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ABSTRACT

This dissertation studies the thermodynamic and structural properties of aqueous disper-
sions of ionic microgels — soft colloidal particles composed of cross-linked polymer gels that swell in
a good solvent. Starting from a coarse-grained model of microgel particles, we perform computer
simulations and theoretical calculations using two complementary implementations of Poisson-
Boltzmann (PB) theory. Within the framework of a cell model, the nonlinear PB equation is
exactly solved and used to compute counterion distributions and osmotic pressures. By varying
the free energy with respect to microgel size, we obtain exact statistical mechanical relations for
the electrostatic component of the single-particle osmotic pressure. Explicit results are presented
for equilibrium swelling ratios of charged microcapsules and of charged cylindrical and spheri-
cal microgels with fixed charge uniformly distributed over the surface or volume of the particle.
Molecular dynamics simulations validate the theoretical findings. In the second method, within a
one-component model framework, based on a linear-response approximation for effective electro-
static interactions, we develop Monte Carlo (MC) simulations to compute the equilibrium swelling
ratio, bulk osmotic pressure, radial distribution function, and static structure factor.

Results presented in this dissertation demonstrate that swelling of ionic microgels increases
with increasing microgel charge and decreases with increasing concentration of salt and microgels.
In addition, results demonstrate that the microion distributions and osmotic pressure determine
equilibrium swelling of microgels. Cell model predictions for bulk osmotic pressure agree well with
data from MC simulations of the one-component model. The MC simulations also provide access
to structural properties and to swelling behavior of microgels in highly concentrated suspensions.
Taken together, results obtained in this work provide insight into factors of importance for prac-
tical use of microgels as drug delivery systems, in tissue engineering, and for other biomedical

applications.
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1. INTRODUCTION AND BACKGROUND

1.1. Ionic Microgels

Microgels are soft colloidal particles, with dimensions < 1 pm, each comprised of a cross-
linked polymer network, as shown in Figure 1.1. Common examples of microgels are found in
inks, cosmetics, and paints. When microgels are dispersed in a polar solvent, such as water, their
structural properties, such as equilibrium swelling and elasticity, can be tuned by adjusting pH,
temperature, magnetic and electric fields, flow rates, or osmotic pressure [1-3]. Many advanced
methods have been developed to synthesize a wide range of sophisticated morphologies of microgels,
including spherical microgels [4-7], core-shell structures [8-10], microgels containing nanoparticles
or microcapsules [11-13], and cylindrical microgels [14,15]. These microgel particles exhibit sig-
nificantly different mechanical, optical, and swelling properties relative to bulk gels, thus appear-
ing promising in designing particles for biomedical and environmental applications. In particular,
temperature-responsive microgels, such as poly(N-isopropylacrylamide) (PNIPAM) microgels, have
attracted significant research interest due to their ability to change their size and surface charge
as a function of temperature [16,17]. These thermally switchable properties have been applied
in drug delivery systems (to easily access small areas of the human body, e.g., the cytoplasm of
cells) [18,19]. These rich thermodynamic properties are the heart of why microgels are important

materials in science and technology [2,20].

Figure 1.1. Schematic drawing of an ionic microgel (large cyan sphere), with cross-linked polymer
chains shown to suggest internal structure, surrounded by oppositely charged counterions (small
red spheres) and coions (small blue spheres).



Tonic microgels are polyelectrolytes or ionizable polymers that dissolve in a solvent, through
dissociation of small-ions, called counterions, leaving the polymer chains with negative charges.
Equilibrium swelling of microgels is influenced by several interparticle interactions. Besides van
der Waals, hydrophobic, and hydrogen bonding, electrostatic interactions play a very important
role in determining ionic microgel equilibrium size [2]. A charged microgel tends to swell not only
from absorbing solvent, but also because of the repulsive interactions between bare fixed charges
along its polymer chains (backbones). The fixed charges, whether positive or negative, cause an
imbalance between the ion distributions inside and outside the microgel, thereby inducing swelling
or deswell. Changing the salt concentration or the pH level in the system affects the dissociation,
and therefore changes the fractional charge of the polymer chain. In brief, one can control the
ionic microgel size by controlling the counterion distribution, salt concentration, and the pH in the
system. It is worth noting that the correlations between multivalent counterions may be important
in studying the swelling of some ionic microgels. However, the focus of this work is on modeling
ionic microgels with monovalent counterions only.

Aside from electrostatic interactions, elastic properties of microgels also play an essential
role in the swelling process since, type and density of cross-linked influence the equilibrium polymer
network size [21]. In a swollen state, microgel particles are soft and easily deformed, while in a dry
state, microgels behave very much like hard spheres. The cross-links of microgel particles are formed
either by chemical or physical interactions. Chemical cross-linked are usually covalent bonds, while
physical cross-links are hydrogen bonds, hydrophobic, or ionic interactions. Physical cross-links are
more sensitive to external stimuli. Poly(N-isopropylacrylamide) (PNIPAM) microgels are perhaps
the most well-known and well-characterized microgel particles [2]. They were first synthesized
in the 1950s [22] and has attracted considerable research interest because of several advantages:
hydrophilicity, flexibility, high water absorptivity, and their volume phase transition temperature
close to human body temperature, which makes them an ideal smart drug delivery system [2,23].
1.2. Osmotic Pressure

The concept of osmotic pressure has long been used to explain the swelling behavior of
ionic microgels [2]. It is best to describe the concept of osmotic pressure through the osmosis
phenomenon. Generally, osmosis is defined as the flow of solution across a semipermeable membrane

that blocks the transport of solute through it, so only smaller solvent molecules are allowed to flow



through. Osmosis is an important phenomenon in the biological systems, as well as in water
purification, desalination, and many other biochemical processes.

Figure 1.2 illustrates the principle of the osmosis phenomenon. Consider a beaker containing
a homogeneous mixture solution of both macromolecules and solvent (water) and a semipermeable
membrane that prevents macromolecules, such as microgel particles, from passing through. Solvent
molecules and ions (counterion and coions) can penetrate through the semipermeable membrane
freely. If only macromolecules exist on one side of the membrane, the surrounding solvent will
diffuse across the membrane due to the difference in concentrations. The solvent flow will continue
until it reaches its limit due to the pressure difference across the membrane. Under these conditions,
equilibrium is established, and pressure is exerted on the macromolecules-rich side of the membrane
to stop the flow of solvent. This additional pressure exerted on the membrane is called osmotic
pressure [24].

The effect of the microions through the osmotic pressure they exert strongly influences the
swelling of ionic microgel particles. In Chapter 4, we drive an exact expression for the electrostatic
contribution to the osmotic pressure across the periphery of a microcapsule and of spherical and

cylindrical ionic microgels.

H,O solution of
molecules macromolecules
in Hzo

semipermeable
membrane

Figure 1.2. Tllustration of the osmosis phenomenon. Reprinted with permission from ref. [25].



1.3. Swelling Behavior of Ionic Microgels

The cross-linked polymer network structure of microgels is responsible for their unique
ability to undergo abrupt volume changes in response to changes in external stimuli, which include
temperature, pH, ionic strength, and solvent composition [26-30]. This volume phase transition of
these microgels is thermodynamically similar to that of bulk microgels, which may range in size
from a millimeter to a few centimeters. Since the transition occurs on much shorter timescales,
however, it opens the door to an important potential industrial application [20,31-33]. The swelling
behavior of microgels was first experimentally observed by Tanaka [34], whereas it was theoretically
predicted by Dusek and Patterson [35]. Since then, the swelling behavior of microgels has become
a fundamental problem in polymer physics and has been studied by a variety of experimental
techniques, including neutron scattering [12, 36, 37], electrophoresis [28], and by many statistical
mechanical theories and simulation methods [38-46].

The degree of swelling is governed by four types of interactions that compete within micro-
gel particles. These are van der Waals interactions, hydrophobic interactions, hydrogen bonding
interactions, and electrostatic interactions [2]. Van der Waals interactions are attractive interac-
tions that occur between the network chains of microgel particles. This interaction depends on the
solvent’s composition. Hydrophobic interactions are noncovalent attractive forces and occur be-
tween nonpolar parts of polymer chains (occur only for physically cross-linked microgels). Hydrogen
bonding interactions arise when a hydrogen atom is close to an atom of high electronegativity (the
tendency of an atom to attract a bonding pair of electrons), such as oxygen. These interactions are
relevant in the study of the swelling behavior of nonionic microgels, but do not play a significant
role in ionic microgel solutions, except at high concentrations. Finally, electrostatic interactions
between counterion and coions and ionic microgels in the solution result in increased swelling or
deswelling of the microgel network. The strength of the electrostatic interaction depends on the
concentration of charges in the microgel solution. Table. 1.1 shows the magnitudes of these four

interparticle interactions.



Table 1.1. The magnitude of van der Waals, hydrophobic, hydrogen bonding, and electrostatic
interparticle interactions [2].

Interaction Value ( ~ eV /atom)
Electrostatic interaction 101
Hydrogen bonding 1071
Hydrophobic 1073
van der Waals 1072

As stated earlier, microgels are very sensitive to pH, temperature, and ionic strength. These
microgels are called “stimulus-responsive” or smart microgels. Amongst the smart microgels, ionic
microgels have attracted much attention due to their unique properties. Below, a discussion of the
influence of some external stimuli on the swelling of charged microgels is summarized.

The effect of temperature: Thermoresponsive microgels, such as Poly(N-
isopropylacrylamide) (PNIPAM) are, some of the more interesting and commonly studied types of
microgel. These microgels possess the ability to respond to changes in temperature by undergo-
ing reversible swelling or deswelling transitions. In 1986, Pelton and Chibante prepared the first
microgels based on PNIPAM that exploit the lower critical temperature behavior of PNIPAM to
generate volume phase transitions (VPT) in microgels. In a VPT, a microgel decreases in size above
a critical temperature (T.), but can reversibly re-swell to its original size at room temperature [1].
The temperature dependence of the swelling behavior of thermoresponsive microgels is displayed
in Figure 1.3. As seen, below the temperature T, = 32°C, which is the lower critical temperature,
the PNIPAM microgel increases in size but, when T > 32°C, the microgel shrinks in size. This
behavior is due to interactions of microgels with solvent in a temperature-dependent fashion. At
T < T, the interactions between the solvent and polymer are weakened. Therefore, the microgel
absorbs water and swells. When T > T, the polymer-polymer interactions are strengthened; thus,
the water is expelled from the microgel interior, resulting in a deswelling of the microgel. Finally,

this swelling process is mainly due to hydrophobic interactions.
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Figure 1.3. Hydrodynamic diameter of PNIPAM microgel particles as a function of temperature.
Reprinted with permission from ref. [47].

The effect of pH and ionic strength: The structure of a microgel can be easily influenced
by the addition of charged monomers, such as acrylic acid (AAc) methacrylic acid (MAAc), due
to the local electrostatic repulsion [48]. The local charge density can be controlled by the number
of monomers, the pH, or the ionic strength of the solution. It has been shown that the swelling
or deswelling of PNIPAM microgels strongly depends on the charged monomer concentration and
pH [16,48].

The swelling behavior of ionic microgel particles is very sensitive to pH level. Changing
the pH level, either increasing or decreasing, can cause a sharp increase or decrease in microgel
size. This dependence of microgel swelling behavior on pH arises from electrostatic interactions
between the ionic species. For example, interpenetrating polymer network (IPN) microgels, which
are formed by adding poly(Acrylic Acid) (PAAc)5, usually known as PAA or PAAc, to a PNIPAM
network via precipitation polymerization, exhibit an additional sensitivity to pH and ionic strength,
compared to pure PNIPAM microgel particles, and also have a lower swelling degree [5]. Figure 1.4
shows a comparison between hydrodynamic radius for PNIPAM and IPN microgels as a function
of pH. A sharp drop in the hydrodynamic radius of IPN microgels is observed as the value of pH

decreases below 5, which can be attributed to the strong hydrophobic interactions [5]. At this acidic



pH value, the water molecules extrude from the microgel interior. This causes the deswelling of the
IPN microgel at low pH value. Between pH = 5 and pH = 10, the size of IPN microgel remains
almost unchanged. Indeed, it is well known that PAAc is hydrophilic in this range of pH [5]. In
contrast, the PNIPAM microgel is relatively insensitive to pH in the range of pH between 5 and

10. It is clear that the synthesis procedure plays a crucial role in the swelling of the microgels.
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Figure 1.4. pH-induced change in hydrodynamic radius Rp for PNIPAM and IPN microgels.
Reprinted with permission from ref. [5].

The incorporation of charges into the polymer network of a microgel affects not only the
sensitivity to pH, but also the response to changes in ionic strength, which affect the Debye screening
length. The swelling of microgels thus can be controlled by the simple addition of salt to the
solution. An increase in the ionic strength of the solution causes a decrease in microgel size, due to
the screening of charges. In the case of PNIPAM microgels with high charge, the swelling process
is relatively sensitive to the addition of salt, while a weakly charged microgel is nearly unaffected
by changes in ionic strength at a temperature lower than the critical temperature [16].

The effect of particle concentration: Another factor influencing the swelling behavior of
microgels is particle concentration, changes of which affect the volume fraction and phase behavior
of a suspensions. For highly diluted microgel suspensions (low volume fraction), the interaction

between particles can be neglected. In this limit, the suspensions is in a colloidal gas state. As



the volume fraction of microgels is increased, the thermodynamic phase of the suspensions changes
from a colloidal gas to a colloidal liquid and eventually to a colloidal solid. For example, a stable
FCC crystalline solid can occur for sufficiently monodisperse particles. Crystallization in microgel
suspensions depends on the charges, salt concentration, temperature, and pH, and many studies
have investigated the transition from a fluid to a crystal state, relating the phase behavior of neutral
or charged microgel suspensions to that of the hard-sphere system [49-53]. Some of these studies
are reviewed in Chapter 2.
1.4. Electrostatic Interactions of Ionic Microgels

Consider a polymer solution consisting of negatively charged macromolecules, such as a
microgel, and smaller mobile ions (microions). Charged microgels attract oppositely charged mobile
ions, counterions, and repel mobile ions of the same charge, called coions. In this system, microions

are distributed with a total charge density

p(r) = e[ni(r) —n_(r) —ng(r)], (1.1)

where, e is the elementary charge and n(r), n_(r), ns(r) are the number densities of the mobile
counterions, coions and fixed charges on the microgel, respectively. The charge density p(r) creates
an electrostatic potential ¥(r) at a distance r away from a charged surface. In a medium of uniform

dielectric permittivity €, the electrostatic potential 1)(r) can be expressed as

V() = = (), (1.2
where V? is the Laplacian operator, which relates the second derivatives of the electrostatic poten-
tial to the total charge density. The distributions of microions are controlled by the electrostatic
(Coulomb) energy of interaction. The presence of counterions in the solution shields the electric
repulsion between the ionic polymer chains, thus reducing the electrostatic potential.

The distribution of fixed charge ns(r) of the microgels affects particle swelling. As it turns
out, the main role of this charge is to generate Donnan potential across the periphery of the
microgel particle that influences the counterion distribution. This potential creates an electrostatic

pressure difference between the inside and the outside of the microgel particle, causing the gel to



either swell or deswell to balance the electostatic pressure difference by a gel pressure difference.
Understanding the effects of electrostatic interactions on the equilibrium swelling behavior of ionic
microgel solutions requires calculating the electrostatic contribution to the osmotic pressure of
single microgel. For that, the Poisson-Boltzmann (PB) theory, which combines Poisson’s equation
with the Boltzmann distribution for the microion densities, is used in this study. Futher details are
given in the methods’s chapter.

1.5. Applications of Microgels

Microgels are considered to be one of the most exciting and promising classes of polymeric
materials, especially for biomedical applications, due to their unique, stimuli-responsive swelling
behavior. Microgel particles can be used in various industrial applications, such as controlled
drug delivery systems and bio-sensors, as well as in imaging applications, and tissue engineering
applications [2,20,31,54,55].

Microgels have received considerable attention for their potential use as drug delivery sys-
tems, among many alternative, including nanoparticles, liposomes, micelles, and polymersomes.
They offer two distinct advantages over other biomaterials. First, the rate of drug release can
be controlled in many ways, such as by changing the crosslinking density, temperature, pH, and
electrostatic interactions [20,54,56,57]. Second, microgels may interact less strongly with drugs,
consequently reducing the side effects and dramatically improving medical treatments [56]. Mi-
crogels can be loaded with nanodrugs using electrostatic interactions, hydrophobic interactions,
and hydrogen bonding [20,56]. A variety of microgels have been designed for controlling drug
release, PNIPAM polymer microgels being the most commonly study candidates, since they exhibt
a volume phase transition temperature above normal body temperature (see Figure 1.3). Microgels
having this property are very attractive for drug carrier systems, as the temperature in cancer cells
is usually elevated [20].

Aside from changing the temperature to release drug molecules from microgel particles, the
drug can also be released by controlling the pH. The pH value in our body varies from neutral
to acidic. For example, the pH value of blood is about 7.4, but in the stomach it is about pH=2.
Normal tissues, such as brain tissues and subcutaneous tissues (hypodermis), have a pH in the
range of 7.2 to 7.5 [58]. However, the pH value of cancerous cells in tumors is more acidic than in

normal cells, typically in the range of 6.4 to 7.0 [58]. Thus, pH differences between these tissues



provide a potential trigger for intracellular drug release. Therefore, pH-sensitive microgels have
been considered as promising anticancer drug carriers [56,59].

In addition to drug delivery applications, microgels have also been used in tissue engi-
neering applications. Microgels exhibit good biodegradability, biocompatibility, and cell adhesion
properties, which allow design of injectable microgels for improving the mechanical properties of
degenerated intervertebral disks or for soft-tissue repair [60]. Microgels also have many applications
to biosensing [54]. For example, they can be used to determine or sense the levels of blood glucose,
since microgels are very sensitive to an increase in the concentration of specific biomolecules. Also,
they can act as contrast image agents in magnetic resonance imaging (MRI) devices, which can
improve sensitivity and quality of MRI images [61].

1.6. Objectives

The main objective of this work is to develop and investigate physical models and simula-

tion methods that could make a suitable basis for the prediction of the equilibrium swelling and

thermodynamic phase behavior of swollen ionic microgels. This study has these specific objectives:

To develop an accurate model for the equilibrium thermodynamic behavior of a swollen single

ionic microgel in the presence of counterions and salt ions.

To develop an accurate model for the equilibrium thermodynamic behavior of suspensions of

swollen ionic microgels.
The specific issues that arise in modeling ionic microgels are
1. Influence of ion distributions on the swelling of ionic microgels.
2. Role of osmotic pressure in the equilibrium swelling of ionic microgels.
3. Influence of salt and particle concentration change on the microgel size.

1.7. Contributions

The fundamental goal of any ionic microgel study is to understand the thermodynamic and
structural properties in terms of particle interactions, which is generally done within the framework
of statistical mechanics [62]. Denton and Tang [39] studied the equilibrium swelling and osmotic

pressure of volume-charged microgels. However, they did not consider spherical microgels with
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uniform surface-charged microgels or different shapes of ionic microgels. Therefore, we have mod-
eled various charge distributions over spherical, microcapsule, and cylindrical microgels. By run-
ning molecular dynamics simulations of these microgel systems and determining their equilibrium
swelling ratios, we characterized the influence of particle geometry and fixed charge distributions
on osmotic pressure and swelling of microgels. We have compared our results for swelling behavior
of surface-charged microgels with those for volume-charged microgels presented in ref. [39]. By run-
ning Monte Carlo simulations of surface-charged microgels and determining the radial distribution
functions and static structure factors, we characterized the ability of the ionic microgel particles
to form a crystal phase and showed that microgels can deform at high concentrations by forming
facets at the contact area. Also, we calculated the bulk osmotic pressure from the MC method
for surface-charged microgel suspensions and compared our results with the predictions of Poisson-
Boltzmann theory in the cell model. Finally, our theoretical models and computer simulations
will allow for a better description of the role of ion distributions and the shapes of microgels on
swelling. These methods could also be extended to model hollow ionic cylindrical microgels and
could potentially be used to guide the design of smart, responsive particles based on the increased
understanding of microgel swelling behavior. Parts of this dissertation have been published [12,63]
and other parts are in preparation for publication.
1.8. Outline

After the general introduction and background discussion on microgels in Chapter 1, this
dissertation continues in Chapter 2 with a brief literature review on ionic microgels and their rele-
vant properties. This chapter serves to introduce foundational relationships discussed throughout
the dissertation, including the swelling behavior, osmotic pressure, and counterion distributions
of ionic microgels. It also covers recent work on the osmotic swelling behavior of ionic microgels.
Chapter 3 presents a description of the physical models. Chapter 4 introduces key theories and
background frameworks to model ionic microgels. This chapter includes the Poisson-Boltzmann
theory, exact statistical mechanical relations in the cell model, linear response theory of effective
electrostatic interactions, and the Flory-Rehner theory of polymer networks. Chapter 5 introduces
the principles of molecular dynamics (MD) and Monte Carlo (MC) simulations and describes the
simulation setup for microgel systems. Chapter 6 is dedicated to discussing the obtained results

and suggestions for future work.
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2. LITERATURE REVIEW

Physical properties of microgel particles have long been the subject of intense research,
due to the wide range of their technological applications. Thus, scientists have released several
thousand publications on “non-ionic microgels” and “ionic microgels” since the term “microgel” was
introduced in 1949 by Baker to describe a network of polymeric chains forming a particle suspended
in a solvent [3]. Many experimental techniques and theoretical approaches have been used to study
different aspects of microgel particles, such as swelling behavior, osmotic pressure, structural phases
of microgel particles of different geometries, e.g., spherical, capsule, and cylindrical microgels, and
modeling equilibrium swelling of non-ionic and ionic microgels. The goal of this chapter is to outline
some experimental techniques used to synthesize microgel particles and characterization tools to
study the properties of microgel particles and suspensions as well as to inform the reader of the
work that has been completed to study osmotic pressure and swelling behavior of ionic microgels
and their interactions with one another. However, since we cannot cover the entire field, we instead
focus on the topics relevant to the work described in this dissertation.

2.1. Microgel Synthesis and Characterization

Numerous reviews on the preparation, characterization, and modification of microgel par-
ticles have been published. For example, Pich and Richtering [37] and Pelton [1] provide excellent
overviews of microgels and their synthesis and behavior in dispersed media. There are various
strategies and methods for the preparation and the characterization of microgels, and here the
most common standard methods to synthesize and characterize polymeric microgels are reviewed.
2.1.1. Microgel Synthesis

Generally, the techniques used to prepare bulk hydrogel can be applied to microgel syn-
thesis [64]. In such methods, bulk microgels are mechanically ground using a high shear me-
chanical cutter to form microgel particles. However, when synthesizing microgels, some essential
aspects need to be considered. First, it is of interest to control the shape, the size, and particle
size distribution of microgels during the preparation process. Second, the stability of microgel
systems is a very important aspect to avoid aggregation and precipitation. When it comes to

techniques for preparing microgel particles, free-radical polymerisation is one of the most common
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reactions to synthesize microgels [65-67]. This technique was first utilized by Philip Chibante in
1978 for preparation of PNIPAM microgels [1,68,69], and has been widely used for the synthesis
of thermosensitive PNIPAM [70-74]. In addtion, this technique has been successfully used for the
preparation of hollow microgels (microcapsules) [75-77] and PNIPAM cylindrical microgels [14].
In this fabrication technique, all ingredients, including the NIPAM monomers, crosslinker agent
(e.g., N,N’-methylenebisacrylamide (MBA)), and initiator molecules (e.g., potassium sulfate), are
dissolved in a solvent to drive microgel particle formation. The formation of microgel particles oc-
curs by nucleation mechanism. Besides precipitation polymerization techniques, there are several
other techniques. For example, emulsification techniques are useful to prepare highly monodisperse
microgel particles. There has been growing interest in these techniques because of the simplicity
of design and better control of the droplet size. Another approach is microfluidic techniques. In
these techniques, microfluidic devices are used to produce microgel particles with a size of about

1-30 micrometers via the emulsification of polymer solutions.

oligoradicals precursor growing
particles particles

Figure 2.1. Microgel formation by precipitation polymerization [37].

Finally, precipitation polymerization is a unique and powerful technique for synthesizing
microgel particles with homogeneous size and shape, and the resulting microgel particles are free
of any stabilizer or surfactant [37,78]. In this technique, it easy to (1) control the size of microgel
particles over a broad range from 100nm to 3 um, (2) obtain a narrow particle size distribution,
and (3) integrate different types of monomers into the microgel network [37]. However, this tech-
nique has some limitations. For example, only thermally stable materials can be used since the
polymerization occurs at high temperatures, and it is hard to form very small microgels with size

below 50 nm without the use of additional stabilizing agents [37].
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2.1.2. Microgel Characterization
2.1.3. Dynamic Light Scattering

Dynamic light scattering (DLS) is the most standard technique for characterizing the sizes
of microgel particles dispersed in an aqueous solvent [4,10,38,79]. It can also be used to obtain
measurements of several parameters, such as molecular weight, viscosity of the dispersion medium,
and translational diffusion coefficient [80]. Dynamic light scattering has become a standard tech-
nique because it provides rapid, accurate, and reproducible results [79,80]. Figure 2.2 shows a
typical set-up of a dynamic light scattering instrument. A vertically polarized light beam, such as
a laser, is passed through the sample. A lens (L) is used to focus the light beam into the mea-
surement area. The detector is placed at a certain angle (often at 90 degrees). The scattered light
intensity (number of photons per time) is collected and relayed to a digital correlator to extract
the correlation function. A computer is then used to convert the decay of this correlation function

into a diffusion coefficient and a particle size [80].

detector

Figure 2.2. Schematic diagram of the set-up for a dynamic light scattering (DLS) instrument [80)].

When laser light is passed into a low concentration (dilute) solution of microgels, the incident
light is scattered in all directions by the particles in the solution (due to Brownian motion). Fluctu-
ations of the scattered light intensity are converted to the mean translational diffusion coefficient,

which can be further converted into particle size by means of the Stokes—Einstein equation [80],

kT
~ 6mnRy’

(2.1)
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where D is the translational diffusion coefficient, kp is the Boltzmann constant, 7 is the viscosity
of the medium, and Ry, is the hydrodynamic particle radius. Note that the surface of a microgel
particle contains an attached layer of molecules and ions. This attached layer moves with the
particle in the solvent. Therefore, the hydrodynamic particle radius is larger than the actual radius
of the particle [80]. It has been found that the size of a microgel particle measured by dynamic
light scattering is larger than the corresponding size obtained by static light scattering, which can
be attributed to the brushes on microgels [10]. Finally, static light scattering, small-angle X-ray
scattering, and small-angle neutron scattering are further techniques used to measure particle size.
Static light scattering (SLS) is used to measure radius of gyration. For microgel particles diffusing
in an aqueous solvent, the given hydrodynamic radius alone cannot be relied on to accurately
represent particle geometries, which should, therefore, be inferred by the ratio of R,/Ry, [80].
2.1.4. Conductometric and Potentiometric Titration Methods

The charge content of microgel particles can be measured as a function of pH by a combina-
tion of conductometric and potentiometric titration methods [33,81]. Conductometric titration is
used to measure the total charge of ionic microgel particles. The principle behind the conductomet-
ric titration method is that counterions and coions have different conductance values. Therefore,
during the titration, one of the ions is exchanged by the other and these two ions will change the
ionic conductivity of the solution. The degree of ionization of microgel particles can be measured by
potentiometric titration technique [81], which is based on the potential across the polymer solution.
2.2. Osmotic Pressure and Swelling of Ionic Microgels

In recent years, considerable attention has been drawn to the study of ionic microgels,
where the network is formed by either amidinium groups or charged monomers [4,28,39,42]. The
amidinium groups arise from the initiator, located at the surface of the particles. Charged monomers
are distributed inside the particle network and are expected to be uniformly distributed throughout
the particle. Examples of ionic microgels are ones obtained by copolymerization of monomers
of N-isopropylacrylamide (NIPAM) with an ionizable monomer [82]. There has been a growing
interest in understanding the swelling behavior and structure of single ionic microgels and also a
suspension of ionic microgels to encapsulate active molecules for controlled release purposes [2,83].
In such applications, charged molecules would be attached to the network structure by electrostatic

attraction. This kind of process strongly depends on the penetration of the ions and the value of

15



the charges of the particle. Indeed, charges control the net osmotic pressure and the swelling of
ionic microgels, and this is one of the main factors responsible for the equilibrium swelling of ionic
microgels.

Ferndndez-Nieves et al. [4] prepared a volume-charged microgel using experimental tech-
niques to show that swelling behavior and osmotic pressure of ionic microgel particle depends on
charge. They found that the swelling process is controlled by the counterion contribution to the
osmotic pressure, and the transition from the deswollen state to the swollen state is continuous. By
using the Flory-Huggins model, they were able to explain the effect of the counterion distribution
caused by the presence of fixed charges on the microgel. It was found that the microgel starts to
swell below about pH = 4.2, then desewlls above pH = 4.2. This means that below 4.2, the microgel
becomes increasingly more ionized, thus its volume increases [4]. In other work done by Ferndndez-
Nieves et al. [28], they looked at the effect of external osmotic pressure on the deswelling behavior of
an ionic microgel suspension. Combining experimental techniques with the Flory thermodynamic
theory of polymer networks, they showed that ionic microgels start to deswell at a certain value of
the external osmotic pressure. Below this value, the ionic microgel swells with decreasing osmotic
pressure. This certain value of pH depends on the charge density of the microgel particles [28].

A similar study on the influence of pH completed by Karg et al. [16] demonstrated that dif-
ferent pH values and salt concentrations can induce a change in the size of PNIPAM-Poly (allylacetic
acid) copolymer microgels. By varying the pH values from pH = 8 to pH = 10, amounts of charged
comonomer, and temperature of the system, the authors characterized the influence of pH and ionic
strength on the swelling behavior of the microgel particle and determined whether this would cause
a significant shift of the volume phase transition temperature toward higher values [16].

Obeso-Vera et al. [21] have studied the influences of crosslink density and crosslink type
on the size and swelling behavior of N-isopropylacrylamide (NIPAAm) microgels. The authors
prepared microgel particles by the dispersion polymerization technique and used different types of
crosslinkers, such as N,N’-methylenebisacrylamide (MBA), ethylene glycol dimethacrylate (EGDMA)
an 3,9-divinyl-2,4,8,10-tetra-oxaspiro[5.5] undecane (DVA), to study the swelling properties of the
microgel [21]. Through this work, it was found that the microgel that was synthesized using an
MBA crosslinker produced a larger particle size and had a higher swelling ratio, followed by the

microgel that was synthesized using EGDMA and DVA crosslinkers [21]. This observation can be
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related to the hydrophilic or hydrophobic characteristics of the crosslinkers. The results of this
work indicated that the material used for crosslinking in microgel formulations plays a significant
role in controlling microgel swelling. Also, some studies have shown that increasing the initiator
amount can accelerate deswelling for PNIPAM microgels [6, 84, 85]

The study of Karg et al. [16] also observed that the PNIPAAm-co-allylacetic microgels
synthesized using 5 mol% MBA crosslinker have a higher degree of swelling than the PNIPAAm-
co-vinylacetic acid microgel synthesized using 2 mol% MBA crosslinker from Hoare and Pelton [86].
This is a remarkable result, since according to the swelling theory of gels, an increase in crosslinker
density increases the elastic entropy, at the same time the swelling degree of microgel decreases [43].

As stated in the previous chapter, particle concentrations and ion distributions influence
the swelling and the osmotic pressure of ionic microgels. Aside from experimental studies of these
physical properties, there has also been a focus on developing analytical theories in recent years.
Indeed, many analytical theories have studied the thermodynamic properties of ionic microgels [39,
63,87-89]. The structure of ionic microgel dispersions has also been of interest, and various shapes
of microgels have been studied [36,90-92]. Corresponding computer simulations, either molecular
dynamics simulations or Monte Carlo simulations, have also been performed [40,45,46,93-95].

Ton distributions play an important role in changing the size of a microgel and osmotic
pressure. The location of microgel charges spread over the surface or the volume of microgel par-
ticles can induce variations in ion densities and swelling [39,96]. Thus, determining the counterion
distribution inside and around the microgel is an important aspect of microgel research. For ex-
ample, Irene et al. [97] studied equilibrium distributions of ions around ionic microgel particles
dispersed in a solvent using coarse-grained Monte Carlo simulations and the Ornstein—Zernike inte-
gral equation theory. The authors found that valence of counterions affected the internal structure
of the microgel and shifted the volume transition to lower temperatures [98]. As reported in the
literature, increasing the particle charge shifts the swelling ratio to larger values [39]. A study by
Denton and Tang [39] explored the influences of volume fraction on counterion distributions. The
authors found that the fraction of confined counterions increases rapidly as the volume fraction in-
creases [39]. This means that an increase in size of the microgel tendes to a neutralize the microgel,

whereas smaller microgels tend to possess a net charge.
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In addition, Claudio et al. [40] have performed numerous works aimed at investigating how
much the mean-field Poisson-Boltzmann theory deviates from the results of simulations for a single
ionic microgel in the cell model. In this work, the authors studied the influence of excluded volume
effect, charge correlations, ion distribution, and thermal fluctuations in the polymer chain of the
microgel and compared the predictions of a Poisson—Boltzmann cell model with molecular dynamic
simulation data for the case of good solvent and monovalent ions [40]. Under this assumption, the
authors concluded that the ion distributions predicted by the Poisson—Boltzmann theory in the
spherical cell model agreed very well with those obtained from simulations [40].

The work described in Denton and Tang [39] studied the swelling and osmotic pressure
of single ionic microgels with uniform volume charges in the spherical cell model by considering
the solvent as a dielectric continuum with a uniform dielectric constant. The study developed an
exact statistical mechanical theorem in the canonical ensemble (fixed number of particles, system
volume, and temperature) based on the partition function and Helmholtz free energy for computing
swelling and osmotic pressure [39]. Additionally, the authors validated their results by comparing
calculations from nonlinear Poisson-Boltzmann theory with data from molecular dynamics simula-
tions. Denton and Tang [39] found that the deswelling of ionic microgel particles with increasing
particle concentration can be enhanced via redistribution of microions. The authors also found
that increases in salt concentration caused a shrink in the size of the microgel, and also weakened
the variation of swelling with particle density [39].

Nojd et al. [38] prepared ionic hydrogenated PNIPAM particles and deuterated PNIPAM
particles to investigate the swelling of these ionic microgel particles from very low concentrations
to high concentrations using a combination of light, X-ray and neutron scattering techniques. The
authors also modeled the swelling and osmotic pressure by solving the Poisson-Boltzmann equation
for the electrostatic potential within a spherical cell model. Their system was a spherical fuzzy
microgel. Thus, to investigate whether the electric field generated by the core is strong enough to
induce significant stretching of microgel dangling ends, they performed a Monte-Carlo simulation.
The authors found a significant increase in the size of the microgel at very low concentrations, which
can be attributed to the presence of a charge in the polymer chain, and also at concentrations
above shell overlap [38]. Interestingly, there was no change in the microgel size at intermediate

concentrations. Finally, the authors described the reasons for discrepancies between small-angle
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neutron scattering and dynamic light scattering measurements, and how configurational changes
in the dangling ends seem unlikely to be visible in static light scattering, and also that their model
is not able to explain the plateau in the microgel size at intermediate concentrations.

In the same scope, Scotti et al. [36] considered non-ionic ultra-low cross-linked pNIPAM
microgel and non-ionic capsule “hollow” microgels. By varying crosslink densities and the architec-
ture of a microgel, and using X-ray and neutron scattering and molecular simulation methods to
analyze the results, the authors measured and modeled the response of microgels in overcrowded
environments to describe how the swelling behavior of these system varied. In other words, the
authors investigated how the interplay between the microgel particles and the cross-link concentra-
tion within the polymer network affected the swelling behavior of microgels when they are squeezed
by their neighbors. It was observed that [36] capsule microgels were more compressed than spher-
ical crosslinked microgels. The authors also found that introducing a cavity filled with a solvent
significantly decreased the size of the hollow microgel in overcrowded environments compared to
spherical microgels. From this analysis, it follows that the amount of crosslinkers is not sufficient to
predict the swelling behavior of microgels in overcrowded environments, and therefore the architec-
ture of a microgel must be considered together with the amount of crosslinkers in order to predict
whether one microgel is softer than another and whether it interpenetrates or is compressed by its
neighbors [36]. Finally, the authors state that having a cavity filled with a solvent can enhance the
deswelling of microgels rather than reducing the crosslinker densities in overcrowded environments.

The swelling, structure, and permeability of hollow charged microgels have been studied
theoretically [30,99], computationally [45], and experimentally [8,11,12,100]. For example, Wypysek
et al. [12] demonstrated how the size and structure of a hollow ionic microgel can be tunable by
varying the level of pH and ionic strength. The authors systematically investigated the influence
of pH and salt on the structure and swelling behavior of charged hollow microgels by using small-
angle neutron and light scattering experimental techniques and interpreted their results via the
Poisson—Boltzmann theory in the cell model. Interestingly, the authors found that increasing the
ionic strength decreases the thickness of the fuzzy layer at the outer surface of the microgels. In
contrast, with increasing ionic strength, the fuzzy layer grew thicker at the cavity wall. In other
words, the ionic strength reduces the local Debye screening length; therefore, the charged polymers

encounter a weaker electrostatic repulsion from neighboring polymers. The electrostatic osmotic
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pressure was found to decrease throughout the hollow microgel. As a result, the polymer chains
near the cavity surface are free to expand, which shrinks the cavity size. In contrast, the outward
dangling chains collapse onto the hollow microgel surface, leading to a more homogeneous and
compact external structure [12].

In studying a suspension of ionic microgel particles, it has been found that ionic microgels
at low concentrations interact via an effective pair potential. At large separation distances, the
effective pair potential has been found to be a form of Yukawa potential, and at shorter distances, a
soft-core interaction [62,93,101-103]. For example, Chung and Denton [101] computed the effective
electrostatic interactions between two species of charged colloids via linear response theory in the
framework of the primitive model. To validate their theory, the authors performed molecular dy-
namics simulations of the coarse-grained model in the canonical ensemble (fixed particle numbers,
system volume, and temperature). Their work provided a characterization of the effective elec-
trostatic interactions, and explored the osmotic pressure and structure of polydisperse suspensions
and helped to motivate our model of a mixture of surface-charged microgels.

More recently, Weyer and Denton [104] studied the swelling and structural properties of ionic
microgel suspensions using Monte Carlo simulation and thermodynamic perturbation theory for a
coarse-grained model of compressible, permeable, charged spheres governed by effective interparticle
interactions [104]. The authors considered a microgel with a uniform volume charge dispersed
in a solvent with counterions that were allowed to penetrate the microgel particles freely. The
counterions in the solution screened electrostatic interactions between the charged microgels, which
were modeled using the Yukawa potential. The Yukawa potential accounts for the screening of
interactions by including an exponentially decaying factor. It was found that for strongly charged
microgels (high valence number) theory and simulations gave equilibrium swelling ratios in close
agreements [104]. Therefore, simulations and theories of coarse-grained models can be very useful
to study particle swelling and interpret future experiments of suspensions of ionic microgels.

In another theoretical approach based on Ornstein-Zernike (OZ) integral equations, Moncho-
Jorda [46] studied the effective charge of ionic microgel particles in the presence of monovalent salt.
In this work, the ionic density profiles, effective interaction between microgel particles, and the
excluded-volume repulsion between the microgel particles and the ions were investigated from the

extreme dilute limit to highly concentrated suspensions [46]. The study shows that steric inter-
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actions do not have a significant effect on the counterion/coion penetration when the microgel
particle is in the swollen state, indicating that only the electrostatic interaction governs the ion
density profiles [46]. Indeed, many other theoretical studies have pointed out that penetration of
microions is affected only by the electrostatic interactions in the swollen state [46,98]. Finally, the
study also pointed out that steric interactions between monomers show a significant contribution
when the microgel is in the deswollen state [46], due to the excluded volume repulsive force, which

prevents counterions and coions from penetrating the microgel particles [46,98].
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3. MODELS

The aim of this chapter is to describe the physical models. This chapter is divided into
three sections. In the first section, we present the so-called primitive model, where the coions and
counterions are taken into account explicitly while the solvent is implicit. The next section aims
to address the use of the cell model and its limitations. In the third section, we discuss the one-
component model that is standardly used to describe the suspension of ionic microgels, where the
coions and counterions are taken into account implicitly.

3.1. Ionic Microgels Solutions

When charged microgels are dispersed in a polar solvent, the polymer chains of the microgels
acquire a net charge, due to the dissociation of counterions, leaving the microgels with a negative
charge. Dependence on the synthesis of the microgels, the charge can be spread over the surface
or the volume of the particles [4,96]. In addition to the counterions, the presence of salt in
solution contributes to coions and additional counterions. For example, a solvent like water at
room temperature and neutral acidity contains about 107 M of H* and hydroxyl OH™ ions. The
total excess amount of coions and counterions contribute to “added salt”. The salt concentration
can be lowered by deionizing the solvent.

Consider an aqueous suspension in (Donnan equilibrium with an electrolyte reservoir) of
N,,, ionic microgels in a volume V at temperature T'. As illustrated in Figure 3.1, microgel particles,
which are suspended by Brownian motion in a fluid phase (usually water for ionic microgels), are
much larger in size than the microions (counterions and coions). Microions can move through a
semi-permeable membrane with the reservoir, while the microgels are confined to the volume of the
suspension. The salt concentration of the suspension is determined by the reservoir concentration.
For a closed suspension, all particles, including microgels and microions, are confined to the same
volume V and the number of salt ion pairs Ny is equal to the number of coions. In the bulk
suspension illustrated in Figure 3.1, the number of counterions N, is given by zN. = ZN,,, + zN;

as required by electroneutrality, and the total number of microions is N, + 2/Ns.
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Figure 3.1. Primitive model of charged spherical macroions(large cyan spheres) and point
microions (small red/blue spheres) dispersed in a dielectric continuum.

In Figure 3.2, the microgel itself acts like a semi-permeable membrane, allowing microions
to diffuse between the interior and exterior microgel regions, but holding the fixed charge within
the microgel. The fixed charge on the polyelectrolyte chains creates a nonuniform distribution of
microions, which causes an electrostatic osmotic pressure. In addtion, the self-repulsion of the
fixed charge within the microgel generates an outward electrostatic pressure that acts to swell the
microgel. Equilibrium swelling is reached when the sum of the outward electrostatic pressure and
the inward elastic pressure, which is a restoring force exerted by the cross-linked gel, is equal to
zero. It is important to note that the swelling of ionic microgels is limited in our model by elastic

forces exerted by the cross-link polymer network.

Figure 3.2. A single spherical ionic microgel of valence Z in water. The microgel is permeable to
water and small ions (smaller spheres (red counterions) and (blue coions)).
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Explicit molecular modeling of ionic polymer solutions, micellar solutions, and aqueous
solutions containing charged membranes is a very challenging computational problem, complicated
by the many degrees of freedom of the solvent [105-107]. A solution containing a solute requires an
additional understanding of the solvent-solute interaction, the degree of dissociation of counterions,
and the conformation of the solute (e.g., microgels). The primitive model of charged colloids and
polyelectrolytes is a practical basis for qualitatively describing such systems.

3.2. Primitive Model

A detailed theoretical description of ionic microgel suspensions is possible within the prim-
itive model of charged colloids, which is illustrated in Figure 3.1. In this model, the microgels are
modeled as permeable charged spheres or cylinders with valence Z (charge —Ze) and the microions
as point charges with valence —z and z, respectively. The solvent is treated as a uniform continuum
with dielectric constant e, which reduces the strength of the bare Coulomb interaction between a

pair of ions at separation r to

Bo(r) = 22, (3.1)

where 3 = 1/(kgT) and A\p = e?/(ekgT) defines the Bjerrum length, which is the distance at
which the Coulomb energy between two unit charges is equal to the thermal energy of kT of
temperature 7. Each microgel is assumed to carry a fixed charge, uniformly distributed over its
surface or volume, fluctuations being ignored.

Although the primitive model is considered to capture most of the features of real ionic
microgel suspensions, it is an idealization. For example, systems that include solvation effects
cannot be studied with the primitive model. Thus, much of our understanding of charged microgels
has come from studying simpler models, either by reducing the system into subvolumes (cells), each
containing one microgel together with its neutralizing counterions or by coarse-graining out the
microions. The most famous of these models is the cell model, which focuses on a single microgel
and the one-component model, which reduces a suspension of microgels to a suspension of pseudo-
particles governed by effective interactions. The term pseudo-particle implies that the microgels are
not bare and are governed by effective interactions (effective Hamiltonian). The following sections
describe these two models that are used to study the swelling and osmotic pressure of ionic microgel

particles.
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3.3. Ionic Microgels: Cell Model

In 1955, Marcus [108] realized that the cell model method of Wigner and Seitz, which in
solid-state physics is a method to calculate important electronic properties of a solid, can be applied
to colloidal particles [109]. The cell model can be seen as an attempt to reduce a many-microgels
(bulk suspension) problem to a single microgel problem dispersed in an electrolyte solution (see
Figure 3.3). Additionally, the microgel is assumed to be uniformly charged and to have the same
shape as the cell. In this simple model, the interactions between the small, mobile ions and between

the microgel and the small ions in the same cell are explicitly taken into account.

Figure 3.3. Schematic representation of cell model.

In the cell model, the electrostatic potential ¢ (r) and microion densities depend only on
the distance r from the center. Therefore, the Poisson-Boltzmann equation reduces to an ordinary
differential equation for ¢)(r). More details about the Poisson-Boltzmann equation in the cell model
are given in section 4.3. Gauss’s law implies the boundary condition that the electric field vanishes

on the surface of the electroneutral cell, i.e.

(dlfli'ﬁ) )T:R =0, (3.2)

where R is the radius of the cell. For a closed suspension, the arbitrary location of the reference
point of the electrostatic potential is often chosen as the cell boundary: ¥(R) = 0, whereas for a
suspension in Donnan equilibrium, the potential is conventionally chosen to vanish in the reservoir.

Although the combination of the cell model with the primitive model gives a significant

abstraction from a bulk suspension of ionic microgels, the cell model has proven accurate, compared
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with multi-microgel simulations and experiments, in predicting osmotic pressures and swelling
behavior of ionic microgels.

In this study, cell models are used for three different geometries of ionic microgel particles.
In the spherical cell model (see Figure 3.4), a spherical of ionic microgel of swollen radius a with
spherically symmetric fixed charge distribution is centered in a spherical cell, representing a sus-
pension of spherical microgels of volume fraction (the fraction of the total sample volume which is

occupied by the particles) ¢ = (a/R)3.

Figure 3.4. Schematic representation of the cell model with spherical ionic microgel of swollen
radius a (dry radius ag) and valence Z centered in a spherical cell of radius R along with
microions. The radius R of the cell is fixed, and both counterions (small red spheres) and coions
(small blue spheres) are free to move throughout the cell volume.

In the spherical cell model (see Figure 3.5), a spherical shell (capsule) of ionic microgel of
inner swollen radius a and outer swollen radius b with spherically symmetric fixed charge distribu-
tion is centered in a spherical cell of radius R that is determined by the concentration of microgels

inside the suspension ¢ = (b/R)3.
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Figure 3.5. A microcapsule of inner swollen radius a, and outer swollen radius b containing N
microions is placed at the center of a spherical cell. The radius R of the cell is fixed by the overall
microcapsule concentration inside the solution, R = (d%/g) Both counterions (small red spheres)

and coions (small blue spheres) are free to throughout over the cell volume.

In the cylindrical cell model (see Figure 3.6), an infinitely long cylinder of ionic gel of cross-
sectional radius a with axially symmetric fixed charge distribution is centered in a cylindrical cell

of radius R, representing a suspension of cylindrical microgels of volume fraction ¢ = (a/R)3.

Figure 3.6. Schematic representation of the cell model cylindrical microgels of swollen radius a
(dry radius ap) and linear charge density A centered in a cylindrical cell of radius R along with
microions. The radius R of the cell is fixed, and both counterions (small red spheres) and coions
(small blue spheres) are free to move throughout the cell volume.
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The linear swelling ratio of a microgel is defined as a ratio of the swollen microgel volume

v to the dry microgel volume vg:

()" ()"

where ¢g denotes the dry volume fraction of the microgel in a reference swelling state. Assuming
uniform swelling of the microgels (swelling ratio does not vary in space), the swelling ratio a can

be expressed as the ratio of the actual (swollen) radius a to the dry radius ay:
a=a/ap. (3.4)

To determine the swelling ratio of microcapsule particles, we assumed a uniform swelling of the
microcapsule, although the inner and outer swollen radii of a microcapsule are, in principle, inde-

pendent. For the sake of simplicity, the swelling ratio is defined as
a=a/ag = b/bo, (3.5)

where bg is the outer dry radius of microcapsules. Similarly, the swelling of a cylindrical microgel

is assumed to be uniform with radial and axial swelling ratios defined as
ar = ajay, aq = h/ho, (3.6)

where . is the radial equilibrium swelling ratio and « is the axial equilibrium swelling ratio, and
h and hg are the swollen and dry radii of cylindrical microgels, respectively. It is important to
note that these swelling ratios are not constant, since they depend on many parameters such as
temperature, salt concentration, and microgel charge. Since a cylindrical microgel, does not swell
equally in three dimensions (anisotropic swelling), the linear swelling ratios, may differ in the x, y,
and z directions. By assuming two dimensional isotropy swelling, where o, = o # a, the volume
swelling ratio may be expressed as

ha? 9
= Qg0

3.7
hoa(% ( )
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Due to these differing swelling ratios, a cylinderical microgel has distinct radial and axial osmotic
pressures. In order to utilize o, and «, to compute the gel contribuations to osmotic pressures,
the original Flory-Rehner theory of gel swelling [43] must be modified. More details are presented
in the Chapter 4.

As stated earlier, cell models, involving a single microgel, prove useful to study concentrated
dispersions. Cell models provide a simple analytic relation between the bulk pressure and the
microion densities at the cell boundary (r = R). The osmotic pressure of a suspension I, i.e., the
difference in pressure between suspension and reservoir, in the cell model is exactly given by kT

times the microion density at the outer cell boundary:

I = kpT [ni(R) +n_(R)]. (3.8)

This equation is well-known as the cell theorem for the osmotic pressure of a bulk suspension [17].
Even if the particles are strongly correlated, equation 3.8 is still valid. It is important to note
that the electrostatic contribution to the osmotic pressure of a single charge cylindrical or spherical
microgel is not determined by the difference in ion density between the center and wall of the
cell but instead is determined by the difference in pressure between the inside and outside of the
gel at the microgel surface [63]. The difference can be attributed to the work required to move
counterions and coions between the exterior and interior regions of the microgel. Determining the
osmotic pressure of an ionic microgel will allow us to determine the equilibrium swelling behavior
of microgels.
3.4. Ionic Microgels: One-Component Model

It is clear that electrostatic interactions in such charged microgel systems play a crucial role
in determining the physical properties of bulk suspensions, such as swelling behavior and osmotic
pressure [1,2]. The behavior of these systems is extremely complex due to the long-range Coulomb
interactions. The first simplifying assumption is to treat the solvent as a dielectric continuum. In
addition to that, the short-range ion-ion excluded-volume is modeled by a hard-sphere interaction.
A further simplification can be achieved using the cell model, where the system is reduced to
only one macroion, along with its neutralizing counterions and coions, as described in section 3.3.

Therefore, modeling a bulk solution with high salt concentration is very challenging [110]. For
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that purpose, the concept of a one-component model or effective-interaction model, which maps a
macroion-microion mixture onto a suspension of pseudo-macroions, as illustrated in Figure 3.7, is
a very powerful technique in modeling of colloidal suspensions. In other words, we integrate out
all the microscopic degrees of freedom in the partition function in a fixed microgel configuration.
Such a coarse-grained description allows predicting bulk thermodynamic and structural properties

of the system.
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Figure 3.7. An illustration of the one-component model concept.

Within the primitive model of ionic colloidal, the system of interest is modeled as a suspen-
sion of N,,, surface-charged spherical microgels of charge —Ze, and N, point counterions of charge
ze in solvent in volume V at temperature T' (see Figure 3.7). As shown in the illustration, the
counterions (small red spheres) and coions (small blue spheres) can freely penetrate the microgel
surface and the microgel particles can overlap (interpenetrate). The microions and solvent are
implicit (solvent is taken to be a structureless continuum of uniform dielectric constant) in our
Monte Carlo simulations, and two different systems were considered in this study. The first system
contains only one species of ionic microgel, while the second system contains two species of ionic
microgels, as shown in Figure 3.8. The role of electrostatic interactions in the interpenetration and

compression of these two models will be described in Chapter 4.
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Figure 3.8. Primitive model of binary mixture of charged microgels: two species of charged
macroion of valences Z,, (big cyan spheres) and Z,, (small cyan shperes), microions (counterions
and coions), and implicit solvent.

From a theoretical viewpoint, different aspects of ionic microgels have attracted the at-
tention of theorists, who have developed several statistical mechanical frameworks and computer
simulations methods [41, 46,101, 111,112]. The following chapter represents two statistical me-
chanical frameworks based on the primitive model developed to investigate the structural and

thermodynamic properties of these systems described in sections 3.3 and 3.4.
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4. THEORETICAL METHODS

4.1. Exact Statistical Mechanical Relations in the Cell Model

For a restricted primitive model electrolyte, some exact statistical mechanical relations
in the cell model have been derived for ionic microgels. Using the cell model, the electrostatic
component of the total osmotic pressure is determined through an explicit evaluation of a volume
derivative of the partition function. Ionic microgels with different geometries and fixed charge
distributions, e.g., microcapsule, cylindrical, and spherical, are considered. The derivations start
from the Hamiltonian:

H=H,+ H,, (4.1)

where H, is the electrostatic component and H, is gel component, including the elastic and mixing

degrees of freedom of a polymer gel. The electrostatic part can be expressed as
He = Un(a) + Unp({r}; a) + Upu({r}), (4.2)

where Uy, (a) is the microgel self-energy and Uy, ({r}; a) and Uy, ({r}) is the microgel-microion and
microion-microion interaction energies, respectively. The last two terms in Equation (4.2) depend
on the coordinates of all N microions, {r1,...,rn} = {r}. Note that only the first two terms
in Equation (4.2) are needed to compute the electrostatic contribution to osmotic pressure since
the last term is independent of the microgel radius. To determine the equilibrium ionic density
profiles inside and around an ionic microgel particle, the microgel-microion interaction energy can

be expressed in the form

N
Um,u({r}§ CL) = Z ’Um,u,(ri; a)7 (43)
=1

where vy, ({r}; a) is the pair potential between the fixed charge of the microgel and microions in
the cell. The microgel-microgel correlations are completely neglected in the cell model (see section
3.3), and contributions of such interparticle correlations to the osmotic pressure are known to be

weakest in the low-salt limit [113]. For a suspension in which the number of particles N, volume
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V, and temperature T are fixed, the Helmholtz free energy F' can be expressed as

F=—kgTIn Z(N,V,T), (4.4)

where Z(N,V,T) is the canonical partition function. The Helmholtz free energy F' decomposes
into

F=F,+F, (4.5)

where F¢ is the contribution from electrostatic effects and F} is the gel contribution. Consequently,

the internal osmotic pressure of a single ionic microgel splits into two contributions:

Tin = e + Ty, (4.6)

where 7, and 7, is the electrostatic and gel components of the osmotic pressure of a single ionic
microgel, respectively. The electrostatic component of the osmotic pressure of ionic microgel e,
can be defined via a derivative of the Helmholtz free energy F' with respect to the microgel volume

v. For a spherical microgel with volume v = 4ma®/3, the electrostatic pressure is defined as

oFr 1 ,0U,(a OU,u(a
We:(@z})NTzélwa?( Oa( )+< 82( )>)’ (4.7)

where angular brackets (..) denote an ensemble average over microion configurations. Since the
cylindrical microgel can swell in both radial and axial directions, there are two contributions to
the total electrostatic osmotic pressure, namely, the as radial osmotic pressure (7, ) and the axial
osmotic pressure (mg). For a cylindrical microgel with v = wa’h, the radial electrostatic osmotic

pressure is defined as

B 1 ,0Up(a,h) OUpmypu(a, h)
fine = _27rah( oa * < Oa >) (48)
while for axial electrostatic osmotic pressure
1 ,0Uy(a,h) OUpmpu(a, h)
rae =2 ("o ) 9
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At equilibrium, the total contribution (electrostatic and gel) to the internal osmotic pressure 7;, =
Te + mg = 0, implying that the free energy of the system is a minimum with respect to the
variation of swelling ratio. Within the spherical and cylindrical cell models, these equations for
the electrostatic contribution to the osmotic pressure of a permeable ionic microgel are formally
exact. The following sections present derivations of exact statistical mechanical expressions for the
single-microgel osmotic pressure for three microgel geometries: microcapsule, infinite cylinders, and
spheres.
4.1.1. Tonic Microcapsules

As stated in Section 3.3, the microcapsule swelling is assumed to be uniform. Therefore,
the osmotic pressure across the inner interface is related to the osmotic pressure across the outer

interface by

b 3
Tinner — — (a) Tout - (410)
Holding the ratio between a and b radii (7 = a/b) fixed, the electrostatic component of the osmotic
pressure of an ionic microcapsule, 7w, can be defined via a derivative of the Helmholtz free energy
F with respect to the microcapsule volume v, = 47b3/3:

oF 1 OUp, (b, OUpmu (b,
o= (g), =~ qap () 4 (sl (111

From Gauss’s law, the pair potential between microions and microcapsule is:

_B8Zze? (b% — a?), 0<r<a
VUmpu(r;a,b) = (4.12)

7 2 b2 1 2 3
s (B -3 +9D), a<r<y,

where, r represents the distance between the microion and the microcapsule center. The microcap-
sule self-energy, which is the energy stored in the system of charges to be assembled continuously

throughout its volume, can be expressed as

BUm(a,b) = (4.13)

3Z2xg [ 20° — 5b%a3 + 3a®
(b3 — a3)? 10 '
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Rewriting Equation (4.13) in term of v, Equation (4.13) becomes

37°Ap [2—5v3+3%°
U (b, ) = 4.14
/8 ( 7) b ( 10(1 _ '73)2 ( )
The term in Equation (4.11) that involves the microcapsule self-energy is (in kg7 units)
m(b Z2Xg (2573 5
gUnlb) _ 32725 57 + 3y (4.15)
ab 2 10(1 — ~3)

The term that involves the energy of interaction between a microcapsule and a microion of valence

Z (in units of kgT) divids into two contributions, one from the cavity region (r < a),

DUy (b, 7) 32051 (1-7*) &
3 <ab >Cav =l z; 2 (4.16)
and the other from the shell region (a < r < b),
OUpyu(b,7) g 0 & 3 r2 A3
Pmpl )\ 2 o A DY 4.1
5< b >sh 1—%0b ;z % 23 1 (4.17)

Substituting the self-energy and interaction energy contributions, namely Equations (4.15)-(4.17)

into the electrostatic osmotic pressure in Equation (4.11) yields
B 7222 2-5v34+3y>  Zzip Kl 2)((]\7 > (N Vear)
U = - - v —)cav
eUsh b 10(1 - 73) % Y +/ca ca

+<N+>sh - <N—>sh - b% <<Ti>sh - <T2>sh):| s (4.18)

where vg, = 47 (6% — a3) is the volume of the shell,

a

(Ni)cav = 47T/0 r2ny (r)dr (4.19)

are mean numbers of microions inside the cavity,

(Ni)ay = 4 / s (r)dr (4.20)

a
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are mean numbers of microions inside the shell, and

(rd)en = 4w /b ring (r)dr (4.21)

a

is second moments of the microion density profiles inside the shell. These Equations (4.19)-(4.21)
were used as input in Equation (4.18) to compute the electrostatic pressure, as discussed later in
the use of Poisson-Boltzmann theory to compute the microions density in section 4.3.

4.1.2. Surface-Charged Microgels

For a microgel with uniform surface charge, whose fixed charge density is described by

VA

" 4ra?

n(r) 6(r — a), (4.22)

the pair potential between microions and microgel is:

_ Zze?

4mer? r>a
VUmu(r;a) = o (4.23)
ze
" 4mea” r<a.

The Dirac-delta function §(r —a) in Equation (4.22) is defined such that when the argument of the
function is equal to a, § = oo, and when the argument is not equal to a, § = 0. Mathematically,

d(r — a) can be defined as

oo, ifr=a
0, ifr#a.

The microgel self-energy and radius derivative of the microgel-microion interaction energy inside

the gel (r < a) are (in kpT units)
_ 2B

BUn(a) = 23 (4.25)

and

A <8Um” (a)> _ 2B (4.26)

Oa a? i)
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Substituting Equations (4.25) and (4.26) into Equation (4.7) yields

2
Brev = f% (22 +Z ((Ny) — <N>)> 7 (4.27)

where v = 4%&3 is the volume of the microgel and

(Ni) =4m /Oa 2 (r)dr (4.28)

are mean counterion/coion numbers inside the microgel.
4.1.3. Cylindrical Ionic Microgels

The cylindrical cell model has been used to model polyelectrolyte solutions and suspensions
of charged rodlike colloidal particles [108, 114]. In this study, two permeable cylindrical ionic
microgels systems are considered: cylindrical gel of cross-sectional radius a and fixed charge per

unit length —\ (A = —Z/h) uniformly spread over the surface with number density,

ng(r) = A d(r—a) (4.29)

and a cylindrical microgel with fixed charge per unit length uniformly distributed over its volume
with number density
A
ng(r) = —0(r —a). (4.30)

 ma?
The §(r —a) in Equation (4.30) represents the Heaviside function (also known as the step function)
and formally can be expressed as
0, ifr<a
O(r—a)= (4.31)
1, ifr>a.
Following the approach developed previously to spherical microgel and considering that the cylinder
swells in axial and radial directions. The following subsections represent some exact statistical
mechanical relations for the electrostatic contribution to the osmotic pressure of an ionic cylindrical

microgel in the cell model.
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4.1.3.1. Surface-Charged Cylindrical Microgels
The pair potential between microions and a cylindrical microgels can be expressed as (in

kpT units)
2\pzIn(r/R), r>a
Umnp(r) = (4.32)
2\pzln(a/R), r<a
For a cylindrical microgel with uniform surface charge density, whose fixed charge is described

by Equation (4.29), the self-energy and microgel-microion interaction energy inside the microgel

(r < a) per unit length are (in kg7 units)

a
Un = —ApAiln (R) , (4.33)
and
a
Unp = 2\ In (R> i(ga) 2. (4.34)

Substituting Equations (4.33) and (4.34) into Equation (4.8) yields the electrostatic contribution

to the osmotic pressure in the radial direction

Mg
-~ 271a?

Urs

(A —2((V.) — (N_)) ) (4.35)

where

(Ni) = 2r /0 e (r)dr (4.36)

are the mean numbers of counterions/coions per unit length inside the microgel and ni(r) are
the mean number densities of of counterions/coions inside the microgel. From Equation (4.9), the

electrostatic osmotic pressure in the axial direction is

Ta?

o= MB (2) </\—2(<N+>—<N_>)>. (4.37)

Note that the main difference between the radial and axial pressure equations is that the axial
pressure equation involves a logarithmic function. However, this difference palys a significant role

in determining the equilibrium swollen size of a microgel.
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4.1.3.2. Volume-Charged Cylindrical Microgels
For a cylindrical microgel with fixed charge uniformly distributed over its volume, the pair

potential between microions and the microgel is given by (in kg7 units),

2\\gzIn(r/R), r > a

U (1) = (4.38)
R?
2\\pz(yr — 1), r<a.

The self-energy for a cylindrical microgel with charge number density described by Equation (4.30)

and microgel-microion interaction energy per unit length are (in kg7 units)

Um = N2\p [411 ~In (;)} (4.39)

2
a T;
Um//' = 2)\)\3 i(’ri<a) Z |}1’l <R) + 2&2 (440)

Substituting Equations (4.39) and (4.40) into Equation (4.8) yields the electrostatic contribution

to the osmotic pressure in the radial direction
(4.41)

From Equation (4.9), the electrostatic osmotic pressure in the axial direction is

n= (A (- () v () (- )+ EE )

where

(r¥yL =2m /Oa iy (r)dr (4.43)

are second moments of n4 (r) inside the microgel.
4.2. Flory-Rehner Theory
The aim of using Flory-Rehner theory is to compute the gel contribution to the osmotic

pressure of the microgel particles. Flory-Rehner theory combines the Flory-Huggins theory of
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solution thermodynamics with rubber elasticity theory. The theory rests on two basic assumptions:
the interactions between the constituent chains are independent of the state of deformation, and
microgel chains exhibit a Gaussian distribution (excluded volume interactions are ignored) [115].
Although the Flory-Rehner theory was originally developed to describe the equilibrium swelling
characteristics of macroscopic (bulk) gels [43,115-117], the theory has been proven to model the
swelling behavior of microgel particles [4,26,44,118]. More recently, Lopez and Richtering [118]
discussed the use of Flory-Rehner theory for studying the swelling of thermoresponsive microgels.
The authors conclude that the Flory-Rehner model succeeds in describing microgel swelling well at
high cross-linking densities, but fails to give a quantitative description of experimental data at low
cross-linking densities [118]. Nevertheless, the theory provides a basis for understanding microgel
swelling and deswelling.

The Flory-Rehner theory assumes linear superposition of the free energy associated with

the swelling of a neutral gel network:
Fg = Fhix + Felastics (4'44)

where Finix and Fylastic, represent the free energies of mixing and of rubber elasticity, respectively.
The mixing free energy accounts for the attraction of solvent molecules to the polymer network

and can be described by the Flory—Huggins equation,
Friz = Unix — TSmix (445)

or (in kT unit)

BFmix = Ns[(1 — ¢p) In(1 — ¢p) + xdp(1 — ¢p)]; (4.46)

where Vg is the number of solvent molecules, ¢, is volume fraction of polymer gel, and x is the
Flory or Flory—Huggins solvency parameters derived from polymer-polymer, the polymer-solvent,

and solvent-solvent interactions. The volume fraction of polymer gel can be expressed as
_ ag 1

- a3 - 5, (447)

P
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and Flory—Huggins solvency parameters has the form (in kg7 units)

w11 + w22> (4.48)

X:Z(w12 B

where. This quantity is very important to model experimental data accurately since y depends on

temperature and concentration through,

1 9
X=5- A <1 — T) + C¢p+ D2, (4.49)

where 6 is the theta temperature and A, C, and D are fit parameters. The Flory solvency parameter
for PNIPAM microgels is x < 0.5 in water [118]. If x > 0, polymer-slovent mixing is not energetically
favorable. In contrast, if xy < 0, polymer-slovent mixing is energetically favorable. Depending on
the value of y, the polymer may behave like an athermal or ideal Gaussian chain. When x = 0, the
polymer conformation depends only on the excluded-volume interactions between the monomers, so
the polymer behaves athermally. When x = 1/2, the polymer behaves like an ideal Gaussian chain,
due to a blance between the excluded-volume repulsion and the hydrophobic attraction between the
polymer chains. For larger values of x, the polymer tends to be more hydrophobic, so the microgel
shrinks expelling, the solvent molecules from inside. The larger x is, the smaller the microgel size
becomes.

The elastic free energy can be expressed as
Ferastic = Helastic - TSelastic (450)

where Hejqstic are the enthalpy of the network which is negligible (due to no change in internal
free energy of the network) and Sejqsc is the entropy due to configurationl change of the network.

From the statistical theory of rubber elasticity [43],
BFy =-TS, = % {ai + ai +a?—-3— ln(axayaz)} , (4.51)

where o is the linear swelling ratio in the x-direction, cy, is the linear swelling ratio in the y-

direction, and «, linear swelling ratio in z-direction, and v, is the effective number of chains in
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the network. For an isotropic network, where the swelling is independent of the orientation of the
polymer, a, = oy = a, = «, as in the spherical microgel case, the elastic free energy can be
expressed as

3
Ferastic = §Nch(052 —lna— 1) (452)

For an anisotropic swelling network, where the swelling is dependent on the orientation of the
polymer (where o, = ay=0y, # a, = ) as in the cylindrical microgel case, the elastic free energy
can be expressed as

1
BFutastic = 5 Nen (207 + a2 = 3 —In(a?a,)) , (4.53)

2

where N, is the number of cross-linked chains. Finally, the gel free energy associated with the
isotropic swelling of a polymer network, obtained by the addition of Equations (4.46) and (4.52)

can be written as
BFy = Nuon |(@® = 1)In (1-a™*) 4+ x (1 -a75)| + chh (e ~lna-1), (4.54)

while the gel free energy associated with the anisotropic swelling of a cylindrical polymer network,
obtained by the addition of Equations (4.46) and (4.53), can be written as
BEFy = Nmon {(aaaz —1)In (1 - 0@104;2) +x (1 — a;la;Z)} + %Nch (2043 i ln(azaa)) .
(4.55)
The first term on the right-hand side accounts for mixing contribution between solvent and poly-
mer, the second term interaction of solvent/polymer, and the last term elastic contributions. The
elasticity of microgel particles strongly depends on the average chain length. Short chains imply
that the particle has a larger cross-linker concentration, and so it is more difficult to stretch. On
the contrary, for long chains, the microgel is likely to be deformed by any external stimuli with
a relatively small elastic free energy cost. The internal structure of the microgel and the elastic
response depends on the number of monomers Np,on. Assuming that monomers have a spherical

shape of radius rmyon, the number of monomers is given by

Nonon = 0.61—2, (4.56)

Umon
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where vo=4ma3/3 is the dry volume of the microgel, and vpen= 47r3,,/3 is the volume of a
monomer, and (0.61) is used to ensure that the volume fraction of the monomers is below the
volume fraction for random-close-packing of hard spheres, which is 0.64.

The total gel osmotic pressure 7, is expressed as
Mg = Tmix T Telastics (457)

where 7pix denotes the osmotic pressure due to mixing, and meastic that due to rubber elasticity.

The gel osmotic pressure 7, is obtained from the gel free energy via

0
P (avFg> . (4.58)
From Equations (4.54) and (4.55) and using Equation (4.58), the gel pressure of a spherical microgel

is expressed as

Brg(a)v = —Nmon {a:} In (1 — 073) +xa 3+ 1} — Nen (a2 — ;) , (4.59)

and for a cylindrical microgel the radial and axial gel pressures are, respectively,

1
Brg(tr, o)V = —Nmon [aaaz In (1 — O‘;lar_Q) + XOQ;IOZT_Q + 1} — N <az — 2> (4.60)
and
1 1 1
ﬁﬂ'g(a»,‘, Oéa)v = —Nnon {CKQCE% In (1 — 1ar 2) + xo, 1ar 2 + 1} — Nen (Ozi — 2) . (461)

As mentioned before, the condition of thermodynamic equilibrium is that the total osmotic pressure
vanishes. It is seen from Equations (4.59) and (4.60) that, within the framework of the present
theory, the cross-link concentration and the Flory solvency parameter determine the swelling ratio

of a neutral microgel, and only x responds to changes in external conditions.
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4.3. Poisson-Boltzmann Theory

Computing the electrostatic osmotic pressure of an ionic microgel requries knowing the mean
numbers of interior counterions/coions (/N+) and second moments of the interior microion density
profiles (r?).. We used Poisson-Boltzmann (PB) theory to computed the microion density profiles,
from which (N4), (r?)+, and the corresponding electrostatic osmotic pressure are obtained. PB
theory has been widely applied to model interfaces between charged surfaces and ionic solutions,
including ionic microgel solutions [40,108,119,120]. It is a good approximation at ionic strengths
about 0.1M and for monovalent (weakly correlated) electrolytes [121]. The theory is a mean-
field theory and its derivation is based on several assumptions as follows: the charge densities are
represented as smoothly varying functions. The nature of the ions is not taken into account, and
no other molecular interaction between the ions and solvent is considered. The ion-ion correlations
are also neglected. The ion distributions are represented by their thermal averages. Despite all of
these limitaions, the theory provides reasonable quantitative results. A good review of the scope
and impact of these deviations from PB theory can be found in [122].

There are several derivations of the Poisson-Boltzmann equation based on statistical me-

chanics. The simplest derivation starts with Poisson’s Equation (1.2),

V24(r) = 1) (4.62)

€

In a mean-field approximation, the distributions of all ions in the solution follow a Boltzmann

distribution:

f(r) = Ae= U0, (4.63)

where A is a normalization constant and U is the electrostatic potential energy. With electrostatic

potential energy (ze¢(r)), the Boltzmann distribution becomes
n; = nge~#¢/ksT (4.64)

Combining Poisson’s equation for the electrostatic potential with the Boltzmann distributions for

ion densities yields the Poisson-Boltzmann equation in spherical (d = 3) and cylindrical (d = 2)
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polar coordinates,

" (r) + ?d/(r) = k?sinhy(r) + At Apng(r), (4.65)

which is a second-order nonlinear elliptic partial differential equation. Here ¢(r) = e¢(r)/kpT, is a
dimensionless potential and £ = /87 Apng is the Debye screening constant, which is proportional to
the square-root of ionic strength of the solution. Through this parameter, the effects of electrolyte
ions on the electrostatic potential are captured. For weak electric fields, Equation (4.65) is simplified
to the linearized PB equation by replacing the sinh)(r) term with its first-order approximation,

sinh ¢ (r) = 1(r), to give (in spherical (d = 3) polar coordinates)

W) + %1//(7“) — W2P(r) + drApns(r). (4.66)

In general, solving the Poisson-Boltzmann equation for the electrostatic potential requries specifying
suitable boundary conditions. The cell model is a good approximation, whose boundary conditions
are relatively simple. The Poisson-Boltzmann equation for a microcapsule microgel, whose fixed

charge is described by

0, r<a
ni(r) =\ o a<r<b (4.67)
0, b<r<R,
can be expressed as
K2 sinh ¥(r), 0<r<a
2

W)+ Y = w2sinh(r) + 225, a<r<b (4.68)

K2 sinh ¢(r), b<r<R.

Substituting Equation (4.22) into Equation (4.65) yields a Poisson-Boltzmann equation for a

surface-charged spherical microgel,

W (r) + %w'(r) — W2sinh () + 2 ;B 5 — a). (4.69)
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Substituting Equation (4.30) into Equation (4.65) yields a Poisson-Boltzmann equation for a cylin-

drical microgel with fixed charge per unit length (—MAe) uniformly distributed over its volume,

1 A
" / 2
- = h O(r —a). 4.70
" (r) + Td) (r) = k”sinh(r) + —3 (r—a) (4.70)
Similarly, substituting Equation (4.29) into Equation (4.65) yields a Poisson-Boltzmann equation
for a surface-charged cylindrical microgel

" (r) + %w'(r) = k2 sinh ¢ (r) + ﬁ 5(r —a). (4.71)

Equations (4.68), (4.69), (4.70), and (4.71) are subject to the boundary conditions: the electric field
must vanish at the center of the cell ¢//(0) = 0 (by symmetry) and on the cell boundary ¢/'(R) =0
(by electroneutrality). In the microcapsule case, Equation (4.68) also is subjected to the continuity
conditions of the shell interfaces, e (a) = VYgp(a), Ysp(b) = Yout(b). The subscripts “cav”, “sh”,
and “out” label the solutions in the cavity, shell, and outer regions, respectively. Within the cell
model implementation, and using these boundary conditions, the PB Equations (4.68), (4.69),
(4.70), and (4.71) are numerically solved by using the ParametricNDSolve solver in Mathemat-
ica, from which the ion density profiles, and the corresponding electrostatic osmotic pressures are
computed.

Finally, it is important to emphasize that our PB theoretical calculations are well below the
threshold for Manning condensation onto polyelectrolyte chains (ATB < 1), where [ is the distance
between neighboring charged monomers. If Ag/l > 1, the Coulomb interactions dominate over
the thermal fluctuations and counterion condensation is favored. In the case of surface-charged

spherical microgels, the counterion condensation condition is defined as

1/2
4 2
( W; ) > g (4.72)
or
Z\2
4m32 <1 (4.73)
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In the case of surface-charged cylindrical microgels, the distance between neighboring charged

monomers can be expreesed as

1/2
I = <27TZah> > \p. (4.74)

By using (Z/h = \), the threshold for counterion condensation onto surface-charged cylindrical

microgels would be
2
/\)\73 < 1

4.75
2ra ( )

Similarly, the counterion condensation limit for volume-charged cylindrical microgels is

9 1/3
[ = (”azh) > Ap (4.76)

or
AN,

o < 1. (4.77)
For example, if Ag = 0.7 nm, Z = 1000, and ¢ = 30 nm, the counterion condensation limit for
spherical microgels with uniformm surface charge (Equation (4.73)) would be 0.043 < 1. For a
surface-charged cylindrical microgel with A = 500, Equation (4.75) gives 1.29 and for a volume-
charged cylindrical microgel with same parameters, Equation (4.77) gives 0.06 < 1.
4.4. Effective Interactions of Ionic Microgel Suspensions

Suspensions of ionic colloidal particles are multi-component mixtures of microscopic parti-
cles, macroions, counterion, coions, and solvent molecules. It is often practical to view microgel
suspensions as one-component “microgel-only” systems described by effective microgel interactions
in which the presence of microions appears only through medium properties, such as the dielectric
constant and the Debye screening constant. For the model suspension described in Chapter 3, the
goal is to derive a statistical-mechanical approach based on the one-component model and linear
response theory to describe effective electrostatic interactions between the penetrable spherical
microgels. The elastic contribution to the effective interaction potential was modeled using the
Hertzian model of the theory of elasticity, allowing studying the interplay between the electrostatic

and the elastic contributions to the effective interaction potential. Combing the theory of effective

interactions with Monto Carlo simulations gives access to radial distribution functions, static struc-
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ture factors, and phase behavior of ionic microgels, which cannot be obtained from the cell model.
Finally, the theory with Monto Carlo simulations aims at the understanding of phase behavior of
ionic microgel solutions.

By following Denton’s statistical mechanical framework of charged colloidal suspensions
[42], the Hamiltonian of a model system containing only one species of surface-charged microgels

suspended in a solvent with only counterions (no salt), as described in 3.4, can be expressed as
H = Hpyp + Hee + Hipe, (4.78)

where H,,,, is the electrostatic energy of interaction between microgels, H,,. describes the microgel—
counterion interaction energy, and H,. is the counterion-counterion interaction energy. Explicitly,

these terms are of the form
N,
1 m

i#j=1

N,
1 c
He.=K.+ 5 Z Vee (Tij) (480)
i#j=1

Nm N

Hipe = Z Z Ume (rij) ) (481)

i=1j=1
where K, and K, are the microgel and counterion kinetic energies, respectivlty, and v,,,, is the bare
Coulomb pair interaction potential between two microgels at center-center separation r;;, which

reads as

AT

Umm(Tz‘j) = o Tij > a; + aj (4.82)
i

Since the counterions are modeled as point particles, they interact via the Coulomb potential

expressed as
2.2
=c (4.83)

Vee(Tij) = e
ij

The electrostatic potential energy between a microgel and a counterion v,,.(r) will be considered

in detail later.
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The partition function Z of the mixture is the canonical double trace over microgel and
counterion coordinates. By integrating out the counterion coordinates, the mixture is reduced to

an equivalent one-component system. The canonical partition function can be expressed as

2 = ((exp(—BH))e),y, = {exp (—BHe)), (4.84)

where Heg is the effective Hamiltonian, which depends only on microgel degrees of freedom and
()., and (). denote traces over microgel and counterion coordinates, respectively. The effective
Hamiltonian can be expressed as

Heg = Hyym + o, (4.85)

where F is the free energy of the counterions in the presence of the microgels:
F. = —kpT1In(exp [ (Hee + Hme)]), - (4.86)

Evaluating the trace over counterion coordinates is technicaly difficult since (H.. + Hy,e) contains
counterion—microgel and counterion—counterion Coulombic interactions and violates the charge

neutrality of the system. Therefore, the self-energy of a uniform, neutralizing background,
Ey = —Nenete.(0)/2, (4.87)

is added to H,,. and subtracted from H.., where n. = N./V is the average density of counterions
and 0¢.(0) is the & — 0 limit of the Fourier transform of v..(r). By using this technique, the coun-
terion system in the presence of the frozen microgels can be treated as a perturbation around the
one-component plasma (OCP) [123-125]. Equation (4.86) then can be calculated via an expansion

around this reference state,

1
F.=Fy+ / AA (Hyne) (4.88)
0

or

1
F, = Focp + / AA (Hpe) — Eb, (4.89)
0
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where Fy = —kpT In (exp (—fH.)), is the reference free energy of the unperturbed counterions,

c
Focp = Fy+ Ejy is is the free energy of a homogeneous OCP excluded from the colloidal hard cores
and A is a charging parameter that scales the charge of the microgels, whereas the expectation
value (...) is carried over the counterions’ degrees of freedom. Additional progress is now made
by employing linear response theory [62], which allows to calculate the counterion response to

the microgel density. The counterions are assumed to respond linearly to the macroion external

potential:

ﬁc(k) = X(k)ﬁmc(k)ﬁm(k)v k 7'& Oa (4'90)

where the (*) denotes a Fourier transform, p.(k) and p,, (k) are the density operators of the counte-
rions and the microgels in inverse space, Uy,.(k) is the Fourier transform of the microgel-counterion
interaction, and x(k) is the linear response function of the OCP. In Equation (4.90), the term k£ =0
is excluded since the counterion number density at & = 0 is fixed by the number of counterions,
N. = p.(0). Therefore, there is no response to the microgel charge when k£ = 0, and 5.(0) is fixed

by the constraint of global charge neutrality. The linear response function x(k) is defined as

x(k) = —BncS(k), (4.91)

where S(k) is static structure factor. Using the Ornstein-Zernike relation, the static structure factor
can be sxpressed as

S(k) = 1/[1 — nee(k)] (4.92)

where ¢(k) is the Fourier transform of the direct correlation function ¢(r). For a weakly-coupled
plasma, a reasonable approximation for ¢(r) can be made by setting ¢(r) equal to its asymptotic

(r — o0) limit é(k) = —f0cc(k) for all r. Therefore,

747‘(‘6,2262

é(k) ~ —PBocc(k) = 2 (4.93)
Substitution of EquationS (4.92) and (4.93) into Equation (4.91) then yields [126]
pne
k)= ———=— 4.94
x(k) 1+ K2/k (4:94)
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where k is the inverse Debye screening length, which plays an important role in the microion density

profiles and in the effective pair interaction. It has the form

Kk = \VAmn.22\p. (4.95)

Returning to the effective Hamiltonian [Equation (4.85)], the full form of the effective Hamiltonian

of a one-component system then is

N.
1 m
Heg = K + 5 > et (rij) + Eo, (4.96)
i#j=1
where veg(7i;) is an effective electrosatic microgel-microgel pair interaction potential, which is

described by two different mathematical expressions, one for overlaps particles and one for non-

overlapping particles,
vy (1), r > a; + a;
Veft (1) = (4.97)
Vov +vu(r), 1< a;+ ay,
where vy (r) is an effective Yukawa (screened-Coulomb) pair potential for non-overlapping micro-

gels, which can be expressed as

vy (r)=A , T >a;+ ay, (4.98)

where the prefactor A depends on microgel charge and size. The Yukawa potential has been
widely used in simulation studies of charged colloids. The voy(r) term of Equation (4.97) denotes
the effective electrostatic pair potential for overlapping microgels and vy(r) is the elastic Hertz
potential, which will be discussed later in this section. The effective electrostatic pair potential for

overlapping microgels vy (1) splits into

Vov (7)) = Uy (1) + Vina (1), (4.99)
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where vj,q(r) is an induced interaction acting between the microgels caused by the presence of the

counterions. The counterion-induced interaction takes the form
Bina(k) = x (k) [Dme(k)]%. (4.100)

The last term in the effective Hamiltonian in Equation (4.96) is the volume energy, which takes the
form

N, .. . 1 . Z
Ey = Focp + Tm lim ving (1) + Ny i | =S dina (k) + nebime (k) + 5-nebee(k)|, - (4.101)

where n,, = N,,,/V and n. = N./V are number densities of microgels, and counterions respec-
tively. The volume energy is a one-body property, which arises naturally from the one-component
reduction and has no explicit dependence on microgel coordinates. It evidently depends on the
average microgel density and therefore has the potential to significantly influence thermodynamics
properties. Such a quantity is quite common when tracing out microscopic degrees of freedom. It
appears for metallic systems as a result of integrating out the electrons [127] and for other classical
charged systems, such as charge hard colloids and polyelectrolyte stars [91,101,128,129]. It is very
important to point out that a crucial difference between microgels and charge hard colloids is that
counterions can penetrate inside the charged microgel, whereas they cannot penetrate charge hard
colloids.

Although salt ions have been taken into consideration in this study, they can be easily
incorporated by introducing additional response functions [41]. Then, the effective pair interaction
and volume energy Fj are adapted only through a redefinition of the inverse Debye screening length

to take into account the effects of added salt ions [41]:

K= \/471' (ne + 2ns) 22Ap. (4.102)

Finally, the nonlinear effect of microion response in the response theory is not taken into con-
sideration, since it is only significant in concentrated, deionized suspensions of highly charged

microgels [41,130].
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Returning to the elastic contribution of microgels, the effective elastic interactions can be

modeled using the Hertz potential [43], which reads as

. \5/2
vr(r) = By(l-ats) + rsata (4.103)
0, r > a; + aj,

where B;; is the Hertz amplitude:

-1
8 [1—12 1—12
Y + J (ai + CL]')2 a;a;. (4104)
v Y, v
B;; depends on the elastic properties of the microgel through Young’s modulus ¥ and Poisson’s

ratio v [43]. The Young’s modulus and Poisson’s ratio are related to each other via
Y =3K(1-2v), (4.105)

where K is the bulk modulus. In the case of microgel suspensions of equal radii and equal elastic

constants (Y, v), the Hertz amplitude simplifies to

16Ya?

B= =y

(4.106)

With these considerations, the presentation of the effective coarse-grained description of ionic mi-
crogel suspensions is completed. Bulk thermodynamic and structural properties, such as microgel-
microgel radial distribution functions, static structure factors, and microgel contributions to the
osmotic pressure can then be calculated by inputting the effective interactions [Equation (4.97)]
and volume energy [Equation (4.101)] into statistical mechanical theories or simulations of the
one-component model.
4.4.1. Effective Interactions between Similar Ionic Microgels

Using the theoretical framework derived above, the effective interactions and volume energy

between two spherical microgels of equal size are derived. The model of interest is described in
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section 3.4. For such a model, The electric field of a uniformly charged sphere is

a2 r>a
E(r) = (4.107)
_ifg: r g CL,
which yields the microgel-counterion interaction
—ijz, r>a
Ume(T) = (4.108)
—Z%f, r < a.
Fourier transformating Equation (4.108) gives
10 = ~ 22 ko) (4.109)
=———S5 . .
Ome 3, Snlka

The inverse-space counterion density profile p.(k) around a single microgel (in the dilute limit,

where p,(k)=1) may be determined from Equations (4.90), (4.94), and (4.108):

Bne A7 ze?
(1+ k2/k?) ek3a

pe(k) = sin(ka), k #0. (4.110)

Now inverse Fourier transforming Equation (4.110) yields the real-space counterion density profile,

Z2€%pn. e " "

ERQ

pe(r) sinh(ka), r > a. (4.111)

From Equations (4.108) and (4.100), the induced electrostatic pair interaction is given by

Bn ?
%d(k):_(um;/k?)[ e sin(k:a)] . (4.112)

By inverse Fourier transforming Equation (4.112), the real-space counterion-induced pair potential

between two nonoverlapping (r > 2a) or overlapping (r < 2a) uniformly surface-charged ionic
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microgels is (in units of kgT')

Zezﬂ; e _ BUmm (1), r > 2a
Buina (r) = (4.113)

2%?‘123 [1 + & (7’2 —4dra) — e " 4 e 2ka sinh(m’)} , 0<r<2a,

where

inh
T = 750h(Ka) (4.114)

RaQ

represents an effective microgel valence (as a — 0, Zeg — Z ). The effective charges as a function
of the bare microgel charge go to Z for low bare charges. Substituting this result for the induced
pair potentials into Equation (4.99), the effective between nonoverlapping microgels pair potential

is obtained as

—RT

e
Bueg (1) = ZeQH)\B

r > 2a. (4.115)

Beyond the effective pair potential, the one-body volume energy can be determined from substi-

tuting Equations (4.109), (4.112), (4.113), and the Fourier transform of Equation (4.83),

AB
BEy = BFocp + P

fzm) o N%Z2

2
2B NnZ (1—2m YN

(4.116)

For the surface-charged microgel suspension model, the OCP is weakly correlated since the coupling
parameter is

I'=\g/a. < 1, (4.117)

where a, = (3/ 47mc)1/ % is the counterion sphere radius. To see that, for microgel of radius a =
50nm, valence Z = 100, and volume fraction ¢ = 0.01, Agp = 0.714 nm, the coupling parameter is
I' = 0.014. Therefore, the first term on the right-hand side of Equation (4.116) can be approximated

as the free energy of an ideal gas of counterions:

BFocp ~ N. [m (nA3) - 1] : (4.118)

A, being the thermal wavelength of the counterions. The second term of Equation (4.116) depends

implicitly on the microgel density through the inverse Debye screening length «, and may be given
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a physical interpretation as self the electrostatic energy associated with a single pseudo-microgel.
The third term of Equation (4.116) corresponds to the £ — 0 limit in Equation (4.101), and it has
no influence on thermodynamic phase transitions when the salt concentration is zero.

The bare electrostatic Coulomb energy of interaction between two overlapping, uniformly

surface-charged microgels is calculated as follows:

Figure 4.1. A representation of overlapping surface-charged microgels.

From the geometry of spheres (Figure 4.1), the area of the spherical cap, which is the portion

of the surface of one microgel that intersects a second microgel, can be expressed as
Acap = 2ma*(1 — cos ) (4.119)

or, since (cosf = r/2a),

Acap(r) = 21ma*(1 — 1/2a). (4.120)

The bare electrostatic interaction between this portion of the surface of one microgel and the whole
of the other microgel can then be obtained by multiplying A..p,(r) by the surface charge density of
the right sphere 45%, and the Coulomb potential of the left sphere % giving finally the interaction
energy,

7262
Umm (1) =

en (1 —-7/2a), r<2a. (4.121)
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The contribution of the portion that lies outside the first microgel to the bare (Coulomb) energy

of interaction between two microgels can be determined as following;:

Figure 4.2. A representation of overlapping surface-charged microgels, where the y is the vertical
distance between P and the line joining the centers of the two microgels, x is the horizontal
distance between P and the ring of intersection of the two microgel surfaces, zo = —r/2, and

r1 = Q.

From Figure 4.2, the area of the portion of the surface that lies outside the first microgel

can be expressed by the integral,

xl
Aput :/ 2madzx. (4.122)
z0

The electrostatic (Coulomb) potential energy of a charge e at a point P on the surface of one

microgel a distance R (R > a) from the center of a second microgel is

Z%e? (w1
= —dzx. 4.123
V(1) 2ae J.0 R . ( )
After some substitutions, the above integral can be expressed as
7262 [ta 1
v r)= dx, 4.124
o () 2ae /r/? V(r+ )2 +a® —2? ( )
whose solution is simply
Z%e?
Vi (1) = e (4.125)
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Finally, the full bare (Coulomb) energy of interaction between fixed charges on the surfaces of a

pair of spherical, uniformly surface-charged microgels can be expressed (in kpT units) as

ZQ%, r > 2a
Bvmm (1) = (4.126)
Z2n(1 —r/2a) + Z22, 0 <7< 2.

After adding to Equation (4.113) the bare Coulomb potential between the spherical microgels

Equation (4.126), the effective pair interaction is

6—&7‘

ngf)\B r r > 2a
Bre(r) = (4.127)
L2 [1— e — e MMasinh(kr)], 0<r < 2.

Note that the effective pair potential Equation (4.127) depends on the bulk densities of all microions.
Finally, these explicit analytical expressions for the effective pair potential and one-body volume
energy of a monodisperse suspension of surface-charged spherical microgels can significantly modify
bulk thermodynamic properties, such as osmotic pressure, which is the subject of the next section.
4.4.2. Osmotic Pressure of Monodisperse Suspensions of Charged Sphere Microgels

The bulk osmotic pressure of suspensions surface-charged microgels of equal radii was cal-
culated from Monto Carlo simulations. In the one-component model, the total osmotic pressure
can be expressed as

1T = I + o + Iy, (4.128)

where the first term on the right-hand side accounts for a microgel ideal-gas pressure, the second
term is associated with the microion volume energy, and the last term accounts for the effective
interactions and correlations between microgels.

The microgel ideal-gas is simply given by

g = npmksT. (4.129)
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The microion volume energy contribution to the osmotic pressure is calculated using the volume

energy of Equation (4.116) via

0Ey
I, = — [ —= 4.1
0 < ov )NS,Nm (4.130)
or (by chain rule)
. 8/—{ 8E0

where the subscripts V,, and Ny denote fixing of all microgel and salt ion numbers, respectively.

Finally, the corresponding volume pressure is given by

Ny €270 Z2\ (=1 4 €% — 2kaq)

My = —
Al 2 4Kka?

(4.132)

The microgel contribution to the total osmotic pressure was calculated from simulations of the

one-component model of microgel dispersions via the virial theorem,

=) ((9),..)

Where Vi is the internal virial and U is internal potential energy, which can be expressed as a

sum over microgel pairs of the effective pair potential veg:

Np,
U= < > et (rij)>. (4.134)

i<j=1

The angular brackets denote an ensemble average over configurations since the pressure fluctuates
during the simulation.

Simulations with periodic boundary conditions require the definition of a certain cut-off
radius beyond which the interactions between pairs of particles are neglected. However, this trun-
cation of the potential removes a contribution to the total potential energy and pressure. To
remedy this truncation of the potential, one can approximately add the interactions beyond the
cut-off radius back into the total energy or pressure by assuming that the radial distribution func-
tion, g(r), is equal to one. This implies that beyond the cut-off, the correlations between particles

are neglected, and particles are randomly displaced. Then, the tail correction of the energy Ujqu
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can be evaluated analytically by

r2u(r)dr. (4.135)

A similar approach can be applied to the tail pressure,

2m 2 o 3,/
Tail = — 1 / T vgg (r)dr. (4.136)

m
3 Te

Adding the tail pressure contribution [Equation (4.136)] to Equation (4.133) yields

Ve oU
M, — < o > <<6V>NS,Nm> e (4.137)

In statistical mechanics, the internal virial term in Equation (4.137) is given by

Non Non
Vie = > ri-fi= > rijfeg (rij), (4.138)
i=1 i<j=1

where f; is the effective force on microgel ¢ due to all other microgels within the cutoff radius r,
ri; is is the center-center distance between particles ¢ and j, and fog is the effective force exerted

on particle ¢ by particle j, expressed as
ot (rij) = —vegr (i) - (4.139)

Differentiating Equation (4.127) with respect to r to compute the effective force exerted on surface-

charged microgel ¢ by microgel j, for the case of nonoverlaping microgels,

bt (1) = (k + %)veff(r), r> 2. (4.140)

For overlapping microgls, an explicit expression for the effective electrostatic force between over-

lapping microgls can be obtained by

fov et (1) = =00, (1) = L (1) + fina(r), (4.141)
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where fim,(r) is the bare electrostatic force and fig(r) is the microion-induced electrostatic force.
Differentiating Equation (4.127) with respect to r (in the case of r < 2a), the f,, g (1) for overlaping

surface-charged ionic microgel pairs is

22X [-1+ e (1 + kr) + e 2" (—rkr cosh(kr) + sinh(kr))]

Blovet (1) = 5.772,02 : (4.142)

Returning to the second term of Equation (4.133), this term is obtained from taking the volume
derivative of the partial internal potential energy in Equation (4.134) for a fixed configuration of
microgels {r}. Since U depends implicitly on the volume through s, the partial derivative of the

internal potential energy in Equation (4.134) can be expressed as

oU oUu ok
— =|— — 4.14
(8V)xm,x5,{r} <6H>{r} (8V)NW,NS ’ ( 3)

where x,,, = N,,/V is the concentration of microgels and x; = N4/V is the salt concentration. The

quantity (g—"j)N N is given by

e Ok K
(a‘/)Nm’NS = (4.144)

or

( Or > S (4.145)

onm, 2N

The quantity (%—g){ , can be rewrite as
r

N, N,
2 0Vt (Tij)  2nm x OVt (7i5)
2 ok K 2 ong, (4.146)

i<j=1 i<j=1

where ( %) represents a density derivative of the effective electrostatic pair potential between

microgels. For nonoverlapping microgel pairs, the effective Yukawa potential [Equation (4.127)]

yields

Bl <3Ueff(7“) > —e " 72\

Onm

2q2 2ka?

% cosh(ka) sinh(ka) _ sinh(ka)? B sinh(ka)? (4.147)
Kkar rK :
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For overlapping microgels (the second regime of Equation (4.127), r < 2a), the partial derivative

of the effective pair potential [Equation (4.127)] with respect to x yields

B, (81}63(7")) 2 <1 — e FT — 7 2R ginh (k)

Onm, 2K2ra?

e KT e—2mzr COSh(IiT) + 2@6_2’{(1 Sinh(lﬂ“)

- ) : (4.148)

4kra?

Finally, the tail pressure term of Equation (4.137) is obtained by using the nonoverlapping effective

pair potential of microgels (the first regime of Equation (4.127), r > 2a) in Equation (4.136),

2 9 [ e
Ttail = EY eff)\Bnm/ r(1+ kr)e "dr, (4.149)
Te
which is equal to
2 —KTc (3 3 2.2
Tail = ?ﬂ-ZeHAann ree " { +K2WC +r TC). (4.150)

The process for calculating the total osmotic pressure II begins by taking the effective forces [Equa-
tions (4.140) and (4.142)] and the volume energy [Equation (4.116)] of a suspension surface-charged
microgels as input to the simulations. More details will be presented in the MC simulation section.
4.4.3. Effective Interactions of Mixtures of Ionic Microgels

By extending our coarse-graining approach formulated previously for monodisperse suspen-
sions of spherical microgels (see section 4.4.1), effective electrostatic interactions of polydisperse
suspensions of surface-charged microgels and the one-body volume energy are calculated. The
system of interest was described in section (3.4).

For a mixture of ionic microgels, an explicit expression for the microgel Hamiltonian is

Nm Ny Ny

Hp =Y U (rig) + Y DD O (135) 5 (4.151)
moi<j m<n i=1 j=1
where
Umn (Tij) = ZmZnQQ/ETij (4152)
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is the Coulomb potential energy between a pair of microgels of species m and n. Similarly, the

microion Hamiltonian is

N N: N,
Hc = Z ZUCC (rij) + Z Z Z Ve (rij) ) (4153)
¢ i<j c<v =1 j=1

where the potential energy between a pair of microions of species ¢ and v is given by
Vev (Tij) = ZcZVSZ/ETij- (4154)

Finally, the microgel-microion interaction Hamiltonian is given by
N Nc

Hine =) ) vme (rij) - (4.155)

m,ci=1 j=1

The microgel-microion pair potential energy v, (r;j) of suspension having two microgels with

different radii can be expressed as

_ Zm ze?

T > an
v (1) = (4.156)
_7Z$zf2 r < am
Fourier transformation of Equation (4.156) yields
. An 7, ze2
op.(k) = —ﬁ sin(kay,) (4.157)

Next, substitution of Equation (4.157) into Equation (4.100) gives the Fourier transform of the

microgel-induced pair potential

B%2ZmZ,  sin (kay,) sin (kay)

4.1
(14+rK2/k2) k. ap an (4.158)

B@mm, ind (k;) = -
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The counterion density profile of microgel species m, pp, .(k), may be determined from Equations

(4.157), (4.90), and (4.94). Substituting Equations (4.94) and (4.157) into Equation (4.90) gives

oK) = Bn. A7 7, z€2
Pmc) = AT 02 /k2)  ekBanm

sin(kan,), k #O0. (4.159)

Note that this density profile [Equations (4.159)] is around a single microgel. The inverse Fourier

transform of this Equation (4.159) yields

7 2 —TK
Pm.c(r) = m2e”fne ¢ sinh(kan, ), (4.160)
€K, r

which gives the real-space counterion density profile of species m, pp,(r). To the reader, these
expressions for the counterion density profile around a single microgel might appear similar to the
Debye—Hiickel expression for the density of electrolyte ions around a macroion [131]. However, our
definition of the inverse Debye screening length differs from that what in the Debye—Hiickel approx-
imation. In our approach, the inverse Debye screening length x depends on the average effective
counterion density n. whereas the Debye—Hiickel x depends on the bulk density of electrolyte ions.

The real-space induced electrostatic pair interaction of uniformly surface-charged ionic mi-
crogels (in units of kgT') is obtained by substituting Equations (4.157) and (4.94) into (4.100), and

then performing an inverse Fourier transform, yielding the expression

—KT

1 ex
- r + Zeff,m Zeff,n s

r 9

,van,ind(r) = ZmZn)\B (4161)

> Qm + an

1 e~ "9m ginh(k ) sinh(k an) .
am + K2AmanT o T<ap—am

and in the intermediate range

2+ k2% (a2, — a2 — 2(am + an)r +1?)
AR2amanr

6’Umn,ind(74) = ZmZnAB<

9e—Kam cosh — 7)) — 2e~*@+7) ginh
2 cosh(k(an — 1)) — 2e st (“am)) A — A <7 < A + G,
AK2QpanT
(4.162)
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where

sinh(kayn,)

Zeim = 7 (4.163)

K,

Note that if a,, = a,, = a, Equation (4.161) reduces to Equation (4.113) of the system contains
only one microgel species. The effective pair potential between microgels of species m and n takes

the form
vy (1), T > Gy + O
Vet (1) = (4.164)

Vov + UH(T)7 r < Qm + an.
Substituting Equation (4.161) into Equation (4.99), the effective microgel-microgel pair potential

(for r > ay, + ay,) is obtained as

—RT

/Bveff(r) = Zeff,mZeff,n)\B6 o (4.165)

To derive the effective microgel-microgel pair potential when two microgel species are overlap-
ping, the bare Coulomb potential vy, (r) between two overlapping surface-charged microgels with

different size is calculated as follows:

Figure 4.3. An illustration of two overlapping dissimilar spherical surface-charged microgels.
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From the geometry of intersection spheres (Figure 4.3), the height of the spherical cap of
the left sphere hy, is given by

hr = am x (1 — cosby) (4.166)

while the height of the spherical cap of the right sphere hg is given by
hr = a, x (1 —cosby). (4.167)

Using the law of cosines, the cosf; and cos 8y can be expressed as

r? + a2 —a?

01 = n 4.168
cos 01 St ( )
and
2, 2 9
cos(fy) = L~ Oin (4.169)

2anT

Now, the area of the left spherical cap, which is the portion of the surface of one microgel of radius

a., that intersects the second microgel of radius a,, can be expressed as

r? + a2 —a?

Ay(r) = 2ma? (1 — cos By) = ma? (1 — ). (4.170)

Tap,

After multiplying by the Coulomb potential of the left microgel and the surface charge density of

the right microgel, the interaction energy takes the form

T Zne?

= 2eaZar, x Ai(r), r<am+an. (4.171)

U (1)

Substituting Equation (4.170) into Equation (4.171) yields

7 7 2 2 2 2
vmm(r):m”e<1—7w” T < am + an. (4.172)

2am€ 2ran,

Equation (4.172) is the electrostatic (Coulomb) energy of interaction between fixed charges on the
surfaces of a pair of spherical homogeneously surface-charged microgels of different sizes. By setting
am = an = a, the Coulomb interaction between a pair of spherical surface-charged microgels of

equal sizes [Equation (4.121)] is recovered.

66



The contribution of the portion that lies outside the microgel of radius a,, to the bare
Coulomb interaction energy between two microgels can be determined from the following approach.

Consider two overlapping spheres of different size as, illustrated in Figure 4.4

Figure 4.4. A geometric representation of two overlapping dissimilar spherical surface-charged
microgels. Their radii are a,, and a,, and the distance between their centers is r. y is the vertical
distance between P and the line joining the centers of the two microgels, x is the horizontal
distance between P and the ring of intersection of the two microgel surfaces, g = (W),
and 1 = ay,.

From Figure 4.4, the area of the portion of the right sphere that lies outside the microgel

of radius a,, can be discribed by the integral,

Aput = /zl 2myds. (4.173)
substituting the element of area ds
ds = 2dy (4.174)
Y
yields
Agut = 2Tan /zl dx. (4.175)

The bare Coulomb potential at a point P on the surface of the right microgel of a distance R from

the center of the left microgel can be expressed as

B ZmZne® [t 1

mm = —axr, 4.1
Vpmm (T) 20 o Rd:n (4.176)
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R=\/(r+z)>+y? (4.177)

and y = a2 — x2. After some substitutions, the above integral can be expressed as
(r) Do Do €2 /“" dx
vmm rT)— — 2 _ .2 2
2ape J_(2n"tmtr" r+ )2+ a2 — 22
- ZmZne® 1

daye p\m ).

Finally, the full bare Coulomb interaction between two spherical surface-charged microgels may be

written in the form

= T > A+ an

B r) = ZmZnAB B
mm() men 1 (1_7"24-0% agn)‘i‘zalnr (_am+an+T)7 Ay, — O < T < A + Ap,

2am 2ran

1

am’

0<7r<am—an.
(4.179)

Combining Equation (4.179) with Equation (4.161), the effective pair potential may be written in

the form
— KT
AB Zeff,mZeff,neTa r>am+an
5 ( ) e—ram S’jinQ};(n;) iinh(ﬁan)’ r < am — ap
/l}eﬁ. /,n — mYn

ABZan

( 1—e= 5" cosh(k(am—an))—e~"(@m+an) sinh(kr)

Sam anrir ) o Ay — A < T < Qm T+ Q.

(4.180)
The linear response theory also consistently yields an explicit result for the one-body volume energy

of a microgel mixture which may be determined from substituting Equations (4.157), (4.158), and
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(4.161) into

1 )
Ey = Focp + 3 ;Nm }1_1)% U, ind (T)

1 BTN
_ 5 Z Ny Ny, ]il_rf%) Umn, ind (k)

m,n
A 1 A
+ ; XC: NN llli% Ome (k) + % %: Z,?,lnzn 1112% Dee(k), (4.181)
yielding the expression
(S Zinlin)
\B 5 <672/€am — 1+ 2/mm) 1 m “miVm
Ey = BF —— Y NpZ - = . 4.182
BEy = BFocp 2%:”1771 242 n 5 22N, ( )

4.4.4. Osmotic Pressure of Polydisperse Suspensions of Charged Sphere Microgels
Similarly to osmotic pressure of monodisperse suspensions (see section 4.4.2), the osmotic
pressure of polydisperse suspensions of surface-charged spherical microgels is obtained. The corre-

sponding volume pressure [Equation (4.130)] is given by

BIIp = A —Z2nmat — Zinpa2, + e main,, 72 (1 4 2kam) + e~ 2% a2 n, Z2,(1 + 2Kay,)
0= 7B 8k2a2, a2 '
(4.183)

Differentiating Equation (4.180) with respect to r to compute the effective force exerted on surface-

charged microgel ¢ by microgel j yields, for the nonoverlaping microgel pairs case,

1
feer (r) = t,mveff(r), > am + an (4.184)

and for strongly overlapping (r < a,, — ay,)

1
foig (1) = - + kcoth(kr)veg(r), 7 < m — an. (4.185)
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Finally for the intermediate range (a, — an < r < @y, + an),

Blegr ()

 ZmZnAB (em"n cosh [k(am — an)] — e“(*am*““)/@cosh(/fr)

2k2a,,an, r

1 — e " cosh [k(am — a,)] — e*(=%m=n) sinh(kr)
2

) y A — A < T < Ay + ap. (4.186)
,

By using Equation (4.146), the density derivative of the effective electrostatic pair potential between

dissimilar microgels of Equation (4.180) (for » > a,, + a,) is given by

1
B, <ageff(7")) =3 [—2 — K1 + Kam, coth (kay,) + Kay coth (kay)], 7> am +an (4.187)
Nm

and for strongly overlaping (r < a,, — ay),

e 1
Brim, (81(;;(7')> = 5 [=2 = Kam + Kay coth (ray) + wrcoth (sr)], 7 < ap —an.  (4.188)

Finally for the intermediate range (an;, — an < 1 < Gy, + apn),

By, (&)eff(r))  ZmZn)B

) — ppncs <—2 + e (2 + k) cosh [K(@m — an)]

4+ e h (_,Lg(am + an) sinh [/{(am - an)]

+ ¢ Hlamtan—r) (—kr cosh(kr) + (2 + k(am + ap)) sinh(mr)))). (4.189)

These expressions are taken as input to the MC simulations, from which the total osmotic pressure
IT of a suspension of unequally sized, spherical, homogeneously, surface-charged microgels whose

fixed charges is described in Equations (4.22) is computed.
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5. COMPUTATIONAL METHODS

Computer simulations play a key role in bridging the gap between microscopic length and
time scales and the macroscopic world of the laboratory. Computer simulations allow us to un-
derstand the properties of assemblies of molecules in terms of their structure and the microscopic
interactions between them. Both molecular dynamics (MD) simulations and Monte Carlo (MC)
techniques are used in our work and the basics of both simulation techniques with the methods
that we developed are discussed in this section.

5.1. Molecular Dynamics Simulations

Molecular dynamics (MD) simulation is a numerical technique that follows the natural time
evolution of the trajectories of the particles by integrating Newton’s equations of motion in small
time steps,

d?r;

Fi = mlﬁ =-V U(I‘Z'j), (5.1)

where i = 1,2,3,....N and N is the total number of atoms, F;,r;,t,m;, a;, r;;, and U(r;;) are,
respectively, the force on atom 4, the position, time, mass, acceleration, the distance between
atoms, and total energy of the system. Equation (5.1) takes into account interactions between
particles, external forces acting on them, and the possible constraints imposed on the system. The
trajectories of particles are calculated by the velocity Verlet algorithm [132].

In this technique, the configuration of particles is initialized with randomly chosen positions
and velocities. Then, the system is evolved in small timesteps. The forces acting on the particles
and their new positions and velocities are calculated at every step. The velocities of particles
are scaled such that the system has the desired temperature. The average value of a measurable

variable A;, e.g. energy, temperature, and pressure, is now calculated as a time average,

(A) = 12D A (52)

where M is the total number of time steps. It has to be ensured that the code runs for a long

enough time that the simulation goes through the desired states and reaches the equilibrium state.
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LAMMPS [133], a molecular dynamics package, was used to run our simulations of a single
ionic microgel (spherical, capsule, and cylindrical) in the cell model. This molecular dynamics
package uses the Verlet algorithm to update the trajectories of the particles in each timestep. All
simulations ran in the canonical ensemble (fixed N, V,T') in a cubic box, with fixed boundary con-
ditions imposed in all directions only for ionic spherical and capsule microgels. For ionic cylindrical
microgels, periodic boundary conditions (PBCs) are imposed in the x-, y-, z-directions. The sim-
ulations of spherical and microcapsule microgels were performed in the spherical cell, while those
of the cylindrical ionic microgels was performed in a cylindrical cell. Figure 5.1 shows the initial
state of the ionic spherical microgel simulation, and Figure 5.2 shows the initial state of the ionic

cylindrical microgel simulation.

Figure 5.1. Snapshot of MD simulation of ionic spherical microgel and counterions.

Figure 5.2. Snapshot of MD simulation of ionic cylindrical microgel and counterions.
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Before the simulation started, the monovalent microions were initialized on the sites of an
FCC lattice. All charged particles interact via bare Coulomb pair potentials, and the influence of
the ionic microgel on the microions is modeled by imposing an external electric field. To constrain
the particles inside the cell, all particles are repelled from the wall via a Lennard-Jones wall force
in all directions for spherical and capsule microgels, whereas a repulsive Lennard-Jones wall force
in (x,y) directions is applied for the cylindrical gel system. No Lennard-Jones potential was used
between microions, since these were treated as point charges.

During the simulation, the microions are free to move throughout the whole spherical cell,
but in the cylindrical cell, the microions can exit and enter the cell only in the z-direction. A direct
sum of the Coulombic potential between all pairs of microions is calculated in the simulation of
the fixed box. In contrast, in the periodic box, the cylindrical microgel is assumed to be infinitely
long to neglect end-effects at the cylinder caps. This approximation can of course only be good if
the actual finite cylinders are much longer than they are wide. Thus, a finite cylindrical microgel
is replicated in all directions, which results in image charge effects. To calculate corresponding
long-range Coulomb interactions, Ewald summation a function built into LAMMPS, is used.

Every 108 timesteps out of 10° total steps, the LAMMPS software wrote the coordinates of
each atom to file. Typically 10® steps were used for equilibration. In order to maintain an average
constant temperature, LAMMPS rescales the velocities of the particles using the Nosé-Hoover
thermostat.

Visual Molecular Dynamics (VMD) and the Open Visualization Tool (OVITO) were used to
generate videos and snapshots of the systems. By using OVITO, we made sure that the boundaries
of the simulation box are set correctly, and that, in the case of cylindrical microgels, microions can
exit and enter the cell only in the z-direction. Finally, after the system reached equilibrium, from
the density profile of the counterions, the average number of counterions is computed, which in
turn is used to compute the electrostatic component of the osmotic pressure ..

In all Poisson-Boltzmann calculations and MD simulations, the following variables were

kept fixed:

System parameters: all ¢g, R, ag, by, Ag, and Z, parameters were the same for all calculations

and simulations.
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Counterions : the total number of counterions was N, = 1000, each with a charge of ¢ = 1.0.

Charge of Microgel : the total charge of the microgel was kept at ¢, = —1000 to keep the

system charge neutral.

Table 5.1 displays the fixed values used in our MD simulations.

Table 5.1. Input parameters for PB calculations and MD simulations.

System Parameter Value
Particle dry radius ag 10 nm
Number of microgels N,, 1
Charge valence Z 1000
Linear charge density A 100 — 500
Number of monomers N, 2 x 105
Number of chains N, 100
Flory solvency parameter x 0.5
Monomers radius 7., 1.5 A

Ap (water at T' = 293K) 0.72 nm

5.2. Monte Carlo Simulations

Monte Carlo (MC) simulations [134] were used to compute the thermodynamic and structure
properties, such as equilibrium swelling behavior, osmotic pressure, and pair correlation functions
of bulk suspensions of ionic microgels. Below a basic description of the Monte Carlo method is
discussed.

Consider a suspension whose macrostate is specified by fixed N,V , and T (canonical en-
semble). At the microscopic level, there are many different configurations in which the macrostate
(N,V,T) can be found. At equilibrium, the probability P; of finding the system in microstate i at

temperature T and energy F; is proportional to the Boltzmann factor,

P; x exp(—BE;). (5.3)
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The partition function is then given by

Z(N,V,T) = Zexp(—,BEi). (5.4)

An ensemble average of a physical quantity A, with value A; in microstate i, can be determined by

sampling the states,
>, Aiexp(—BE;)
Z b

(Am) = (5.5)

where M is the total number of microstates. To simulate a system of N particles, e.g., ionic
microgels confined in a volume V at a fixed temperature 7', only a finite number m of the total
number of M microstates is required. Then, the average value of a physical quantity A can be

written as
_ >ty Ajexp(—BE;)

Wn) = S e BE)

(5.6)

This sampling procedure is known as the Metropolis sampling method [134]. Note that a sufficiently
long sequence of random configurations is necessary to obtain reliable results.

The Monte Carlo algorithm consists of trial moves that are rejected or accepted based on
probability distribution associated with the ensemble. For example, the types of trial moves in
our work are trial moves of both displacements and changes in size of microgel particles. The

acceptance probability for a trial displacement or change in size of the microgel particle is

Pace = min{e_ﬁ(AE)y 1}, (57)

where AF is the total change in energy. The general steps of a basic Monte Carlo algorithm

are [134]

1. Make a trial move;

[\)

. Using a probability distribution function, accept or reject the trial move;

3. Update the state of the system;

4. Repeat.
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Our Metropolis Monte Carlo simulations which are suited to the coarse-grained one-component
model described in section 3.4, were developed within the Open Source Physics Library in Java [135].
The Open Source Physics Library is a free, open source library that contains many different sim-
ulations of numerical methods and physical systems written in the Java programming language.
The simulation is performed within a cubic cell with periodic boundary conditions (PBCs) so that
if a particle passes through one face of the simulation box it re-enters through the opposite face of
the box. This means that the particles are able to interact with each other from opposite sides of
the simulation box.

The simulation of pseudo-microgels is performed in the constant-NVT (canonical) ensemble
at fixed system parameters: A, Z, ag, Nmon, Nen, UV, Np X, and B. Table 5.2 displays the fixed

values used in our MC simulations.

Table 5.2. Input parameters for ionic microgel suspensions.

System Parameter Value
Particle dry radius ag 10 nm
Number of microgels Ny, 500

Charge valence Z 1000

Number of monomers N, =~ 2 x 10°

Number of chains Ng, 100
Flory solvency parameter x 0.5
Hertz amplitude B 15000
Poisson’s ratio v 0.5

Ap (water at T = 293K) 0.72 nm
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Figure 5.3. Typical snapshot from a MC simulation of a suspension of compressible, ionic,
spherical microgels of fluctuating size in a cubic box with periodic boundary conditions in the
coarse-grained model.

Figure 5.3 shows a typical snapshot of the system. For each step in a simulation, a trial
move consisting of both a displacement and size change (swelling/deswelling) was attempted for
one microgel. This was done by a trial changes in the coordinates (z,y,z) and swelling ratio «
of each particle with tolerances Az = Ay = Az = 0.1ag and Aa = 0.05 and then calculating the
difference of the total energy AF after trial moves and before the trial moves were attempted. The
trial moves were rejected if the Boltzmann factor (e‘ﬂAE ) is less than a random number between
(0,1). If the trial moves were accepted, then the energy of the system was updated and another
microgel particle underwent trial moves. The equilibrium state of minimum total free energy is
obtained through repeated trial moves. After equilibration stage, the equilibrium structural and
thermal properties were collected by averaging over configurations.

5.2.1. Structural Properties
5.2.1.1. Radial Distribution Function

The radial distribution function g(r) was used to determine the equilibrium structure of
the surface-charged spherical microgel suspensions. The radial distribution function allowed us to
determine the probability distribution of finding a particle in a given position at a radial distance
r from the center of a reference sphere. In other words, it describes how the density of surrounding

particle varies as a function of the distance from a point. The radial distribution function for each
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frame is computed and then averaged:

_ N()
~ dar2per’

g(r) (5.8)

where N(r) is the number of particles in a spherical shell of thickness dr with center-to-center
distance r from a microgel particle at the origin and p is the number of particles per unit volume.
To calculate g(r), we histogrammed the number of pairs of microgels at the center-to-center distance
r within a cut-off radius r., which is taken equal to half of the simulation box length.
5.2.1.2. Static Structure Factor

Computing the static structure factor S(q) allowed us to characterize the average order of
an ionic microgel suspension. It is well-known that the Fourier transform of the radial distribution
function g(r) gives the static structure factor [136,137]. However, S(q) can be directly computed

from the particle coordinates in our MC simulations:

N : ..
S(q)=1+Ni 3 <Sm(q”)> (5.9)

m o= \ 4"

where g is the scattered wave vector magnitude, r;; is the center-to- center distance between particles

i and 7, and the angular brackets denote an average over configurations.
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6. RESULTS AND DISCUSSION

The results that are obtained using the theoretical approaches and both MC and MD
methods are presented in this chapter. This chapter contains two major sections. In the first
section, swelling behavior and osmotic pressure of single ionic microgels are presented and discussed.
Three systems are presented here, namely, microcapsule, cylindrical, and spherical ionic microgels.
In the second section, effective pair potentials, swelling behavior, and bulk osmotic pressure of
suspensions of ionic microgels are presented and discussed.

6.1. Cell Model Results

In this section, the results obtained using Poisson-Boltzmann theory and molecular dy-
namics simulation methods in the cell model are presented. After validating our PB theory, by
comparing our results with results obtained from MD simulation, we set the stage for analysis of the
density profiles, osmotic pressure, and the equilibrium swelling of ionic, microcapsule, cylindrical,
and spherical microgels.

6.1.1. Ionic Microcapsules

b0=12.5 nm |

T2 PR theory
| e $,=0.01 a;=10 nm ]
L4 ¢,=0.02 Z=1000
v $,=0.03 1

100

counterion density n (r)b3

| | | | | | | | | | | | L | |
0 . 1.5 2

0.5 1
distance from center r/ b

Figure 6.1. Counterion number density profiles around an ionic microcapsule of inner and outer
dry radii ag = 10 nm and by = 12.5 nm, respectively, with swollen radii a = 25 nm and b= 31.25
nm, and valence number Z = 1000 in aqueous solvent from MD simulations (symbols) and PB
theory (solid curves) in the cell model at dry volume fractions ¢y = 0.01, 0.02, 0.03.
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Figure 6.1 shows a plot of the counterion radial density profile n4(r) at different values of
the dry volume fraction ¢g. The close agreement between simulation and theoretical predictions
validates our methods. It can be seen that the heights of the counterion density profiles increase
with increasing dry volume fraction. This means that as the dry volume fraction increases, more
counterions are attracted to the shell. Because of the charge balance across the microcapsule shell,
the distributions of counterions are relatively flat at the cell edge, where the electric field vanishes,
while they peak inside the shell region. The slight discrepancy between the MD data and PB
predictions at r/b = 0 can be attributed to relatively poor statistics at the microcapsule center.
Integrating the radial profile over the microcapsule volume gave nearly identical results to the

average fraction of interior mobile counterions extracted from the simulations.
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Figure 6.2. Panel (a) shows contributions to the osmotic pressure (electrostatic and gel) inside the
ionic microcapsule versus microcapsule swelling ratio for dry microcapsule volume fractions ¢g =
0.01-0.05. Electrostatic pressure 7, (Equation 4.18) from Poisson-Boltzmann theory (solid red
curves) and from simulations (open red symbols), both in the cell model. Elastic gel pressure 74
(dashed curve) from Flory-Rehner theory. At equilibrium swelling, the total microgel osmotic
pressure vanishes: m, + 7, = 0 (filled symbols). Panel (b) shows equilibrium swelling ratio « vs.
dry volume fraction ¢y for same system parameters as in Figure 6.2 (a).

Figure 6.2 (a) shows both the electrostatic component and the gel component of the total
microgel osmotic pressure as a function of swelling ratio «, as calculated from both PB theory
and MD simulation. By numerically solving the PB equation along with the boundary conditions,
as given in section 4.3 in the three radial regions (inside the cavity, in the shell, and outside the

capsule), the entire radial density profile ny(r) is computed. After obtained the radial density
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profile n4(7), the mean numbers of counterions in the shell and second moments of the microion
density profiles [Equations (4.20) and (4.21)] are calculated and then used as an input Equation
(4.18), from which the electrostatic component of the osmotic pressure 7 is computed. To check
our PB numerical calculations, the electrostatic pressure is also computed from MD simulations,
which include correlations between microions, using the counterion density profile extracted as
histograms. The MD simulation results are nearly identical to those from PB theory, indicating
again an agreement between the theoretical prediction and MD simulation. The gel component of
the osmotic pressure 7, as displayed by the black dashed curve in Figure 6.2 (a), is computed from
Equation (4.59).

As seen in Figure 6.2 (a), the electrostatic contribution to the osmotic pressure 7, mono-
tonically decreases as the swelling ratio « increases. This may be attributed either to a declining
charge density with increasing particle volume, or to a decrease of the self-energy contribution to
the pressure [Equation (4.18)] as the size of the microcapsule becomes larger. It can be seen that
at low volume fraction, the electrostatic osmotic pressure is higher, as most of the counterions are
outside the shell. Starting at ¢yo = 0.01, increasing ¢g leads to a decrease in the electrostatic os-
motic pressure. Thus, at sufficiently high concentrations of microcapsules, electrostatic interactions
between particles will eventually affect the size distribution. The gel contribution to the osmotic
pressure (black dashed curve 7, in Figure 6.2 (a)) monotonically decreases as the swelling ratio
a increases. The red dots in Figure 6.2 (a) indicate where the total osmotic pressure vanishes,
me() + mg(a) = 0. At this point, the system is in an equilibrium state.

Figure 6.2 (b) shows numerical results of the equilibrium swelling ratio «, computed as
the root of the equation, mc(a) + m4() = 0, where 7 () and 74(x) are obtained from Equations
(4.18) and (4.59), respectively. It can be seen that the equilibrium swelling ratio decreases as the
dry microcapsule volume fraction increases. This can be explained by the fact that the number of
counterions inside the microcapsule decreases as the dry volume fraction increases. As a result, the
net charge decreases and causes the microcapsules to deswell.

To perform a more in-depth analysis of the interplay between the equilibrium swelling ratio
and the shell thickness, the equilibrium swelling ratio as a function of inner and outer radii of the
microcapsule particle is investigated. Figure 6.3 shows the dependence of the equilibrium swelling

ratio on microcapsule inner radius a and outer radius b at dry volume fraction ¢g = 0.02. As the
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inner and outer radii grow, the equilibrium swelling ratio of the microcapsule decreases due to there
being a decrease in electrostatic pressure, which drives a corresponding reduction in equilibrium

particle size.
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Figure 6.3. Panel (a) displays dependence of equilibrium swelling ratio o on the microcapsule dry
inner radius with valence Z = 1000 and dry volume fraction ¢g = 0.02, while panel (b) displays
dependence of a on the microcapsule outer dry radius with same parameters as in panel (a).

Figure 6.4 (a) displays the equilibrium swelling ratio as a function of net valence Zye; with
fixed inner and outer radii. The net valence is defined as the difference in the numbers of counterions
inside the shell and outside (Zpet = Nin — Nout). As expected, the equilibrium swelling ratio of the
microcapsule also increases as the net valence increases. A reason why this equilibrium swelling
ratio increases is that the electrostatic component of the osmotic pressure 7, as given in Equation
(4.18) increases with the number of counterions Z. Figure 6.4 (b) shows that as the microcapsule
dry volume fraction ¢g increases, the net valence decreases. In conclusion, the results shown in
Figure 6.4 show that a redistribution of counterions is important in determining the equilibrium

swelling /deswelling of ionic microcapsules.
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Figure 6.4. Panel (a) displays net valence Z,¢ as a function of equilibrium swelling ratio o with
fixed inner and outer dry radii, while panel (b) displays net valence as a function of dry volume
fraction with same parameters as in panel (a).

6.1.2. Surface-Charged Microgel

Counterion number density profiles near the fixed charge distributed uniformly over the
surface of microgel particle are shown in Figure 6.5, as the results were obtained from PB theory
and MD simulations. The data show relatively good agreement between theory and simulation
over a range of dry volume fractions. It can be seen that the counterion density has its maximum
at r = a, where the magnitude of the electrostatic energy of a counterion v (r) is maximum, and
relatively flat near the microgel center and the cell edge, where the electric field vanishes. Also,
the counterion density inside the particle is largely independent of the volume fraction. This is
expected, as the environment of the counterions inside the particle remains almost unaffected by a
change in the available space outside the particle as the volume fraction changes. At low volume
fraction (dilute conditions), the density of counterions inside the microgel is larger than that at the

edge of the cell. However, the situation is reversed at high concentrations.
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Figure 6.5. Counterion number density profiles around a surface-charged microgel of dry radius ag
= 10 nm, swollen radius ¢ = 25 nm, and valence Z = 1000 in an aqueous solvent, from MD
simulations (symbols) and PB theory (curves) in the cell model at dry volume fractions ¢g =
0.01, 0.02, 0.03.

Following the same procedure as for microcapsule particles (Figure 6.2), both electrostatic
(me) and gel (my) contributions to the osmotic pressure 7 are shown in Figure 6.6 (a). It is evident
from the plot in Figure 6.6 (a) that the theoretical predictions of PB theory and MD simulations
agree well. The electrostatic osmotic pressure of the ionic microgel is governed by the self energy
of the micorgel and by the number of counterions that are inside the particles. At low swelling
ratio, most of the counterions are bound by the charged ions fixed on the particle surface. As a
result, the electrostatic osmotic pressure of the microgel is high. However, at higher swelling ratios,
more of the counterions are able to escape the attraction and explore the whole volume of the cell,
causing the counterion number outside the particle to increase, and resulting in a monotonically
decreasing electrostatic contribution to the osmotic pressure. Finally, note that the magnitude of
the electrostatic osmotic pressure is greater than in Figure 6.2 (a) for microcapsules.

Similarly to microcapsules, the gel contribution to the osmotic pressure (black dashed curve)
7y monotonically decreases as the swelling ratio increases. The red dots in Figure 6.6 (a) indicate

where the equilibrium size of the surface-charged microgel occurs.
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Figure 6.6. Panel (a) shows contributions to osmotic pressure (electrostatic and gel) for a
surface-charged microgel versus swelling ratio « for dry charged volume fractions ¢g = 0.01-0.05.
Electrostatic osmotic pressure m, from Poisson-Boltzmann theory (red curves) and from MD
simulations (open red symbols), both in the cell model. Gel pressure 7, (dashed curve) from
Flory-Rehner theory. At equilibrium swelling, the total internal osmotic pressure vanishes: m, +
g = 0 (filled symbols). Panel (b) displays equilibrium swelling ratio o vs. dry volume fraction ¢
for volume-charged (blue circle) and surface-charged (red circle) microgels.

A comparison between equilibrium the swelling ratio of a volume-charged microgel and a
surface-charged microgel is shown in Figure 6.6 (b). It can be seen that the difference in o between
volume-charged microgel and surface-charged microgel is significant. This was expected, because
the fixed charged distribution of the two systems is different. It is also evident that the surface-
charged microgel deswells faster than the volume-charged microgel with increasing concentration.
This difference may be attributed to the change in self-energy and to the change in mobile counterion
distribution. In conclusion, the comparison shown in Figure 6.6 (b) shows that the fixed charge

distribution influences counterion distributions and equilibrium sizes of microgels.
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Figure 6.7. Equilibrium swelling ratio o vs. dry volume fraction ¢qg for uniform surface-charged
microgels of valence Z = 1000 and collapsed radius ag = 10 nm in aqueous solutions with system
salt concentrations ¢; = 0 (red open circles), 10 mM (green squares), and 20 mM (black solid
circles).

Figure 6.7 shows the dependence of the equilibrium swelling ratio on both particle and salt
concentrations for surface-charged microgels with valence number Z = 1000 and dry radius ag = 10
nm. It can be seen that at zero salt concentration, the microgels swell as the dry volume fraction
decreases. With increasing salt concentration, however, the microgels deswell less. This could
signify that at higher salt concentrations, there is a reduction in Coulomb electrostatic interaction
strength, implying that the gel pressure dominates and deswelling is suppressed.

6.1.3. Cylindrical Ionic Microgels

As mentioned in section 3.3, cylindrical microgels can swell in both axial and radial direc-
tions. Therefore, three cases of the swelling of cylindrical gels are considered in this work. The first
case is a cylindrical microgel with two ends constrained that swells only in the radial direction. The
second case is a cylindrical microgel with a fixed width that swells only in the axial direction. The
third case is a free swelling microgel, where no constraint is applied over the cylinder’s width and
length; the microgel has the freedom to swell in both the axial and radial directions. It is important
to keep in mind that the osmotic pressure tensor is anisotropic. The corresponding radial osmotic
pressure (electrostatic and gel) can be studied by fixing the axial swelling ratio a,, and varying only

the radial swelling ratio «,.. Conversely, the corresponding axial osmotic pressure can be studied
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by fixing the radial swelling ratio a,., and varying only the axial swelling ratio «,. However, we
infer from the present study that in order to reach our equilibrium conditions, 7, + 74, = 0
Or Teq + Tgq = 0 realistic, values of a, and «, must be chosen. The radial/axial electrostatic
osmotic pressures due to the fixed charges on the microgel and the counterion distribution are
obtained from the partial derivative of the free energy with respect to the volume of the microgel
(see section 4.1.3), while the radial/axial gel pressures are computed via the Flory-Rehner theory
(see section 4.2). It is important to emphasize that our theoretical calculations are well below
the threshold for counterion condensation onto polyelectrolyte chains Ag/l < 1 (see section 4.3).
Finally, to our knowledge, no one has studied the anisotropic swelling of ionic cylindrical microgels.
Indeed, systematic studies on control over the osmotic pressure and thermodynamic swelling of
ionic cylindrical microgels have not been reported.

Below, the results of each swelling case of surface-charged cylindrical microgels and volume-
charged cylindrical microgels are presented.
6.1.3.1. Constrained Swelling

Figure 6.8 shows the theoretical and simulation results for the counterion number density
profile n (r) for a surface-charged cylindrical microgel at volume fraction ¢ = 0.156. Similar to a
surface-charged spherical microgel, both the theoretical and simulation counterion distributions are
relatively flat near the microgel center and cell edge, whereas the distributions peak at the surface
of the cylinder. As seen in Figure 6.8, there is excellent agreement between the PB numerical
calculations and simulations. This was initially surprising since image charges may affect ion
distributions. However, it appears that this effect is less significant in our MD simulations, and PB

theory is a fairly good description of weakly correlated cylindrical microgel systems.
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Figure 6.8. Counterion density ny(r) vs radial distance r from the center of a cylindrical cell (in
units of cell radius R) for surface-charged cylindrical microgel.

Figure 6.9 shows computed results for the radial electrostatic osmotic pressure m, and
radial gel osmotic pressure m,, for salt concentrations ¢; = 0.0 — 2 [mM] and linear charge density
A = 100 — 500 for surface-charged cylindrical microgels. These results were obtained from our
theoretical approach after being validated by MD simulations. As mentioned previously, an optimal
value for the axial swelling ratio is required to obtain the equilibrium swelling of the particle;
therefore, «, is fixed at the value of a, = 2. As the counterions are much more mobile than
the cylindrical microgel particles, the counterions reach their equilibrium distribution before the
microgels. Therefore, the actual charged ions on the microgel surface are assumed to be fixed, and

only the reduced linear charge density A = %ag is varied in our PB calculations.
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Figure 6.9. (a) Contributions to internal osmotic pressure inside a cylindrical surface-charged
microgel vs. radial swelling ratio for salt concentration ¢; = 0.0 —2 mM (top to bottom) and
linear charge density A = 500. (b) Contributions to internal osmotic pressure inside a cylindrical
surface-charged microgel vs. radial swelling ratio for linear charge density A = 100 — 500 (top to
bottom) and ¢; = 0. Electrostatic pressure m,, from PB theory (solid curves). Radial gel pressure
7gr (dashed curve) from the Flory-Rehner theory. At equilibrium swelling, the total internal
osmotic pressure vanishes: ., + 7y, = 0 (filled symbols).

As seen in both Figures 6.9 (a) and 6.9 (b), the radial osmotic pressure increases gradually as
a function of swelling ratio ;.. This is an unusual observation, as in the spherical and microcapsule
ionic microgels, the electrostatic osmotic pressure decreases as the swelling ratio « increases (see
Figures 6.2 (a) and 6.6 (a)). It was an unexpected result, because the number of counterions inside
a spherical or capsule microgel particle increases linearly when the volume fraction of the microgel
increases. Therefore, the electrostatic osmotic pressure 7, which is set by the fraction of counterions
that are inside the particle and also by those that are able to escape the attraction, should decrease.
The behavior observed in Figures 6.9 can be rationalized as follows. Counterions are more spread
out in the case of a cylindrical microgel, therefore, enhancing the self-energy contribution to the
radial electrostatic osmotic pressure. As a result, 7., increases.

It is interesting to note that the radial electrostatic pressure curve does ultimately turn
down at a very high swelling ratio a,., where the self-energy term becomes sufficiently weak. Since
the present study focused on equilibrium swelling, the present data are only displayed where the
equilibrium swelling (7, + 7,4, = 0) occurs, as represented by the red filled circles in Figures 6.9

(a) and 6.9 (b).
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It can be seen that the magnitude of 7., is relatively small at lower o, but increases as a,
increases, indicating that salt concentration and charge per unit length A have less effect at lower
swelling ratios than at higher swelling ratios. The salt concentration was included via the Debye
screening constant and also in the electrostatic contribution to the radial osmotic pressure [Equation
(4.35)]. Since the cylindrical microgels are permeable to microions, salt ions are free to explore the
outside and inside region of the microgel. Thus, the presence of salt at a concentration higher than
the mean concentration of counterions is expected to reduce the magnitude of electrostatic osmotic
pressure. In contrast, the magnitude of m., increases as the charge of the cylinder increases, as
displayed in Figure 6.9 (b). This is likely because there is a significant enhancement in the self-
energy with an increase in A. As a result, the cylindrical gel radius increases.

Adapting the Flory-Rehner theory [Equation (4.59)] (see section 4.2) enables us to compute
the radial gel pressure m,,. Theoretically, if 7, of our system rapidly increases, then 7, should
rapidly decreases since the gel tends to restrain the swelling of the particle. This is shown graphically
in Figures 6.9 (a) and (b) by the dashed black lines. If the microgel is not charged, the microgel
approaches its equilibrium state when the driving force for the mixing between polymer and solvent
molecules is balanced by the elastic restoring force of the chains in the network due to the elasticity
of the polymer network. In Figures 6.9 (a) and (b), the equilibrium radial swelling ratio for non-ionic

cylindrical microgels would be at «, = 2.4, where the gel pressure is zero.
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Figure 6.10. (a) Equilibrium radial swelling ratio «, vs. salt concentration for surface-charged
cylindrical microgel computed via nonlinear PB theory. (b) Equilibrium radial swelling ratio «,
vs. linear charge density for surface-charged cylindrical microgel for ¢; = 0.
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The importance of the counterions in our model for equilibrium swelling suggests that the
addition of salt ions could have a strong influence. As noted above, the swelling of a microgel
is given by the balance of the pressures inside and outside the particle. The equilibrium radial
swelling ratio o, was computed by finding the root of the equation ., + m,, = 0 over ranges of
salt concentration and linear charge density as shown in Figure 6.10. As shown in Figure 6.10 (a),
the cylinder radius decreases as the salt concentration increases. Our data imply that high salt
concentrations might reduce counterion-induced effects. Figure 6.10 (b) shows the dependence of
a, on A\, whose trend can be explained by the self-energy contribution to the electrostatic osmotic
pressure and the counterion density.

Figure 6.11 shows the electrostatic and gel contributions to the axial osmotic pressure, 7 q
and 7y 4, when the radius of the cylinder is fixed, and only the length of the cylindrical microgel
varies. It can be seen that over this range of salt concentration (¢; = 0.0 — 2 mM) and linear
charge density (A = 100 — 500), the axial electrostatic osmotic pressure decreases monotonically
and roughly linearly. Furthermore, it is shown that the variations of the magnitude of 7., as a
function of salt concentration are weaker compared to those for radial swelling [Figure 6.9 (a)].
However, as X increases, as in Figure 6.11 (b), the magnitude of 7. 4 is very large compared to the
corresponding value for radial swelling [Figure 6.9 (b)]. For axial swelling, the axial gel contribution
to the total osmotic pressure decreases more gradually than for radial swelling, indicating that the
cylindrical microgel tends to deswell less in the axial direction.

The equilibrium axial swelling ratio «, is shown in Figure 6.12 over a range of salt con-
centration and charge density. As the salt concentration is increased, the change in «, is more
significant than that in the radial direction. Figure 6.12 (b) shows «, as a function of linear charge
density A. For similar reasons to those given for Figure 6.10 (a), it was expected that a, would
increase when A of the cylidrical microgel increases. Finally, Figures 6.10 (b) and 6.12 (b) indicate

that the surface-charged cylindrical microgel swells more in the axial direction.
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Figure 6.11. Contributions to internal osmotic pressure inside a cylindrical surface-charged
microgel vs. axial swelling ratio for (a) linear charge density A = 500 and salt concentration

¢s = 0.0 — 2 mM (top to bottom), and (b) A = 100 — 500 (bottom to top) and ¢s = 0.
Electrostatic axial pressure 7., from PB theory (solid curves) and axial gel pressure 7, , (dashed
curve) from the Flory-Rehner theory. At equilibrium swelling, the total internal osmotic pressure
vanishes: 7 q + 74, = 0 (filled symbols).
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Figure 6.12. Equilibrium axial swelling ratio a, vs. (a) salt concentration and (b) linear charge
density (cs = 0) for a surface-charged cylindrical microgel, computed via nonlinear PB theory.

A typical numerical and simulation result for the radial density distribution of counterions
n4(r) for a volume-charged cylindrical microgel is shown in Figure 6.13. It can be seen that the
PB theory has a remarkable agreement to the molecular dynamics simulation data. This close
agreement between MD simulation and theory validates the PB approximation. The counterion
density profiles are relatively flat near the cylinder center, where the electric field is weak, and
fall off toward the edge over a distance comparable to the screening length (see section (4)). The

slight deviations near the center of the microgel are likely due to poor statistics. Note that the
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counterion density has its maximum at r = 0, where the electrostatic force on a counterion is
minimal. By integrating the radial density profile, the average number of counterions inside the

cylindrical microgel is computed, from which the electrostatic osmotic pressure is calculated.
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Figure 6.13. Counterion density ny(r) vs radial distance r from the center of a cylindrical cell for
a volume-charged cylindrical microgel of dry radius ag = 10 nm, reduced valence per unit length
A = 200, dry volume fraction ¢9 = 0.01, and actual volume fraction ¢ = 0.156.

Figure 6.14 displays results for the electrostatic and gel contributions to the internal osmotic
pressure for volume-charged cylindrical microgels confined in a cylindrical cell over a range of
reduced valence per unit length A = 100 — 500. Figure 6.14 (a) shows the theoretical results for
radial osmotic pressure computed from PB theory. Similar to a surface-charged cylindrical microgel
(Figure 6.9 (b)), the electrostatic pressure increases with increasing a,.. The dependence on A of the
magnitude of the electrostatic pressure is relatively small compared to that seen in Figure 6.9 (b).
Once again, this difference may be attributed to the modified counterion distribution. Figure 6.14
(b) shows that the axial electrostatic osmotic pressure m 4 for volume-charged cylindrical microgels
decreases as the axial swelling ratio o, increases. This decrease in outward (electrostatic) pressure
again arises from a redistribution of counterions. The increase in the electrostatic osmotic pressure
from a, = 1.2 to 1.6 for A = 400 and from «, = 1.2 to 2.1 for A = 500 is not surprising since,
in general, the electrostatic pressure in principle become negative at sufficiently low swelling ratio.

This means that the gel contribution is much larger than the electrostatic contribution for these
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chosen system parameters. However, with increasing particle size, the self-energy contribution
decreases, and eventually, the electrostatic osmotic pressure drops.

Figure 6.14 shows the gel contribution for the volume-charged cylindrical microgels, which
was computed from the Flory-Rehner theory [Equation (4.60)]. In both the radial and the axial
direction, the gel pressure becomes negative and monotonically increases in magnitude as the
particle swells. This behavior is expected, as the elastic force of the gel tends to restrain the
swelling of the particle. The change in gel pressure is lower for radial swelling than for axial
swelling, which is clear by comparing the scales of the gel pressures. In terms of our model, suitable
values of o, and a, should be chosen to fulfill the equilibrium swelling condition, m. + 7, = 0.
Therefore, in the case of radial swelling, the axial swelling ratio is fixed at a, = 4, while in the case
of axial swelling, the radial swelling ratio is fixed at a,, = 4. Finally, the small red spheres indicate

where the sum of electrostatic and gel contributions to the internal osmotic pressure is zero.
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Figure 6.14. Contributions to pressure inside ionic cylindrical microgels vs. the particle swelling
ratio for reduced valence per unit length A = 100 — 500 (bottom to top). (a) Radial electrostatic
pressure 7., from PB theory (solid curves) in the cell model, and radial gel pressure 7y, from
Flory-Rehner theory (dashed curve). (b) Axial electrostatic pressure 7, from PB theory (solid
curves) in the cell model and axial gel pressure 7, , from Flory-Rehner theory (dashed curve). At
equilibrium swelling, the total radial internal osmotic pressure vanishes, 7, + 74, = 0 (filled
symbols) and the total axial internal osmotic pressure vanishes, 7, + 744 = 0.

The equilibrium radial /axial swelling ratios vs. linear charge density A = 100 — 500 for a
volume-charged cylindrical microgel are displayed in Figure 6.15. For similar reasons to those given
for Figure 6.10 (a), it was expected that equilibrium radial /axial swelling would increase when the

valence of the cylidrical microgel increases. For these parameters, the axial equilibrium swelling
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ratio ag rises by more than 10% from A = 100 — 500 compared to «,. This

cylindrical microgel swells more in the axial direction.

indicates that the
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Figure 6.15. Equilibrium radial swelling ratio o, (a) and equilibrium axial swelling ratio «, (b)
vs. reduced linear charge density for a volume-charged cylindrical microgel computed via
nonlinear PB theory.

One possible explanation for why the cylindrical microgel swelling behavior results for the
radial swelling differ from the axial swelling is that the volume outside of the microgel for radial
swelling decreases as the particle size increases while it remains unchanged in the case of axial
swelling, leaving the counterions with less free space between the microgel and the cell’s edge in
the case radial swelling than in the case of axial swelling, which would affect the distribution
of counterions. Although, these free counterions influence the equilibrium swelling of the ionic
cylindrical microgel, most counterions are bound to the microgel due to the electrostatic attraction
with its fixed charges. However, the equilibrium swelling properties of the cylindrical ionic microgels
are less well understood than those of spherical ionic microgels.
6.1.3.2. Free Swelling

Let us now consider the case of free swelling. In this case, the radial osmotic pressure,
(6.1)

Wr(ara aa) = We,r(ara aa) + 7Tg,r(Oéra aa)>

which is the sum of the radial electrostatic osmotic pressure [Equation (4.35)] and radial gel osmotic

pressure [Equation (4.60)], was computed via PB theory and Flory-Rehner theory. Similarly, the
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axial osmotic pressure,

Wa(ara aa) = We,a(ara aa) + 7"-g,a(O‘r» aa)a (6'2)

which is the sum of axial electrostatic osmotic pressure [Equation (4.37)] and axial gel osmotic
pressure [Equation (4.61)], was computed via PB and Flory-Rehner theories as well. Note that
Equations (6.1) and (6.2) involve functions of both «, and «,. In contrast to the constrained
swelling, here, both «a,. and «, vary during the PB calculations. These equations generate two
curves, one for the radial pressure and another for the axial pressure, as shown in Figure 6.16,
which represents the equilibrium free swelling ratios «, and «, for a nonionic cylindrical microgel
and a surface-charged cylidrical microgel. These results were obtained by computing the roots
of m(ap, ) + ma(ar, aq) = 0 via the ContourPlot and FindRoot methods, which are built-in
functions in Mathematica. The dashed curves represent the root of the axial osmotic pressure
7o (i, ag) and the solid green curves represent the root of the radial osmotic pressure 7, (., ag).
It is important to note that 7, (., o) and 7, (o, ) are equal to zero along their respective curves.
The intersection of the curves is a unique point where the total osmotic pressure of the system is

equal to zero, indicating that the cylindrical microgel is at equilibrium with the surrounding solvent.
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Figure 6.16. Free equilibrium radial swelling ratio a, vs. axial swelling ratio «, for cylindrical
non-ionic (A = 0) and surface-charged (A = 200) microgels.
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To analyze the swelling properties in the case of free swelling for cylindrical microgels with
fixed charges uniformly spread over the particle surface, Figure 6.17 shows the free equilibrium
axial swelling ratio oy vs. the radial swelling ratio «; over a range of reduced linear charge density
A =0—300. Upon increasing A, the equilibrium radial swelling ratio does not increase as much as
the equilibrium axial swelling ratio does for all salt concentration ¢s. In addition, there is a very
slight decrease of ;. as A increases from 0 to 100. However, it seems that the cylinder tends to
swell more in the axial direction than in the radial direction. One possible explanation for this
finding is that the axial osmotic pressure m q(cv, ) is higher than the radial osmotic pressure
Ter (0, @), as shown in Figure 6.17 (b), which is due to the self-energy contribution being higher
for axial pressure than radial pressure. Therefore, the cylindrical ionic microgel swells more in the

axial direction.
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Figure 6.17. (a) Free equilibrium swelling ratios for surface-charged cylindrical microgels over
ranges of reduced linear charge density and salt concentration. (b) Radial osmotic pressure
Te,r(ur, @) and axial osmotic pressure 7 (o, @q) vs. A for two salt concentrations.

For a volume-charged cylindrical microgel, the data in Figure 6.18 (a) show that with
increasing A, the equilibrium radial swelling ratio increases very slowly compared to the equilibrium
axial swelling ratio. As the reduced linear charge density increases beyond A = 200, however, a,
increases much more than «,. To understand this behavior, let’s look at the electrostatic pressure
as a function of charge density, which is shown in Figure 6.18 (b). Initially, ¢ (v, ) increases
up to A = 200 and then decreases, while 7. (o, ) increases monotonically as A increases. We

tried to explore the free swelling behavior for a higher value of A\, but did not succeed, because the

97



nonlinear Poisson-Boltzmann equation becomes so numerically stiff that our computational method
fails to converge to a solution. However, the results of Figure 6.18 suggest that the cylindrical gel
tends to swell more in the axial direction than in the radial direction.

Figure 6.19 displays the volume swelling ratio V/V} as a function of A for cylindrical surface-
charged and volume-charged microgels. In the surface-charged case, the microgel volume swelling
ratio increases as the charge density increases, while in the volume-charged case, V/Vj increases
up to A = 250, then decreases. Once again, this difference can be attributed to the differing dis-
tributions of counterions inside and outside the particle for the different fixed charge distributions,
which would affect the electrostatic osmotic pressures. Finally, due to the PB equation’s failing to
converge to a solution, we cannot explore the influence of salt on the swelling of volume-charged
cylindrical microgels.

In summary, the results from the PB computational method seem to suggest that the
distribution of counterions has a significant influence on the swelling/deswelling of ionic cylindrical
microgels. In this dissertation, our purpose is to test the accuracy of the theory against MD
simulations, and to demonstrate the ability of our theory to explain and interpret observations of
particle swelling. Moreover, we showed the sensitivity of swelling to variations in salt concentration.
Overall, however, there are still many simulations, numerical calculations, and analyses that need

to be completed in order to fully understand the swelling of cylindrical ionic microgels.

2.7 : _— :

. @ 8 | L | - 0

53 1 § 80? ao = 10 nm axial pressure i

9 26r ° 102 . * g ]

® o 6or ¢, =0.01 ]

I °© I |
= 2.5+ ) — % [} ° °

g a, =10 nm S 40+ ]

@n ° Q

= ¢, =0.01 s ° 7

% 2.4 0 1 @ o0l ° ]

© CS= O | g L o radial pressure no Salt |

A= 0\ A= 270/\‘ § o i

. & s ‘ : ‘ : o [ ! ‘ ! ‘ ! . | ‘ ! .

2.2 23 24 25 2.6 %8 50 100 150 200 250 300
radial swelling ratio o, Y

Figure 6.18. (a) Equilibrium radial swelling ratio «, vs equilibrium axial swelling ratio o, and (b)
equilibrium swelling ratios, o, and «ag, as functions of A for volume-charged cylindrical microgels
with dry volume fraction ¢g = 0.01 and dry radius ag = 10 nm.
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Figure 6.19. Volume swelling ratio V/V} as a function of A for (a) volume-charged and (b)
surface-charged cylindrical microgels for dry volume fraction ¢9 = 0.01 and dry radius ag = 10 nm.

6.2. One-Component Model Results
6.2.1. Monodisperse Suspension of lonic Microgels

Figure 6.20 shows results for the bulk osmotic pressure of suspensions of spherical surface-
charged microgels of the same dry size. The data represented by red circles were computed from MC
simulation within the one-component model framework (see section 4.4.2), and the data represented
by black squares were computed from PB theory within the cell model framework (see Equation
(3.8)). At low concentrations, we find excellent agreement between the MC data and the PB
predictions as expected, since the PB theory is known to give a fairly good description of dilute
suspensions of weakly charged particles. As the particle concentration increases, however, ion
correlations, which are neglected within the PB theory, start to manifest and deviations between
MC and PBMC emerge.

Around ¢9 = 0.08, a dip in the MC data is seen due to deformations of the particle.
With increasing the particle density (volume fraction ¢) of a suspension of microgels, the distance
between particles decreases and, eventually, above the close packing of hard spheres (¢ = 0.74), the
microgels deform or interpenetrate to accommodate the increase in volume fraction. Microgels can
deform by forming facets at the contact area (see Figure 6.21) or can deswell by expelling solvent.

As a result, the microgels uniformly deswell, and the available volume decreases.
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spherical surface-charged microgels. MC simulation data (red circles) are compared with
predictions of Poisson—Boltzmann cell model calculations (black squares).

— )

Figure 6.21. Particle deformation in the form of contact facets.

Figure 6.22 (a) displays the variation of actual volume fraction with dry volume fraction
obtained from our MC simulations. As the dry volume fraction increases, the actual volume fraction

increases until microgels start to deform and shrink to fit into the available space, which occurs at
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about ¢y = 0.08. At this contact point, the effect of elastic (Hertz) interactions become significant,
and may imply a shift in microgel response from deswelling to faceting as the microgels get squeezed
together, as illustrated in Figure 6.21. This sensitive dependence of microgel size and shape on
particle concentration results from a complex interplay between single-particle free energy and
effective electrostatic and elastic interactions.

Figure 6.22 (b) shows the cell model result for the swelling ratio of ionic microgels com-
pared with the Monto Carlo simulation result over a range of particle concentrations. The average
equilibrium a increases with decreasing ¢g. The good agreement between our simulation and the
nonlinear PB theory implementation of the cell model provides an important validation of the
osmotic pressure theorem, described in section 4. The small deviations at the lowest and highest
density can be attributed to differences between the cell model and the one-component model and

weak nonlinear screening effects.
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Figure 6.22. MC simulation data for (a) equilibrium volume fraction ¢ and (b) equilibrium
swelling ratio « vs. dry volume fraction ¢g in deionized suspensions of spherical surface-charged
microgels.

Figure 6.23 (a) shows four radial distribution functions that we obtained from our MC
simulations when the valence was fixed at Z = 1000 and the number of microgels was N,, = 108
for a series of dry volume fractions (¢9 = 0.002,0.004,0.01,and 0.02). Figure 6.23 (b) shows the
corresponding static structure factors. At lower particle concentrations, the structure is still in
an FCC crystal phase, as reflected by relatively strong oscillations in g(r) and S(g). In this case,

the spherical microgels are not significantly compressed. At higher particle concentrations, the
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strucure is also in a solid phase with crystalline order, as signaled by distinct peaks in g(r) and S(q),
indicating that the system its retained FCC structure. In this state, microgels are tightly confined
and compressed by their microgel neighbors. As seen in Figure 6.23 (b), the main peak grows
steadily in height and becomes more distinct with increasing concentration, reflecting strengthening

correlations between microgels.
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Figure 6.23. (a) Radial distribution function g(r) vs. radial distance r, in units of
nearest-neighbor distance d,, in FCC lattice, in suspensions of ionic, compressible microgels.
Results are shown for dry volume fraction ¢y = 0.002-0.02. These systems are all in an FCC
crystal phase, as revealed by the positions of the peaks. (b) Static structure factor S(q) vs.
scattered wave vector magnitude ¢, in units of inverse nearest-neighbor distance in FCC lattice.
Results are shown for dry volume fractions corresponding to radial distribution functions in
Figure 6.23 (a). These suspensions are all in an FCC crystal phase, as reflected by the height of
the main peak of S(q)

Observing a crystal phase for such low concentations might be due to finite size effects,
since our system contains only NV,, = 108 particles. Therefore, we increased the number of particles
to N, = 500 to ensure that xre > 1, such that finite-size effects are negligible. Here r. is equal
to half the box length. Interestingly, our results suggest that the suspensions of surface-charged
microgels with dry volume fractions ¢9 = 0.002, 0.003 are in a stable ordered crystal phase as
revealed by the positions of the peaks in Figures 6.24, indicating that the electrostatic repulsive
interactions are strong even at such low volume fractions. Note that our simulation method cannot
distinguish between stable and metastable solid states. As seen in Figure 6.25, the systems with
dry volume fractions ¢g9 = 0.01, 0.02, and 0.03 are all in a solid phase with crystalline order, and

as ¢g increases, the peaks of g(r) and S(q) grow taller and more distinct, reflecting strengthening
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correlations between surface-charged microgels.

effects are very small.
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Figure 6.24. (a) Radial distribution function g(r) in units of nearest-neighbor distance d,,, for

suspensions of surface-charged microgels for dry volume fractions ¢y = 0.002 (dashed blue curve)

and 0.003 (dashed green curve) with system parameters Z = 1000, ag = 10 nm, and N,, = 500.

(b) Static structure factor S(q) vs. scattered wave vector magnitude ¢, in units of inverse

nearest-neighbor distance d,,, in FCC lattice, corresponding to radial distribution functions in

Figure 6.24 (a).
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Figure 6.25. Same as Figure 6.24, but for dry volume fractions ¢y = 0.01 (solid black curve), 0.02
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7. SUMMARY AND OUTLOOK

7.1. Summary

Microgels are cross-linked microgel particles in the nanometer to micrometer size range
with a capacity to drastically change their size in response to changes in the external environment.
Microgels have an ability to store substances such as molecular drugs, and release them upon
stimulation, making them potential candidates as drug delivery carries and functional biomaterials.

Using the Poisson-Boltzmann theory of ionic solutions, the Flory-Rehner theory of cross-
linked polymer gels, and molecular dynamic simulation techniques, we investigated the swelling
behavior of a single charged microgel and the connection between counterion distribution and in-
ternal osmotic pressure for ionic microgels of various shapes and charge distributions. The Poisson-
Boltzmann theory was implemented within a cell model to facilitate numerical solution, allowing
us to isolate the electrostatic features of a single ionic microgel. The Poisson-Boltzmann approach
was validated by performing MD simulations via LAMMPS. The Flory-Rehner theory was used to
compute the gel contribution to the osmotic pressure.

Next, we developed a Monte Carlo simulation algorithm for a coarse-grained model of ionic
microgel suspensions. Starting from the one-component model and linear response approximation,
we derived explicit expressions for (1) an effective electrostatic pair interaction potential between
pseudo-microgels and (2) an associated one-body volume energy that contributes to the total free
energy. By inputting the effective interactions into MC simulations of the one-component model, we
computed thermodynamic and structural properties, including the equilibrium swelling ratio, bulk
osmotic pressure, the radial distribution function, and the static structure factor of ionic microgel
suspensions.

7.2. Conclusions

In general, ionic microgels swell increasingly in size as the fixed charge on the microgels
increases. This behavior can be understood based on the counterion distribution and the electro-
static osmotic pressure. As the valence increases, the self-energy contribution to the electrostatic
pressure is strongly enhanced. In contrast, microgels deswell with increasing concentration of salt

ions. Increasing the ionic strength of the solvent, induces screening of the microgel charge. Inter-
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estingly, the microgel’s shape affects the equilibrium swelling ratio; for example, spherical microgel
particles were found to swell less than microcapsule particles. In cylindrical geometry, the internal
osmotic pressure in the free swelling case showed that charged cylindrical microgels swell more in
the axial direction than in the radial direction.

Results from molecular dynamics simulations were compared with PB theoretical predic-
tions and found to be in quantitative agreement. The agreement between simulation and theory
confirms that the PB theory is able to describe the equilibrium swelling of ionic microgels in the
range of investigated volume fractions. Results also indicate that ionic microgels deswell with in-
creasing volume fraction. As expected, the fixed charge distribution affects the electrostatic osmotic
pressure and equilibrium swelling of ionic microgels. When considering a microgel with a charged
surface, the electrostatic osmotic pressure is lower and the microgel deswells more compared to a
microgel with a volume charge. As shown, the general swelling behavior of ionic microgels can be
understood based on the distribution of counterions and osmotic pressure influences.

In the case of a suspension of surface-charged ionic microgels, the results for the equlib-
rium swelling ratio and bulk osmotic pressure computed from our Monto Carlo simulations of the
linearized one-component model quantitively matched theoretical predictions of the nonlinear PB
cell model over a considerable range of particle concentrations. With increasing concentration, the
surface-charged microgels uniformly deswell, while the actual volume fraction increase monotoni-
cally until neighboring microgels start to touch each other.

7.3. Future Work

Although the theoretical models and simulation methods developed here give a better un-
derstanding of the swelling behavior of ionic microgels, there is significant room for improvement.
A first step toward further developing the model would be to account for the counterion correlations
and the effect of multivalent counterions and solvent. Also, one of the major assumptions made in
the theoretical model developed here is that all monomers making up a microgel are implicit. This
assumption could be avoided by running MD simulations using a more explicit bead-spring polymer
model. MD simulations could also be used to probe the dynamical properties of ionic microgels
under similar conditions, something the methods used in this study cannot do. The models used in
this study can be modified in order to explore the swelling behavior of ionic microgels as a function

of pH. The models could also be used to investigate the swelling, ion distributions, and osmotic
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pressure of ionic hollow cylindrical microgels or microcapsules with a loaded nano-drug. So far, no
experimental study has been reported for investigating the swelling and osmotic pressure of ionic
cylindrical microgels. Therefore, one of the major areas of future research would be synthesizing

and characterizing swelling and osmotic pressure of ionic cylindrical microgels.
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APPENDIX

This Appendix contains Mathematica notebooks, Java classes, and LAMMPS scripts that
we developed for our Poisson-Boltzmann cell model calculations, Monte Carlo simulations, and
molecular dynamics simulations.

The below notebook was used to solve the Poisson-Boltzmann equation for a surface-charged
microgel in a spherical cell with counterions and salt ions. The microgel was modeled as a surface-
charged sphere. Boundary conditions: the electric field is zero at the center and edge of the cell.

The electrostatic potential is continuous at the microgel surface.
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Clear["Global *"];

Ag =0.714°20; (* Bjerrum length in nm )

Z =1000; (* microgel valence = number of osmotically active counterions )

X =0.5; (x Flory-Huggins chi (solvency) parameter x)

a0 = 10; (x dry/collapsed microgel radius in nm x)

Avogadro = 6.0221413'20 10773 (* 1 microM=6.0221413 1077 nm™3 )

Co =0.001; (% reservoir salt concentration [uM] «)

(+ Nmon=((a®0%)/(1.5)%)+0.63 (+ number of monomers per microgel ))

(* Nch=Nmon+0.0005 (* number of chains per microgel, proportional to number of cross-linkers x)=x)

Nmon = 2 10%;

Nch = 100;

¥0 =25/a0; (* dry electrostatic coupling x)

¢0 = 0.01; (* dry/collapsed microcapsule volume fraction =)

€ = $MachineEpsilon ;

(xSolve the PB equation inside and outside the microgel

with boundary conditions at the center and at outer surface:x)

ps = ParametricNDSolveValue[{y'"'[r] +2¢ ' [r] /r =x2Sinh[¢¥[r]1], ¥[e] == ¥O, ¥ ' [e] == O, WhenEvent[r =1, y'[r] > ¢ '[r] +Z¥]},
{¥,¥'}, {r, €, R}, {¥0, ¥, x2 }, Method - "StiffnessSwitching",
AccuracyGoal » 20, PrecisionGoal -» 40, WorkingPrecision -» 40];

(* Loop over the microgel swelling ratio a: *)

Do|

a=aad; (x microgel radius x)

¢=a $0; (* microgel volume fraction )

R = Rationalize[$7*/, 0] ; (+ cell radius in a unit of a )

¥ = Rationalize[2g/ (e a@), 0]; (* electrostatic coupling constant x)

ne = Co Avogadro (a a@)*; (» reduced number density of salt ion pairs by a®x)

x2 = Rationalize[8 ng ¥, 0]; (* square of reduced screening constant x)

sol = Quiet@FindRoot[Last[ps[¥0, ¥, x2 1] [R], {¢¥0, -12, 0}, Evaluated » False][[1, 2]];
(* total number of counterions inside %)

Ncounterionsin = 4 wx ng NIntegrate[r A2 Exp[-First[ps[sol, ¥, x21][r]], {r, 0, 1}];
(* total number of coion in the cell x)

Ncoion = 4 7w ng NIntegrate[r*2 Exp[First[ps[sol, ¥, x2]1[r]], {r, ©®, R}1;

Ncoionin = 4 w ng NIntegrate[rA2 Exp[First[ps[sol, ¥, x2]1[r]], {r, 0, 1}1;

(* salt concentration in the cell )

csalt = 3 co NIntegrate[r? Exp[First[ps[sol, ¥, x211[r]]1, {r, 0, R}];

(* total number of counterions outside x)

Ncounterionsout = 4 7w ng NIntegrate[rA2 Exp[-First[ps[sol, ¥, x2]]1[r]1], {r, 1, R}];

ZZ
pe =y [— - — (Ncounterionsin - Ncoionin) ];
6 3

(* Flory-Rehner approximation for (gel) contribution
to osmotic pressure inside the microgel [units of kgT/microgel volume] )
1 1
pg = -Nmon [a3 Log[l - —] +xals 1] - Nch (a2 - —];
o 2
ptot = pe + pg; (* total osmotic pressure x)
Ntot = Ncounterionsin + Ncounterionsout - Ncoion ; (» total counterions =)

Print[NumberForm[a, 6], " ", NumberForm[pg, 10]," ",
NumberForm[pe, 10], " ", NumberForm[ptot, 10], " ", NumberForm[Ncounterionsin, 10], " ",
NumberForm[Ncounterionsout, 10], " ", NumberForm[Ntot, 10], " ", NumberForm[Ncoion, 10]];
Write[file, NumberForm[a, 6], " ", NumberForm[pg, 106]," ",
NumberForm[pe, 10], " ", NumberForm[ptot, 10], " ", NumberForm[Ncounterionsin, 10], " ",
NumberForm[Ncounterionsout, 10], " ", NumberForm[Ntot, 10], " ", NumberForm[Ncoion, 10]];,

{a, 2.95, 3.2, 0.01} (+ loop over swelling ratio x)

]
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The below notebook was used to solve the Poisson-Boltzmann equation for cylindrical mi-
crogels in a cylindrical cell with counterions and salt ions. The microgel was modeled as an infinitely

long cylinder with uniform surface charge.

ClearAll["Global +"];

B=7.14'20; (* Bjerrum length in A %)
a0 =300; (* cylinder dry radius in A )
¥0=B/a0;

$0 =0.01; (* cylinder volume fraction x)

R= Rat'ional'ize[ , e]; (* cell radius x)

¢01/2
20 =200; (* reduce charge per unit dry length times dry radius a0 )

alR = Rationalize[a® /R, 0]; (* cylinder dry radius in R %)

c0 =500; (* concentration of salt reservoir 1in m-icroM/'l *)

no = cO a0 6.02214'20%7-10; (+ concentration of salt reservoir in a®~3 )
(*x2=Rationalize[8n n® (¥0/x) ,0];(* Screening constant squared #)x)

rm=1.5; (* radius of monomer in A x)

Nmon = 0.61 (3/4) (a6®/rm®) 5 (+ number of monomer per dry length times dry radius a@ )
Nch = Nmon*0.0005; (* number of chain per dry length times dry radius aOx)

x=0.5; (» Flory-Huggins chi (solvency) parameter =)

€ = $MachineEpsilon ;

8 7t nO yO
pb = Parametr'icNDSo'lveVa'Lue[{w ""[r]l+ ¢'[r]1/r= ———Sinh[¥[r]],
(aBR )2

Wle] =40, y'[e] =0, whenEvent[r:: aORX, ¥ '[r] > ¥'[r] +2 (¥0/X) (Ae/ (:;sal/2 y))]},
{¥, ¥'}, {r, e, 1}, {¥0, X, Yy}, Method » "StiffnessSwitching", WOrkingPrecision—»Ma];
pbl[we_?Numer-icQ, X_ ?NumericQ, y_?Numer-icQ] :=Last[pb[¥0, x, Y]]}
41
sol[x_2?NumericQ, y_?NumericQ] :=y0 /. F'indRoot[pbl[wo, X, y1[1], {we, -— 0}];
32
Nin[x_?NumericQ, y_?NumericQ] :=

noe
2r

- NIntegrate[r Exp[-F'irst[pb[so'L[x, y1s X5 y11 [r]], {r, ©, a6R x}];
(a®R)

Nco[x_?NumericQ, y_?NumericQ] :=2x NIntegrate[r Exp[First[pb[sol[x, yl, X, y11[r]], {r, ©, a6Rx}];

(a6R)3
Ninn = Quiet[Interpolation[Flatten[ParallelTable[{{x, y}, Nin[x, y1}, {x, 2, 4, 1}, {y, 2, 4, 1}], 1]]];
Nco‘in=Qu'iet[Interpolat'ion[Flatten[ParallelTable[((x, Yy}, Nco[x, yl}, {x, 2, 4, 1}, {y, 2, 4, 1}], 1]]];

X (¥0/x) A0 (x A0
h=z- = ——— ——(xd:Ol/Z) (Ninn[x, y] - Ncoin[x, y]) | -
y 7 2y
X 1 X 1
— |-Nmon xzyLog[l— ] + +1[-Nch [x2 - —] H
yr x*y xty 2
X (A0 (¥0/Xx) X A0
g=2z+ — [7] L°E[X¢01/2] [——2x4>61/2 (Ninn[x, y] - Ncoin[x, y])] -
y 7 y
X 1 X 1
— |-Nmon xzyLog[l - ] + +1|-Nch [y2 - —] ;
yn xty x2y 2

Quiet[ContourPlot3D[{h =0, g=0}, {X, 2, 4}, {y, 2, 4}, {z, 0, 5}, PlotTheme - "Detailed",
MeshFunctions » {Function[{x, y, 2z, f}, h-g]}, AxesLabel - {x, y, z}, MeshStyle » {{Thick, Blue}},
Mesh - {{0}}, ContourStyle - Directive[Orange, Opacity[0.4], Specularity[White, 30]]]]
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The LAMMPS code below initializes the microions on a Face-centered cubic (FCC) lattice.

The script below is a sample LAMMPS input script, used to run the MD simulation.

2 # Spherical cell model of a surface charged microgel dispersion with explicit
counterions AND no salt.
3 # Centered spheres, fixed boundary conditions, and doubled Coulomb cutoff!

4 # System parameters: microgel and microion valences, microgel and cell radii

5 units real

6 timestep 1

7 atom_style charge

s dimension 3

9

10 # Microgel valence (NOTE: electroneutrality requires Z/q = counterion number)

11 variable Z equal 1000

13 # Counterion valence:

14 variable g equal 1

16 # Microgel radius (real units):

17 variable a equal 250

19
20 # Microgel volume fraction:

21 #variable phi equal ($a/$R)~"3 or (phiO) (alpha)~3
22 variable phi equal 0.3125

23

24 # Cell radius (real units):

25 #variable R equal 500

26 variable R equal $a/${phi}~(1./3.)

28 # Microgel volume fraction:

20 #variable phi equal ($a/$R) "3

3(

31 # Lattice constant (real units):

32 variable L equal 55
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34 # Cell radius (lattice units):

35 variable Rc equal $R/$L

36

37 # Initial radius (lattice units):

38 variable Ri equal 0.61*x${Rc}

3¢

40 # Microgel radius (lattice units):

41 variable Rm equal $a/$L

42 # Pair potential cutoff radius (real units):

13  variable Rcut equal 2*$R

45 # Force unit conversion:
46 # epsilon=80:
47 variable C equal 4.1508
48 # epsilon=78:

49 #variable C equal 4.257

51 lattice fcc $L

52 #lattice bcc $L

54 # Fixed boundary conditions on cubic simulation cell

55 boundary f f £

57 #region ID style args; style = sphere; args = x y z radius

58 region spherelin sphere ${Rc} ${Rc} ${Rc} ${Rm} side in
50 region spherelout sphere ${Rc} ${Rc} ${Rc} ${Rm} side out
60 region sphere2 sphere ${Rc} ${Rc} ${Rc} ${Ri} side in

61 region sphere3 sphere ${Rc} ${Rc} ${Rc} ${Rc} side in

63 #create_box N region-ID; N = # of atom types

64 create_box 2 sphere3

66 #create_atoms type style; type = atom type; style = region args = region-ID
67 #fcc lattice:
6s create_atoms 1 region sphere2 basis 1 1 basis 2 1 basis 3 1 basis 4 1

69 #bcc lattice:
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70 #create_atoms 1 region sphere2 basis 1 1 basis 2 2

72 #set counterions number
73  set atom 1*1000 type 1

74 set atom 10015000 type 2
76 group counterion type 1
77 group extra type 2

78 delete_atoms group extra

80 # set mass of atoms for atom_style charge

81 mass 1 1.0

82 mass 2 1.0

83 #set type 1 mass 1
84

85 # set charge of atoms for atom_style charge
86 set type 1 charge $q

87 set type 2 charge $q

90

91

92  velocity all create 293.0 87287

93

o4 # Hybrid pair potential: repulsive LJ potential, cut off at minimum [rcut=sigma
*27(1/6) ]

95 # and Coulomb potential cut off at twice the cell radius:

96 #pair_style hybrid/overlay 1j/cut 1.122462048 coul/cut ${Rcut}
97 #pair_style hybrid/overlay 1j/cut 2.244924096 coul/cut ${Rcut}
98 pair_style hybrid/overlay 1j/cut 3.367386145 coul/cut ${Rcut}

99 # parameters: epsilon, sigma=rcut/27(1/6)

100 #pair_coeff * x 1j/cut 30. 1.
101  #pair_coeff * x 1j/cut 30. 2.
102 pair_coeff * x 1j/cut 30. 3.

103 pair_modify shift yes

104 pair_coeff * x coul/cut ${Rcut}
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105

106

107

108

109

110

111

126

127

129

130

131

dielectric

#dielectric

neighbor

neigh_modify

#variable fxlin
#variable fylin
#variable fzlin
#variable fx2in
#variable fy2in

#variable fz2in

80.
78.

0.3 bin

every 20 one 50000 delay O check no page 1000000

atom -($C*x$Zx$q/$a"3)*(x-$R)
atom -($C*x$Zx$q/$a"3)*(y-$R)
atom -($C*$Zx$q/$a"3)*(z-$R)
atom ($C*$Z*$q/$a~3)*(x-$R)
atom ($C*$Z*$q/$a~3)*(y-$R)
atom ($C*x$Z*x$q/$a~3) *(z-3$R)

variable r3 atom ((x-$R)"2+(y-$R) "2+(z-$R)"2) "1.5+1.e-20

variable fxlout
variable fylout

variable fzlout

atom -($Cx$Z*$q/v_r3)*(x-$R)
atom -($C*$Z*x$q/v_r3)*(y-$R)
atom -($C*$Z*x$q/v_r3)*(z-$R)

#variable fx2out atom ($C*$Z*x$q/v_r3)*(x-$R)

#variable fy2out atom ($C*$Z*$q/v_r3)*(y-$R)

#variable fz2out atom ($C*$Z*x$q/v_r3)*(z-$R)

#fix

#fix

fix
spherelout

#fix

fix

fix

dump

1 counterion addforce v_fxlin v_fylin v_fzlin region spherelin
2 coion addforce v_fx2in v_fy2in v_fz2in region spherelin
3 counterion addforce v_fxlout v_fylout v_fzlout region

4 coion addforce v_fx2out v_fy2out v_fz2out region spherelout

5 all nvt temp 293.0 293.0 100.0

6 all wall/region sphere3 1j126 30 1 1.122462048

1 all atom 1000 dump.surface_charged_microgel_op_0.02

_1000_alpha_2.5

thermo

run

1000
10000000
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The Java code below was used to compute the bulk osmotic pressure and swelling ratio of

surface-charged microgel suspensions in our Monte Carlo simulations.

1 calculateTotalEnergy(); // initial energy

}

o

/ **
5 * Place particles on sites of an fcc lattice.
6 */
7 public void setFCCPositions() {
8 int ix, iy, iz;
9 double dnx = Math.cbrt(N/4.);
10 d = side / dmnx; // lattice constant
11 nx = (int) dnx;
12 if (dnx - nx > 0.00001) {

13 nx++; // N/4 is not a perfect cube

14 }

15

16 int i = 0;

7 for (ix = 0; ix < 2*nx; ix++) { // loop through particles in a row

18 for (iy = 0; iy < 2*nx; iy++) { // loop through particles in a column
19 for (iz = 0; iz < 2*nx; iz++) { // loop through particles in a layer
20 if (i < N) { // check for remaining particles

21 if ((ix+iy+iz)%2 == 0) { // check for remaining particles

22 x[i] = ix * d/2.;

23 y[il = iy * d/2.;

24 z[i] = iz * d/2.;

25 i++;

26 }

27 }

28 }

29 }

30 }

31 calculateTotalEnergy(); // initial energy

32}

34 [k*
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66

* Do a Monte Carlo simulation step.

*/

public vo
steps++;
double d

double n

double dx, dy, dz, de, r, r2, sigma,

id step() {

xtrial, dytrial, dztrial,

ewEnergy, HertzEnergy;

atrial;

aMean,

R;

double vbare, vind, voverlap, A, YukawaEnergy;

double a3, mixF, elasticF, elecF,

// trial

for (int

dxtrial
dytrial
dztrial

atrial

x[i]

y[i]

z[i] =

move

i =0; i < N; ++i) {

totalF,

se

tolerancex*2.*(Math.random() -0.5) ;
tolerancex*2.*(Math.random() -0.5) ;

tolerancex*2.*x(Math.random() -0.5) ;

= atolerancex*2.*(Math.random()-0.5) ;

PBC.position(x[i]+dxtrial,
PBC.position(y[i]+dytrial,

PBC.position(z[i]+dztrial,

side) ;
side) ;

side) ;

a[i] += atrial; // trial radius change

newEner
for (in
if(j !
dx =
dy =
dz =
r2 =
r = M
sigma
aMean
R=r
ka =

gy = 0;

t j =05 3 <N; ++j) {
=1i) {
PBC.separation(x[il-x[j],
PBC.separation(y[il-y[j],
PBC.separation(z[il-z[j],
dx*dx+dy*dy+dz*dz;
ath.sqrt(r2);

= al[il + a[j];

= 0.5xsigma;

/aMean;

k*xaMean;

side) ;
side) ;

side) ;
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71 if (r < sigma){

73 // CHANGE vbare and vind: [Mohammed Alziyadil]

7 // For surface-charged microgel

75 voverlap = Z*Z*gamma*(1-Math.exp(-k*r)-Math.exp(-2*ka)*Math.sinh(k*r))/(2*
kaxka*r) ;

7e

77 HertzEnergy = B*Math.pow(l-r/sigma,2.5);

78 newEnergy += voverlap + HertzEnergy; // pair energy

79 newPairEnergy[i] [j] = voverlap + HertzEnergy;

80 }

81 else {

82 // CHANGE A: [Mohammed Alziyadil

83 // A = gamma*Math.pow(Z*Math.sinh(k*a[i])/(k*a[i]) ,2);
84 A = gamma*(Z*Math.sinh(k*a[i])/(k*a[i]))*(Z*Math.sinh(k*a[jl)/(k*al[jl));
85 YukawaEnergy = A*Math.exp(-k*r)/r;

86 newEnergy += YukawaEnergy; // pair energy

87 newPairEnergy[i] [j] = YukawaEnergy;

88 ¥

89 }

90 }

91 a3 = Math.pow(al[il,3);

92 mixF = nMon*((a3-1)*Math.log(1-1/a3)+chi*x(1-1/a3));

93 elasticF = 1.5*nChains*(al[il*a[i]l-Math.log(al[i])-1);

94

95 K = kxal[i]; // screening constant (units of inverse swollen radius)

96 // CHANGE selfU and volU: [Mohammed Alziyadil

98 //
99 selfU = 0.5*xZxZ*gamma/al[i]l; // self energy of a single ionic microgel for

surface-charged

[Mohammed Alziyadil

// microion volume energy (neglecting constants independent of al[i])

// For surface-charged microgel

[Mohammed Alziyadil
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105 volU = -0.5*gamma*Z*Z*(Math.exp (-2*K)-1+2%K) /(2*K*a[i]);

106 elecF = selfU + volU; // electrostatic free energy

108 totalF = mixF + elasticF + elecF; // single-particle free energy

109 newEnergy += totalF;

111 de = newEnergy-energyl[il;

112

113 if (Math.exp(-de) < Math.random() || a[i]l < 1) {

114 x[i] = PBC.position(x[i]-dxtrial, side); // reject move

115 y[i]l] = PBC.position(y[i]l-dytrial, side);

116 z[i] = PBC.position(z[i]l-dztrial, side);

117 al[i] -= atrial;

118 }

119 else { // accept move and update energies

120 energy[i] = newEnergy;

121 for (int j = 0; j < N; ++j) { // update energies of other particles
122 if(j !'= 1) {

123 energy[j] += newPairEnergy[i][j]l-pairEnergy[i]l[j];
124 pairEnergy[i][j] = newPairEnergyl[il[j];

125 pairEnergy[j]l[i] = newPairEnergy[il[j];

126 }

127 }

128 }

129 %}

130 calculateTotalEnergy(); // new total energy

131}

133 // total energy and pressure

134 public void calculateTotalEnergy () {

135 double dx, dy, dz, r, r2, sigma, aMean, R;

136 double vbare, vind, voverlap, A, YukawaEnergy;

37 double a3, mixF, elasticF, elecF, totalF, selfU, volU, volP, K, ka;
138 double fOverR, fx, fy, fz;

139 double fbare, find, foverlap;

140 double derivPart, HertzEnergy;
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141 double pairEnergySum, energySum, viriall, virial2, virialSum;

143 totalEnergy = O0;

144 totalVirial = 0;

145

146 for(int i = 0; 1 < N; ++i) { // sum over particles
147 pairEnergySum = 0;

148 energySum = O0;

149 virialSum = O0;

150 for(int j = 0; j < N; ++j) { // sum over pairs of particles
151 if(j !'= i) {

152 dx = PBC.separation(x[i]l-x[j], side);

153 dy = PBC.separation(y[il-y[jl, side);

154 dz = PBC.separation(z[i]l-z[j], side);

155 r2 = dx*dx+dy*dy+dz*dz;

156 r = Math.sqrt(r2);

157 sigma = al[il+ alj];

158 aMean = 0.5*sigma;

159 R = r/aMean;

160 ka = kxaMean;

161 if (r < sigma){

162

163 // CHANGE vbare and vind:
164 [Mohammed Alziyadil]

165

166

167 voverlap = ZxZxgamma*(1-Math.exp(-k*r)-Math.exp(-2xka)*Math.sinh(k*r)) /(2%

kaxka*r) ;
168 // CHANGE fbare and find: [Mohammed Alziyadil]
169
170
171 // foverlap = 0;
172 foverlap = -Z*Z*gamma*(-1+Math.exp(-k*r)*(1l+k*r)+Math.exp (-2*ka) *(-k*rx*

Math.cosh(k*r)+Math.sinh(k*r)))/(2xkaxka*r*r) ;
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179

180

185

186

189

190

191

192

193

194

195

196

197

198

199

200

derivPart = B*Math.pow(l-r/sigma,1.5);

HertzEnergy = derivPart*(l-r/sigma);

pairEnergy[i] [j] = voverlap + HertzEnergy; // pair energy of particles i
and j

pairEnergySum += voverlap + HertzEnergy; // total pair energy of particle

i

fOverR = ((2.5/sigma)*derivPart+foverlap)/r;

fx = fOverR*dx; // force in x-direction

fy = fOverR*dy; // force in y-direction

fz = fOverR*dz; // force in z-direction

viriall = (dx*fx+dy*fy+dz*£fz)/3.; // standard virial contribution to
pressure

// contribution from density-dependent effective electrostatic pair
potential

// CHANGE virial2: [Mohammed Alziyadil
virial2 = -(Z*Z*xgamma/(2*r))*((1-Math.exp(-rxk)-Math.exp(-2*ka)*Math.sinh(
rxk))/(kaxka) -(Math.exp (-r*k)*k*r-Math.exp (-2*xka) *k*r*Math.cosh (kxr) +2xka*
Math.exp(-2*ka)*Math.sinh(r#*k))/(2xkax*ka));
// virial2 = 0;
virialSum += viriall + virial2;
}

else {

A = gamma*(Z*Math.sinh(k*a[i])/(k*a[i]))*(Z*Math.sinh(k*a[jl)/(k*al[jl));
YukawaEnergy = A*Math.exp(-k*r)/r;

pairEnergy[i][j] = YukawaEnergy; // pair energy of particles i and j
pairEnergySum += YukawaEnergy; // pair energy

fOverR = (YukawaEnergy/r)x*(k+1/r);

fx = fOverR*dx; // force in x-direction

fy fOverR*dy; // force in y-direction

fz = fOverR*dz; // force in z-direction

viriall = (dxxfx+dyxfy+dz=*fz)/3.; // standard virial contribution to
pressure

// contribution from density-dependent effective electrostatic pair

potential

// CHANGE virial2: [Mohammed Alziyadi]
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203 virial2 =Z*Zxgamma*Math.exp(-k*r)*(Math.sinh(ka)*Math.cosh(ka)/(ka*r)-Math
.pow(Math.sinh(ka) ,2)/(kax*ka*r)-Math.pow(Math.sinh(ka) ,2)*k/(2*kaxka)) ;

204 // virial2 = 0;

205 virialSum += viriall + virial2;

206 }

207 }

208 } // end of j loop over particles

209

210 virialSum *= 0.5; // correct for double-counting pairs

212 a3 = Math.pow(alil,3);
213 mixF = nMon*((a3-1)*Math.log(1-1/a3)+chi*x(1-1/a3));

214 elasticF = 1.5*nChainsx*(alil*al[i]l-Math.log(al[i]l)-1);

216 K = kxal[il; // screening constant (units of inverse swollen radius)

217 // CHANGE selfU and volU:

219 selfU = 0.5xZxZxgamma/a[il; // self energy of a single ionic microgel for
surface-charged

220 // microion volume energy (mneglecting constants independent of alil)

221 // For surface-charged microgel

222 volU = -0.5xgamma*Z*Z*(Math.exp (-2*K) -1+2*K) /(2*xK*a[i]);

223 //

224 elecF = selfU + volU; // electrostatic free energy

226 totalF = mixF + elasticF + elecF; // single-particle free energy

228 energy[i] = pairEnergySum + totalF;
229 energySum += 0.5*pairEnergySum + totalF; // correcting for double-counting

pairs

231 // microion volume pressure

232 // CHANGE volP: [Mohammed Alziyadil]

233 volP = -0.5*%Z*Z*gamma*Math.exp (-2*K) *(-1+Math.exp (2*K) -2xK) /(4*K*a[i])+Z+2%
Nsalt; // added ideal-gas constribution in the

above line.
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234

// volP = -0.5*%Z*Z*gamma*Math.exp (-2*K)*(-1+Math.exp (2*K) -2*K) /(4*K*a[i

DM

virialSum += volP;

if (steps>delay){ // collect statistics after equilibrati.

totalEnergy += energySum;
totalVirial += virialSum;

}

}

// [Mohammed Alziyadil
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