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ABSTRACT 

In this study, we searched for significant hypo and hyper methylation CpG (5'-C-

phosphate-G-3') probes from The Cancer Genome Atlas (TCGA) datasets. First, the relationship 

between hypo and hypermethylation pattern in significantly expressed genes associated in 

pancreatic ductal adenocarcinoma (PDAC) was analyzed using computational methodologies in R 

package. This was done by combining DNA methylation (DM) and gene expression (GE) 

information, and their corresponding metadata (i.e., clinical data and molecular subtypes) and 

saved as R files. Next, examination of differentially methylated CpG sites (DMCs) between two 

groups (normal vs tumor) was identified gene sets. From this analysis, we found nine (09) 

overexpressed hypomethylated and six (06) under expressed hypermethylated genes near 

significant CpG probes. Results from this work will shed light on the relationship between CpG 

methylation and gene expression associated with PDAC. 
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1. BACKGROUND 

Pancreatic ductal adenocarcinoma (PDAC) is described as a hard-to-treat malignant 

disease, with a 5-year survival rate of approximately 10% in the USA, and it is progressively 

becoming a frequent cause of cancer fatality.1  The prognosis remains poor with only 20% survival 

following 5 years post-surgery, even for a small subset of patients who are diagnosed with a 

localized, resectable tumor.2 According to the World Health Organization (WHO), a continual rise 

in PDAC incidence and mortality is expected over the next 20 years, and by the year 2040, it is 

estimated to be 77.8% and 80%, respectively. 3 4.  

The aim of this thesis is identification of methylated CpG sites by analyzing publicly 

available datasets from The Cancer Genome Atlas (TCGA) to correlate with specific gene 

expression patterns of PDAC. 5 6 This study utilizes samples (178 methylation and 164 from gene 

expression) downloaded from TCGA for differential and pathway analysis of gene expression and 

methylation patterns of genes (2 kb) up and downstream of transcription start site (TSS).7 Kwon 

et. al. analyzed 23 imprinted genes, and we studied methylation patterns of 178 probes and 164 

genes from PDAC datasets.8 Screening for aberrant DNA methylation (DM) pattern of PDAC 

datasets with computational tools, such as R statistical software, we can now detect the altered 

CpG methylation status and specific genes that could support early diagnosis of this fatal disease.9  

1.1. Epigenetics and gene expression 

Gene expression (GE) involves processing DNA sequence information, via transcription 

and translation that leads to assembly of amino acids based on genetic code encoded in DNA.10 

The cells read the sequence of the gene in group of three bases (codon) and each group of three 

bases correspond to twenty amino acids that are used to build protein molecules.11 Epigenetic 

changes can influence gene expression and affect the proteins that are being translated.10 Three 
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major epigenetic modification process of human genome includes DNA methylation (DM), 

histone modifications (HM) and ribonucleic acid (RNA) associated silencing.12 Accordingly, DM 

is a covalent modification in which methyl groups are added to cytosine nucleotides in DNA  and 

are catalyzed by DNA methyltransferase (DNMTs) at CpG sites.13 Two general methylation states 

are (1) enhanced DM in the promoter regions, that results in gene silencing; and (2) reduced 

methylation, which results in gene overexpression.14 Consequently, DM can also lower GE by 

reducing the binding of transcription factors (TF), or by increasing the binding of methyl-CpG 

binding of proteins.15  

DNA structure is periodically wrapped around histone proteins, forming tightly packed 

units named nucleosomes.16 The close association of histone proteins and DNA is, the less 

accommodating for transcription to occur.17 Furthermore, RNA’s in the form of antisense 

transcript, noncoding RNAs or RNA interference can provoke a heritable and stable gene 

silencing.18 Overall, the three epigenetic modification plays a decisive role in localized control of 

expression, the regulation of embryonic development, formation, and maintenance of cellular 

identity in human genomes.19  

1.2. DNA methylation and epigenetic process 

An important epigenetic process is DNA methylation, which involves covalent bonding of 

a methyl group (-CH3) to a CpG site in mammalian cells.20 Epigenetic changes are reversible and 

do not alter DNA sequences but changes how DNA sequence is being read in the human body. 21 

Correlation between DM and GE have widely reported, as methylation enhances or silences 

specific genes.22 Two dynamic process preserve DM patterns in human genome methylation 

maintenance and de-novo methylation.23 Methylation maintenance allows preservation of 

methylation marks in replication generation. Likewise, de-novo methylation occurs on CpG sites 
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and increase methylation pattern across cell generation.24, 25 Moreover, unusual levels of hypo and 

hyper methylation is well defined characteristics of various cancers. As cancer progresses DM 

levels can vary and identification of these states can assist in PDAC, long before symptoms become 

apparent or transform to advanced pathological stages.26 Furthermore, there are stretches of DNA 

near promoter regions that are rich in  GC- or AT-rich sequences and are found to be unmethylated 

in normal tissues. 27 These CpG sites become highly methylated during tumorigenesis, causing 

irregular gene expression or repression. This unusuality is a specific epigenetic mark of 

carcinogenesis.28  

DNA methylation can become inactive or obstructed by the action of  by Ten-Eleven 

Translocation-2 (TET2) or isocitrate dehydrogenase (IDH) mutations. IDH, located at codon R132 

of IDH1 gene, produces onco-metabolite “2-hydroxyglutarate” that induces epigenetic change, 

such as DM. Moreover, TET genes, and particularly TET2, catalyze the successive oxidation of 5-

methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-

carboxylcytosine (5caC) and can reverse the DM process.29 Consistently, the loss of 5hmC 

observed in tumor cells can be used to identify early-stage malignant disease.30 TET protein is also 

known to catalyze the hydroxylation of thymine bases in T:A base pairs to form 5-

hydroxymethyluracil (5hmU) by deamination reactions.31 This thymine base modification of 

5hmU has been reported to affect protein-binding to DNA and is a key intermediate in generating 

site-specific mutations.27  

Transposable elements (TEs, transposon, or jumping gene) form most repetitive sequences 

(up to 50% of the human genome) and maintain genomic stability, chromosomal architecture, and 

transcriptional regulation. Active TEs are considered very mutagenic and linked with multiple 

steps of cancer development and progression.32 Mesothelin (MSLN), a tumor-associated antigen, 
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is found highly expressed in pancreatic ductal  adenocarcinoma (PDAC), and a long-terminal 

repeat (LTR) is its primary promoter. Podocalyxin (PODXL) is a highly glycosylated type I 

transmembrane protein that can be found in normal tissues as well as in many cancers, including 

lung, renal, breast, colorectal, and pancreas.33 In a recent bioinformatics study by Wong et. al, 

dynamin-2 was identified a binding partner of PODXL in PDAC. The interaction between PODXL 

with dynamin-2, promotes PC cancer cell migration and metastasis by regulating microtubule and 

focal adhesion dynamics.34 Furthermore, overexpression of PODXL in PC cancer cells was linked 

with advanced clinicopathological stage and poor clinical outcome.33 

1.3. DNA methylation and chromatin structure 

Epigenetics mechanism enables cells to retain memory of preceding cellular environments 

and disruptions, in nearly all cell types, without changing DNA sequences.35 Epigenetic changes 

can communicate with TF and translation process by remodeling chromatin architecture to fine-

tune GE patterns.36 Epigenetic changes include DM and histone modifications (HM), and both are 

known to inhibit gene transcription.36 Pertinently, histone protein undergoes post-translational 

modifications that occur in the N-terminal tails of the core histone, and it also includes acetylation, 

methylation, phosphorylation, ubiquitination, and sumoylation.37 As a result, these alteration 

influences the chromatin structure and can create affinities for chromatin binding proteins, thus 

regulating expression pattern of genes.36 Acetylation of histones unwinds their electrostatic 

interaction with DNA, resulting in unperturbed chromatin states allowing upregulation of 

transcriptions. Cervoni et al. observed reduced CpG methylation concentrations when a human 

lymphoma cell line was transfected with HDAC inhibitors. This finding illustrates the suppression 

of histone deacetylation cause demethylation of DNA.38 

https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-processing
https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-processing
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/n-terminus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/histone
https://www.sciencedirect.com/topics/medicine-and-dentistry/acetylation
https://www.sciencedirect.com/topics/medicine-and-dentistry/methylation
https://www.sciencedirect.com/topics/medicine-and-dentistry/ubiquitination
https://www.sciencedirect.com/topics/medicine-and-dentistry/sumoylation
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Histone acetyltransferase (HATs) and deacetylases (HDACs) are responsible for the 

addition and removal of acetyl groups to/from lysine residues.39 In oncogenesis, the imbalance of 

HDACs result in transcriptional inactivation of tumor-suppressor genes (TSG).40 Moreover, 

epigenetic gene silencing can occur through unusual docking of HDACs to the gene promoter, 

resulting in histone hypoacetylation.41 Importantly, expression of these pathways can resume by 

inhibition of HDAC activity, such as CpG hypermethylation.42 

1.4. Growth factor and pancreatic cancer 

Growth factor signaling pathways are known to participate in pancreatic tumorigenesis, 

that include transforming growth factor (TGF), epidermal growth factor (EGF), insulin like growth 

factor (IGF), hepatocyte growth factor (HGF) and fibroblast growth factor (FGF).43  Transforming 

growth factor-β (TGF-β) regulates cell functions and has significant roles in initiation of PDAC 

development.44  SMAD4, one of the Smads family of signal transducer from TGF-β, mediates 

pancreatic cell proliferation and apoptosis.45 It plays a dual role in tumor initiation and progression 

(up to 42%) and overexpression of TGF- β is associated with poor prognosis of PDAC. 46 Xia et 

al. observed a complete blockage of the growth inhibitory effects of TGF- β in PC cell line COLO-

357 and in nude mice, following transfection with Smad5 and Smad7.47 Therefore, PC cells may 

have multiple mechanisms to evade the tumor suppressive effects of TGF- β, and capacity to 

express metastasis-promoting genes.48 

In cancer cells, the upregulation of EGF and EGF-receptor are common in PDAC with 

lymph nodes and distant metastasis.49 An increase in expression of human EGFR is associated 

with advanced tumor stage and poor survival. Consequently, expression of EGF-receptor and 

transforming growth factor alpha (TGF-α) or amphiregulin is tied to poor survival prognosis.50 

EGFR family members activate the Ras/MAPK, PI(3)K/Akt pathways. KRAS, an activating 
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mutation of an isoform of the Ras protein appear during early stages of malignant transformation 

and are found in almost all PDAC cases.51 Moreover, DNA methyltransferase enzymes (DNMTs) 

expression and activity are regulated by Ras and ERK/MAPK signaling pathways, which function 

downstream of the epidermal growth factor receptor (EGFR) pathway. This means activation of 

EGFR and its subsequent signaling pathways play a role in DNMT expression and DM.31, 52 As a 

result, an increase in DNMTs enzymatic activity are widely linked with cancer progression and 

poor prognosis.53 

Cancer cells are known to express insulin and IGF1 receptors, and these receptors are key 

activators of the Akt and mitogen-activated protein kinase signaling networks in neoplastic 

tissue.54 In a recent study, the survivability of a significant subset of latent cancer cells that was 

dependent on IGF-1R signaling in absence of oncogenic KRAS expression was identified.55 

Glypican-1 (GPC1) is a member of the heparin sulfate proteoglycans family and is the most 

important coreceptor for heparin-binding growth factors (HBF). Glypican-1 was found 

overexpressed in majority of PDAC cells and in the fibroblast surrounding the tumor mass. 

Downregulation of GPC1 decreases the tumorigenicity of pancreatic cancer cells, whereas high 

levels of GPC1 are associated with poor survival in patients with PC.56 Therefore, a decrease in 

GPC-1 expression marks the reduction of sensitivity of PDAC cells to HBF and therefore, makes 

it a prospective prognostic biomarker in this disease.57 Fibroblast growth factor (FGF) receptors 

are found often over-expressed in PDAC cell lines. Fibroblast growth factor (FGF) and its 

receptors are proposed have a role in tumor angiogenesis, in a study of transgenic mouse model of 

pancreatic β-cell carcinogenesis.58   
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1.5. Development of novel biomarkers toward pancreatic cancer treatments 

Recent advances toward discovery of novel therapeutic agents and to distinguish new 

biomarkers for existing epigenetic inhibitors is a key research interest. Of late, two group of drugs 

are currently used in epigenetic therapy: (1) DNA methyltransferase inhibitors (DNMTi) and 

histone deacetylase inhibitors (HDACi); (2) targeted therapeutic agents to block specific genes 

that when mutated cause dysregulation of epigenetic markers.59 Correspondingly, these two classes 

of inhibitors are under ongoing clinical trial to treat different tumor types, and some have been 

approved by FDA. Therefore, identification of epigenetic irregularities is vital for the development 

of new therapies and for discovery of candidate biomarkers. 60 The DNA methylation has many 

distinctive advantages in individualized cancer therapy.  

1.6. DNA methylation and gene expression 

The local control of gene expression, regulation of embryonic development, formation, and 

maintenance of cellular identity of human genomes is significantly influenced by DM. Aberrant 

DNA methylation patterns contributes to critical signaling pathways involved in pancreatic 

tumorigenesis.61 For example, TGF-β promotes epithelial to mesenchymal transition (EMT) of 

PDAC cells partly by inducing hypermethylation of CpG site in VAV1 gene body and VAV1 

expression.62 Guo et al. examined 48 pancreatic exocrine and endocrine neoplasms for DM 

changes of specific gene promoter regions, that includes acinar cell carcinomas, PDAC, and 

neuroendocrine tumors, and found six most frequently methylated genes (APC 50%, BRCA1 46%, 

p16INK4a 35%, p15INK4b 35%, RARβ 35%, and p73 33%).63  Many studies suggest several 

genes, abnormalities, or mutation are associated with PDAC. Among these, KRAS, TP53, 

CDKN2A and BRACA have been extensively reported to be the drivers of PDAC 64.  Nones et al. 
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assessed DM level in 167 untreated resected PDAs and compared them to 29 adjacent non-

transformed pancreatic tissue and identified 3522 genes that are differentially methylated.65 66 

1.7. DNA methyltransferase enzyme 

Epigenetic changes occur several ways that can affect genome activity and expression 

without changing DNA-sequence. Consequently, epigenetic changes or marks occur both on 

histone and DNA by a network of proteins that includes change by addition of epigenetic marks 

(writers), changing the state of existing epigenetic marks by their removal (erasers), lastly, react 

to specific epigenetic marks (readers). Writers of DM are known as DNA methyltransferases 

(DNMTs), that are essential for the transfer of a methyl group from the universal methyl donor, S-

adenosyl-L-methionine (SAM), to the 5-position of cytosine residues in DNA. Unusual expression 

of DNMTs and interruption of DM patterns are linked to many types of cancer. Therefore, DNMTs 

are prospective therapeutic targets for diagnostic and prognostic markers for PDAC.67 

DNMT1, a member of the DNMTs family of writers, can be found proliferating cells and 

copy methylation patterns in the newly created daughter-DNA strands during DNA replication. 

Although their expression decreases in adult somatic tissues, methylation is evident in the early 

embryonic stage and is carried out by the writers DNMT3A and DNMT3B on regions of 

chromosomes where the nucleosome is reduced. DNMT1 can interact with the tumor suppressor 

gene MEN1 protein, which reversibly regulates PC cell growth. MEN1 gene express Menin protein 

that are known to be active in all stages of development and are frequently mutated in pancreatic 

neuroendocrine (PNE) tumors.68 A quantitative real-time RT-PCR of DNMT expression pattern 

revealed that the mRNA expression levels of DNMT1, DNMT3A, and DNMT3B increased from 

normal ducts to PNE and then to PC.31   
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Similarly, a non-catalytic homolog of DNMT3A/B is DNMT3L that support binding to 

their target DNA. Additionally, proteins such as PCNA, UHRF1, DMAP1, DNMT3l, and HDACs 

function to steer DNMT proteins to their target regions. These proteins regulate the 

methyltransferase activity of the genome and epigenetic change that relates to DM. 

Characteristically, CGIs in normal cells are hypomethylated compared to the rest of the genome. 

Yet, CGIs in cancer cells of promoter regions adjacent to tumor suppressor genes are 

hypermethylated by the actions of DNMTs.69 These enzymes are overexpressed in cancer and 

enhance tumorigenesis by means of decreasing tumor suppression. Likewise, hypermethylation of 

CGIs can interfere with binding of CTF protein, leading to loss of vital insulator regions and 

activation of the oncogene.70 Hypomethylation of gene bodies and intergenic regions of DNA often 

correlates with the onset of cancer.68 

5-methylcytosine (5-mC) is a repressive marker written de-novo by DNMT3A/B and is 

maintained by the action of DNMT1. Relatedly, 5-hydroxymethylcytosine (5-hmC), an DNA 

pyrimidine nitrogen base, can potentially switch a gene on or off. 5-hmC is enriched near promoter 

regions and can interact with methyl-CpG-binding protein 2 (MeCP2). The expression of MeCP2 

protein is demonstrated at increasing levels during brain development, and 5-hmC plays a role in 

its activation. Furthermore, demethylation of CGIs positively regulates gene activation and CTF 

insulator functions by allowing binding of TFs and CCCTC-binding factor (CTCF), an 11-zinc-

finger DNA binding protein. Likewise, 5-mC can be converted to 5-hmC via an enzymatic process 

involving the Ten-Eleven-Translocation (TET) family of proteins. Recent research identified 

5hmC being associated with malignant transformation of KRAS in pancreatic cells after 

deactivation of p53. This process is a frequent clinically observed feature of PC patients71 
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Currently, there are two types of small molecule DNMT inhibitors being reported (i.e., 

nucleoside and non-nucleoside). Epigenetic inhibitors centered on nucleoside analogs 5-

azacytidine and 5-aza-2′-dC are in Phase I-III clinical trials for several human diseases. To this 

point, DNMT inhibitors, azacytidine and decitabine, have shown promising efficacy and have 

received FDA approval in the treatment of myelodysplastic syndrome while not in solid tumors.72 

Up to now, studies have shown 5-aza-2′-dC reduced PC cell proliferation and initiated cell cycle 

arrest in an in vitro model. 73, 74  

The methyl-CpG-binding domain proteins (MBDs) family of proteins can read and identify 

de-novo-methylation patterns occurring during embryogenic developments. Besides, methyl-CpG 

binding domain protein-1 (MBD1) is frequently overexpressed in PC in a study by Liu et al.75 

Normally, MeCP2, MBD1, and MBD2/4 readers can create and preserve regions of 

transcriptionally inactive chromatin by recruiting corepressor proteins such as DNMT1, and 

histone deacetylases (HDAC1 and HDAC2). 75 Relatedly, Zhang et al. observed that MBD1 gene 

suppression reduces the antioxidant response and ARE target genes through epigenetic regulation 

of Kelch like ECH associated protein 1 (KEAP1). 76 Epigenetic events are ubiquitously distributed 

across normal and cancer cells. Therefore, a better understanding of the specific mechanisms such 

as DM and its underlying changes of GE in PDAC, is necessary for anticancer treatment.77 

1.8. DNA methylation analysis techniques 

The three most common DNA methylation analysis techniques are (1) digestion of 

genomic DNA with methylation-sensitive restriction enzymes; (2) affinity-based enrichment of 

methylated DNA fragment; and (3) bisulfite sequencing (BS) method. BS is a sodium bisulfite 

conversion technique that provides quantitative DM level with single-base resolution.78 This 

treatment of genomic DNA converts unmethylated cytosine to uracil and then uracil becomes 
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thymidine in subsequent PCR amplification and sequencing. 5mC is resistant to such conversion 

process and therefore, it can be detected from unmethylated cytosine.79 

Furthermore, the Infinium methylation 450k microarray is a cost-effective, high-

throughput method for detecting DNA methylation in many human samples.80 It involves bisulfite 

treatment of genomic DNA and subsequent hybridization to over 450 000 CpG sites throughout 

the genome. Overall coverage of this platform targets gene regions including promoters, 5′-

untranslated regions, the first exons, gene bodies and 3′-untranslated regions, the first exons, gene 

bodies and 3′-untranslated regions. The TCGA consortium used this platform to profile >7500 

samples from over 200 different cancer types.81 Our analysis included publicly available PC 

datasets (Infinium methylation 450k microarray) including DM  and GE, downloaded from GDC 

portal using computational methodologies in R software. We aimed at analysis of hypo and 

hypermethylation mark in significantly expressed genes associated in pancreatic ductal 

adenocarcinoma (PDAC).82 This vast wealth of data provided by TCGA network of researchers 

present us with a unique opportunity to define and understand molecular mechanism associated 

with differentially methylation and GE pattern associated with PDAC.83 
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2. METHODS AND PROCESSING OF DATA 

Publicly available genome datasets were accessed through the NCI Genomic Data 

Commons (GDC) data portal.82. We performed bioinformatic analysis of DM and GE datasets of 

PDAC by downloading from TCGA database in R statistical software. 81, 84  

 

Figure 1: Schema of GDC pipelines and method of programmatic access.85 

In this study we downloaded PDAC datasets (178 methylation and 164 from gene 

expression) using TCGAbiolinks package, from the TCGA portal. Next, raw and/or preprocessed 

DM, gene expression (GE) of pancreatic ductal adenocarcinoma (PDAC) was saved as 

SummarizedExperiment (SAE) object for analysis.86 Generally, in many computational genomics 

analysis workflows a subset of data matrix is applied prior to analysis to exclude poor quality 
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samples or subset the rows of the matrix to select the most variable features. A subset of data 

structure was performed with SummarizedExperiment package in R software for storing one or 

more matrix-like assays along with associated row (e.g., genes, transcripts, exons, CpG probe) and 

column data (data frame).87 Furthermore, these objects facilitate the storage and analysis of high-

throughput genomic data generated from technologies such as array-based data. Thus, all our data 

was saved as SAE object for further analysis. 

All bioinformatic analysis in this study were performed in the R programming environment 

(version 4.0.3) and the packages was downloaded from Bioconductor (version: 3.11). The 

differential methylated CpG (DMC) sites were calculated using the beta-values (methylation 

values ranging from 0.0 to 1.0) to compare the two means. DEGs were calculated using 

TCGAbiolinks and Limma package in R. LIMMA is a r package for the analysis of gene 

expression microarray data, especially the use of linear models for analyzing designed experiments 

and the assessment of differential expression.88 Last, a multi-omics experiment of PDAC sample 

(DM and GE data) was conducted using enhancer linking by methylation/expression relationships 

(ELMER) package in R programming language. ELMER package detects tumor-specific changes 

in DNA methylation within distal enhancers, and link these enhancers to target genes in the same 

sample set.89  
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3. GENE EXPRESSION ANALYSIS 

In this experiment, we have analyzed and processed RNA seq (GE) data downloaded from 

GDC to identify genes associated with methylation sites. Prior to performing DE analysis, we 

removed genes with low counts and then convert ran-seq data with function of limma. The DE 

analysis of genes is a method of taking normalized read count data and performing statistical 

analysis to determine quantitative changes in expression levels between experimental groups and 

a statistical test is done to decide if, for a given gene, an observed difference in read counts is 

significant.90  We downloaded and processed RNA sequence data from GDC from the built-in 

functions of TCGAbiolinks library, edgeR and limma package. First, we saved the dataset as a 

single r object (r data single, or rds file). We selected clinical feature of this data to use as class for 

grouping the samples, normal (NT) versus tumor (TP) with SAE functions. Next, a design matrix 

was created by functions of limma that indicated the conditions to be compared in DE analysis 

(NT vs TP).  

GDC 

functions:  Description 

GDC 

projects: TCGA-PAAD 

Data 

category: 

Transcriptome profiling, Copy number variation, DNA methylation, 

Gene expression. 

Data type: 

DNA methylation, Gene expression quantification, miRA expression 

quantification. 

Workflow 

type: DNA methylation, HTSeq-counts, HTSeq-FPKM-UQ. 

Platform Illumina Human Methylation, IlluminaHiseq_RNASeqV2. 

 

Figure 2: GDC functions and data descriptions. 

Parsing information from large data requires normalization method to reduce batch effect 

or technical bias.91 Normalization allows accurate estimation and detection of differential 

expression (DE).92 Therefore, we performed normalization method to remove of genes with low 
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counts to reduce batch effects and technical variation of trimmed mean of M-values (TMM). 

Trimmed mean of M-values (TMM) is a normalization method that is based on the hypothesis that 

most genes are not differentially expressed (DE).93 For each sample, the TMM factor is calculated 

when one sample is considered as a reference sample and the other is as a test sample. Besides, for 

each test sample, TMM is calculated by weighted mean of log ratios between test sample and the 

reference. Due to the low DE hypothesis, the TMM should be close to 1. If it does not, TMM value 

will provide an estimate of the correction factor that must be applied to the library sizes. This 

method of normalization is implemented in the edgeR package as the default normalization 

method. The data generated in the analysis identified differential expressed genes (DEGs) and was 

sorted by p-value to assess their significance levels.94 A heatmap plot was generated with the 

heatmap.2 package to visualized significant DEGs (figure:4). The samples highlighted are TN 

samples (red), TP samples (black), and the genes (green) and were narrowed down by the analysis 

function of limma. 

3.1. Enrichment and pathway analysis of differential expressed genes 

To understand the biological implication of expression data is enrichment analysis. This 

approach helps us to identify if the DEG are associated with a certain biological process or 

underlying molecular function of PC.88 Gene ontology (GO) analysis is a technique for annotation 

of genes and gene sets, with biological significance of high-throughput genome or transcriptome 

data. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a data-bank for exploration of 

gene functions and integrated pathways.95-96 KEGG analysis of PDAC data offers molecular 

identification of genes, proteins and signaling pathways. 
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3.2. Results of gene expression analysis 

For RNA-sequence data, we performed DE analysis to locate quantitative changes of 

expression levels between NT vs TP groups. We identified from the tumor samples up to 10179 

genes downregulated, 14125 upregulated, and 3721 not significant . Similarly, for normal samples 

a total of 7705 genes were downregulated, 12822 genes were upregulated, and 7498 were found 

not significant.97 We identified the following genes as statistically significant  by analysis from 

limma and plotted as heatmap plot (figure: 4). The gene expression values were extracted from the 

expression profile for each dataset. A bidirectional hierarchical clustering heatmap was 

constructed using heatmap.2 package of R language for DEGs in every dataset. Furthermore, the 

hierarchical clustering was conducted by limiting the analysis up of 36 common DEGs obtained 

from TCGA datasets. We used heatmap.2 function in gplots package of R to visualize a heat map. 

For our heatmap.2 function the expression value of gene is in the row and the sample is in the 

column. After normalizing the value of row, clustering settings are specified via distfun (method 

= euclidean) and hclustfun (method = complete) function. Last, the samples highlighted are 

primary solid tumor (black), solid tissues normal tissue (red) and DEGs in clusters are highlighted 

in green. 

To understand biological implication of  gene expression data, gene set enrichment (GSEA) 

analysis based on the functional annotation of the DEGs was conducted. GSEA technique 

determines if a priori defined set of genes exhibit statistically significant DE between two sample 

tissues (normal versus tumor) time points or conditions. Furthermore, this information can be 

obtained through computational interface with public online databases such as GO and KEGG.98 

Gene ontology (GO) analysis is a technique for annotation of genes and gene sets (figure:5). The 

annotation for gene ontology (GO) includes biological process (GO:BP), cellular component 
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(GO:CC), molecular function (GO:MF) and pathways (GO:P). Similarly, the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) is a database for exploration of gene functions and integrated 

pathways. In summary, we aimed to examine pathway question that could answer important 

biological function pertaining to PDAC. The canonical pathways represent enrichment by the 

DEGs (differentially expressed genes) was analyzed with TCGABiolinks function (figure: 5). In 

more detail, this package allowed us multiple methods for analysis (e.g., differential expression 

analysis, identifying differentially methylated regions) and methods for visualization (e.g., volcano 

plot, gene ontology analysis, KEGG interface). In our analysis of DEGs, statistically significant 

pathways that have been detected in the DEGs list are specified in their p value corrected FDR (-

Log) (colored bars) and the ratio of list genes found in each pathway over the total number of 

genes in this pathway (ratio, dotted red line).  

Accordingly, for GO: BP of DEGs we found regulation of cell proliferation (n=106), cell 

adhesion (n=89), biological adhesion (n=89), cell cycle (n=84) and cell cycle process (n=66) 

upregulated and sensory perception of chemical stimulus (n=2) and smell (n=2), cognition (n=24), 

and neurological system process (n=45) downregulated. Next, for GO:CC pathway identification 

of DEGs we have found, calcium ion binding (n=125), voltage-gated sodium channel activity 

(n=10), sodium channel activity (n=12) upregulated and zinc ion binding (n=85), transition metal 

ion binding (n=94), ion binding (n=14), metal ion binding (n=114) downregulated. 
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Figure 3: List of top differentially expressed genes (DEGs) with their significance level and 

external gene names and id. 

To further explore molecular pathways associated with PC, we analyzed GO:MF pathway 

of DEGs. Interestingly, we have identified extracellular matrix (n=59), extracellular region part 

(n=200), proteinaceous extracellular matrix (n=70), extracellular space (n=103), basement 

membrane (n=17) upregulated, plasma membrane part (n=304), intrinsic to plasma 

membrane(n=179), integral to plasma membrane(n=173), and plasma membrane (n=254) down 

regulated.  

Finally, for GO:P study, we found that noradrenaline and adrenaline degradation (n=16), 

ethanol degradation-II (n=16), hepatic fibrosis/hepatic stellate activation(n=44), atherosclerosis 

signaling (n=39), granulocyte adhesion diapedesis (n=49), axonal guidance signaling (n=110) and 

agranulocyte adhesion and diapedesis (n=55) significantly upregulated. In contrast, we identified 

EIF2 signaling (n=7), mitotic roles of polo-like kinase (n=24) and LPS/IL mediated inhibition of 

RXR function (n=56) to be downregulated. 
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Figure 4: Heatmap of differentially expressed (DE) genes. The samples highlighted are primary solid tumor (black), solid tissues 

normal tissue (red). The DEGs in clusters are highlighted in green. 
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Figure 5: Canonical pathways significantly overrepresented (enriched) by the DEGs of PDAC. The most statistically significant 

canonical pathways identified in the DEGs of PDAC are ranked according to their p-value corrected FDR (-Log10) (colored bars) and 

the ratio of list genes found in each pathway (ratio, red line) over the 3224 PDAC (NT vs TP) in our pathway analysis with 

TCGABiolinks enrichment analysis function. 

 



 

21 

Our study of TCGA datasets (RNA-seq) characterized the DEGs and their corresponding 

signaling pathways through KEGG pathway analysis. We aimed to identify the most enriched 

pathways associated with upregulated and downregulated expressed genes of PC. This approach 

led to the identification of significantly upregulated genes (red) and their pathways. The top KEGG 

enriched pathways of PC were KRAS in the P13K-Akt, HER2/neu in Jak-STAT, p16 in VEGF, 

E2F in P53 and lastly, BRCA/Rad51 in TGF-β pathways. The remaining (green) did not show 

upregulation are PI3K, RacGEF, Rac, NFkB, IKK, Bcl-xl, PKB/Alt, Bad, CASP9, MEK, ERK, 

JNK, Cdb42Rac, RalBP1, RAL PLD1 genes of P13-Akt signaling pathway. For VEGF signaling 

pathway the following genes were downregulated are CDK4/6, Rb, E2F and CyclinD1. Similarly, 

in P53 pathway p21, Bax, p48, Bak, POLK, GADD45 and TGFα, EGF of ErbB pathway. In Jak-

STAT signaling pathway, EGFR, PI3K, Jak1,STAT3,STAT1,PKB/Akt1, mTOR, Bcl-xl, NFkB, 

S6K genes were identified and for TGFβ pathway, TGFβRI, TGFβRII, Smad2/3 genes was 

identified. 

3.3. Discussion of gene expression analysis 

For RNA-sequence data, we performed DE analysis to locate quantitative changes of 

expression levels between NT vs TP groups. As pancreatic cancer progress, more and more genes 

are differentially expressed. Thus, we identified from the tumor samples up to 10179 genes 

downregulated, 14125 upregulated, and 3721 not significant from the decision test (DT). Similarly, 

for normal samples a total of 7705 genes were downregulated, 12822 genes were upregulated, and 

7498 were found not significant. Sun et al. identified a total of 2566 DEGs, including 848 

upregulated genes and 1718 downregulated ones, (between 178 pancreatic cancer samples and 4 

normal samples) from the RNA-seq data deposited in TCGA.21 Similarly, Tu et al. shown 2060 

DEGs associated with PC. The fit function from limma identified the following genes as 
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statistically significant and plotted them as heatmap (figure: 4) to show significant genes. 

Hierarchical clusters of DEGs were visualized as heatmap (figure: 4), sorted according to their p 

value corrected FDR (-Log) (colored bars) and the ratio of list genes found in each pathway over 

the total number of genes in that pathway (Ratio, red line). A total of 3224 DEGs were examined 

for pathway enrichment analysis (figure: 5). 

Several studies have revealed the loss of appropriate cell cycle regulation leads to genomic 

instability and play a role in the etiology of spontaneous cancers.99 We identified regulation of cell 

proliferation cell adhesion, biological adhesion, cell cycle and cell cycle process upregulated in 

PDAC samples. He et al. observed, upregulation of DEGs enriched in digestion, lipid digestion 

and proteolysis. Similarly, in our analysis of DEGs we identified downregulated BP in sensory 

perception of chemical stimulus and smell, cognition, and neurological system process. Atay et al. 

identified extracellular structure constituents, collagen binding and integrin binding in their 

analysis.100 In addition, GO:BP  analysis DEGs of PC was found to be enriched in immune 

response, cell growth and maintenance, protein metabolism in a study by Tu et al.101 Significantly 

enriched GO:BP was identified by Wu et al. include extracellular matrix organization, cell 

adhesion, collagen catabolic process, extracellular matrix disassembly, hemidesmosome assembly, 

proteolysis, and cell migration.102  

Next, for GO:CC upregulated pathway identification, we found calcium ion binding, 

voltage-gated sodium channel activity, sodium channel activity and Tu et al. identified 

significantly DEGs of PC, enriched in extracellular matrix/region/space, exosomes, and plasma 

membrane.101 Likewise, we found in GO:CC the following downregulated DEGs pathways, zinc 

ion binding, transition metal ion binding, ion binding, and metal ion binding.  
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For GO: Molecular Function (MF) pathway we identified the following: extracellular 

matrix, extracellular region part, proteinaceous extracellular matrix, extracellular space, basement 

membrane upregulated. Additionally, plasma membrane part, intrinsic to plasma membrane, 

integral to plasma membrane, plasma membrane down regulated. Mishra at al. identified receptor 

activity, transmembrane receptor signaling activity, signal transducer activity significant in GO: 

MF analysis.103  

Our study detected upregulated genes in noradrenaline and adrenaline degradation, ethanol 

degradation II, hepatic fibrosis/hepatic stellate activation, atherosclerosis signaling, granulocyte 

adhesion and diapedesis, axonal guidance signaling, mitotic roles of polo-like kinase, agranulocyte 

adhesion and diapedesis in GO: Pathway analysis. He et al. showed upregulated DEGs were 

enriched in pancreatic secretion, protein digestion and absorption. Last, we also found 

downregulated DEGs in GO:P analysis is EIF2 signaling, and LPS/IL-1 mediated inhibition of 

RXR functions and Khan et al. identified cellular senescence, chronic myeloid leukemia, focal 

adhesion and fluid shear stress and atherosclerosis associated with PC.104 

In our study we examined DEGs and their corresponding signaling paths through a 

programmatic interface with the KEGG database (figure: 6). Different signaling pathways 

contributing to various biological processes during tumorigenesis progression of pancreas have 

been identified.105 We have analyzed enhanced pathways associated with upregulated (red) and 

downregulated (green) DEGs of tumorigenesis of pancreas. Accordingly, significantly upregulated 

genes and their pathways detected are KRAS in the P13K-Akt, HER2/neu in Jak-STAT, p16 in 

VEGF, E2F in P53 and lastly BRACA/Rad51 in TGF-β pathways.The remaining DEGs not 

showing upregulation are PI3K, RacGEF, Rac, NFkB, IKK, Bcl-xl, PKB/Alt, Bad, CASP9, MEK, 

ERK, JNK, Cdb42Rac, and RalBP1, RAL, PLD1 genes of P13-Akt signaling pathway. For VEGF 
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signaling pathway the following genes were discovered downregulated are CDK4/6, Rb, E2F and 

CyclinD1.  

Correspondingly, in P53 pathway p21, Bax, p48, Bak, POLK, GADD45 and TGFα, EGF 

in ErbB signaling pathway and TGFβ, TGFβRI, TGFβRII, Smad2/3 genes of TGFβ pathways was 

downregulated. Last, for Jakt-STAT signaling pathway EGFR, PI3K, Jak1, STAT3, STAT1, 

PKB/Akt1, mTOR, Bcl-xl, NFkB, and S6K genes were identified not significantly upregulated. 

KEGG pathway analysis by Wu et al. showed that DEGs participated in PI3K-Akt signaling 

pathway, pathways in cancer and pathways related to cellular dissociation from in situ, including 

ECM-receptor interaction, focal adhesion, and protein digestion and absorption.102 

Additionally, Grimont et al. found participation of ErbB signaling pathway and Javle et al., 

detected TGF-beta signaling pathway in transmembrane signal transduction of PDAC. 

Furthermore, both of these studies have demonstrated the transmembrane signaling pathways 

transfer their signals to intracellular pathways (such as MAPK signaling pathway, PI3K-Akt 

signaling pathway, p53 signaling pathway, and VEGF signaling pathway).106 Based on KEGG 

database, we were able to integrate pathway map which identified functional pathway based on 

the biological network of PDAC cells. Similarly, bioinformatic features of GO terms allowed us 

to determine genes and cell processes distributed across PDAC disease. To that end, enrichment 

methods can provide accurate depiction of underlying biological processes involved in 

tumorigenesis progression of pancreas. Decoding how these pathways interact with each other in 

PC can reveal unique features toward precision medicine and biomarker discovery of this disease. 
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Figure 6: KEGG pathway analysis of DEGs of PDAC and their pathways are highlighted in red. 
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4. DNA METHYLATION ANALYSIS 

Methylation data of PDAC was downloaded and processed by TCGAbiolinks packages. 

First, a preprocessing step was done to exclude NA values and then we tested mean of DM of each 

patient in groups (TP vs NT). A Summarized Experiment (SE) object was created with DM data, 

and the functions of group column and subgroup column, having two columns from the sample 

data matrix of the SE object was available from column data function. The nucleotide base or 

regions with different methylated proportion across samples are defined as different methylated 

CpG sites (DMCs) and different methylated regions (DMRs).  Once we had pre-processed our 

data, we studied the mean DM of each patient in a group normal (TP) vs tumor (NT) with mean 

Methylation function of TCGABiolinks in R.82 

Next, we examined DMCs between groups (NT vs TP) and analyzed them using the 

TCGAanalyze-DMC function. The DM data (level 3) was processed by taking beta-values in a 

scale ranging from 0.0 (unmethylated probe) up to1.0 (methylated probe). Accordingly, for 

searching DMRs, a mean beta-values of each group and probe were calculated. Next, differential 

expression between groups (NT vs TP) were calculated with minimum absolute beta-values 

difference of 0.15 and an adjusted p-value of less than 0.05. After this analysis, a volcano plot (x-

axis: difference of mean DNA methylation, y-axis: statistical significance) was created (figure: 8)  

to identify hypo and hyper methylated CpG sites.  

At this step, we identified genomic annotation of  methylation datasets by accessing 

Ensemble and UCSC database functions from ChiPeakAnno and annotatr packages in R.107, 108  

Genomic annotations include 1-5Kb upstream of the TSS, the promoter (< 1Kb upstream of the 

TSS), 5’UTR, first exons, exons, introns, CDS, 3’UTR, and intergenic regions. The proportion of 
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binding sites were calculated by function from Genomic Features and data from TxDb. and 

org.eg.db packages. 107 

4.1. Differential methylated CpG (DMCs) analysis 

A multi assay experiment (MAE) object was created from the features of DM and GE 

datasets, with input function of ELMER packages (r script utilized is listed in appendices section). 

MAE is a data structure method for integrating and manipulation of multi assay genomic datasets 

(DM and GE). The three general components of MAE are: (a) colData, that provides data about 

the patients, cell lines, or other biological units, with one row per unit and one column per variable, 

(b) experiments, that are a list of assay datasets with one column per observation and (c) 

sampleMap, which links a single table of patient data (colData) to a list of experiments.110 First, 

probe data stored as GRanges object returned the coordinates, clinical data, molecular subtype 

information, names of each probe and DM array with MAE functions. 111 Similarly, gene 

information containing the coordinates of each gene, gene id, gene symbol and gene isoform, from 

annotations were retrieved from the biomaRt package in R. Last, for analysis of  DM and GE 

patterns of PDAC, we combined the information above and created a MAE object in R with 

ELMER package. 
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Figure 7: (a) Schematic representation of CpG islands (b) Schematic representation of genomic 

annotation.109 

We analyzed methylation status and expression of contiguous genes for identification of 

hypo and hyper methylated targets.89 The processed DM data were calculated as M/(M+U)=beta 

values, where M signifies the methylated allele intensity and U the unmethylated allele intensity. 

Beta values range from 0 to 1 and signify the fraction of methylated alleles at each CpG site for 

tumors. Correspondingly, beta values close to 0 indicates low level of DM, and beta values near 

to 1 indicates higher level of DM.80  

DMCs sites were evaluated to recognize the differences of DNA methylation level for each 

probe and their significance values. To compare DM level, the samples of each group (group 1 

and group 2) are ranked by their DNA methylation beta values for a given probe. The samples in 

the lower quantile (20% samples with lowest methylation levels) of each group were used to 

identify if the probe is hypomethylated in group 1 compared to group 2. Likewise, for identification 

of hypermethylated probes, we used upper quantile (20% samples with high methylation levels) 

of each group to detect hypermethylated probes. 

a. 

b. 
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Samples of each group (NT and TP) were ranked by their DM beta values. In addition, 

samples in the lower quintile of each group were used to identify hypomethylated probes in group 

1 (NT) matched to group 2 (TP).  Similarly, samples in upper quantile were used to identify 

hypermethylated probes in group 1 (NT) matched to group 2 (TP). The selection criteria for DMC 

probes was set to p-value less than 0.05.112 

Furthermore, DMCs were examined for putative target genes (closest 10 upstream genes 

and the closest 10 downstream genes) by inverse correlation between methylation of the probe and 

expression pattern of the gene. Next, a Mann-Whitney U test was conducted to determine that 

overall gene 1 expression (i.e. group M is greater than or equal to that in group U) for each 

candidate methylated probe-gene pair.113Furthermore, the raw p-value (Pr) was corrected for 

multiple hypothesis testing using a permutation approach. The gene in the pair remained constant, 

and then random methylation probes were chosen to perform the “one-tailed U test”, to identify 

permutation p-values (Pp). Moreover, probes were being identified by null-model from the same 

set as they were being tested, and an empirical p-value (Pe) was calculated by a pseudo-count of 

1 to obtain significant results. 114 

4.2. Results of DNA methylation analysis 

The nucleotide base or regions with different methylated proportions across groups are 

defined as DMCs and DMRs.115 Due to their importance in regulation of gene expression and onset 

of diseases, DM analysis is highly informative and are considered biomarkers. In our analysis of 

DMC (figure: 4) we observed 59 hyper-methylated markers and 55 hypo-methylated CpG sites 

when comparing tumor (TP) to normal tissue (NT) using the TCGAbiolinks-DMC function.  

In our experiment, we annotated our dataset by interfacing with AnnotationHub and 

annotator package. We annotated genomic regions (figure: 9), that include 1-5Kb upstream of the 
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TSS, the promoter (< 1Kb upstream of the TSS), 5’UTR, first exons, exons, introns, 3’UTR, and 

intergenic regions. We identified 0.42% at 1-2kb, 0.72% in region <=1kb, 5.6% in regions 2-3kb 

away of promoters, 0.18% at 5’UTR, 5.27% at 3’UTR, 0.15% at 1st exon, another exon’s having 

3.32%, 13.94% at 1st intron, 28.45% at other intron, 1.29% at downstream <=300 and finally, 

40.65% in distal intergenic regions. 

We observed significant probes associated with differentially methylated genes. For 

methylated DMCs, nearest 10 upstream genes and 10 downstream genes have been tested for 

inverse correlation between methylation of the probe and expression of the gene by number of 

flanking genes constraint. A probe-gene spacing has been defined as the distance between probe 

to the transcription start site specified by gene level annotations. A 20% minimum subgroup 

fraction was set in the get.pair function of ELMER package in R. Accordingly, each probe-gene 

pair the samples from both groups were separated into two groups upper and lower methylation 

levels. Thus, the M group, which is comprised of upper methylation quintile (the 20% of samples 

with the highest methylation at enhancer probe), and the U group, with having lowest methylation 

quintile (the 20% of samples with the lowest methylation at enhancer probe).   
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Figure 8: Volcano plot of DNA methylation in tumor tissues compared to normal tissue. 

Significance associations are indicated in hypomethylated (green) and hypermethylated (red). 

In our hyper analysis (figure: 10) AGPAT6, ANK1, KAT6A, AP3M2, PLAT, IKBKB, 

POLB, SLC20A2, VDAC3m, SMIM19, THAP1, RNF170, HOOK3, FNTA and HGSNAT genes 

were in equal measure methylated and over-expressed. Likewise, genes that were under-expressed 

but hyper methylated are as follows NKx6-3, CHRNB3, CHRNB3, CHRNA6, POMK and DKK4 

genes. Similarly, for our hypo methylated DMCs analysis (figure: 11) we identified PLAT, 

VDAC3, and IKBKB, gene equally methylated and over expressed. In summary, we observed that 

methylation and gene expression levels varied among DMCs that were identified. In our list, low 

expressed genes were RP11-231D20.2, RP11-589C21.6, RPL5P23, DKK4, RP11-503E24.2, 

R1007J8.1, RP11-412B14.1 and 2, CHRNA6. Conversely, highly expressed genes with low 

methylation levels were AP3M2, POLB, SLC20A2, SMIM19 and RNF170 during tumorigenesis. 
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Figure 9: Pie chart result of our genomic annotation of DNA methylation datasets. 

4.3. Discussion of DNA methylation analysis 

The nucleotide base or regions with different methylated proportions across samples are 

defined as DMCs. Accordingly, DM analysis is considered very informative and is considered 

biomarkers given their importance in regulation of gene expression and inception of pancreatic 

tumorigenesis. In our analysis of DMCs, we observed from 400 samples, 59 hyper-methylated 

markers and 55 hypo-methylated CpG sites when comparing tumor (TP) to normal tissue (NT) 

using the TCGAbiolinks-DMC function.  

Our tests show prevalence of hypermethylation compared to hypomethylation sites (figure: 

8). We annotated genomic regions (figure: 9), that include 1-5Kb upstream of the TSS, the 

promoter (< 1Kb upstream of the TSS), 5’UTR, first exons, exons, introns, 3’UTR, and intergenic 

regions. We identified .0.42% at 1-2kb, 0.72% in region <=1kb, 5.6% in regions 2-3kb away of 

promoters, 0.18% at 5’UTR, 5.27% at 3’UTR, 0.15% at 1st exon, another exon’s having 3.32%, 

13.94% at 1st intron, 28.45% at other intron, 1.29% at downstream <=300 and finally, 40.65% in 

distal intergenic regions.  
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We observed significant differentially methylation level between genes. For each DMCs, 

nearest 10 upstream genes and 10 downstream genes have been tested for inverse correlation 

between methylation of the probe and expression of the gene by numFlankingGenes constraint. 116 

A probe-gene spacing has been defined as the distance between probe to the transcription start site 

specified by gene level annotations. Accordingly, each probe-gene pair the samples from both 

groups were separated into two groups upper and lower methylation levels. Thus, the M group, 

which is comprised of upper methylation quintile (the 20% of samples with the highest methylation 

at enhancer probe), and the U group, with having lowest methylation quintile (the 20% of samples 

with the lowest methylation at enhancer probe).   

For our hyper analysis AGPAT6, ANK1, KAT6A, AP3M2, PLAT, IKBKB, POLB, 

SLC20A2, VDAC3m SMIM19, THAP1, RNF170, HOOK3, FNTA and HGSNAT genes were in 

equal measure hyper methylated and over-expressed.117 Likewise, genes that were under-

expressed but hyper methylated are as follows NKx6-3CHRNB3, CHRNB3, CHRNA6, POMK 

and DKK4 genes. Correspondingly, in a study by Sun et al. reported five (05) 

hypomethylated/overexpressed and twenty six (26) hypermethylated/under expressed differential 

methylated expressed genes.21 

In our hypo methylated DMCs analysis we identified PLAT gene equally methylated and 

over expressed.118 The methylation and gene expression levels varied among DMCs that were 

identified. In our list, hypo methylated and the low expressed genes were RP11-231D20.2, RP11-

589C21.6, RPL5P23, DKK4, RP11-503E24.2, R1007J8.1, RP11-412B14.1 and 2, CHRNA6.119 

Similarly, the following genes had high expression level and reduced methylation state are 

AP3M2, VDAC3, POLB, IKBKB, SLC20A2, SMIM19 and RNF170 genes.120  
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Figure 10: Scatter plot of hyper-methylation DMC analysis reveals the methylation and gene 

expression level of significant probe cg00000236 plotted against nearby 20 genes. 
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Figure 11: Scatter plot of hypo-methylation DMC analysis indicates the methylation and gene 

expression level of significant probe cg00000236 plotted against nearby 20 genes. 
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5. CONCLUSION 

Cancer incidence and mortality trend of pancreatic carcinoma remains grim at present. In 

this capacity, early detection is a key factor in overall disease management. In-silico analysis of 

publicly available high-throughput genomic datasets can aid in decoding molecular basis of 

PDAC.5, 121 Furthermore, examination of methylation markers and a systemic enquiry of 

epigenetic influence of DNA methylation (DM) on gene expression will provide a unique angle 

toward precision medicine.79 The process of DM can be reversed and therefore could serve as a 

potential biomarker. This study will provide crucial insights toward identification of hypo and 

hyper methylated gene expression. Therefore, understanding methylation pattern and the complex 

process of tumorigenesis will offer new methods for detection, classification, and clinical insight 

into this disease. 
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APPENDIX A. SUMMARIZED R SCRIPT 

library(SummarizedExperiment) 

library(TCGAbiolinks) 

# Download pancreatic cancer datasets from GDC # 

query.exp <- GDCquery(project = "TCGA-PAAD",  

legacy = TRUE, 

data.category = "Gene expression", 

data.type = "Gene expression quantification", 

platform = "Illumina HiSeq",  

file.type = "results", 

experimental.strategy = "RNA-Seq", 

sample.type = c("Primary solid Tumor","Solid Tissue Normal")) 

GDCdownload(query.exp) 

pc.exp <- GDCprepare(query = query.exp, save = TRUE, save.filename = "PDAC.Exp.rda") 

 

# Get subtype information 

dataSubt <- TCGAquery_subtype(tumor = "PAAD") 

 

# Get clinical data 

dataClin <- GDCquery_clinic(project = "TCGA-PAAD","clinical")  

 

# Which samples are primary solid tumor 

dataSmTP <- TCGAquery_SampleTypes(getResults(query.exp,cols="cases"),"TP")  

# Which samples are solid tissue normal 

dataSmNT <- TCGAquery_SampleTypes(getResults(query.exp,cols="cases"),"NT") 

 

dataPrep <- TCGAanalyze_Preprocessing(object = pdac.exp, cor.cut = 0.5)       

 

dataNorm <- TCGAanalyze_Normalization(tabDF = dataPrep, 

          geneInfo = geneInfo, 

          method = "gcContent")     

 

dataFilt <- TCGAanalyze_Filtering(tabDF = dataNorm, 

         method = "quantile",  

         qnt.cut = 0.25)  

 

dataDEGs <- TCGAanalyze_DEA(mat1 = dataFilt[,dataSmNT], 

       mat2 = dataFilt[,dataSmTP], 

       Cond1type = "Normal", 

       Cond2type = "Tumor", 

       fdr.cut = 0.01 , 

       logFC.cut = 1, 

       method = "glmLRT")  

# DEGs table with expression values in normal and tumor samples 

dataDEGsFiltLevel <- TCGAanalyze_LevelTab(dataDEGs,"Tumor","Normal", 
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                     dataFilt[,samplesTP],dataFilt[,samplesNT]) 

  

#TCGAbiolinks outputs bar chart with the number of genes for the main categories of three 

ontologies (GO:biological process, GO:cellular component, and GO:molecular function, 

respectively). 

 

ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor", 

        RegulonList = rownames(dataDEGs))  

 

TCGAvisualize_EAbarplot(tf = rownames(ansEA$ResBP), 

      GOBPTab = ansEA$ResBP, 

      GOCCTab = ansEA$ResCC, 

      GOMFTab = ansEA$ResMF, 

      PathTab = ansEA$ResPat, 

      nRGTab = rownames(dataDEGs), 

      nBar = 20) 

 

# ELMER pipeline for differential methylated CpG site analysis. 

library(TCGAbiolinks) 

library(SummarizedExperiment) 

library(ELMER) 

library(parallel) 

dir.create("dmc_analysis") 

setwd("dmc_analysis") 

 

 

#----------------------------------- 

# STEP 1: Search, download, prepare | 

#----------------------------------- 

# 1.1 - DNA methylation 

# ---------------------------------- 

query.met <- GDCquery(project = "TCGA-PAAD",  

      data.category = "DNA Methylation", 

      platform = "Illumina Human Methylation 450") 

GDCdownload(query.met) 

pc.met <- GDCprepare(query = query.met, 

      save = TRUE,  

      save.filename = "pc.met.rda", 

      summarizedExperiment = TRUE) 

#For gene expression we will use Gene Expression Quantification. 

 

# Step 1.2 download expression data # Note this step was carried out previously# 

#----------------------------------- 

# 1.2 - RNA expression 

# ---------------------------------- 

query.exp <- GDCquery(project = "TCGA-PAAD", 
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      data.category = "Transcriptome Profiling", 

      data.type = "Gene Expression Quantification",  

      workflow.type = "HTSeq - FPKM-UQ") 

GDCdownload(query.exp) 

pc.exp <- GDCprepare(query = query.exp,  

      save = TRUE,  

      save.filename = "pcExp.rda") 

pc.exp <- pc.exp 

 

#A MultiAssayExperiment object from the r BiocStyle::Biocpkg(“MultiAssayExperiment”) 

package is the input for multiple main functions of r BiocStyle::Biocpkg(“ELMER”). 

 

#We will first need to get distal probes (2 KB away from TSS). 

 

distal.probes <- get.feature.probe(genome = "hg38", met.platform = "450K") 

#To create it you can use the createMAE function. This function will keep only samples that have 

both DNA methylation and gene expression. 

 

library(MultiAssayExperiment) 

mae <- createMAE(exp = pc.exp,  

     met = pc.met, 

     save = TRUE, 

     linearize.exp = TRUE, 

     filter.probes = distal.probes, 

     save.filename = "mae_kirc.rda", 

     met.platform = "450K", 

     genome = "hg38", 

     TCGA = TRUE) 

# Remove FFPE samples 

mae <- mae[,!mae$is_ffpe] 

 

# We will execute ELMER to identify probes that are hypomethylated in tumor samples compared 

to the normal samples. 

# We will also repeat this step for hyper methylation analysis to identify probes that are 

hypermethylated in tumor samples compared to the normal samples. 

 

group.col <- "definition" 

group1 <- "Primary solid Tumor" 

group2 <- "Solid Tissue Normal" 

direction <- "hypo" # for hyper analysis replace hypo with “hyper” 

dir.out <- file.path("pc",direction) 

dir.create(dir.out, recursive = TRUE) 

#-------------------------------------- 

# STEP 3: Analysis      | 

#-------------------------------------- 

# Step 3.1: Get diff methylated probes | 
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#-------------------------------------- 

 

sig.diff <- get.diff.meth(data = mae,  

       group.col = group.col, 

       group1 = group1, 

       group2 = group2, 

       minSubgroupFrac = 0.2, 

       sig.dif = 0.3, 

       diff.dir = direction, # Search for hypomethylated probes in group 1 

       cores = 1,  

       dir.out = dir.out,  

       pvalue = 0.01) 

 

#------------------------------------------------------------- 

# Step 3.2: Identify significant probe-gene pairs   | 

#------------------------------------------------------------- 

# Collect nearby 20 genes for Sig.probes 

nearGenes <- GetNearGenes(data = mae,  

       probes = sig.diff$probe,  

       numFlankingGenes = 20, # 10 upstream and 10 downstream genes 

       cores = 1) 

 

pair <- get.pair(data = mae, 

     group.col = group.col, 

     group1 = group1, 

     group2 = group2, 

     nearGenes = nearGenes, 

     minSubgroupFrac = 0.4, # % of samples to use in to create groups U/M 

     permu.dir = file.path(dir.out,"permu"), 

     permu.size = 100, # Please set to 100000 to get significant results 

     raw.pvalue = 0.05,  

     Pe = 0.01, # Please set to 0.001 to get significant results 

     filter.probes = TRUE, # See preAssociationProbeFiltering function 

     filter.percentage = 0.05, 

     filter.portion = 0.3, 

     dir.out = dir.out, 

     cores = 1, 

     label = direction) 

 

# From this analysis the relationship between nearby 20 gene expression vs DNA methylation at 

can be verified. The result of this is shown by ELMER scatter plot function. 

 

scatter.plot(data = mae, 

    byProbe = list(probe = sig.diff$probe[1], numFlankingGenes = 20),  

    category = "definition",  

    dir.out = "plots", 
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    lm = TRUE, # Draw linear regression curve 

    save = TRUE) 

# End not run # 

# Setwd(mariam.zamani/analysis/files/ccast) 


