether and which organizational changes can lead to oncogenesis was

done by Taylor et al. (2009). Their work showed that intermodular hub proteins have expression

correlation with their neighbors in a tissue-restricted manner, while intramodular hub proteins are

co-expressed with their interacting partners in all, or most, tissues.

When it comes to combining the community detection approaches discussed earlier and

the dynamic nature of PPINs, the problems becomes complicated. Hence, Mucha et al. (2010)

proposed a generalized Laplacian dynamic approach, which allows for the simultaneous study of

quality functions related to community structures across multiple time points. This method works

on multislice networks, which are obtained by combining multiple adjacency matrices, and uses

a quality function to determine the underlying community structures. Similarly to the methods

applied in static networks, they proposed comparing the number of intra-community edges to what

could be expected in a random network as a measure to quantify communities. Three types of edges

are considered in their generalization: intra-slice, inter-slice between only neighboring slices, and

inter-slice among all available slices. The network slices can represent variations across time or

even the same network at different scales.

Dynamic modules were defined by Jin et al. (2007) as sets of proteins that form connected

components in PPINs and whose expression profiles in the temporal domain possess certain prop-

erties or form specific structures. In their work, they proposed a mining algorithm to identify dy-

namic modules in a temporal network. They also showed that, using this mining algorithm, most

of the discovered dynamic modules are functionally homogeneous. Tang et al. (2011) proposed

time course protein interaction networks (TC-PINs) by integrating time series gene expression into

66

PPINs. After that, they employed Markov clustering to identify functional modules in three types

of networks: TC-PINs, static PPINs and pseudorandom networks. Finally, GO enrichment was per-

formed in order to further biologically analyze of modules. The results showcased that extracted

functional modules from TC-PINs have clearer biological interpretations than those obtained from

static PPINs and pseudorandom networks. Last, Lu et al. (2006) developed a hierarchical cluster-

ing algorithm in protein interaction data coupled with sub-cellular localization data, and expres-

sion profile data, to distinguish between protein complexes and functional modules. Then, they

employed spatial and temporal information ensuring that co-localized and co-expressed protein

groups are to be clustered first.

67

CHAPTER 5. ESSENTIALITY AND CENTRALITY

5.1. Protein essentiality

The importance of a protein can be qualitatively assessed by considering the consequences

to the organism phenotype upon protein deletion or disruption, as also noted in the study by Song

et al. (2013). This leads to the definition of essential proteins, which are ones that upon their cor-

ruption cause the cell to die or cease its fundamental processes (Kamath et al., 2003). Information

about essential proteins have been collected over years of biological experiments and are now or-

ganized in such databases like the Database of Essential Genes (Zhang et al., 2004; Zhang et al.,

2008b).

Another reason we are interested in protein essentiality, is that the set of essential proteins

can help us understand the minimal requirements for cell life (Glass et al., 2006; Glass et al., 2009),

as well as disease study and drug discovery (Clatworthy et al., 2007; Lu et al., 2014). Moreover, es-

sential proteins provide insight in human gene morbidity: Wilson et al. (1977) showed that proteins

encoded by essential genes evolve slower than their non-essential counterparts, while Kondrashov

et al. (2004) proved the existence of similarities between human morbid genes and essentiality in

Drosophila melanogaster (fruit fly). Identifying essential proteins experimentally is usually per-

formed via gene knockouts, conditional knockouts, RNA inference. Such experiments are time

and resource consuming. However, the advent of high throughput techniques for extracting PPI

data has enabled us to use computational methods for identifying essential proteins using network

analysis.

5.2. Identification of essential proteins

In this section, we discuss the network topology and other features that essential proteins

possess, and that help us distinguish them from non-essential ones. We classify these methods in

the following categories, each with its own subsection:

1. Topology-based;

2. Integrating multiple sources.

68

We now proceed with the discussion on methods that are based on studying the topology

of PPINs.

5.2.1. Topology-based methods

Finding the relationship between the topological properties of an organism’s PPIN and the

functional features of its cells is one of the main goals of computational biology. Numerous studies

have confirmed that topological prominence of a protein in a PPIN may be a good predictor of its

biological importance (Giaever et al., 2002; Winzeler et al., 1999; Fraser et al., 2002; Yu et al.,

2004; Batada et al., 2006; Wang et al., 2009; Hahn et al., 2004a; Yu et al., 2007). In topology-based

methods, every protein in a PPIN is scored using different centrality measures; the highest ranking

proteins are then declared to be essential.

Jeong et al. (2001) were among the first to recognize that there is a correlation between the

number of interactions of a protein and the phenotypic effects of its removal from the network.

They referred to this relation between essentiality and the number of direct neighbors in the PPIN

as the centrality-lethality rule. Their computational results revealed that 93% of the proteins

in Saccharomyces cerevisiae participate in 5 or fewer interactions, and only 21% of them are

essential. On the contrary, 0.7% of the proteins have more than 15 connections, but simple removal

of 62% of them proves lethal to the organism. This corroborates the insight that topologically

central proteins in the network with a high number of connections are three times more likely to

be essential than proteins that participate in only a small number of interactions.

The notion of marginal essentiality was later proposed by Yu et al. (2004); it was found

that proteins with greater marginal essentiality are more likely to be network hubs. A multitude

of topological characteristics and their correlation to essentiality were studied by Coulomb et al.

(2005) in interaction networks. They showed that essentiality in yeast is only weakly related to

their local connectivity, and that the physiological effects of removal are unrelated to their average

degrees or to their relative distances. Besides, the lack of a clear relationship between clustering

coefficients of essential and non-essential genes prevented them to draw a general conclusion about

the relationship between the essentiality of a gene and its cliquishness in PPINs. Liang et al. (2007)

69

investigated the human and mouse proteomes, and concluded that essentiality was, as expected,

positively correlated with protein connectivity in the PPIN. However, no correlation was identified

in the two mammalian PPINs studied between gene duplication and gene essentiality, even though

duplicate genes have higher degrees on average.

At that point, it started becoming clearer that essentiality is not usually identified by query-

ing a local network characteristic; instead, groups of proteins should be queried. To that extent,

Lin et al. (2009) defined the essentiality of a subnetwork as the ratio of essential proteins to the

subnetwork cardinality. Using this ratio, the authors found that larger cliques tend to have a bigger

number of essential proteins in the PPINs of Escherichia coli and Saccharomyces cerevisiae. They

also showed that the ratio of essential proteins to all proteins in the maximum clique of Escherichia

coli (with size 7) and Saccharomyces cerevisiae (with size 10) were equal to 86% and 90%, respec-

tively. In a follow-up computational experiment, they also expanded the maximum clique found by

merging neighboring cliques, and used it as an essential core of the PPIN that contains the higher

ratio of essential proteins.

A similar question between the difference of essentiality as a local versus a global network

characteristic was studied by Wuchty (2002). That study also helped recognize that degree, while a

useful proxy, can be a naive classifier of essentiality. In a subsequent study by Wuchty et al. (2003),

excentricity was used to discriminate between essential and non-essential proteins; surprisingly, in

three PPINs, essential proteins did not possess more “central” locations as far as their excentricity

was concerned. Estrada et al. (2005) introduced subgraph centrality in an effort to characterize the

participation of every node in each subgraph of the network. It calculates the subgraph centrality of

a node as the sum of closed walks, starting and ending at that node, with different lengths, and then

weighting walks based on their length, such that shorter walks are more influential on the central-

ity of the node. Computational results indicated a superiority of this measure when compared to

other, nodal measures such as degree, closeness, betweenness, and eigenvector centralities. To de-

termine which centrality measure is more accurate to identify essential proteins in the yeast PPIN,

Estrada (2006) compared degree, closeness, betweenness, eigenvector, information (Stephenson

70

et al., 1989), and subgraph centrality. Their results corroborated that centrality metrics perform

substantially better than random selection method in identifying essential proteins in yeast, with

subgraph centrality outperforming other centrality measures in detecting essentiality.

At the same time, Hahn et al. (2004b) discussed evolutionary constraints in the importance

of a gene. They also reported that using only topological information from the PPINs to identify

highly central nodes can be misleading, as the impact of absence of even the most central nodes

was limited. However, this does not mean that topological studies on PPINs are doomed: it merely

implies that the results need to be further synthesized with other biological data. In a different

study, three eukaryotes (yeast, fly, and worm) PPINs were examined and a relationship between

the position of a node/protein in the network and its evolution rate was uncovered by Hahn et

al. (2004a). What was found was that three of the most standard centrality measures (degree,

betweenness, and closeness) were negatively correlated to its evolutionary rate, with betweenness

having the strongest correlation. Moreover, the authors found that evolutionary rates are reduced

for essential genes to approximately 70% the rate of their non-essential counterparts. Hence, this

provides evidence of effects, albeit small, that protein location and centrality has on its probability

of being essential.

In 2005, Joy et al. (2005) found that there exist a higher number of proteins with high

betweenness and low degree in the yeast interactome, than in computer generated random scale-

free networks (Barabási et al., 1999). This finding is surprising in that essential proteins have a

higher average betweenness than they possess degree. When calculating the average betweenness

for all proteins in the proteome versus the average betweenness of only the essential proteins an

increase of 82% is observed; the frequency of essential proteins in the higher betweenness ones is

also greater. However, when looking at the lower degree nodes with higher betweenness, which

appear numerously in the yeast proteome, they appear to be serving as important links between

different modules, another result that provides insight into the modular organization of PPINs.

In another work trying to contrast betweenness and degree in PPINs, the notion of bot-

tleneckness versus hubness was studied as a tool to discover essential proteins (Yu et al., 2007).

71

Due to the observed correlation between betweenness of a node and its degree (Goh et al., 2003),

they divided the proteins of a network into four categories to investigate whether bottlenecks are

likelier to be essential because they have high betweenness or because they tend to be hubs (have

high degree). They observed that bottlenecks (both non-hub and hub alike) are more likely to be

essential than hub proteins that do not serve as bottlenecks in regulatory networks. In interaction

networks, a substantial difference between bottlenecks that are not categorized as hub (they are

less likely to be essential) and hub proteins that are not bottlenecks (more likely to be essential)

seemed to indicate that degree is a better determinant of essentiality than betweenness.

Wang et al. (2014) developed a new measure to characterize structurally dominant proteins

in PPINs based on a multivariate statistical analysis integrating multiple centrality metrics, such as

degree, betweenness, closeness, the clustering coefficient, eigenvector centrality, semi-local cen-

trality, and further considering the appearances of nodes in network “motifs”. Their results illus-

trated that structurally dominant proteins in yeast tend to be more conserved from an evolutionary

standpoint than other proteins. Moreover, PPINs were shown to be robust against random muta-

tions, while fragile when mutations appear to be targeted. In the same sense of network “motifs”,

Vogiatzis et al. (2019) defined a star centrality metric and proposed two approximation algorithms

to calculate it in large-scale PPINs. Their results also indicate towards it serving as a good proxy

for identifying essentiality.

Recently, Wuchty (2014) and Wuchty et al. (2017) investigated network controllability

in PPINs and employed minimum dominating sets to identify important proteins to serve as drug

targets. Their study showed that the proteins obtained through minimum dominating sets contained

multiple that were classified as essential. However, there can be multiple minimum dominating

sets, especially in PPINs that are of formidable size. Using the definitions from Ishitsuka et al.

(2016) on critical (proteins that appear in all minimum dominating sets), intermittent (proteins

that appear in at least one minimum dominating set), and redundant (proteins that appear in none

of the minimum dominating sets), it was shown that essential proteins appear often within sets of

critical proteins.

72

Due to the high number of false positives in PPINs (as discussed in Chapter 3 because of the

high-throughput methods in use) and the sensitivity of centrality-based network topology methods

for identifying essential proteins, Li et al. (2013) proposed a new weighting method for evaluating

the confidence of interactions and demonstrated the improvements in identifying essential proteins.

Li et al. (2015) proposed topology potential (a new centrality metric in which every node is treated

as a particle which creates a “field” around it) to identify essential proteins in PPINs. Calculating

the topology potential of all proteins and ranking the proteins in descending order revealed that

the top ones are more likely to be essential. Their results further indicated that this new ranking

scheme outperforms other centrality metrics when identifying essentiality.

As discussed earlier, PPINs exhibit a modular structure. In their work, Hart et al. (2007)

also demonstrated that essentiality is a modular property (rather than an individual one) and that

many essential proteins are concentrated in a smaller number of complexes. They reached that

conclusion using Markov clustering in a high-confidence interaction network, extracted by com-

bining data from independent biological assays. The complexes that were identified using Markov

clustering had high correlation with existing annotations.

We have already noted that there is a discussion between the essentiality (or not) of hub

proteins: to that extent, Zotenko et al. (2008) concluded that albeit removing hubs, in general,

destroys the overall network connectivity, this is not necessarily due to hub protein essentiality.

They defined complex biological modules (COBIMs) as dense and functionally related protein

complexes, and their essential counterparts (ECOBIMs), which possess the previous characteris-

tics, but contain more essential proteins. In an experiment on six PPINs, they found that essential

proteins are more important locally (as degree captures) rather than enabling global connectivity.

Moreover, as in the work by Hart et al. (2007), they also concluded that there are complexes with

higher portions of essential proteins: as per their definitions, those would be ECOBIMs.

Since multiple centrality-based essential discovery methods just consider the importance

of a single protein in PPINs, Wang et al. (2012a) proposed an essential protein discovery method

based on an edge clustering coefficient approach, effectively binding the characteristics of nodes

73

and edges. They demonstrated that the number of essential proteins correctly classified by their

method exceeds the number of discovered proteins by six other, commonly used centrality metrics.

Last, Ning et al. (2010) proposed the placement of proteins in reverse nearest neighbor

topology as an indication to identify their essentiality. Reverse nearest neighbor is a topology

where every node is the head of weighted edges emanating from its nearest neighbors. Their

results revealed that hubs in reverse nearest neighbor topology are more likely to be essential

proteins, which is a finding similar to the one in original PPINs. In addition, essential proteins

are more commonly found in reverse nearest neighbor clusters. Based on these two findings for

essential proteins, they proposed a new reverse nearest neighbor cluster centrality metric that was

shown to outperform other centrality measures for identifying essential proteins.

Even though centrality has been traditionally applied to quantitatively assess individual

node importance, in certain situations and applications we are interested in groups of nodes. This

realization motivated a series of works that extend standard centrality metrics to groups and classes

(see, e.g., Everett et al. (1999), Everett et al. (2005), and Borgatti (2006), Veremyev et al. (2017)).

This further motivated research in groups that induce specific structures or cohesiveness require-

ments, as in the works by Vogiatzis et al. (2015), Rysz et al. (2018), Vogiatzis et al. (2019), Nasirian

et al. (2020), and Zhong et al. (2020). Vogiatzis et al. (2019) propose a novel centrality metric,

referred to as star centrality to cover the drawback of degree centrality in misclassifying protein

importance. They developed a mathematical formulation, and proposed two approximation algo-

rithms. Using protein-protein interaction networks of several organisms, they predicted protein

essentiality and showed this new metric significantly outperform other nodal centrality metrics at

detecting essential proteins. They also analyzed the average and worst case performance of the two

approximation algorithms in practice, and showed that they are viable options for computing star

centrality in very large-scale protein-protein interaction networks, such as the human proteome,

where exact methodologies are bound to be time and memory intensive.

74

5.2.2. Integrating multiple sources

Identifying essential proteins based on their PPIN topological properties alone is very chal-

lenging and often inconclusive, as discussed in the previous subsection. The main shortcomings

associated with topology-based methods are:

1. the lower accuracy due to the plethora of false positive and false negative interactions present

in PPINs (Mrowka et al., 2001);

2. the poor performance of PPINs with lower connectivity; and

3. the lack of information tying topology to the biological significance and meaning of essential

proteins (Li et al., 2016a).

Hence, researchers have proposed a series of methods that use information from other

sources and tie them to topology-based techniques. To begin with, a group of methods use

sequence-based information and features. These are intrinsic features of individual proteins de-

termined by their genomic sequences. According to these features, there are three main groups

of methods that can be employed to identify essential proteins, namely sub-cellular localization,

evolutionary conservation, and gene expression.

Sub-cellular localization-based methods assume that essential proteins appear more fre-

quently in specific sub-cellular locations, as compared to nonessential proteins. In these methods,

proteins are scored and ranked based on their sub-cellular locations and then these scores are

used to tell essential proteins apart from nonessential ones. The main idea behind evolutionary

conservation-based methods is that essential proteins evolve more conservative than nonessential

proteins (Jordan et al., 2002). Gene expression-based methods hypothesize that the expression

level of mRNA is closely associated to essentiality. In other words, the expression level of essen-

tial genes is higher than that of nonessential ones.

Integrating the above-mentioned principles with network topology is one of the most com-

mon approaches used to improve the accuracy of essential protein detection methods in PPINs.

75

Based on the hypothesis that hub proteins tend to also share certain relevant functional properties

that not only enable them to participate in multitudes of protein interactions, but can also be used

for the discovery of such hub proteins without prior knowledge of the corresponding PPINs, Hs-

ing et al. (2008) developed a hub predictor using the available interaction data and gene ontology

annotations for proteins. In a similar integration, Li et al. (2012a) proposed a new centrality mea-

sure, named PeC, using protein-protein interaction and gene expression data. Contrary to other

centrality measures, PeC determines protein essentiality based not only on its degree in the PPIN,

but leveraging whether it has a high probability to be co-clustered and co-expressed with its neigh-

bors. Experimental results showed that higher precision of PeC to identify essential proteins in

comparison with a series of another fifteen network topology based centrality measures.

Zhang et al. (2013) proposed a new essential protein detection method named Co-

Expression Weighted by Clustering Coefficient (CoEWCC). In that method two sources of data

are integrated: protein-protein interactions and gene expressions. To determine essentiality, their

measure considers two factors: (i) whether it has a high probability to be co-expressed with its

neighbors, and (ii) whether its neighbors participate in densely connected clusters. In contrast with

the PeC method, CoEWCC focuses more on the clustering property of the protein neighborhood,

rather than the protein itself. Experimental results in their work revealed that this method outper-

forms PeC on the PPI network of Saccharomyces cerevisiae. Considering that most species have

already a number of known essential proteins (from other sources and/or biological experimenta-

tion), Li et al. (2014) proposed two essential proteins discovery algorithms, referred to as CPPK

and CEPPK. CPPK identifies essential proteins using PPIN topology, while CEPPK integrates

PPIN topology with gene expressions. Their computational results verify that the integration of

data from different parts helps: both methods had superior performance over 10 other typically

used centrality measures, while CEPPK even outperformed other measures outside of nodal cen-

trality metrics, such as PeC and CoEWCC.

76

In their work, Zhao et al. (2014) proposed a method based on overlapping essential modules

for predicting essential proteins. To overcome the inherent PPIN noise and error rates, and to im-

prove the prediction accuracy of their methods, they integrated information from gene expression

profiles with the network topological features investigate. In their method, proteins are categorized

into three categories: nonessential proteins, date hubs, and party hubs, according to their frequen-

cies in the predicted essential modules. The experimental results showed the higher performance

of their method, when comparing it to the existing methods for the prediction of essential proteins.

As discussed earlier, Pereira-Leal et al. (2004a) showcased that essential proteins are, on

average, more connected to other essential proteins, rather than nonessential proteins. Based on

that, Peng et al. (2012) proposed an iterative method to predict essential proteins by integrating bi-

ological data with a PPIN, named ION. ION combines three different features to assign a ranking

score to each protein using an iterative method. The three features are the connections between

proteins, the orthologous properties, and the features of their neighbors. Computational results

revealed a 42% improvement compared to the edge clustering coefficient centrality (NC) method

that was the best one among seven centrality methods. It was also shown to perform better than

PeC. Peng et al. (2015) and Wang et al. (2013) proposed the UDoNC method by integrating protein

domain features and other topological properties of a PPIN to predict essentiality. UDoNC uses

both the number and frequency of protein domain types to evaluate the essentiality of proteins,

as well as the edge clustering coefficient to measure essentiality of adjacent proteins. Tang et al.

(2014), taking advantage of the Pearson correlation coefficient, aimed to bridge the gap between

PPINs and gene expression profiles. To do so, they used an edge clustering coefficient and pro-

posed a weighted degree centrality measure. They were able to show that their metric outperforms

other methods including typical nodal centrality metrics and PeC.

Integrating PPIN topology and protein complex information, Ren et al. (2015) proposed a

weighted average of complex centrality and subgraph centrality, referred to as harmonic centrality

(HC). HC showed better performance against standard centrality measures. More importantly,

the improvements observed were even more pronounced for low centrality values and PPINs with

77

incomplete data. Seeing as this is a common theme, this was a great advancement. Additionally,

they generated weighted PPINs by integrating cellular localization and biological processes data to

the existing PPIN, which improved the performance of HC by 5%. More recently, Li et al. (2017)

integrated protein complexes information with topological features of PPINs and proposed a united

complex centrality (UC) metric to identify essential proteins. Analyzing the relationship between

essential proteins and known protein complexes of Saccharomyces cerevisiae and Homo sapiens,

they found that proteins in complexes are more likely to be essential, as opposed to proteins that

do not appear in any complexes. Moreover, proteins participating in multiple complexes are more

likely to be essential than proteins that only take part in a single protein complex. They finally

showed that their proposed method outperforms 8 other network-based essential protein discovery

methods in terms of a series of metrics including prediction precision, sensitivity, specificity, and

accuracy rate.

He et al. (2006) proposed the concept of essential protein-protein interactions as interac-

tions that are indispensable to the survival or reproduction of an organism, similar to the notion of

essential proteins. An essential interaction renders both interacting proteins essential by definition,

as deletion of either interacting protein may lead to lethality or infertility due to disruption of the in-

teraction. In their work, they argued that essential interactions can explain the essentiality-lethality

rule regardless of PPIN structure: since a hub protein has more interactions than a non-hub, it

also possesses a higher probability to be involved in essential interactions. In addition, they ex-

plained that essential interactions are evolutionary more conserved that non-essential ones. Batada

et al. (2006) compared more reliable, literature-curated datasets of protein interactions with high-

throughput protein interaction datasets in Saccharomyces cerevisiae and observed that although

there is a positive correlation between local connectivity and essentiality in both cases, the first

results appear more robust. Further analysis of the data revealed that hubs do not evolve slower

than non-hubs and prior results about correlation between connectivity and rate of evolution were

a product of biases inherent in the high throughput data. Applying k-core decomposition in PPINs,

Wuchty et al. (2005) found that the probability of a protein being both essential and evolutionally

78

conserved successively increases as we move towards the innermost cores. They then categorized

proteins as globally or locally central depending on their appearance in inner or outer cores, re-

spectively, and hypothesized that globally central proteins serve as the backbone of the proteome.

Other methods, based on machine learning, build models from inputs to predict and im-

prove predictions through learning algorithm. Many of these methods integrate topological fea-

tures such as degree, betweenness, closeness, clustering coefficient, subgraph centrality with bio-

logical features such as gene sequence, gene expression, or functional annotation-related features.

These features are then used as learning attributes to increase the prediction rates of essential pro-

teins and genes (Zhang et al., 2016c). Chen et al. (2004) combined protein evolutionary rate, gene

expression cooperativity, protein-protein interaction connectivity, and gene duplication data, in an

attempt to predict essentiality. They then devised a neural network and a support vector machine

framework to extract features of essential versus non-essential genes in the training process, and

used the trained models to predict protein dispensability. Their results indicated that all the above

mentioned features are important factors with protein evolution rates and protein-protein interac-

tion connectivity being the most important ones. A different attempt at integrating protein-protein

interaction data with genome sequencing data is due to Gustafson et al. (2006). In this work, the

authors proposed a machine learning algorithm based on a set of features including topological

ones (such as the protein degree in the PPIN), and biological ones (e.g., the open reading frame

length, the codon adaptation index, etc.) as learning attributes. They utilized a Naive Bayes classi-

fier to predict essential genes in both the proteomes of Saccharomyces cerevisiae and Escherichia

coli. Hwang et al. (2009) also combined topological features in PPINs such as degree, between-

ness, and closeness, with sequence properties such as ORF length and phyletic retention to develop

a SVM classifier capable of predicting essential proteins.

Silva et al. (2008) developed NTPGE (Network Topology-based Prediction of Gene Essen-

tiality), that combines the network features of a PPIN, a metabolic network (MN), and a transcrip-

tional regulatory network (TRN), and uses the network topology features of all three networks as

learning attributes to estimate essentiality. Constructing the integrated molecular network for a

79

given organism comprising the above mentioned networks, a decision tree-based machine learning

algorithm was devised using known essential and non-essential genes for training. Then, the gen-

erated decision tree classifier is applied to predict essentiality. Using supervised machine learn-

ing based methods, Acencio et al. (2009) also integrated the PPIN, MN, and TRN of Saccha-

romyces cerevisiae, and used the combination of topological features of the resulting network,

along with data on cellular localization and biological process, as learning attributes to increase

the predictability of essential genes. They also trained a decision tree based meta-predictor with

individual and group attributes to create a series of predictors of essentiality. Their experiments

showed that this integration of information increases the predictability of essentiality.

In the work of Seringhaus et al. (2006), 12 different different network topological features

(including the well-known degree, betweenness, and closeness) were integrated with biological

features, such as cellular localization and biological process data. They then developed several

decision tree based classifiers, trained them, and put them to the test. Zhong et al. (2013) proposed

a gene expression programming method for predicting essentiality; their work also combined topo-

logical features with biological features, along with other properties computed by using the PeC,

WDC, and ION methods. Gene expression programming is a learning algorithm that “learns” the

relationships between all variables in the data, and consequently, builds models to describe them.

The experimental results indicated that this method outperforms other methods using one of the

features at a time to predict essentiality. Additionally, this machine learning approach led to im-

proved results than other machine learning methods, such as SVM, Naive Bayes, Random Tree.

Zhong et al. (2015) collected 26 essentiality-related features and constructed a feature space, in-

cluding topological features, biological features, and other composed features from ION, PeC, and

WDC. Then, they used SVM and recursive feature elimination (SVM-RFE) and the PCC method

to isolate a subset of features from the original space. Their method selected 6 features as the

optimal subset and they used them to compare their method with other machine learning methods,

such as simple SVM, Naive Bayes, NBTree. Their results proved the effectiveness of their feature

80

selection method and the better performance when using their optimal subset of features, when

compared to other methods.

Using experimental data of genome-wide knock-out screens of one bacterial organism,

Plaimas et al. (2010) developed a SVM method to infer essentiality of a different bacterial organ-

ism. They considered a wide variety of features associated with essentiality, including topological

features, genomic and transcriptomic features, and using Pearson correlation coefficient, they se-

lected those with a higher correlation to essentiality. In order to be able to predict essentiality of a

new organism, they performed a cross-validation analysis across the organisms of Escherichia coli

and Pseudomonas aeruginosa. Based on their prediction results, and the experimental knock-out

screening, they proposed 35 enzymes as drug targets for Salmonella typhimurium, 23 of which had

been described previously as drug targets in other micro-organisms. Deng et al. (2010) developed

a machine learning integrative approach to transfer gene essentiality annotations between distantly

related bacterial species. They trained the classifier to learn by essential genes in one organism, and

applied it to make predictions in the other, and evaluated the predictions based on their agreement

with known essential genes in the target organism. They achieved that using features from gene

sequencing, features derived from genomic sequence, and experimental functional genomics data

they created. Four classifiers were used to train and test the model, namely a logistical regression

model, a Naive Bayes classifier, the CN2 rule, and a C4.5 decision tree. The best performance

was obtained by combining the outputs of these diverse classifiers using an unweighted average

approach.

Similarly, Cheng et al. (2013) collected 16 widely used features(including topological fea-

tures) and developed a novel method called the feature based weighted Naive Bayes model, which

can address the issues with multicollinearity among gene features as well as feature divergence

between species. They found that because of correlation between features there are two issues:

1. features might share no or little correlation with essentiality;

2. the relationship between gene features and essentiality might be different and even contrast-

ing in different species.

81

To address those issues, they investigated the correlation between gene features and essentiality

and used a stepwise regression model combined with forward selection and a genetic algorithm to

determine a weight vector signaling the extent of contribution of each feature to essentiality. Then,

they predicted essential genes in target organism by weighted Naive Bayes classifier. Their results

showed that their approach can significantly improve the accuracy and robustness of essentiality

prediction.

Staying in Naive Bayes classifiers to predict essentiality, Cheng et al. (2014) proposed a

method to predict reciprocally essential genes. They found that the prediction accuracy is sig-

nificantly influenced by the training set used, and thus they defined four criteria for training set

selection:

1. essential genes in the selected training set should be reliable;

2. training species and target organisms should be closely related;

3. the growth conditions of essential genes should be consistent in both training and prediction

sets; and

4. training organisms and prediction organisms should exhibit similar phenotypes or lifestyles.

Comparing the performance of incomplete and integrated training sets in different organisms, they

found that the size of the training set should be at least equal to 10% of the total genes available to

yield accurate predictions as well as improve robustness and accuracy.

Li et al. (2016a) integrated the information available from a variety of sources, like sub-

cellular localization, orthologous proteins, and PPINs and proposed a novel method, called SON.

They counted the number of essential and non-essential proteins in sub-cellular locations, and

found that the ratio of essential proteins is higher than that of non-essential ones. Moreover, they

found that for orthologous proteins, for at least 80 species, the ratio of essential proteins is 51% but

for non-orthologous proteins this ratio falls dramatically to 22%. Computational results showed

the better performance of SON when compared to nodal centrality metrics, subgraph centrality,

82

as well as PeC and ION. They also showed that SON is able to perform well in identifying lower

connectivity essential proteins, which is a common issue with centrality metrics exclusively de-

pendent on PPIN topology. Integrating gene expression, orthology, and sub-cellular localization,

Li et al. (2016b) proposed a novel neighborhood-based algorithm to predict essentiality. Due to the

significant impact of unreliable neighbors and interactions on the prediction precision and accu-

racy of neighborhood-based methods, they combined gene expression and sub-cellular localization

data to determine reliable neighbors in the PPIN. Conservative features of proteins were analyzed

by orthologous features, and for integrating topological characteristics, a random walk model was

proposed. The experimental results showed that their method outperformed ten of the existing

methods.

In their work, Qin et al. (2017) combined topological properties, subcellular localization

and orthologous protein information, and proposed the CoTB algorithm to predict essential pro-

teins. Introducing several traditional topological properties of PPINs and integrating them with

new measures of orthologous and subcellular localization scoring, they obtained a probability

score for the proteins being essential using a random forest model. They showed their method

outperforms traditional computational methods as well as SON.

Co-expressed genes are more probable to encode interacting proteins (Von Mering et al.,

2002). Hence, two connected essential proteins are likelier to be co-expressed. This is the idea

that Zhang et al. (2016a) used to create their GEG method to predict essential proteins. To achieve

that, they integrated gene expression profiles and gene ontology annotation data. They then used

a Pearson correlation coefficient to calculate the gene expression similarity of two proteins. In

addition, since two connected essential proteins are also likely to share biological function (Krogan

et al., 2006), they measure gene ontology similarity between two connected proteins (Wang et al.,

2007). Finally, the defined the GEG measure of a given protein by combining gene expression and

gene functionality similarities; their numerical experiments showed both the better performance of

GEG, but also, more importantly, its robustness under perturbation.

83

In order to decrease the impact of false positives, and improve the accuracy of identifying

essential proteins, Xiao et al. (2015) proposed a new framework based on PPINs constructed by

integrating static protein-protein interactions with dynamic gene expressions. Then, they applied

common centrality measures in the new PPIN, including degree, local average connectivity, and

subgraph centrality among others. Their results are encouraging in the fact that dynamic interac-

tions can now be captured and translated to essentiality, an important characteristic that is missed

when dealing with, usually static, traditional PPINs.

Last, Zhang et al. (2016b) integrated PPIN and gene expression data to boost the predic-

tion accuracy of other centrality-based methods and proposed an ensemble framework. Based on

the assumption that various protein-protein interactions might contribute differently to determin-

ing protein essentiality, they generated a series of m PPINs based on the original PPIN using a

gene expression correlation-guided strategy. Then, five centrality measures (degree, betweenness,

closeness, eigenvector, and subgraph centrality) were used to calculate m different scores for each

protein (in each PPIN). Continuing, for each protein, they combined the scores using a weighted

voting strategy and derived an overall score. Finally, proteins were ranked and the top ranked

proteins were considered potentially essential. The results showed higher prediction accuracy of

this ensemble framework as opposed to individual centrality measures; they also showed that the

ensemble framework is able to find lower degree, and easier to disregard, essential proteins.

84

CHAPTER 6. NOVEL GROUP CENTRALITY METRICS FOR STUDYING

ESSENTIALITY IN PROTEIN-PROTEIN INTERACTION NETWORKS

This chapter discusses the necessary notation and terminology that we will need throughout

this problem. We then proceed to formally define group centrality as well as the problems we are

studying. Examples of the problems and the calculations involved are presented afterward. We

finish the chapter with discussion about computational complexity of the problems.

6.1. Notation

Let G(V,E) be a simple, undirected, and unweighted graph, with V representing a set of

|V | = n nodes, and E a set of |E| = m edges. For each node i ∈ V , let N(i) = { j ∈V : (i, j) ∈ E}

be the open neighborhood of node i. Given a subset of nodes S⊆V , the subgraph induced by S in

G is denoted as G[S] and defined by G[S] as the graph whose set of vertices is V [S] = S and its set

of edges is E[S] = (S,(S×S)∩E). A node belonging to a group/set of nodes S can also be referred

to as a group node/member, while nodes in V \S are non-group nodes. We may also generalize the

notion of open neighborhood to sets of nodes S⊆V as N(S) = { j : j /∈ S,(i, j) ∈ E, i ∈ S}.

Also define a set Pi j that includes all shortest (geodesic) paths connecting nodes i and j.

We let γi j ≥ 1 represent the number of shortest paths between nodes i and j, that is |Pi j| = γi j.

The length of a shortest path between i and j is the distance between i and j, and we use d(i, j) to

represent it. With a slight alteration in notation, we will use γi j(S) as the number of shortest paths

between two nodes i, j ∈V that intersect set S. The largest distance between any two nodes in the

graph is referred to as the diameter of the graph: we have diam(G) = maxi, j∈V d(i, j). Finally, we

extend the definition of distance as d(i,S) = min j∈Sd(i, j) for distances between a node i and a set

S. Clearly, if i ∈ S, then d(i,S) = 0.

We will write that S ⊆ V forms a clique (or, a complete subgraph on the set of nodes S)

when S×S⊆ E. A set of nodes S⊆V is said to form an induced star centered at some node i ∈ S,

if we have that (i, j) ∈ E,∀ j ∈ S \ {i} and every two other nodes in S \ {i} are not adjacent, that

is, (k, `) /∈ E,∀k, ` ∈ S \{i}. Last, we define here a representative set centered at some node i ∈ S

if (i, j) ∈ E,∀ j ∈ S \ {i}. It is clear from the definitions that a clique containing a node i as well

85

as an induced star centered at i are both representatives of i, and hence the representative structure

introduced is a relaxation of both cliques and induced stars. Examples for each of the structures of

interest to us in this work are presented in Figure 6.1. As mentioned, the structures in Figures 6.1a

and 6.1b could also serve as examples of possible representatives of u.

u

(a) A clique containing u.

u

(b) An induced star centered at u.

u

(c) A representative set of u.

Figure 6.1: An example of the three structures we are investigating in this work.

6.2. Group centrality

We define group degree, closeness, and betweenness centrality as follows (Everett et al.,

1999; Everett et al., 2005).

Definition 1 (GROUP DEGREE CENTRALITY). Given a graph G(V,E), the degree centrality of a

set of nodes S⊆V , Cd(S) is the number of non-group nodes that are adjacent to S:

Cd(S) = |N(S)|.

Note that multiple links to the same node are only counted once.

Definition 2 (GROUP AVERAGE CLOSENESS CENTRALITY). Given a graph G(V,E), the (aver-

age) closeness centrality of a set of nodes S ⊆ V , CC(S), is the average distance of all nodes in

V \S to S:

Cc(S) =
1

|V |− |S| ∑
i∈V\S

d(S, i),

where Cc(S) = 0, when S =V .

86

Definition 3 (GROUP BETWEENNESS CENTRALITY). Given sets S⊆V and S′ ⊆V , the between-

ness centrality of S with respect to S′ is defined as:

Cb
S′(S) =

∑
i, j∈S′\S,i< j

γi j(S)

∑
i, j∈S′\S,i< j

γi j
. (6.1)

If S′ =V \S, then the Cb
S′(S) is referred to as the betweenness centrality of set S and we write it as

Cb(S).

6.3. Problem definitions

In this work, we are investigating the group degree, closeness, and betweenness centrality

for a specific node u ∈ V . We only allow groups that induce a specific “motif”, that is they form

cliques, induced stars, and representatives (see Section 6.1). Combining the three different central-

ity metrics with the three different studied structures, this results in nine different problem setups:

• Clique

• Induced Star

• Representative

• Degree

• Closeness

• Betweenness

For the sake of brevity, we only define three of the above problems; the rest of them can be defined

similarly. We also provide three examples to showcase how these metrics work. The problem

definitions follow.

Definition 4 (REPRESENTATIVE DEGREE CENTRALITY). The representative degree centrality

of a node u ∈ V is the degree centrality of the induced representative S ⊆ V centered at u that

produces the maximum open neighborhood size.

As an example, suppose we are interested in the representative degree centrality of node

u∈V in the graph of Figure 6.2. The set that produces the maximum degree centrality is {u,1,5,8},

87

with a value of 10. Observe that adding in S any of the adjacent to u nodes leads to a decrease in

the cardinality of the open neighborhood by one.

u

1

2 3 4

5

67

8

9

10

11

1213

14

Figure 6.2: An example of representative degree centrality. The representative set S of u of maxi-
mum degree centrality is marked in red, and the open neighborhood is marked in blue.

Definition 5 (CLIQUE BETWEENNESS CENTRALITY). The clique betweenness centrality of a

node u ∈V is the betweenness centrality of the clique S⊆V with u ∈ S that maximizes the fraction

of shortest paths between i, j ∈V \S passing through S.

A different pictorial example of finding the clique betweenness centrality of a node u is

given in Figure 6.3.

u

5 6 7

10

8

2

1

3

9

4

Figure 6.3: An example of clique betweenness centrality. The induced clique S of vertex u with
maximum betweenness is marked in red.

88

To determine the clique betweenness centrality of node u ∈ V , we find the induced clique

S = {u,1,2,3} (red nodes) including node u (u ∈ S) that maximizes the fraction of shortest paths

passing through S. The betweenness centrality of this clique is 0.952.

Definition 6 (STAR CLOSENESS CENTRALITY). The star closeness centrality of a node u ∈ V is

the closeness centrality of the induced star S⊆V centered at u that minimizes the average distance

from S to every other node in V \S.

As an example, consider the graph in Figure 6.4. If we are interested in calculating the star

closeness centrality of node u, then we need to consider all induced stars centered at u, and pick

the one with the smallest average closeness value.

u

9

10 11

5

72

1

3

6

84

Figure 6.4: An example of the star closeness centrality. The induced star S with minimum average
distance to nodes in V \S is marked in red.

For example, S = {u} would be a trivial induced star centered at u and would lead to

average distance equal to 15
11 (as there are 7 nodes at a distance of 1, and 4 nodes at a distance

of 2, for a total distance of 15). Another example would be induced star S = {u,3,6,9} with a

total distance of 9 (7 nodes at a distance of 1 and 1 node at a distance of 2) leading to an average

distance of 9
8 . An optimal one is the star denoted (S = {u,1,3,5,9}) with average distance equal

to 1. Another optimal solution could remove node 1 from the star. Note the close relationship

between this problem and the problem of finding a dominating set given a structural constraint.

6.4. Complexity

In this section, we derive the computational complexity of the problems. We divide the

discussion in three parts, one per centrality metric investigated.

89

6.4.1. Structure degree centrality

We begin with degree centrality. In general, the problems we are tasked with solving in-

volve identifying a set of nodes inducing a specific structure with maximum degree. Formally, we

have the following problem definition.

Definition 7 (STRUCTURE DEGREE CENTRALITY OF A NODE u ∈ V). Given G(V,E), a node

u ∈ V , and an integer number k, does there exist an induced structure subgraph S ⊆ V of u such

that N(S)≥ k?

Before we proceed to the complexity result for this problem, let us introduce the SET

COVER problem, which has been shown to be N P-complete (Karp, 1972).

Definition 8 (SET COVER). Given a universe of elements U , a collection of sets S whose union

is equal to U , and an integer `, does there exist a subset S⊆S such that
⋃

C∈S
C = U and |S| ≤ `?

Theorem 1. STRUCTURE DEGREE CENTRALITY OF A NODE u ∈V is N P-complete.

Proof of Theorem 1. First of all, we note that the problem is in N P , as given a solution S ⊆ V ,

we can verify in polynomial time whether N(S)≥ `, whether u belongs to S, and whether S satisfies

the structure property we are interested in (i.e., u is adjacent to every node, S induces a clique, S is

an induced star).

Now, consider an instance of the SET COVER problem, with a universe of elements U ,

a collection of sets S of cardinality δ , and an integer `. Now, construct a graph G(V,E)

as follows. First, add a node u, a node for every set C ∈ S (VS), and a node for ev-

ery element in the universe U (VU). Secondly, in the case of an induced star, connect by

an edge u to every node representing a set with ES =
⋃

v∈VS

{(u,v)}, and every node vC rep-

resenting a set C ∈ S to every node vw representing element w ∈ U whenever w ∈ C, or

EU = {(vC,vw) : vC ∈VS ,vw ∈VU ,w ∈C,∀w ∈U ,∀C ∈S }. In the case of an induced clique,

on top of the previous edge sets, also connect by an edge all nodes vC representing a set C ∈S ,

as in ES×S = {(vC1,vC2) : vC1 ∈VS ,vC2 ∈S }. Formally, we have the node set in (6.2) and the

edge set in (6.3) (for an induced star) or in (6.4) (for a clique).

90

V = {u}
⋃

VS

⋃
VU (6.2)

E = ES

⋃
EU (6.3)

E = ES

⋃
EU . (6.4)

For the representative structure, any of the two gadgets, as well as any gadget with any

connections between two nodes corresponding to sets in S would work. An example of the

gadgets used are shown in Figure 6.5.

U = {1,2,3,4,5,6}
S = {(1,2) ,(1,3) ,(1,4,5) ,(2,5) ,(3,4) ,(4,6)}
δ = 6

⇒

u

C1

C2

C3

C4

C5

C6

1

2

3

4

5

6

(a) The gadget used for STAR DEGREE CEN-
TRALITY OF A NODE u ∈ V . The nodes in red
are the ones in VS , while the ones in blue are in
VU . The edges in green are in ES and the ones
in purple are in EU .

u

C1

C2

C3

C4

C5

C6

1

2

3

4

5

6

(b) The gadget used for CLIQUE DEGREE CEN-
TRALITY OF A NODE u∈V . On top of the nodes
and edges from the gadget of Figure 6.5a, we
also show here the edges in ES×S in red.

Figure 6.5: An example of the gadget used for transforming an instance of SET COVER to an
instance of STRUCTURE DEGREE CENTRALITY OF A NODE u ∈V .

Finally, to end the transformation from SET COVER, let k = |U |+δ−`. We will now show

that a set cover of cardinality smaller than or equal to ` exists if and only if there exists in G(V,E) a

representative/induced star/clique S ⊆V of u, such that |N(S)| ≥ k. For the first direction, assume

91

there exists a set cover S, such that |S| ≤ `. Consider the subgraph consisting of u itself and the

nodes vC ∈VS such that C ∈ S. Its open neighborhood size then is equal to |U |+δ − `= k as all

elements of U are adjacent to the nodes in the representative, as well as all nodes in VS that are

not in the set.

For the second direction, assume, for a contradiction, that there exists no set cover of car-

dinality smaller than or equal to `; yet, there exists a subgraph S ⊆ V of u in G(V,E) such that

|N(S)| ≥ k. We distinguish between two cases:

1. the set is adjacent to all elements in VU , or

2. the set is not adjacent to every element in VU .

In the former case, since k = |U |+δ−`, this implies that there exists at most ` nodes in VS

that are in the set. However, by construction, this also implies that taking the sets that correspond

to the nodes in S∩VS we would end up with a set cover of cardinality at most `, which contradicts

our original assumption.

In the latter case, assume only U ⊂ U elements are adjacent to our set, S. Seeing as

|N(S)| ≥ k = |U +δ − `, and given that we are adjacent to |U | nodes in VU , this implies that we

have at most `− |U |+ |U | nodes from VS in the representative. From the definition of the set

cover problem, the union of all sets in S is equal to U : hence, in the sets that do not correspond

to nodes belonging in S, there exists a subset such that their union with the sets already in S they

cover all of U . In the worst case, each of those sets covers exactly one new element, leading to the

addition of |U |− |U | new sets from S . Overall, we have constructed a set cover of cardinality at

most `−|U |+ |U |+ |U |− |U |= `, a contradiction. This concludes the proof.

6.4.2. Structure closeness centrality

We now proceed to show the complexity for closeness centrality. Prior to the complexity

derivations, we begin with the definition of the decision version. We also restate here the CLIQUE

and INDEPENDENT SET problems, which are well-known to be N P-complete (Karp, 1972).

92

Definition 9 (STRUCTURE CLOSENESS CENTRALITY OF A NODE u∈V). Given G(V,E), a node

u ∈ V , and a real number k, does there exist an induced structure subgraph S ⊆ V of u such that

the average distance to all other nodes in V \S is less than or equal to k?

Definition 10 (CLIQUE). Given a graph G(V,E) and an integer number `, does there exist a subset

of nodes S⊆V such that they induce a complete subgraph of G, G[S], and |S| ≥ `?

Definition 11 (INDEPENDENT SET). Given a graph G(V,E) and an integer number `, does there

exist a set of nodes S⊆V such that no two nodes in S are adjacent, and |S| ≥ `?

Theorem 2. CLIQUE CLOSENESS CENTRALITY OF A NODE u∈V and STAR CLOSENESS CEN-

TRALITY OF A NODE u ∈V are both N P-complete.

Proof of Theorem 2. Once more, we begin by showing that both problems belong to N P . Con-

sider a solution S ⊆ V : we can verify in polynomial time whether G[S] is a complete subgraph or

whether it induces a star. Moreover, it is easy to check the cardinality of the set.

Consider an instance of CLIQUE < G(V,E), ` > (resp,. INDEPENDENT SET <

G(V,E), ` >). Construct an instance of CLIQUE CLOSENESS CENTRALITY OF A NODE u ∈ V

(resp., STAR CLOSENESS CENTRALITY OF A NODE u ∈ V) as follows. First, add a node u to G,

and connect it with an edge to every other node in V (Eu = {(u, i),∀i ∈V}). Then, for every node

in V create a chain of δ nodes (let them be Vi,∀i ∈ V), such that from the originating node in V ,

one node is at a distance of δ hops, one node is at a distance of δ − 1 hops, and so on (let it be

Ei = (i, i0)
⋃(δ⋃

j=1

(
i j−1, i j

))
). Figure 6.6 presents and example of the gadget used. Formally, we

can describe the nodeset as in (6.5) and the edgeset as in (6.6).

V̂ =V
⋃
{u}

⋃(⋃
i∈V

Vi

)
, (6.5)

Ê = E
⋃

Eu
⋃(⋃

i∈V

Ei

)
. (6.6)

93

(a) The original graph G(V,E) on which
CLIQUE or INDEPENDENT SET are to be solved,
given an integer `.

u

(b) The graph after adding u and the correspond-
ing edge set, Eu (shown in red).

u

. . .

`

.
.

. . .

..
.

..
.

(c) The graph after adding node set Vi,∀i ∈V , and edge set Ei,∀i ∈V (shown in blue).

Figure 6.6: An example of the transformation from CLIQUE (resp., INDEPENDENT SET) to the
CLIQUE CLOSENESS CENTRALITY OF A NODE u ∈ V (resp., STAR CLOSENESS CENTRALITY

OF A NODE u ∈V).

We will now show that G(V,E) has a clique (resp., independent set) of size k if and only if

the clique (resp., star) closeness of node u ∈ V̂ in Ĝ(V̂ , Ê) is less than or equal to k = n·`+2(n−k)
2n ,

where n is the number of nodes in G (n = |V |). For the first part of the proof, assume that G(V,E)

has a clique (resp., independent set) S of size k. Note that S∪{u} forms a clique (resp., star) in Ĝ,

too. The closeness of that clique (resp., star) then is equal to:

C(Ŝ) =
(`+ `−1+ `−2+ . . .+1) · k+(`+1+ `+ `−1+ . . .+1) · (n− k)

n · (`+1)
=

=
(`+1)·`

2 · k+ (`+2)·(`+1)
2 · (n− k)

n · (`+1)
=

k · `+(`+2) · (n− k)
2n

=
n · `+2 · (n− k)

2n
.

94

For the other direction, assume that there exists a clique (resp., star) Ŝ in Ĝ such that

C(Ŝ) ≤ k. Further assume, for a contradiction, that there exists no clique (resp., independent set)

of size k in G. We then have that:

C(Ŝ) =
(`+1)·`

2 ·
(
|Ŝ|−1

)
+ (`+2)(`+1)

2 ·
(
n−|Ŝ|+1

)
n · (`+1)

=
` ·
(
|Ŝ|−1

)
+(`+2) ·

(
n−|Ŝ|+1

)
2n

=

=
` ·n+2 ·

(
n−|Ŝ+1

)
2n

≤ k =⇒
` ·n+2 ·

(
n−|Ŝ+1

)
2n

≤ ` ·n+2 · (n− k)
2n

=⇒

=⇒ n−|Ŝ|+1≤ n− k =⇒ k ≤ |Ŝ|−1 =⇒ |Ŝ| ≥ k+1. (6.7)

Observe that S = Ŝ\{u} is a clique (resp., independent set) in G of size |S|= |Ŝ|−1. From

(6.7), though, we have that |S| ≥ k, which contradicts the initial assumption, finishing the proof.

We can now also derive the complexity of the representative problem.

Theorem 3. REPRESENTATIVE CLOSENESS CENTRALITY OF A NODE u ∈V is N P-complete.

Proof of Theorem 3. The problem is clearly in N P , since it is easily verifiable in polynomial

time whether a set of nodes is all connected to u and hence forms a representative, and whether its

average closeness is smaller than or equal to a real value k.

Consider an instance of SET COVER with a universe U , a collection of sets S , and an

integer `. First, create a node for every set C ∈ S (VS), and two nodes ui and vi for every

element i ∈ U (Vu and Vv). Also add one node u. Formally, the nodeset can be described as

V̂ =VS
⋃

Vu
⋃

Vv
⋃
{u}.

Connect u to every node corresponding to a set C ∈ S : let this be edgeset ES . Now,

connect with an edge every node ui to a node in VS if element i ∈ U belongs to the set

C ∈ S the node corresponds to, forming edgeset ES×U . Last, connect every node ui to vi,

∀i ∈ U (EU = {(ui,vi),∀i ∈U }). Finally, we have the edgeset of the constructed graph be

Ê = ES
⋃

ES×U
⋃

EU . We provide an example of the reduction in Figure 6.7.

95

U = {1,2,3,4,5,6}
S = {(1,2) ,(1,3) ,(1,4,5) ,(2,5) ,(3,4) ,(4,6)}
δ = 6

⇒ u

C1

C2

C3

C4

C5

C6

1

2

3

4

5

6

Figure 6.7: An example of the gadget used for transforming an instance of SET COVER to an
instance of REPRESENTATIVE CLOSENESS CENTRALITY OF A NODE u ∈ V . The nodes in red
are the ones in VS , while the ones in blue are in Vu and Vv. The edges in green are in ES , the ones
in purple are in ES×U , and the ones in blue are in EU .

We will show that a set cover of cardinality ` exists if and only if Ĝ(V̂ , Ê) has a represen-

tative set of u such that its average closeness is k = 1+ |U |
2|U |+(n−`) . For the first direction, assume

there exists a set cover of cardinality `. Consider the representative of u that consists of u itself and

the ` nodes that correspond to the sets in the set cover. The total distance of this set of nodes to

every node in the graph is equal to:

|U | ·1+ |U | ·2+(n− `) ·1 = 3 · |U |+(n− `) . (6.8)

This is easy to see as all elements in Vu are covered in a distance of 1 from one element in

the representative, all elements in Vv are within a distance of 2, and the remaining nodes (which

correspond to sets that were not in the set cover) are at a distance of 1 from u (by construction). The

total number of nodes that are not in the representative are 2|U |+(n− `), leading to an average

closeness of:

96

3 · |U |+(n− `)

2 · |U |+(n− `)
= 1+

|U |
2 · |U |+(n− `)

= k. (6.9)

For the other direction, assume no set cover of size ` exists; yet, there exists a representative

of u set Ŝ∪{u} with closeness less than or equal to k. We separate the proof in two parts:

a) Ŝ is adjacent to all nodes in Vu. Let |Ŝ|= ˆ̀. Then, we have that:

1+
|U |

2 · |U |+
(
n− ˆ̀) ≤ k =⇒ 1+

|U |
2 · |U |+

(
n− ˆ̀) ≤ 1+

|U |
2 · |U |+(n− `)

=⇒

=⇒ (n− `)≤
(
n− ˆ̀) =⇒ ˆ̀≤ `. (6.10)

The last inequality at (6.10) implies that there exists a set cover of cardinality ˆ̀≤ `, which

contradicts our initial assumption.

b) Ŝ is adjacent to a strict subset of the nodes in VU . Let this subset be Vû ⊂ Vu with the

corresponding universe elements Û ⊂U and let |Ŝ|= ˆ̀. Its closeness is:

3 · |U \ Û |+2 · |U \ Û |+2 · |Û |+ |Û |+
(
n− ˆ̀)

2 · |U |+
(
n− ˆ̀) = 1+

3 · |U |−2 · |Û |
2 · |U |+

(
n− ˆ̀) =

= 1+
|U |

2 · |U |+
(
n− ˆ̀) + 2 · |U \ Û |

2 · |U |+
(
n− ˆ̀) ≤ k̂ = 1+

|U |
2 · |U |+(n− `)

=⇒ (6.11)

=⇒ 1+
|U |

2 · |U |+
(
n− ˆ̀) < 1+

|U |
2 · |U |+(n− `)

. (6.12)

From (6.12), we get that ˆ̀< `. Now, if we show that |U \ Û | ≤
(
`− ˆ̀), this will imply that

we can add (in the worst case) the |U \ Û | nodes in VS to the representative and still have

a representative of cardinality less than or equal to `. From (6.11), we have that:

97

|U |+2 · |U \ Û |
2 · |U |+

(
n− ˆ̀) +≤ |U |

2 · |U |+(n− `)
=⇒ |U |+2 · |U \ Û |

2 · |U |+(n− `)+
(
`− ˆ̀) ≤ |U |

2 · |U |+(n− `)

=⇒ 2 · |U \ Û |(
`− ˆ̀) ≤ |U |

2 · |U |+(n− `)
=⇒ 2 · |U \ Û | · (2 ·U +(n− `))≤ |U | ·

(
`− ˆ̀)

=⇒ 4 · |U | · |U \ Û | ≤U ·
(
`− ˆ̀) =⇒ |U \ Û | ≤ 1

4
·
(
`− ˆ̀) =⇒ |U \ Û | ≤

(
`− ˆ̀) .

(6.13)

The inequality at (6.13) finishes the proof, as adding the (at most) |U \ Û | sets from S

needed to cover the remaining elements from U , and whose vertex counterparts in Ĝ were

not in Ŝ, creates a set cover of cardinality at most `, which is a contradiction.

6.4.3. Structure betweenness centrality

Similarly to the previous subsections, we begin by providing the definition of the decision

version of the problem.

Definition 12 (STRUCTURE BETWEENNESS CENTRALITY OF A NODE u ∈V). Given G(V,E), a

node u ∈V , and a real number k, does there exist an induced structure subgraph S ⊆V of u such

that the betweenness centrality (defined as the proportion of geodesics between every two nodes

i, j ∈V \S that pass through S) is greater than or equal to k?

We are now ready to show the N P-completeness of the problem when the structure con-

taining u ∈V is enforced to be a clique or an induced star.

Theorem 4. CLIQUE BETWEENNESS CENTRALITY OF A NODE u∈V and STAR BETWEENNESS

CENTRALITY OF A NODE u ∈V are both N P-complete.

Proof of Theorem 4. We see again that both problems are in N P as it can be verified in polyno-

mial time whether the structure obtained forms a clique containing u or an induced star centered

98

at u with a betweenness greater than or equal to k. As a reminder, the betweenness of a group of

nodes can be calculated in polynomial time (see, e.g., Puzis et al. (2007a)).

Once more we put the CLIQUE and INDEPENDENT SET problems to use. Consider an

instance of CLIQUE (resp., INDEPENDENT SET) < G(V,E), ` >. We will construct an instance

of our problem as follows. First, introduce two new nodes u,u∗: connect u with an edge to ev-

ery node i ∈ V (forming Eu = {(u, i) ,∀i ∈V}). Moreover, add a new set Vi, for every node i,

containing M nodes: each of them is connected with an edge to their originating node i (i.e.,

Ei =
{(

v(j)
i , i

)
,∀ j = 1, . . . ,M

}
,∀i∈V) and to u∗ (i.e., Eu∗ =

{(
v(j)

i ,u∗
)
,∀i ∈V,∀ j = 1, . . . ,M

}
).

Formally, the node set and edge set of the constructed graph are given in (6.14) and (6.15): an ex-

ample of the transformation is given in Figure 6.8.

V̂ =V
⋃(⋃

i∈V

Vi

)⋃
{u}

⋃
{u∗} (6.14)

Ê = E
⋃(⋃

i∈V

Ei

)⋃
Eu
⋃

Eu∗ (6.15)

We will show that a clique (resp., independent set) of size ` exists in G(V,E) if and only if

there exists a clique containing (resp., induced star centered at) u in Ĝ(V̂ , Ê) such that its between-

ness is greater than or equal to k = 1
2

`
n2 .

For the first direction of the proof, assume there exists a clique S in G(V,E) such that

|S| = `. Clearly, the set S∪{u} forms a clique in Ĝ. Its betweenness can be shown to be greater

than or equal to k as follows. Note that, by construction, all shortest paths from a node in Vi to

a node in Vj or to u∗ does not use any of the nodes in the clique containing (resp., induced star

centered at) u. However, shortest paths connecting two nodes in Vi do have a fraction that uses one

node (i) in the clique: more specifically half of those shortest paths pass through the clique, with

the other half using the other shortest path that uses u∗. Hence, this gives us a total of 1
2`

M·(M−1)
2

shortest paths. Moreover, there are at least 1
2nM (n− `) shortest paths passing through the link to

connect a node in Vi to a node in V \S and at most nM (n− `). Similarly, there are at least 0 and at

99

(a) The original graph G(V,E) on which
CLIQUE or INDEPENDENT SET are to be solved,
given an integer `.

..
.

..
.

.

.

(b) The graph after adding a total of n ·M leaves
(Vi,∀i ∈ V) and their corresponding edge set,
Ei,∀i ∈V (shown in red).

u

u∗

..
.

..
.

.

.

(c) The graph after adding nodes u and u∗, as well as edge sets Eu,Eu∗ (shown in blue and orange, respec-
tively).

Figure 6.8: An example of the transformation from CLIQUE (resp., INDEPENDENT SET) to the
CLIQUE BETWEENNESS CENTRALITY OF A NODE u ∈ V (resp., STAR BETWEENNESS CEN-
TRALITY OF A NODE u ∈V).

most (n−`)·(n−`−1)
2 shortest paths between two nodes in V \ S. Finally, there are no shortest paths

using a node in the clique (resp., independent set) that connect a node in V \S to u∗. This gives us

that there are at least a total number of shortest paths using a node in S:

1
2
`

M · (M−1)
2

+
1
2

nM (n− `) =
1
2 · ` ·M

2 + 1
2

(
n2− ` ·n+ `

)
·M

2
. (6.16)

100

The total number of shortest paths is equal to

(n · (M+1)− `+1) · (n · (M+1)− `)

2
=

n2 ·M2 +
(
2n2−2`n+n

)
·M+n2 + `2−2`n+n− `

2
.

(6.17)

Combining (6.16) and (6.17) as well as the fact that M can be made suitably big, we finally

get that the betweenness of S∪{u} is at least equal to 1
2

`
n2 = k.

Now, let us assume that there is no clique (resp., independent set) of size ` in G(V,E) and

yet there exists a clique containing (resp., induced star centered at) u in Ĝ(V̂ , Ê) with a betweenness

greater than or equal to k. Let it be Ŝ∪{u} and assume that |Ŝ|= ˆ̀.

From the earlier discussion, we have that by construction the number of shortest paths using

at least one node in Ŝ∪{u} is at most equal to:

1
2

ˆ̀M · (M−1)
2

+nM
(
n− ˆ̀)+ (n− ˆ̀) · (n− ˆ̀−1

)
2

=

1
2

ˆ̀·M2 +
(
2n2−2 ˆ̀n− 1

2
ˆell
)
·M+n2−2 ˆ̀n+ ˆ̀2−n+ ˆ̀

2
. (6.18)

Combining (6.17) and (6.18) with the fact that M can be made suitably big, we have that

the betweenness of Ŝ∪{u} cannot be more than 1
2

ˆ̀
n2 . Hence, we have:

1
2

ˆ̀

n2 ≥ k =⇒ 1
2

ˆ̀

n2 ≥
1
2
`

n2 =⇒ ˆ̀≥ `. (6.19)

This contradicts the original assumption, as Ŝ forms a clique and has cardinality |Ŝ|= ˆ̀≥ `.

For the case of a representative set of a node u ∈V , we can use the MAXIMUM BETWEEN-

NESS CENTRALITY problem, as this was introduced by (Puzis et al., 2007b): the authors also

derived the N P-hardness of the problem by reduction from the well-known VERTEX COVER.

101

Definition 13 (MAXIMUM BETWEENNESS CENTRALITY). Given a graph G(V,E) and an integer

` which subset of nodes S⊆V of cardinality |S|= ` possesses maximum betweenness centrality?

102

CHAPTER 7. MATHEMATICAL FORMULATIONS

In this chapter, we develop mathematical programming formulations for all problems, as

those were defined in the previous chapter. The current chapter is organized in three main sec-

tions (one per centrality metric studied, i.e., degree, closeness, and betweenness), and each section

contains formulations for all structures (i.e., representative, induced star, and clique).

7.1. Structure degree centrality

In this section, we discuss the formulations for the degree centrality version of the structures

studied. Each of them is described in its own subsection, beginning with the broader representative

structure of a node u ∈V .

7.1.1. Representative structure

As discussed in Chapter 6, a set of nodes S forms a representative of u∈V if in the induced

subgraph of S, u has a degree of |S| − 1. The problem of identifying the representative set of a

node u with maximum degree centrality can be formulated as in (7.1). Before we proceed, let us

describe the decision variables needed.

x0
i =

 1, if node i ∈ S,

0, otherwise.

x1
i =

 1, if node i ∈V is adjacent to a node in S and not in S,

0, otherwise.

We use x`i for convenience, as it denotes whether i is found ` hops away from S nodes i is. For

degree, we are only interested in –at most– one hop away, leading to `= 0,1. We proceed to give

the full formulation in (7.1).

103

RD(u): max ∑
i∈V

x1
i (7.1a)

s.t. x0
i + x1

i ≤ 1, ∀i ∈V, (7.1b)

x0
i ≤ aiu, ∀i ∈V \{u}, (7.1c)

x1
i ≤ ∑

j:(i, j)∈E
x0

j , ∀i ∈V, (7.1d)

x0
u = 1, (7.1e)

x0
i ,x

1
i ∈ {0,1} ∀i ∈V. (7.1f)

The objective is to maximize the cardinality of the open neighborhood, as shown in (7.1a).

Then, constraint family (7.1b) ensures that no node can be both in the set and its open neighbor-

hood. Constraints (7.1c) enforce that only nodes that are adjacent to u are considered, as otherwise

the set would not be a representative of u. Further, with constraints (7.1d) we guarantee that a node

belongs to the open neighborhood of set S if at least one of its neighbors is in S. Last, in (7.1e) and

(7.1f) we force u to be part of the set, and restrict all variables to be binary.

7.1.2. Induced star structure

Once more, as described in Chapter 6, a set of nodes S is said to form an induced star

centered at u ∈V if the induced subgraph of S has exactly one node (u) with degree |S|−1, while

the remaining |S|−1 nodes have degrees equal to 1. The formulation is identical as the one in (7.1)

with the addition of the constraint that ensures the required star structure of the set, which is added

in (7.2c). The constraint does not allow two adjacent nodes to both serve as leaves in S.

SD(u): max ∑
i∈V

x1
i (7.2a)

s.t. (7.1b)–(7.1f), (7.2b)

x0
i + x0

j ≤ 1, ∀(i, j) ∈ E : i 6= u, j 6= u. (7.2c)

104

7.1.3. Clique structure

Finally, as a reminder from Chapter 6, a set of nodes S forms a clique if the induced sub-

graph of S has |S| nodes of degree |S|− 1. The formulation, with the addition of the well-known

clique constraint in (7.3c), is given in (7.3).

CD(u): max ∑
i∈V

x1
i (7.3a)

s.t. (7.1b)–(7.1f), (7.3b)

x0
i + x0

j ≤ 1, ∀(i, j) /∈ E. (7.3c)

7.1.4. A different formulation for structure degree centrality

We can take advantage of the local considerations in degree centrality and hence, we may

propose a different formulation. First, define N(u) =
⋃

v∈N(u)(N(v)\N(u)) and N̂(u) = N(u)∪u.

Then, we can reformulate the representative degree problem as follows:

[IP2] max ∑
i∈N(u)

x1
i − ∑

i∈N̂(u)

x0
i + |N(u)| (7.4a)

x1
i ≤ ∑

j∈(N(i)∩N̂(u))

x0
j , ∀i ∈ N(u), (7.4b)

x0
i ,x

1
i ∈ {0,1} ∀i ∈V. (7.4c)

The two other problems (clique and star) can be accommodated by adding

x0
i + x0

j ≤ 1+ai j, ∀i, j ∈ N(u), (7.5)

and

x0
i + x0

j ≤ 2−ai j, ∀i, j ∈ N(u), (7.6)

respectively.

105

7.2. Structure closeness centrality

We now proceed to provide the decision variables and formulations for the three structures

and closeness centrality.

7.2.1. Representative structure

Following in the footsteps of Vogiatzis et al. (2015), we introduce binary variables x`i ,∀i ∈

V,∀` = 1, . . . ,diam(G) to help us calculate the distance of every node i ∈ V \ S to a node in the

representative set S. Formally, we have:

x`i =

 1, if node i ∈V is at most at a distance of `= 0, . . . ,diam(G) from a node in S,

0, otherwise.

Note that x0
i and x1

i are then identically defined as in the case of degree centrality. We also note

that based on this definition, the number of nodes that are found at exactly a distance of ` from S is

equal to ∑i∈V x`i −∑i∈V x`−1
i . A first formulation can now be found in (7.7).

min

∑
diam(G)
`=1 `

(
∑i∈V x`i −∑i∈V x`−1

i

)
|V |−∑i∈V x0

i
(7.7a)

s.t. x0
i ≤ aiu, ∀i ∈V \{u}, (7.7b)

x`i ≤ ∑
j:(i, j)∈E

x`−1
j + x`−1

i , ∀i ∈V, `= 1, . . . ,diam(G), (7.7c)

x`i ≥
1

(1+ |N(i)|)

(
∑

j:(i, j)∈E
x`−1

j + x`−1
i

)
, ∀i ∈V, `= 1, . . . ,diam(G), (7.7d)

x0
u = 1, (7.7e)

x`i ∈ {0,1}, ∀i ∈V, `= 0, . . . ,diam(G). (7.7f)

In the formulation, the objective in (7.7a) is to minimize the average distance from S to all other

nodes in V \S. Similarly to the degree formulation, only nodes that are adjacent to u are considered

candidates for the representative: this is enforced in (7.7b). Constraints (7.7c) and (7.7d) together

106

ensure the proper and correct definition of the x`i variables. This happens because x`i is not allowed

to be equal to 1 unless itself or a neighbor are at a distance of `−1 from S and it is strictly greater

than 1 when at least one of its neighbors or itself are at a distance of `−1 hops from S. Last, (7.7e)

forces u to be in the set, and (7.7f) restricts all variables to be binary.

It is easy to see that this formulation is not linear, because of the fractional nature of the

objective function. We provide a linearization as follows. First, we introduce a new variable in the

form of w = 1/
(
|V |−∑i∈V x0

i

)
: by definition, 0 ≤ w ≤ 1. Hence, the objective function can now

be expressed as in (7.8).

diam(G)

∑
`=1

`

(
∑
i∈V

x`i w−∑
i∈V

x`−1
i w

)
. (7.8)

Luckily, because w∈ [0,1], we can define new variables y`i = x`i ·w and hence, the objective function

is rendered as in (7.9).

diam(G)

∑
`=1

`

(
∑
i∈V

y`i −∑
i∈V

y`−1
i

)
. (7.9)

Of course, y`i and w need to be properly defined in the constraint set of the problem. This leads to

the addition of the following 4 constraints:

yl
i ≤ xl

i, ∀i ∈V,∀`= 1, . . . ,diam(G), (7.10)

yl
i ≤ w, ∀i ∈V,∀`= 1, . . . ,diam(G), (7.11)

yl
i ≥ xl

i +w−1, ∀i ∈V,∀`= 1, . . . ,diam(G), (7.12)

w|V |−∑
i∈V

y0
i = 1. (7.13)

107

Finally, we have the mixed integer linear program shown in (7.14).

min (7.9) (7.14a)

s.t. (7.7b)–(7.7f) (7.14b)

(7.10)–(7.13) (7.14c)

0≤ w≤ 1 (7.14d)

y`i ≥ 0, ∀i ∈V,∀`= 1, . . . ,diam(G). (7.14e)

7.2.2. Star and clique structures

Identically to the previous subsection on degree centrality, we need only ensure that the

proper star and clique constraints are enforced. They correspond to

x0
i + x0

j ≤ 1,∀(i, j) ∈ E : i 6= u, j 6= u, (7.15)

and

x0
i + x0

j ≤ 1,∀(i, j) /∈ E, i 6= j. (7.16)

respectively.

Before ending this subsection, we note that in this work, we consider the average distance

from all other nodes to the nodes in the clique, as opposed to the minimizing the total and maximum

distances that were considered in Vogiatzis et al. (2015).

7.3. Structure betweenness centrality

Prior to getting to the formulations for the different structures investigated for betweenness,

we provide some necessary properties.

In the case of standard betweenness, for all three structures, an interesting property holds.

Let again u be the node that will serve as the center of the star/representative, or belong to the clique

we are looking for. Moreover, let γk
i j, γkl

i j , and γklm
i j be the number of shortest paths connecting i and

108

j that intersect a structure node k,k 6= i, j (with γ i
i j = γ

j
i j = 0), structure nodes k, l,k < l,k, l 6= i, j

(with γ
i j
i j = 0,γ ik

i j 6= 0, and γ
k j
i j 6= 0), and structure nodes k, l,m,k < l < m, respectively. Also, let

γi j(S,S′) denote the total number of shortest paths between i and j whose intersection with set S is

equal to set S′. We then have the following Proposition 1, based on Rysz et al. (2018).

Proposition 1 (Based on Rysz et al. (2018)). Given a structure S⊆V (when S is a induced repre-

sentative, star, or clique of a node u), vertices i, j ∈V \S, and k, l,m ∈ S,k 6= l 6= m, we have:

1. γi j(S,{k, l,m}) = γi j({k, l,m},{k, l,m}) = γklm
i j .

Proof. Assume for a contradiction that the left and right hand side are not equal. Then, there

is some vertex k′ ∈ S, such that there is a shortest path between i and j that passes through

k, l,m, as well as k′. Hence, this path is counted in γi j({k, l,m},{k, l,m}) and is not counted

in γi j(S,{k, l,m}) which means that γi j(S,{k, l,m})< γi j({k, l,m},{k, l,m}). We know that

(according to the definitions of representative, star and clique) the shortest path between any

two non-structure vertices will contain at most 3 structure vertices (for representative and

star, this number is at most 3, and for a clique it is at most 2). Thus, it is a contradiction and

the proof is complete.

2. γi j(S,{k, l}) = γkl
i j − ∑

m∈S\{k,l}
γi j({k, l,m},{k, l,m}).

Proof. The set of shortest paths between i and j that contain k, l ∈ S can be partitioned into

|S|− 1 sets. Namely, the set of shortest paths between i and j whose intersection with S is

{k, l} and the set of shortest paths between i and j whose intersection with S is {k, l,m} for

some other vertex m ∈ S,m 6= k, l. Thus, we have that:

γ
kl
i j = γi j(S,{k, l})+ ∑

m∈S\{k,l}
γi j(S,{k, l,m}).

109

Using the first part of Proposition 1, we also have:

γi j(S,{k, l}) = γ
kl
i j − ∑

m∈S\{k,l}
γi j({k, l,m},{k, l,m}),

which finishes this part of the proof.

3. γi j(S,{k}) = γk
i j− ∑

l∈S\{k}
γkl

i j + ∑
l,m∈S\{k},l<m

γi j({k, l,m},{k, l,m}).

Proof. The set of shortest paths between i and j that contain k ∈ S can be partitioned into

|S|+
(|S|

2

)
sets. Namely, the set of shortest paths between i and j whose intersection with S

is {k}, the set of shortest paths between i and j whose intersection with S is {k, l} for some

other l ∈ S, l 6= k, and the set of shortest paths between i and j whose intersection with S is

{k, l,m} for some other l,m ∈ S, l,m 6= k, l < m. Thus, we now have:

γ
k
i j = γi j(S,{k})+ ∑

l∈S\{k}
γi j(S,{k, l})+ ∑

l,m∈S\{k},l<m
γi j(S,{k, l,m}).

This last equality can be written as:

γi j(S,{k}) = γ
k
i j− ∑

l∈S\{k}
γi j(S,{k, l})− ∑

l,m∈S\{k},l<m
γi j(S,{k, l,m}).

Using parts 1 and 2 of Proposition 1, we have:

γi j(S,{k}) = γ
k
i j− ∑

l∈S\{k}
γ

kl
i j + ∑

l∈S\{k}
∑

m∈S\{k,l}
γi j({k, l,m},{k, l,m})

− ∑
l,m∈S\{k},l<m

γi j({k, l,m},{k, l,m}).

We also note that:

∑
l∈S\{k}

∑
m∈S\{k,l}

γi j({k, l,m},{k, l,m}) = 2 ∑
l,m∈S\{k},l<m

γi j({k, l,m},{k, l,m}).

110

Therefore:

γi j(S,{k}) = γ
k
i j− ∑

l∈S\{k}
γ

kl
i j + ∑

l,m∈S\{k},l<m
γi j({k, l,m},{k, l,m}),

which concludes this part of the proof.

4. γi j(S) = ∑
k∈S

γk
i j− ∑

k,l∈S,k<l
γkl

i j + ∑
k,l,m∈S,k<l<m

γi j({k, l,m},{k, l,m}).

Proof. As shown during the proof of part 1 of this proposition, any shortest path between

i, j ∈ V \ S intersects at most 3 vertices of structure S. The set of shortest paths between i

and j that intersect structure S can be partitioned into three groups or |S|+
(|S|

2

)
+
(|S|

3

)
sets.

Namely, the set of shortest paths between i and j whose intersection with S is {k} for some

vertex k ∈ S, the set of shortest paths between i and j whose intersection with S is {k, l}

for some pair of vertices k, l ∈ S,k < l, and the set of shortest paths between i and j whose

intersection with S is {k, l,m} for some k, l,m ∈ S,k < l < m. Overall, we have that:

γi j(S) = ∑
k∈S

γi j(S,{k})+ ∑
k,l∈S,k<l

γi j(S,{k, l})+ ∑
k,l,m∈S,k<l<m

γi j(S,{k, l,m}).

By parts 1, 2, and 3 of Proposition 1, we have that:

γi j(S) =∑
k∈S

[
γ

k
i j− ∑

l∈S\{k}
γ

kl
i j + ∑

l,m∈S\{k},l<m
γi j({k, l,m},{k, l,m})

]
+

∑
k,l∈S,k<l

[
γ

kl
i j − ∑

m∈S\{k,l}
γi j({k, l,m},{k, l,m})

]
+

∑
k,l,m∈S,k<l<m

γi j({k, l,m},{k, l,m}).

111

This can be also written as:

γi j(S) =∑
k∈S

γ
k
i j−∑

k∈S
∑

l∈S\{k}
γ

kl
i j + ∑

k∈S
∑

l,m∈S\{k},l<m
γi j({k, l,m},{k, l,m})+

∑
k,l∈S,k<l

γ
kl
i j − ∑

k,l∈S,k<l
∑

m∈S\{k,l}
γi j({k, l,m},{k, l,m})+

∑
k,l,m∈S,k<l<m

γi j({k, l,m},{k, l,m}).

Further, note that:

∑
k∈S

∑
l∈S\{k}

γ
kl
i j = 2 ∑

k,l∈S,k<l
γ

kl
i j .

∑
k∈S

∑
l,m∈S\{k},l<m

γi j({k, l,m},{k, l,m}) = 3 ∑
k,l,m∈S,k<l<m

γi j({k, l,m},{k, l,m}).

∑
k,l∈S,k<l

∑
m∈S\{k,l}

γi j({k, l,m},{k, l,m}) = 3 ∑
k,l,m∈S,k<l<m

γi j({k, l,m},{k, l,m})

In conclusion, we have:

γi j(S) =∑
k∈S

γ
k
i j−2 ∑

k,l∈S,k<l
γ

kl
i j +3 ∑

k,l,m∈S,k<l<m
γi j({k, l,m},{k, l,m})+

∑
k,l∈S,k<l

γ
kl
i j −3 ∑

k,l,m∈S,k<l<m
γi j({k, l,m},{k, l,m})+

∑
k,l,m∈S,k<l<m

γi j({k, l,m},{k, l,m})

= ∑
k∈S

γ
k
i j− ∑

k,l∈S,k<l
γ

kl
i j + ∑

k,l,m∈S,k<l<m
γi j({k, l,m},{k, l,m}).

As mentioned earlier, in the case of a clique, the calculation is simplified as any shortest

path between i, j ∈V \S intersects at most 2 vertices of clique S.

112

7.3.1. Representative structure

The formulation for finding a representative S of a given node u ∈ V as the center of the

representative, while maximizing the betweenness centrality can be written as in (7.17).

max

∑
i, j∈V

(
∑

k∈V
γk

i jx
0
k− ∑

k,l∈V,k<l
γkl

i j x0
kx0

l + ∑
k,l,m∈V,k<l<m

γi j({k, l,m},{k, l,m})x0
kx0

l x0
m

)
∑

i, j∈V
γi j(1− x0

i)(1− x0
j)

(7.17a)

s.t. x0
i ≤ aiu, ∀i ∈V \{u} (7.17b)

x0
u = 1, (7.17c)

x0
i ∈ {0,1}, ∀i ∈V (7.17d)

Constraints (7.17b) ensure that only the nodes that are adjacent to u are considered as

candidates to be in S. Constraint (7.17c) enforces that node u is in the representative, and finally

binary variable restrictions are given in (7.17d). We now claim that the objective function in (7.17a)

correctly calculates the betweenness of a set S as this was defined in (6.1). We formally show this

in Proposition 2.

Proposition 2. The objective function in (7.17a) correctly calculates the value of betweenness

centrality for a representative S, i.e.,

Cb(S) =

∑
i, j∈V\S

γi j(S)

∑
i, j∈V\S

γi j
=

=

∑
i, j∈V

(
∑

k∈V
γk

i jx
0
k− ∑

k,l∈V,k<l
γkl

i j x0
kx0

l + ∑
k,l,m∈V,k<l<m

γi j({k, l,m},{k, l,m})x0
kx0

l x0
m

)
∑

i, j∈V
γi j(1− x0

i)(1− x0
j)

.

(7.18)

113

Proof. Using Proposition 1 and the definition of binary variables x0
i , equation (6.1) can be written

as follows:

Cb(S) =

∑
i, j∈V\S

γi j(S)

∑
i, j∈V\S

γi j
=

∑
i, j∈V\S

(
∑

k∈S
γk

i j− ∑
k,l∈S,k<l

γkl
i j + ∑

k,l,m∈S,k<l<m
γi j({k, l,m},{k, l,m})

)
∑

i, j∈V\S
γi j

=

∑
i, j∈V\S

(
∑

k∈V
γk

i jx
0
k− ∑

k,l∈V,k<l
γkl

i j x0
kx0

l + ∑
k,l,m∈V,k<l<m

γi j({k, l,m},{k, l,m})x0
kx0

l x0
m

)
∑

i, j∈V\S
γi j

.

(7.19)

To show that (7.18) is equal to (7.19), we need to show that:

∑
k∈V

γ
k
i jx

0
k− ∑

k,l∈V,k<l
γ

kl
i j x0

kx0
l + ∑

k,l,m∈V,k<l<m
γi j({k, l,m},{k, l,m})x0

kx0
l x0

m = 0, ∀i ∈ S, j ∈V (7.20)

and that

γi j(1− x0
i)(1− x0

j) = 0, ∀i ∈ S, j ∈V. (7.21)

It is obvious that the expression in the left hand side of (7.21) is equal to zero. The first expression

in (7.20) can be rewritten as:

∑
k∈V\S

γ
k
i jx

0
k− ∑

k,l∈V\S,k<l
γ

kl
i j x0

kx0
l + ∑

k,l,m∈V\S,k<l<m
γi j({k, l,m},{k, l,m})x0

kx0
l x0

m

+ ∑
k∈S

γ
k
i j− ∑

k,l∈S,k<l
γ

kl
i j + ∑

k,l,m∈S,k<l<m
γi j({k, l,m},{k, l,m}) = 0 ∀i ∈ S, j ∈V

(7.22)

Since x0
i = 0,∀i ∈V \S, we can write (7.22) as:

∑
k∈S

γ
k
i j− ∑

k,l∈S,k<l
γ

kl
i j + ∑

k,l,m∈S,k<l<m
γi j({k, l,m},{k, l,m}) = 0 ∀i ∈ S, j ∈V (7.23)

114

Hence, we simply need to show that the left hand side of (7.23) is equal to zero. We distinguish

between two cases for any node j:

1. node j belongs to the representative: j ∈ S.

Since S is a representative there are three cases:

(a) i or j is the center of the representative: In this case, there is only one shortest path

between i and j and it goes through edge (i, j) ∈ Es. Thus, γk
i j = 0 for all k ∈ S, γkl

i j = 0

for all k, l ∈ S,k < l, and γklm
i j = 0 for all k, l,m ∈ S,k < l < m and (7.23) is true.

(b) both i and j are leaf nodes of the representative S and they are not connected. In this

case there are two possible subcases: 1) the shortest paths between i and j go through

other structure nodes p∈ S so that p∈N(i)∩N(j). We suppose that the number of these

shortest paths are n1,1 ≤ n1 ≤ |S| − 2. Thus, ∑k∈S γk
i j = n1,∑k,l∈S,k<l γkl

i j = 2n1, and

∑k,l,m∈S,k<l<m γklm
i j = n1 and (7.23) is true. 2) in addition to the shortest paths between

i and j that go through structure nodes (at least 1 path), there are other shortest paths

that pass through nodes q∈V \S so that q∈N(i)∩N(j). We suppose that the number of

these shortest paths are n2,1≤ n2 ≤ |V |− |S|. Therefore, ∑k∈S γk
i j = n1,∑k,l∈S,k<l γkl

i j =

2n1, and ∑k,l,m∈S,k<l<m γklm
i j = n1 and (7.23) is true.

(c) both i and j are leaf nodes of the representative S and they are connected through edge

(i, j)∈ES. Hence,there is only one shortest path between i or j and it goes through edge

(i, j) ∈ Es, so ∑k∈S γk
i j = 0,∑k,l∈S,k<l γkl

i j = 0, and ∑k,l,m∈S,k<l<m γklm
i j = 0 and (7.23) is

true.

2. node j does not belong to the representative: j ∈V \S.

There are four possible cases:

(a) If geodesic path between i and j does not intersect other representative nodes, then

∑k∈S γk
i j = 0,∑k,l∈S,k<l γkl

i j = 0, and ∑k,l,m∈S,k<l<m γklm
i j = 0 and (7.23) is true.

115

(b) if the shortest path between i and j intersects only one other structure node which is

connected to node i, then ∑k∈S γk
i j = 1,∑k,l∈S,k<l γkl

i j = 1, and ∑k,l,m∈S,k<l<m γklm
i j = 0

and (7.23) is true.

(c) if the shortest path between i and j intersects one other structure node p which

is not connected to node i, in this case the shortest path between i and j goes

through node t, t ∈ N(i)∩N(p) : t ∈ V \ S. Thus, ∑k∈S γk
i j = 3,∑k,l∈S,k<l γkl

i j = 4, and

∑k,l,m∈S,k<l<m γklm
i j = 1 and (7.23) is true.

(d) if the shortest path between i and j intersects only two nodes of the representative S,

then ∑k∈S γk
i j = 2,∑k,l∈S,k<l γkl

i j = 3, and ∑k,l,m∈S,k<l<m γklm
i j = 1 and (7.23) is true.

This concludes the proof.

The formulation is nonlinear due to the objective function in (7.17a). We proceed to show

the linearization of this formulation in the remainder of the subsection. Let us consider new vari-

able w = 1
∑

i, j∈V
γi j(1−x0

i)(1−x0
j)

, then we have that 0≤ w≤ 1, and we can write the objective function

as:

∑
i, j∈V

(
∑
k∈V

γ
k
i jx

0
kw− ∑

k,l∈V,k<l
γ

kl
i j x0

kx0
l w+ ∑

k,l,m∈V,k<l<m
γi j({k, l,m},{k, l,m})x0

kx0
l x0

mw

)
.

If we introduce new decision variables yk = x0
kw,zkl = x0

kx0
l w and rklm = x0

kx0
l x0

mw, then the objective

function will become:

∑
i, j∈V

(
∑
k∈V

γ
k
i jyk− ∑

k,l∈V,k<l
γ

kl
i j zkl + ∑

k,l,m∈V,k<l<m
γi j({k, l,m},{k, l,m})rklm

)
. (7.24)

116

We need to add the following constraints to properly define decision variable w in the model:

w =
1

∑
i, j∈V

γi j(1− x0
i)(1− x0

j)

w ∑
i, j∈V

γi j(1− x0
i)(1− x0

j) = 1

∑
i, j∈V

γi j(w− yi− y j + zi j) = 1 (7.25)

Thus, the final formulation for maximizing betweenness will be as in (7.26).

[BCRP] max (7.24) (7.26a)

s.t. (7.17b)–(7.17d), (7.25) (7.26b)

yi ≤ x0
i ,yi ≤ w,yi ≥ x0

i +w−1, ∀i ∈V (7.26c)

zi j ≤ x0
i ,zi j ≤ x0

j ,zi j ≤ w,zi j ≥ x0
i + x0

j +w−2, ∀i, j ∈V (7.26d)

ri jk ≤ x0
i ,ri jk ≤ x0

j ,ri jk ≤ x0
k ,ri jk ≤ w,ri jk ≥ x0

i + x0
j + x0

k +w−3, ∀i, j,k ∈V (7.26e)

yi,zi j,ri jk,w ∈ [0,1], ∀i, j,k ∈V, (7.26f)

7.3.1.1. Star and clique structures

Once again, we may add the same structure constraints as in the previous corresponding

subsections (see, e.g., subsection 7.2.2) in the formulation of (7.26).

117

CHAPTER 8. COMBINATORIAL BRANCH-AND-BOUND

In this chapter, we propose a CBB algorithm to solve the problems defined. We will later (in

Chapter 13) compare its performance against using a commercial solver to solve the formulations

from Chapter 7.

For the rest of this chapter, we distinguish between the terms vertex and node, which are

usually considered the same and are used interchangeably earlier; we specify that vertex refers to a

vertex in a given graph G, and node refers to a node in the search tree. Once more, we break down

the discussion in subsections depending on the centrality metrics. In the first subsection, we focus

on betweenness centrality. For each centrality metric, we discuss the general search tree structure,

and then the specifics for each of the structures: representatives, induced stars, and cliques.

8.1. Interesting properties

Prior to presenting the CBB approaches for each of the problem, we provide some interest-

ing properties.

Theorem 5 (Hereditary property of cliques). Let S∗i be the clique of maximum centrality containing

node i, and let j 6= i belong to S∗i . Then, if i ∈ S∗j , we must have S∗i = S∗j .

Proof. Assume for a contradiction that i∈ S∗j and j∈ S∗i , but S∗i 6= S∗j . Then, we distinguish between

two cases: (i) ∃k : k ∈ S∗i \ S∗j and (ii) ∃k : k ∈ S∗j \ S∗i . Finally, let C(S) be the centrality value of

clique S. We will show that we can build S∗j starting from S∗i and, hence, S∗i cannot be optimal.

In the first case, observe that S∗i \ k forms a clique, as we are simply removing a node from

the set. Similarly, in the second case, S∗i ∪{k} satisfies all requirements for a clique, as both k ∈ S∗j

and i ∈ S∗j , and hence (i,k) ∈ E. Finally, adding and removing every node in the cases above

leads to transforming S∗i to S∗j , which, by assumption, has a higher centrality value C(S∗j). This

contradicts the optimality of S∗i .

Theorem 6 (Lower and upper bound for the representative problem). Let C∗i , S∗i , and R∗i be the

clique, star, and representative of maximum centrality containing node i, respectively. Then, for the

118

MCSP(i) problems we have that Cc(R∗i)≤Cc(C∗i) and Cc(R∗i)≤Cc(S∗i). Moreover, for MDSP(i)

and MBSP(i) problems we have Cd(R∗i)≥Cd(C∗i) and Cb(R∗i)≥Cb(S∗i).

Proof. Based on the definitions of a clique, star, and representative, any clique or star of vertex

i ∈V is also a representative of node i; the opposite does not necessarily hold.

8.2. Structure betweenness centrality

8.2.1. Properties of the betweenness centrality measure

Based on Rysz et al. (2018), we propose an important observation for updating the be-

tweenness centrality of a structure, when its cardinality is increased by one. This result is used in

the CBB approach to calculate the betweenness centrality of a child node given the betweenness

of its parent, as well as facilitate the calculation of its upper bound. We now state the proposition.

Proposition 3. Given a structure S ⊆ V , and a vertex p ∈ V \ S such that S∪ {p} satisfies the

properties of the structure, we have that:

Cb(S∪{p}) =
∑

i, j∈V\S
γi j(S)− ∑

j∈V\(S∪{p})

[
∑

k∈S
γk

p j− ∑
k,l∈S,k<l

γkl
p j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

+

∑
i, j∈V\(S∪{p}),i< j

[
γ

p
i j− ∑

l∈S
γ

pl
i j + ∑

l,m∈S,l<m
γ

plm
i j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

. (8.1)

Proof. Adding p to S, we have a new structure S∪{p}. The new structure’s betweenness differs

from S because the number of the shortest paths that intersect the new structure S∪{p} (numerator)

and the total number of shortest paths between i, j : i, j ∈ V \ (S∪{p}) (denominator) are both

changed. Thus, we need to update the betweenness of S∪{p} using the betweenness of S in a way

that captures these changes.

The total number of shortest paths between p and j, j ∈ V \ (S∪{p}) that intersect S is

subtracted from the numerator. On the other hand, the total number of shortest paths between

i, j : i, j /∈ (S∪{p}) whose intersection with S∪{p} is p is added to the numerator. Finally, the

119

total number of shortest paths between p, j : j ∈V \ (S∪{p}) is subtracted from the denominator.

The following equation of (8.2) shows these changes.

Cb(S∪{p}) =
∑

i, j∈V\S
γi j(S)− ∑

j∈V\(S∪{p})
γp j(S)+ ∑

i, j∈V\(S∪{p}),i< j
γi j(S∪{p},{p})

∑
i, j∈V\S

γi j− ∑
j∈V\(S∪{p})

γp j
. (8.2)

Using Parts 3 and 4 from Proposition 1, we also have that:

Cb(S∪{p}) =
∑

i, j∈V\S
γi j(S)− ∑

j∈V\(S∪{p})

[
∑

k∈S
γk

p j− ∑
k,l∈S,k<l

γkl
p j + ∑

k,l,m∈S,k<l<m
γklm

p j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

+

∑
i, j∈V\(S∪{p}),i< j

[
γ

p
i j− ∑

l∈S
γ

pl
i j + ∑

l,m∈S,l<m
γ

plm
i j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

. (8.3)

We note that since vertex p forms a structure with set S, then ∑k,l,m∈S,k<l<m γklm
p j = 0 for any

j ∈V \ (S∪{p}). Therefore, because of (8.3) we have:

Cb(S∪{p}) =
∑

i, j∈V\S
γi j(S)− ∑

j∈V\(S∪{p})

[
∑

k∈S
γk

p j− ∑
k,l∈S,k<l

γkl
p j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

+

∑
i, j∈V\(S∪{p}),i< j

[
γ

p
i j− ∑

l∈S
γ

pl
i j + ∑

l,m∈S,l<m
γ

plm
i j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

. (8.4)

As a note, when structure S is a clique, then ∑k,l∈S,k<l γkl
p j = 0 for any j ∈ V \ (S ∪ {p}) and

∑l,m∈S,l<m γ
plm
i j = 0 for any i, j ∈V \ (S∪{p}), i, j . Therefore, by (8.4) we have:

Cb(S∪{p}) =
∑

i, j∈V\S
γi j(S)− ∑

j∈V\(S∪{p})

[
∑

k∈S
γk

p j

]
+ ∑

i, j∈V\S∪{p},i< j

[
γ

p
i j− ∑

l∈S:(p,l)∈E
γ

pl
i j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

. (8.5)

120

Lemma 1. Given structure S ⊆ V of vertex u, i, j ∈ V \ S, and k ∈ S, if d(i, j) < d(u, j), then

γi j(S) = 0.

Proof. Suppose there exists a shortest path between i and j that passes through S. There are two

cases:

1. this shortest path goes through u, then d(i, j)> d(u, j), which is a contradiction.

2. this shortest path between i and j does not pass through u and passes through k, we have

d(i, j) > d(k, j) and since u is reachable from k in one hop, d(u, j) = d(k, j)+ 1. So, we

have d(u, j)−1 < d(i, j) or d(u, j)≤ d(i, j) which is also a contradiction.

Based on Lemma 1 we can rewrite Proposition 3 as follows:

Cb(S∪{p}) =
∑

i, j∈V\S
γi j(S)− ∑

j∈V\(S∪{p})

[
∑

k∈S
γk

p j− ∑
k,l∈S,k<l

γkl
p j

]
∑

i, j∈V\S
γi j− ∑

j∈V\S∪{p}
γp j

+

∑
i, j∈V\(S∪{p}),i< j,d(i, j)≥d(u, j)

[
γ

p
i j− ∑

l∈S
γ

pl
i j + ∑

l,m∈S,l<m
γ

plm
i j

]
∑

i, j∈V\S
γi j− ∑

j∈V\(S∪{p})
γp j

. (8.6)

8.2.2. Search tree structure

For the CBB approach, we propose the following tree structure to identify feasible solutions

for the MBSP(u) problem that are candidates to become an optimal solution. Let each node l of

the search tree consist of three sets of nodes: (i) a set of structure vertices denoted by Sl , (ii) a set

of candidate vertices denoted by Cl , and (iii) a set Bl containing the betweenness centrality of all

vertices j ∈Cl with respect to set V \(Sl ∪{ j}). The set of structure vertices Sl contains all vertices

that are in the structure currently in construction along with the unique search path originating at

121

the root node of the search tree and ending at the present node l. The set of candidate vertices

Cl contains all vertices in N(u) \ Sl with each member able to be added to Sl and still satisfy the

corresponding structure constraint (star, or clique) to form a larger structure (for representative we

do not have any constraint).

Now, the reason for having set Bl in a tree node l is twofold. First, it serves to calculate a

valid upper bound on the betweenness centrality of any solution within the subtree rooted at node l

(by Proposition 6), as we need Cb
V\(Sl∪{ j})({ j}),∀ j ∈Cl . Secondly, we use it to find the branching

vertex at search node l, which is the vertex i = argmax j∈Cl
{Cb

V\(Sl∪{ j})({ j})}. To avoid building

the same structure, while branching on a tree node l, elements of Cl associated with already created

children nodes of node l will not be in the candidate sets of all other children nodes of node l.

A depth-first-search (DFS) strategy is utilized for creating nodes to quickly obtain a good

feasible solution. To create a child node of a node l, namely node l′ ∈ ch(l), a previously unselected

branching vertex i ∈ Cl that is associated with the maximum value of Cb
V\(Sl∪{i})({i}) is chosen.

Next, the set Sl′ is formed by adding vertex i to Sl , and the set Cl′ is constructed by removing vertex

i from Cl . In the clique problem, all vertices in Cl that are not adjacent to vertex i, and in the star

problem all the vertices in Cl that are adjacent to vertex i, are also removed from Cl . The set Bl′

is updated using equation (8.21). Since set Sl ∪{i} forms a structure, Proposition 3 can be used to

calculate Cb(Sl′) by updating Cb(Sl). A valid upper bound on the betweenness centrality of node

l′ is calculated using Proposition 6.

In the clique problem of vertex u, we take advantage of the Theorem 5 to make the searching

procedure more efficient. While branching on vertex i∈Cl , if we know the optimal clique of vertex

i,C∗i and u ∈ C∗i , then tree node l is fathomed and the incumbent solution is updated by Cb(C∗i)

if necessary. For this purpose, for each vertex i ∈ V the optimal clique C∗i and it’s betweenness

centrality Cb(C∗i) are stored in the optimalcliques set.

As our centrality measure Cb is not monotone, after creating each child node the incum-

bent solution is updated, if necessary. A tree node l is fathomed by feasibility if Cl is empty and

the incumbent solution is updated if necessary. Otherwise, it can be fathomed by bound. Once

122

all nodes of the search tree have been explored, the betweenness centrality of the incumbent so-

lution is equal to the maximum betweenness centrality of a structure of node u. The proposed

CBB algorithm for most betweenness-central clique of vertex u problem, MBCP(u), is presented

in Algorithm 2. For the star and representative cases, we cannot take advantage of Theorem 5.

For the most betweenness-central representative of vertex u problem, MBRP(u), we can improve

the performance of the algorithm using Theorem 6. Hence, for a given vertex u, first we solve

MBCP(u) and MBSP(u), and later, in the root node of the MBRP(u), if Cb(S∗u) > Cb(C∗u) holds,

then the incumbent is set as the S∗u; otherwise, it is set as the set C∗u , where S∗u is the optimal star of

vertex u.

8.2.3. Upper bound

An important property of a centrality measure is monotonicity. According to the definition,

a centrality measure is monotone if its value cannot deteriorate by including additional vertices to

the set over which it is determined. Namely, a centrality measure C(·) is monotone if and only if

C(S′)≤ C(S) for any sets S′,S ⊆V such that S′ ⊆ S. Note that the inequality direction is switched

if lower values of centrality are “better”. In this respect, Proposition (8.2.3) shows that group

betweenness centrality of the Definition 3 is not monotone and Definition 14 propose a monotone

betweenness centrality measure with a bigger betweenness value than our centrality measure.

Proposition 4. The group betweenness centrality presented in Definition 3 is not monotone.

Proof. The graph shown in Figure 6.3 showcases a counterexample to the monotonicity of the

betweenness centrality measure presented in Definition 3. In this example, Cb({u,1}) = 0.766

and if we increase the group size by including vertex 2, its betweenness centrality decreases to

Cb({u,1,2}) = 0.755. Thus, we can say this betweenness centrality measure is not monotone.

123

Algorithm 2: CBB algorithm for MBCP(u).
1 optimalcliques = /0;
2 for u ∈V do
3 Create root node: S0← u;C0← N(u);B0←{(k,Cb

V\(Sl∪{k})({k}),∀k ∈C0};stack←
(u,S0,C0,B0);C∗u ← S0;Cb∗←Cb(S0);

4 while stack 6= /0 do
5 l← stack.pop();
6 if Cl 6= /0 then
7 if U pperbound(Sl)>Cb∗ then
8 i = argmax j∈Cl

{Cb
V\(Sl∪{ j})({ j})};

9 Cl ←Cl \{i};
10 if i ∈ optimalcliques and u ∈C∗i then
11 if Cb(C∗i)>Cb∗ then
12 Cb∗←Cb(C∗i) ;
13 C∗u ←C∗i ;
14 end
15 else
16 Sl′ ← Sl ∪{i};
17 Cl′ ←{ j ∈Cl : { j}∪Sl′ forms a new clique};
18 Bl′ ← updated Bl using equation (8.21);
19 stack.append(Sl′);
20 if Cb(Sl)>Cb∗ then
21 Cb∗←Cb(Sl) ;
22 C∗u ← Sl ;
23 end
24 end
25 end
26 else
27 if Cb(Sl)>Cb∗ then
28 Cb∗←Cb(Sl) ;
29 C∗u ← Sl ;
30 end
31 end
32 end
33 return Cb∗,C∗u ;
34 optimalcliques← (u,C∗u ,C

b∗);
35 end

124

Definition 14. Given sets S ⊆ V and S′ ⊆ V , the betweenness centrality of S with respect to S′

defined as follows is monotone:

Cb
S′(S) =

∑
i, j∈S′,i< j

γi j(S)

∑
i, j∈S′,i< j

γi j
. (8.7)

If S′ =V , then Cb
S′(S) is referred to as the monotone betweenness centrality of set S and we write it

as Cb(S).

Lemma 2. Given sets S⊆V,S′ ⊆V , and S′ ⊆ S, we have:

Cb(S′)≤ Cb(S) (8.8)

which means, centrality measure Cb(·) is monotone.

Proof. The denominator of both Cb(S′) and Cb(S) is ∑
i, j∈V,i< j

γi j, so we need to prove that

∑
i, j∈V,i< j

γi j(S′)≤ ∑
i, j∈V,i< j

γi j(S). Suppose that ∑
i, j∈V,i< j

γi j(S′)> ∑
i, j∈V,i< j

γi j(S), which means ∃ i, j ∈

V such that the shortest path between them does path S′ but not S. This last statement is a contra-

diction to S′ ⊆ S, which completes the proof.

Proposition 5. Given set S⊆V , we have

Cb(S)≤ Cb(S) (8.9)

Proof. Note that the set of pairs of vertices i, j ∈ V (i < j) can be partitioned into three sets: s1 :

pairs of vertices in S, s2 : pairs of vertices outside S, and s3 : pairs of vertices with one vertex in S

and another vertex in V \S. Thus we can write Cb(S) as follows:

Cb(S) =
∑

i, j∈V,i< j
γi j(S)

∑
i, j∈V,i< j

γi j
=

∑
i, j∈S,i< j

γi j(S)+ ∑
i, j∈V\S,i< j

γi j(S)+ ∑
i∈V\S, j∈S,i< j

γi j(S)

∑
i, j∈S,i< j

γi j + ∑
i, j∈V\S,i< j

γi j + ∑
i∈V\S, j∈S,i< j

γi j
(8.10)

125

Therefore, we have

Cb(S)−Cb(S) =
∑

i, j∈S,i< j
γi j(S)+ ∑

i, j∈V\S,i< j
γi j(S)+ ∑

i∈V\S, j∈S,i< j
γi j(S)

∑
i, j∈S,i< j

γi j+ ∑
i, j∈V\S,i< j

γi j+ ∑
i∈V\S, j∈S,i< j

γi j
−

∑
i, j∈V\S,i< j

γi j(S)

∑
i, j∈V\S,i< j

γi j

=
∑

i, j∈V\S,i< j
γi j

(
∑

i, j∈S,i< j
γi j(S)+ ∑

i∈V\S, j∈S,i< j
γi j(S)

)
− ∑

i, j∈V\S,i< j
γi j(S)

(
∑

i, j∈S,i< j
γi j+ ∑

i∈V\S, j∈S,i< j
γi j

)
(

∑
i, j∈S,i< j

γi j+ ∑
i, j∈V\S,i< j

γi j+ ∑
i∈V\S, j∈S,i< j

γi j

)
∑

i, j∈V\S,i< j
γi j

(8.11)

Since ∑
i, j∈S,i< j

γi j(S) = ∑
i, j∈S,i< j

γi j and ∑
i∈V\S, j∈S,i< j

γi j(S) = ∑
i∈V\S, j∈S,i< j

γi j, we have

Cb(S)−Cb(S) =

(
∑

i, j∈V\S,i< j
γi j− ∑

i, j∈V\S,i< j
γi j(S)

)(
∑

i, j∈S,i< j
γi j + ∑

i∈V\S, j∈S,i< j
γi j

)
(

∑
i, j∈S,i< j

γi j + ∑
i, j∈V\S,i< j

γi j + ∑
i∈V\S, j∈S,i< j

γi j

)
∑

i, j∈V\S,i< j
γi j

≥ 0 (8.12)

(8.19) holds, because ∑
i, j∈V\S,i< j

γi j ≥ ∑
i, j∈V\S,i< j

γi j(S), which complete the proof.

Corollary 1. Let S be the optimal solution of MBSP(u). Using Proposition 5, we have

Cb(S)≤ Cb(S) (8.13)

As centrality measure Cb(·) is monotone, the monotone betweenness centrality of any structure of

vertex u is less than or equal to the betweenness centrality of the maximal structure containing

node u. Thus, considering Ŝ as the maximal structure of node u

Cb(S)≤ Cb(Ŝ) (8.14)

and from constraints (8.13) and (8.14), we conclude that

Cb(S)≤ Cb(Ŝ) (8.15)

126

Based on Corollary 1, a valid upper bound on the centrality measure of Definition 3 for

any structure containing vertex u is the monotone centrality measure of the maximal structure

containing vertex u.

Proposition 6. For a search tree node t with structure set St and nonempty candidate set Ct , the

betweenness centrality of any structure containing St is less than or equal to

(
|St |+|Ct |

)(
|St |+|Ct |−1

2

)
+ ∑

i∈V\Ht , j∈Ht ,i< j
γi j+ ∑

i, j∈V\St ,i< j
γi j(St)+ ∑

k∈Ct
∑

i, j∈V\(St∪{k})
γi j(k)

∑
i, j∈V,i< j

γi j
, (8.16)

where Ht = St ∪Ct .

Proof of Proposition 6. Let M be a maximal structure containing St . Then, since M ⊆ St +Ct ,

based on Lemma 2 Cb(M) ≤ Cb(St +Ct). Note that the numerator of the centrality Cb(Ht)(Ht =

St +Ct) equals to the sum of the number of pairs of vertices in Ht , plus sum of the number of

shortest paths between pairs of vertices with one vertex in Ht and another vertex in V \Ht , plus

sum of the number of shortest paths between pairs of vertices in V \Ht passing through Ht :

Cb(Ht) =

∑
i, j∈Ht ,i< j

γi j(Ht)+ ∑
i∈V\Ht , j∈Ht ,i< j

γi j(Ht)+ ∑
i, j∈V\Ht ,i< j

γi j(Ht)

∑
i, j∈Ht ,i< j

γi j + ∑
i∈V\Ht , j∈Ht ,i< j

γi j + ∑
i, j∈V\Ht ,i< j

γi j

≤

(
|St |+ |Ct |

)(
|St |+|Ct |−1

2

)
+ ∑

i∈V\Ht , j∈Ht ,i< j
γi j + ∑

i, j∈V\Ht ,i< j
γi j(Ht)

∑
i, j∈V,i< j

γi j
(8.17)

based on Lemma 1.2 in Rysz et al., 2018,

∑
i, j∈V\Ht ,i< j

γi j(Ht)≤ ∑
i, j∈V\Ht ,i< j

γi j(St)+ ∑
i, j∈V\Ht ,i< j

γi j(Ht \St)

≤ ∑
i, j∈V\St ,i< j

γi j(St)+ ∑
k∈Ct

∑
i, j∈V\(St∪{k})

γi j(k) (8.18)

127

By (8.17) and (8.18) we have the following expression

Cb(Ht)≤

(
|St |+|Ct |

)(
|St |+|Ct |−1

2

)
+ ∑

i∈V\Ht , j∈Ht ,i< j
γi j+ ∑

i, j∈V\St ,i< j
γi j(St)+ ∑

k∈Ct
∑

i, j∈V\(St∪{k})
γi j(k)

∑
i, j∈V,i< j

γi j
(8.19)

Based on Rysz et al., 2018, for the clique problem we can use the graph coloring algorithm of

Tomita et al., 2006 to find the maximal cliques of G[Ct]. If we show maximal clique of G[Ct] by

C′t , then the upper bound for clique problem is as follows:

(
|St |+|C′t |

)(
|St |+|C′t |−1

2

)
+ ∑

i∈V\Ht , j∈Ht ,i< j
γi j+ ∑

i, j∈V\St ,i< j
γi j(St)+ ∑

k∈Ct
∑

i, j∈V\(St∪{k})
γi j(k)

∑
i, j∈V,i< j

γi j
(8.20)

which is smaller than (8.19), because |C′t | ≤ |Ct |.

The value of ∑
i, j∈V\St ,i< j

γi j(St) is the numerator of Cb(St) which in each tree node t is

calculated by updating the value of Cb(SP), where p is the parent node of node t in the search tree,

using Proposition 3. To calculate the value of ∑
k∈Ct

∑
i, j∈V\(St∪{k})

γi j(k) in each tree node t, we update

the value of Cb
V\(St∪{k})({k}),∀k ∈Ct using the following equation

Cb
V\(St∪{k})({k}) =

∑
i, j∈V\(Sp∪{k})

γk
i j− ∑

j∈V\(St∪{k})
γk

l j

∑
i, j∈V\(Sp∪{k})

γi j− ∑
j∈V\(St∪{k})

γl j
, ∀k ∈Ct (8.21)

where l is the branching vertex in child node t. Then, the value of ∑
i, j∈V\(St∪{k})

γi j(k),∀k ∈Ct is the

numerator of (8.21).

Note that the values of γk
i j,γ

kl
i j and γklm

i j for all i, j ∈ V,(i 6= j),k, l,m ∈ V,(k 6= l 6= m) are

calculated and stored before starting the proposed CBB algorithm.

8.3. Structure closeness centrality

8.3.1. Properties of the closeness centrality measure

In this section, we are presenting the CBB algorithm for closeness centrality. The search

tree structure is similar to that of betweenness centrality, which was described in detail in the

128

previous subsection. To update the closeness centrality of a child using the closeness of its parent,

we use the following proposition.

Proposition 7. Given a structure S⊆V , and a vertex p ∈V \S which forms a structure with S, we

have that:

Cc(S∪{p}) =
Cc(S)(|V |− |S|)−1− ∑

i∈V\S∪{p}
min{1,γ p

iS}

|V |− |S|−1
. (8.22)

Proof of Proposition 7. Adding p to S, alters both the numerator and denominator of Cc(S). Defin-

ing γ
p
iS as follows:

γ
p
iS = γ

p
i j : d(i, j) = min

k∈S
d(i,k) (8.23)

The numerator decreases by 1+∑i∈V\S∪{p}min{1,γ p
Si}, because p moves from N(S) to the S∪{p}

and its distance with S decreases from 1 to 0. Also, the distance of all non-group nodes whose

shortest paths with S intersect p decrease by 1. Note that, since γ
p
Si could be more than 1, we use

the min{1,γ p
Si} to count these paths just once. The denominator decreases by 1 because the number

of non-group nodes is decreased by 1.

Proposition 8 (Greedy rule for selecting the branching vertex). In node t of the search tree with

structure set St and candidate set Ct , we select the branching vertex i as follows:

i = argmax
j
{DSt (j)}, j ∈Ct , (8.24)

where DSt (j) is the decrease in the distance of St ∪{ j} from V \ (St ∪{ j}) when vertex j is added

to the structure St . To calculate the value of DSt (j), ∀ j ∈ Ct in each tree node t, we update the

value of DSp(j) using the following equation

DSt (j) = DSp(j)− ∑
i∈F(j)

(
1−min{γ j

li,1}
)

∀ j ∈Ct , (8.25)

129

where p is the parent node of node t in the search tree, l is the branching vertex in child node t,

and F(j) = {i ∈V \{u, j} | γ j
iu > 0}. For St = {u}, since Sp = /0, we use the following equation

D{u}(j) = 1+ ∑
i∈V\{u, j}

min{γ j
ui,1}, ∀ j ∈Ct (8.26)

8.3.2. Search tree structure

In group closeness-based search trees, set Bl contains the decrease in the distance of Sl∪{ j}

from V \ (Sl ∪{ j}) when vertex j is added to the structure Sl for all j ∈ Cl . We need set Bl in a

tree node l to find the branching vertex i at search node l. The set Bl′ is updated using Proposition

8. Since set Sl ∪{i} forms a structure, Proposition 7 can be used to calculate Cc(Sl′) by updating

Cc(Sl). A valid lower bound on closeness centrality of node l′ is calculated using Proposition 11.

The proposed CBB algorithms for MCCP(u), MCSP(u), and MCRP(u) are similar to their

counterparts of betweenness centrality presented in Section 8.2.2.

8.3.3. Lower bound

Proposition 9. The group average closeness centrality presented in Definition 2 is not monotone.

Proof. The graph shown in the Figure 6.4 is a counter example for the monotonicity of aver-

age closeness centrality measure of the Definition 2. In this example, Cc({u}) = 1.36 and if

we increase the group size by including vertex 2, its average closeness centrality increases to

Cc({u,2}) = 1.4. Thus, we can say this average closeness centrality measure is not monotone.

Definition 15. Given a graph G(V,E) and set S⊆V , the average-distance-closeness centrality of

S defined as follows is strictly monotone:

Cc(S) =
1
|V | ∑

i∈V\S
d(S, i) (8.27)

130

Lemma 3. Given sets S⊆V and S′ ⊂ S, we have:

Cc(S)< Cc(S′) (8.28)

which means, centrality measure Cc(·) is strictly monotone.

Proof. The denominator of both Cc(S′) and Cc(S) is |V |, so we need to prove that ∑
i∈V\S

d(S, i) <

∑
i∈V\S′

d(S′, i). The set V \S′ can be partitioned into two sets V \S and S\S′. Hence, we can write

∑
i∈V\S′

d(S′, i) = ∑
i∈V\S

d(S′, i)+ ∑
i∈S\S′

d(S′, i) (8.29)

Since S\S′ 6= /0, ∑
i∈S\S′

d(S′, i)> 0 and we have

∑
i∈V\S′

d(S′, i)> ∑
i∈V\S

d(S′, i)≥ ∑
i∈V\S

d(S, i) (8.30)

The last inequality in (8.30) holds, because d(S′, i)≥ d(S, i),∀i ∈V .

Proposition 10. Given set S⊆V , we have

Cc(S)≤Cc(S) (8.31)

If S =V,Cc(S) =Cc(S), otherwise Cc(S)<Cc(S), because |v|> |V |− |S|.

Corollary 2. Let S be the optimal solution of MCSP(u). Using Proposition 10 we have

Cc(S)≤Cc(S) (8.32)

As centrality measure Cc(·) is strictly monotone, the monotone closeness centrality of any structure

of vertex u is greater than or equal to the closeness centrality of the maximal structure containing

node u. Thus, considering Ŝ as the maximal structure of node u

131

Cc(S)≥ Cc(Ŝ) (8.33)

Equality holds when S = Ŝ. From constraints (8.32) and (8.33), we conclude that

Cc(S)≥ Cc(Ŝ) (8.34)

Based on Corollary 2, a valid lower bound on centrality measure of Definition 2 for any

structure containing vertex u is the strictly monotone average-closeness centrality measure of the

maximal structure containing vertex u.

To calculate the closeness centrality of a set S ⊆ V , we need to find the distance of S

from each vertex i ∈ V \ S. In this respect, in Lemma 4 we present a useful property related to

the distance of a vertex from a clique that will be used to establish the relationship between the

maximum- distance-closeness centrality of a clique and one of its members in Proposition 2.

Lemma 4. Given structure S⊆V and i ∈V \S, we have:

• if S is a clique:

1. |d(i, j)−d(i,k)| ≤ 1, ∀ j,k ∈ S (Ahuja et al., 1988)

2. d(i, j)−1≤ d(S, i)≤ d(i, j), ∀ j ∈ S

• if S is a star or representative:

1. |d(i, j)−d(i,k)| ≤ 2, ∀ j,k ∈ S

2. d(i, j)−2≤ d(S, i)≤ d(i, j), ∀ j ∈ S

3. d(i, j)−1≤ d(S, i)≤ d(i, j), if j is the center of the star or representative

132

Proposition 11. In the MCSP(u), For a search tree node t with structure set St and nonempty

candidate set Ct , the closeness centrality of any structure containing St is greater than or equal to

1
|V |

(
Cc(u)(|V |−1)−|V |+1

)
(8.35)

Proof. Let Ŝ be a maximal structure containing St . Then, since Ŝ ⊆ Ht ,(Ht = St ∪Ct), based on

Lemma 3 Cc(Ŝ)≥ Cc(Ht):

Cc(Ht) =
1
|V | ∑

i∈V\Ht

d(Ht , i) (8.36)

By applying Lemma 4, we have

1
|V | ∑

i∈V\Ht

d(Ht , i)≥
1
|V | ∑

i∈V\Ht

(d(i,u)−1)

=
1
|V |

(
Cc(u)(|V |−1)− ∑

i∈Ht\{u}
d(i,u)−|V |+ |Ht |

)
=

1
|V |

(
Cc(u)(|V |−1)−|V |+1

)
(8.37)

8.4. Structure degree centrality

In this section, we are presenting the CBB algorithm for degree centrality.

8.4.1. Properties of the degree centrality measure

Proposition 12. Given a structure S ⊆ V , and a vertex p ∈ V \ S which forms a structure with S,

we have that:

Cd(S∪{p}) =Cd(S)−1+ ∑
i∈N(p)\S

(
1−max

j∈S
{ai j}

)
(8.38)

Proof. Adding p to S, degree of S is decreased by one unit, because we know that if p is con-

nected to S through multiple links, they are counted just once. On the other hand, those non-group

133

neighbors of p which do not have connection with other structure nodes are added to the degree of

S.

Proposition 13 (Greedy rule for selecting the branching vertex). In node t of the search tree with

structure set St and candidate set Ct , we select the branching vertex i as follows:

i = argmax
j
{ESt (j)}, j ∈Ct , (8.39)

where ESt (j) is the increase in the degree of St ∪{ j} when vertex j is added to the structure St . To

calculate the value of ESt (j), ∀ j ∈Ct in each tree node t, we update the value of ESp(j) using the

following equation

ESt (j) = ESp(j)− ∑
i∈N(j)\St

ail ∀ j ∈Ct (8.40)

where p is the parent node of node t in the search tree and l is the branching vertex in child node

t. For St = {u}, since Sp = /0, we use the following equation

D{u}(j) = N(j)−1− ∑
i∈N(j)\{u}

aiu ∀ j ∈Ct (8.41)

We can use the following Lemmas to create a lower bound for the degree problems:

Lemma 5. Let S∗i be the most connected clique of vertex i and vertex j ∈ S∗i , then we have Cd(S∗j)≥

Cd(S∗i).

Lemma 6. Let S∗i be the most connected star of vertex i and vertex j ∈ S∗i , then we have Cd(S∗j)≥

Cd(S∗i \{i}).

Lemma 7. Let S∗i be the most connected representative of vertex i and vertex j ∈ S∗i , then we have

Cd(S∗j)≥Cd(S∗i).

134

8.4.2. Search tree structure

In the search tree of group degree-based algorithms, set Bl contains the increase in the

degree of Sl ∪{ j} when vertex j is added to the structure Sl for all j ∈ Cl . After creation root

node, we use Lemma 5, Lemma 6, and Lemma 7 for clique, star, and representative problems,

respectively, to create a good initial incumbent based on previously identified optimal structures.

The proposed CBB algorithms for MDCP(u) and MDSP(u) are similar to their counterparts of

betweenness centrality. In the CBB algorithm of MDRP(u), we take advantage of Proposition 17

to initialize the Cl at root node.

8.4.2.1. Upper bound

Proposition 14. The group centrality presented in Definition 1 is not monotone.

Proof. The graph shown in the Figure 6.2 is a counter example for the monotonicity of degree

centrality measure of Definition 1. In this example,Cd({u,8}) = 7 and if we increase the group

size by including vertex 7, its degree centrality decreased to Cd({u,7,8}) = 6. Thus, we can say

this degree centrality measure is not monotone.

Definition 16. Given a graph G(V,E) and set S ⊆V , the degree centrality of S defined as follows

is monotone:

Cd(S) = |N(S)|+ |S| (8.42)

Lemma 8. Given sets S⊆V and S′ ⊆ S, we have:

Cd(S)≥ Cd(S′) (8.43)

which means, centrality measure Cd(·) is monotone.

Proof. Using the monotone degree centrality definition, we can write

Cd(S)−Cd(S′) = |N(S)|+ |S|− |N(S′)|− |S′| (8.44)

135

Note that the open neighborhood of S, N(S), is equal to the sum of the open neighborhood of

S′,N(S′) and the open neighborhood of the S \S′ which is not included in the open neighborhood

of S′,N(S\S′) excluding set S\S′:

Cd(S)−Cd(S′) = |N(S′)|+ |N(S\S′)|− |S\S′|+ |S|− |N(S′)|− |S′| (8.45)

Clearly, we have that S = S′∪ (S\S′). Thus, we get that

Cd(S)−Cd(S′) = |N(S′)|+ |N(S\S′)|− |S\S′|+ |S′|+ |S\S′|− |N(S′)|− |S′|

= |N(S\S′)| ≥ 0 (8.46)

Proposition 15. Given set S⊆V , we have

Cd(S)>Cd(S) (8.47)

Since |S|> 0, Cd(S)>Cd(S).

Corollary 3. Let S be the optimal solution of MDSP(u). Using Proposition 8.47 we have

Cd(S)>Cd(S) (8.48)

As centrality measure Cd(·) is monotone, the monotone degree centrality of any structure of vertex

u is less than or equal to the degree centrality of the maximal structure containing node u. Thus,

considering Ŝ as the maximal structure of node u

Cd(S)≤ Cd(Ŝ) (8.49)

136

From constraints (8.48) and (8.49), we conclude that

Cd(S)≤ Cd(Ŝ) (8.50)

Based on Corollary 3, a valid upper bound on centrality measure of Definition 1 for any

structure containing vertex u is the monotone degree centrality measure of the maximal structure

containing vertex u.

Proposition 16. In the MDSP(u), For a search tree node t with structure set St and nonempty

candidate set Ct , the degree centrality of any structure containing St is less than or equal to

|N(St ∪Ct)|+ |St |+ |Ct | (8.51)

Proof. Let in the node t of the search tree Ŝ be the maximal structure containing St and S be the

optimal solution of MDSP(u). By Corollary 3 we have

Cd(S)≤ Cd(Ŝ) (8.52)

Since Ŝ⊆ (St ∪Ct), by Lemma 8 we have

Cd Ŝ)≤ Cd(St ∪Ct) (8.53)

By Inequalities (8.52) and (8.53) the following expression holds

Cd Ŝ)≤ Cd(St ∪Ct) = |N(St ∪Ct)|+ |St |+ |Ct | (8.54)

Similar to betweenness centrality, If we show maximal clique of G[Ct] by C′t , then the upper bound

for clique problem is as follows:

|N(St ∪C′t)|+ |St |+ |C′t | (8.55)

137

which is smaller than or equal to (8.51), because |C′t | ≤ |Ct |.

Proposition 17. Let S∗i be the most connected representative of vertex i. Then, we have (S∗i \{i})⊆

SC∗(i). Where SC∗(i) is the optimal solution of the set cover problem of vertex i.

The Set Cover formulation for vertex u can be given by:

min ∑
i∈N(u)

xi (8.56a)

∑
i∈N(u)

xiai j ≥ 1 ∀ j ∈ NN(u). (8.56b)

xi ∈ {0,1} ∀i ∈ N(u). (8.56c)

Proof. Suppose S∗i is the most connected representative of vertex i and j ∈ S∗i and j /∈ SC∗(i). Since

j /∈ SC∗(i), there exist set D⊆ SC∗(i) in a way that N(j)⊂
⋃

k∈D(N(k). By adding D and excluding

vertex j from S∗i the degree centrality of S∗i is changed by at lest 1−|D|+ |D|. The reason is that,

because D⊆ SC∗(i), for each vertex k ∈ D there is at least one vertex l ∈ N(k)\ N̂(u) which is not

covered by other vertex in N(u). Since 1−|D|+ |D| ≥ 1, it is in contradiction with optimality of

S∗i which completes the proof.

Taking advantage of Proposition 17 in the CBB algorithm for MDRP(u), we finally have

that C0 = SC∗(u).

138

CHAPTER 9. COLUMN GENERATION

Due to the specific property of Group degree-based problems (proposition 18), in this chap-

ter we proposed a column generation (CG) algorithm to solve them.

9.1. Dantzig-Wolfe decomposition

We can directly apply Gurobi to handle the MILP formulations. Nevertheless, after some

preliminary experiments, we find that the size of the instances optimally solved by Gurobi is quite

limited. To achieve optimal solutions for the instances of practical size, we reformulate each

problem into a master problem through Dantzig-Wolfe decomposition (Dantzig et al., 1960) and

then develop a Column generation algorithm to solve it.

Dantzig-Wolfe decomposition is a technique that reformulates a linear program into a so-

called linear master problem that typically involves a very large number of variables. In fact, the

master problem contains one variable for each extreme point and each extreme ray of the feasible

domain of a so-called subproblem. This domain is defined by a subset of the constraints of the

original linear program. Once the reformulation is performed, the master problem is solved using

an iterative column generation algorithm that solves at each iteration a restricted master problem

(that is, the master problem restricted to a subset of the variables that varies from one iteration to

another) and the subproblem (with a different objective function at each iteration). Furthermore,

the Dantzig-Wolfe decomposition principle can also be applied to certain integer programs. In this

case, the master problem is solved by a branch-and-bound procedure, where at each branch-and-

bound node a lower bound is obtained by a column generation procedure.

Here, we propose a decomposition of each problem and provide the formulations of the

resulting master problem and subproblem.

9.1.1. Master problem

To present the master problem, we define the following additional notations:

Parameters

• Rv : set of all possible representatives of node v,v ∈V .

• Cv : set of all possible cliques of node v,v ∈V .

139

• Sv : set of all possible stars of node v,v ∈V .

• Ds : degree centrality of structure s,s ∈ Rv∪Cv∪Sv.

• Cs : closeness centrality of structure s,s ∈ Rv∪Cv∪Sv.

• Bs : betweenness centrality of structure s,s ∈ Rv∪Cv∪Sv.

• air : binary parameter equal to 1 if node i, i ∈ V is in the structure j, j ∈ Rv∪Cv∪Sv and 0

otherwise.

Decision Variables

• xs : binary variables equal to 1 if structure s ∈ Rv∪Cv∪Sv is selected and 0 otherwise.

With the above notations, the master problem (MP) is given as

[RDMPv] max ∑
i∈Rv

Dixi (9.1a)

s.t. ∑
j∈Rv

ai jx j ≤ 1, ∀i ∈ N(v), (9.1b)

∑
i∈Rv

xi = 1, (9.1c)

xi ∈ {0,1}, ∀i ∈ Rv (9.1d)

Constraints (9.1a) maximizes the degree centrality. Constraints (9.1b) ensure that in the

optimal structure each neighbor of node v is considered at most once.Constraints (9.1c) impose

that the optimal solution is just one structure. According to constraints (9.1d) decision variable xi

is binary.

In the case of clique and star, we need to substitute Rv with Cv and Sv, respectively.

9.1.2. Pricing problem

Given a dual solution to the LMP, the pricing subproblem is used to find a master variable

xs that has the least reduced. Then, we check whether this minimum is negative or not. Recall

140

that every column of the constraint matrix of MP corresponds to a structure, and every entry of

the column says whether the corresponding node is in the structure or not. Solving the pricing

subproblem is essentially equivalent to enumerating all feasible structures. We define the following

dual variables:

• πi: nonnegative (nonpositive) dual variable of constraint (9.1b) for node i ∈ N(v)

• γ: dual variable of constraint (9.1c)

In the case of closeness centrality πi is nonpositive.

To find the representative with least reduced cost we need to solve the following MILP

formulation:

[RDPPu] min −∑
i∈V

x1
i − ∑

i∈N(u)
x0

i πi− γ (9.2a)

s.t. x0
i + x1

i ≤ 1, ∀i ∈V, (9.2b)

x0
i ≤ aiu, ∀i ∈V \{u}, (9.2c)

x1
i ≤ ∑

j:(i, j)∈E
x0

j , ∀i ∈V, (9.2d)

x0
u = 1, (9.2e)

x1
i ,x

0
i ≥ 0 ∀i ∈V, (9.2f)

The objective function (9.2a) aims to achieve the minimal reduced cost of all feasible rep-

resentatives centered at u. Explanations for all constraints are same as constraints of representative

degree formulation. In the case of clique and star we need to add constraints (7.3c) and (7.2c),

respectively.

9.2. Column generation

Column generation is an iterative procedure that we use for solving the linear relaxation of

the master problem (i.e., the linear relaxation of the formulation (9.1b)-(9.1b)). For an overview of

column generation, the reader is referred to and The optimal solution value of the LMP is a lower

141

bound of its associated branch-and-bound node. The column generation procedure cannot directly

solve the LMP because of its inability of enumerating all variables xs. Instead, it is an iterative pro-

cedure that alternates between solving a restricted linear relaxation of the master problem (RLMP)

and a pricing problem (PP). The RLMP is the LMP restricted to a subset of all variables xs, which

can be optimally solved by the simplex algorithm. Then, pricing problem (9.2a)-(9.2f) is solved

in the hope of finding negative reduced cost columns (variables) with respect to the dual optimal

solution of the current RLMP. If no such column is found, the column generation procedure is

terminated with an optimal solution to the current RLMP, which is also an optimal solution to the

LMP. Otherwise, we introduce one or more columns with negative reduced costs into the current

RLMP and start another column generation iteration (See for further details).

9.2.1. Initial solution

To use column generation, we need a subset of all variables xs, where each xs is n structure.

To create these initial structures, we use a greedy algorithm as follows:

Algorithm 3: Greedy algorithm to generate initial structures.
1 for u ∈V do
2 for i ∈ N(u) do
3 Sl ← Sl ∪{i};S∗← Sl;Cd∗←Cd

l ;
4 for j ∈ N(u)\{i} do
5 if Sl ∪{ j} is a structure then
6 Sl′ ← Sl ∪{ j};
7 if Cd(Sl′)>Cd∗ then
8 Cd∗←Cd(Sl′) ;
9 S∗← Sl′ ;

10 end
11 end
12 end
13 return Cd∗,S∗;
14 end
15 end

To update the degree centrality in the greedy algorithm 3 we use the following proposition.

142

Proposition 18. For MDRP(u), the column generation gives the optimal solution. For MDCP(u)

and MDSP(u), if the optimal solution of the column generation is a clique or star, respectively it

is the optimal solution of the original problem, otherwise it contains the optimal solution of the

original problem.

9.2.2. Representative

To find the optimal solution of the MDRP(u), we use the algorithm 4.

Algorithm 4: Column Generation Algorithm for MDRP(u).
1 for u ∈V do
2 generate initial representatives using algorithm 3 ;
3 solve RLMP, find dual variables and update the objective function of PP;
4 solve PP and put the optimal objective value in ob j(PP∗);
5 while ob j(PP∗)≤ 0 do
6 update RLMP using generated column by RPP;
7 solve RLMP, find dual variables and update the objective function of PP;
8 solve PP and put the optimal objective value in ob j(PP∗);
9 end

10 return optimal solution of RLMP, RLMP∗ as optimal representative of vertex u
11 and ob j(RLMP∗) as its degree;
12 end

9.2.3. Clique and star

For clique and star problems of node u, MDCP(u) and MDSP(u), respectively, first we

solve the problem using column generation. For clique problem, If the optimal solution of the

column generation is a clique, then it is the optimal solution, otherwise we use the CBB to find the

optimal clique of node u using the output structure of column generation.

143

CHAPTER 10. ASYMMETRIC PROBABILISTIC MINIMUM-COST HAMILTONIAN

CYCLE PROBLEM CONSIDERING ARC AND VERTEX FAILURES

10.1. Introduction

A Hamiltonian cycle of directed graph G = (V,A) is a cycle in which each vertex of V

is visited exactly once, and thereafter it is called a “tour” (Laporte et al., 2007). Most problems

consisting of finding Hamiltonian cycles are to find the minimum-cost (e.g., distance, time, flow,

etc.) tours with certain constraints. We call such problems minimum-cost Hamiltonian cycle

problem (MCHCP).

One of the most famous MCHCPs is the traveling salesman problem (TSP) (Gutin et al.,

2002). Given a finite number of cities (vertices) and travel costs between them, the TSP is to find

the cheapest tour of visiting each city exactly once and returning to the starting vertice. In terms

of graph theory, this is equivalent to finding the minimum-cost Hamiltonian cycle in a complete

graph. For some different varieties of TSP, see Gutin et al., 2006.

There are two significant motivations for studying stochastic MCHCP (Henchiri et al.,

2014). The first is to define and analyze models which are more appropriate with reality where

randomness is a major source of concern. For example, for many delivery companies, only a part

of their customers require a daily delivery. Ideally, we can solve the MCHCP for each day, but this

will be very time consuming. It is therefore necessary to adopt a model that takes random scenarios

into account (Bertsimas et al., 1993; Bertsimas, 1988). The second motivation is the possibility

to analyze the stability of optimal solutions to deterministic problems when the instances are dis-

turbed by the absence of certain data. The most common sources of uncertainty considered in

literature are: (a) demand volumes (Bertsimas, 1992; Laporte et al., 2002), (b) the presence of cus-

tomers (Jaillet, 1985; Bertsimas, 1988), and (c) travel and/or service time (Laporte, 1992; Kenyon

et al., 2003; Lei et al., 2012; Taş et al., 2013; Adulyasak et al., 2015).

Three main modeling strategies are widely applied for stochastic problems: (i) stochastic

programs with recourses, where a “priori” solution and a modification strategy (recourse) are pro-

vided in the first stage and then in the second stage after disclosing random variables the recourse

144

is applied to the first stage solution (Dror et al., 1989), (ii) chance-constrained problems, where

one seeks a priori plan together with a bound on the probability that the given plan will be feasible

once all the uncertainty is disclosed (Errico et al., 2018), and (iii) multi-stage dynamic reoptimiza-

tion, where the problem is reoptimized as new information becomes available (Jaillet et al., 2008;

Larsen et al., 2008; Ritzinger et al., 2016).

To the best of our knowledge, the probabilistic TSP was introduced for the first time in Jail-

let Jaillet, 1985 in which only a subset of vertices (i.e., active set, determined by a known probabil-

ity distribution) are required to be visited on any given instance of the problem. As re-optimization

(i.e. to find an optimal solution for any instance) is time-and-resource-consuming and the complete

information is usually unavailable at the beginning, the goal is to find a priori tour through all ver-

tices with minimum expected length. The order of visiting vertices in any instance will be same

as they appear in the priori tour. This problem has been solved using exact algorithms (Berman

et al., 1988; Laporte et al., 1994) and heuristics (Bertsimas et al., 1990; Bertsimas et al., 1993;

Birattari et al., 2008; Bertsimas, 1988). Some important works in the area of probabilistic version

of TSP are as follows. Jula et al., 2006 consider the TSP with hard-time windows and stochastic

travel and service time, where the objective is to find the minimum-cost tour such that for each

customer the arrival-on-time tour probability is greater than or equal to a given value. The authors

develop a heuristic algorithm based on dynamic programming and on an estimation of the mean

and variance of the arrival-time distribution at the customers. Campbell et al., 2008 study a TSP

with customer deadlines and uncertainty about the customer presence, where customers must be

visited before given deadlines. The authors present two recourse models and a chance constrained

model for the problem. A simple heuristic approach is proposed, and experiments comparing the

deterministic and the stochastic solutions are performed. Chang et al., 2009 investigate stochastic

dynamic pickup/delivery traveling salesman problem with hard time windows, where travel and

service time follow normal distributions. They apply the convolution-propagation approach to ap-

proximate the arrival time of vertices by a normal distribution and propose a heuristic method to

solve the problem.

145

In this research, we consider the following chance constraint in the deterministic MCHCP:

P{successfully visiting vertex i starting from the origin\depot} ≥ βi,∀i ∈V, (10.1)

where βi’s are constant, and the vertices and arcs of the graph are possible to fail with indepen-

dent success probabilities. We call it asymmetric probabilistic minimum-cost Hamiltonian cycle

problem (APMCHCP), as both cost and success probability matrices can be asymmetric. By the

definition of Hamiltonian cycle, an important special case of constraint (10.1) is the following

success-tour chance constraint:

P{the Hamiltonian cycle is successful} ≥ β . (10.2)

Indeed, APMCHCP associated with this type of chance constraints have many applications

in problems associated with Hamiltonian path or cycle.

For example, post-disaster recovery (PDR) is a key part in a disaster support system (Daud

et al., 2016). A way to minimize the impact of a disaster on the victims is to ensure that adequate

disaster supplies are available and can be delivered to the victims. Indeed, there have been a lot of

research in the past few years on stock pre-positioning for disasters (Campbell et al., 2011; Duran

et al., 2011; Lodree Jr et al., 2012). However, the conventional planning methods rarely account

for the uncertainties that come with disasters. A major problem on delivering supplies after a dis-

aster is that many roads may become impassable. Thus, in the planning stage of a PDR system,

we need to determine the location to store the supplies and design the delivery route considering

vertex and/or arc failures which is associated with infrastructure damage. As another example,

in electronic circuit design, multi-threshold CMOS (MCMOS) is a popular technique which can

reduce the power leakage by turning off inactive circuit domains. To avoid large peak current con-

sumption during its sleep-to-active mode transition, a solution is to turn on power switches one

after another to reduce the peak current during the mode transition. This problem is equivalent to

find a minimum cumulative peak current Hamiltonian cycle to set up the power switches (i.e., to

146

choose “arcs”) and connect all gates in the circuit (Wang et al., 2012b). However, in a complex cir-

cuit design, switches between some gates could be relatively easy to fail. Hence, it is important to

take the chance constraint (10.2) into consideration in the design stage to avoid choosing unreliable

switches. The third application is in the security maintenance of wireless sensor networks (WSN).

According to (Tague et al., 2007; Lin et al., 2016), one of the attackers’ most common strategies

is to invade the wireless nodes one by one along the path with minimum time-cost until the whole

WSN is hacked, which is equivalent to find a minimum-cost Hamiltonian path. A problem of this

strategy is that in a practical WSN, attacking success rates between node pairs are different, due to

factors such as connection failure rates and effectiveness of defense systems. Thus, to the attacker,

the target is not only to finish the attack in the shortest time, but also to guarantee that the selected

attack sequence (i.e., the Hamiltonian path) has a large probability to be successful so that the

whole WSN can be hacked. It is important to consider this point for the security of WSN.

147

CHAPTER 11. PROBLEM DEFINITION AND MATHEMATICAL FORMULATIONS

In this chapter, we provide notation definitions and terminology that will be used through-

out this problem. We proceed to formally define probabilistic route and the modified Miller-

Tucker-Zemlin (MTZ) constraints. Then, four mathematical formulations are proposed for the

APMCHCP.

11.1. Notations

Consider a directed graph G := (V,A) on n vertices. With each arc (i, j) ∈ A, an arc cost

ci j > 0 and an arc success probability pi j ∈ (0,1] are associated. Furthermore, assume that for each

vertex i ∈ V , a vertex success probability pi ∈ (0,1] and a success arriving probability threshold

βi ∈ [0,1] are given (see (10.1)). The interval [βi,1] is called the probability interval of vertex i,

and the width of the probability interval is given by 1−βi. The probability interval for vertex i∈V

is called active, if βi > 0. The problem is to find a sequence of the vertices (starting at one of the

vertices, visiting each vertex exactly once and ending at the same vertex) with minimal cost such

that for every vertex i ∈V its arrival probability Pi lies within the given probability interval [βi,1].

The APMCHCP is NP-hard, as it reduces to the asymmetric TSP if βi = 0 for every i ∈V .

For notation convenience, a route R consisting of the ordered arc set

{(v1,v2),(v2,v3), · · · ,(vk−1,vk)}

is denoted by R = (v1,v2, . . . ,vk).

11.2. The probabilistic route and the modified MTZ constraints

Given a route R = (v1, . . . ,vk), the arrival probability Pi at vertex vi(i = 1, . . . ,k) along R

is computed by

Pv1 := pv1 (11.1a)

Pvi := Pvi−1 pvi−1,vi pvi, for i = 2, . . . ,k (11.1b)

148

We denote by pR the probability of a route R = (v1,v2, . . . ,vk), namely the probability that one

can arrive at the last vertex of R, vk, through the route R. Thus, we have

pR =
(
∏ j∈R p j

)(
∏

k−1
i=1 pvi,vi+1

)
. (11.2)

Clearly, if the origin (or equivalently, the depot) and the route are given, one can get the probability

of the route and check the chance constraint (10.1) by applying (11.2). Note that if the route

R = (v1,v2, . . .vn,v1) is a cycle, we only use the probability of the origin, pi0 , for once in (11.2).

A Hamiltonian cycle (or equivalently, tour) T := (v1,v2, . . . ,vn,v1) of G starting at node v1

is called feasible if each vertex is visited within its probability interval, i.e., Pi ≥ βi for i = 1, . . . ,n.

A rote R = (v1, ...,vk) with 2≤ k≤ n is said to be infeasible if it cannot be included in any feasible

tour. Easily checkable and obvious sufficient conditions for infeasibility are given in the following

lemma.

Lemma 9. A given route R = (v1, . . . ,vk) is infeasible, if (at least) one of the following conditions

holds:

(i) R violates the chance constraint of at least one of its vertices, i.e., ∃i ∈R : Pi < βi,.

(ii) There exists a vertex u not included in R such that the maximum-probability path from u to

v1, denoted by MPP(u,v1), violates the chance constraint of at least one of the vertices in-

cluded in R and the maximum-probability path from vk to u, denoted by MPP(vk,u), violates

the chance constraint of u.

The proof of Lemma 9 is obvious. Algorithm 5 is used to find the maximum-probability path from

i to j, i.e., MPP(i, j), for all pairs of vertices in G.

In many deterministic MCHCP’s (for example, the TSP), it is equivalent to consider any

vertex in the tour to be the origin. However, in a APMCHCP, the origin will affect the probability

of reaching each vertex and hence it is critical to determine the origin. Let ci j be the cost of

choosing arc (i, j) and consider the TSP showed in Figure 11.1a with chance constraint (10.1),

149

Algorithm 5: Finding the maximum-probability path.
Data: Digraph G
Result: A path with maximum probability between any two given vertices

1 for i ∈V do
2 prob[i]← pi // determine source vertex
3 Q.push(i, prob[i]) // Q is a priority queue
4 while Q 6= /0 do
5 u← pop(Q) // pop(Q) extracts vertex in Q with max prob[]
6 for each successor v of u do
7 alt = prob[u]puv pv
8 if alt ≥ βv then
9 if v /∈ prob or alt > prob[v] then

10 prob[v]← alt
11 Q.push(v,alt)
12 return prob[]

where the numbers on each arc represent ci j(pi j) and at each vertex stand for p j(β j). It is easy to

verify that the optimal tour of the TSP, without considering the chance constraint, is (1,3,4,2,1)

with total cost 17, as showed Figure 11.1b. But this tour violates the chance constraint at vertex

4, as P4 = 0.504 < β4 = 0.6. Actually, the optimal tour of this problem is R∗ = (1,4,3,2,1) with

total cost 18 (see Figure 11.1c), where arrival probabilities to vertices 4, 3, 2, 1 are 0.72, 0.576,

0.5184, and 0.41472, rescpecitvely. However, if we start the optimal tour of the APMCHCP from

vertex 2, i.e., R ′ = (2,1,4,3,2), the probabilities of reaching vertices 4 and 3 are changed to be

0.576(< β4 = 0.6) and 0.4608(< β3 = 0.5), which makes it no longer a feasible tour.

1 1(0.4)40.9(0.6)

2 1(0.5)31(0.5)

2(
0.

8)

3(0.9)

5(
0.

8)

8(0.8)

6(
0.7
)4(0.5)

(a) A APMCHCP with 4 vertices.

1 1(0.4)40.9(0.6)

2 1(0.5)31(0.5)

2(
0.

8)

5(
0.

8)

6(
0.7
)4(0.5)

(b) Optimal MCHCP tour.

1 1(0.4)40.9(0.6)

2 1(0.5)31(0.5)

2(
0.

8)

3(0.9)

5
(0
.8
)

8(0.8)

(c) Optimal APMCHCP tour.

Figure 11.1: An example of APMCHCP. The gray vertex is starting point.

MTZ constraints (Miller et al., 1960), which have a polynomial cardinality, are widely used

for eliminating subtours and meanwhile satisfying the demand of each vertex. Later, Desrochers

150

et al., 1991 propose the following strengthened MTZ (SMTZ) constraints which is more efficient

and has a stronger LP relaxation:

ui−u j +(n−1)xi j +(n−3)x ji ≤ n−2, ∀i, j ∈V \{1}, i 6= j (11.3a)

ui ≥ 1+(n−3)xi1 + ∑
j∈V\{1},i6= j

x ji ∀i ∈V \{1} (11.3b)

ui ≤ n−1− (n−3)x1i− ∑
j∈V\{1},i 6= j

xi j ∀i ∈V \{1} (11.3c)

where vertex 1 is assumed to be the origin; binary variable xi j = 1, if arc (i, j) ∈ A is used and 0

otherwise; and MTZ variable ui represents the order of vertex i in the tour. It is showed that both

MTZ and SMTZ constraints can be adopted to a number of MCHCP formulations, such as TSP,

VRP, and their varieties (Toth et al., 2014).

To include the selection of the origin to SMTZ (which is necessary in the APMCHCP), we

modify (11.3a)-(11.3c) by defining a new binary variable ri (ri = 1, iff vertex i is the origin), as

showed in the following proposition.

Proposition 19. The constraints

u j−ui ≥ (n−1−nr j)xi j +(n−3+nri)x ji−n+2, ∀i, j ∈V, i 6= j (11.4a)

∑
n
i=1 ri = 1 (11.4b)

ri ∈ {0,1}, ∀i ∈V (11.4c)

with ui,u j ∈ [0,n−1] are valid inequalities for the APMCHCP.

Proof. The validation of (11.4b) and (11.4c) is obvious. In the following, we show the validation

of (11.4a) by discussing three cases:

1. Neither i nor j is the origin, i.e., ri = r j = 0. Then (11.4a) becomes (11.3a).

151

2. either i or j is the origin and they are not adjacent. In this case, (11.4a) can be written as

u j−ui ≥−n+2, ∀i, j ∈V, i 6= j.

3. either i or j is the origin and they are adjacent. There are two possible sub-cases:

(a) j = i0 and i = in−1 (or i = i0 and j = in−1), where i0 and in−1 are the first and last vertices

in the tour. Then (11.4a) can be written as

ui0−uin−1 ≥−n+1 (or, uin−1−ui0 ≥ n−1), ∀i, j ∈V, i 6= j.

(b) j = i0 and i = i1 (or i = i0 and j = i1). Then (11.4a) can be written as

ui0−ui1 ≥−1 (or, ui1−ui0 ≥ 1), ∀i, j ∈V, i 6= j.

Comparing (11.4a) – (11.4c) with (11.3a) – (11.3c), one can see that the proposed subtour

elimination constraints is a generalization of SMTZ (Desrochers et al., 1991). Taking advantage

of (11.2) and variable ui defined in (11.4), one can get the following proposition.

Proposition 20. The probability of reaching vertex j from the origin vertex i along route R =

(i, · · · , j) can be calculated as follows:

pR =


∏

k∈V :uk≤u j

pk ∏
(l,m)∈A:ul<u j

plm, if j ∈V \{i}

∏
k∈V :uk≥u j

pk ∏
(l,m)∈A:ul≥u j

plm, if j = i = the origin
(11.5)

152

11.3. The formulations

In this section, we develop four exact mixed integer programming (MIP) formulations for

the APMCHCP.

11.3.1. IP 1 (intuitive direct formulations for the chance constraint)

To explicitly formulate the chance constraint, an intuitive idea is to define a new variable

to indicate the order relationship between the MTZ variables ui and u j,

δi j :=


1, if ui ≤ u j;

0, otherwise
, ∀i, j ∈V, (11.6)

with the following constraints

1
n
(u j−ui)≤ δi j ≤ 1+

1
n
(u j−ui), ∀i, j ∈V (11.7a)

δii = 1, ∀i ∈V (11.7b)

δi j ∈ {0,1}, ∀i, j ∈V (11.7c)

It is worth mentioning that ∀ j ∈ V \ {i0} we have δi0 j ≡ 1 and δ ji0 ≡ 0, where vertex i0 is the

origin of the tour.

Theorem 7. Using δi j defined in (11.7), the chance constraint (10.1) for the APMCHCP can be

explicitly formulated as follows:

(
∏
j∈V

p(1−ri)δ ji
j

)(
∏
j∈V,
j 6=i

∏
l:(j,l)∈A

p
(1−ri)x jlδ ji
jl

)
≥ βi, ∀i ∈V (11.8a)

((
∏
j∈V

p j

)(
∏
j∈V

∏
l:(j,l)∈A

p
x jl
jl

))ri

≥ βi, ∀i ∈V (11.8b)

153

which are equivalent to

∑
j∈V

(δ ji−σi j) log pi + ∑
j∈V,
j 6=i

∑
l:(j,l)∈A

(ζi jl−ψi jl) log p jl ≥ logβi, ∀i ∈V (11.9a)

ri ∑
j∈V

log p j + ∑
j∈V

∑
l:(j,l)∈A

φi jl log p jl ≥ logβi, ∀i ∈V (11.9b)

where σi j = riδ ji, ζi jl = x jlδ ji, ψi jl = rix jlδ jl, and φi jl = rix jl .

Proof. Consider two possible cases for vertex i ∈V .

1. ri = 0: Constraint (11.8b) becomes 1≥ βi and constraints (11.8a) define the chance constraints

for all vertices other than the origin. The first big-parentheses of (11.8a) calculates the success

probabilities of all vertices which are visited before vertex i from the origin, including vertex

i itself. The second big-parentheses of (11.8a) calculates the probabilities of all arcs passed to

reach vertex i from the origin, which can be proved by discussing the following four combina-

tions of i, j, and l. All these cases can be figured out using schematic APMCHCP tour presented

in Figure 11.2.

(a) l = i : ∏ j∈V,
j 6=i

p(1−ri)x jiδ ji
ji = p j̃i, where vertex j̃ is right before vertex i (i.e., x j̃i = 1). Thus,

(11.8a) calculates the success probability of the incoming arc to vertex i by Proposition

20.

(b) l = origin: ∏ j∈V,
j 6=i

p
(1−ri)x jlδ ji
jl ≡ 1. This is because, if x j̃l = 1 (i.e., j̃ being the last vertex

of the tour), then δ j̃i ≡ 0.

(c) l 6= i, l 6= origin, j = origin: ∏l:(j,l)∈A p
(1−ri)x jlδ ji
jl = p jl̃ , getting the success arc probability

of reaching the first vertex (i.e., vertex l̃) from the origin, where x jl̃ = 1.

(d) l 6= i, l 6= origin, j 6= origin: if u j > ui (i.e., δ ji = 0), then (11.8a) does not count the

probability of arc (j, l) as we expect, as it is not in the route from the origin to vertex i.

Otherwise, (11.8a) calculates the success arc probability of all arcs between the origin and

vertex i except for the first (discussed in case (c)) and last (discussed in case (a)) arcs.

154

lji0 i

Figure 11.2: An example of a APMCHCP tour when i0 is the starting vertex.

2. ri = 1: Constraint (11.8a) becomes 1 ≥ βi and constraint (11.8b) defines the chance constraint

for the origin.

11.3.2. IP 2 (efficient direct formulations for the chance constraint)

We provide a more efficient formulation, in which the δi j is defined to be “dynamic”:

δi j =




1, if ui < u j

0, otherwise
, if r j = 0

1, if r j = 1

(11.10)

Proposition 21. In the APMCHCP, constraints

r j +
1
n
(u j−ui)≤ δi j ≤ 1+ r j +

1
n
(u j−ui), ∀i, j ∈V (11.11a)

δii = ri, ∀i ∈V (11.11b)

δi j ∈ {0,1}, ∀i, j ∈V (11.11c)

determine the value of δi j defined in (11.10), using MTZ variables ui define in (11.4).

Proof. Consider the following two cases for any vertex j ∈V :

1. j is not the origin, i.e., r j = 0: (11.11a) becomes 1
n(u j−ui) ≤ δi j ≤ 1+ 1

n(u j−ui), ∀i, j ∈ V ,

which gives δi j = 1, if ui < u j, and δi j = 0, otherwise.

2. j is the origin, i.e., r j = 1 and u j = 0, (11.11a) becomes 1− ui
n ≤ δi j ≤ 2− ui

n , ∀i, j ∈V, which

specifies δi j = 1,∀i.
155

Then, we can explicitly write the chance constraint (10.1) with only one formulation and

an easier structure.

Theorem 8. Using δi j defined in (11.11), the chance constraint (10.1) for the APMCHCP can be

written as:

(
p(1−ri)

i

)(
∏
j∈V

pδ ji
j

)(
∏
j∈V

∏
l:(j,l)∈A

p
x jlδ ji
jl

)
≥ βi, ∀i ∈V (11.12)

which is equivalent to

(1− ri) log pi + ∑
j∈V

δ ji log p j + ∑
j∈V

∑
l:(j,l)∈A

z jil log p jl ≥ logβi, ∀i ∈V (11.13)

where z jil = x jlδ ji.

Proof. We discuss two cases for i ∈V to prove (11.12).

1. ri = 0: the first and second big-parentheses of (11.12) count the multiplication of probabilities

of all vertices which are passed to reach vertex i from the origin, including vertex i itself. The

third big-parentheses counts the multiplication of probabilities of all arcs which are traversed

to reach vertex i from the origin. To prove the third big-parentheses, one more case needs to be

discussed in addition to the four cases for ri = 0 showed in the proof of Theorem 7 :

(e) j = i: δ ji ≡ 0 (by (11.11b)) and hence ∏l:(j,l)∈A p
x jlδ ji
jl ≡ 1.

2. ri = 1: the first big-parentheses become trivial, and the second big-parentheses of (11.12) counts

the multiplication of probabilities of all vertices in the tour. Note that the probability of the

origin vertex is also counted by the second big-parentheses, as δii = 1. The third big-parentheses

counts the multiplication of probabilities of all arcs in the tour. We prove the third part by

discussing two possible combinations of i, j and l:

156

(a) l = i: based on (11.11a) δ ji ≡ 1, and hence ∏ j∈V ∏l:(j,l)∈A p
x jlδ ji
jl = p j̃l , where vertex j̃

is the last vertex in the tour (i.e., x j̃l = 1). Thus, the third big-parentheses of (11.12)

calculates the success probability of the incoming arc to the origin.

(b) j = i: δ ji = δii = 1, and hence ∏l:(i,l)∈A pxilδii
il = pil̃ , where vertex l̃ is the second vertex in

the tour (i.e.„ xil̃ = 1). Thus, the third big-parentheses of (11.12) gets the probability of

the outgoing arc from the origin.

11.3.3. IP 3 (intuitive recursive formulations for the chance constraint)

In this formulation, we apply the recursive property of calculating probability of reaching

each vertex by its direct predecessor. For this purpose, new decision variable yi j is defined as

follows:

yi j = the probability of reaching node j from i, ∀i, j ∈V (11.14)

Theorem 9. Using yi j defined in (11.14), the chance constraint (10.1) for the APMCHCP can be

written as:

yi j ≤ ∑
k∈V,k 6=i, j

p j pk jxk jyik + pi p jxi j pi j, ∀i, j ∈V, i 6= j (11.15a)

yii ≤ ∑
k∈V,k 6=i

pkixkiyik, ∀i ∈V, (11.15b)

yi j ≥ riβ j, ∀i, j ∈V (11.15c)

157

which is equivalent to

yi j ≤ ∑
k∈V,k 6=i, j

p j pk jqik j + pi p j pi jxi j, ∀i, j ∈V, i 6= j (11.16a)

yii ≤ ∑
k∈V,k 6=i

pkiqiki, ∀i ∈V (11.16b)

yi j ≥ riβ j, ∀i, j ∈V (11.16c)

where qik j = xk jyik.

Proof. We discuss two cases for i and j to prove (11.15).

1. i= j: this case which is shown in constraint (11.15b), calculates the probability of cycle starting

from vertex i,∀i ∈ V . Based on constraint (11.15c), the chance constraint for yii is active only

when i is the origin.

2. i 6= j: this case which is indicated in constraint (11.15a), calculates the probability of reaching

vertex j from vertex i. We prove this case by discussing two possible subcases:

(a) j is the vertex immediately after vertex i, i.e. xi j = 1: based on (11.15a),

∑k∈V,k 6=i, j p j pk jxk jyik = 0 and pi p jxi j pi j correctly calculates the probability of reaching

j from i.

(b) There are at least one intermediate vertex between i and j, i.e. xi j 6= 1: in this case

pi p jxi j pi j = 0 and ∑k∈V,k 6=i, j p j pk jxk jyik calculated the probability of reaching vertex j

from i using the probability of reaching vertex k from i, where k is the vertex immediately

before j along route R.

11.3.4. IP 4 (efficient recursive formulations for the chance constraint)

In this formulation, we define decision variable yi as follows:

yi = the probability of reaching node i from the origin, ∀i ∈V (11.17)

158

Theorem 10. Using yi defined in (11.17), the chance constraint (10.1) for the APMCHCP can be

written as:

pi pi j p jri +(1− ri− r j)yi pi j p j + yi pi jr j− y j ≥ xi j−1, ∀i, j ∈V, i 6= j (11.18a)

yi ≥ βi, ∀i ∈V (11.18b)

which is equivalent to

pi pi j p jri +(yi− sii− s ji)pi j p j + s ji pi j− y j ≥ xi j−1, ∀i, j ∈V, i 6= j (11.19a)

yi ≥ βi, ∀i ∈V (11.19b)

where si j = y jri.

Proof. We discuss three cases for i and j to prove (11.18).

1. i or j is not the origin, i.e. ri = r j = 0: in this case if xi j = 1 then constraint (11.18a) becomes

yi pi j p j ≥ y j which correctly calculates y j using yi. On the other hand, if xi j = 0, (11.18a)

becomes yi pi j p j− y j ≥−1 which is correct because the upper bound of yi and y j is 1.

2. i is the origin, i.e. ri = 1: in this case if xi j = 1 then constraint (11.18a) becomes pi pi j p j ≥ y j

which correctly calculates the probability of reaching first vertex after origin (r j = i because

of constraint (11.4b)). On the other hand, if xi j = 0, (11.18a) becomes pi pi j p j− y j ≥ −1

which is correct.

3. j is the origin, i.e. r j = 1: in this case if xi j = 1 then constraint (11.18a) becomes yi pi j ≥ y j

which correctly calculates the probability of reaching origin using the probability of last

vertex of the cycle. On the other hand, if xi j = 0, (11.18a) becomes yi pi j−y j ≥−1 which is

correct.

159

11.3.5. Complete exact MIP formulations for the APMCHCP

Techniques discussed in Sections 11.3.1-11.3.4 can be used to develop complete formula-

tions of APMCHCP.

11.3.5.1. Efficient direct APMCHCP formulation

The complete model of APMCHCP with efficient chance constraint formulation (proposed

in Section 11.3.2) is as follows.

min ∑
(i, j)∈A

ci jxi j (11.20a)

s.t. (11.4a)− (11.4c), (11.11a)− (11.11c), (11.13)

∑
i:(i, j)∈A

xi j = 1, ∀ j ∈V (11.20b)

∑
i:(j,i)∈A

x ji = 1, ∀ j ∈V (11.20c)

xi j ∈ {0,1}, ∀(i, j) ∈ A (11.20d)

In this formulation, the objective function (11.20a) is to minimize the total cost of the tour. As-

signment constraints (11.20b) and (11.20c) are degree constraints. The APMCHCP can finally be

written as the following MIP.

[IP2] min ∑
(i, j)∈A

ci jxi j (11.21a)

s.t. (11.4b), (11.4c), (11.11a)− (11.11c), (11.13),

(11.20b)− (11.20d)

u j−ui ≥ (n−1)xi j−nθi j +(n−3)x ji +nθ ji−n+2, ∀i, j ∈V, i 6= j (11.21b)

z jil ≤ x jl, z jil ≤ δ ji, z jil ≥ x jl +δ ji−1, ∀ j, i, l ∈V, j 6= l (11.21c)

θi j ≤ r j, θi j ≤ xi j, θi j ≥ r j + xi j−1, ∀i, j ∈V (11.21d)

z jil ∈ {0,1}, ∀(j, l) ∈ A; i ∈V (11.21e)

θi j ∈ {0,1}, ∀i, j ∈V ; i 6= j (11.21f)

160

11.3.5.2. Intuitive direct APMCHCP formulation

The complete APMCHCP model with intuitive chance constraint formulation (proposed in

Section 11.3.1) is as follows.

[IP1] min ∑
(i, j)∈A

ci jxi j (11.22a)

s.t. (11.4b), (11.4c), (11.21b), (11.7a)− (11.7c), (11.9a), (11.9b),

(11.20b)− (11.20d), (11.21d), (11.21f)

σi j ≤ ri, σi j ≤ δ ji, σi j ≥ ri +δ ji−1, ∀i, j ∈V (11.22b)

ζi jl ≤ x jl, ζi jl ≤ δ ji, ζi jl ≥ x jl +δ ji−1, ∀i ∈V ;∀(j, l) ∈ A (11.22c)

ψi jl ≤ ri, ψi jl ≤ x jl, ψi jl ≤ δ ji, ψi jl ≥ ri + x jl +δ ji−2, ∀i ∈V ;∀(j, l) ∈ A (11.22d)

φi jl ≤ ri, φi jl ≤ x jl, φi jl ≥ ri + x jl−1, ∀i ∈V ;∀(j, l) ∈ A (11.22e)

σi j,ζi jl,ψi jl,φi jl ∈ {0,1}, ∀i, j, l ∈V (11.22f)

where (11.22b) – (11.22f) are for linearizing (11.9) by defining new binary variables σi j =

riδ ji, ζi jl = x jlδ ji, ψi jl = rix jlδ jl, and φi jl = rix jl .

11.3.5.3. Intuitive recursive APMCHCP formulation

The complete APMCHCP model with the first recursive formulation (proposed in Section

11.3.3) is as follows.

[IP3] min ∑
(i, j)∈A

ci jxi j (11.23a)

s.t. (11.4b), (11.4c), (11.21b), (11.20b)− (11.20d),

(11.16a)− (11.16c), (11.21d), (11.21f)

qik j ≤ xk j, qik j ≤ yik, qik j ≥ xk j + yik−1, ∀i, j ∈V, i 6= j;∀k ∈V,k 6= i, j (11.23b)

yi j,qik j ∈ [0,1], ∀i, j,k ∈V (11.23c)

where (11.23b) is for linearizing (11.15).

11.3.5.4. Efficient recursive APMCHCP formulation

The complete APMCHCP model with the second recursive formulation (proposed in Sec-

tion 11.3.4) is as follows.

161

[IP4] min ∑
(i, j)∈A

ci jxi j (11.24a)

s.t. (11.4b), (11.4c), (11.21b), (11.20b)− (11.20d),

(11.19a), (11.19b), (11.21d), (11.21f)

si j ≤ ri, si j ≤ y j, qsi j ≥ ri + y j−1, ∀i, j ∈V, (11.24b)

yi,si j ∈ [0,1], ∀i, j ∈V (11.24c)

where (11.24b) is for linearizing (11.15b).

162

CHAPTER 12. COMBINATORIAL BRANCH-AND-BOUND

In this chapter, we propose a CBB to solve the APMCHCP.

12.1. Data preprocessing

The main aim of data preprocessing is to construct “tighter” formulations of a problem

such that no optimal solution of the original problem is lost and each optimal solution of the tighter

problem corresponds to an optimal solution of the original problem. To the best of our knowledge,

this kind of preprocessing was firstly suggested by Desrosiers et al. (1995).

For the APMCHCP, the preprocessing includes three main stages: (i) tightening the prob-

ability intervals, (ii) constructing precedences among the vertices, and (iii) eliminating arcs. Note

that the computation of these three steps should be repeated until no further modifications can

be made, as the probability intervals (see Section 12.1.1), the precedence relations (see Section

12.1.2), and the reduced arc set (see Section 12.1.3) mutually affect each other. More details for

such repeated data preprocessing procedures can be found in Desrosiers et al. (1995).

12.1.1. Tightening of the probability intervals

This approach allows us to increase the values of βi’s. The key idea here is that if the

smallest arrival probability at vertex i from any of its predecessors is bigger than βi, then βi can be

set to that value. In other words, we can tighten βi by

βi←max
{

βi, min
j∈V, j 6=i

{β j p j p ji}
}
, ∀i ∈V. (12.1)

12.1.2. Construction of precedences

When the maximum probability path from vertices j to i is smaller than βi, clearly, i must

precede j in all feasible solutions. For all j ∈V , let π j be the set of all vertices that must precede

j, namely,

π j := {i ∈V \ j | LAP(j, i)< βi}, (12.2)

163

where LAP(j, i) is the largest arrival probability at vertex i from vertex j. It is not difficult to see

that

LAP(i, j)≡MPP(i, j) . (12.3)

Let i≺ j denote the relationship that vertex i must precede vertex j in all feasible solutions.

Let P = (V,A) be the precedence digraph defined on V , where an arc (i, j) ∈ A represents a

precedence relationship i ≺ j. Clearly, P must be acyclic and can be assumed to be transitively

closed.

12.1.3. Elimination of arcs

Elimination of arcs is done through three steps described as follows.

Step1: By definition, if (i, j) is in the arc set A of the precedence digraph, then arc (j, i) cannot be

contained in any feasible Hamiltonian path and hence we can delete all these arcs from the original

arc set A. Furthermore, for all vertices i, j,k ∈V with (i, j) ∈A and (j,k) ∈A , we can conclude

that arc (i,k) cannot be used in any feasible Hamiltonian path as vertex j has to be sequenced

between i and k. Therefore, those (i,k) arcs can also be eliminated from A.

Step2: For each arc (i, j) ∈ A, if pi pi j p j < β j then arc (i, j) cannot be contained in any feasible

Hamiltonian path. So we can delete all these arcs from A.

Before showing Step 3, we define concatenation which is the key of Step 3.

Definition 17 (Concatenation). Suppose we are given a family F := {R1,R2, . . . ,Rk} of simple

routes such that Ri ∩R j = /0, ∀i, j ∈ {1,2, ,k}, i 6= j, and let ω be any permutation of the

indices of F . The route R = (Rω(1),Rω(2), . . . ,Rω(k)) is called a concatenation of the routes in

F (Ascheuer et al., 2001).

Note that it is possible that routes R1,R2, . . . ,Rk are individually feasible but there is no way to

concatenate them to get a feasible route.

164

Step3: Consider the new arc set A after steps 1 and 2. For all arcs (i, j) ∈ A, we start with

route R = (i, j) and concatenate R with routes constructed by vertices from a given vertex set

V := {v1, . . . ,vk}. If all these concatenations result in infeasible routes, we can conclude that arc

(i, j) cannot be used in any feasible solution and it will be eliminated from A. Due to the fact that

the total number of such concatenations increases exponentially with respect to |V |, for the sake

of computational efficiency, in our implementation we only consider the case for |V | ≤ 2.

In the remaining part of Chapter 12, A is considered to be the feasible arc set after the above

mentioned data preprocessing stages.

12.2. The search tree structure

We begin by describing the search scheme used to identify feasible solutions that are can-

didates to become an optimal solution to APMCHCP.

Let node 0 be the root node of the search tree. For each search tree node t, we define two

sets: set of visited vertices and set of candidate vertices. Let Rt denote the ordered set of visited

vertices, which contains all vertices that have been visited in order along the search path that starts

from tree node 0 and ends at tree node t. Let Ct denote the set that contains all candidate vertices

in V \Rt that can be added to set Rt . In addition, let par(t) and Chd(t) be the parent node and the

set of child nodes of tree node t, respectively. By the definition of APMCHCP, a vertex i ∈ Ct can

be a candidate vertex to create a tree node tc ∈Chd(t), in which

Ct :=



{
v ∈V | v /∈Rt , pRt pv p f v ≥ max{βv,βs}

}
, if |Rt | ≤ n−1

{s}, if |Rt |= n and pRt p f ,s ≥ βs

/0, otherwise

, (12.4)

where f and s are the last and the first vertices in Rt . We set R0 = /0 and the initial C0 =V . Figure

12.1 gives an example of the structure of search tree of an APMCHCP.

Clearly, each tree node t has up to |V \Rt | child nodes. We use depth-first search (DFS)

for branching, as the number of nodes in each level of the search tree increases exponentially. If

165

tree node 0,
ℛ0 = ∅

tree node 1,
ℛ1 = {2}

tree node 2,
ℛ2 = {2, 4}

tree node 𝑡,
ℛ𝑡

tree node 𝑡𝑐 ∈ 𝐶ℎ𝑑(𝑡),

ℛ𝑡𝑐 = ℛ𝑡 ∪ 𝑖𝑡𝑐

⋯⋯ ⋯⋯

⋮
⋮

⋮

⋯

⋮

⋯
⋮

level 0

level 1 ⋮

⋮
⋮
⋮
⋮

level 𝑛
tree node 𝑛,

ℛ𝑛 = {2, 4,⋯ , 1}

tree node 𝑛 +1,
ℛ𝑛+1 = {2,4,⋯ , 1, 2}

level 𝑛 + 1

Figure 12.1: Illustration on the structure of the search tree of an APMCHCP.

we use breadth-first search, when |V | is large, the memory is likely to get exhausted before finding

a solution for the problem, because we cannot have a solution until the last level of the search tree.

For branching tree node 0, we select vertex it1 ∈ C0 and create a new first-level node t1 by

it1 = argmin
i∈C0

βi , (12.5)

because starting from a vertex i∈V with a small βi is more likely to find a feasible tour. If multiple

vertices satisfy (12.5), then one of them is selected at random. Next, we update C0 = C0 \ {it1},

setting Rt1 = {it1}, and initiate Ct1 by (12.4). To branch a tree node t in levels l = 1,2, . . . ,n (if

exists, i.e., Ct 6= /0) and create a new node tc ∈ C hd(t), we select vertex itc ∈ Ct using the following

greedy rule :

itc = argmax
i∈Ct

pi p f ,i , (12.6)

where f is the last vertex in Rt . If multiple vertices satisfy (12.6), then the one with the smallest

c f ,i is selected. Next, we set Rtc = Rt ∪{itc} (i.e., to add element itc to the end of Rt and get Rtc),

166

updating Ct =Ct \{itc}, and initiate Ctc by (12.4). In each search path, level n+1, if exists, returns

to the starting vertex to create a Hamiltonian cycle.

The cost of a tree node t, zt , can be calculated by :

zt =


zpar(t)+ c f ,it , if t 6= 0, t /∈Chd(0)

0 , otherwise
, (12.7)

where f and it are the last vertices in Rpar(t) and Rt , respectively.

Obviously, if Ct = /0, then tree node t will be fathomed. Otherwise, the algorithm backtracks

by DFS to find a new tree node. In the following, we provide several feasibility rules for the

APMCHCP which provide more criteria to fathom a tree node or detect the infeasibility of a given

problem.

12.3. Feasibility rules

For the TSP, the most important and difficult constraint is to visit all vertices (Dumas et

al., 1995). When probability intervals and precedence constraints are present, they impose partial

orders of the vertices. Computational efficiency can be improved from eliminating partial routes

that do not satisfy such partial orders. The feasibility rules presented here detect partial routes that

cannot be extended to form a feasible Hamiltonian cycle, thereby allowing elimination of such

routes.

To describe those rules, let SDP(i, j) be the smallest departure probability from vertex i

such that β j is satisfied. This can be calculate as follows:

SDP(i, j) =
β j pi

MPP(i, j)
. (12.8)

Rule 1. (feasibility check) A partial route R ended at vertex i cannot be extended to a feasible

solution, if we have

pR < max
k∈V\R

{SDP(i,k)} . (12.9)

167

Based on this (global) rule, if extending partial route R to an unvisited vertex is infeasible, then

route R can be eliminated. Also, a route R ′ can be eliminated, if it visits exactly the same vertices

as R and pR′ ≤ pR (the dominance rule).

Rule 2. (precedence relationship check) A partial route R ended at vertex i is infeasible if we have

π(i) 6⊂R . (12.10)

This rule states that all predecessors of vertex i must be visited before visiting i.

Rule 3. (extension check) Given partial route R ending at vertex i, if R can be extended to a vertex

k /∈R but cannot be further extended to some l /∈R, i.e., ∃k, l /∈R,k 6= l such that pR ≥ SDP(i,k)

but pR pik pk < SDP(k, l), then R cannot be extended toward k. Also, a route R ′ ending with i

cannot be extended toward k, if it includes exactly the same vertices as R and pR′ ≤ pR (the

dominance rule).

Rule 4. (probabilistic Hamiltonian cycle (PHC) check) For a given origin vertex i, the feasibility

of building a Hamiltonian cycle can be checked using the following proposition.

Proposition 22. An APMCHCP starting at vertex i is infeasible if the following restricted APM-

CHCP (RAPMCHCP) is infeasible.

[RAPMCHCP(i)] min 0 (12.11a)

s.t. (11.3a)− (11.3c), (11.20b)− (11.20d)

∏
j∈V

p j ∏
(j,l)∈A

p
x jl
jl ≥ βi , ∀i ∈V (12.11b)

Proof. If (12.11) is infeasible, we have ∏
j∈V

p j ∏
(j,l)∈A

p
x jl
jl < βi, which makes the original APM-

CHCP infeasible due to Lemma 9.

168

We apply Proposition 22 because in general, an RAPMCHCP can be solved much faster

than an APMCHCP, and it is useful to recognize the infeasibility at the first level of the CBB

search tree. In real applications, the RAPMCHCP can be linearized by logarithmizing both sides

of (12.11b) and easily solved as a binary linear program.

Rule 5. (return-to-the-origin check) At each tree node t in levels l = 1,2, . . . ,n, we check the

feasibility of returning to the origin by finding the maximum possible probability for the remaining

arcs. In tree node t associated with route Rt , the chance constraint of the origin will be violated if

we have

pRt ∏
j∈V\Rt

p j ∏
i∈(V\Rt)∪{ f}

max
k∈(V\Rt)∪{s}

{Pik}< βs . (12.12)

12.4. Lower bound

Proposition 23. Given a search tree node t associated with a nonempty candidate set Ct , the

objective value of any Hamiltonian cycle containing route Rt = (s,v2, . . . ,vk−1, f) has a lower

bound

zRt + ∑
i∈(V\Rt)∪{ f}

min
k∈(V\Rt)∪{s}

{PSPik} , (12.13)

where PSPik is the shortest probabilistic path between vertices i and k. The value of PSPik,∀(i,k)∈

A, can be calculated by Algorithm 6.

Proof. Let R∗t be the optimal Hamiltonian cycle containing Rt . We have

zR∗t = zRt + zR̄t
, (12.14)

where R̄t := (f ,vk+1,vk+2, . . . ,vn,s). R̄t can be found by solving an elementary shortest path

problem with resource constraints (ESPPRC) (see Irnich et al. (2005)), where probability as a

resource is accumulated along the route. We call this problem elementary shortest path problem

169

with chance constraints (ESPPCC). However, ESPPRC is proved to be strongly NP-hard (Dror,

1994), and hence the same for ESPPCC. If we relax some of the constraints of ESPPCC, then the

problem becomes easier to be solved. In particular, we can change the problem to the shortest path

problem with chance constraints (SPPCC) by allowing cycles in the tour. Let R̂t be the SPPCC

that visits all the vertices of R̄t for at least once. Clearly, we must have

zR̄t
≥ zR̂t

. (12.15)

By relaxing assignment constraints and subtour elimination constraints, one can apply Algorithm

6 for all vertices in (V \Rt)∪ f to find the lower bound of zR̂t
, because

zR̂t
≥ ∑

i∈(V\Rt)∪{ f}
min

k∈(V\Rt)∪{s}
{PSPik} . (12.16)

By inequalities (12.14), (12.15), and (12.16), we get

zR∗t ≥ zRt + ∑
i∈(V\Rt)∪{ f}

min
k∈(V\Rt)∪{s}

{PSPik}, (12.17)

which completes the proof.

12.5. Upper bound

To find the upperbound of the APMCHCP, we solve the following problem.

[UB] max ∑
(i, j)∈A

log(pi j)xi j−au ∑
(i, j)∈A

ci jxi j (12.18a)

s.t. (11.3a)− (11.3c), (11.20b)− (11.20d)

In the objective function (12.18a), the first part is to maximize the cumulative arc probability

∏
(i, j)∈A

pxi j
i j , and the second part is an adjustment to get a relatively small total cost ∑(i, j)∈A ci jxi j,

170

Algorithm 6: Finding probabilistic shortest path (PSP).
Data: Digraph G
Result: The probabilistic shortest path between any two given vertices

1 for i ∈V do
2 dist[i]← 0, prob[i]← pi // determine source vertex
3 Q.push(i,dist[i], prob[i]) // Q is a priority queue
4 while Q 6= /0 do
5 u← pop(Q) // pop(Q) extracts vertex in Q with min dist[]
6 for each successor v of u do
7 if prob[u]puv pv ≥ βv then
8 alt = dist[u]+ cuv
9 if v /∈ dist or alt < dist[v] then

10 dist[v]← alt
11 Q.push(v,alt, prob[u]puv pv)

12 return dist[]

where a is a user-defined scaling parameter for balancing the weight of log(pi j) and ci j in the

objective function, and u is a loop parameter used in Algorithm 7 to adjust the scaling level.

Proposition 24. Given digraph G corresponding with an APMCHCP, Algorithm 7 finds the upper

bound.

12.6. The complete CBB algorithm

The complete CBB algorithm for solving the APMCHCP is given in Algorithm 8.

171

Algorithm 7: Greedy algorithm to find the upper bound.
Data: Digraph G
Result: Upper bound for the APMCHCP corresponding to G

1 upperbound← ∞

2 u← 0
3 while u≤ |1a | do
4 update← ”no”
5 solve UB and put the optimal tour in t∗

6 for i ∈V do
7 if there is a feasible APMCHCP starting from vertex i in t∗ then
8 upperbound← zt∗ // zt∗ is the objective value of t∗

9 update← ”yes”
10 break
11 if update ="no" then
12 break
13 u = u+1
14 return upperbound

172

Algorithm 8: The complete CBB algorithm for APMCHCP.
1 CALL data preprocessing
2 CALL Algorithm 7
3 if An upper bound can be found using Algorithm 7 then
4 R∗←R∗ub, z∗← z∗ub
5 else
6 R∗← /0, z∗← ∞

7 Create root node: l← 0;R0← /0;C0←V ;stack← (l,R0,C0)
8 while stack 6= /0 do
9 node t=stack.pop()

10 if l = 0 then
11 determine it1 using (12.5)
12 if π(it1) = /0 and it1 /∈

⋃
j∈V\{it1}

π(j) then

13 if RAPMCHCP(i) is feasible then
14 if Feasibility Check (Rule 1) then
15 Rt1 ←{it1}; initiate Ct1 using (12.4); reduce Ct1 using Rule 3; l← l +1;

calculate zt1 by (12.7) and lb using (12.13); stack← (l,Rt1 ,Ct1)

16 else
17 if Ct 6= /0 then
18 if lbt < z∗ then
19 determine itc using the greedy rule described in (12.6)
20 if π(itc)⊆Rt then
21 if Returning to Origin Check (Rule 5) then
22 if Feasibility Check (Rule 1) then
23 Rtc ←Rt ∪{itc}; initiate Ctc using (12.4); reduce Ct1 using Rule 3;

l← l +1; calculate ztc by (12.7) and lb using (12.13);
stack← (l,Rtc ,Ctc)

24 else
25 if |Rt |= n+1 then
26 if zt < z∗ then
27 R∗←Rt , z∗← zt

28 return R∗,z∗

173

CHAPTER 13. COMPUTATIONAL RESULTS

In this chapter we present the computational results for both problems presented in Chapters

6 and 10.

13.1. Novel group centrality metrics for studying essentiality in protein-protein interaction net-

works

In this section, we present our experimental setup. Our goal is to portray how different

group centrality metrics behave and perform when put to the test against each other as well as

against nodal centrality metrics in PPIN analysis.

13.1.1. Experimental setup

We coded all the algorithms in Python and conducted the experiments on a quad-core Intel

i7 at 2.8 GHz with 16 GB of RAM. We also used Gurobi Optimizer 8.0 to solve all MILP for-

mulations. Data on protein interactions for different organisms was obtained by STRING v. 10.0

(Szklarczyk et al., 2014). More specifically, we used the data set for helicobacter pylori (stylized

hereafter as HP). Essential proteins for the organism were found using the curated database in DEG

10 (Luo et al., 2013).

The experiment is organized as follows: in subsection 13.1.2, we describe how PPINs

are generated by creating a graph vertex for each protein; the vertex is connected to all other

proteins-vertices that share an interaction. Each interaction comes with an interaction score (out of

1000). To simplify the generation of networks to apply our group centrality metrics on, we select

a threshold score below which all interactions are removed. The threshold scores selected for

presentation in this study were 600 (60% interaction score), 700 (70% interaction score), and 800

(80% interaction score). In this fashion, we were able to create three networks where all known

centrality metrics can be captured given the available computational power. The networks were

further broken down into their connected components with each component being independently

analyzed, without loss of generality.

For each centrality metric, the experiment is performed in three sections. First, the per-

formance of the proposed CBB approaches are compared to the MILP formulations, both as far

174

as computational runtime and solution quality are concerned. Secondly, we measure the number

of essential proteins that appear among the top and bottom k ranked proteins (for different values

of k as shown in Table 13.23) using each of the approaches. Lastly, We define the membership

measure as the number of times that a protein appears in the optimal structures of all proteins for

the combination of each centrality measure and structure. The goal of defining this measure is to

know is there any relation between the protein essentiality and membership. Here, we also contrast

this metric to nodal metrics of centrality (degree, closeness, betweenness). All nodal metrics are

computed with a Python implementation, using networkX version 2.4 (Hagberg et al., 2008).

13.1.2. Protein-protein interaction network

Table 13.23 shows the number of vertices and also the number of edges for the HP PPIN for

four given thresholds, namely 0 (all interactions present), 600 (only interactions with a threshold

score of 60% and above), 700 (70% threshold), and 800 (80% threshold). We can also see the

number of essential proteins and top and bottom k proteins for HP in this table. We opted for

k = 500 seeing as helicobacter pylori has 323 essential proteins reported in DEG.

Table 13.1: Details of the PPIN of the selected organism.

Organism |V|
|E|

Essential Proteins Top k Bottom k
0 600 700 800

Helicobacter pylori 1,570 89,648 17,792 12,822 7,859 323 500 500

13.1.3. Degree centrality

13.1.3.1. Comparing the CBB algorithm to the mathematical formulations

The computational results when solving the MDRP, MDCP, and MDSP using the MILP

formulations and proposed CBB and CG algorithms for Helicobacter pylori are presented in this

section. Specifically, we compare the performance of the CBB algorithm, CG algorithm, IP1 and

IP2 in practice, using the obtained PPINs. All results are summarized in Table 13.24.

The first three columns provide general information for each problem instance (organism

name, chosen threshold, and structure which are indicated by Org, Thr, and Str, respectively).

175

Table 13.2: Results of the experiments for degree centrality on the Helicobacter pylori. IP1 is the
linear IP developed by Vogiatzis et al., 2015, IP2, CBB and CG are our proposed linear ILP, CBB
algorithm, and CG algorithm, respectively. Gap (%) represents the optimality gap, and time(s) is
the runtime in second.

Org Thr Str
IP1 IP2 CBB CG

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

HP 600 Clique 0.00 644.89 0.00 324.37 0.17 510.23 0.43 2547.85
HP 700 Clique 0.00 458.50 0.00 210.92 0.17 409.16 0.29 1428.07
HP 800 Clique 0.00 435.19 0.00 116.93 0.17 297.34 0.10 673.15
HP 600 Star 0.00 629.47 0.00 321.72 0.38 568.54 0.77 2684.90
HP 700 Star 0.00 465.77 0.00 206.45 0.10 314.82 0.38 1531.57
HP 800 Star 0.00 303.98 0.00 113.74 0.04 145.85 0.10 704.29
HP 600 Rep 0.00 768.96 0.00 268.01 0.00 909.09 0.00 1607.88
HP 700 Rep 0.00 430.37 0.00 170.93 0.00 630.20 0.00 1088.72
HP 800 Rep 0.00 317.64 0.00 104.53 0.00 299.09 0.00 502.72

The next sets of columns show the performance of the formulation in the literature, our new for-

mulation, and our proposed CBB algorithm on the chosen problem, respectively. Notice that the

optimality gap reported is the average of all optimality gaps for the proteins that their optimal struc-

ture cannot be found. The gap for each protein is calculated by dividing the difference between

the optimal degree centrality and best degree centrality found in 1 second by the optimal degree

centrality. The runtime of our CBB algorithm and Gurobi is limited to 1 second per protein.

We make the following observations. As shown in Table 13.24, for all instances, IP2 has

a better performance than IP1 in terms of runtime. This observation might be due to the fact

that IP2 uses the idea that the group degree centrality is a local measure and isolates the local

neighborhood of each protein to find its most-connected structure. In this way, IP2 decreases the

number of variables and constraints, which results in a much shorter runtime.

When it comes to the CBB, it can find the optimal solution for representative-based prob-

lems as it takes advantage of the set cover problem to limit the number of branching vertices in

the root node of the search tree. In terms of runtime for representative-based problems, we can

see that the CBB is faster than IP1 when threshold is 800, but slower for 600 and 700 (where the

instances are of bigger size). For the clique and star-based problems, CBB is faster than IP1 but

not IP2, and it fails to always find an optimal solution. In clique-based problems, CBB can find the

176

optimal clique for 94, 95, and 97 percent of proteins in the given time limit when the threshold is

set to 600, 700, and 800, respectively. In star-based problems, CBB can find the optimal clique for

92, 98, and 99 percent of proteins in the given time limit when the threshold is 600, 700, and 800,

respectively. The average gap for all proteins is reported in the gap column of Table 13.24.

CG algorithm can find the optimal solution for representative-based problems based on

proposition 18. For the clique and star-based problems, CG fails to always find an optimal solution.

In clique-based problems, CG can find the optimal clique for 89, 94, and 98 percent of proteins

in the given time limit when the threshold is set to 600, 700, and 800, respectively. In star-based

problems, CG can find the optimal clique for 85, 93, and 98 percent of proteins in the given time

limit when the threshold is 600, 700, and 800, respectively. In terms of runtime, we can see that the

CG is slower than all other methods. Comparing the average gap for all proteins, we can see that

although both CBB and CG algorithms have a small gaps, CBB is better than CG in this regard.

13.1.3.2. Analysis of top ranked proteins per metric

After calculating the centrality metrics of all proteins for each PPIN, we may compute the

ratio of essential proteins in the top k and the bottom k proteins (as ranked by each centrality

metric). For Helicobacter pylori, the number of essential proteins found in the PPIN is 323, and

hence the top 500 proteins are investigated.

For each threshold we provide two Figures and one Table. The first figure represents the

performance over the top k proteins; the second pair is for the bottom k proteins. The table, on

the other hand, summarizes numerically the same results for both top and bottom k proteins. Note

that for the first representation, the higher the ratio, the better that metric is said to perform. The

opposite is true for the second representation as a metric is said to perform better, when the ratio is

smaller. In this section, we only provide the interpretation of the figures and tables when thresholds

is 600. For the other two thresholds 700 and 800, the explanations are similar.

The results for a threshold of 600 are shown in Figures 13.5 and 13.6. Clique-CBB and

Clique-IP achieve a final score of detecting 49.85% essential proteins within the top 500 proteins,

as opposed to 46.44% for degree and 46.13% for closeness. Considering the performance over the

177

least well ranked proteins, we can see that Clique-CBB, Clique-IP, and simple closeness are best

at not ranking highly non-essential proteins, achieving a final score of 19.20%, while the score for

the other competitive metric is 22.60% for degree. It is also worth mentioning that the CBB and IP

have the same performance in determining essential proteins, but the CBB is faster.

Table 13.3: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group degree centrality and a threshold score of 800.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 12.07 21.05 28.48 34.98 43.65 4.02 7.12 11.15 16.72 22.29
Clique-IP 12.07 21.05 28.48 34.98 43.65 4.02 7.12 11.15 16.72 22.29
Star-CBB 11.76 20.12 28.79 36.22 43.34 2.48 7.12 11.46 17.96 23.53
Star-IP 11.76 20.12 28.79 36.22 43.34 2.48 7.12 11.46 17.96 23.53
Rep-IP-CBB 11.46 21.05 29.72 36.22 43.65 2.48 7.12 11.46 17.03 22.91
Degree 11.46 18.58 26.32 36.53 40.56 2.48 7.12 12.07 16.10 21.05
Closeness 3.41 6.50 14.86 24.77 33.75 5.26 10.22 14.24 19.50 24.15
Betweenness 8.98 15.48 22.29 29.72 35.60 3.10 7.74 13.00 18.27 25.39

Table 13.4: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group degree centrality and a threshold score of 700.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 10.22 21.36 31.27 39.94 47.68 3.10 7.12 11.46 14.24 18.27
Clique-IP 5.57 12.07 18.89 24.77 32.20 8.05 13.31 19.20 25.70 30.96
Star-CBB 6.50 15.17 23.22 27.55 31.89 4.33 8.36 17.34 23.22 30.34
Star-IP 6.50 15.17 23.22 27.55 31.89 4.33 8.36 17.34 23.22 30.34
Rep-IP-CBB 6.81 14.86 22.29 26.93 33.13 4.33 8.36 17.03 24.15 30.03
Degree 14.24 21.98 30.03 39.32 44.58 3.10 8.98 12.07 15.79 21.05
Closeness 3.41 14.55 23.53 33.75 43.96 2.17 6.50 9.29 12.07 16.72
Betweenness 10.22 15.79 25.39 32.51 38.70 5.26 8.98 16.41 19.81 27.24

13.1.3.3. Analysis of top ranked proteins per metric using membership measure

After identifying the optimal structure of all proteins for each PPIN using each approach,

we can calculate the number of times each protein appears in the all optimal structures. For ex-

ample, if in the MDCP, protein p1 is in the optimal cliques of proteins p2, p10 and p13, then the

membership of P1 is 4 (because it appears in it’s own clique, also). Then, we may compute the

178

Table 13.5: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group degree centrality and a threshold score of 600.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 11.46 21.05 29.72 39.94 49.85 4.02 7.74 10.22 13.31 19.20
Clique-IP 11.76 21.05 29.72 39.94 49.85 4.02 7.74 10.22 13.31 19.20
Star-CBB 8.67 15.48 20.43 26.63 34.37 5.57 14.24 19.81 27.55 33.13
Star-IP 8.67 15.79 20.43 26.63 34.37 5.57 14.24 19.81 27.55 33.13
Rep-IP-CBB 7.43 15.17 21.67 27.24 32.51 5.57 12.69 20.74 26.93 32.82
Degree 14.24 23.53 30.03 37.46 46.44 4.02 9.29 12.07 18.27 22.60
Closeness 7.12 18.58 26.93 35.60 46.13 3.72 6.81 9.91 14.86 19.20
Betweenness 5.57 11.76 17.03 24.15 31.58 4.33 12.69 18.89 26.32 31.58

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.1: The ratio of essential proteins
found in the top k ranked proteins with a
threshold score of 800. The group central-
ity metric used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.2: The ratio of essential proteins
found in the bottom k ranked proteins with
a threshold score of 800. The group cen-
trality metric used is based on degree.

179

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.3: The ratio of essential proteins
found in the top k ranked proteins with a
threshold score of 700. The group central-
ity metric used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.4: The ratio of essential proteins
found in the bottom k ranked proteins with
a threshold score of 700. The group cen-
trality metric used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.5: The ratio of essential proteins
found in the top k ranked proteins with a
threshold score of 600. The group central-
ity metric used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.6: The ratio of essential proteins
found in the bottom k ranked proteins with
a threshold score of 600. The group cen-
trality metric used is based on degree.

180

ratio of essential proteins in the top k and the bottom k proteins (as ranked by each membership

measure).

For each threshold we provide two Figures and one Table. The explanation of figures

and tables are like what we had in the previous section. In this section, we only provide the

interpretation of the figures and tables when thresholds is 600. For the other two thresholds 700

and 800, the explanations are similar.

The results for a threshold of 600 are shown in Figures 13.11 and 13.11. Degree and

Closeness achieve a final score of detecting 46.44% and 46.13% essential proteins within the top

500 proteins, respectively, as opposed to 44.27% for Clique-CBB and Clique-IP. Considering the

performance over the least well ranked proteins, we can see that simple Closeness and Degree are

best at not ranking highly non-essential proteins, achieving a final scores of 19.20% and 22.60%,

respectively, while the score for the other competitive metric is 26.01% for Clique-CBB. It is also

worth mentioning that for clique the CBB and IP have the same performance and for star IP is

better than CBB in determining essential proteins, but the CBB is faster.

Table 13.6: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using membership measure for group degree centrality and a threshold score of 800.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 10.53 19.20 25.70 33.44 39.01 9.60 15.17 19.50 26.01 33.44
Clique-IP 10.53 17.96 26.01 33.13 39.32 3.10 7.74 13.00 19.81 26.63
Star-CBB 8.67 15.17 22.60 29.10 33.75 3.10 8.05 13.31 19.50 25.08
Star-IP 8.98 15.79 22.91 28.17 34.98 3.10 8.05 13.31 19.50 25.08
Rep-IP-CBB 9.91 18.89 26.01 31.89 39.63 3.10 7.74 13.31 17.96 23.84
Degree 11.46 18.58 26.32 36.53 40.56 2.48 7.12 12.07 16.10 21.05
Closeness 3.41 6.50 14.86 24.77 33.75 5.26 10.22 14.24 19.50 24.15
Betweenness 8.98 15.48 22.29 29.72 35.60 3.10 7.74 13.00 18.27 25.39

181

Table 13.7: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using membership measure for group degree centrality and a threshold score of 700.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 9.29 21.67 29.41 37.15 43.96 6.81 11.46 17.03 23.53 28.48
Clique-IP 9.91 21.36 29.41 36.22 44.27 5.26 10.84 15.79 21.67 26.32
Star-CBB 9.29 17.65 25.08 31.58 38.08 5.26 10.53 15.48 21.36 26.93
Star-IP 9.60 17.03 23.84 33.75 39.01 5.26 9.91 14.55 20.43 26.01
Rep-IP-CBB 10.84 18.58 29.72 37.15 42.72 5.26 9.60 14.86 20.43 25.39
Degree 14.24 21.98 30.03 39.32 44.58 3.10 8.98 12.07 15.79 21.05
Closeness 3.41 14.55 23.53 33.75 43.96 2.17 6.50 9.29 12.07 16.72
Betweenness 10.22 15.79 25.39 32.51 38.70 5.26 8.98 16.41 19.81 27.24

Table 13.8: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using membership measure for group degree centrality and a threshold score of 600.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 12.69 19.81 29.10 36.84 44.27 5.26 9.29 14.55 20.74 26.01
Clique-IP 12.07 19.50 28.79 36.53 44.27 5.57 10.84 16.10 20.43 26.63
Star-CBB 8.67 17.96 24.77 30.34 37.77 4.33 9.91 17.65 22.91 29.10
Star-IP 8.98 18.27 25.08 30.96 38.70 4.64 10.22 17.34 22.29 27.24
Rep-IP-CBB 10.84 19.20 26.63 34.37 40.56 4.64 9.60 17.34 23.22 29.10
Degree 14.24 23.53 30.03 37.46 46.44 4.02 9.29 12.07 18.27 22.60
Closeness 7.12 18.58 26.93 35.60 46.13 3.72 6.81 9.91 14.86 19.20
Betweenness 5.57 11.76 17.03 24.15 31.58 4.33 12.69 18.89 26.32 31.58

182

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.7: The ratio of essential pro-
teins found in the top k ranked proteins us-
ing membership measure with a threshold
score of 800. The group centrality metric
used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.8: The ratio of essential proteins
found in the bottom k ranked proteins us-
ing membership measure with a threshold
score of 800. The group centrality metric
used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.9: The ratio of essential pro-
teins found in the top k ranked proteins us-
ing membership measure with a threshold
score of 700. The group centrality metric
used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.10: The ratio of essential pro-
teins found in the bottom k ranked proteins
using membership measure with a thresh-
old score of 700. The group centrality met-
ric used is based on degree.

183

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.11: The ratio of essential pro-
teins found in the top k ranked proteins us-
ing membership measure with a threshold
score of 600. The group centrality metric
used is based on degree.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.12: The ratio of essential pro-
teins found in the bottom k ranked proteins
using membership measure with a thresh-
old score of 600. The group centrality met-
ric used is based on degree.

13.1.4. Closeness centrality

13.1.4.1. Comparing the CBB algorithm to the mathematical formulations

Table 13.9: Results of the experiments for closeness centrality on the Helicobacter pylori. IP and
CBB are our proposed linear IP and algorithm, respectively. Gap (%) represents the optimality
gap, and time(s) is the runtime in seconds.

Org Thr Str
IP CBB

Gap (%) Time (s) Gap (%) Time (s)

HP 600 Clique 0.01 105795.86 0.15 25667.99
HP 700 Clique 0.00 91971.92 0.08 14301.00
HP 800 Clique 0.00 78147.98 0.03 5939.34
HP 600 Star 0.01 33659.90 0.59 42847.92
HP 700 Star 0.02 33913.44 0.11 21966.91
HP 800 Star 0.00 29251.38 0.03 5996.58
HP 600 Rep 0.00 32556.21 0.11 64064.42
HP 700 Rep 0.00 33364.86 0.11 45438.32
HP 800 Rep 0.00 29136.98 0.09 23519.65

We perform the same analysis, but for closeness centrality in this section. As shown in

Table 13.9, in terms of the optimality gap for all instances although IP and CBB algorithm both

have a small gap, IP has a better performance than CBB algorithm. However, considering runtime

CBB algorithm is about two times faster than IP. For clique-based problems this gap is even bigger,

184

where CBB algorithm is 6 times faster than the IP. This observation might be due to the fact that

in the CBB algorithm we take advantage of the Theorem 5 which decreases the number of active

nodes of the search tree.

In clique-based problems, CBB algorithm can find the optimal clique for 81, 87, and 92

percent of proteins in the given time limit when threshold is 600, 700, and 800, respectively.

In star-based problems, CBB algorithm can find the optimal clique for 64, 82, and 95 percent

of proteins in the given time limit when threshold is 600, 700, and 800, respectively. Finally,

In representative-based problems, CBB algorithm can find the optimal clique for 49, 63, and 83

percent of proteins in the given time limit when threshold is 600, 700, and 800, respectively. The

average gap for all proteins in 60 seconds time limit is reported in the gap column of the Table

13.9.

13.1.4.2. Analysis of top ranked proteins per metric

The results for threshold of 600 are shown in Figures 13.17 and 13.18. Rep-IP, Rep-CBB,

Clique-CBB and Clique-IP achieves a final score of detecting 48.61% within the top 500 proteins,

as opposed to 46.44% for degree, 46.13% for closeness, 45.82% Star-CBB, 45.51% and Star-IP,

and 31.58% for betweenness method. Considering the performance over the least well ranked

proteins, we can see that Clique-CBB and Clique-IP are best at not ranking highly non-essential

proteins, achieving a final score of 16.41%, while the scores for the other centrality metrics are

19.20% for Rep-CBB, Rep-IP and closeness, 21.05% star-CBB and star-IP, 22.60% degree, and

31.58% betweenness method. It is worth mentioning that the CBB and IP have the same perfor-

mance in determining essential proteins, although the CBB is much faster than IP.

185

Table 13.10: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group closeness centrality and a threshold score of 800.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 12.07 19.50 29.10 36.84 43.65 3.41 8.05 11.15 15.48 22.29
Clique-IP 11.76 20.12 29.10 36.22 43.65 4.02 7.74 11.15 15.48 22.29
Star-CBB 11.15 19.81 28.79 36.84 41.18 4.33 8.05 11.15 16.72 21.98
Star-IP 11.15 19.81 28.79 36.84 41.18 4.02 7.74 11.15 16.72 21.98
Rep-CBB 10.84 21.05 29.10 37.77 43.96 3.10 8.05 11.15 15.79 21.98
Rep-IP 12.07 20.74 28.48 37.46 43.96 4.02 7.74 11.15 15.79 21.98
Degree 11.46 18.58 26.32 36.53 40.56 2.48 7.12 12.07 16.10 21.05
Closeness 3.41 6.50 14.86 24.77 33.75 5.26 10.22 14.24 19.50 24.15
Betweenness 8.98 15.48 22.29 29.72 35.60 3.10 7.74 13.00 18.27 25.39

Table 13.11: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group closeness centrality and a threshold score of 700.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 8.98 20.74 31.27 38.70 47.37 4.95 6.81 11.46 13.93 16.41
Clique-IP 8.67 21.36 31.58 39.01 47.37 4.95 6.81 11.46 13.93 16.41
Star-CBB 10.22 20.43 30.34 38.70 46.75 4.33 7.12 11.46 14.55 17.03
Star-IP 10.22 20.43 29.72 38.70 46.75 4.64 7.12 11.46 14.86 17.34
Rep-CBB 12.07 19.81 30.96 41.49 47.99 4.95 6.81 11.46 14.55 17.65
Rep-IP 12.69 20.74 31.27 41.80 47.99 4.64 6.81 11.46 14.55 17.65
Degree 14.24 21.98 30.03 39.32 44.58 3.10 8.98 12.07 15.79 21.05
Closeness 3.41 14.55 23.53 33.75 43.96 2.17 6.50 9.29 12.07 16.72
Betweenness 10.22 15.79 25.39 32.51 38.70 5.26 8.98 16.41 19.81 27.24

Table 13.12: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group closeness centrality and a threshold score of 600.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 11.76 20.12 30.03 39.63 48.61 4.02 7.74 9.29 13.31 16.41
Clique-IP 11.76 21.05 30.03 39.94 48.61 4.02 7.74 9.29 13.00 16.10
Star-CBB 8.67 18.58 28.79 39.01 45.82 4.02 7.43 10.84 14.86 21.05
Star-IP 8.98 19.81 29.41 38.39 45.51 4.02 7.43 10.84 14.86 21.05
Rep-CBB 12.07 20.43 29.10 39.63 48.61 4.02 7.74 9.91 13.93 19.20
Rep-IP 12.38 20.74 28.79 39.32 48.61 4.02 7.74 9.91 13.93 19.20
Degree 14.24 23.53 30.03 37.46 46.44 4.02 9.29 12.07 18.27 22.60
Closeness 7.12 18.58 26.93 35.60 46.13 3.72 6.81 9.91 14.86 19.20
Betweenness 5.57 11.76 17.03 24.15 31.58 4.33 12.69 18.89 26.32 31.58

186

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.13: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 800. The group cen-
trality metric used is based on closeness.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.14: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 800. The group
centrality metric used is based on close-
ness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.15: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 700. The group cen-
trality metric used is based on closeness.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.16: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 700. The group
centrality metric used is based on close-
ness.

187

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.17: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 600. The group cen-
trality metric used is based on closeness.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB-IP
Degree
Closeness
Betweenness

Figure 13.18: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 600. The group
centrality metric used is based on close-
ness.

13.1.4.3. Analysis of top ranked proteins per metric using membership measure

The results for threshold of 600 are shown in Figures 13.23 and 13.24. Nodal Degree and

Closeness achieve a final score of detecting 46.44% and 46.13%, respectively within the top 500

proteins, as opposed to 45.82% for Rep-CBB, 43.34% for Clique-CBB and Clique-IP, 45.41%

REP-IP, 36.53% Star-IP, 35.91% Star-CBB and 31.58% for betweenness method. Considering the

performance over the least well ranked proteins, we can see that simple Closeness and Degree are

best at not ranking highly non-essential proteins, achieving a final score of 19.20% and 22.60%,

respectively, while the scores for the other centrality metrics are 23.53% for Rep-CBB, 26.01%

Clique-CBB and Clique-IP, star-IP 28.17%, 28.48% Star-CBB, and 31.58% betweenness method.

It is worth mentioning that the CBB and IP have the same performance in determining essential

proteins, although the CBB is much faster than IP.

188

Table 13.13: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using membership measure for group closeness centrality and a threshold score of 800.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 11.76 21.05 27.24 34.98 40.25 2.79 7.43 13.93 19.81 23.22
Clique-IP 11.76 18.89 26.63 32.20 39.01 2.48 6.50 13.31 18.89 24.46
Star-CBB 7.43 16.72 22.60 27.86 34.67 2.79 8.67 14.24 19.81 28.48
Star-IP 8.05 15.79 21.98 28.79 35.91 2.48 6.50 13.93 20.12 25.70
Rep-CBB 11.46 18.27 27.86 33.44 40.56 2.48 7.12 11.76 19.50 23.53
Rep-IP 8.98 17.34 25.08 30.65 37.77 2.48 6.50 13.62 19.81 23.84
Degree 11.46 18.58 26.32 36.53 40.56 2.48 7.12 12.07 16.10 21.05
Closeness 3.41 6.50 14.86 24.77 33.75 5.26 10.22 14.24 19.50 24.15
Betweenness 8.98 15.48 22.29 29.72 35.60 3.10 7.74 13.00 18.27 25.39

Table 13.14: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using membership measure for group closeness centrality and a threshold score of 700.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 10.53 21.36 29.41 38.08 45.20 3.10 9.91 15.17 20.74 26.63
Clique-IP 9.91 21.05 27.55 36.53 42.41 7.74 11.15 16.41 22.91 27.24
Star-CBB 9.29 16.41 23.84 32.51 38.08 3.72 8.36 13.93 20.74 28.17
Star-IP 8.98 16.72 24.77 32.51 38.70 3.10 10.53 16.41 22.29 27.24
Rep-CBB 14.55 21.98 30.03 39.01 46.44 3.10 6.50 11.76 16.72 21.67
Rep-IP 5.57 11.76 17.03 24.15 31.58 4.33 12.69 18.89 26.32 31.58
Degree 14.24 21.98 30.03 39.32 44.58 3.10 8.98 12.07 15.79 21.05
Closeness 3.41 14.55 23.53 33.75 43.96 2.17 6.50 9.29 12.07 16.72
Betweenness 10.22 15.79 25.39 32.51 38.70 5.26 8.98 16.41 19.81 27.24

Table 13.15: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using membership measure for group closeness centrality and a threshold score of 600.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 12.07 21.98 29.72 36.84 43.34 4.95 10.22 15.17 21.36 26.01
Clique-IP 10.84 20.74 30.34 36.53 43.34 5.26 10.22 16.10 20.74 26.01
Star-CBB 11.15 17.03 24.15 31.27 35.91 4.02 8.36 13.62 21.05 28.48
Star-IP 8.98 17.96 26.01 30.65 36.53 4.33 10.84 17.65 22.29 28.17
Rep-CBB 14.24 23.22 30.03 37.77 45.82 3.10 8.36 11.15 18.27 23.53
Rep-IP 11.46 19.81 26.93 35.29 42.41 4.33 9.91 15.79 21.67 27.55
Degree 14.24 23.53 30.03 37.46 46.44 4.02 9.29 12.07 18.27 22.60
Closeness 7.12 18.58 26.93 35.60 46.13 3.72 6.81 9.91 14.86 19.20
Betweenness 5.57 11.76 17.03 24.15 31.58 4.33 12.69 18.89 26.32 31.58

189

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.19: The ratio of essential pro-
teins found in the top k ranked proteins us-
ing membership measure with a threshold
score of 800. The group centrality metric
used is based on closeness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.20: The ratio of essential pro-
teins found in the bottom k ranked proteins
using membership measure with a thresh-
old score of 800. The group centrality met-
ric used is based on closeness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.21: The ratio of essential pro-
teins found in the top k ranked proteins us-
ing membership measure with a threshold
score of 700. The group centrality metric
used is based on closeness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.22: The ratio of essential pro-
teins found in the bottom k ranked proteins
using membership measure with a thresh-
old score of 700. The group centrality met-
ric used is based on closeness.

190

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.23: The ratio of essential pro-
teins found in the top k ranked proteins us-
ing membership measure with a threshold
score of 600. The group centrality metric
used is based on closeness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Clique-IP
Star-CBB
Star-IP
Rep-CBB
Rep-IP
Degree
Closeness
Betweenness

Figure 13.24: The ratio of essential pro-
teins found in the bottom k ranked proteins
using membership measure with a thresh-
old score of 600. The group centrality met-
ric used is based on closeness.

13.1.5. Betweenness centrality

13.1.5.1. Comparing the CBB algorithm to the mathematical formulations

Here our analysis of the results is slightly different in the sense that we focus on the CBB.

The most striking observation is that Gurobi fails to find a non-trivial feasible solution in all of

the problems. On the contrary, our CBB approach solves all of the problems. This is seen in

Table 13.16, where we present the number of tree nodes (denoted by B&B nodes) that were fully

processed, the percentages of the B&B tree nodes that were fathomed by our bounding condition

and fathomed by feasibility, as well as the computational times for solving different versions of

the HP graph. The computation time limit imposed here was 60 seconds for each protein. The

computational time for calculating the γi j, γk
i j , γkl

i j and γklm
i j for all i, j ∈ V (i 6= j),k, l,m ∈ V,k 6=

l 6= m, are deducted from the computational time because they are used in both the formulations

and the CBB algorithm. Cells containing N/A indicate that the particular instance failed to solve

due to memory capacity limits when using Gurobi and the symbol "|" is used to indicate that the

time limit was exceeded and no feasible solution was found for that particular instance.

191

Table 13.16: Results of the experiments for betweenness centrality on the Helicobacter pylori.
IP and CBB are our proposed linear IP and algorithm, respectively. Number of B&B tree nodes
processed, fathomed by bounds and fathomed by feasibility and running time are presented.

Org Thr Str
IP CBB

B&B
nodes

Bound
Fathoms
(%)

Feasibility
Fathoms (%)

Time(s) B&B
nodes

Bound
Fathoms
(%)

Feasibility
Fathoms (%)

Time(s)

HP 600 Clique 0 0.00 0.00 N/A 23369 29.53 70.47 80037.20
HP 700 Clique 0 0.00 0.00 N/A 22333 32.06 67.94 73603.57
HP 800 Clique 0 0.00 0.00 | 21580 35.05 64.95 49371.22
HP 600 Star 0 0.00 0.00 N/A 16134 0.49 99.51 92951.78
HP 700 Star 0 0.00 0.00 N/A 16031 0.49 99.51 76953.68
HP 800 Star 0 0.00 0.00 | 17209 0.35 99.65 61195.46
HP 600 Rep 0 0.00 0.00 N/A 14419 2.39 97.61 112312.61
HP 700 Rep 0 0.00 0.00 N/A 13908 1.60 98.40 89497.12
HP 800 Rep 0 0.00 0.00 | 14288 1.27 98.73 82061.02

In order to further evaluate the effectiveness of the proposed CBB algorithm, Table 13.10

lists the percentages of the B&B tree nodes that were fathomed by bounding and fathomed by fea-

sibility condition. Table 13.10 demonstrates that for clique-based problems between 29.53% and

35.05% of the explored nodes are fathomed via the bounding condition, and 64.95% to 70.48% are

fathomed by feasibility. While, for star-based problems between 0.35% and 0.49% and 99.51% and

99.65% of the processed nodes are fathomed via the bounding and feasibility condition, respec-

tively and for representative-based problems between 1.27% and 2.39% and 97.61% and 98.73%

of the processed nodes are fathomed via the bounding and feasibility condition, respectively. The

difference among these percentages for different structures is due to 2 reasons: (1) the upper bound

of clique is tighter than those of star and representative because we use graph coloring algorithm

to find the maximum cliques in each node of search tree, and (2) Theorem 5 effectively reduces

the size of the search tree by fathoming search nodes.

13.1.5.2. Analysis of top ranked proteins per metric

The results for threshold of 600 are shown in Figures 13.29 and 13.30. Degree achieves the

highest rate here (detecting 46.44% within the top 500 proteins), as opposed to 46.13% for close-

ness, with our group extensions falling to third place and below with 41.80% for Rep-CBB, 41.18%

for Star-CBB, 40.88% for Clique-CBB. A similar performance, but with closeness outperforming

everyone else appears in the bottom k proteins, too.

192

Table 13.17: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group betweenness centrality and a threshold score of 800.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 12.69 20.12 29.41 36.22 43.03 3.10 8.05 11.46 17.34 22.91
Star-CBB 11.15 19.20 27.86 34.37 39.63 3.10 8.05 11.76 17.34 24.15
Rep-CBB 12.38 20.12 27.55 32.82 40.56 3.10 8.05 11.76 17.03 23.53
Degree 11.46 18.58 26.32 36.53 40.56 2.48 7.12 12.07 16.10 21.05
Closeness 3.41 6.50 14.86 24.77 33.75 5.26 10.22 14.24 19.50 24.15
Betweenness 8.98 15.48 22.29 29.72 35.60 3.10 7.74 13.00 18.27 25.39

Table 13.18: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group betweenness centrality and a threshold score of 700.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 10.53 20.43 29.10 36.84 43.34 4.95 8.05 11.15 16.72 23.22
Star-CBB 13.00 21.05 28.17 36.22 42.72 4.95 8.05 12.07 17.65 24.15
Rep-CBB 9.91 21.05 29.10 37.46 44.27 4.95 8.05 11.76 16.72 22.91
Degree 14.24 21.98 30.03 39.32 44.58 3.10 8.98 12.07 15.79 21.05
Closeness 3.41 14.55 23.53 33.75 43.96 2.17 6.50 9.29 12.07 16.72
Betweenness 10.22 15.79 25.39 32.51 38.70 5.26 8.98 16.41 19.81 27.24

Table 13.19: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group betweenness centrality and a threshold score of 600.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 10.84 20.43 26.93 34.67 40.87 4.95 8.05 12.07 17.03 24.15
Star-CBB 9.60 20.12 27.55 35.29 41.18 4.95 8.36 13.00 18.58 25.08
Rep-CBB 10.53 20.12 27.55 33.13 41.80 4.95 8.05 12.07 17.03 23.53
Degree 14.24 23.53 30.03 37.46 46.44 4.02 9.29 12.07 18.27 22.60
Closeness 7.12 18.58 26.93 35.60 46.13 3.72 6.81 9.91 14.86 19.20
Betweenness 5.57 11.76 17.03 24.15 31.58 4.33 12.69 18.89 26.32 31.58

193

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.25: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 800. The group cen-
trality metric used is based on betweenness.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.26: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 800. The group
centrality metric used is based on between-
ness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.27: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 700. The group cen-
trality metric used is based on betweenness.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.28: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 700. The group
centrality metric used is based on between-
ness.

194

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.29: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 600. The group cen-
trality metric used is based on betweenness.

0 100 200 300 400 500
0

0.1

0.2

0.3

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.30: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 600. The group
centrality metric used is based on between-
ness.

13.1.5.3. Analysis of top ranked proteins per metric using membership measure

The results for threshold of 600 are shown in Figures 13.35 and 13.36. Degree achieves

the highest rate here (detecting 46.44% within the top 500 proteins), as opposed to 46.13% for

closeness, with our group extensions falling to third place and below with 37.77% for Clique-

CBB, 36.53% for Rep-CBB, 34.67% for Star-CBB. A similar performance, but with closeness

outperforming everyone else appears in the bottom k proteins, too.

Table 13.20: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group betweenness centrality and a threshold score of 800.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 8.98 16.10 24.77 31.89 38.70 2.79 7.43 17.03 21.67 27.55
Star-CBB 8.05 15.79 21.67 29.10 34.06 2.48 8.67 16.41 19.50 24.77
Rep-CBB 8.98 15.17 22.29 30.03 35.91 2.79 8.05 15.79 20.43 25.39
Degree 11.46 18.58 26.32 36.53 40.56 2.48 7.12 12.07 16.10 21.05
Closeness 3.41 6.50 14.86 24.77 33.75 5.26 10.22 14.24 19.50 24.15
Betweenness 8.98 15.48 22.29 29.72 35.60 3.10 7.74 13.00 18.27 25.39

195

Table 13.21: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group betweenness centrality and a threshold score of 700.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 8.36 17.96 27.55 36.53 44.27 3.41 10.53 16.10 23.84 27.86
Star-CBB 8.05 17.34 24.15 31.58 37.46 3.41 9.60 15.48 21.98 28.79
Rep-CBB 9.91 18.27 25.08 31.89 39.32 3.41 10.22 14.86 21.05 27.24
Degree 14.24 21.98 30.03 39.32 44.58 3.10 8.98 12.07 15.79 21.05
Closeness 3.41 14.55 23.53 33.75 43.96 2.17 6.50 9.29 12.07 16.72
Betweenness 10.22 15.79 25.39 32.51 38.70 5.26 8.98 16.41 19.81 27.24

Table 13.22: The ratio of essential proteins in top and bottom 100, 200, 300, 400, and 500 proteins
using group betweenness centrality and a threshold score of 600.

Approach
Top Bottom

100 200 300 400 500 100 200 300 400 500

Clique-CBB 9.29 16.41 23.53 30.65 37.77 5.26 11.76 18.89 25.08 30.96
Star-CBB 8.05 15.17 20.43 29.41 34.67 5.88 12.38 18.89 25.70 33.75
Rep-CBB 8.05 16.10 22.91 30.34 36.53 5.57 13.00 19.20 25.08 32.20
Degree 14.24 23.53 30.03 37.46 46.44 4.02 9.29 12.07 18.27 22.60
Closeness 7.12 18.58 26.93 35.60 46.13 3.72 6.81 9.91 14.86 19.20
Betweenness 5.57 11.76 17.03 24.15 31.58 4.33 12.69 18.89 26.32 31.58

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.31: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 800. The group cen-
trality metric used is based on betweenness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.32: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 800. The group
centrality metric used is based on between-
ness.

196

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.33: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 700. The group cen-
trality metric used is based on betweenness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.34: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 700. The group
centrality metric used is based on between-
ness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.35: The ratio of essential pro-
teins found in the top k ranked proteins with
a threshold score of 600. The group cen-
trality metric used is based on betweenness.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Ranked proteins

Ratio of essential proteins

Clique-CBB
Star-CBB
Rep-CBB
Degree
Closeness
Betweenness

Figure 13.36: The ratio of essential pro-
teins found in the bottom k ranked proteins
with a threshold score of 600. The group
centrality metric used is based on between-
ness.

13.2. Asymmetric probabilistic minimum-cost Hamiltonian cycle problem considering arc and

vertex failures

This section presents the computational results of the proposed algorithms and MIP for-

mulations. All computations are performed on a standard PC with a quad-core Intel i7 at 2.8 GHz

with 16 GB of RAM. The algorithms are coded in Python and compiled with Xcode 11.5. As a

197

benchmark, we also use Gurobi Optimizer 8.0 to solve the APMCHCP formulated via IP1 – IP4

proposed in Section 11.3. The time limit of computing each instance is 3600 seconds.

The algorithms and formulations are tested on two sets of TSP instances. For each dataset,

probability parameters pi, pi j and βi(∀i ∈ V,∀(i, j) ∈ A) are generated as follows. The pi and

pi j are generated randomly in intervals [0.9,1.0] and [0.1,1.0], respectively. In the same manner

with Arigliano et al., 2019, we generate the probability intervals as follows. First, based on a

randomly generated Hamiltonian cycle C = (v1,v2, . . . ,vn,v1), we compute Pi(∀i ∈ C \ {v1}) by

(11.1) and Pv1 by (11.2), where vertex v1 is the origin of C. Then, the probability interval for vertex

i(∀i ∈V \v1) is set to [(1−α)Pi,1], where the probability interval width (PIW) factor α ∈ [0,1] is

used to control the width of the probability intervals.

The first dataset consists of 135 symmetric Euclidean instances described in Dumas et al.

(1995), with number of vertices (or equivalently, instance size) between 20 and 200. We apply

the same grouping with Dumas et al. (1995). Instances are grouped into 30 classes, each with five

instances (class size=5). The instances in each class have equal number of vertices (n) and PIW

factor. The name of each class indicates the number of vertices and the PIW factor. For example,

Class n20α0 indicates each instance in this class has 20 vertices with α = 0. In this dataset, the

values of α ranges from 0.0 to 0.1 as showed in Table 13.23. The Dumas benchmark set is available

at http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm.

The second set is adapted from the real-world asymmetric traveling salesman (ATSP) in-

stances proposed in Ascheuer (1996), which are part of the TSPLIB (Reinelt, 1991) and is avail-

able at http://elib.zib.de/pub/mp-testdata/tsp/. These instances are coming from a joint

project with industry that aims to minimize the unloaded travel time of a stacker crane within an

automatic storage system (see Ascheuer (1996) for details). This set of test problems consists of

314 asymmetric TSP instances with up to 231 vertices, and the number of instances in classes are

different (see Table 13.24).

198

http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm
http://elib.zib.de/pub/mp-testdata/tsp/

Notations of Tables 13.23 and 13.24:
Class : Instance class
Size : Number of instances in the class
|A| : Number of arcs in the original input digraph
#PI : Number of probability interval adjustments
#PR : Number of precedence relationships among the vertices
|A|r : Number of eliminated arcs

13.2.1. Data preprocessing

Tables 13.23 and 13.24 show the impact of applying the three data preprocessing steps

(proposed in Section 12.1) on the first and the second data sets, respectively. In both tables, if the

size of a class is greater than one, then the values included in the columns are the average of that

class.

From columns #PI of Tables 13.23 and 13.24, one can see that 100% of the probability

intervals are tightened. In terms of the construction of precedence relationships, given an instance

with size n, the maximum possible number of precedence relationship (MPNPR) is n(n−1)
2 . The

average #PR/MPNPR for all instances of Datasets 1 and 2 are 4.2% and 4.13%, respectively.

Moreover, it can be observed that for different classes with the same instance size, #PR is nega-

tively correlated with the value of α . In other words, on average, the greater βi’s are, the more

such precedence relationship can be found. This is mainly because larger values of βi’s strengthen

the significance of chance constraints and hence impose more precedence relationships among

vertices.

Furthermore, from Table 13.23, after simple calculations, one can get that for instance

sizes n= 20,40,60,80,100,150, and 200, on average, 45.05%, 45.94%, 51.79%, 47.38%, 42.33%,

38.41%, and 32.30% of the original arcs are eliminated, respectively. In Table 13.24, the rates of

the eliminated arcs range from 21.52% (rbg172α0) to 66.67% (rbg19α0.075) of the original arcs.

The average rates of eliminated arcs for all instances in the first and second datasets are 42.37%

and 44.74%, respectively. In addition, for a fixed instance size, it can be seen that the number

of eliminated arcs increases as α decreases. This is due to the fact that larger βi’s impose more

199

Table 13.23: Preprocessing results for
Dataset 1.

Class Size |A| #PI #PR |A|r

n20α0 5 380 20 6 176

n20α0.025 5 380 20 13 187

n20α0.050 5 380 20 1 178

n20α0.075 5 380 20 2 168

n20α0.1 5 380 20 0 147

n40α0 5 1560 40 43 754

n40α0.025 5 1560 40 66 777

n40α0.050 5 1560 40 22 723

n40α0.075 5 1560 40 47 725

n40α0.1 5 1560 40 7 605

n60α0 5 3540 60 213 2205

n60α0.025 5 3540 60 148 2016

n60α0.050 5 3540 60 90 1698

n60α0.075 5 3540 60 141 1729

n60α0.1 5 3540 60 11 1519

n80α0 5 6320 80 202 2984

n80α0.025 5 6320 80 137 3260

n80α0.050 5 6320 80 163 2408

n80α0.075 5 6320 80 234 3389

n80α0.1 5 6320 80 6 2929

n100α0 5 9900 100 235 4370

n100α0.025 5 9900 100 279 4799

n100α0.050 5 9900 100 140 3879

n100α0.075 5 9900 100 149 4354

n100α0.1 5 9900 100 9 3551

n150α0 5 22350 150 501 9118

n150α0.025 5 22350 150 382 7722

n150α0.050 5 22350 150 602 8916

n200α0 5 39800 200 424 13149

n200α0.025 5 39800 200 298 12561

Table 13.24: Preprocessing results for
Dataset 2.
Class Size |A| #PI #PR |A|r
rbg10α0 1 90 10 4 48
rbg15α0 1 210 15 30 137
rbg15α0.025 1 210 15 17 94
rbg16α0 1 240 16 15 118
rbg16α0.025 1 240 16 12 104
rbg17α0 15 272 17 8 103
rbg17α0.025 17 272 17 9 111
rbg17α0.050 17 272 17 10 102
rbg17α0.075 17 272 17 12 103
rbg17α0.1 17 272 17 3 94
rbg17α0.125 17 272 17 2 86
rbg17α0.15 1 272 17 0 95
rbg19α0 3 342 19 15 185
rbg19α0.025 2 342 19 10 200
rbg19α0.050 2 342 19 30 181
rbg19α0.075 2 342 19 24 228
rbg19α0.1 1 342 19 0 135
rbg19α0.125 1 342 19 7 197
rbg19α0.15 1 342 19 9 162
rbg19α0.175 1 342 19 3 182
rbg20α0.125 1 380 20 0 184
rbg27α0 28 702 27 15 323
rbg27α0.025 27 702 27 11 293
rbg27α0.050 27 702 27 17 308
rbg27α0.075 27 702 27 14 291
rbg27α0.1 27 702 27 2 296
rbg27α0.125 27 702 27 2 275
rbg31α0 1 930 31 29 438
rbg33α0 1 1056 33 0 474
rbg34α0 1 1122 34 59 722
rbg35α0 1 1190 35 38 436
rbg35α0.025 1 1190 35 10 360
rbg38α0 1 1406 38 37 770
rbg40α0 1 1560 40 43 599
rbg41α0 1 1640 41 37 546
rbg42α0 1 1722 42 18 876
rbg48α0 1 2256 48 36 974
rbg49α0 1 2352 49 27 1032
rbg50α0 1 2450 50 24 1379
rbg50α0.025 1 2450 50 78 1210
rbg50α0.050 1 2450 50 0 1145
rbg55α0 1 2970 55 9 1217
rbg67α0 1 4422 67 75 1839
rbg86α0 1 7310 86 215 3085
rbg88α0 1 7656 88 220 2528
rbg92α0 1 8372 92 118 3370
rbg125α0 1 15500 125 200 5208
rbg130α0 1 16770 130 107 7957
rbg130α0.025 1 16770 130 81 4277
rbg150α0 1 22350 150 202 12750
rbg150α0.025 1 22350 150 247 6108
rbg150α0.05 1 22350 150 11 6190
rbg172α0 1 29412 172 383 6330
rbg191α0 1 36290 191 313 10265
rbg191α0.025 1 36290 191 269 11643
rbg201α0 1 40200 201 698 13776
rbg231α0 1 53130 231 766 14635
rbg231α0.025 1 53130 231 228 15243

200

precedence relationships among vertices and thus enhance the impact of the three arc-elimination

steps described in Section 12.1.3.

13.2.2. Comparison of the CBB algorithm and MIP formulations

Computational results of solving both datasets using MIP formulations and the proposed

CBB algorithm are summarized in Tables 13.25 and 13.26. For solving the upper bound, the

scaling parameter a defined in (12.18a) is set to be a := 1
10 max

(i, j)∈A
{ci j} .

Notations of Tables 13.25 and 13.26:
OPT : Number of instances for which the optimal solution is found within the time limit
CPU (s) : Mean time in seconds
FS (%) : Number of instances for which the optimal solution is not found but a feasible

solution is obtained within the time limit. Inside the parenthesis is the mean gap for
these instances in percent if the optimal solution is available.

IP1 : The first MIP formulation solved by Gurobi
IP2 : The second MIP formulation solved by Gurobi
IP3 : The third MIP formulation solved by Gurobi
IP4 : The forth MIP formulation solved by Gurobi
CBB : Combinatorial B&B algorithm
| : Indicating that the time limit is exceeded for all class instances
NA : Indicating that all instances in the class are failed to be solved by Gurobi due to

memory capacity limits

According to Table 13.25, for the first dataset, the CBB solves 143 (95.33%) instances

with up to 200 vertices, while IP1, IP2, IP3 and IP4 solve 0 (0.00%), 1 (0.67%), and 19 (12.67%)

instances with up to 20 vertices, respectively. Regarding the 19 instances for which both CBB

and IP4 find the optimal solutions, the mean computing time of CBB is significantly less than that

of IP4 (4.11 versus 1076.70 seconds). Also, regarding the 4 instances for which both CBB and

IP2 find the optimal solutions, the mean computing time of CBB and IP2 are 1.24 and 918.98

seconds. Finally, for the only instance for which both CBB and IP3 obtain the optimal solution,

the computing time of CBB and IP3 are 0.24 and 2145.9 seconds. In addition, as expected, the

CPU time increases with the increase of probability interval width and problem size. We remark

that although the CBB algorithm cannot solve 7 problems to optimality in the one-hour time limit,

it can find feasible solutions for 6 of them, as we can see from the FS(%) column of CBB in Table

13.25. The only problem that CBB can not provide a feasible solution is in the class n200α0.025.

201

Ta
bl

e
13

.2
5:

R
es

ul
ts

of
th

e
ex

pe
ri

m
en

ts
fo

rD
at

as
et

1.

C
la

ss
Si

ze
IP

1
IP

2
IP

3
IP

4
C

B
B

O
PT

C
PU

(s
)

FS
(%

)
O

PT
C

PU
(s

)
FS

(%
)

O
PT

C
PU

(s
)

FS
(%

)
O

PT
C

PU
(s

)
FS

(%
)

O
PT

C
PU

(s
)

FS
(%

)

n2
0α

0
5

0
|

0
1

16
99

.5
0

0
0

|
0

5
13

63
.4

2
0

5
1.

67
0

n2
0α

0.
02

5
5

0
|

0
2

69
2.

42
0

1
21

45
.9

2
0

4
87

9.
65

0
5

0.
51

0
n2

0α
0.

05
0

5
0

|
0

1
59

1.
57

0
0

|
0

4
72

9.
21

0
5

1.
53

0
n2

0α
0.

07
5

5
0

|
0

0
|

0
0

|
0

4
11

37
.6

7
0

5
1.

34
0

n2
0α

0.
1

5
0

|
0

0
|

0
0

|
0

2
13

27
.0

5
0

5
15

.4
8

0
n4

0α
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

14
.8

4
0

n4
0α

0.
02

5
5

0
|

0
0

|
0

0
|

0
0

|
0

5
21

.5
1

0
n4

0α
0.

05
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

13
.7

9
0

n4
0α

0.
07

5
5

0
|

0
0

|
0

0
|

0
0

|
0

5
15

.6
8

0
n4

0α
0.

1
5

0
|

0
0

|
0

0
|

0
0

|
0

5
33

6.
71

0
n6

0α
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

23
.6

2
0

n6
0α

0.
02

5
5

0
|

0
0

|
0

0
|

0
0

|
0

5
30

.3
2

0
n6

0α
0.

05
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

18
.2

4
0

n6
0α

0.
07

5
5

0
|

0
0

|
0

0
|

0
0

|
0

5
54

.9
4

0
n6

0α
0.

1
5

0
|

0
0

|
0

0
|

0
0

|
0

5
50

4.
86

0
n8

0α
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

31
.9

6
0

n8
0α

0.
02

5
5

0
|

0
0

|
0

0
|

0
0

|
0

5
16

2.
87

0
n8

0α
0.

05
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

52
.4

2
0

n8
0α

0.
07

5
5

0
|

0
0

|
0

0
|

0
0

|
0

5
62

.2
5

0
n8

0α
0.

1
5

0
|

0
0

|
0

0
|

0
0

|
0

5
12

88
.6

4
0

n1
00

α
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

11
8.

19
0

n1
00

α
0.

02
5

5
0

|
0

0
|

0
0

|
0

0
|

0
5

25
0.

06
0

n1
00

α
0.

05
0

5
0

|
0

0
|

0
0

|
0

0
|

0
5

49
9.

37
0

n1
00

α
0.

07
5

5
0

|
0

0
|

0
0

|
0

0
|

0
5

66
9.

81
0

n1
00

α
0.

1
5

0
|

0
0

|
0

0
|

0
0

|
0

3
63

8.
70

2
n1

50
α

0
5

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
5

69
7.

24
0

n1
50

α
0.

02
5

5
0

N
A

0
0

N
A

0
0

N
A

0
0

|
0

5
93

2.
41

0
n1

50
α

0.
05

0
5

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
3

57
9.

21
2

n2
00

α
0

5
0

N
A

0
0

N
A

0
0

N
A

0
0

|
0

4
57

3.
85

1
n2

00
α

0.
02

5
5

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
3

84
0.

28
1

202

20 40 60 80 100 150 200
0 %

20 %

40 %

60 %

80 %

100 %

0 0 0 0 0 0 0

16

0 0 0 0 0 0
4

0 0 0 0 0 0

76

0 0 0 0 0 0

100 100 100 100
92

86.67

70

n

O
PT

%
IP1
IP2
IP3
IP4
CBB

Figure 13.37: Rate of instances solved to optimality by number of customers for Dataset 1.

A graphical comparison among the five computational methods/formulations for Dataset 1

is given in Figure 13.37, where the vertical axis represents the percentage of instances for which

optimal solutions are found. Among the MIP formulations, IP4 outperforms others. This is prob-

ably because IP4 uses the recursive formulation to represent the arrival probability to all vertices.

Although IP3 uses the same idea to find the arrival probabilities, IP4 has much less variables and

constraints. However, the biggest problem size that can be solved by IP1 – IP4 is only 20, while

by CBB it is 200.

Analogous information is shown in Table 13.26 for each class of asymmetric instances

(i.e., Dataset 2). The CBB algorithm solves 311 (99.04%) instances whereas IP1, IP2, IP3, and

IP4 solve 13 (74.14%), 50 (15.92%), 49 (15.61%), and 115 (36.62%) instances, respectively. For

the 13 instances solved by both CBB and IP1, their mean CPU time are 0.83 and 1123.75 seconds.

The CPU time of CBB and IP2 for the 50 instances solved by both methods are 1371.77 and 1.11

seconds. For the 49 problems solved by both CBB and IP3, the mean CPU time are 1.19 and

1431.13 seconds. Finally, regarding the 115 instances solved by both CBB and IP4, their mean

CPU time are 3.21 and 907.93 seconds. All these comparisons indicate that the proposed CBB

203

Ta
bl

e
13

.2
6:

R
es

ul
ts

of
th

e
ex

pe
ri

m
en

ts
fo

rD
at

as
et

2.

C
la

ss
Si

ze
IP

1
IP

2
IP

3
IP

4
C

B
B

O
PT

C
PU

(s
)

FS
(%

)
O

PT
C

PU
(s

)
FS

(%
)

O
PT

C
PU

(s
)

FS
(%

)
O

PT
C

PU
(s

)
FS

(%
)

O
PT

C
PU

(s
)

FS
(%

)
rb

g1
0α

0
1

1
64

.1
5

0
1

7.
76

0
1

1.
81

0
1

0.
15

0
1

0.
28

0
rb

g1
5α

0
1

1
18

2.
76

0
1

18
.6

5
0

1
2.

61
0

1
0.

15
0

1
0.

43
0

rb
g1

5α
0.

02
5

1
1

16
01

.9
4

0
1

37
7.

51
0

1
99

.0
0

0
1

6.
02

0
1

0.
52

0
rb

g1
6α

0
1

1
22

38
.7

1
0

1
49

9.
43

0
1

15
4.

78
0

1
8.

64
0

1
0.

22
0

rb
g1

6α
0.

02
5

1
1

22
79

.7
9

0
1

33
63

.8
1

0
1

99
.2

6
0

1
23

.0
8

0
1

0.
24

0
rb

g1
7α

0
15

2
20

67
.5

2
0

6
20

18
.0

9
0

6
13

29
.8

1
3(

22
.3

8)
14

88
5.

79
0

15
1.

01
rb

g1
7α

0.
02

5
17

0
|

0
9

16
76

.4
6

0
8

14
96

.2
7

1(
76

.6
2)

16
64

2.
37

1(
0.

72
)

17
1.

79
0

rb
g1

7α
0.

05
0

17
0

|
0

8
13

62
.1

3
0

9
19

88
.8

2
2(

18
.4

2)
17

75
0.

48
0

17
1.

15
0

rb
g1

7α
0.

07
5

17
0

|
0

9
13

99
.8

8
0

8
18

33
.3

3
1(

21
.9

0)
17

11
83

.9
0

0
17

1.
33

0
rb

g1
7α

0.
1

17
0

|
0

4
14

96
.8

7
1(

6.
09

)
3

18
89

.7
1

2(
58

.4
8)

16
97

4.
88

1(
17

.2
1)

17
1.

81
0

rb
g1

7α
0.

12
5

17
0

|
0

2
29

52
.3

0
0

2
29

63
.7

7
3(

28
.7

9)
15

15
67

.4
3

2(
14

.7
8)

17
2.

33
0

rb
g1

7α
0.

15
1

0
|

0
0

|
0

0
|

0
0

|
1(

13
.5

1)
1

0.
91

0
rb

g1
9α

0
3

1
16

4.
78

0
2

41
5.

99
0

2
24

7.
14

0
3

44
4.

33
0

3
2.

54
0

rb
g1

9α
0.

02
5

2
1

31
6.

32
0

1
17

6.
10

0
1

15
8.

23
0

2
20

2.
90

0
2

1.
89

0
rb

g1
9α

0.
05

0
2

2
46

4.
55

0
2

50
.9

5
0

2
17

3.
43

0
2

12
.7

1
0

2
0.

43
0

rb
g1

9α
0.

07
5

2
2

13
48

.1
0

0
2

31
3.

36
0

2
14

40
.9

9
0

2
31

.0
7

0
2

0.
73

0
rb

g1
9α

0.
1

1
0

|
0

0
|

0
0

|
0

0
|

0
1

4.
58

0
rb

g1
9α

0.
12

5
1

0
|

0
0

|
0

1
17

74
.7

8
0

1
21

5.
88

0
1

2.
40

0
rb

g1
9α

0.
15

1
0

|
0

0
|

0
0

|
0

1
15

20
.1

7
0

1
1.

67
0

rb
g1

9α
0.

17
5

1
0

|
0

0
|

0
0

|
0

1
93

8.
88

0
1

3.
31

0
rb

g2
0α

0.
12

5
1

0
|

0
0

|
0

0
|

0
1

36
00

.1
1

0
1

13
.0

3
0

rb
g2

7α
0

28
0

|
0

0
|

0
0

|
0

2
79

9.
83

1(
11

.7
3)

28
27

.0
8

0
rb

g2
7α

0.
02

5
27

0
|

0
0

|
0

0
|

0
0

|
0

27
59

.8
6

0
rb

g2
7α

0.
05

0
27

0
|

0
0

|
0

0
|

0
0

|
0

27
97

.6
8

0
rb

g2
7α

0.
07

5
27

0
|

0
0

|
0

0
|

0
0

|
0

27
57

.4
1

0
rb

g2
7α

0.
1

27
0

|
0

0
|

0
0

|
0

0
|

0
27

14
1.

93
0

rb
g2

7α
0.

12
5

27
0

|
0

0
|

0
0

|
0

0
|

0
27

12
8.

82
0

rb
g3

1α
0

1
0

|
0

0
|

0
0

|
0

0
|

0
1

13
.1

8
0

rb
g3

3α
0

1
0

|
0

0
|

0
0

|
0

0
|

0
1

28
.5

3
0

rb
g3

4α
0

1
0

|
0

0
|

0
0

|
0

0
|

0
1

1.
70

0
rb

g3
5α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
6.

33
0

rb
g3

5α
0.

02
5

1
0

|
0

0
|

0
0

|
0

0
|

0
1

24
.7

2
0

rb
g3

8α
0

1
0

|
0

0
|

0
0

|
0

0
|

0
1

19
.5

0
0

rb
g4

0α
0

1
0

|
0

0
|

0
0

|
0

0
|

0
1

7.
39

0
rb

g4
1α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
13

.5
3

0
rb

g4
2α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
14

.2
2

0
rb

g4
8α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
15

.0
3

0
rb

g4
9α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
13

9.
14

0
rb

g5
0α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
38

.9
6

0
rb

g5
0α

0.
02

5
1

0
|

0
0

|
0

0
|

0
0

|
0

1
12

.6
0

0
rb

g5
0α

0.
05

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
98

.0
0

0
rb

g5
5α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
48

.8
9

0
rb

g6
7α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
66

.3
7

0
rb

g8
6α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
71

.5
0

0
rb

g8
8α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
30

.2
6

0
rb

g9
2α

0
1

0
|

0
0

|
0

0
|

0
0

|
0

1
69

.7
7

0
rb

g1
25

α
0

1
0

N
A

0
0

N
A

0
0

N
A

0
0

|
0

1
51

4.
21

0
rb

g1
30

α
0

1
0

N
A

0
0

N
A

0
0

N
A

0
0

|
0

1
76

4.
58

0
rb

g1
30

α
0.

02
5

1
0

N
A

0
0

N
A

0
0

N
A

0
0

|
0

1
12

24
.9

8
0

rb
g1

50
α

0
1

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
1

79
8.

58
0

rb
g1

50
α

0.
02

5
1

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
1

29
75

.2
8

0
rb

g1
50

α
0.

05
1

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
0

|
1

rb
g1

72
α

0
1

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
1

28
12

.9
2

0
rb

g1
91

α
0

1
0

N
A

0
0

N
A

0
0

N
A

0
0

|
0

1
17

26
.6

0
0

rb
g1

91
α

0.
02

5
1

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
0

|
1

rb
g2

01
α

0
1

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
1

34
78

.1
0

0
rb

g2
31

α
0

1
0

N
A

0
0

N
A

0
0

N
A

0
0

|
0

1
25

51
.1

4
0

rb
g2

31
α

0.
02

5
1

0
N

A
0

0
N

A
0

0
N

A
0

0
|

0
0

|
0

204

1≤
n≤

30

31
≤

n≤
60

61
≤

n≤
90

91
≤

n≤
12

0

12
1≤

n≤
15

0

15
1≤

n≤
18

0

18
1≤

n0 %

20 %

40 %

60 %

80 %

100 %

4.
59

0 0 0 0 0 0

17
.6

7

0 0 0 0 0 0

17
.3

1

0 0 0 0 0 0

40
.6

4

0 0 0 0 0 0

10
0

10
0

10
0

10
0

83
.3

3

10
0

60

n

O
PT

%
IP1
IP2
IP3
IP4
CBB

Figure 13.38: Rate of instances solved to optimality by number of customers for Dataset 2.

outperforms the Gurobi solver (for solving IP1 – IP4) not only in terms of the number of problems

solved to optimality, but also it is considerably faster than all of them. Analogous to Dataset 1, the

CPU time increases with the increase of probability interval width and problem size. According to

FS(%) column, among the 3 problems that CBB algorithm cannot solve to optimality, it can find

feasible solutions for 2 of them in the one-hour time limit, and the only instance without feasible

solution is in the class rbg231α0.025.

Figure 13.38 shows the rate of instances solved to optimality by all the methods with respect

to the seven problem sizes. The CBB algorithm outperforms IP1 – IP4 in all the problem sizes.

As we expect, IP4 and IP1 have the best and the worst performances among the formulations by

solving 40.64% and 4.59% of the instances of the first group, respectively. IP2 and IP3 have similar

performances by solving 17.67% and 17.31% of the instances, respectively. The CBB algorithm

is the only method being able to solve instances with more than 30 vertices. The largest instance

solved by the CBB algorithm includes 231 vertices.

205

Notations of Tables 13.27 and 13.28:
UB : Number of instances of which an upper bound is found
Gap(%) : Mean gap for instances with upper bound, gap for an instance in

percent is calculated by z∗ub−z∗

z∗ .100%
B&B nodes : Number of generated nodes in the CBB tree
Bound Fathoms(%) : The percentages of the B&B tree nodes that are fathomed by the

bounding conditions
Feasibility Fathoms(%) : The percentages of the B&B tree nodes that are fathomed by the

feasibility conditions

Table 13.27: More information about running the CBB algorithm for Dataset 1.

Class Size
CBB
UB Gap(%) B&B nodes Feasibility Fathoms(%) Bound Fathoms(%)

n20α0 5 0 4061 98.77 1.23
n20α0.025 5 0 530 99.50 0.50
n20α0.050 5 1 0 2778 98.40 1.60
n20α0.075 5 0 2168 98.28 1.72
n20α0.1 5 4 7.40 53077 97.82 2.18
n40α0 5 0 23266 99.71 0.29
n40α0.025 5 0 33905 99.98 0.02
n40α0.050 5 0 13951 99.93 0.07
n40α0.075 5 0 18549 99.93 0.07
n40α0.1 5 0 693564 99.44 0.56
n60α0 5 0 13409 99.97 0.03
n60α0.025 5 2 0.00 8688 99.85 0.15
n60α0.050 5 1 0.00 1555 99.03 0.97
n60α0.075 5 0 34044 99.96 0.04
n60α0.1 5 0 382123 99.99 0.01
n80α0 5 0 2187 99.47 0.53
n80α0.025 5 0 66087 99.97 0.03
n80α0.050 5 1 0.00 5619 99.92 0.08
n80α0.075 5 3 0.00 11078 99.82 0.18
n80α0.1 5 1 2.34 507165 99.97 0.03
n100α0 5 0 16151 99.71 0.29
n100α0.025 5 3 0.00 30300 99.88 0.12
n100α0.050 5 1 0.00 136157 99.98 0.02
n100α0.075 5 2 0.00 134105 99.99 0.01
n100α0.1 5 1 2.07 463902 100.00 0.00
n150α0 5 0 17890 99.97 0.03
n150α0.025 5 1 0.00 83953 99.99 0.01
n150α0.050 5 2 0.00 179967 99.98 0.02
n200α0 5 0 70372 99.98 0.02
n200α0.025 5 1 0.00 115741 99.99 0.01

206

Table 13.28: More information about running the CBB algorithm for Dataset 2.

Class Size
CBB
UB Gap(%) B&B nodes Feasibility Fathoms(%) Bound Fathoms(%)

rbg10α0 1 0 31 100.00 0.00
rbg15α0 1 0 23 100.00 0.00
rbg15α0.025 1 0 44 93.33 6.67
rbg16α0 1 0 109 97.83 2.17
rbg16α0.025 1 0 246 97.01 2.99
rbg17α0 15 3 23.07 852 71.58 28.42
rbg17α0.025 17 1 88.31 2710 77.14 22.86
rbg17α0.050 17 1 90.54 1396 78.48 21.52
rbg17α0.075 17 3 63.71 1236 70.00 30.00
rbg17α0.1 17 3 126.97 3067 84.36 15.64
rbg17α0.125 17 0 3440 66.73 33.27
rbg17α0.15 1 0 1438 98.73 1.27
rbg19α0 3 2 0.00 747 90.92 9.08
rbg19α0.025 2 1 0.00 1252 99.38 0.62
rbg19α0.050 2 0 112 98.20 1.80
rbg19α0.075 2 1 0.00 121 95.83 4.17
rbg19α0.1 1 0 3576 99.60 0.40
rbg19α0.125 1 1 1.25 808 95.96 4.04
rbg19α0.15 1 0 890 95.24 4.76
rbg19α0.175 1 1 0.00 1599 96.52 3.48
rbg20α0.125 1 1 7.65 19730 98.63 1.37
rbg27α0 28 0 85463 96.63 3.37
rbg27α0.025 27 0 181063 89.41 10.59
rbg27α0.050 27 2 25.75 310543 80.69 19.31
rbg27α0.075 27 3 20.39 177167 95.72 4.28
rbg27α0.1 27 5 15.72 436447 93.03 6.97
rbg27α0.125 27 5 10.22 392026 96.68 3.32
rbg31α0 1 0 22906 99.86 0.14
rbg33α0 1 0 38858 99.99 0.01
rbg34α0 1 0 1030 99.61 0.39
rbg35α0 1 0 1671 99.56 0.44
rbg35α0.025 1 0 19507 100.00 0.00
rbg38α0 1 0 12596 99.90 0.10
rbg40α0 1 0 3749 99.91 0.09
rbg41α0 1 0 11117 99.90 0.10
rbg42α0 1 0 2457 99.84 0.16
rbg48α0 1 0 2088 99.23 0.77
rbg49α0 1 0 139061 100.00 0.00
rbg50α0 1 0 26597 99.95 0.05
rbg50α0.025 1 0 2182 98.89 1.11
rbg50α0.050 1 0 56691 99.97 0.03
rbg55α0 1 0 30833 99.99 0.01
rbg67α0 1 0 35400 99.96 0.04
rbg86α0 1 0 8017 99.73 0.27
rbg88α0 1 0 384 100.00 0.00
rbg92α0 1 0 7828 99.64 0.36
rbg125α0 1 0 47540 99.89 0.11
rbg130α0 1 0 79993 99.98 0.02
rbg130α0.025 1 0 138526 99.98 0.02
rbg150α0 1 0 45192 99.91 0.09
rbg150α0.025 1 0 342170 100.00 0.00
rbg150α0.05 1 0 291646 100.00 0.00
rbg172α0 1 0 130772 99.98 0.02
rbg191α0 1 0 18163 99.60 0.40
rbg191α0.025 1 0 246753 99.97 0.03
rbg201α0 1 0 182085 99.98 0.02
rbg231α0 1 0 10873 99.63 0.37
rbg231α0.025 1 0 189595 100.00 0.00

207

13.2.3. Further Information on the CBB algorithm

To further check the efficiency of the proposed CBB algorithm, Tables 13.27 and 13.28

provide more detailed information such as upper bound, upper bound gap, number of generated

nodes in the search tree, number of nodes fathomed by bounding, and number of nodes fathomed

by feasibility. Table 13.27 demonstrates that 97.82% – 100% of the fathomed nodes in Dataset

1 are fathomed via the feasibility conditions, whereas 0% to 2.18% are fathomed by bounding.

For Dataset 2, Table 13.28 shows that 66.73% – 100% of the fathomed nodes are fathomed via

the feasibility conditions, while 0% – 33.27% are fathomed by bounding. Overall, the results in

Tables 13.27 and 13.28 suggest that the proposed feasibility scheme effectively reduces the size of

the search tree.

Tables 13.27 and 13.28 also provide some information about the upper bound which are

reported in columns UB and Gap(%). From Table 13.27, the upper bounds of 24 (16.00%) in-

stances from the first dataset can be found by Algorithm 7. Column Gap(%) depicts the quality of

the upper bound (by calculating its gap from the corresponding optimal solution, if available) and

average the gaps in each class. Among the 24 instances with upper bounds, 18 of them have zero

gap, and the average gap of the other 6 instances is 7.15%. According to Table 13.28, we have

upper bounds for 33 (10.51%) instances in the asymmetric dataset (i.e., Dataset 2). Six of them

have zero gap and the average gap of the remaining instances is 39.68%.

It should be mentioned that one of the main advantages of the proposed CBB algorithm is

its low memory requirement, as it only stores one active tree node each time during its execution.

This enables the CBB algorithm to avoid memory crash issues which Gurobi encounters. The low

memory requirement, however, comes at the cost of not being able to report an optimality gap in

the CBB algorithm, as we do not store (and calculate) the lower bound for all active tree nodes.

208

13.2.4. Impact analysis of the feasibility rules

In this section, we seek to analyze which of the following six configurations has the worst

performance

• CBB: CBB is executed with all rules.

• CBB-R1: CBB is executed without feasibility check (Rule 1).

• CBB-R2: CBB is executed without precedence relationship check (Rule 2).

• CBB-R3: CBB is executed without extension check (Rule 3).

• CBB-R4: CBB is executed without PHC check (Rule 4).

• CBB-R5: CBB is executed without returning-to-the-origin check (Rule 5).

The results of Dataset 1 is reported in Table 13.29 and Figures 13.39 and 13.40. From

Figure 13.39, one can see that eliminating each of Rule 3 and Rule 5 reduces the number of

optimally solved instances, when instance size n is greater than or equal to 100. However, when n

is less than or equal to 80, all configurations have the same number of optimally solved instances.

This is because the CPU time of the CBB algorithm for n ≤ 80 is much less than the one-hour

time limit, and hence all the configurations can find the optimal solution by spending extra time

(see Figure 13.40 for more details). Considering all the 150 instances in this dataset, CBB, CBB-

R1, CBB-R2, and CBB-R4 solve 143 (95.33%) instances, whereas CBB-R3 and CBB-R5 solve

137(91.33%) and 140 (93.33%) instances, respectively. Moreover, as one can see in Figure 13.40,

the CPU time increases if any of the feasibility rules are eliminated. On average, eliminating Rules

1, 4, 2, 5, and 3 increases the CPU time by 10.69 (4.07%), 13.94 (5.31%), 130.45 (49.65%), 597.47

(227.40%), and 745.93 (283.91%) seconds, respectively. Based on both the number of optimally

solved instances and the CPU time, one can conclude that CBB-R3 has the worst performance for

Dataset 1.

Analogous information for Dataset 2 is provided in Table 13.30 and Figures 13.41 and

13.42. Table 13.30 indicates the number of instances in each class to which optimal solutions are

found. Their corresponding average CPU time are also included. Figure 13.41 and 13.42 give

209

Ta
bl

e
13

.2
9:

Pe
rf

or
m

an
ce

of
di

ff
er

en
tm

et
ho

d
co

nfi
gu

ra
tio

ns
fo

rD
at

as
et

1.

C
la

ss
Si

ze
C

B
B

C
B

B
-R

1
C

B
B

-R
2

C
B

B
-R

3
C

B
B

-R
4

C
B

B
-R

5
O

PT
C

PU
(s

)
O

PT
C

PU
(s

)
O

PT
C

PU
(s

)
O

PT
C

PU
(s

)
O

PT
C

PU
(s

)
O

PT
C

PU
(s

)
n2

0α
0

5
5

1.
67

5
1.

61
5

2.
13

5
5.

21
5

1.
19

5
3.

28
n2

0α
0.

02
5

5
5

0.
51

5
0.

52
5

0.
89

5
1.

05
5

0.
27

5
0.

69
n2

0α
0.

05
0

5
5

1.
53

5
1.

47
5

1.
59

5
4.

28
5

0.
98

5
2.

95
n2

0α
0.

07
5

5
5

1.
34

5
1.

55
5

1.
60

5
3.

55
5

0.
72

5
2.

23
n2

0α
0.

1
5

5
15

.4
8

5
14

.5
4

5
19

.0
1

5
92

.9
8

5
16

.1
1

5
12

5.
53

n4
0α

0
5

5
14

.8
4

5
15

.7
6

5
20

.2
3

5
14

8.
26

5
11

.9
5

5
53

.8
6

n4
0α

0.
02

5
5

5
21

.5
1

5
22

.1
9

5
36

.5
5

5
25

2.
84

5
28

.7
0

5
70

.5
2

n4
0α

0.
05

0
5

5
13

.7
9

5
14

.4
1

5
28

.0
9

5
13

7.
57

5
14

.6
3

5
51

.7
8

n4
0α

0.
07

5
5

5
15

.6
8

5
17

.3
2

5
37

.7
7

5
22

9.
87

5
20

.8
8

5
55

.9
4

n4
0α

0.
1

5
5

33
6.

71
5

34
3.

71
5

62
1.

02
5

14
45

.4
9

5
55

0.
75

5
10

71
.2

4
n6

0α
0

5
5

23
.6

2
5

24
.7

2
5

41
.9

0
5

16
2.

87
5

16
.9

6
5

66
.8

0
n6

0α
0.

02
5

5
5

30
.3

2
5

36
.7

4
5

71
.9

9
5

24
5.

98
5

27
.7

7
5

11
64

.9
2

n6
0α

0.
05

0
5

5
18

.2
4

5
19

.4
3

5
58

.0
5

5
59

.7
1

5
6.

83
5

37
.5

5
n6

0α
0.

07
5

5
5

54
.9

4
5

55
.4

1
5

12
2.

02
5

69
6.

74
5

66
.2

6
5

40
6.

87
n6

0α
0.

1
5

5
50

4.
86

5
50

0.
13

5
90

4.
22

5
27

48
.8

6
5

77
6.

20
5

18
76

.9
1

n8
0α

0
5

5
31

.9
6

5
29

.8
4

5
10

1.
86

5
18

9.
97

5
14

.6
4

5
15

7.
40

n8
0α

0.
02

5
5

5
16

2.
88

5
16

3.
59

5
33

2.
47

5
16

79
.2

1
5

20
5.

89
5

10
81

.1
0

n8
0α

0.
05

0
5

5
52

.4
2

5
55

.4
0

5
11

4.
76

5
48

8.
98

5
37

.6
7

5
25

0.
69

n8
0α

0.
07

5
5

5
62

.2
5

5
64

.1
9

5
18

0.
84

5
58

8.
64

5
52

.3
0

5
28

6.
87

n8
0α

0.
1

5
5

12
88

.6
4

5
12

06
.9

3
5

15
91

.2
8

5
36

00
.9

0
5

15
17

.3
1

5
36

25
.5

3
n1

00
α

0
5

5
11

8.
19

5
13

7.
84

5
32

2.
12

5
11

37
.0

9
5

10
5.

93
5

26
9.

91
n1

00
α

0.
02

5
5

5
25

0.
06

5
31

3.
25

5
40

7.
25

5
19

35
.1

3
5

22
2.

73
5

14
02

.8
3

n1
00

α
0.

05
0

5
5

49
9.

37
5

56
2.

54
5

72
5.

42
5

91
5.

70
5

59
2.

60
5

92
7.

39
n1

00
α

0.
07

5
5

5
66

9.
82

5
63

8.
04

5
83

4.
89

5
15

98
.1

2
5

65
3.

98
4

10
69

.9
3

n1
00

α
0.

1
5

3
63

8.
70

3
64

2.
40

3
61

1.
87

2
19

49
.4

2
3

46
9.

28
3

25
03

.5
0

n1
50

α
0

5
5

69
7.

24
5

79
9.

42
5

12
29

.7
7

4
27

59
.9

0
5

46
2.

08
4

16
45

.6
6

n1
50

α
0.

02
5

5
5

93
2.

41
5

96
8.

20
5

13
08

.0
2

4
21

64
.1

5
5

82
2.

04
5

21
97

.3
3

n1
50

α
0.

05
0

5
3

57
9.

21
3

60
3.

91
3

86
6.

41
3

27
82

.4
4

3
33

9.
36

3
14

89
.1

8
n2

00
α

0
5

4
57

3.
85

4
65

6.
95

4
87

2.
30

3
36

00
.0

3
4

83
9.

55
4

36
07

.0
9

n2
00

α
0.

02
5

5
3

84
0.

28
3

89
6.

36
3

90
7.

91
1

36
00

.0
1

3
88

1.
41

2
36

05
.1

4

210

20 40 60 80 100 150 200
0 %

20 %

40 %

60 %

80 %

100 %
10

0

10
0

10
0

10
0

92

86
.6

7

70

10
0

10
0

10
0

10
0

92

86
.6

7

70

10
0

10
0

10
0

10
0

92

86
.6

7

70

10
0

10
0

10
0

10
0

88

73
.3

3

40

10
0

10
0

10
0

10
0

92

86
.6

7

70

10
0

10
0

10
0

10
0

88

80

60

n

O
PT

%
CBB
CBB-R1
CBB-R2
CBB-R3
CBB-R4
CBB-R5

Figure 13.39: Rate of instances solved to optimality by different method configurations for Dataset
1.

20 40 60 80 100 150 200
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4.
11 80
.5

12
6.

4 31
9.

63

41
7.

53

76
0.

45

68
8.

04

3.
94 82
.6

8

12
7.

28 30
3.

99

44
2.

85

81
9.

22

75
9.

56

5.
04 14

8.
73

23
9.

64 46
4.

24

57
7.

56

1,
17

6.
01

88
7.

56

21
.4

2

44
2.

81

78
2.

83

1,
30

9.
54

1,
44

6.
78

2,
54

9.
41

3,
60

0.
02

3.
85 12

5.
38

17
8.

8 36
5.

56

40
3.

65 57
2.

21

85
7.

49

26
.9

4 26
0.

67

71
0.

61

1,
08

0.
32

1,
12

6.
86

1,
83

6.
41

3,
60

6.
44

n

C
PU

(s
)

CBB
CBB-R1
CBB-R2
CBB-R3
CBB-R4
CBB-R5

Figure 13.40: CPU time (in seconds) under different method configurations for Dataset 1.

211

graphical summary of the data included in Table 13.30. According to Figure 13.41, eliminating

each of Rule 3 and Rule 5 reduces the number of optimally solved instances, when the instance

size is greater than or equal to 150. The CPU time for different method configurations is presented

in Figure 13.42, which shows CBB-R3 has the worst computation time and CBB and CBB-R4

have the best. Considering all the 314 instances in Dataset 2, CBB, CBB-R1, CBB-R2, and CBB-

R4 solve 311 (99.04%) instances, whereas CBB-R5 and CBB-R3 solve 310 (98.73%) and 308

(98.09%) instances, respectively. In terms of the CPU time, on average, eliminating Rules 4, 1,

2, 5, and 3 increases the CPU time by 23.01 (22.62%), 34.52 (33.94%), 46.11 (45.33%), 164.83

(162.03%), and 223.90 (220.10%) seconds, respectively. Based on both the number of optimally

solved instances and the CPU time, again, we can see that CBB-R3 has the worst performance.

1≤
n≤

30

31
≤

n≤
60

61
≤

n≤
90

91
≤

n≤
12

0

12
11
≤

n≤
15

0

15
1≤

n≤
18

0

18
11
≤

n0 %

20 %

40 %

60 %

80 %

100 %

10
0

10
0

10
0

10
0

83
.3

3

10
0

60

10
0

10
0

10
0

10
0

83
.3

3

10
0

60

10
0

10
0

10
0

10
0

83
.3

3

10
0

60

10
0

10
0

10
0

10
0

66
.6

7

0

40

10
0

10
0

10
0

10
0

83
.3

3

10
0

60

10
0

10
0

10
0

10
0

83
.3

3

10
0

40

n

O
PT

%

CBB
CBB-R1
CBB-R2
CBB-R3
CBB-R4
CBB-R5

Figure 13.41: Rate of instances solved to optimality by different method configurations for Dataset
2.

212

Table 13.30: Performance of different method configurations for Dataset 2.

Class Size
CBB CBB-R1 CBB-R2 CBB-R3 CBB-R4 CBB-R5
OPT CPU(s) OPT CPU(s) OPT CPU(s) OPT CPU(s) OPT CPU(s) OPT CPU(s)

rbg10α0 1 1 0.28 1 0.10 1 0.08 1 0.09 1 0.04 1 0.09
rbg15α0 1 1 0.43 1 0.13 1 0.32 1 0.15 1 0.11 1 0.13
rbg15α0.025 1 1 0.52 1 0.17 1 0.31 1 0.20 1 0.11 1 0.18
rbg16α0 1 1 0.22 1 0.19 1 0.38 1 0.25 1 0.13 1 0.19
rbg16α0.025 1 1 0.24 1 0.19 1 0.47 1 0.32 1 0.13 1 0.23
rbg17α0 15 15 1.01 15 0.76 15 0.90 15 1.30 15 0.49 15 1.04
rbg17α0.025 17 17 1.79 17 1.14 17 1.36 17 2.55 17 0.93 17 2.51
rbg17α0.050 17 17 1.15 17 0.76 17 1.06 17 1.52 17 0.58 17 1.54
rbg17α0.075 17 17 1.33 17 1.03 17 1.17 17 1.57 17 0.68 17 1.67
rbg17α0.1 17 17 1.81 17 1.43 17 1.57 17 3.17 17 1.09 17 3.31
rbg17α0.125 17 17 2.33 17 1.41 17 1.69 17 3.47 17 1.16 17 4.04
rbg17α0.15 1 1 0.91 1 0.92 1 1.02 1 2.42 1 0.42 1 3.57
rbg19α0 3 3 2.54 3 0.99 3 1.45 3 1.60 3 0.96 3 1.44
rbg19α0.025 2 2 1.89 2 0.86 2 0.99 2 1.66 2 0.42 2 2.19
rbg19α0.050 2 2 0.43 2 0.19 2 0.66 2 0.22 2 0.18 2 0.25
rbg19α0.075 2 2 0.73 2 0.36 2 0.63 2 0.38 2 0.23 2 0.42
rbg19α0.1 1 1 4.58 1 1.96 1 2.09 1 4.87 1 1.53 1 6.30
rbg19α0.125 1 1 2.40 1 0.98 1 1.13 1 1.70 1 0.66 1 1.21
rbg19α0.15 1 1 1.67 1 0.70 1 1.07 1 1.56 1 0.47 1 1.19
rbg19α0.175 1 1 3.31 1 1.31 1 1.58 1 2.40 1 1.04 1 2.62
rbg20α0.125 1 1 13.03 1 5.57 1 6.90 1 20.65 1 6.02 1 26.82
rbg27α0 28 28 27.08 28 36.82 28 50.63 28 259.09 28 47.34 28 238.79
rbg27α0.025 27 27 59.86 27 132.43 27 133.49 27 253.27 27 116.75 27 275.47
rbg27α0.050 27 27 97.68 27 100.46 27 119.57 27 429.14 27 103.15 27 267.81
rbg27α0.075 27 27 57.41 27 58.22 27 61.06 27 412.70 27 58.02 27 222.73
rbg27α0.1 27 27 141.93 27 139.52 27 149.28 27 540.19 27 141.14 27 399.71
rbg27α0.125 27 27 128.82 27 124.30 27 133.73 27 560.81 27 284.55 27 406.64
rbg31α0 1 1 13.18 1 7.72 1 11.24 1 33.96 1 7.31 1 13.14
rbg33α0 1 1 28.53 1 23.09 1 25.01 1 183.95 1 20.64 1 59.84
rbg34α0 1 1 1.70 1 1.33 1 4.93 1 3.95 1 1.16 1 2.18
rbg35α0 1 1 6.33 1 4.98 1 7.35 1 10.84 1 1.80 1 8.59
rbg35α0.025 1 1 24.72 1 13.79 1 14.37 1 105.35 1 10.50 1 19.83
rbg38α0 1 1 19.50 1 11.92 1 13.92 1 67.32 1 7.91 1 17.04
rbg40α0 1 1 7.39 1 4.84 1 11.29 1 32.36 1 3.75 1 6.73
rbg41α0 1 1 13.53 1 12.51 1 16.25 1 88.11 1 8.42 1 15.05
rbg42α0 1 1 14.22 1 7.36 1 12.30 1 20.61 1 2.42 1 9.13
rbg48α0 1 1 15.03 1 10.75 1 17.85 1 29.09 1 3.42 1 16.61
rbg49α0 1 1 139.14 1 148.88 1 175.04 1 2772.53 1 178.09 1 466.93
rbg50α0 1 1 38.96 1 37.88 1 40.59 1 246.30 1 25.85 1 90.57
rbg50α0.025 1 1 12.60 1 13.66 1 24.03 1 43.14 1 4.41 1 25.12
rbg50α0.050 1 1 98.00 1 94.26 1 128.93 1 1879.18 1 99.07 1 2279.20
rbg55α0 1 1 48.89 1 76.84 1 90.97 1 1002.19 1 59.69 1 570.33
rbg67α0 1 1 66.37 1 101.91 1 163.53 1 2368.70 1 110.03 1 343.66
rbg86α0 1 1 71.50 1 98.23 1 209.88 1 1485.60 1 68.95 1 275.42
rbg88α0 1 1 30.26 1 42.96 1 154.59 1 99.73 1 24.16 1 95.33
rbg92α0 1 1 69.77 1 90.01 1 161.34 1 1399.91 1 50.57 1 351.89
rbg125α0 1 1 514.21 1 1145.78 1 1567.30 1 3600.02 1 799.70 1 3290.72
rbg130α0 1 1 764.58 1 1874.45 1 2216.02 1 3600.03 1 1331.39 1 3605.80
rbg130α0.025 1 1 1224.98 1 2463.29 1 2841.38 1 3600.04 1 1726.91 1 3618.57
rbg150α0 1 1 798.58 1 1935.46 1 2283.08 1 3600.00 1 1210.75 1 3602.34
rbg150α0.025 1 1 2975.28 1 3600.83 1 3600.80 0 | 1 3600.67 1 3609.78
rbg150α0.05 1 0 | 0 | 0 | 0 | 0 | 0 |
rbg172α0 1 1 2812.92 1 3600.64 1 3600.55 0 | 1 3600.52 1 3604.13
rbg191α0 1 1 1726.60 1 3601.79 1 3618.50 1 3600.00 1 1065.08 0 |
rbg191α0.025 1 0 | 0 | 0 | 0 | 0 | 0 |
rbg201α0 1 1 3478.10 1 3600.45 1 3600.47 0 | 1 3600.42 1 3601.40
rbg231α0 1 1 2551.14 1 3606.53 1 3673.32 1 3600.01 1 750.71 1 3603.39
rbg231α0.025 1 0 | 0 | 0 | 0 | 0 | 0 |

213

1≤
n≤

30

31
≤

n≤
60

61
≤

n≤
90

91
≤

n≤
12

0

12
11
≤

n≤
15

0

15
1≤

n≤
18

0

18
11
≤

n0

500

1,000

1,500

2,000

2,500

3,000

3,500

49
.7

2

32
.1

1

56
.0

4

69
.7

7

1,
25

5.
53

2,
81

2.
92

2,
58

5.
28

57
.0

4

31
.3

2

81
.0

4

90
.0

1

2,
20

3.
96

3,
60

0.
64

3,
60

2.
92

62
.5

2

39
.6 17

6

16
1.

34

2,
50

1.
72

3,
60

0.
55

23
6.

12 43
4.

59

1,
31

8.
01

1,
39

9.
91

3,
60

0.
02

3,
60

0.
01

72
.1

6

28
.9

6

67
.7

1

50
.5

7

1,
73

3.
88

3,
60

0.
52

1,
80

5.
4

17
4.

67

24
0.

02

23
8.

13

35
1.

89

3,
54

5.
44

3,
60

4.
13

3,
60

2.
4

n

C
PU

(s
)

CBB
CBB-R1
CBB-R2
CBB-R3
CBB-R4
CBB-R5

Figure 13.42: CPU time (in seconds) under different method configurations for Dataset 2.

214

CHAPTER 14. CONCLUSION

14.1. Novel group centrality metrics for studying essentiality in protein-protein interaction net-

works

In this work, we investigated nine problems based on combining three popular nodal cen-

trality metrics (degree, betweenness, closeness) with three structural requirements (inducing a

clique, a star, or having a common node adjacent to every other node in the set). We derived the

computational complexity for these problems, and showed that they are indeed NP-hard; we also

provided integer programming formulations for solving them exactly. Seeing as our motivation

comes from solving problems that arise within protein-protein interaction networks, which tend to

be large-scale, we also devised a combinatorial branch-and-bound method that takes advantage of

certain interesting properties to speed up the solution process.

The results of our computational experiments can be seen from two different perspectives:

(i) comparing solution methods in terms of execution time and solution quality, and (ii) comparing

different methods in identifying essential proteins. In the group degree centrality category, con-

sidering their solution quality, IP1 and IP2 have a similar performance. From the computational

runtime point of view, IP2 and the CBB algorithm perform better. In the group closeness central-

ity category, the CBB algorithm is 3 times faster on average across all three structures, compared

to the integer programming formulation. An even better story is presented in group betweenness

centrality experiments, where the integer programming formulation fails to provide a solution, but

CBB does.

In terms of identifying essential proteins, the integer programming formulations and the

CBB perform equally well in group degree, closeness, and betweenness. Specifically, in group

degree, the clique structure performs better; in closeness, all nodal metrics are worse in predicting

essentiality than their group counterparts. In group betweenness, an interesting observation is that

the performance of group metrics worsens with a decrease in the threshold values used. This

observation might be due to the fact that by decreasing the threshold, the network becomes denser

and the number of branches in each node of the search tree grows drastically, which in turn affects

215

the quality of the solution in the given time limit. Hence, we obtain a result that shows clique

betweenness toe be the best method when the threshold is as high as 800, with simple degree

becoming better at a threshold of 600. Overall, considering all three group centrality measures we

can say the clique degree centrality (which detects about 50% of the essential proteins in the 500

top ranked proteins) is best at identifying essential proteins.

According to Rasti et al., 2019, one of the discrepancies for PPIN databases is due to high

noise rates present in the outputs of the high-throughput techniques used to obtain the interactions.

This issue could be addressed by assigning probabilities to the edges which correspond to the

probability that these interactions may or may not be present. This change creates a stochastic

version of the problem that should be considered as a future research direction for this topic.

14.2. Asymmetric Probabilistic Minimum-cost Hamiltonian Cycle Problem Considering Arc and

Vertex Failures

In this research, we propose the APMCHCP considering the possibility of vertex and arc

failures in the graph. For this problem, we modify the strengthen MTZ constraints and use direct

and recursive methods for modeling the exact chance constraints for the APMCHCP, namely the

intuitive formulations and the efficient formulations.

To solve the APMCHCP, we develop data preprocessing procedures, feasibility rules, upper

and lower bounds, and utilize them to propose a CBB algorithm. In the computational experiments,

it is showed that the proposed CBB algorithm has a superior performance compared to the Gurobi

solver (for solving the four formulations), in terms of the size of optimally solved instances and the

computing time. Summarizing the presented computational results, the proposed CBB algorithm

approach can solve 454 out of 464 (≈ 97.8%) instances with up to 231 nodes from the standard

benchmark sets (Dumas, and Ascheuer) to proven optimality.

216

REFERENCES

Acencio, Marcio L and Ney Lemke (2009). “Towards the prediction of essential genes by inte-

gration of network topology, cellular localization and biological process information”. In:

BMC bioinformatics 10.1, p. 290.

Achterberg, Tobias (2007). “Constraint integer programming”. In:

Achterberg, Tobias and Roland Wunderling (2013). “Mixed integer programming: Analyzing 12

years of progress”. In: Facets of combinatorial optimization. Springer, pp. 449–481.

Adamcsek, Balázs et al. (2006). “CFinder: locating cliques and overlapping modules in biological

networks”. In: Bioinformatics 22.8, pp. 1021–1023.

Adulyasak, Yossiri and Patrick Jaillet (2015). “Models and algorithms for stochastic and robust

vehicle routing with deadlines”. In: Transportation Science 50.2, pp. 608–626.

Ahuja, Ravindra K, Thomas L Magnanti, and James B Orlin (1988). “Network flows”. In:

Aittokallio, Tero and Benno Schwikowski (2006). “Graph-based methods for analysing networks

in cell biology”. In: Briefings in bioinformatics 7.3, pp. 243–255.

Akker, Erik van den et al. (2011). “Integrating protein-protein interaction networks with gene-gene

co-expression networks improves gene signatures for classifying breast cancer metastasis”.

In: Journal of Integrative Bioinformatics (JIB) 8.2, pp. 222–238.

Alonso-López, Diego et al. (2016). “APID interactomes: providing proteome-based interactomes

with controlled quality for multiple species and derived networks”. In: Nucleic acids re-

search 44.W1, W529–W535.

Aloy, Patrick and Robert B Russell (2003). “InterPreTS: Protein Interaction Prediction through

Tertiary Structure”. In: Bioinformatics 19.1, pp. 161–162.

Altaf-Ul-Amin, Md et al. (2006). “Development and implementation of an algorithm for detection

of protein complexes in large interaction networks”. In: BMC bioinformatics 7.1, p. 207.

Andersen, Reid, Fan Chung, and Kevin Lang (2006). “Local graph partitioning using pagerank

vectors”. In: Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Sym-

posium on. IEEE, pp. 475–486.

217

Antonov, Alexey V (2011). “BioProfiling. de: analytical web portal for high-throughput cell biol-

ogy”. In: Nucleic acids research 39.suppl_2, W323–W327.

Antonov, Alexey V et al. (2009). “PPI spider: a tool for the interpretation of proteomics data in the

context of protein–protein interaction networks”. In: Proteomics 9.10, pp. 2740–2749.

Aragao, M Poggi de and Eduardo Uchoa (2003). “Integer program reformulation for robust branch-

and-cut-and-price algorithms”. In: Mathematical program in rio: a conference in honour

of nelson maculan. Citeseer, pp. 56–61.

Arigliano, Anna et al. (2019). “Time-dependent asymmetric traveling salesman problem with

time windows: Properties and an exact algorithm”. In: Discrete Applied Mathematics 261,

pp. 28–39.

Arnau, Vicente, Sergio Mars, and Ignacio Marín (2004). “Iterative cluster analysis of protein inter-

action data”. In: Bioinformatics 21.3, pp. 364–378.

Arora, Sanjeev, Béla Bollobás, and László Lovász (2002). “Proving integrality gaps without know-

ing the linear program”. In: The 43rd Annual IEEE Symposium on Foundations of Computer

Science, 2002. Proceedings. IEEE, pp. 313–322.

Ascheuer, Norbert (1996). “Hamiltonian path problems in the on-line optimization of flexible man-

ufacturing systems”. In:

Ascheuer, Norbert, Matteo Fischetti, and Martin Grötschel (2001). “Solving the asymmetric trav-

elling salesman problem with time windows by branch-and-cut”. In: Mathematical Pro-

gramming 90.3, pp. 475–506.

Ashburner, Michael et al. (2000). “Gene Ontology: tool for the unification of biology”. In: Nature

genetics 25.1, p. 25.

Asur, Sitaram, Duygu Ucar, and Srinivasan Parthasarathy (2007). “An ensemble framework for

clustering protein–protein interaction networks”. In: Bioinformatics 23.13, pp. i29–i40.

Atamtürk, Alper (2005). “Cover and pack inequalities for (mixed) integer programming”. In: An-

nals of Operations Research 139.1, pp. 21–38.

218

Atamtürk, Alper and Martin WP Savelsbergh (2005). “Integer-programming software systems”.

In: Annals of operations research 140.1, pp. 67–124.

Aytuna, A Selim, Attila Gursoy, and Ozlem Keskin (2005). “Prediction of protein–protein interac-

tions by combining structure and sequence conservation in protein interfaces”. In: Bioin-

formatics 21.12, pp. 2850–2855.

Babel, Luitpold (1994). “A fast algorithm for the maximum weight clique problem”. In: Computing

52.1, pp. 31–38.

Bader, Gary D et al. (2001). “BIND: the biomolecular interaction network database”. In: Nucleic

acids research 29.1, pp. 242–245.

Bader, Gary D and Christopher WV Hogue (2003a). “An automated method for finding molecular

complexes in large protein interaction networks”. In: BMC bioinformatics 4.1, p. 2.

Bader, Gary D, Doron Betel, and Christopher WV Hogue (2003b). “BIND: the biomolecular in-

teraction network database”. In: Nucleic acids research 31.1, pp. 248–250.

Bader, Joel S et al. (2004). “Gaining confidence in high-throughput protein interaction networks”.

In: Nature biotechnology 22.1, p. 78.

Balas, Egon (1971). “Intersection cuts–a new type of cutting planes for integer programming”. In:

Operations Research 19.1, pp. 19–39.

Balas, Egon, Sebastián Ceria, and Gérard Cornuéjols (1993). “A lift-and-project cutting plane

algorithm for mixed 0–1 programs”. In: Mathematical programming 58.1-3, pp. 295–324.

Balas, Egon et al. (1996a). “Gomory cuts revisited”. In: Operations Research Letters 19.1, pp. 1–9.

Balas, Egon, Sebastián Ceria, and Gérard Cornuéjols (1996b). “Mixed 0-1 programming by lift-

and-project in a branch-and-cut framework”. In: Management Science 42.9, pp. 1229–

1246.

Balas, Egon and Michael Perregaard (2003). “A precise correspondence between lift-and-project

cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming”. In:

Mathematical Programming 94.2-3, pp. 221–245.

219

Balas, Egon and Anureet Saxena (2008). “Optimizing over the split closure”. In: Mathematical

Programming 113.2, pp. 219–240.

Barabási, Albert-László and Réka Albert (1999). “Emergence of scaling in random networks”. In:

science 286.5439, pp. 509–512.

Barabasi, Albert-Laszlo and Zoltan N Oltvai (2004). “Network biology: understanding the cell’s

functional organization”. In: Nature reviews. Genetics 5.2, p. 101.

Barnhart, Cynthia, Christopher A Hane, and Pamela H Vance (2000). “Using branch-and-price-

and-cut to solve origin-destination integer multicommodity flow problems”. In: Operations

Research 48.2, pp. 318–326.

Batada, Nizar N, Laurence D Hurst, and Mike Tyers (2006). “Evolutionary and physiological im-

portance of hub proteins”. In: PLoS computational biology 2.7, e88.

Baumeister, Wolfgang, Rudo Grimm, and Jochen Walz (1999). “Electron tomography of molecules

and cells”. In: Trends in cell biology 9.2, pp. 81–85.

Beale, EML and John JH Forrest (1976). “Global optimization using special ordered sets”. In:

Mathematical Programming 10.1, pp. 52–69.

Beale, Evelyn Martin Lansdowne and John A Tomlin (1970). “Special facilities in a general math-

ematical programming system for non-convex problems using ordered sets of variables”.

In: OR 69.447-454, p. 99.

Belov, Gleb and Guntram Scheithauer (2006). “A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting”. In: European journal

of operational research 171.1, pp. 85–106.

Bender, ALAN and JOHN R Pringle (1991). “Use of a screen for synthetic lethal and multi-

copy suppressee mutants to identify two new genes involved in morphogenesis in Sac-

charomyces cerevisiae.” In: Molecular and cellular biology 11.3, pp. 1295–1305.

Benders, JF (1962). “Partitioning procedures for solving mixed-variables programming problems,

Num Math”. In: Num. Math. Benders41962.

220

Bensimon, Ariel, Albert JR Heck, and Ruedi Aebersold (2012). “Mass spectrometry–based pro-

teomics and network biology”. In: Annual review of biochemistry 81, pp. 379–405.

Berggård, Tord, Sara Linse, and Peter James (2007). “Methods for the detection and analysis of

protein–protein interactions”. In: Proteomics 7.16, pp. 2833–2842.

Berman, Oded and David Simchi-Levi (1988). “Finding the optimal a priori tour and location of

a traveling salesman with nonhomogeneous customers”. In: Transportation Science 22.2,

pp. 148–154.

Bertsimas, Dimitris (1988). “Probabilistic combinatorial optimization problems”. PhD thesis. Mas-

sachusetts Institute of Technology.

Bertsimas, Dimitris and Louis H Howell (1993). “Further results on the probabilistic traveling

salesman problem”. In: European Journal of Operational Research 65.1, pp. 68–95.

Bertsimas, Dimitris and John N Tsitsiklis (1997). Introduction to linear optimization. Vol. 6.

Athena Scientific Belmont, MA.

Bertsimas, Dimitris J (1992). “A vehicle routing problem with stochastic demand”. In: Operations

Research 40.3, pp. 574–585.

Bertsimas, Dimitris J, Patrick Jaillet, and Amedeo R Odoni (1990). “A priori optimization”. In:

Operations Research 38.6, pp. 1019–1033.

Bhowmick, Sourav S and Boon Siew Seah (2016). “Clustering and summarizing protein-protein

interaction networks: a survey”. In: IEEE Transactions on Knowledge and Data Engineer-

ing 28.3, pp. 638–658.

Birattari, Mauro et al. (2008). “Estimation-based local search for stochastic combinatorial opti-

mization using delta evaluations: a case study on the probabilistic traveling salesman prob-

lem”. In: INFORMS Journal on Computing 20.4, pp. 644–658.

Birlutiu, Adriana and Tom Heskes (2014). “Using topology information for protein-protein inter-

action prediction”. In: IAPR International Conference on Pattern Recognition in Bioinfor-

matics. Springer, pp. 10–22.

221

Blatt, Marcelo, Shai Wiseman, and Eytan Domany (1996). “Superparamagnetic Clustering of

Data”. In: Phys. Rev. Lett. 76 (18), pp. 3251–3254. DOI: 10.1103/PhysRevLett.76.

3251. URL: https://link.aps.org/doi/10.1103/PhysRevLett.76.3251.

BnnoBRs, JF (1962). “Partitioning procedures for solving mixed-variables programming prob-

lems”. In:

Borch, Jonas, Peter Roepstorff, and Jakob Møller-Jensen (2011). “Nanodisc-based co-

immunoprecipitation for mass spectrometric identification of membrane-interacting pro-

teins”. In: Molecular & Cellular Proteomics 10.7, O110–006775.

Borgatti, Stephen P (2006). “Identifying sets of key players in a social network”. In: Computational

& Mathematical Organization Theory 12.1, pp. 21–34.

Boulon, Séverine et al. (2010). “Establishment of a protein frequency library and its application in

the reliable identification of specific protein interaction partners”. In: Molecular & Cellular

Proteomics 9.5, pp. 861–879.

Bowers, Peter M et al. (2004). “Prolinks: a database of protein functional linkages derived from

coevolution”. In: Genome biology 5.5, R35.

Bray, Dennis (1995). “Protein molecules as computational elements in living cells”. In: Nature

376.6538, pp. 307–312.

Brohee, Sylvain and Jacques Van Helden (2006). “Evaluation of clustering algorithms for protein-

protein interaction networks”. In: BMC bioinformatics 7.1, p. 488.

Brohée, Sylvain et al. (2008). “Network Analysis Tools: from biological networks to clusters and

pathways”. In: Nature protocols 3.10, p. 1616.

Bu, Dongbo et al. (2003). “Topological structure analysis of the protein–protein interaction net-

work in budding yeast”. In: Nucleic acids research 31.9, pp. 2443–2450.

Campbell, Ann M and Barrett W Thomas (2008). “Probabilistic traveling salesman problem with

deadlines”. In: Transportation Science 42.1, pp. 1–21.

Campbell, Ann Melissa and Philip C Jones (2011). “Prepositioning supplies in preparation for

disasters”. In: European Journal of Operational Research 209.2, pp. 156–165.

222

http://dx.doi.org/10.1103/PhysRevLett.76.3251
http://dx.doi.org/10.1103/PhysRevLett.76.3251
https://link.aps.org/doi/10.1103/PhysRevLett.76.3251

Carpaneto, Giorgio and Paolo Toth (1980). “Some new branching and bounding criteria for the

asymmetric travelling salesman problem”. In: Management Science 26.7, pp. 736–743.

Chang, Tsung-Sheng, Yat-wah Wan, and Wei Tsang Ooi (2009). “A stochastic dynamic traveling

salesman problem with hard time windows”. In: European Journal of Operational Research

198.3, pp. 748–759.

Chatr-aryamontri, Andrew et al. (2008). “Protein interactions: integration leads to belief”. In:

Trends in biochemical sciences 33.6, pp. 241–242.

Chatr-aryamontri, Andrew et al. (2017). “The BioGRID interaction database: 2017 update”. In:

Nucleic acids research 45.D1, pp. D369–D379.

Chaurasia, Gautam et al. (2006). “UniHI: an entry gate to the human protein interactome”. In:

Nucleic acids research 35.suppl_1, pp. D590–D594.

Chen, Bolin et al. (2011). “An improved graph entropy-based method for identifying protein com-

plexes”. In: Bioinformatics and Biomedicine (BIBM), 2011 IEEE International Conference

on. IEEE, pp. 123–126.

Chen, Bolin, Jinhong Shi, and Fang-Xiang Wu (2012). “Not AU protein complexes exhibit dense

structures in S. cerevisiae PPI network”. In: Bioinformatics and Biomedicine (BIBM), 2012

IEEE International Conference on. IEEE, pp. 1–4.

Chen, Bolin et al. (2013). “Identifying protein complexes and functional modules—from static PPI

networks to dynamic PPI networks”. In: Briefings in bioinformatics 15.2, pp. 177–194.

Chen, Feng et al. (2006a). “OrthoMCL-DB: querying a comprehensive multi-species collection of

ortholog groups”. In: Nucleic acids research 34.suppl_1, pp. D363–D368.

Chen, Jake Y, Ragini Pandey, and Thanh M Nguyen (2017). “HAPPI-2: a Comprehensive and

High-quality Map of Human Annotated and Predicted Protein Interactions”. In: BMC ge-

nomics 18.1, p. 182.

Chen, Jake Yue, SudhaRani Mamidipalli, and Tianxiao Huan (2009). “HAPPI: an online database

of comprehensive human annotated and predicted protein interactions”. In: BMC genomics

10.1, S16.

223

Chen, Jin et al. (2005). “Discovering reliable protein interactions from high-throughput experi-

mental data using network topology”. In: Artificial intelligence in medicine 35.1, pp. 37–

47.

Chen, Jin et al. (2006b). “Increasing confidence of protein-protein interactomes”. In: Genome In-

formatics 17.2, pp. 284–297.

Chen, Jingchun and Bo Yuan (2006c). “Detecting functional modules in the yeast protein–protein

interaction network”. In: Bioinformatics 22.18, pp. 2283–2290.

Chen, Yu and Dong Xu (2004). “Understanding protein dispensability through machine-learning

analysis of high-throughput data”. In: Bioinformatics 21.5, pp. 575–581.

Cheng, Jian et al. (2013). “A new computational strategy for predicting essential genes”. In: BMC

genomics 14.1, p. 910.

Cheng, Jian et al. (2014). “Training set selection for the prediction of essential genes”. In: PloS

one 9.1, e86805.

Chiang, Tony et al. (2007). “Coverage and error models of protein-protein interaction data by

directed graph analysis”. In: Genome biology 8.9, R186.

Chinneck, John W (2006). “Practical optimization: a gentle introduction”. In: Systems

and Computer Engineering), Carleton University, Ottawa. http://www. sce. carleton.

ca/faculty/chinneck/po. html, p. 11.

Cho, Young-Rae et al. (2007). “Semantic integration to identify overlapping functional modules in

protein interaction networks”. In: BMC bioinformatics 8.1, p. 265.

Cho, Young-Rae, Lei Shi, and Aidong Zhang (2008). “Functional module detection by functional

flow pattern mining in protein interaction networks”. In: BMC Bioinformatics 9.10, O1.

Chua, Hon Nian, Wing-Kin Sung, and Limsoon Wong (2006). “Exploiting indirect neighbours

and topological weight to predict protein function from protein–protein interactions”. In:

Bioinformatics 22.13, pp. 1623–1630.

Chua, Hon Nian and Limsoon Wong (2008). “Increasing the reliability of protein interactomes”.

In: Drug discovery today 13.15, pp. 652–658.

224

Chvatal, Vasek (1973). “Edmonds polytopes and a hierarchy of combinatorial problems”. In: Dis-

crete mathematics 4.4, pp. 305–337.

Clatworthy, Anne E, Emily Pierson, and Deborah T Hung (2007). “Targeting virulence: a new

paradigm for antimicrobial therapy”. In: Nature chemical biology 3.9, pp. 541–548.

Clausen, Jens (1999). “Branch and bound algorithms-principles and examples”. In: Department of

Computer Science, University of Copenhagen, pp. 1–30.

Cook, William, Ravindran Kannan, and Alexander Schrijver (1990). “Chvátal closures for mixed

integer programming problems”. In: Mathematical Programming 47.1-3, pp. 155–174.

Cooper, Matthew A (2003). “Label-free screening of bio-molecular interactions”. In: Analytical

and bioanalytical chemistry 377.5, pp. 834–842.

Cormen, Thomas H et al. (2009). Introduction to algorithms. MIT press.

Cornuéjols, Gérard (2008). “Valid inequalities for mixed integer linear programs”. In: Mathemati-

cal Programming 112.1, pp. 3–44.

Coulomb, Stéphane et al. (2005). “Gene essentiality and the topology of protein interaction net-

works”. In: Proceedings of the Royal Society of London B: Biological Sciences 272.1573,

pp. 1721–1725.

Cowley, Mark J et al. (2011). “PINA v2. 0: mining interactome modules”. In: Nucleic acids re-

search 40.D1, pp. D862–D865.

Craig, Roger A and Li Liao (2007). “Phylogenetic tree information aids supervised learning for

predicting protein-protein interaction based on distance matrices”. In: Bmc Bioinformatics

8.1, p. 6.

Crowder, Harlan, Ellis L Johnson, and Manfred Padberg (1983). “Solving large-scale zero-one

linear programming problems”. In: Operations Research 31.5, pp. 803–834.

Cuatrecasas, Pedro (1970). “Protein purification by affinity chromatography derivatizations of

agarose and polyacrylamide beads”. In: Journal of Biological Chemistry 245.12, pp. 3059–

3065.

225

Cui, Guangyu et al. (2008). “An algorithm for finding functional modules and protein complexes

in protein-protein interaction networks”. In: BioMed Research International 2008.

Danon, Leon et al. (2005). “Comparing community structure identification”. In: Journal of Statis-

tical Mechanics: Theory and Experiment 2005.09, P09008.

Dantzig, George B and Philip Wolfe (1960). “Decomposition principle for linear programs”. In:

Operations research 8.1, pp. 101–111.

Das, Jishnu and Haiyuan Yu (2012). “HINT: High-quality protein interactomes and their applica-

tions in understanding human disease”. In: BMC systems biology 6.1, p. 92.

Daud, Mimi Suriani Mat et al. (2016). “Humanitarian logistics and its challenges: The literature

review”. In: International Journal of Supply Chain Management 5.3, pp. 107–110.

Deane, Charlotte M et al. (2002). “Protein interactions two methods for assessment of the reliability

of high throughput observations”. In: Molecular & Cellular Proteomics 1.5, pp. 349–356.

Dechter, Rina and Judea Pearl (1985). “Generalized best-first search strategies and the optimality

of A”. In: Journal of the ACM (JACM) 32.3, pp. 505–536.

Deng, Jingyuan et al. (2010). “Investigating the predictability of essential genes across distantly

related organisms using an integrative approach”. In: Nucleic acids research 39.3, pp. 795–

807.

Deng, Minghua, Fengzhu Sun, and Ting Chen (2002). “Assessment of the reliability of protein-

protein interactions and protein function prediction”. In: Pac. Symp. Biocomputing (PSB

2003). Singapore: World Scientific, pp. 140–51.

Deng, Minghua et al. (2004). “Mapping gene ontology to proteins based on protein–protein inter-

action data”. In: Bioinformatics 20.6, pp. 895–902.

Derényi, Imre, Gergely Palla, and Tamás Vicsek (2005). “Clique percolation in random networks”.

In: Physical review letters 94.16, p. 160202.

Desaulniers, Guy, Jacques Desrosiers, and Marius M Solomon (2006). Column generation. Vol. 5.

Springer Science & Business Media.

226

Desrochers, Martin and Gilbert Laporte (1991). “Improvements and extensions to the Miller-

Tucker-Zemlin subtour elimination constraints”. In: Operations Research Letters 10.1,

pp. 27–36.

Desrosiers, Jacques et al. (1995). “Time constrained routing and scheduling”. In: Handbooks in

operations research and management science 8, pp. 35–139.

Desrosiers, Jacques, Raf Jans, and Yossiri Adulyasak (2013). Improved column generation al-

gorithms for the job grouping problem. Groupe d’études et de recherche en analyse des

décisions.

Ding, Yijun et al. (2012). “atBioNet–an integrated network analysis tool for genomics and

biomarker discovery”. In: BMC genomics 13.1, p. 325.

Dittrich, Marcus T et al. (2008). “Identifying functional modules in protein–protein interaction

networks: an integrated exact approach”. In: Bioinformatics 24.13, pp. i223–i231.

Dotan-Cohen, Dikla, Avraham A Melkman, and Simon Kasif (2007). “Hierarchical tree snipping:

clustering guided by prior knowledge”. In: Bioinformatics 23.24, pp. 3335–3342.

Dror, Moshe (1994). “Note on the complexity of the shortest path models for column generation

in VRPTW”. In: Operations Research 42.5, pp. 977–978.

Dror, Moshe, Gilbert Laporte, and Pierre Trudeau (1989). “Vehicle routing with stochastic de-

mands: Properties and solution frameworks”. In: Transportation science 23.3, pp. 166–

176.

Dumas, Yvan et al. (1995). “An optimal algorithm for the traveling salesman problem with time

windows”. In: Operations research 43.2, pp. 367–371.

Duran, Serhan, Marco A Gutierrez, and Pinar Keskinocak (2011). “Pre-positioning of emergency

items for CARE international”. In: Interfaces 41.3, pp. 223–237.

Edwards, Aled M et al. (2002). “Bridging structural biology and genomics: assessing protein in-

teraction data with known complexes”. In: TRENDS in Genetics 18.10, pp. 529–536.

Ekman, Diana et al. (2006). “What properties characterize the hub proteins of the protein-protein

interaction network of Saccharomyces cerevisiae?” In: Genome biology 7.6, R45.

227

Enright, Anton J et al. (1999). “Protein interaction maps for complete genomes based on gene

fusion events”. In: Nature 402.6757, p. 86.

Enright, Anton J, Stijn Van Dongen, and Christos A Ouzounis (2002). “An efficient algorithm for

large-scale detection of protein families”. In: Nucleic acids research 30.7, pp. 1575–1584.

Eremin, Andrew (2004). “Using dual values to integrate row and column generation into constant

logic”. PhD thesis. Imperial College London (University of London).

Eremin, Andrew and Mark Wallace (2001). “Hybrid Benders decomposition algorithms in con-

straint logic programming”. In: International Conference on Principles and Practice of

Constraint Programming. Springer, pp. 1–15.

Errico, Fausto et al. (2018). “The vehicle routing problem with hard time windows and stochastic

service times”. In: EURO Journal on Transportation and Logistics 7.3, pp. 223–251.

Estrada, Ernesto (2006). “Virtual identification of essential proteins within the protein interaction

network of yeast”. In: Proteomics 6.1, pp. 35–40.

Estrada, Ernesto and Juan A Rodriguez-Velazquez (2005). “Subgraph centrality in complex net-

works”. In: Physical Review E 71.5, p. 056103.

Everett, Martin G and Stephen P Borgatti (1999). “The centrality of groups and classes”. In: The

Journal of mathematical sociology 23.3, pp. 181–201.

Everett, Martin G and Stephen P Borgatti (2005). “Extending centrality”. In: Models and methods

in social network analysis 35.1, pp. 57–76.

Fang, Yi et al. (2011). “Global geometric affinity for revealing high fidelity protein interaction

network”. In: PloS one 6.5, e19349.

Farkas, Illés J, Ádám Szántó-Várnagy, and Tamás Korcsmáros (2012). “Linking proteins to sig-

naling pathways for experiment design and evaluation”. In: PloS one 7.4, e36202.

Fields, Stanley and Ok-kyu Song (1989). “A novel genetic system to detect protein–protein inter-

actions”. In: Nature 340.6230, pp. 245–246.

Fischetti, Matteo and Domenico Salvagnin (2010). “Pruning moves”. In: INFORMS Journal on

Computing 22.1, pp. 108–119.

228

Fischetti, Matteo and Domenico Salvagnin (2013). “Approximating the split closure”. In: IN-

FORMS Journal on Computing 25.4, pp. 808–819.

Flippo, Olaf E and Alexander HG Rinnooy Kan (1993). “Decomposition in general mathematical

programming”. In: Mathematical Programming 60.1-3, pp. 361–382.

Fortunato, Santo (2010). “Community detection in graphs”. In: Physics Reports 486.3, pp. 75–174.

Fortunato, Santo and Marc Barthélemy (2007). “Resolution limit in community detection”. In:

Proceedings of the National Academy of Sciences 104.1, pp. 36–41.

Fraser, Hunter B et al. (2002). “Evolutionary rate in the protein interaction network”. In: Science

296.5568, pp. 750–752.

Friedel, Caroline, Jan Krumsiek, and Ralf Zimmer (2008). “Bootstrapping the interactome: un-

supervised identification of protein complexes in yeast”. In: Research in Computational

Molecular Biology. Springer, pp. 3–16.

Fryxell, Karl J (1996). “The coevolution of gene family trees”. In: Trends in Genetics 12.9,

pp. 364–369.

Fujimori, Shigeo et al. (2012). “IRView: a database and viewer for protein interacting regions”. In:

Bioinformatics 28.14, pp. 1949–1950.

Fukasawa, Ricardo et al. (2006). “Robust branch-and-cut-and-price for the capacitated vehicle

routing problem”. In: Mathematical programming 106.3, pp. 491–511.

Futschik, Matthias E, Gautam Chaurasia, and Hanspeter Herzel (2007). “Comparison of human

protein–protein interaction maps”. In: Bioinformatics 23.5, pp. 605–611.

Gao, Guanghua, Jason G Williams, and Sharon L Campbell (2004). “Protein-protein interaction

analysis by nuclear magnetic resonance spectroscopy”. In: Protein-Protein Interactions:

Methods and Applications, pp. 79–91.

Gao, Jing et al. (2008). “Integrating and annotating the interactome using the MiMI plugin for

cytoscape”. In: Bioinformatics 25.1, pp. 137–138.

Gavin, Anne-Claude et al. (2002). “Functional organization of the yeast proteome by systematic

analysis of protein complexes”. In: Nature 415.6868, pp. 141–147.

229

Gavin, Anne-Claude et al. (2006). “Proteome survey reveals modularity of the yeast cell machin-

ery”. In: Nature 440.7084, p. 631.

Ge, Hui et al. (2001). “Correlation between transcriptome and interactome mapping data from

Saccharomyces cerevisiae”. In: Nature genetics 29.4, p. 482.

Gendron, Bernard, Paul-Virak Khuong, and Frédéric Semet (2016). “A Lagrangian-based branch-

and-bound algorithm for the two-level uncapacitated facility location problem with single-

assignment constraints”. In: Transportation Science 50.4, pp. 1286–1299.

Gene Ontology Consortium (2001). “Creating the gene ontology resource: design and implemen-

tation”. In: Genome research 11.8, pp. 1425–1433.

Gene Ontology Consortium (2004). “The Gene Ontology (GO) database and informatics resource”.

In: Nucleic acids research 32.suppl 1, pp. D258–D261.

Geoffrion, Arthur M (1969). “An improved implicit enumeration approach for integer program-

ming”. In: Operations Research 17.3, pp. 437–454.

Geoffrion, Arthur M (1972). “Generalized benders decomposition”. In: Journal of optimization

theory and applications 10.4, pp. 237–260.

Georgii, Elisabeth et al. (2009). “Enumeration of condition-dependent dense modules in protein

interaction networks”. In: Bioinformatics 25.7, pp. 933–940.

Giaever, Guri et al. (2002). “Functional profiling of the Saccharomyces cerevisiae genome”. In:

nature 418.6896, p. 387.

Gingras, Anne-Claude et al. (2007). “Analysis of protein complexes using mass spectrometry”. In:

Nature reviews. Molecular cell biology 8.8, p. 645.

Girvan, Michelle and Mark EJ Newman (2002). “Community structure in social and biological

networks”. In: Proceedings of the national academy of sciences 99.12, pp. 7821–7826.

Glass, John I et al. (2006). “Essential genes of a minimal bacterium”. In: Proceedings of the Na-

tional Academy of Sciences of the United States of America 103.2, pp. 425–430.

Glass, John I et al. (2009). “A systems biology tour de force for a near-minimal bacterium”. In:

Molecular systems biology 5.1, p. 330.

230

Goel, Renu et al. (2012). “Human Protein Reference Database and Human Proteinpedia as re-

sources for phosphoproteome analysis”. In: Molecular bioSystems 8.2, pp. 453–463.

Goh, Chern-Sing et al. (2000). “Co-evolution of proteins with their interaction partners”. In: Jour-

nal of molecular biology 299.2, pp. 283–293.

Goh, K-I et al. (2003). “Betweenness centrality correlation in social networks”. In: Physical Review

E 67.1, p. 017101.

Goldberg, Debra S and Frederick P Roth (2003). “Assessing experimentally derived interactions

in a small world”. In: Proceedings of the National Academy of Sciences 100.8, pp. 4372–

4376.

Goll, Johannes and Peter Uetz (2006). “The elusive yeast interactome”. In: Genome biology 7.6,

p. 223.

Golomb, Solomon W and Leonard D Baumert (1965). “Backtrack programming”. In: Journal of

the ACM (JACM) 12.4, pp. 516–524.

Gomory, Ralph E (2010). “Outline of an algorithm for integer solutions to linear programs and an

algorithm for the mixed integer problem”. In: 50 Years of Integer Programming 1958-2008.

Springer, pp. 77–103.

Greene, Derek et al. (2008). “Ensemble non-negative matrix factorization methods for clustering

protein–protein interactions”. In: Bioinformatics 24.15, pp. 1722–1728.

Grigoriev, Andrei (2001). “A relationship between gene expression and protein interactions on the

proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae”.

In: Nucleic acids research 29.17, pp. 3513–3519.

Guo, Yanzhi et al. (2008). “Using support vector machine combined with auto covariance to pre-

dict protein–protein interactions from protein sequences”. In: Nucleic acids research 36.9,

pp. 3025–3030.

Gustafson, Adam M et al. (2006). “Towards the identification of essential genes using targeted

genome sequencing and comparative analysis”. In: Bmc Genomics 7.1, p. 265.

231

Gutin, G, A Yeo, and A Zverovich (2002). Exponential Neighborhoods and Domination Analysis

for the TSP. Chapter 6 in: The Traveling Salesman Problem and Its Variations. G. Gutin,

AP Punnen.

Gutin, Gregory and Abraham P Punnen (2006). The traveling salesman problem and its variations.

Vol. 12. Springer Science & Business Media.

Guzelsoy, Menal, George Nemhauser, and Martin Savelsbergh (2013). “Restrict-and-relax search

for 0-1 mixed-integer programs”. In: EURO Journal on Computational Optimization 1.1-2,

pp. 201–218.

Gygi, Steven P et al. (2002). “Proteome analysis of low-abundance proteins using multidimen-

sional chromatography and isotope-coded affinity tags”. In: Journal of proteome research

1.1, pp. 47–54.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). “Exploring network structure,

dynamics, and function using NetworkX”. In: Proceedings of the 7th Python in Science

Conference (SciPy2008). Pasadena, CA USA, pp. 11–15.

Hahn, Matthew W and Andrew D Kern (2004a). “Comparative genomics of centrality and essen-

tiality in three eukaryotic protein-interaction networks”. In: Molecular biology and evolu-

tion 22.4, pp. 803–806.

Hahn, Matthew W, Gavin C Conant, and Andreas Wagner (2004b). “Molecular evolution in large

genetic networks: does connectivity equal constraint?” In: Journal of molecular evolution

58.2, pp. 203–211.

Hahn, Matthew W and Andrew D Kern (2005). “Comparative genomics of centrality and essential-

ity in three eukaryotic protein-interaction networks”. In: Molecular biology and evolution

22.4, pp. 803–806.

Hakes, Luke et al. (2006). “Protein interactions from complexes: a structural perspective”. In:

Comparative and functional genomics 2007.

Hakes, Luke et al. (2008). “Protein-protein interaction networks and biology—what’s the connec-

tion?” In: Nature biotechnology 26.1, pp. 69–72.

232

Hall, David A, Jason Ptacek, and Michael Snyder (2007). “Protein microarray technology”. In:

Mechanisms of ageing and development 128.1, pp. 161–167.

Han, Dong-Soo et al. (2004a). “PreSPI: a domain combination based prediction system for protein–

protein interaction”. In: Nucleic Acids Research 32.21, pp. 6312–6320.

Han, Jing-Dong J et al. (2004b). “Evidence for dynamically organized modularity in the yeast

protein-protein interaction network”. In: Nature 430.6995, p. 88.

Hao, Tong et al. (2016). “Reconstruction and application of protein–protein interaction network”.

In: International journal of molecular sciences 17.6, p. 907.

Hart, Darren J et al. (1999). “The salt dependence of DNA recognition by N-κB p50: A detailed

kinetic analysis of the effects on affinity and specificity”. In: Nucleic acids research 27.4,

pp. 1063–1069.

Hart, G Traver, Arun K Ramani, and Edward M Marcotte (2006). “How complete are current yeast

and human protein-interaction networks?” In: Genome biology 7.11, p. 120.

Hart, G Traver, Insuk Lee, and Edward M Marcotte (2007). “A high-accuracy consensus map of

yeast protein complexes reveals modular nature of gene essentiality”. In: BMC bioinfor-

matics 8.1, p. 236.

Hartmanis, Juris (1982). “Computers and intractability: a guide to the theory of NP-completeness

(michael r. garey and david s. johnson)”. In: Siam Review 24.1, p. 90.

He, Xionglei and Jianzhi Zhang (2006). “Why do hubs tend to be essential in protein networks?”

In: PLoS genetics 2.6, e88.

Hegde, Shubhada R, Palanisamy Manimaran, and Shekhar C Mande (2008). “Dynamic changes in

protein functional linkage networks revealed by integration with gene expression data”. In:

PLoS computational biology 4.11, e1000237.

Held, Stephan, William Cook, and Edward C Sewell (2012). “Maximum-weight stable sets and

safe lower bounds for graph coloring”. In: Mathematical Programming Computation 4.4,

pp. 363–381.

233

Henchiri, Abir, Monia Bellalouna, and Walid Khaznaji (2014). “A probabilistic traveling salesman

problem: a survey.” In: FedCSIS Position Papers 3, pp. 55–60.

Hernández-Pérez, Hipólito and Juan-José Salazar-González (2004). “A branch-and-cut algorithm

for a traveling salesman problem with pickup and delivery”. In: Discrete Applied Mathe-

matics 145.1, pp. 126–139.

Hoffmann, Robert and Alfonso Valencia (2002). “A gene network for navigating the literature”.

In: Phys. Rev. E Stat. Nonlin. Soft Matter Phys 65, p. 065102.

Hooker, John N and Greger Ottosson (2003). “Logic-based Benders decomposition”. In: Mathe-

matical Programming 96.1, pp. 33–60.

Hosur, Raghavendra et al. (2011). “iWRAP: an interface threading approach with application to

prediction of cancer-related protein–protein interactions”. In: Journal of molecular biology

405.5, pp. 1295–1310.

Hsing, Michael, Kendall Grant Byler, and Artem Cherkasov (2008). “The use of Gene Ontology

terms for predicting highly-connected’hub’nodes in protein-protein interaction networks”.

In: BMC systems biology 2.1, p. 80.

Huang, Sui et al. (2005). “Cell fates as high-dimensional attractor states of a complex gene regu-

latory network”. In: Physical review letters 94.12, p. 128701.

Hubner, Nina C et al. (2010). “Quantitative proteomics combined with BAC TransgeneOmics re-

veals in vivo protein interactions”. In: The Journal of cell biology 189.4, pp. 739–754.

Huynen, Martijn et al. (2000). “Predicting protein function by genomic context: quantitative eval-

uation and qualitative inferences”. In: Genome research 10.8, pp. 1204–1210.

Hwang, Hee-Su, Siriwat Visoldilokpun, and Jay M Rosenberger (2008). “A branch-and-price-and-

cut method for ship scheduling with limited risk”. In: Transportation science 42.3, pp. 336–

351.

Hwang, Yih-Chii et al. (2009). “Predicting essential genes based on network and sequence analy-

sis”. In: Molecular BioSystems 5.12, pp. 1672–1678.

234

Ibaraki, Toshihide (1976). “Theoretical comparisons of search strategies in branch-and-bound al-

gorithms”. In: International Journal of Computer & Information Sciences 5.4, pp. 315–

344.

Ibaraki, Toshihide (1977). “The power of dominance relations in branch-and-bound algorithms”.

In: Journal of the ACM (JACM) 24.2, pp. 264–279.

Ideker, Trey et al. (2001). “Integrated genomic and proteomic analyses of a systematically per-

turbed metabolic network”. In: Science 292.5518, pp. 929–934.

Ideker, Trey et al. (2002). “Discovering regulatory and signalling circuits in molecular interaction

networks”. In: Bioinformatics 18.suppl_1, S233–S240.

Irnich, Stefan and Guy Desaulniers (2005). “Shortest path problems with resource constraints”. In:

Column generation. Springer, pp. 33–65.

Ishitsuka, Masayuki, Tatsuya Akutsu, and Jose C Nacher (2016). “Critical controllability in

proteome-wide protein interaction network integrating transcriptome”. In: Scientific reports

6.

Isserlin, Ruth, Rashad A El-Badrawi, and Gary D Bader (2011). “The biomolecular interaction

network database in PSI-MI 2.5”. In: Database 2011.

Ito, Takashi et al. (2001). “A comprehensive two-hybrid analysis to explore the yeast protein inter-

actome”. In: Proceedings of the National Academy of Sciences 98.8, pp. 4569–4574.

Jaillet, Patrick (1985). “Probabilistic traveling salesman problems”. PhD thesis. Massachusetts

Institute of Technology.

Jaillet, Patrick and Michael R Wagner (2008). “Online vehicle routing problems: A survey”. In:

The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, pp. 221–

237.

Jain, Vipul and Ignacio E Grossmann (2001). “Algorithms for hybrid MILP/CP models for a class

of optimization problems”. In: INFORMS Journal on computing 13.4, pp. 258–276.

235

James, Philip, John Halladay, and Elizabeth A Craig (1996). “Genomic libraries and a host strain

designed for highly efficient two-hybrid selection in yeast”. In: Genetics 144.4, pp. 1425–

1436.

Jansen, Ronald, Dov Greenbaum, and Mark Gerstein (2002). “Relating whole-genome expression

data with protein-protein interactions”. In: Genome research 12.1, pp. 37–46.

Jansen, Ronald et al. (2003). “A Bayesian networks approach for predicting protein-protein inter-

actions from genomic data”. In: science 302.5644, pp. 449–453.

Jayapandian, Magesh et al. (2006). “Michigan Molecular Interactions (MiMI): putting the jigsaw

puzzle together”. In: Nucleic acids research 35.suppl_1, pp. D566–D571.

Jeong, H et al. (2001). “Lethality and centrality in protein networks”. In: Nature 411.6833, p. 41.

Jeong, Hawoong et al. (2000). “The large-scale organization of metabolic networks”. In: arXiv

preprint cond-mat/0010278.

Jiang, Peng and Mona Singh (2010). “SPICi: a fast clustering algorithm for large biological net-

works”. In: Bioinformatics 26.8, pp. 1105–1111.

Jiinger, Michael, Gerhard Reinelt, and Stefan Thienel (1995). “Practical problem solving with

cutting plane algorithms in combinatorial optimization”. In: Combinatorial Optimization,

Dimacs 20, pp. 111–152.

Jin, Ruoming et al. (2007). Identify dynamic network modules with temporal and spatial con-

straints. Tech. rep. Lawrence Livermore National Laboratory (LLNL), Livermore, CA.

Jordan, I King et al. (2002). “Essential genes are more evolutionarily conserved than are nonessen-

tial genes in bacteria”. In: Genome research 12.6, pp. 962–968.

Joy, Maliackal Poulo et al. (2005). “High-betweenness proteins in the yeast protein interaction

network”. In: BioMed Research International 2005.2, pp. 96–103.

Jula, Hossein, Maged Dessouky, and Petros A Ioannou (2006). “Truck route planning in nonsta-

tionary stochastic networks with time windows at customer locations”. In: IEEE Transac-

tions on Intelligent Transportation Systems 7.1, pp. 51–62.

236

Junker, Björn H and Falk Schreiber (2011). Analysis of biological networks. Vol. 2. John Wiley &

Sons.

Kalathur, Ravi Kiran Reddy et al. (2013). “UniHI 7: an enhanced database for retrieval and interac-

tive analysis of human molecular interaction networks”. In: Nucleic acids research 42.D1,

pp. D408–D414.

Kamath, Ravi S et al. (2003). “Systematic functional analysis of the Caenorhabditis elegans

genome using RNAi”. In: Nature 421.6920, p. 231.

Kamburov, Atanas et al. (2012a). “Cluster-based assessment of protein-protein interaction confi-

dence”. In: BMC bioinformatics 13.1, p. 262.

Kamburov, Atanas, Ulrich Stelzl, and Ralf Herwig (2012b). “IntScore: a web tool for confidence

scoring of biological interactions”. In: Nucleic acids research 40.W1, W140–W146.

Kao, Gio K, Edward C Sewell, and Sheldon H Jacobson (2009). “A Branch, Bound, and remember

algorithm for the 1| r i|sum t i scheduling problem”. In: Journal of Scheduling 12.2, p. 163.

Karaoz, Ulas et al. (2004). “Whole-genome annotation by using evidence integration in functional-

linkage networks”. In: Proceedings of the National Academy of Sciences of the United

States of America 101.9, pp. 2888–2893.

Karp, Richard M (1972). “Reducibility among combinatorial problems”. In: Complexity of com-

puter computations. Springer, pp. 85–103.

Kenley, Edward Casey and Young-Rae Cho (2011). “Detecting protein complexes and functional

modules from protein interaction networks: A graph entropy approach”. In: Proteomics

11.19, pp. 3835–3844.

Kenyon, Astrid S and David P Morton (2003). “Stochastic vehicle routing with random travel

times”. In: Transportation Science 37.1, pp. 69–82.

Kerrien, Samuel et al. (2011). “The IntAct molecular interaction database in 2012”. In: Nucleic

acids research 40.D1, pp. D841–D846.

Keshava Prasad, TS et al. (2008). “Human protein reference database—2009 update”. In: Nucleic

acids research 37.suppl_1, pp. D767–D772.

237

Keskin, Ozlem, Nurcan Tuncbag, and Attila Gursoy (2016). “Predicting protein–protein interac-

tions from the molecular to the proteome level”. In: Chemical reviews 116.8, pp. 4884–

4909.

Kim, Jongkwang and Kai Tan (2010). “Discover protein complexes in protein-protein interaction

networks using parametric local modularity”. In: BMC bioinformatics 11.1, p. 521.

King, Andrew D, N Pržulj, and Igor Jurisica (2004). “Protein complex prediction via cost-based

clustering”. In: Bioinformatics 20.17, pp. 3013–3020.

Kolesar, Peter J (1967). “A branch and bound algorithm for the knapsack problem”. In: Manage-

ment science 13.9, pp. 723–735.

Komurov, Kakajan and Michael White (2007). “Revealing static and dynamic modular architecture

of the eukaryotic protein interaction network”. In: Molecular systems biology 3.1, p. 110.

Kondrashov, Fyodor A, Aleksey Y Ogurtsov, and Alexey S Kondrashov (2004). “Bioinformatical

assay of human gene morbidity”. In: Nucleic acids research 32.5, pp. 1731–1737.

Korf, Richard E (1985). “Depth-first iterative-deepening: An optimal admissible tree search”. In:

Artificial intelligence 27.1, pp. 97–109.

Kritikos, George D et al. (2011). “Noise reduction in protein-protein interaction graphs by the

implementation of a novel weighting scheme”. In: BMC bioinformatics 12.1, p. 239.

Krogan, Nevan J et al. (2006). “Global landscape of protein complexes in the yeast Saccharomyces

cerevisiae”. In: Nature 440.7084, p. 637.

Kumar, Anuj and Michael Snyder (2002). “Proteomics: Protein complexes take the bait”. In: Na-

ture 415.6868, pp. 123–124.

Kumar, Vipin (1992). “Algorithms for constraint-satisfaction problems: A survey”. In: AI magazine

13.1, pp. 32–32.

Land, AH and AG Doig (1960). “An automatic method of solving discrete programming problems.

Econometrica. v28”. In:

Laporte, Gilbert (1992). “The vehicle routing problem: An overview of exact and approximate

algorithms”. In: European journal of operational research 59.3, pp. 345–358.

238

Laporte, Gilbert, Francois V Louveaux, and Hélene Mercure (1994). “A priori optimization of the

probabilistic traveling salesman problem”. In: Operations research 42.3, pp. 543–549.

Laporte, Gilbert, François V Louveaux, and Luc Van Hamme (2002). “An integer L-shaped algo-

rithm for the capacitated vehicle routing problem with stochastic demands”. In: Operations

Research 50.3, pp. 415–423.

Laporte, Gilbert and Inmaculada Rodríguez Martín (2007). “Locating a cycle in a transportation or

a telecommunications network”. In: Networks: An International Journal 50.1, pp. 92–108.

Larsen, Allan, Oli BG Madsen, and Marius M Solomon (2008). “Recent developments in dynamic

vehicle routing systems”. In: The vehicle routing problem: Latest advances and new chal-

lenges. Springer, pp. 199–218.

Lasdon, Leon S (2002). Optimization theory for large systems. Courier Corporation.

Lawler, Eugene L and David E Wood (1966). “Branch-and-bound methods: A survey”. In: Opera-

tions research 14.4, pp. 699–719.

Lee, Sheng-An et al. (2008). “Ortholog-based protein-protein interaction prediction and its appli-

cation to inter-species interactions”. In: BMC bioinformatics 9.12, S11.

Lei, Hongtao, Gilbert Laporte, and Bo Guo (2012). “A generalized variable neighborhood search

heuristic for the capacitated vehicle routing problem with stochastic service times”. In: Top

20.1, pp. 99–118.

Leung, Henry CM et al. (2009). “Predicting protein complexes from PPI data: a core-attachment

approach”. In: Journal of Computational Biology 16.2, pp. 133–144.

Levy, Emmanuel D and Jose B Pereira-Leal (2008). “Evolution and dynamics of protein interac-

tions and networks”. In: Current opinion in structural biology 18.3, pp. 349–357.

Li, Ai and Steve Horvath (2006a). “Network neighborhood analysis with the multi-node topologi-

cal overlap measure”. In: Bioinformatics 23.2, pp. 222–231.

Li, Gaoshi et al. (2016a). “Predicting essential proteins based on subcellular localization, orthology

and PPI networks”. In: BMC bioinformatics 17.8, p. 279.

239

Li, Haiquan, Jinyan Li, and Limsoon Wong (2006b). “Discovering motif pairs at interaction sites

from protein sequences on a proteome-wide scale”. In: Bioinformatics 22.8, pp. 989–996.

Li, Min, Jianxin Wang, and Jian’er Chen (2008a). “A fast agglomerate algorithm for mining func-

tional modules in protein interaction networks”. In: BioMedical Engineering and Informat-

ics, 2008. BMEI 2008. International Conference on. Vol. 1. IEEE, pp. 3–7.

Li, Min et al. (2008b). “Modifying the DPClus algorithm for identifying protein complexes based

on new topological structures”. In: BMC bioinformatics 9.1, p. 398.

Li, Min et al. (2009). “Hierarchical organization of functional modules in weighted protein interac-

tion networks using clustering coefficient”. In: International Symposium on Bioinformatics

Research and Applications. Springer, pp. 75–86.

Li, Min et al. (2012a). “A new essential protein discovery method based on the integration of

protein-protein interaction and gene expression data”. In: BMC systems biology 6.1, p. 15.

Li, Min et al. (2012b). “Towards the identification of protein complexes and functional modules by

integrating PPI network and gene expression data”. In: BMC bioinformatics 13.1, p. 109.

Li, Min et al. (2013). “Identification of essential proteins from weighted protein–protein interaction

networks”. In: Journal of bioinformatics and computational biology 11.03, p. 1341002.

Li, Min et al. (2014). “Effective identification of essential proteins based on priori knowledge,

network topology and gene expressions”. In: Methods 67.3, pp. 325–333.

Li, Min et al. (2015). “A topology potential-based method for identifying essential proteins from

PPI networks”. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB) 12.2, pp. 372–383.

Li, Min et al. (2016b). “A reliable neighbor-based method for identifying essential proteins by

integrating gene expressions, orthology, and subcellular localization information”. In: Ts-

inghua Science and Technology 21.6, pp. 668–677.

Li, Min et al. (2017). “United complex centrality for identification of essential proteins from

PPI networks”. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB) 14.2, pp. 370–380.

240

Li, Xiao-Li et al. (2005). “Interaction graph mining for protein complexes using local clique merg-

ing”. In: Genome Informatics 16.2, pp. 260–269.

Li, Xiao-Li, Chuan-Sheng Foo, and See-Kiong Ng (2007). “Discovering protein complexes in

dense reliable neighborhoods of protein interaction networks”. In: Comput Syst Bioinfor-

matics Conf. Vol. 6, pp. 157–168.

Li, Xiaoli et al. (2010). “Computational approaches for detecting protein complexes from protein

interaction networks: a survey”. In: BMC genomics 11.1, S3.

Li, Zhenping et al. (2008c). “Quantitative function for community detection”. In: Physical review

E 77.3, p. 036109.

Lian, Hao, Chengsen Song, and Young-Rae Cho (2010). “Decomposing protein interactome net-

works by graph entropy”. In: Bioinformatics and Biomedicine (BIBM), 2010 IEEE Inter-

national Conference on. IEEE, pp. 585–589.

Liang, Han and Wen-Hsiung Li (2007). “Gene essentiality, gene duplicability and protein connec-

tivity in human and mouse”. In: Trends in Genetics 23.8, pp. 375–378.

Licata, Luana et al. (2011). “MINT, the molecular interaction database: 2012 update”. In: Nucleic

acids research 40.D1, pp. D857–D861.

Lichtenberg, Ulrik de et al. (2005). “Dynamic complex formation during the yeast cell cycle”. In:

science 307.5710, pp. 724–727.

Lin, Chen-Ching et al. (2009). “Essential core of protein- protein interaction network in Es-

cherichia coli”. In: Journal of proteome research 8.4, pp. 1925–1931.

Lin, Chen-Ching et al. (2010). “Dynamic functional modules in co-expressed protein interaction

networks of dilated cardiomyopathy”. In: BMC systems biology 4.1, p. 138.

Lin, Chi et al. (2016). “MREA: a minimum resource expenditure node capture attack in wireless

sensor networks”. In: Security and Communication Networks 9.18, pp. 5502–5517.

Lin, Tzu-Wen, Jian-Wei Wu, and Darby Tien-Hao Chang (2013). “Combining phylogenetic

profiling-based and machine learning-based techniques to predict functional related pro-

teins”. In: PloS one 8.9, e75940.

241

Linderoth, Jeff T and Martin WP Savelsbergh (1999). “A computational study of search strategies

for mixed integer programming”. In: INFORMS Journal on Computing 11.2, pp. 173–187.

Liu, Guimei et al. (2004). “Efficient mining of frequent patterns using ascending frequency ordered

prefix-tree”. In: Data Mining and Knowledge Discovery 9.3, pp. 249–274.

Liu, Guimei, Jinyan Li, and Limsoon Wong (2008). “Assessing and predicting protein interac-

tions using both local and global network topological metrics”. In: Genome Informatics 21,

pp. 138–149.

Liu, Guimei, Limsoon Wong, and Hon Nian Chua (2009). “Complex discovery from weighted PPI

networks”. In: Bioinformatics 25.15, pp. 1891–1897.

Liu, Yin, Nianjun Liu, and Hongyu Zhao (2005). “Inferring protein–protein interactions through

high-throughput interaction data from diverse organisms”. In: Bioinformatics 21.15,

pp. 3279–3285.

Lodree Jr, Emmett J, Kandace N Ballard, and Chang H Song (2012). “Pre-positioning hurri-

cane supplies in a commercial supply chain”. In: Socio-Economic Planning Sciences 46.4,

pp. 291–305.

Lord, Phillip W. et al. (2003). “Investigating semantic similarity measures across the Gene On-

tology: the relationship between sequence and annotation”. In: Bioinformatics 19.10,

pp. 1275–1283.

Lovász, László and Alexander Schrijver (1991). “Cones of matrices and set-functions and 0–1

optimization”. In: SIAM journal on optimization 1.2, pp. 166–190.

Lu, Hongchao et al. (2006). “Integrated analysis of multiple data sources reveals modular structure

of biological networks”. In: Biochemical and biophysical research communications 345.1,

pp. 302–309.

Lu, Long, Hui Lu, and Jeffrey Skolnick (2002). “MULTIPROSPECTOR: an algorithm for the

prediction of protein–protein interactions by multimeric threading”. In: Proteins: Structure,

Function, and Bioinformatics 49.3, pp. 350–364.

242

Lu, Xin et al. (2007). “Hubs in biological interaction networks exhibit low changes in expression

in experimental asthma”. In: Molecular systems biology 3.1, p. 98.

Lu, Yao et al. (2014). “Predicting essential genes for identifying potential drug targets in As-

pergillus fumigatus”. In: Computational biology and chemistry 50, pp. 29–40.

Lübbecke, Marco E and Jacques Desrosiers (2005). “Selected topics in column generation”. In:

Operations research 53.6, pp. 1007–1023.

Lubovac, Zelmina, Jonas Gamalielsson, and Björn Olsson (2006). “Combining functional and

topological properties to identify core modules in protein interaction networks”. In: Pro-

teins: Structure, Function, and Bioinformatics 64.4, pp. 948–959.

Luo, Fei, Juan Liu, and Jinyan Li (2010a). “Discovering conditional co-regulated protein com-

plexes by integrating diverse data sources”. In: BMC systems biology 4.2, S4.

Luo, Feng et al. (2006). “Modular organization of protein interaction networks”. In: Bioinformatics

23.2, pp. 207–214.

Luo, Hao et al. (2013). “DEG 10, an update of the database of essential genes that includes both

protein-coding genes and noncoding genomic elements”. In: Nucleic acids research 42.D1,

pp. D574–D580.

Luo, Qibin et al. (2010b). “DIMA 3.0: domain interaction map”. In: Nucleic acids research

39.suppl_1, pp. D724–D729.

MacBeath, Gavin and Stuart L Schreiber (2000). “Printing proteins as microarrays for high-

throughput function determination”. In: Science 289.5485, pp. 1760–1763.

Malaguti, Enrico, Michele Monaci, and Paolo Toth (2011). “An exact approach for the vertex

coloring problem”. In: Discrete Optimization 8.2, pp. 174–190.

Maraziotis, Ioannis A, Konstantina Dimitrakopoulou, and Anastasios Bezerianos (2007). “Grow-

ing functional modules from a seed protein via integration of protein interaction and gene

expression data”. In: Bmc Bioinformatics 8.1, p. 408.

Marchand, Hugues (1998). “A polyhedral study of the mixed knapsack set and its use to solve

mixed integer programs”. PhD thesis. UCL-Université Catholique de Louvain.

243

Marchand, Hugues and Laurence A Wolsey (2001). “Aggregation and mixed integer rounding to

solve MIPs”. In: Operations research 49.3, pp. 363–371.

Marchand, Hugues et al. (2002). “Cutting planes in integer and mixed integer programming”. In:

Discrete Applied Mathematics 123.1-3, pp. 397–446.

Marcotte, Edward M et al. (1999a). “A combined algorithm for genome-wide prediction of protein

function”. In: Nature 402.6757, p. 83.

Marcotte, Edward M et al. (1999b). “Detecting protein function and protein-protein interactions

from genome sequences”. In: Science 285.5428, pp. 751–753.

Margot, François (2002). “Pruning by isomorphism in branch-and-cut”. In: Mathematical Pro-

gramming 94.1, pp. 71–90.

Margot, François (2003). “Exploiting orbits in symmetric ILP”. In: Mathematical Programming

98.1-3, pp. 3–21.

Mariano, Rachelle and Stefan Wuchty (2017). “Structure-based prediction of host–pathogen pro-

tein interactions”. In: Current Opinion in Structural Biology 44, pp. 119–124.

Martin, Alexander and Robert Weismantel (1997). “Contributions to general mixed integer knap-

sack problems”. In:

McDowall, Mark D, Michelle S Scott, and Geoffrey J Barton (2008). “PIPs: human protein–protein

interaction prediction database”. In: Nucleic acids research 37.suppl_1, pp. D651–D656.

Mehrotra, Anuj and Michael A Trick (1996). “A column generation approach for graph coloring”.

In: informs Journal on Computing 8.4, pp. 344–354.

Meseguer, Pedro (1997). “Interleaved depth-first search”. In: IJCAI. Vol. 97. Citeseer, pp. 1382–

1387.

Mete, Mutlu et al. (2008). “A structural approach for finding functional modules from large bio-

logical networks”. In: Bmc Bioinformatics 9.9, S19.

Michnick, Stephen W et al. (2011). “Protein-fragment complementation assays for large-scale

analysis, functional dissection and dynamic studies of protein–protein interactions in living

cells”. In: Signal Transduction Protocols, pp. 395–425.

244

Michnick, Stephen W et al. (2016). “Protein-Fragment Complementation Assays for Large-Scale

Analysis, Functional Dissection, and Spatiotemporal Dynamic Studies of Protein–Protein

Interactions in Living Cells”. In: Cold Spring Harbor Protocols 2016.11, pdb–top083543.

Miller, Clair E, Albert W Tucker, and Richard A Zemlin (1960). “Integer programming formulation

of traveling salesman problems”. In: Journal of the ACM (JACM) 7.4, pp. 326–329.

Mishra, Gopa R et al. (2006). “Human protein reference database—2006 update”. In: Nucleic acids

research 34.suppl_1, pp. D411–D414.

Mitchell, John E (2002). “Branch-and-cut algorithms for combinatorial optimization problems”.

In: Handbook of applied optimization 1, pp. 65–77.

Moresco, James J, Paulo C Carvalho, and John R Yates (2010). “Identifying components of pro-

tein complexes in C. elegans using co-immunoprecipitation and mass spectrometry”. In:

Journal of proteomics 73.11, pp. 2198–2204.

Morrison, David R et al. (2014a). “A wide branching strategy for the graph coloring problem”. In:

INFORMS Journal on Computing 26.4, pp. 704–717.

Morrison, David R, Edward C Sewell, and Sheldon H Jacobson (2014b). “An application of the

branch, bound, and remember algorithm to a new simple assembly line balancing dataset”.

In: European Journal of Operational Research 236.2, pp. 403–409.

Morrison, David R et al. (2016). “Branch-and-bound algorithms: A survey of recent advances in

searching, branching, and pruning”. In: Discrete Optimization 19, pp. 79–102.

Morrison, David R et al. (2017). “Cyclic best first search: Using contours to guide branch-and-

bound algorithms”. In: Naval Research Logistics (NRL) 64.1, pp. 64–82.

Mosca, Roberto et al. (2013). “3did: a catalog of domain-based interactions of known three-

dimensional structure”. In: Nucleic acids research 42.D1, pp. D374–D379.

Mrowka, Ralf, Andreas Patzak, and Hanspeter Herzel (2001). “Is there a bias in proteome re-

search?” In: Genome research 11.12, pp. 1971–1973.

Mucha, Peter J et al. (2010). “Community structure in time-dependent, multiscale, and multiplex

networks”. In: science 328.5980, pp. 876–878.

245

Muff, Stefanie, Francesco Rao, and Amedeo Caflisch (2005). “Local modularity measure for net-

work clusterizations”. In: Physical Review E 72.5, p. 056107.

Myers, Chad L et al. (2005). “Discovery of biological networks from diverse functional genomic

data”. In: Genome biology 6.13, R114.

Narayanan, Tejaswini et al. (2011). “Modularity detection in protein-protein interaction networks”.

In: BMC research notes 4.1, p. 569.

Nasirian, Farzaneh, Foad Mahdavi Pajouh, and Balabhaskar Balasundaram (2020). “Detecting a

most closeness-central clique in complex networks”. In: European Journal of Operational

Research 283.2, pp. 461–475.

Navlakha, Saket and Carl Kingsford (2010a). “Exploring biological network dynamics with en-

sembles of graph partitions.” In: Pacific Symposium on Biocomputing. Vol. 15, pp. 166–

177.

Navlakha, Saket et al. (2010b). “Finding biologically accurate clusterings in hierarchical tree de-

compositions using the variation of information”. In: Journal of Computational Biology

17.3, pp. 503–516.

Nemhauser, George L and Laurence A Wolsey (1990). “A recursive procedure to generate all cuts

for 0–1 mixed integer programs”. In: Mathematical Programming 46.1-3, pp. 379–390.

Nepusz, Tamás, Haiyuan Yu, and Alberto Paccanaro (2012). “Detecting overlapping protein com-

plexes in protein-protein interaction networks”. In: Nature methods 9.5, pp. 471–472.

Newman, Mark EJ and Michelle Girvan (2004). “Finding and evaluating community structure in

networks”. In: Physical review E 69.2, p. 026113.

Newman, MEJ (2016). “Community detection in networks: Modularity optimization and maxi-

mum likelihood are equivalent”. In: arXiv preprint arXiv:1606.02319.

Ning, Kang et al. (2010). “Examination of the relationship between essential genes in PPI net-

work and hub proteins in reverse nearest neighbor topology”. In: BMC bioinformatics 11.1,

p. 505.

246

Öncan, Temel, İ Kuban Altınel, and Gilbert Laporte (2009). “A comparative analysis of several

asymmetric traveling salesman problem formulations”. In: Computers & Operations Re-

search 36.3, pp. 637–654.

Orchard, Sandra et al. (2013). “The MIntAct project—IntAct as a common curation platform for

11 molecular interaction databases”. In: Nucleic acids research 42.D1, pp. D358–D363.

Ostrowski, James et al. (2011). “Orbital branching”. In: Mathematical Programming 126.1,

pp. 147–178.

Oughtred, Rose et al. (2016). “BioGRID: a resource for studying biological interactions in yeast”.

In: Cold Spring Harbor Protocols 2016.1, pdb–top080754.

Padberg, Manfred and Giovanni Rinaldi (1991). “A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems”. In: SIAM review 33.1, pp. 60–100.

Padberg, Manfred W, Tony J Van Roy, and Laurence A Wolsey (1985). “Valid linear inequalities

for fixed charge problems”. In: Operations Research 33.4, pp. 842–861.

Pagel, Philipp, Philip Wong, and Dmitrij Frishman (2004a). “A domain interaction map based on

phylogenetic profiling”. In: Journal of molecular biology 344.5, pp. 1331–1346.

Pagel, Philipp et al. (2004b). “The MIPS mammalian protein–protein interaction database”. In:

Bioinformatics 21.6, pp. 832–834.

Pagel, Philipp et al. (2007). “DIMA 2.0—predicted and known domain interactions”. In: Nucleic

acids research 36.suppl_1, pp. D651–D655.

Papadimitriou, Christos H and Kenneth Steiglitz (1998). Combinatorial optimization: algorithms

and complexity. Courier Corporation.

Pattillo, Jeffrey, Nataly Youssef, and Sergiy Butenko (2013). “On clique relaxation models in net-

work analysis”. In: European Journal of Operational Research 226.1, pp. 9–18.

Pazos, Florencio et al. (1997). “Correlated mutations contain information about protein-protein

interaction”. In: Journal of molecular biology 271.4, pp. 511–523.

Pazos, Florencio and Alfonso Valencia (2001). “Similarity of phylogenetic trees as indicator of

protein–protein interaction”. In: Protein engineering 14.9, pp. 609–614.

247

Pazos, Florencio and Alfonso Valencia (2002). “In silico two-hybrid system for the selection of

physically interacting protein pairs”. In: Proteins: Structure, Function, and Bioinformatics

47.2, pp. 219–227.

Pazos, Florencio et al. (2005). “Assessing protein co-evolution in the context of the tree of life

assists in the prediction of the interactome”. In: Journal of molecular biology 352.4,

pp. 1002–1015.

Pazos, Florencio and Alfonso Valencia (2008). “Protein co-evolution, co-adaptation and interac-

tions”. In: The EMBO journal 27.20, pp. 2648–2655.

Pei, Pengjun and Aidong Zhang (2007). “A “seed-refine” algorithm for detecting protein com-

plexes from protein interaction data”. In: IEEE Transactions on Nanobioscience 6.1,

pp. 43–50.

Peng, Junmin et al. (2003). “Evaluation of multidimensional chromatography coupled with tandem

mass spectrometry (LC/LC- MS/MS) for large-scale protein analysis: the yeast proteome”.

In: Journal of proteome research 2.1, pp. 43–50.

Peng, Wei et al. (2012). “Iteration method for predicting essential proteins based on orthology and

protein-protein interaction networks”. In: BMC systems biology 6.1, p. 87.

Peng, Wei et al. (2015). “UDoNC: an algorithm for identifying essential proteins based on protein

domains and protein-protein interaction networks”. In: IEEE/ACM Transactions on Com-

putational Biology and Bioinformatics (TCBB) 12.2, pp. 276–288.

Peng, Xiaoqing et al. (2016). “Protein–protein interactions: detection, reliability assessment and

applications”. In: Briefings in bioinformatics.

Pereira-Leal, José B et al. (2004a). “An exponential core in the heart of the yeast protein interaction

network”. In: Molecular biology and evolution 22.3, pp. 421–425.

Pereira-Leal, Jose B, Anton J Enright, and Christos A Ouzounis (2004b). “Detection of func-

tional modules from protein interaction networks”. In: PROTEINS: Structure, Function,

and Bioinformatics 54.1, pp. 49–57.

248

Pereira-Leal, Jose B, Emmanuel D Levy, and Sarah A Teichmann (2006). “The origins and evo-

lution of functional modules: lessons from protein complexes”. In: Philosophical Transac-

tions of the Royal Society of London B: Biological Sciences 361.1467, pp. 507–517.

Peri, Suraj et al. (2003). “Development of human protein reference database as an initial platform

for approaching systems biology in humans”. In: Genome research 13.10, pp. 2363–2371.

Phan, Dzung T (2012). “Lagrangian duality and branch-and-bound algorithms for optimal power

flow”. In: Operations Research 60.2, pp. 275–285.

Plaimas, Kitiporn, Roland Eils, and Rainer König (2010). “Identifying essential genes in bacterial

metabolic networks with machine learning methods”. In: BMC systems biology 4.1, p. 56.

Prieto, Carlos and Javier De Las Rivas (2006). “APID: agile protein interaction DataAnalyzer”. In:

Nucleic acids research 34.suppl_2, W298–W302.

Przytycka, Teresa M, Mona Singh, and Donna K Slonim (2010). “Toward the dynamic interactome:

it’s about time”. In: Briefings in bioinformatics 11.1, pp. 15–29.

Puzis, Rami, Yuval Elovici, and Shlomi Dolev (2007a). “Fast algorithm for successive computation

of group betweenness centrality”. In: Phys. Rev. E 76 (5), p. 056709. DOI: 10.1103/

PhysRevE.76.056709. URL: https://link.aps.org/doi/10.1103/PhysRevE.76.

056709.

Puzis, Rami, Yuval Elovici, and Shlomi Dolev (2007b). “Finding the most prominent group in

complex networks”. In: AI communications 20.4, pp. 287–296.

Qi, Yanjun, Judith Klein-Seetharaman, and Ziv Bar-Joseph (2005). “Random forest similarity for

protein-protein interaction prediction from multiple sources.” In: Pacific Symposium on

Biocomputing. Pacific Symposium on Biocomputing, pp. 531–542.

Qi, Yanjun, Ziv Bar-Joseph, and Judith Klein-Seetharaman (2006). “Evaluation of different biolog-

ical data and computational classification methods for use in protein interaction prediction”.

In: Proteins: Structure, Function, and Bioinformatics 63.3, pp. 490–500.

249

http://dx.doi.org/10.1103/PhysRevE.76.056709
http://dx.doi.org/10.1103/PhysRevE.76.056709
https://link.aps.org/doi/10.1103/PhysRevE.76.056709
https://link.aps.org/doi/10.1103/PhysRevE.76.056709

Qin, Chao, Yongqi Sun, and Yadong Dong (2017). “A new computational strategy for identifying

essential proteins based on network topological properties and biological information”. In:

PloS one 12.7, e0182031.

Radicchi, Filippo et al. (2004). “Defining and identifying communities in networks”. In: Proceed-

ings of the National Academy of Sciences of the United States of America 101.9, pp. 2658–

2663.

Raghavachari, Balaji et al. (2007). “DOMINE: a database of protein domain interactions”. In:

Nucleic acids research 36.suppl_1, pp. D656–D661.

Ramadan, Emad, Arijit Tarafdar, and Alex Pothen (2004). “A hypergraph model for the yeast pro-

tein complex network”. In: 18th International Parallel and Distributed Processing Sympo-

sium, 2004. Proceedings. IEEE, p. 189.

Ramani, Arun K et al. (2008). “A map of human protein interactions derived from co-expression

of human mRNAs and their orthologs”. In: Molecular systems biology 4.1, p. 180.

Rasti, Saeid and Chrysafis Vogiatzis (2019). “A survey of computational methods in protein–

protein interaction networks”. In: Annals of Operations Research 276.1-2, pp. 35–87.

Reinelt, Gerhard (1991). “TSPLIB traveling salesman problem library”. In: ORSA journal on com-

puting 3.4, pp. 376–384.

Remy, Ingrid and Stephen W Michnick (2015). “Mapping biochemical networks with protein frag-

ment complementation assays”. In: Protein-Protein Interactions: Methods and Applica-

tions, pp. 467–481.

Ren, Jun et al. (2015). “Discovering essential proteins based on PPI network and protein complex”.

In: International journal of data mining and bioinformatics 12.1, pp. 24–43.

Rigaut, Guillaume et al. (1999). “A generic protein purification method for protein complex char-

acterization and proteome exploration”. In: Nature biotechnology 17.10, pp. 1030–1032.

Ritzinger, Ulrike, Jakob Puchinger, and Richard F Hartl (2016). “A survey on dynamic and stochas-

tic vehicle routing problems”. In: International Journal of Production Research 54.1,

pp. 215–231.

250

Rivera, Corban G, Rachit Vakil, and Joel S Bader (2010). “NeMo: network module identification

in Cytoscape”. In: BMC bioinformatics 11.1, S61.

Rives, Alexander W and Timothy Galitski (2003). “Modular organization of cellular networks”.

In: Proceedings of the National Academy of Sciences 100.3, pp. 1128–1133.

Rohila, Jai S et al. (2004). “Improved tandem affinity purification tag and methods for isolation of

protein heterocomplexes from plants”. In: The Plant Journal 38.1, pp. 172–181.

Ropke, Stefan and Jean-François Cordeau (2009). “Branch and cut and price for the pickup and

delivery problem with time windows”. In: Transportation Science 43.3, pp. 267–286.

Ruan, Jianhua and Weixiong Zhang (2008). “Identifying network communities with a high resolu-

tion”. In: Physical Review E 77.1, p. 016104.

Rutherford, Suzanne L et al. (2000). “From genotype to phenotype: buffering mechanisms and the

storage of genetic information”. In: Bioessays 22.12, pp. 1095–1105.

Rysz, Maciej, Foad Mahdavi Pajouh, and Eduardo L Pasiliao (2018). “Finding clique clusters with

the highest betweenness centrality”. In: European Journal of Operational Research 271.1,

pp. 155–164.

Saito, Rintaro, Harukazu Suzuki, and Yoshihide Hayashizaki (2002). “Interaction generality, a

measurement to assess the reliability of a protein–protein interaction”. In: Nucleic acids

research 30.5, pp. 1163–1168.

Saito, Rintaro, Harukazu Suzuki, and Yoshihide Hayashizaki (2003). “Construction of reliable

protein–protein interaction networks with a new interaction generality measure”. In: Bioin-

formatics 19.6, pp. 756–763.

Satuluri, Venu, Srinivasan Parthasarathy, and Duygu Ucar (2010). “Markov clustering of pro-

tein interaction networks with improved balance and scalability”. In: Proceedings of the

First ACM International Conference on Bioinformatics and Computational Biology. ACM,

pp. 247–256.

Savelsbergh, Martin (1997). “A branch-and-price algorithm for the generalized assignment prob-

lem”. In: Operations research 45.6, pp. 831–841.

251

Scott, Michelle S and Geoffrey J Barton (2007). “Probabilistic prediction and ranking of human

protein-protein interactions”. In: BMC bioinformatics 8.1, p. 239.

Segal, Eran, Haidong Wang, and Daphne Koller (2003). “Discovering molecular pathways from

protein interaction and gene expression data”. In: Bioinformatics 19.suppl_1, pp. i264–

i272.

Seringhaus, Michael et al. (2006). “Predicting essential genes in fungal genomes”. In: Genome

research 16.9, pp. 1126–1135.

Sewell, Edward C et al. (2012a). “A BB&R algorithm for minimizing total tardiness on a single

machine with sequence dependent setup times”. In: Journal of Global Optimization 54.4,

pp. 791–812.

Sewell, Edward C and Sheldon H Jacobson (2012b). “A branch, bound, and remember algorithm

for the simple assembly line balancing problem”. In: INFORMS Journal on Computing

24.3, pp. 433–442.

Sharan, Roded et al. (2005). “Conserved patterns of protein interaction in multiple species”. In:

Proceedings of the National Academy of Sciences of the United States of America 102.6,

pp. 1974–1979.

Sherali, Hanif D and Cihan H Tuncbilek (1992). “A global optimization algorithm for polyno-

mial programming problems using a reformulation-linearization technique”. In: Journal of

Global Optimization 2.1, pp. 101–112.

Shi, Lei and Aidong Zhang (2010). “Semi-supervised learning protein complexes from protein in-

teraction networks”. In: Bioinformatics and Biomedicine (BIBM), 2010 IEEE International

Conference on. IEEE, pp. 247–252.

Shih, Yu-Keng and Srinivasan Parthasarathy (2012). “Identifying functional modules in interaction

networks through overlapping Markov clustering”. In: Bioinformatics 28.18, pp. i473–i479.

Shoemaker, Benjamin A and Anna R Panchenko (2007). “Deciphering protein–protein interac-

tions. Part I. Experimental techniques and databases”. In: PLoS computational biology 3.3,

e42.

252

Sidhu, Sachdev S, Wayne J Fairbrother, and Kurt Deshayes (2003). “Exploring protein–protein

interactions with phage display”. In: Chembiochem 4.1, pp. 14–25.

Sidhu, Sachdev S and Shohei Koide (2007). “Phage display for engineering and analyzing protein

interaction interfaces”. In: Current opinion in structural biology 17.4, pp. 481–487.

Silva, Joao Paulo Müller da et al. (2008). “In silico network topology-based prediction of gene

essentiality”. In: Physica A: Statistical Mechanics and its Applications 387.4, pp. 1049–

1055.

Slate, David J and Lawrence R Atkin (1983). “Chess 4.5–the Northwestern University chess pro-

gram”. In: Chess skill in Man and Machine. Springer, pp. 82–118.

Snel, Berend et al. (2000). “STRING: a web-server to retrieve and display the repeatedly occurring

neighbourhood of a gene”. In: Nucleic acids research 28.18, pp. 3442–3444.

Snel, Berend, Peer Bork, and Martijn A Huynen (2002). “The identification of functional mod-

ules from the genomic association of genes”. In: Proceedings of the National Academy of

Sciences 99.9, pp. 5890–5895.

Song, Jimin and Mona Singh (2013). “From hub proteins to hub modules: the relationship between

essentiality and centrality in the yeast interactome at different scales of organization”. In:

PLoS computational biology 9.2, e1002910.

Spielman, Daniel A and Shang-Hua Teng (2008). “A local clustering algorithm for massive

graphs and its application to nearly-linear time graph partitioning”. In: arXiv preprint

arXiv:0809.3232.

Spirin, Victor and Leonid A Mirny (2003). “Protein complexes and functional modules in molec-

ular networks”. In: Proceedings of the National Academy of Sciences 100.21, pp. 12123–

12128.

Sprinzak, Einat and Hanah Margalit (2001). “Correlated sequence-signatures as markers of

protein-protein interaction”. In: Journal of molecular biology 311.4, pp. 681–692.

Sprinzak, Einat, Shmuel Sattath, and Hanah Margalit (2003). “How reliable are experimental

protein–protein interaction data?” In: Journal of molecular biology 327.5, pp. 919–923.

253

Srihari, Sriganesh, Kang Ning, and HonWai Leong (2009). “Refining Markov Clustering for pro-

tein complex prediction by incorporating core-attachment structure”. In: Genome Informat-

ics 23.1, pp. 159–168.

Srinivas, K et al. (2008). “Methodology for phylogenetic tree construction”. In: Journal of Pro-

teomics & Bioinformatics 1, S005–S011.

Stark, Chris et al. (2006). “BioGRID: a general repository for interaction datasets”. In: Nucleic

acids research 34.suppl_1, pp. D535–D539.

Stein, Amelie, Arnaud Céol, and Patrick Aloy (2010). “3did: identification and classification of

domain-based interactions of known three-dimensional structure”. In: Nucleic acids re-

search 39.suppl_1, pp. D718–D723.

Stephenson, Karen and Marvin Zelen (1989). “Rethinking centrality: Methods and examples”. In:

Social networks 11.1, pp. 1–37.

Sun, Siqi et al. (2011). “An iterative network partition algorithm for accurate identification of dense

network modules”. In: Nucleic acids research 40.3, e18–e18.

Szklarczyk, Damian et al. (2014). “STRING v10: protein–protein interaction networks, integrated

over the tree of life”. In: Nucleic acids research 43.D1, pp. D447–D452.

Szklarczyk, Damian et al. (2017). “The STRING database in 2017: quality-controlled protein–

protein association networks, made broadly accessible”. In: Nucleic acids research 45.D1,

pp. D362–D368.

Tague, Patrick and Radha Poovendran (2007). “Modeling adaptive node capture attacks in multi-

hop wireless networks”. In: Ad Hoc Networks 5.6, pp. 801–814.

Tan, Powell Patrick Cheng, Daryanaz Dargahi, and Frederic Pio (2010). “Predicting protein com-

plexes by data integration of different types of interactions”. In: International journal of

computational biology and drug design 3.1, pp. 19–30.

Tanay, Amos et al. (2004). “Revealing modularity and organization in the yeast molecular network

by integrated analysis of highly heterogeneous genomewide data”. In: Proceedings of the

National Academy of Sciences of the United States of America 101.9, pp. 2981–2986.

254

Tang, Xiwei et al. (2011). “A comparison of the functional modules identified from time course

and static PPI network data”. In: BMC bioinformatics 12.1, p. 339.

Tang, Xiwei et al. (2014). “Predicting essential proteins based on weighted degree centrality”.

In: IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 11.2,

pp. 407–418.

Tarcea, V Glenn et al. (2008). “Michigan molecular interactions r2: from interacting proteins to

pathways”. In: Nucleic acids research 37.suppl_1, pp. D642–D646.

Tarjan, Robert (1972). “Depth-first search and linear graph algorithms”. In: SIAM journal on com-

puting 1.2, pp. 146–160.

Taş, Duygu et al. (2013). “Vehicle routing problem with stochastic travel times including soft time

windows and service costs”. In: Computers & Operations Research 40.1, pp. 214–224.

Taylor, Ian W et al. (2009). “Dynamic modularity in protein interaction networks predicts breast

cancer outcome”. In: Nature biotechnology 27.2, pp. 199–204.

Templin, Markus F et al. (2002). “Protein microarray technology”. In: Drug discovery today 7.15,

pp. 815–822.

Terentiev, AA, NT Moldogazieva, and KV Shaitan (2009). “Dynamic proteomics in modeling of

the living cell. Protein-protein interactions”. In: Biochemistry (Moscow) 74.13, pp. 1586–

1607.

Thompson, Peter M, Moriah R Beck, and Sharon L Campbell (2015). “Protein-protein interaction

analysis by nuclear magnetic resonance spectroscopy”. In: Protein-Protein Interactions:

Methods and Applications, pp. 267–279.

Tomita, Etsuji, Akira Tanaka, and Haruhisa Takahashi (2006). “The worst-case time complexity for

generating all maximal cliques and computational experiments”. In: Theoretical computer

science 363.1, pp. 28–42.

Tong, Amy Hin Yan et al. (2001). “Systematic genetic analysis with ordered arrays of yeast deletion

mutants”. In: Science 294.5550, pp. 2364–2368.

255

Tong, Amy Hin Yan et al. (2002). “A combined experimental and computational strategy to de-

fine protein interaction networks for peptide recognition modules”. In: Science 295.5553,

pp. 321–324.

Tong, Amy Hin Yan et al. (2004). “Global mapping of the yeast genetic interaction network”. In:

science 303.5659, pp. 808–813.

Toth, Paolo and Daniele Vigo (2014). Vehicle routing: problems, methods, and applications. SIAM.

Trinkle-Mulcahy, Laura et al. (2008). “Identifying specific protein interaction partners using quan-

titative mass spectrometry and bead proteomes”. In: The Journal of cell biology 183.2,

pp. 223–239.

Tsoka, Sophia and Christos A Ouzounis (2000). “Prediction of protein interactions: metabolic

enzymes are frequently involved in gene fusion”. In: Nature Genetics 26.2, pp. 141–143.

Uchoa, Eduardo et al. (2008). “Robust branch-cut-and-price for the capacitated minimum spanning

tree problem over a large extended formulation”. In: Mathematical Programming 112.2,

pp. 443–472.

Uetz, Peter et al. (2000). “A comprehensive analysis of protein-protein interactions in Saccha-

romyces cerevisiae”. In: Nature 403.6770, p. 623.

Ulitsky, Igor and Ron Shamir (2007). “Identification of functional modules using network topology

and high-throughput data”. In: BMC systems biology 1.1, p. 8.

Ulitsky, Igor and Ron Shamir (2009). “Identifying functional modules using expression profiles

and confidence-scored protein interactions”. In: Bioinformatics 25.9, pp. 1158–1164.

Valente, Guilherme T et al. (2013). “The development of a universal in silico predictor of protein-

protein interactions”. In: PLoS One 8.5, e65587.

Vanderbeck, François (2011). “Branching in branch-and-price: a generic scheme”. In: Mathemati-

cal Programming 130.2, pp. 249–294.

Venkatesan, Kavitha et al. (2009). “An empirical framework for binary interactome mapping”. In:

Nature methods 6.1, pp. 83–90.

256

Veremyev, Alexander, Oleg A Prokopyev, and Eduardo L Pasiliao (2017). “Finding groups with

maximum betweenness centrality”. In: Optimization Methods and Software 32.2, pp. 369–

399.

Vila, Mariona and Jordi Pereira (2014). “A branch-and-bound algorithm for assembly line worker

assignment and balancing problems”. In: Computers & Operations Research 44, pp. 105–

114.

Voevodski, Konstantin, Shang-Hua Teng, and Yu Xia (2009). “Finding local communities in pro-

tein networks”. In: BMC bioinformatics 10.1, p. 297.

Vogiatzis, Chrysafis et al. (2015). “An integer programming approach for finding the most and the

least central cliques”. In: Optimization Letters 9.4, pp. 615–633.

Vogiatzis, Chrysafis and Mustafa Can Camur (2019). “Identification of Essential Proteins Using

Induced Stars in Protein–Protein Interaction Networks”. In: INFORMS Journal on Com-

puting 31.4, pp. 703–718. DOI: 10.1287/ijoc.2018.0872.

Von Mering, Christian et al. (2002). “Comparative assessment of large-scale data sets of protein-

protein interactions”. In: Nature 417.6887, p. 399.

Von Mering, Christian et al. (2005). “STRING: known and predicted protein–protein associa-

tions, integrated and transferred across organisms”. In: Nucleic acids research 33.suppl_1,

pp. D433–D437.

Wallace, Mark and Joachim Schimpf (2002). “Finding the right hybrid algorithm–A combinatorial

meta-problem”. In: Annals of Mathematics and Artificial Intelligence 34.4, pp. 259–269.

Wan, Kyu Kim, Jong Park, and Jung Keun Suh (2002). “Large scale statistical prediction of protein-

protein interaction by potentially interacting domain (PID) pair”. In: Genome Informatics

13, pp. 42–50.

Wang, Haidong et al. (2009). “A complex-based reconstruction of the Saccharomyces cerevisiae

interactome”. In: Molecular & Cellular Proteomics 8.6, pp. 1361–1381.

257

http://dx.doi.org/10.1287/ijoc.2018.0872

Wang, Haixun et al. (2002). “Clustering by pattern similarity in large data sets”. In: Proceedings of

the 2002 ACM SIGMOD international conference on Management of data. ACM, pp. 394–

405.

Wang, James Z et al. (2007). “A new method to measure the semantic similarity of GO terms”. In:

Bioinformatics 23.10, pp. 1274–1281.

Wang, Jianxin et al. (2011). “A fast hierarchical clustering algorithm for functional modules dis-

covery in protein interaction networks”. In: IEEE/ACM Transactions on Computational

Biology and Bioinformatics 8.3, pp. 607–620.

Wang, Jianxin et al. (2012a). “Identification of essential proteins based on edge clustering coef-

ficient”. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 9.4,

pp. 1070–1080.

Wang, Jianxin et al. (2013). “Identifying essential proteins based on protein domains in protein-

protein interaction networks”. In: Bioinformatics and Biomedicine (BIBM), 2013 IEEE In-

ternational Conference on. IEEE, pp. 133–138.

Wang, Pei, Xinghuo Yu, and Jinhu Lu (2014). “Identification and evolution of structurally domi-

nant nodes in protein-protein interaction networks”. In: IEEE transactions on biomedical

circuits and systems 8.1, pp. 87–97.

Wang, Yi-Ming, Shi-Hao Chen, and Mango C-T Chao (2012b). “An Efficient Hamiltonian-cycle

power-switch routing for MTCMOS designs”. In: 17th Asia and South Pacific Design Au-

tomation Conference. IEEE, pp. 59–65.

Wilson, Allan C, Steven S Carlson, and Thomas J White (1977). “Biochemical evolution”. In:

Annual review of biochemistry 46.1, pp. 573–639.

Winzeler, Elizabeth A et al. (1999). “Functional characterization of the S. cerevisiae genome by

gene deletion and parallel analysis”. In: science 285.5429, pp. 901–906.

Wojcik, Jérôme and Vincent Schächter (2001). “Protein-protein interaction map inference using

interacting domain profile pairs”. In: Bioinformatics 17.suppl_1, S296–S305.

258

Wolsey, Laurence A and George L Nemhauser (1999). Integer and combinatorial optimization.

Vol. 55. John Wiley & Sons.

Wu, Jianmin et al. (2009a). “Integrated network analysis platform for protein-protein interactions”.

In: Nature methods 6.1, pp. 75–77.

Wu, Min et al. (2009b). “A core-attachment based method to detect protein complexes in PPI

networks”. In: BMC bioinformatics 10.1, p. 169.

Wuchty, Stefan (2002). “Interaction and domain networks of yeast”. In: Proteomics 2.12, pp. 1715–

1723.

Wuchty, Stefan (2014). “Controllability in protein interaction networks”. In: Proceedings of the

National Academy of Sciences 111.19, pp. 7156–7160.

Wuchty, Stefan and Peter F Stadler (2003). “Centers of complex networks”. In: Journal of Theo-

retical Biology 223.1, pp. 45–53.

Wuchty, Stefan and Eivind Almaas (2005). “Peeling the yeast protein network”. In: Proteomics

5.2, pp. 444–449.

Wuchty, Stefan, Toni Boltz, and Hande Küçük-McGinty (2017). “Links between critical proteins

drive the controllability of protein interaction networks”. In: Proteomics 17.10.

Xenarios, Ioannis et al. (2000). “DIP: the database of interacting proteins”. In: Nucleic acids re-

search 28.1, pp. 289–291.

Xenarios, Ioannis et al. (2002). “DIP, the Database of Interacting Proteins: a research tool for study-

ing cellular networks of protein interactions”. In: Nucleic acids research 30.1, pp. 303–305.

Xiao, Qianghua et al. (2015). “Identifying essential proteins from active PPI networks constructed

with dynamic gene expression”. In: BMC genomics 16.3, S1.

Xiong, Hui et al. (2005). “Identification of functional modules in protein complexes via hyper-

clique pattern discovery.” In: Pacific symposium on biocomputing. Vol. 10, pp. 221–232.

Xu, Bo, Hongfei Lin, and Zhihao Yang (2011). “Ontology integration to identify protein complex

in protein interaction networks”. In: Proteome science 9.1, S7.

259

Yan, Yuling and Gerard Marriott (2003). “Analysis of protein interactions using fluorescence tech-

nologies”. In: Current opinion in chemical biology 7.5, pp. 635–640.

Yang, Yong, Hong Wang, and Dorothy A Erie (2003). “Quantitative characterization of biomolecu-

lar assemblies and interactions using atomic force microscopy”. In: Methods 29.2, pp. 175–

187.

Yu, Haiyuan et al. (2004). “Genomic analysis of essentiality within protein networks”. In: TRENDS

in Genetics 20.6, pp. 227–231.

Yu, Haiyuan et al. (2007). “The importance of bottlenecks in protein networks: correlation with

gene essentiality and expression dynamics”. In: PLoS computational biology 3.4, e59.

Yu, Haiyuan et al. (2008). “High-quality binary protein interaction map of the yeast interactome

network”. In: Science 322.5898, pp. 104–110.

Yu, Liang, Lin Gao, and ChuiLiang Kong (2011). “Identification of core–attachment complexes

based on maximal frequent patterns in protein–protein interaction networks”. In: Pro-

teomics 11.19, pp. 3826–3834.

Zahiri, Javad, Joseph Hannon Bozorgmehr, and Ali Masoudi-Nejad (2013). “Computational pre-

diction of protein–protein interaction networks: algorithms and resources”. In: Current ge-

nomics 14.6, pp. 397–414.

Zaki, Nazar, Dmitry Efimov, and Jose Berengueres (2013). “Protein complex detection using inter-

action reliability assessment and weighted clustering coefficient”. In: BMC bioinformatics

14.1, p. 163.

Zhang, Bing et al. (2008a). “From pull-down data to protein interaction networks and complexes

with biological relevance”. In: Bioinformatics 24.7, pp. 979–986.

Zhang, Qiangfeng Cliff et al. (2012). “Structure-based prediction of protein-protein interactions on

a genome-wide scale”. In: Nature 490.7421, p. 556.

Zhang, Ren, Hong-Yu Ou, and Chun-Ting Zhang (2004). “DEG: a database of essential genes”.

In: Nucleic acids research 32.suppl_1, pp. D271–D272.

260

Zhang, Ren and Yan Lin (2008b). “DEG 5.0, a database of essential genes in both prokaryotes and

eukaryotes”. In: Nucleic acids research 37.suppl_1, pp. D455–D458.

Zhang, Shihua, Xuemei Ning, and Xiang-Sun Zhang (2006a). “Identification of functional mod-

ules in a PPI network by clique percolation clustering”. In: Computational biology and

chemistry 30.6, pp. 445–451.

Zhang, Shihua et al. (2006b). “Prediction of protein complexes based on protein interaction data

and functional annotation data using kernel methods”. In: LECTURE NOTES IN COM-

PUTER SCIENCE 4115, p. 514.

Zhang, Shihua et al. (2010). “Determining modular organization of protein interaction networks

by maximizing modularity density”. In: BMC systems biology 4.2, S10.

Zhang, Wei et al. (2016a). “A New Method for Identifying Essential Proteins by Measuring Co-

Expression and Functional Similarity”. In: IEEE transactions on nanobioscience 15.8,

pp. 939–945.

Zhang, Xue, Jin Xu, and Wang-xin Xiao (2013). “A new method for the discovery of essential

proteins”. In: PloS one 8.3, e58763.

Zhang, Xue et al. (2016b). “An ensemble framework for identifying essential proteins”. In: BMC

bioinformatics 17.1, p. 322.

Zhang, Xue, Marcio Luis Acencio, and Ney Lemke (2016c). “Predicting essential genes and pro-

teins based on machine learning and network topological features: a comprehensive re-

view”. In: Frontiers in physiology 7.

Zhang, Yijia et al. (2016d). “A method for predicting protein complex in dynamic PPI networks”.

In: BMC bioinformatics 17.7, p. 229.

Zhao, Bihai et al. (2014). “Prediction of essential proteins based on overlapping essential mod-

ules”. In: IEEE transactions on nanobioscience 13.4, pp. 415–424.

Zheng, Huiru, Haiying Wang, and David H Glass (2008). “Integration of genomic data for infer-

ring protein complexes from global protein–protein interaction networks”. In: IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38.1, pp. 5–16.

261

Zhong, Haonan, Foad Mahdavi Pajouh, and Oleg A Prokopyev (2020). “Finding influential groups

in networked systems: the most degree-central clique problem”. In: Omega, p. 102262.

Zhong, Jiancheng et al. (2013). “Prediction of essential proteins based on gene expression pro-

gramming”. In: BMC genomics 14.4, S7.

Zhong, Jiancheng et al. (2015). “A feature selection method for prediction essential protein”. In:

Tsinghua Science and Technology 20.5, pp. 491–499.

Zotenko, Elena et al. (2008). “Why do hubs in the yeast protein interaction network tend to be

essential: reexamining the connection between the network topology and essentiality”. In:

PLoS computational biology 4.8, e1000140.

262

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	INTRODUCTION
	Outline

	BRANCH-AND-BOUND ALGORITHM
	Introduction
	Algorithm
	B&B components
	Search strategies
	Depth-first search
	Breadth-first search
	Best-first search
	Cyclic best-first search

	Branching strategies
	Binary branching
	Non-binary branching

	Pruning strategies
	Lower bounds
	Dominance rules
	Cutting planes
	Column generation

	PROTEIN-PROTEIN INTERACTION NETWORKS
	Introduction
	Graph representations for protein interactions
	Experimental techniques
	Yeast two hybrid system (Y2H)
	Affinity purification followed by mass spectrometry (AP/MS)

	Protein-protein interaction databases
	Reliability of databases

	PROTEIN COMPLEXES AND FUNCTIONAL MODULES
	Introduction
	Detecting protein complexes and functional modules
	Identifying protein complexes based on interesting structures
	Identifying protein complexes by clustering techniques
	Identifying protein complexes by multiple data integration
	Identifying protein complexes in dynamic PPINs

	ESSENTIALITY AND CENTRALITY
	Protein essentiality
	Identification of essential proteins
	Topology-based methods
	Integrating multiple sources

	NOVEL GROUP CENTRALITY METRICS FOR STUDYING ESSENTIALITY IN PROTEIN-PROTEIN INTERACTION NETWORKS
	Notation
	Group centrality
	Problem definitions
	Complexity
	Structure degree centrality
	Structure closeness centrality
	Structure betweenness centrality

	MATHEMATICAL FORMULATIONS
	Structure degree centrality
	Representative structure
	Induced star structure
	Clique structure
	A different formulation for structure degree centrality

	Structure closeness centrality
	Representative structure
	Star and clique structures

	Structure betweenness centrality
	Representative structure
	Star and clique structures

	COMBINATORIAL BRANCH-AND-BOUND
	Interesting properties
	Structure betweenness centrality
	Properties of the betweenness centrality measure
	Search tree structure
	Upper bound

	Structure closeness centrality
	Properties of the closeness centrality measure
	Search tree structure
	Lower bound

	Structure degree centrality
	Properties of the degree centrality measure
	Search tree structure
	Upper bound

	COLUMN GENERATION
	Dantzig-Wolfe decomposition
	Master problem
	Pricing problem

	Column generation
	Initial solution
	Representative
	Clique and star

	ASYMMETRIC PROBABILISTIC MINIMUM-COST HAMILTONIAN CYCLE PROBLEM CONSIDERING ARC AND VERTEX FAILURES
	Introduction

	PROBLEM DEFINITION AND MATHEMATICAL FORMULATIONS
	Notations
	The probabilistic route and the modified MTZ constraints
	The formulations
	IP 1 (intuitive direct formulations for the chance constraint)
	IP 2 (efficient direct formulations for the chance constraint)
	IP 3 (intuitive recursive formulations for the chance constraint)
	IP 4 (efficient recursive formulations for the chance constraint)
	Complete exact MIP formulations for the APMCHCP
	Efficient direct APMCHCP formulation
	Intuitive direct APMCHCP formulation
	Intuitive recursive APMCHCP formulation
	Efficient recursive APMCHCP formulation

	COMBINATORIAL BRANCH-AND-BOUND
	Data preprocessing
	Tightening of the probability intervals
	Construction of precedences
	Elimination of arcs

	The search tree structure
	Feasibility rules
	Lower bound
	Upper bound
	The complete CBB algorithm

	COMPUTATIONAL RESULTS
	Novel group centrality metrics for studying essentiality in protein-protein interaction networks
	Experimental setup
	Protein-protein interaction network
	Degree centrality
	Comparing the CBB algorithm to the mathematical formulations
	Analysis of top ranked proteins per metric
	Analysis of top ranked proteins per metric using membership measure

	Closeness centrality
	Comparing the CBB algorithm to the mathematical formulations
	Analysis of top ranked proteins per metric
	Analysis of top ranked proteins per metric using membership measure

	Betweenness centrality
	Comparing the CBB algorithm to the mathematical formulations
	Analysis of top ranked proteins per metric
	Analysis of top ranked proteins per metric using membership measure

	Asymmetric probabilistic minimum-cost Hamiltonian cycle problem considering arc and vertex failures
	Data preprocessing
	Comparison of the CBB algorithm and MIP formulations
	Further Information on the CBB algorithm
	Impact analysis of the feasibility rules

	CONCLUSION
	Novel group centrality metrics for studying essentiality in protein-protein interaction networks
	Asymmetric Probabilistic Minimum-cost Hamiltonian Cycle Problem Considering Arc and Vertex Failures

	REFERENCES

