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ABSTRACT 

Cancer is one of the leading causes of death in the United States. The Surveillance, 

Epidemiology, and End Results (SEER) data from the National Cancer Institute is a population 

based cancer registry, which geographically covers 34.6% of the US population. The SEER 

database was used to model surivial time for 21,524 patients with primary malignant brain 

tumors. The Kaplan-Meier surivial curves and the logrank test were used to compare the effect of 

treatment in each grade. The Cox Proportional Hazard Model was used to show the simultaneous 

effect of treatment, sex, and age on the risk of death for patients in each grade. Elderly patients 

had the lowest survival time, while adults had the highest. The risk of death for males was 

slightly higher than females. The results demonstrate that the survival curves of the three 

treatment groups only significantly differ among participants with grade 4 primary brain tumors. 

 

  



 

iv 

ACKNOWLEDGMENTS 

I would like to acknowledge Dr. Bong-Jin Choi for being my advisor during my graduate 

research and taking the time to help me learn and grow throughout my time at North Dakota 

State University. Also, I would like to say how much I appreciate my other committee members 

Dr. Gang Shen and Dr. Rick Jansen for their time and consideration on my research. 

 

  



 

v 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ..................................................................................................................... viii 

1. INTRODUCTION ...................................................................................................................... 1 

2. SCIENTIFIC REVIEW ............................................................................................................... 3 

2.1. Censoring ............................................................................................................................. 3 

2.2. Survival Function ................................................................................................................. 4 

2.3. Hazard Function ................................................................................................................... 5 

2.4. Kaplan-Meier Estimate ........................................................................................................ 5 

2.5. The Logrank Test ................................................................................................................. 6 

2.5.1. The Pairwise Logrank Test ............................................................................................ 7 

2.6. Cox Proportional Hazards Model ......................................................................................... 7 

2.6.1. Hazard Ratio .................................................................................................................. 8 

2.6.2. Partial Likelihood Function ........................................................................................... 9 

2.6.3. Assumptions of the Cox Proportional Hazards Model .................................................. 9 

3. METHODOLOGY ................................................................................................................... 11 

3.1. SEER Data.......................................................................................................................... 11 

3.2. Brain Cancer Background .................................................................................................. 12 

3.3. Data Cleaning ..................................................................................................................... 13 

3.4. Analysis .............................................................................................................................. 14 

4. RESULTS ................................................................................................................................. 15 

4.1. Kaplan-Meier Estimator for Treatment in Each Grade ...................................................... 16 

4.2. The Cox Proportional Hazards Model ............................................................................... 22 



 

vi 

5. CONCLUSION ......................................................................................................................... 26 

6. FUTURE RESEARCH ............................................................................................................. 27 

REFERENCES ............................................................................................................................. 28 

APPENDIX. R CODE .................................................................................................................. 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

LIST OF TABLES 

Table Page 

1. Grading Scale .................................................................................................................... 13 

2.  Results of Pairwise Logrank Test from Grade 4 ............................................................... 22 

3.  Cox Proportional Hazards Model Output ......................................................................... 23 

 

  

file:///C:/Users/Madison/Downloads/TEMPLATE_-_Non-Numbered_Headings.docx%23_Toc410383854


 

viii 

LIST OF FIGURES 

Figure Page 

1. Right Censoring .................................................................................................................. 3 

2. Left Censoring .................................................................................................................... 4 

3. Interval Censoring ............................................................................................................... 4 

4. Graph of Grade ................................................................................................................. 16 

5. Graph of Kaplan-Meier Survival Curve for Grade ........................................................... 17  

6. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 1 .................................. 18 

7. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 2 .................................. 19 

8. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 3 .................................. 20 

9. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 4 .................................. 21 

10. Schoenfeld Residual Plot of Beta(t) for Grade ................................................................. 23 

11. Hazard Ratios in Cox Proportional Hazards Model ......................................................... 25 

 

 

 



 

1 

 

1. INTRODUCTION 

Survival analysis is used to analyze data to determine the time it takes for an event to 

occur. For survival analysis, the event of interest is usually death, but it can also be time till 

failure, time till remission, or end of life for a machine part. In engineering this is called 

reliability analysis. Survival analysis estimates the survival time based on one or more predictors 

which are commonly referred to as covariates. A fundamental aspect of survival analysis is 

censoring. Censoring occurs when the subject does not experience the event of interest in our 

study time frame and is therefore censored. Survival analysis includes subjects that are censored 

on the estimation of survival time by keeping them in the risk set until they are censored. The 

concept of censoring, or the idea that we measure someone that does not experience our event of 

interest, is the difference between survival analysis and regression.  

There are many methods in survival analysis, including the Kaplan-Meier estimator, the 

logrank test, and the Cox Proportional Hazards Model. The Kaplan-Meier estimator takes into 

account a single categorical variable on survival time. The logrank test is the most popular way 

of comparing the survival of groups (Bland & Altman, 2004). The logrank test compares the 

survival curves from the Kaplan-Meier estimator to determine if there is a significant difference 

between the values of the covariate on survival time. The Cox Proportional Hazards Model takes 

into the account the effect of several variables simultaneously, and the model allows for 

continuous and categorical variables. This analysis will use the National Cancer Institutes 

Surveillance, Epidemiology, and End Results (SEER) data to model survival times of 21,524 

patients with primary malignant brain tumors.   

Survival curves are shown by the Kaplan-Meier estimator for grade and treatments in 

each grade. The logrank test will be used to the compare the Kaplan-Meier survival curves for 
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treatment in each grade. When there is a significant difference between the survival curves, the 

pairwise logrank test will be used to see which pairs of survival curves are different from each 

other by testing each pair of treatments for a significant difference. There are 3 comparisons total 

from the pairwise logrank test. A Cox Proportional Hazards Model is also used to model the 

effect of treatment, age, and sex on survival time. The goal of my research is show the effect of 

treatment in each grade on survival times for patients with primary malignant brain tumors, 

adjusting for age and sex.  
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2. SCIENTIFIC REVIEW 

The scientific review will cover fundamental concepts in survival analysis including 

censoring, the survival function, the hazard function, the Kaplan-Meier estimator, the logrank 

test, and the Cox Proportional Hazards Model. 

2.1. Censoring 

There are three different types of censoring: left, right, and interval, with right being the 

most common. Right censoring is when the observed individual drops out or does not experience 

the event of interest during the study period. Left censoring is when the event has occurred 

before the study began, but it is unknown at what exact time. Interval censoring is when the 

event occurred in between two periods of time. In this paper, right censoring will be used 

because not all patients die from their cancer, so the event of interest does not happen during the 

study period. Illustratations of the 3 types of censoring are shown below. In figure 1, subjects 2 

and 4 are right censored. In figure 2, subjects 2 and 3 are left censored since the study began at 

time 5. In figure 3, subjects 1, 3, and 5 are interval censored since the individuals were measured 

at time 5 and did not have an event, but had an event at time 10 when they were measured next. 

 

Figure 1. Right Censoring. 



 

4 

 

 

Figure 2. Left Censoring. 

 

Figure 3. Interval Censoring. 

2.2. Survival Function 

Let T represent the survival time where 𝑇 ≥ 0 and 𝑓(𝑡) is the probability distribution 

function (PDF).  The cumulative distribution function (CDF) is 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) where 𝐹(𝑡) 

represents the probability of failure by some time 𝑡. The CDF gives the probability that the 

survival time is less than or equal to some time 𝑡. From the CDF, one can calculate the survival 

function. The survival function is: 

 𝑆(𝑡) = 1 − 𝐹(𝑡) (1) 



 

5 

 

This can also be written as 𝑆(𝑡) = 𝑃(𝑇 > 𝑡). 

2.3. Hazard Function 

The hazard function λ is the instantaneous risk of dying at time t, given the individual has 

survived till time t. It is written as: 

 
λ(t) = lim

Δ𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡)|(𝑇 ≥ 𝑡))

Δ𝑡
 =

𝑓(𝑡)

𝑆(𝑡)
 

(2) 

2.4. Kaplan-Meier Estimate 

The Kaplan-Meier estimator is one of the most common and simplest (Goel et. al., 2010) 

survival estimates; Kaplan and Meier’s paper Nonparametric Estimation from Incomplete 

Observations has been cited over 57,000 times. The Kaplan-Meier estimator, also known as the 

product limit, is a non-parametric way to estimate the survival time of time to event data. The 

estimation is by a step function with discontinuities at time of death (or any event of interest). 

Time is split into many small intervals and the Kaplan-Meier estimate is the probability of 

surviving to a given length of time.  

The Kaplan-Meier estimator was createdfrom the need to estimate the proportion P(t) of 

items in a population that exceed some time t from incomplete data, without making any 

assumptions about the form of P(t). The formulation of the Kaplan-Meier estimator is as follows. 

Suppose you have a random sample of n values (T1, T2, …. , TN) of a random variable where 

each value has a 1/N probability. The 𝐹(t) value, or sample distribution, equals 1/N times the 

number of values in your random sample that are less than t. The estimate is a step function with 

discontinuities at the time of observed deaths even when observations are incomplete. Samples 

are observed lifetimes, where ti=min(Ti, Li) where Ti is the lifetime and Li is the limit of the 
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observation, both Ti, Li ≥ 0 . If Ti ≤ Li then ti = Ti (a death), or Li < Ti and ti = Li (a loss). When 

there are no losses, this reduced to the binomial estimate. The formula is written as: 

 
𝑃(𝑡) = ∏ 1 −

𝑑𝑖

𝑛𝑖
𝑖,𝑡𝑖<𝑡

 
(3) 

Where di is the number of events at time t, and ni is the number of subjects at risk prior to time t. 

The patients at risk can be defined as the number of patients that have not experienced an event 

yet. To find the survival probability at a specified time, multiply all previously calculated 

survival times for every time interval prior to the specified time (Kleinbaum & Klein, 2013).  

It is a non-parametric function meaning there are no (possibly incorrect) assumptions made about 

the form of the distribution. The important property of non-parametric estimators is that if the 

age scale is transformed from t to t*=f(t), where f is strictly increasing. Fhat*(f(t)), the distribution 

function, is then equivalent to Fhat(t). Kaplan-Meier estimate is an example of univariate analysis. 

It works with a single categorical variable like gender or treatment. To compare the survival 

between groups, the logrank test is used. 

2.5. The Logrank Test 

The logrank test is a comparison between survival curves. It does not require any 

assumptions about the shape of the survival curve or distribution of survival times (Bland & 

Altman, 2004). The null hypothesis for the logrank test is that there is no significant difference 

between the survival curves, or there is no difference in probability of experiencing an event. At 

each time of event the logrank test compares the observed number of deaths to the expected 

number of deaths if there was really no difference in survival curves. If survival time is censored 

the individual is not considered at risk of dying in the subsequent calculations. The logrank test 

cannot determine the size of the difference, rather just an overall difference in probabilities of 
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events occurring (Bland & Altman, 2004). The modified Peto-Peto’s weighted logrank test will 

be used when the survival curves cross. This is because the regular logrank test has a large bias 

when the survival curves cross (Bland & Altman, 2004). 

2.5.1. The Pairwise Logrank Test 

The pairwise logrank test is for pairwise comparisons between levels in a group. For 

example, if there are three groups, it can tell you which curves are different than eachother rather 

than an overall difference between the three. It also uses corrections for multiple testing. I will 

use the Benjamini Hochberg method for multiple comparisons. 

2.6. Cox Proportional Hazards Model 

The Cox Proportional Hazards Model proposed by Cox in 1972 is a semiparametric 

model used to calculate survival times based on the simultaneous effect of several covariates. 

The model is expressed by a hazard function, ℎ(𝑡): 

 ℎ(𝑡) = ℎ0(𝑡) ∗ exp (𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝) (4) 

Where t represents the survival time, ℎ(𝑡) is the hazard function based on p covariates, ℎ0 is the 

baseline hazard which represents the value of the hazard if all the covaraties are equal to 0, and 

(𝛽1, 𝛽2, … , 𝛽𝑝) are the coefficients for each of the p covariates. The hazard ratio is exp (𝛽1 +

𝛽2 + ⋯ + 𝛽𝑝). By maximizing the partial likelihood the parameter estimates are obtained. 

The baseline hazard, ℎ0(𝑡) is the probability of experiencing the event of interest when 

all covariates are equal to 0. This is the only time-dependent part of the model, but an 

assumption of this test is that when comparing two indivduals, their hazard is proportional to 

each other regardless of time t. The baseline hazard can take any form, but the covariates enter 

the model linearly, making this a semiparametric model. The Cox Proportional Hazards Model 

cannot take into account any nonlinear effects, to do so one must use the extended cox model for 
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time changing covariates; this model is used because nonlinear effects violate the proportional 

hazard assumption. The baseline hazard is a function of time, but does not involve the covariate, 

while the exponential sum involves the covariates but not the time (Kleinbaum & Klein, 2013). 

Using the model above, if one of the covariates effects did change depending on time, that effect 

would not be taken into account in the model and rather the overall average effect would be used.  

2.6.1. Hazard Ratio 

The 𝑒𝑥𝑝(𝛽𝑖) is called the hazard ratio. 𝛽𝑖, or the coefficient determines the impact size of 

the covariates. A value of 𝛽𝑖 greater than zero, or in other words 𝑒𝑥𝑝(𝛽𝑖) greater than one, 

decreases the survival time and is a poor diagnostic factor. The opposite is also true, a negative 

value of 𝛽𝑖 , or an 𝑒𝑥𝑝(𝛽𝑖) less than 1, increases the survival time and is considered good 

diagnostic factor. The hazard ratio (HR) is the ratio of the expected hazards corresponding to two 

levels of a covariate in a discrete case. In a continuous case a hazard ratio is the risk of event if 

the covariate in question increases by 1 unit. A way to compare two hazard functions: 

 
𝐻𝑅(𝑡) =

ℎ2(𝑡)

ℎ1(𝑡)
 

(5) 

Where ℎ2(𝑡) is the expected hazard of a patient in treatment A, and ℎ1(𝑡) is the expected hazard 

of a patient in a control group. The hazard ratio in this case represents the instantaneous risk at 

any point during the study period of a patient in treatment A compared to a patient in the control 

group. For example, say the hazard ratio was .5, then half of the patients in treatment A were 

experiencing an event compared to the control group. The proportional hazards assumption is 

that the hazard ratio, or effect size of the covariates, doesn’t depend on time. This is equivalent to 

saying HR(t)=HR (Zahid, 2019). 
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2.6.2. Partial Likelihood Function 

The coefficients are estimated through the partial likelihood function. “The partial 

likelihood is a product over the observed failure times of conditional probabilities, of seeing the 

observed failure, given the risk set at that time and that one failure is to happen.” (“The 

Proportional Hazards Regression Model,” n.d.). The partial likelihood uses (𝑋𝑖, 𝛿𝑖, 𝑍𝑖) for each 

individual i. 𝑋𝑖 is the failure time forpatient i,, either event or censored, 𝛿𝑖 is the censoring 

indicator, and 𝑍𝑖 is the value of the covariates. 𝑋𝑖 can be any non-negative value and 𝛿𝑖 can be 

either 0 for censored or 1 for an event. 𝑍𝑖 can be any possible value for the covariate. The risk 

set, or the patients at risk for failure at time t is denoted as (𝑡) = { 𝑖 ∶  𝑋𝑖 ≥ 𝑡 }. At each failure 

time 𝑋𝑗, the contribution to the partial likelihood is  

 
𝐿(𝐵) =  ∏ [

𝜆𝑖(𝑋𝑖)

∑ 𝜆𝑗(𝑋𝑖)𝑗∈𝑅(𝑋𝑖)
]

𝛿𝑖
𝑛

𝑖=1

 

=  ∏ [
𝜆0(𝑋𝑖)exp(𝛽′𝑍𝑖)

∑ 𝜆0(𝑋𝑖)𝑗∈𝑅(𝑋𝑖) exp(𝛽′𝑍𝑗)
]

𝛿𝑖
𝑛

𝑖=1

 

= ∏ [
exp(𝛽′𝑍𝑖)

∑ exp(𝛽′𝑍𝑗)𝑗∈𝑅(𝑋𝑖)
]

𝛿𝑖
𝑛

𝑖=1

 

(6) 

 The partial likelihood is the value of exp (𝑍𝑖) at the observed failure time, divided by the 

sum of all other values of exp (𝑍𝑗), where the j individuals are in the risk set at the failure time. 

This value is multiplied over every failure time to get the value of the coefficient. The partial 

likelihood allows h0(t), the baseline hazard function, to be excluded during the estimation of 

beta. The baseline hazard function can take any form, and is the nonparametric part of the model.  

2.6.3. Assumptions of the Cox Proportional Hazards Model 

Assumptions of the test: 



 

10 

 

1. Survival times are independent between individuals in the sample. 

2. There is a multiplicative effect between the predictors and the hazard. 

3. There is a constant hazard ratio over time, or in other words HR(t)=HR. 

An important assumption of the Cox Model is the proportional hazards assumption. This 

states that for any two groups, the hazard ratio remains constant over time (independent of time) 

and proportional. There are a few ways to check this assumption. One way is if the hazard 

functions for any two groups cross when graphed then the proportional hazard assumption is not 

met. It is also possible for the proportional hazard assumption to not be met when the hazard 

functions do not cross. Another way to check is to plot the scaled Schoenfeld residuals. Any non-

random pattern against time on the plot is an indication of non-proportional hazards (Kleinbaum 

& Klein, 2013). A third way is to add an interaction term with time and see whether the term is 

significant. Checking the proportional hazards assumption after fitting the proportional hazards 

model is the same as identifying time dependent coefficients (Zhang, 2018).  
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3. METHODOLOGY 

3.1. SEER Data 

The SEER database contains data from population based cancer registries across the 

United States. The benefit of population based is that there is diversity and a lack of bias 

presented by treatment and referral patterns (Davis et al., 1998). The SEER database has data 

from 18 different registries across the United States that covers 34.6% of the US population 

geographically (“Surveillance, Epidemiology, and End Results Program,” n.d.). SEER database 

contains information on patient demographics, tumor site, tumor morphology, stage, treatment, 

and follow-up for vital status. The variables used in this analysis were as follows: 

• Sex: Male or Female. 

• Age: Patients at Diagnosis, split into 3 groups: Adolescent (<15), Adult (15-65), 

and Elderly (65+). 

• Grade: Grade with values 1,2,3,4, and unknown. 

• Survival Months: Patients survival time. 

• Censory: Either alive or dead due to cause other than their cancer (1) or dead due 

to their cancer (2). 

• Treatment: Either Surgery and Radiation, Surgery without Radiation, or No 

surgery or radiation. 

• Year of Diagnosis: Year the patient was diagnosed. 

• Number of Malignant tumors: How many malignant tumors a patient has.  

• First Malignant Tumor: Either yes or no.  

• Histology: Histologic ICD-O-3 for subsetting the data for Brain and CNS cancers. 

• Surgery: Surgery performed. 
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• Radiation: Radiation performed.  

• Number of Oberservations: Patient observation number.  

3.2. Brain Cancer Background 

Brain cancer is the growth of a tumor, either primary or secondary, in the brain. Primary 

brain tumors begin in the brain and secondary brain tumors are tumors that have metastasized to 

the brain from other parts of the body, most commonly lung or breast. Secondary brain tumors 

are more common than cancer that begins in the brain cells (“Learn About Brain Cancer: 

Information, Facts & Overview,” 2020). Tumors in the brain can be benign, borderline, or 

malignant. Depending on the location and size of the tumor, benign brain tumors can be harmful. 

For this reason, in 2004 it became required for registries to start reporting benign tumors.  

It is uncommon for primary brain tumors to move outside of the brain or Central Nervous 

System (CNS). Brain cancer is therefore graded instead of staged like most other cancers. Brain 

tumors are graded on how aggressive they appear under a microscope. Grades for primary 

tumors include 1-4 and secondary tumors are brain metastasis(TNM). The TNM staging is used 

only for secondary brain tumors. Primary brain tumors are classified by the cell or tissue the 

cancer effects, size and location, and resectability (likelihood it can be removed by surgery) 

(“Learn About Brain Cancer: Information, Facts & Overview,” 2020). The focus of this paper is 

only primary malignant brain tumors.  

To identify brain tumors, doctors use magnetic resonance imaging (MRI), Computed 

tomography (CT) scans, positron emission tomography (PET) scans, and biopsies. The main 

treatment for brain tumors is surgery. Surgery depends on the location, size, and patients overall 

health; surgery cannot always be performed. Radiation and chemotherapy are also treatments 
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after surgery.  Brain cancer is a very active field of study and researchers are always looking at 

new technologies (“Brain Tumor,” 2019). 

3.3. Data Cleaning 

From SEER data, analysis was conducted on 21,524 patients from 2004-2016 who were 

classified with primary Brain or CNS tumors. The presence of brain cancer was from histologic 

ICD-O-3 codes, which had a specific variable for brain groupings, HISTRECB. Patients with any 

previous or subsequent tumors were excluded from analysis because their survival was 

compromised by the additional cancers. Additionally patients diagnosed at death, patients with 

no age information, and patients with unknown surgery status were also excluded. Subsetting of 

the data was done in SEER*Stat. Demographic information was collected including age at 

diagnosis, gender, and year of diagnosis. Tumor information was collected including grade, 

histology, and treatment. Surgery was located in the SEER text files and radiation treatment was 

located in SEER*Stat. Patients were placed into 3 groups: patients that had surgery but no 

radiation, patients with surgery and radiation, and patients with neither surgery nor radiation. 

Primary brain tumors are graded on a scale of 1-4 by World Health Organization (WHO) 

Classification (Louis et. al., 2016). The grading scale was as follows: 

Table 1. Grading Scale. 

Grading Scale Description 

Grade 1  The tumor grows slowly and rarely spreads into 

nearby tissues. It may be possible to completely 

remove the tumor with surgery. 

Grade 2 
 

The tumor grows slowly but may spread into 

nearby tissues or recur. 

Grade 3 The tumor grows quickly, is likely to spread into 

nearby tissues, and the tumor cells look very 

different from normal cells. 

Grade 4 The tumor grows and spreads very quickly, and 

the tumor cells do not look like normal cells. 
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3.4. Analysis 

After the data were subsetted, the distribution of grade was reviewed. The Kaplan-Meier 

estimator was used to plot survival curves for grade as well as treatment in each grade. 

Treatments for each grade (1-4) were patients that had surgery but no radiation, patients with 

surgery and radiation, and patients with neither surgery nor radiation. The logrank test was 

performed on treatments in each grade to see if there was a significant difference between the 

survival curves of the 3 treatment groups. The null hypothesis of the logrank test is that there are 

no difference in survival curves between the groups. The modified Peto-Peto’s weighted logrank 

test was used when the survival curves crossed. The weighted logrank test is needed because the 

regular logrank test has a large bias when the survival curves cross. When the logrank test did 

conclude that there was a significant difference, the pairwise logrank test were used to test which 

pairs of survival curves differed from each other.  

Finally, a Cox Proportional Hazards Model was fit to the data using grade, treatment, age, 

and sex as predictors. Age was split into 3 groups, adolescents (<15), adults (15-65), and elderly 

(65+) (Ritchie & Roser, 2019). The grade and treatment variables were the same as stated 

previously. Sex was either male or female. After testing the proportional hazards assumption, the 

model was stratified by grade. A plot of the hazard ratios and their respective 95% confidence 

intervals were shown and model interpretations were done.   
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4. RESULTS 

First the distrubtion of grade was analyzed. Grade is how a brain tumor grows, and how 

doctors assess what treatment plan is best (“Understand how Brain Cancer is Staged and 

Graded,” 2020). Approximately 6% of the patients were in grade 1, 13% of the patients were in 

grade 2, 7% of the patients were in grade 3, and 74% of the patients were in grade 4. The 

Kaplan-Meier survival curves were constructed for grade and treatment in each grade (1-4). 

Grade was split up tp show the survival times of treatment in each grade, and to test whether 

there is a significant difference between the effect on survival time of treatment in each grade. In 

Figures 6-9 the pink line corresponds to no surgery or radiation, the green line corresponds to 

both surgery and radiation and the blue line corresponds to surgery without radiation. The p-

value on each Kaplan-Meier survival curve figure corresponds to the logrank test statistic. For 

the logrank test statistic: 

Ho: S1(t) = S2(t) = S3(t) 

Ha: At least one of the Si(t)’s is different for some time t 

A significant p-value means the null hypothesis that all curves were the same could be 

rejected. Therefore it could be concluded that at least one of the curves survival times were 

significantly different. In order to determine which pairs of survival curves were significantly 

different from each other a pairwise logrank test was used. 
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Figure 4. Graph of Grade. 

4.1. Kaplan-Meier Estimator for Treatment in Each Grade 

The Kaplan-Meier estimator was applied to treatment in each grade. The Kaplan-Meier 

estimator is a nonparametric way to measure survival probabilities so there is no underlying 

assumptions about the distribution of the survival times. In Figure 5, there was a significant 

difference between the survival curves of grade shown by a p-value of <.0001 from the modified 

Peto-Peto’s weighted logrank test. Next, the effect of treatment in each grade was shown. 
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Figure 5. Graph of Kaplan-Meier Survival Curve for Grade. 

From Figure 6, there was no significant difference between the survival times in the three 

treatments in grade 1 shown by a p-value of 0.15 from the modified Peto-Peto’s weighted 

logrank test. The p-value is the probability of obtaining results at least as extreme as our data, 

given the null hypothesis is true. Any p-value greater than 0.05 means that the survival curves 

are likely the same and the null hypothesis cannot be rejected. 
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Figure 6. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 1. (NS_NR : No 

Surgery or Radiation. S_R : Surgery and Radiation. S_NR : Surgery without Radiation.) 

 

Next the survival cuves for treatment in grade 2 were analyzed in Figure 7. The modified 

Peto-Peto’s weighted logrank test statistic p-value was equal to 0.20, meaning there was not a 

significant difference in the survival curves at any time point. The results were similar when 

looking at the survival curves for treatment in grade 3 in Figure 8. The modified Peto-Peto’s 

weighted logrank test p-value was equal to 0.36 meaning there was not a significant difference 

between the survival curves at any time point.  
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Figure 7. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 2. (NS_NR : No 

Surgery or Radiation. S_R : Surgery and Radiation. S_NR : Surgery without Radiation.) 



 

20 

 

 

Figure 8. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 3. (NS_NR : No 

Surgery or Radiation. S_R : Surgery and Radiation. S_NR : Surgery without Radiation.) 

 

Lastly the Kaplan-Meier survival curves for treatment in grade 4 were analyzed in Figure 

9. The results of the modified Peto-Peto’s weighted logrank test were significant with a p-value 

of <0.0001. The null hypothesis that the survival curves were equal was rejected, and the 

pairwise logrank test was used to determine which pairs of treatments were significantly 

different from each other.  
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Figure 9. Graph of Kaplan-Meier Survival Curve for Treatment in Grade 4. (NS_NR : No 

Surgery or Radiation. S_R : Surgery and Radiation. S_NR : Surgery without Radiation.) 

 

Results from the pairwise logrank test are below in Table 2. The Benjamini Hochberg 

method was used to control the type 1 error rate for false discoveries. For the pairwise logrank 

test, let: A= No Surgery or Radiation,  B=Surgery and Radiation, and C=Surgery, No Radiation.  

For Grade 4: 

1. A vs B p=0.4630 

2. A vs C p=6.2e-05 

3. B vs C p=0.0040 
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Table 2. Results of Pairwise Logrank Test from Grade 4. 

 
No Surgery or Radiation Surgery and Radiation 

Surgery and Radiation 0.4630 N/A 

Surgery, No Radiation 6.2e-05 0.0040 

 

The pairwise logrank test shows that there was not a significant difference between 

patients that had surgery and radiation and patients that had neither surgery nor radiation. The 

pairwise logrank test shows that there was a significant difference between surgery without 

radiation and patients that had neither surgery nor radiation. There was also a significant 

difference between patients who had surgery and radiation and surgery without radiation. 

4.2. The Cox Proportional Hazards Model 

The Cox Proportional Hazards Model was fit to the data using grade, treatment, age, and 

sex as predictors. The Cox Proportional Hazards Model allows the simulatanous effect of several 

variables on survival time. The covarites used in this analysis were chosed based on clinically 

relevant factors from literature. The first model was fit with grade, treatment, age, and sex as 

predictors. When testing for proportional hazards, the first model fails this assumption with a 

global p-value of 8.3e-07. In Figure 10, when looking at the Schoenfeld residual plot for grade, 

grade violates the proportional hazards assumption. It was concluded that the effect of grade 

dimished over time as shown by a decreasing value for beta over time.   
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Figure 10. Schoenfeld Residual Plot of Beta(t) for Grade.  

Next, the model was stratified by grade using the predictors treatment, age, and sex. The 

model was stratified by grade because grade violates the proportional hazard assumption. The 

global p-value for the stratified model is 0.0165. At the 1% significance level, the proportional 

hazards assumption is met. The overall model was significant with a p-value of <2.2e-16 from 

the likelihood ratio test. The results of the Cox Proportional Hazards Model is in Table 3. 

Table 3. Cox Proportional Hazards Model Output. 

Variable Coefficient Exp(Coefficient) SE(Coefficient) P-Value 

Treatment: 

Surgery and 

Radiation 

0.0206 1.0208 0.0331 0.5340 

Treatment: 

Surgery without 

radiation 

0.0552 1.0568 0.0342 0.1060 

Sex: Male 0.0250 1.0253 0.0216 0.2480 

Age: Adult -0.0472 0.9538 0.0306 0.1230 

Age: Elderly 0.3262 1.3857 0.0441 1.52e-13 
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The coefficient is the value for beta. A positive value for beta increases survival time, 

while a negative value decreases survival time. For example, being in the elderly age group 

increases your chance of death, while being in the adult age group decreases it. The 

exp(coefficient) is known as the hazard ratio. The hazard ratio is the effect size of the covarite. A 

hazard ratio greater than 1 increases chances of a death occurring in the group, while a hazard 

ratio less than one decreases the chance of death in the group. A hazard ratio of 1 has no effect 

on survival time. The hazard ratio and their 95% confidence intervals are shown in Figure 11. 

The hazard ratio of male was 1.02, this means that men had a 2% increased risk of death 

compared to women. For the treatment covariates, each variable was being compared to the 

treatment group of patients with neither surgery nor radiation. Patients in the surgery and 

radiation treatment group had a 2% increased risk of death compared to patients who had neither 

surgery nor radiation. Patients that had surgery without radiation had a 5% increased risk of 

death compared to patient with neither surgery nor radiation. For the age covarites, the groups 

adult and elderly were compared to adolescence. The adult age group had a 5% decreased risk of 

death compared to adolescents. The elderly age group had a 38% increased risk of death 

compared to adolescents.  



 

25 

 

 

Figure 11. Hazard Ratios in Cox Proportional Hazards Model. 
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5. CONCLUSION 

The effects of treatment in each grade were shown for patients with primary malignant 

brain tumors who had no previous or subsequtent cancers. Data from the National Cancer 

Instituates Surveillance, Epidemiology, and End Results (SEER) program was used. After 

comparing treatments using the Kaplan-Meier estimator and the logrank test, there was not a 

significant difference in the survival curves of the three treatments until grade 4. In grade 4 there 

was a significant difference between patients who had surgery without radiation and patients 

who had no surgery or radiation and patients that had both surgery and radiation. To measure the 

simultaneous effect on the risk of death for treatment, age, and sex a Cox Proportional Hazards 

Model was used. The results from the Cox Proportional Hazards Model showed that patients in 

the adult age group had an increased survival time compared to adolsecents, and patients in the 

elderly age group had a decreased survival time compared to adolescents. The model also 

showed the females have a slightly lower risk when compared to males. Patients who had 

surgery and radiation had a 2% increased risk of death compared to patients with neither surgery 

nor radiation, while patients who had surgery without radiation had a 5% increased risk of death 

compared to patients with neither surgery nor radiation.   

This study was useful to show survival time for patients with primary malignant brain 

tumors. Knowing patient survival times and the probability of death in each treatment is valuable 

for patients who are on one of the treatment paths. Limitations of the study include additional 

factors that affect survival rates and treatment like histology.   
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6. FUTURE RESEARCH 

Future work includes including additional variables in the Cox Proportional Hazards 

Model. The survival rates by region is of interest to see if patients survival times differ 

significantly based on their geographic location in the United States. There is also another 

treatment variable in SEER*Stat corresponding to chemotherapy. Extending treatment to 

chemotherapy would be of interest to show the effect of chemotherapy on survival times. 

Chemotherapy only has two reporting options, Yes and No/Unknown. For this reason it was 

excluded in this analysis.  
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APPENDIX. R CODE 

#install libraries 
library(ggplot2) 
library(survival) 
library(survminer) 
library(plyr) 
library(tidyverse) 

##input data from SEER*STAT - file contains only malignant brain or CNS tumor
s 
allData=read.csv(file="C:/Users/Madison/Downloads/SeerDataBrain1_4-29-2020.cs
v", header=TRUE) 
 
#clean data  
data=allData %>%  
  filter(Year_of_diagnosis>=2004 & Totalnumberofinsitumalignanttu==1 &        
SEERcausespecificdeathclassifi!="N/A not first tumor") %>%  
  #clean data for total number of malignant tumors, first tumors only, and ye
ars 2004-2016. 
   mutate(censory=factor(SEERcausespecificdeathclassifi, 
                         levels=c("Dead (attributable to this cancer dx)", 
                                  "Alive or dead of other cause", 
                                  "Dead (missing/unknown COD)"), 
                         labels=c(2,1,2)), 
         surg=factor(Reasonnocancerdirected_surgery,  
                     levels=c("Surgery performed", 
                              "Not recommended", 
                              "Not performed, patient died prior to recommend
ed surgery", 
                              "Not recommended, contraindicated due to other 
cond; autopsy only   (1973-2002)", 
                              "Recommended but not performed, patient refused
",  
                              "Recommended but not performed, unknown reason"
,   
                              "Recommended, unknown if performed",  
                              "Unknown; death certificate; or autopsy only (2
003+)"), 
                     labels=c("Surgery", "No", "No", "No", "No", "No", "Unkno
wn", "Unknown")), 
         rad=factor(Radiationsequence_with_surgery,  
                    levels=c("Intraoperative rad with other rad before/after 
surgery", 
                             "Intraoperative radiation",  
                             "Radiation after surgery",   
                             "Radiation before and after surgery", 
                             "Radiation prior to surgery", 
                             "Sequence unknown, but both were given",  
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                             "Surgery both before and after radiation",  
                             "No radiation and/or cancer-directed surgery"), 
                    labels=c("Radiation & Surgery", "Radiation","Radiation & 
Surgery", "Radiation & Surgery", "Radiation & Surgery", "Radiation & Surgery"
,"Radiation & Surgery","No Radiation")), 
         trt=paste(surg, rad, sep=","), 
         Treatment=factor(trt,  
                       levels=c("No,No Radiation", 
                                "No,Radiation & Surgery",  
                                "Surgery,No Radiation", 
                                "Surgery,Radiation", 
                                "Surgery,Radiation & Surgery", 
                                "Unknown,No Radiation", 
                                "Unknown,Radiation & Surgery"), 
                       labels=c("No Surgery or Radiation","Surgery and Radiat
ion","Surgery, No Radiation","Surgery and Radiation","Surgery and Radiation",
"Unknown Surgery and No radiation","Surgery and Radiation"))) 
   
          
##view Treatment & filter out unknown surgery values 
table(data$Treatment) 
data$trtUse=as.vector.factor(data$Treatment) 
data=data %>%  
  filter(Treatment!="Unknown Surgery and No radiation") %>%  
  droplevels() 
 
#filter out unknown grade value  
table(data$Grade) 
#data$Grade=as.vector.factor(data$Grade) 
data=data %>%  
  filter(Grade!="Unknown") %>%  
mutate(Grade=factor(Grade,  
             levels=c("Well differentiated; Grade I", 
                      "Moderately differentiated; Grade II", 
                      "Poorly differentiated; Grade III", 
                      "Undifferentiated; anaplastic; Grade IV"), 
             labels=c("1","2","3","4"))) 
 
#ad id statement 
data$ID=1:nrow(data) 
#change censory to numeric  
data$censory=as.numeric(data$censory) 
table(data$censory) 
#condense data to only variables used for analysis  
data=data %>%  
  select(ID,Treatment, Grade, Survival_months, censory, Age_at_diagnosis, His
tologyrecodeBrain_groupings, Sex, Race_recode_White_Black_Other ) 
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#plot grade 
p=ggplot(data.frame(data$Grade), aes(x=data$Grade, fill=data$Grade)) + geom_b
ar(aes(y = (..count..))) + geom_text(aes(y = (..count..),label = scales::perc
ent((..count..)/sum(..count..))), stat="count") + labs(title ="Grade", x = "G
rade", y = "Count")+theme(axis.text.x = element_text(angle = 60, hjust = 1)) 
p+ labs(fill = "Grade") 

#grade 1 analysis 

data=data %>%  
mutate(Treatment=factor(Treatment,  
             levels=c("No Surgery or Radiation", 
                      "Surgery and Radiation", 
                      "Surgery, No Radiation"), 
             labels=c("NS_NR","S_R","S_NR"))) 

 
grade1=data[which(data$Grade==1),] 
 
km.grade1=survfit(Surv(Survival_months,censory) ~ Treatment, data=grade1) 
summary(km.grade1,c(12, 24, 36, 48, 60)) 
 
ggsurvplot(km.grade1, pval=TRUE, conf.int=FALSE, 
           title="Survival Functions",log.rank.weights = "S2",pval.method = T
RUE,  
            pval.method.coord = c(5, .35), # coordinates for the name 
           pval.method.size = 4, pval.coord=c(5,.45)  ,  
           subtitle="Grade 1",font.title = c(22, "bold", "black"), 
           #change theme 
           ggtheme = theme_grey() + theme(plot.title = element_text(hjust = 0
.5, face = "bold"))+  
             theme(plot.subtitle = element_text(hjust = 0.5, size = 16, face 
= "italic"))+theme(aspect.ratio = 1),  tables.theme =  theme(aspect.ratio = 0
.2), 
           #change censor 
           censor.shape = NULL, censor.size = 0,  
           #x scale  
           xlab="Years",break.x.by=12,xlim=c(0,60),xscale="m_y", ylim=c(.3,1)
, 
           # changes the tick label on x axis 
           font.xtickslab=c(11,"plain"),  
           font.ytickslab=c(11,"plain"), 
           risk.table = TRUE,  
           risk.table.height = 0.2,  
           risk.table.fontsize = 3.0 , 
           risk.table.y.text = FALSE, 
           ncensor.plot = TRUE,  
           ncensor.plot.height = 0.2, 
           surv.median.line = "hv") # add the median survival pointer. 
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#Grade 2 Analysis 
grade2=data[which(data$Grade==2),] 
 
km.grade2=survfit(Surv(Survival_months,censory) ~ Treatment, data=grade2) 
summary(km.grade2,c(12, 24, 36, 48, 60)) 
 
ggsurvplot(km.grade2, pval=TRUE, conf.int=FALSE, 
           title="Survival Functions",log.rank.weights = "S2",pval.method = T
RUE,  
           pval.method.coord = c(5, .35), # coordinates for the name 
           pval.method.size = 4, pval.coord=c(5,.45)  ,  
           subtitle="Grade 2",font.title = c(22, "bold", "black"), 
           #change theme 
           ggtheme = theme_grey() + theme(plot.title = element_text(hjust = 0
.5, face = "bold"))+  
             theme(plot.subtitle = element_text(hjust = 0.5, size = 16, face 
= "italic"))+theme(aspect.ratio = 1),  tables.theme =  theme(aspect.ratio = 0
.2), 
           #change censor 
           censor.shape = NULL, censor.size = 0,  
           #x scale  
           xlab="Years",break.x.by=12,xlim=c(0,60),xscale="m_y", ylim=c(.3,1)
, 
           # changes the tick label on x axis 
           font.xtickslab=c(11,"plain"),  
           font.ytickslab=c(11,"plain"), 
           risk.table = TRUE,  
           risk.table.height = 0.2,  
           risk.table.fontsize = 3.0 , 
           risk.table.y.text = FALSE, 
          ncensor.plot = TRUE,  
          ncensor.plot.height = 0.2, 
          surv.median.line = "hv") # add the median survival pointer. 

grade3=data[which(data$Grade==3),] 
 
km.grade3=survfit(Surv(Survival_months,censory) ~ Treatment, data=grade3) 
summary(km.grade3,c(12, 24, 36, 48, 60)) 
 
ggsurvplot(km.grade3, pval=TRUE, conf.int=FALSE, 
           title="Survival Functions",log.rank.weights = "S2",pval.method = T
RUE,  
           pval.method.coord = c(5, .35), # coordinates for the name 
           pval.method.size = 4, pval.coord=c(5,.45)  ,  
           subtitle="Grade 3",font.title = c(22, "bold", "black"), 
           #change theme 
           ggtheme = theme_grey() + theme(plot.title = element_text(hjust = 0
.5, face = "bold"))+  
             theme(plot.subtitle = element_text(hjust = 0.5, size = 16, face 
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= "italic"))+theme(aspect.ratio = 1),  tables.theme =  theme(aspect.ratio = 0
.2), 
           #change censor 
           censor.shape = NULL, censor.size = 0,  
           #x scale  
           xlab="Years",break.x.by=12,xlim=c(0,60),xscale="m_y", ylim=c(.3,1)
, 
           # changes the tick label on x axis 
           font.xtickslab=c(11,"plain"),  
           font.ytickslab=c(11,"plain"), 
            risk.table = TRUE,  
           risk.table.height = 0.2,  
           risk.table.fontsize = 3.0 , 
           risk.table.y.text = FALSE, 
          ncensor.plot = TRUE,  
          ncensor.plot.height = 0.2, 
          surv.median.line = "hv") # add the median survival pointer. 

grade4=data[which(data$Grade==4),] 
 
km.grade4=survfit(Surv(Survival_months,censory) ~ Treatment, data=grade4) 
summary(km.grade4,c(12, 24, 36, 48, 60)) 
 
ggsurvplot(km.grade4, pval=TRUE, conf.int=FALSE, 
           title="Survival Functions",log.rank.weights = "S2",pval.method = T
RUE,  
          pval.method.coord = c(5, .35), # coordinates for the name 
          pval.method.size = 4, pval.coord=c(5,.45)  ,  
           subtitle="Grade 4",font.title = c(22, "bold", "black"), 
           #change theme 
           ggtheme = theme_grey() + theme(plot.title = element_text(hjust = 0
.5, face = "bold"))+  
             theme(plot.subtitle = element_text(hjust = 0.5, size = 16, face 
= "italic"))+theme(aspect.ratio = 1),  tables.theme =  theme(aspect.ratio = 0
.2), 
           #change censor 
           censor.shape = NULL, censor.size = 0,  
           #x scale  
           xlab="Years",break.x.by=12,xlim=c(0,60),xscale="m_y", ylim=c(.3,1)
, 
           # changes the tick label on x axis 
           font.xtickslab=c(11,"plain"),  
           font.ytickslab=c(11,"plain"), 
            risk.table = TRUE,  
           risk.table.height = 0.2,  
           risk.table.fontsize = 3.0 , 
          risk.table.y.text = FALSE, 
           ncensor.plot = TRUE,  
          ncensor.plot.height = 0.2, 
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          surv.median.line = "hv") # add the median survival pointer. 
 
 
 
##Best treatment on each grade using pairwise log rank test 
res4=pairwise_survdiff(Surv(Survival_months,censory) ~ Treatment, data =grade
4) 
res4 
 
#no difference between surgery and radiation and no surgery or radiation. 
grade4$Treatment=revalue(grade4$Treatment, c("No Surgery or Radiation"="Combi
ned", 
                                        "Surgery and Radiation"="Combined", 
                                        "Surgery, No Radiation"="Surgery, No 
Radiation")) 
 
km.grade4.2=survfit(Surv(Survival_months,censory) ~ Treatment, data=grade4) 
ggsurvplot(km.grade4.2, pval=TRUE, conf.int=FALSE, 
           title="Survival Functions",log.rank.weights = "S2",pval.method = T
RUE,  
          pval.method.coord = c(5, .35), # coordinates for the name 
          pval.method.size = 4, pval.coord=c(5,.45)  ,  
           subtitle="Grade 4 Combined",font.title = c(22, "bold", "black"), 
           #change theme 
           ggtheme = theme_grey() + theme(plot.title = element_text(hjust = 0
.5, face = "bold"))+  
             theme(plot.subtitle = element_text(hjust = 0.5, size = 16, face 
= "italic"))+theme(aspect.ratio = 1),  tables.theme =  theme(aspect.ratio = 0
.2), 
           #change censor 
           censor.shape = NULL, censor.size = 0,  
           #x scale  
           xlab="Years",break.x.by=12,xlim=c(0,60),xscale="m_y", ylim=c(.3,1)
, 
           # changes the tick label on x axis 
           font.xtickslab=c(11,"plain"),  
           font.ytickslab=c(11,"plain"), 
            risk.table = TRUE,  
           risk.table.height = 0.2,  
           risk.table.fontsize = 3.0 , 
          risk.table.y.text = FALSE, 
           ncensor.plot = TRUE,  
          ncensor.plot.height = 0.2, 
          surv.median.line = "hv") 

#start cox ph 
 
##split age at diagnosis 
table(data$Age_at_diagnosis) 
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data$age=cut(data$Age_at_diagnosis, breaks=c(0,15,65,Inf),labels = c("Adolesc
ent", "Adult", "Elderly"),  right = FALSE) 
 
                         
#fit coxph function                          
coxp=coxph(Surv(Survival_months,censory) ~ strata(Grade)+Treatment+Sex+age, d
ata=data) 
coxp 
test.ph=cox.zph(coxp) 
test.ph 
trace(ggforest, edit = TRUE) 
ggforest(coxp, data=data) 

#create censoring 
#right 
right=tibble(Subject = as.factor(1:5),  
                   Years = c(9,6,12,15,10), 
                   censor = c("event", "censor", "event", "censor", "event" )
)  
 
ggplot(right, aes(x=Subject)) +  
  geom_linerange(aes(ymin = 0, ymax = Years))+ 
  geom_hline(yintercept=c(15))+ 
    geom_point(data = right,  
               aes(Subject, Years, color = censor, shape = censor),  
               size = 3)+ ylab("Time")+ 
coord_flip()+ 
theme_minimal() +  
    theme(legend.title = element_blank(), 
          legend.position = "bottom") +ggtitle("Right Censoring") 
 
#left 
left=tibble(Subject = as.factor(1:5),  
                   Years = c(6,5,5,8,10), 
                   censor = c("Event", "Event", "Event", "Event", "Event"))  
 
ggplot(left, aes(x=Subject)) +  
  geom_linerange(aes(ymin = 0, ymax = Years))+ 
  geom_hline(yintercept=c(5))+ 
    geom_point(data = left,  
               aes(Subject, Years, color = censor, shape = censor),  
               size = 3)+ ylab("Time")+ 
coord_flip()+ 
theme_minimal() +  
    theme(legend.title = element_blank(), 
          legend.position = "bottom") +ggtitle("Left Censoring") 
 
 
#interval 
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interval=tibble(Subject = as.factor(1:5), 
                left=c(5,5,5,5,5), 
                  right = c(10,10,10,10,10), 
                interval=left+(right-left)/2, 
                   censor = c(1,0, 1, 0, 1 ), 
                censored=c("Event", "Event", "Event", "Event", "Event"))  
 
ggplot(interval, aes(x=Subject)) +  
  geom_linerange(aes(ymin = 0, ymax = left)) +  
    geom_linerange(aes(ymin = left, ymax = right, linetype = as.factor(censor
))) +   
    geom_point(aes(y = ifelse(censor, interval, right),color=censored, shape=
censored),  
        size = 4)+ 
  geom_hline(yintercept=c(5,10))+ 
  scale_linetype_manual(name = "Censoring", values = c(1, 2),  
        labels = c("End of Study", "Interval censored"))+  
  xlab("Subject") +  ylab("Time")+ 
theme_minimal() + 
coord_flip()+ 
    theme(legend.title = element_blank(), 
          legend.position = "bottom") +ggtitle("Interval Censoring") 

 


