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ABSTRACT 

Long waiting times could result in many negative effects, such as low capacity 

utilization, high patient’s no-show rates, and loss of social benefits, which will also lead to a 

waste of public resources. Therefore, to better utilize healthcare resource and serve the 

community, my dissertation will focus on three objectives: 

• To study the relationship between appointment utilization and indirect waiting time 

(IWT).  

• To predict the patient’s no-shows without profiling them.  

• To develop an optimization model for appointment capacity allocation. 

To achieve these objectives, multiple models and approaches have been developed in this 

dissertation. For the first model, two mixture distribution models, including a beta geometric 

(BG) and a discrete Weibull (BdW)  model were carried out to project the appointment 

utilization over IWT. The results indicated that appointment utilization is positively related to the 

IWT but tends to fluctuate after the first couple of weeks. Two mixture distribution models were 

also proved to be more accurate for projecting the appointment utilization when compared with 

commonly used curve-fitting models.  

For the second objective, a conditional inference tree model was applied to predict the 

patient’s no-show probability and classified no-show probability without profiling patients. This 

model was also compared with the general linear model and typically used logistic model, the 

result showed that using the conditional inference tree model with classified data will lead to a 

more accurate prediction and higher R-squared value.  

For the final objective, three optimization methods and two scheduling strategies were 

examined. The proposed solution of capacity allocation provided a more robust, flexible, and 
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efficient allocation plan for outpatient appointments, which significantly improved the average 

daily profit and capacity utilization rate.  

By completing those three objectives, this dissertation did not only provide a more 

accurate way to monitor and predict outpatient appointments but also proposed a more practical 

and efficient appointment capacity allocation strategy. This will help our society save healthcare 

resources, reduce unnecessary costs for the healthcare providers, and provide better healthcare 

services to the community.  
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1. INTRODUCTION 

The importance of the health care industry is increasing for most developed countries, 

especially for the United States whose health expenditure is highest all over the world. 

According to a CMS report (Keehan et al., 2017), the health care industry represents 

approximately 18% of the gross domestic product (GDP) of the United States in 2015 and will 

keep rising at a rate of 5.6 percent annually over the next decade. Nevertheless, patients in the 

United States are suffering from high health care costs and long wait times. To strengthen the 

competitiveness in the market, health care organizations not only need to improve the quality of 

medical care but also must improve service efficiency. As one of the most important operational 

systems for the delivery of health care, appointment scheduling is studied in this dissertation. In 

the introduction, the background of appointment scheduling in health care is covered followed by 

an overview of medical appointment scheduling procedures. Then, access delays of health care 

appointments will be discussed. What’s more, research objectives and research questions will be 

covered in the introduction. 

1.1. Appointment Scheduling in Health Care 

Appointment scheduling is one of the most important processes for health care services, 

and it is the first step for any health organization/system to monitor and measure patient access 

and patient workflow. A good appointment scheduling system should be efficient and accessible. 

It should also be able to smooth workflow, deal with unscheduled emergencies and satisfy 

patient and provider preferences while matching supply and demand (Gupta & Denton, 2008). 
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Before the1970s, people must go to a medical office and wait for hours for health care services. 

With the improvements in living standards and the development of technologies, people ask for 

better health care services and start to lose patience, many people have busy lives and do not 

want to waste their time waiting in a medical office. Under such circumstances, many 

appointment scheduling methods and techniques have been developed to shorten the treatment 

process and reduce patient waiting time. 

At present, there are generally two ways for scheduling an appointment. One is to 

schedule manually using an appointment book, the other is to schedule electronically using a 

computer. Most of these appointments are made through a telephone or network provided by a 

medical institution, and the scheduling services are usually free. Appointment books are a ledger 

of workdays divided into multiple time intervals that display a weekly schedule for one physician 

or multiple physicians’ schedules for a single day to enable the medical assistant to reserve 

specified lengths of time for patient treatment. When compared with an appointment book, 

computer scheduling has many advantages: it is more flexible, editable, and powerful. The 

medical assistant can easily adjust, edit, or change appointments. And the computer program 

itself can set up repeated appointments and a recall system, not to mention it is much more 

powerful and convenient to store the data and information. Therefore, appointment scheduling 

software is becoming more and more popular nowadays.  

No matter which way of scheduling is used, a daily appointment schedule must be 

created. The daily appointment schedule is a list of the patients to be seen for that day. It is not 
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only used as a reference to the patient’s medical records and other personal information for that 

day but also shows the work arrangements of the physicians who are on duty. Usually, it should 

be printed out and posted in a specific area that patients cannot access to keep the confidentiality 

of patient information. 

Although the use of IT technology made appointment scheduling much easier and faster, 

some structural problems cannot be solved with the original scheduling method. Thus, several 

different scheduling methods were developed for medical appointment scheduling. So far, there 

are mainly seven types of schedules for general medical offices (Bonewit-West et al., 2016), 

include time-specified, wave, modified wave, double booking, open booking, 

clustering/categorization, and multiple offices. Table 1 presents the details for each type of 

scheduling method. 
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Table 1. Types of Scheduling Methods in the Health Care Industry 

Name Description Goal/Usage 

Time-Specified 

(Stream) Scheduling 

For this type of scheduling, each patient is 

given a specific appointment time based on 

status and needs. It could also be referred to 

as fixed appointment scheduling or single 

booking. 

The goal of this type of schedule is to 

keep a steady patient flow with the 

shortest waiting time for patients.  

Wave Scheduling This method assumes that not everyone will 

be on time, therefore it assigns multiple 

patients at the beginning of each hour. The 

patients will be seen in the order in which 

they arrive.  

The goal of this scheduling method is 

to make sure there is always a patient 

to be seen and try to reduce the 

waiting time for other patients at the 

same time. 

Modified Wave 

Scheduling 

This is a modification of the wave schedule. 

Wave scheduling can be changed in several 

ways based on status and needs. The medical 

assistant may schedule patients at regular 

intervals within a given hour and keep the 

rest of the hour open for other special cases.  

This method is used to deal with 

special circumstances. For example, 

the medical assistant may schedule 

the first half of the hour for regular 

appointments and keep the second 

half-hour for walk-in patients or one 

appointment that takes longer. 

Double Booking Double booking means two patients are 

scheduled in a single time slot for the same 

provider. 

Double booking is designed to 

reduce the impact of no show. 

Sometimes, it may be used when a 

patient has an acute illness or injury, 

or when one patient can be scheduled 

around a patient who is undergoing a 

procedure. 

Open Booking Unlike stream scheduling, open booking 

means patients are told to walk in during a 

time range of the day instead of a specific 

time. Usually, patients are seen based on a 

first come first served policy. 

Open booking is used when there is a 

constant stream of patients or when 

the clinic is not busy. The 

disadvantage is that patients often 

experience long waiting times since 

patient flow is hard to predict. 

Clustering/Categorization This method groups patients with similar 

symptoms or treatment procedures within 

the same period of the day or on the same 

day of the week. 

This type of schedule is usually used 

for physical examinations, diagnostic 

procedures, and pregnancy/ 

gynecology tests.  

Multiple Offices For this type of scheduling, physicians are 

assigned to patients in more than one office. 

Appointments may be scheduled for each 

office separately or distributed through a 

central system.  

This is a special case when the 

patients must be transferred from 

office to office. The medical record 

may also be transported if there is no 

corresponding medical record in 

place.  
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1.2. Appointment Scheduling Procedures 

A complete appointment scheduling cycle usually includes six procedures (Bonewit-West 

et al., 2016): setting up the appointment matrix, making an appointment, managing the 

appointment scheduling, completing a referral form for managed care, scheduling inpatient or 

outpatient diagnostic tests, and scheduling inpatient or outpatient admissions. Figure 1 shows the 

general procedures for appointment scheduling. 

Under each procedure, processes need to be followed. For example, to set up an 

appointment matrix, the medical assistant needs to follow certain steps. First, the medical 

assistant needs to identify the time when the physicians and offices are not available to the 

patients, such as lunch and breaks, or when the clinic is closed. Then he/she must take the 

scheduling system, the physician’s preference and needs, and facilities and equipment 

requirements into consideration and find a balance between them, such as how long the 

appointment intervals should be, what time does the physician prefer to have his lunch/breaks, 

and when are the facilities and equipment available. 
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Figure 1. General Scheduling Procedures for an Appointment 

Making an appointment is one of the most important procedures. In this procedure, 

patient information is obtained. Based on the information and the patient’s preference and needs, 

the medical assistant will arrange an appointment with a date and time for the patient. A typical 

process to make an appointment is shown in Figure 2.  

As for the management of the appointment schedule, there are generally five things the 

medical assistant can do: review appointments, cancel appointments, change appointments, 

indicate missed appointments, and document canceled or missed appointments. 

A referral is not a necessary procedure for a patient appointment, but it usually happens 

under the following circumstances (Bonewit-West et al., 2016): 

• A patient needs consultation on a specific disease or condition from a specialist. 
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• A patient needs a particular therapy from a provider, like physical therapy and 

occupational therapy. 

• A patient needs community services from a provider, such as home health care.  

 

Figure 2. A Flowchart to Schedule an Appointment for a Patient 

Scheduling inpatient or outpatient diagnostic tests or procedures is a complex task, the 

medical assistant needs to communicate with patients, physicians, the facility department, and 

the patient’s insurance company to make sure they reach an agreement. The medical assistant 

needs to deal with many conflicts to set up such a test or procedure. Similar to the previous 

procedure, scheduling inpatient/outpatient admissions requires much effort and resources. The 

medical assistant must assemble the patient’s demographic and insurance information and gather 

the patient’s medical record from the physician so that the time and the reason for the admission 
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can be decided. The assistant also needs to call the patient’s insurance company to obtain pre-

authorization and call the admission department to schedule the admission. Then necessary 

information and documentation to all concerned should be provided. The medical assistant also 

has to inform and assist the patient to prepare and deal with all kinds of tests, procedures, and 

situations. Finally, all necessary information, data, and results in the patient’s medical record 

should be properly documented.  

1.3. Appointment Delays in Health Care 

There are generally three types of appointments: primary care appointments, specialty 

clinic appointments, and elective surgery appointments. No matter which type of appointment a 

patient is scheduled to, there are two types of access delays (Gupta & Denton, 2008). One is 

IWT, which is the difference between the time a patient requests an appointment and the time of 

that scheduled appointment. For example, if an appointment is made on Monday to receive care 

on Friday of the same week, the IWT would be four days. Another is direct waiting time, which 

is the difference between the time the patient arrives and the time when he is seen by the 

physician. Long access times can be caused by many reasons, such as cancelation and no-shows, 

the designation of providers, and the length of the intervals. The focus of this dissertation is on 

the IWT, so the direct waiting time will not be considered. 

1.3.1. Indirect Waiting Time (IWT) 

A survey released by Merritt Hawkins (Miller, 2017) indicates that the average time to 

schedule a new patient-physician appointment in 15 large-sized metropolitan areas has increased 
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significantly since 2014. According to the survey, it takes an average of 24.1 days to schedule a 

new patient-physician appointment in 15 of the largest cities in the United States, up 30% from 

2014. Among them, Boston is experiencing the highest average physician appointment wait time 

of 52.4 days to schedule an appointment for a new patient. This survey also includes the average 

new patient-physician appointment wait times of 15 mid-sized metropolitan areas in 2017. 

Among them, Yakima has the longest average physician appointment wait time of 48.8 days. 

Although it is shorter than Boston, it takes an average of 32 days to schedule a new patient-

physician appointment in mid-sized metro areas, which is 32.8 percent longer than the average 

wait time in the 15 major metro markets. Average physician appointment wait times for new 

patients in 15 large metro markets and 15 mid-sized markets of 2017 are listed in Table 2. 

Table 2. Average IWT for a New Patient-physician Appointment, 2017 (Miller, 2017) 

Average Wait Time in Days, 2017 

Large-sized 

Metro Area 

All Days Per 5 

Specialties 

Average Per 5 

Specialties 

Mid-sized 

Metro Area 

All Days Per 5 

Specialties 

Average Per 5 

Specialties 

Boston 262 52.4 Yakima 244 48.8 

Philadelphia 184 36.8 Cedar Rapids 212 42.4 

Portland 140 28.0 Albany 198 39.6 

Seattle 140 28.0 Manchester 197 39.4 

Denver 133 26.6 Evansville 193 38.6 

Los Angeles 121 24.2 Hartford 184 36.8 

Detroit 110 22.0 Savannah 177 35.4 

San Diego 108 21.6 Fort Smith 162 32.4 

Atlanta 102 20.4 Fargo 161 32.2 

Houston 98 19.6 Odessa 147 29.4 

Minneapolis 87 17.4 Temecula 128 25.6 

New York 85 17.0 Dayton 123 24.6 

Miami 82 16.4 Lafayette 121 24.2 

Washington, 

D.C. 

80 16.0 Hampton 96 19.2 

Dallas 74 14.8 Billings 54 10.8 

Total 120.4 24.1 Total Average 159.8 32.0 
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Compared with the United States, some countries experience longer waiting times. 

Commonwealth Fund (Osborn & Squires, 2016) conducted a survey that comparing health 

policies of adults in 11 developed countries in 2016. The results show that U.S. adults are more 

likely than adults in the other 10 countries to skip the needed care because of the cost even 

though America did well for the accessibility of health care. According to the survey, in 2015 

about 33% of U.S. adults did not request health care services when needed because of the cost 

barriers as shown in Figure 3. On the other hand, only 6% of the U.S. adults waited two months 

or longer to see a specialist, while about 30% of the Canadian adults had such an experience. The 

comparison is presented in Figure 4. 

 

Figure 3. Cost-related Access Barriers in 2016 (Osborn & Squires, 2016) 
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Figure 4. Percent of Patients Who Waited Two Months or Longer for Specialist Appointment 

(Osborn & Squires, 2016) 

Long IWT could result in many negative effects. From the patient’s perspective, long 

waiting times will cause worse general health perceptions, reduce patient’s quality of life, and 

raise levels of anxiety (Oudhoff et al., 2007). What is worse is that longer waits often make the 

patients sicker. As a consequence, patients will have lower satisfaction and response with more 

negative reactions such as cancellations and no-shows (Ansell et al., 2017). According to Ryu 

and Lee (2017), indirect waiting times are positively correlated with no-show rates. However, 

shortening wait times may sometimes reduce a provider’s revenue because longer appointment 

waits sometimes led to more costs from the patient’s side (or insurance company) and therefore 

more profit for the provider. Another reason some health systems do not shorten IWT is due to 

the fact that reducing waiting time requires investment in systems. Even though long waiting 
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times cause no-shows and patient dissatisfaction, reducing IWT is challenging. Although some 

health systems still choose to invest in shortening the IWT because this improves their 

competitiveness and efficiency, many choose to lower no-shows without reducing IWT on 

purpose (Ryu & Lee, 2017). 

1.3.2. Appointment No-Shows 

Appointment no-show is one of the most common and challenging issues for appointment 

scheduling. As shown in Figure 5, people do not show up for reasons in a variety of aspects 

(Mohamed et al., 2016). Forgetting the appointments is the primary reason for no-shows because 

the appointment date is scheduled too long from the scheduled date (Sharp & Hamilton, 2001; 

Cosgrove, 1990). Although there are generally four ways to remind the patient of the 

appointment, i.e., text message, phone call, direct mail, and email; medical offices sometimes fail 

to remind the patients (Hardy et al., 2001). Another big reason for no-shows is due to the cost 

barriers, especially in the U.S. (Osborn & Squires, 2016). Sometimes patients miss appointments 

because of emotional barriers, such as a negative perception toward the provider, frustration with 

a discomfort experience of the last visit, and fear of seeing a doctor or getting treatment 

(Salameh et al., 2012). Often, appointment no-shows are caused by misunderstanding, for 

example, patients may think that the provider disrespects their time or needs (Lacy et al., 2004). 

Also, patients may misunderstand the consequence of missed appointments due to the lack of 

communication (Lacy et al., 2004). Other patients missed their appointments due to logistical 

issues including trouble getting off work, daycare, horrible weather conditions, and lack of 
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transportation (Sharp & Hamilton, 2001; Bean & Talaga, 1992). Besides, patients usually choose 

to skip appointments if they felt better (Lacy et al., 2004).  

 

Figure 5. Reasons of Appointment No-shows (Mohamed et al., 2016) 

No-show rates in community practices ranging from 5% to 55%, depending on the 

country, health care system, and type of practice (Hixon et al., 1999; George & Rubin, 2003).  

Figure 6 shows several average rates according to the type of practice. It should be noted that 

patients with mental disease are more likely to not show up for a scheduled appointment. 

Unfortunately, these patients are also the ones who gain the most by showing up (CROSSCHX, 

2017). Missed appointments are not only harmful to patients’ health but also very costly to 

providers. It is estimated that missed appointments cost the U.S. health care system more than 

$150 billion every year, and each no-show slot costs a physician $200 on average (Gier, 2017).  

Sometimes, no-shows could result in a daily loss of more than $1000 for one practice (Berg et 
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al., 2013). Medical practices, researchers, and clinics have developed several tactics trying to 

decrease the possibility of no-shows (Hardy et al., 2001). While all these tactics have proven to 

be successful in reducing the number of no-shows, text messages seem to be the more cost-

effective approach (Downer et al., 2005). Also, overbooking and missed appointment fee are 

often used to reduce the effect of no-shows. However, these can cause negative feedback and 

revenue loss. For instance, when all patients show up, overbooking may result in long direct wait 

times and increase the operational cost while decreasing patient satisfaction. While missed 

appointment fees do reduce no-show rates, they also lead to a negative perception of the provider 

as the patient feels punished for a service he does not use (McLean et al., 2016). Patient no-

shows are a major problem for the current health care system for both providers and patients. A 

predictably low no-show rate can reduce wait times and increase clinic efficiency, thereby 

improving the quality of health care. However, it is difficult to find a solution that accommodates 

both sides, it is a trade-off. One day, people may find a perfect solution to eliminate patient no-

shows, which is convenient and effective for the patients, and economically viable for the 

providers. 

 

Figure 6. Average No-Show Rates According to the Type of Practice (CROSSCHX, 2017) 
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1.4. Research Objectives 

The following research objectives have been identified: 

• To study the relationship between appointment utilization and IWT.  

• To predict the probability of no-shows for patients without profiling them.  

• To develop an optimization model for capacity allocation under different scenarios. 

1.5. Research Questions 

As mentioned above, there are three research objectives this dissertation needs to achieve. 

For each objective, there are few research questions needed to be answered.  

For the first objective, the research questions are: What kinds of methods or models could 

be used to project patient persistence with the appointments? Which method/model is the best 

among them for projection? And what is the trend of patient retention in the schedule as the IWT 

increases?  

In terms of the second objective, three questions need to be considered: 1. Which 

variables should be selected as predictors? 2. Which models or approaches should be used to 

predict the daily no-show probability for a random patient? 3. Which method is the best or most 

sui for this objective? 

As for the last objective, the first question is how do same-day demand and pre-schedule 

demand distributed? With the demand distributions identified, how to find an optimal number for 

the daily capacity? Based on the daily capacity, how many appointments should be scheduled for 

same-day appointments and pre-scheduled appointments each day? 
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2. UTILIZATION PROJECTION 

In this study, appointment utilization refers to the percent of scheduled appointment slots 

that have been utilized, more specifically, the percent of the scheduled meetings that have been 

conducted between patients and physicians. To study this topic, this chapter covers the previous 

literature, research methodology, and data mining process of utilization projection for clinic 

appointment scheduling. For the first section, the literature reviews previous works that have 

been done in the related field, and most of the studies are based on the recent data regarding a 

domestic clinic or hospital in the United States. The second section talks about the research 

methodology used in this dissertation. The basic ideas, variables, and functions are introduced in 

this section. The third section discusses the data mining process of this dataset to better project 

the appointment utilization rate for this scheduling system. Besides, it demonstrates how to 

implement them in an Excel spreadsheet, to make them more accessible to healthcare 

professionals. As for the results, the in this chapter is threefold. First, it compares two proposed 

mixture distribution models to curve-fitting regression models in projecting outpatient 

appointment utilization. Second, the BG model provides insight to analyze the distribution of the 

probability of a risk event that prevents appointment from utilization. Last but not least, a 

competing risk analysis will be conducted to compare the survival probability and cumulative 

incidence between different appointment statuses. A summary concluding the status of research 

gaps and the significance of the study is presented at the end of this chapter. 
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2.1. Literature Review 

Patient no-shows are a well-known problem in the health care industry. Many researchers 

have studied the cost of no-shows and provided some good advice to reduce no-shows. On the 

other hand, research on appointment utilization is not very common, especially on the 

relationship between appointment utilization and IWT. Projecting utilization rate should be done 

ahead of carrying out any action to improve appointment utilization because studying 

appointment retention helps identify the reasons and patterns of no-shows and cancellation trends 

so that better decisions can be made. Therefore, it is very important for health care organizations 

to accurately project appointment utilization to control costs and improve service.  

2.1.1. Background 

One of the main factors affecting appointment utilization, and one over which care 

providers may have some control, is IWT. It is well accepted that the longer the IWT of an 

appointment, the less likely the appointment will be utilized. That is, the more likely the 

appointment will be canceled (by either the patient or the care provider) or the patient will 

simply not show up to the appointment (a “no-show”). 

The process by which appointment utilization is determined for an individual patient can 

be modeled in the following way. Initially, the patient intends to keep the appointment. However, 

each day within the IWT, there is a probability (Ɵ) that an event occurs which will result in 

appointment no-show or cancellation. If such an event occurs before the appointment date, the 

appointment will not be utilized. As Liu, Ziya, and Kulkarni (2010) mentioned, such a model 
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should allow the value of Ɵ to vary between individuals. Modeled in this way, appointment 

utilization is analogous to models of customer retention in subscription services, or a patient’s 

adherence to medication.  

2.1.2. Beta-Geometric (BG) Model & Discrete Weibull (BdW) Model 

Similar to the analysis of customer retention and treatment adherence over time, this 

study intends to understand the relationship between appointment statuses and IWT. To that end, 

four “curve-fitting” regression models, a beta-geometric (BG) model, and a discrete Weibull 

(BdW) model, which is an extension of the BG model, were studied in projecting the 

appointment utilization for an outpatient clinic. 

The BG model has been proving to be a robust model for projecting cohort-level 

retention rates and related patterns into the future. Therefore, it is widely used in studies focused 

on projecting customer behavior. For example, Fader and Hardie (2007) used it to project 

customer retention and customer lifetime value. In particular, they demonstrated its superiority to 

common curve-fitting regression models at estimating the probability of customers leaving a 

business over time (known as customer churn). In contrast, the application of the BG model in 

health care is still rare, it only having been used to forecast patients’ persistence to medication 

intake and refill, and patient churn on a medical test (Lee, Fader, & Hardie, 2007).  

Compared with the BG model, whose individual propensity to churn does not change 

over time, the BdW model allows individual-level churn probabilities to increase or decrease 

over time (Fader, Hardie, Liu, Davin, & Steenburgh, 2018). Regression models are a familiar 
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tool for most health care professionals and such accessibility makes them a logical choice for 

attempting to explain the relationship between IWT and appointment utilization. However, such 

models are ineffective for projecting a similar phenomenon, such as the aforementioned 

customer retention and patient persistence. Therefore, this study compared the regression models 

with the lesser-known BG model and BdW model, which are based on the previously described 

process in which each day can lead to an event preventing appointment utilization and has been 

shown effective in predicting similar phenomena.  

2.1.3. Contributions 

The application of BG/BdW in health care has mainly focused on forecasting the patient 

churn for medical treatments or tests. Meanwhile, there is not any research that fits the BG/BdW 

model to patient no-shows or appointment utilization. Therefore, this study fills that gap by 

applying BG/BdW to solve the outpatient appointment problem because the patient no-show 

problem can also be considered as a patient persistency problem. Instead of predicting no-shows 

or appointment utilization rates at a single point, we can project how many scheduled patients 

remain in the system over time.  

Another contribution of this study is that although patient no-shows have been well 

addressed in the literature, it is rare to see studies considering heterogeneous appointment 

utilization rates which depends on realistic factors like indirect waiting time. The two models in 

this study allow for heterogeneity in the risk events to stop patients from utilizing appointments. 
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In particular, the BdW model allows for changes in individual propensity in the churn process. 

Therefore, work in this direction is recommended.  

Furthermore, this study has studied the relationship of different appointment statuses with 

the indirect waiting time. Other than commonly studied appointment no-shows, this study also 

studied appointment utilization, appointment cancellation, and appointments canceled by the 

physicians. The results can help answer two questions: a) “which appointment status would lead 

to more risk of patient churning as the indirect waiting time increases?" and b) “ How would 

these appointment statuses change over time?”. By answering these questions, it enriches 

understanding of the relationship between appointment status and indirect waiting time and how 

appointments “survive” from appointment risks.  

2.2. Methodology & Model 

One of the most straightforward and accessible ways to quantify the relationship between 

IWT and appointment utilization is with curve-fitting regression models. As expected, 

appointment utilization decrease as the IWT increases and not necessarily in a linear way. 

Therefore, a variety of regression models shown below were taken into consideration: 

 Linear: y = alin + blint (1) 

 Exponential: ln (y) = ae + bet   (2) 

 Quadratic: y = aq + b1t + b2t
2   (3) 

 Logistic: ln (y/(1-y))= alog + blogt  (4) 
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Here y is the appointment utilization rate, t is the IWT, the α parameters are 

constants/intercepts, and the β parameters are coefficients. These curves can be fit to data using 

standard regression procedures. 

In addition to the traditional regression models, this study also introduced the BG model 

for quantifying the relationship between appointment utilization and waiting time. Specifically, 

the BG model considers that for each day of the IWT there is a probability ϴ that an event occurs 

which prevents the appointment from being utilized. This probability ϴ can differ across patients 

but is assumed that in the patients’ population it is distributed as the Beta distribution with 

positive parameters α and β:  

 f (Ɵ = θ) = [θα-1 (1-θ)β-1]/ B(α, β)   (5) 

where B(α, β) is the classic beta function. Given the parameter θ, for a given IWT τ, the 

probability that an event causing the appointment to not be utilized first occurs on day T follows 

the geometric distribution: 

 P(T = t | ϴ = θ) = θ (1-θ)t, for t ≤ τ   (6) 

Combining (5) and (6) provides the following probability that no event occurs within T 

days: 

 P(T = t) = B(α+1, β+t) / B(α, β), for t ≤ τ  (7) 

In practice, these values can be computed recursively without recourse to the beta 

function as 

 P(T = 0) = α / (α+β)   (8) 
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 P(T = t) = (β+t-1) * P(T = t-1) / (α+β+t), for t ≤ τ    (9) 

Note that in the BG model, for a given patient, the probability ϴ that an event occurs 

which prevents the appointment from being utilized does not change over time. Some researchers 

suspect that there should be a strong dependence between this probability ϴ and the IWT  (Moe 

& Fader, 2009). In this case, the Weibull distribution, which allows for the probability ϴ to 

increase or decrease over time (Rinne, 2009), is possibly a better choice than the geometric 

distribution. Further, it can be argued that the IWT t should be treated as the integer part of a 

continuous lifetime, the BG model will then be replaced with a beta-discrete-Weibull (BdW) 

model (Fader, Hardie, Liu, Davin, & Steenburgh, 2018). According to Rinne (2009), the 

cumulative distribution function of the Weibull distribution is  

 F(t) = 1 − exp(−λtc), λ, c > 0  (10) 

where c is the “shape” parameter and λ is the “scale” parameter. Then, the survival function that 

the patient will not experience a disruption to appointment utilization before time t is  

 S(t)=1 – F(t) = exp(−λtc)   (11) 

Letting exp(−λ) = 1−θ, it follows the corresponding survival function in a discrete-time 

setting: 

 S(t | θ, c) = (1 − θ) tc, t = 0, 1, 2, ..., τ    (12) 

Assuming heterogeneity in θ is characterized by a beta distribution with positive 

parameters α and β as in (5), then by combing (5) and (12) provides the following survival 

function: 
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 S(t | α, β, c) = ∫ S
1

0
(t | θ, c)*f(θ | α, β) dθ = B(α, β+ tc)/ B(α, β), t = 0, 1, 2, …, τ   (13) 

Therefore, the probability that no event occurs within T days is: 

 P(T = t | α, β, c) = S(t − 1 | α, β, c) − S(t | α, β, c) = [B(α, β+( t-1)c) - B(α, β+ tc)]/ B(α, β) (14) 

where t ≤ τ. 

Including a constant term as, as in the regression models, we can now project the 

appointment utilization for appointments with a IWT of t as 

 y = as + P(T = t)   (15) 

2.3. Data Description & Model Fitting 

2.3.1. Data Description 

The data was originally obtained from an outpatient clinic practicing family medicine in 

the state of New York, it consists of 19 variables over 12 months from July 2016 to June 2017. 

During this period, the data of each working day is collected, and each day there are many 

samples recorded. Some of these data are redundant and duplicate, thus data cleaning is needed. 

The general description of this dataset is shown in Table A1 in Appendix A. Many variables in 

this dataset are categorical. Some of them are nominal variables, such as DOW (day of the 

week), session name, and appointment status. Some of them are ordinal variables, such as 

appointment date, scheduled date, and appointment time. Besides, there are some binary 

variables, 1 means true and 0 means false in the context. For each appointment scheduled at the 

clinic, it includes the date on which the appointment was scheduled (“Scheduled Date”), the date 
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of the appointment (“Appointment Date”), and the time difference in days between the scheduled 

date and the appointment Date (Appointment Date-Scheduled date) is the IWT.  

The data also included the “Appointment Status” which indicated whether or not the 

appointment was utilized and, if not, why. This resulted in four categories for Appointment 

Status: “ARR”, “BMP”, “CAN”, and “NOS”. Status “ARR” indicates that the appointment was 

utilized as arranged. Status “BMP” indicates that the appointment was canceled by the physician, 

as opposed to the patient. Status “CAN” indicates that the appointment was canceled by the 

patient. Finally, “NOS” means that the patient was a no-show and did not show up to the 

appointment. In determining appointment utilization, only status “ARR” indicates that an 

appointment has been utilized, where “BMP”, “CAN”, and “NOS” are all risk events, which 

won’t be considered as appointment utilized. Although some canceled appointments were 

rescheduled, there is no information indicates which canceled appointments had been utilized. 

Hence, these four appointment statuses were used to calculate the appointment utilization rate for 

each IWT as the percentage of appointments that were utilized as arranged (“ARR”). Similarly, 

the no-show rate, cancellation rate, and “BMP” rate based on the appointment statuses can be 

calculated.  

Of the total 114,029 observations in the database, 63.07% of appointments were utilized, 

22.83% of appointments were canceled by the patients, 11.63% of appointments were no-show, 

and the rest of 2.47% of appointments were canceled by the physicians. The IWTs ranged from 0 

(same-day appointments) to 184 days. However, many IWT values only contain very few 
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observations in the data (e.g., there was only one appointment with a 184-day IWT). Therefore, 

to ensure a reasonable number of observations for each IWT used in our analysis, this study 

restricted the analysis to IWT with at least 30 observations. This resulted in 113,887 appointment 

records across 97 different IWTs ranging from 0 to 98 days.  

Also, an open resource dataset (https://github.com/cbrands/investigate-a-datase) was 

found from GitHub. This dataset includes information from over 100,000 medical appointments 

in Brazil on patient no-shows. Unlike the data obtained from the medical center, this dataset does 

not include appointment statuses, however, it has information about no-shows and thus the 

appointments without no-shows can still be treated as utilized appointments. After processing, 

the revised data will only include the variables used in this study as shown in Table 3. Similar to 

the dataset obtained from the medical center in New York state, the IWTs were restricted with at 

least 30 observations. 

Table 3. Useful Open-Source Data Variables and Description 

Variable Description 

Scheduled Day The date when the patient is scheduled. 

Appointment Day The date of the appointment. 

No-Show Appointment no-show status, 1 means no-show, 0 means otherwise. 

IWT The time difference between appointment date and scheduled date. 

 

2.3.2. Model Fitting 

Given the data collected, it needs to fit the four regression models and two mixture 

distribution models to the Appointment Utilization over time. The regression models can be fit 

using any standard statistical package, such as Excel’s Data Analysis add-in. The results for the 

https://github.com/cbrands/investigate-a-datase
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regression models appear in  Table A2. For fitting the BG model, the values of α and β need to 

be chosen. To our knowledge, there is no standard software package for calculating these values. 

However, one can select values of as, α and β geared at minimizing the mean square error (MSE) 

by using Excel’s Solver. To that end, the recursive relationship of equations (8) and (9) in the 

Excel spreadsheet must be implemented first. 

Figure A1 and Figure A2 in Appendix A demonstrated the implementation of the 

recursive relationship with initial values of as=0.5, α=1, and β=2. Figure A1 shows the equations 

that have been entered into Excel and Figure A2 shows the corresponding values to which they 

equate. Once the recursion is set up in the spreadsheet, Excel Solver can be used to select better 

values for as, α and β. Figure A3 shows how the minimization of the MSE was set up in Excel 

Solver. Note that no bounds on the variables were used with the Solver, requiring that the 

corresponding checkbox be unchecked in the options pane for the GRG Nonlinear Solver. The 

corresponding results along with the parameters for the models will be discussed in the next 

section. 

Similar to the BG model, Figure A4 represents the equations of the BdW model with 

initial values of as=0.5, α=1, β=2, and c=1. Once the recursion is set up in the spreadsheet, Excel 

Solver can be used to optimize the values for all parameters as, α, β, and c as in Figure A4. The 

corresponding results along with the parameters for the models will be discussed in the next 

section. 
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2.4. Outputs & Results 

2.4.1. Comparison Results for Appointment Utilization 

As shown in Table A2, the BdW model provides the best fit with an R2 of 0. 4670 and 

MSE of 0.0015. The BG model is second best with R2 of 0.4565 and MSE of 0.0016, followed 

by the exponential regression model with R2 of 0.3068 and MSE of 0.0021. The worst model to 

fit the data is the quadratic regression model with R2 of -1.567 and MSE of 0.0077. The negative 

R2 indicates the quadratic regression model provides a worse prediction than just taking the 

average appointment utilization, which is a horizontal line. In addition to those two 

measurements, the mean absolute error (MAE) and the root mean squared error (RMSE) were 

also calculated to better interpret the model’s accuracy in case there are outliers as shown in 

Appendix A. To visualize the difference between the models, the curves fit by the regression 

models and two mixture distribution models against the actual appointment utilization rates were 

plotted in Figure 7 and a more detailed Figure A5. From the plots, it is clear that the advantage of 

the BG and BdW models is their ability to capture both the high and decreasing appointment 

utilization rates for short IWT and the lower and flatter appointment utilization rates for longer 

IWT. The other models all fail to properly capture the effect of short IWT. Besides, a residual 

plot is generated for each estimation as shown in Figure 8. This plot also indicates a great 

accuracy of BG and BdW models for utilization projection for short IWT. 
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Figure 7. Model Estimates Versus Actual Utilization Rate 

 

Figure 8. Estimation Residuals for Different Models 
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2.4.2. Distribution of Probability Parameter ϴ 

In addition to its benefits for using IWT to predict appointment utilization, the BG model 

also provides insight into the patient population allowing us to analyze the distribution of the 

parameter ϴ. Note that the BG model was preferred as opposed to the BdW model for analyzing 

ϴ as it provides a more direct interpretation of ϴ without complications of switching between the 

continuous and discrete times or accounting for the shape parameter c. Recall that for a randomly 

selected patient ϴ follows a beta distribution with parameters α and β on the interval [0, 1]. For 

the fit values of α = 1.8014 and β = 5.6545, the corresponding probability density function (PDF) 

and cumulative density function (CDF) for ϴ are shown in Figure 9 and Figure 10. From Figure 

9 it can be seen that the distribution of ϴ across patients is highly skewed to the right, indicating 

that the majority of patients have a fairly low value of ϴ but with a significant number of outliers 

having large values of ϴ. This means that most patients have a fairly low probability of an event 

preventing them from utilizing an appointment, but some outlier patients have a considerably 

larger likelihood of an event resulting in them not utilizing an appointment. This suggests that 

identifying outlier patients could help manage no-shows and cancellations. Similarly, Figure 10 

shows that values of ϴ greater than 40% are quite rare.  

On the other hand, the expected IWT of an appointment would not be utilized E(T) 

equals1/ϴ since it follows a geometric distribution as mentioned in equation (6) in section 2.3. 

Using the CDF of ϴ, we can compute the CDF of 1/ϴ, the expected time until an event results in 

an unutilized appointment, as shown in Figure 11. For instance, F(1/ϴ = 20) equals 94.07% in 



 

30 

the  means that 94.07% of patients have an expected time until an event which leads to an 

unutilized appointment within 20 days or less. Reworded in terms of theta instead of 1/theta, it 

means that 94.07% of patients have a greater than ϴ=1/20=5% chance per day of an unutilized 

appointment.  

  

Figure 9. Probability Density Function for ϴ 

 

Figure 10. Cumulative Density Function for ϴ 
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Figure 11. Cumulative Density Function for 1/ ϴ 

2.4.3. Comparison Results between Different Appointment Statuses 

In this section, the models were further explored at the different appointment statuses 

(NOS, CAN, and BMP) which correspond to an appointment not being utilized. A competing 

risk analysis was performed to establish an overall picture of how each of the three statuses 

contributes to unutilized appointments. Furthermore, the same mixture distribution and curve-

fitting models were applied to each appointment status to determine the relationship with the 

IWT. 

Competing risk methods are widely used in healthcare research, particularly in cancer 

studies, where multiple potential outcomes like death and other failure events will occur 

(Dignam, Zhang, & Kocherginsky, 2012). In traditional survival analysis, the reasons for death 

are usually irrelevant to the analysis. In a competing risk survival analysis, each death event is 

reviewed. A similar situation applies to this study, there are three types of events that lead to 
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unutilized appointments: no-show, appointment cancellations by patients, and appointment 

cancelations by physicians. The setting is similar to death research, where competing risks occur 

when patients experience one or more events that lead to death (Noordzij et al., 2013). As shown 

in Figure 12, the actual rates of the three failure events were compared. Generally speaking, the 

patient cancelation rate is higher than the other two events, and the no-show rate is higher than 

the physician cancelation rate. This indicates that most patients will call for cancelation rather 

than just not showing up. Also, as IWT increases, the physicians are more likely to cancel the 

appointments, but this trend does not apply to other failure events. For the other two failure 

events, the rate will increase dramatically in the first couple of days and then fluctuate as the 

IWT increases, which is not necessarily an increasing trend. 

 

Figure 12. Comparison of Actual Rates of Appointment Cancelation, No-show, and BMP 
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Also, a survival analysis using SAS 9.4 for Windows was conducted. The primary reason 

for appointment non-utilization was appointments canceled by patients, which accounted for 

61.81% of total non-utilized appointments, followed by appointment no-shows, which was about 

31.49% of total non-utilized appointments, and the physician cancelations only accounted for 

2.47% of the total non-utilized appointments. Most of the appointments were dropped in the first 

couple of weeks, which does not necessarily indicate a high drop rate as most appointments were 

scheduled with short IWT. 

To identify the relationship between IWT and the three failure events, the same models 

were applied to project the other appointment statuses. As the appointment utilization decreases 

with IWT, the corresponding failure rates increase as the IWT increase. In this case, a constant 

term was used to minus the estimated appointment utilization. Accordingly, the functions for the 

different models can then be expressed as: 

 Linear: y = alin - blint (16) 

 Exponential: ln (y) = ae - bet   (17) 

 Quadratic: y = aq - b1t - b2t
2   (18) 

 Logistic: ln (y/(1-y))= alog - blogt   (19) 

 BG & BdW: y = as - P(T = t)   (20) 

The model evaluation metrics of all models for different appointment statuses are listed 

in Tables A3-A6. The results indicated that the BdW model outperforms other models for 

predicting utilization, no-show, and cancellation rate due to its relatively high R2 values and low 
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MSE, MAE, and RMSE. This demonstrates that the BdW model is a better choice for studying 

the relationship between IWT and patient’s appointment behaviors, showing the promise of the 

BdW model for representing such relationships in healthcare. However, for appointments 

canceled by the physicians (BMP), the BdW model does not perform well in estimating its rate. 

This indicated that there is a significant difference between the patient’s behavior and 

physician’s behavior in appointment cancelation, as a result, other models may be more 

appropriate for projecting BMP. 

2.4.4. Numerical Test with Open Source Data 

To further investigate the robustness of this model and test the generalizability of the 

approach, this study repeated the analysis of open-source data described in the former section. As 

seen in Table 4, the BdW model provides one of the best fits with the largest R2, smallest MSE 

of 0.0022, and second smallest MAE and RMSE. However, in this case, the quadratic regression 

model also provides a good fit with the second-best with R2 and MSE, but the best MAE and 

RMSE, specifically edging out the performance of the BG model. The worst model to fit the data 

is the exponential regression model, R2 of 0, and MSE of 0.0035. This indicates the exponential 

regression model essentially used the average of the appointment utilization rate. Figure 13 and 

Figure A6 show the curves fitting of the regression models and two mixture distribution models 

against the actual appointment utilization rates. From the plot, it is noticed that the BG model 

and BdW model outperformed the curve-fitting models in predicting appointment utilization 

rates for short IWTs, while the quadratic model picks up a slightly increasing trend for the long 
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IWTs. These results suggest that different contexts (e.g., therapeutic areas) may result in 

different relationships between IWT and appointment utilization, requiring the use of a variety of 

models. 

Table 4. Comparison of Model Measurements for Open Source Data  

Parameters 

Models 

LR ER QR Logistic BG BdW 

R^2 0.010511 0.000000 0.351637 0.009929 0.318176 0.373882 

MSE 0.003462 0.003499 0.002269 0.003464 0.002386 0.002191 

MAE 0.044046 0.043612 0.034182 0.044014 0.038047 0.035153 

RMSE 0.058841 0.059152 0.047630 0.058858 0.048844 0.046806 

 

 

Figure 13. Model Estimates Versus Actual Utilization Rate for Open-Source Data 

2.5. Summary & Discussion 

Many articles have discussed how to predict no-shows, most of them focus on estimating 

the individual no-show probability and identifying the correlation between appointment no-

shows and patient characteristics and behaviors. However, very few studies have focused on 
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appointment utilization and its relationship with IWT. Therefore, the contribution of this paper is 

that the mixture distribution model, which was originally designed for customer behavior studies, 

is implemented to project appointment utilization for the first time. Besides, it has shown that 

BG and BdW models outperform curve-fitting regression models for using the in projecting 

appointment utilization. The BG model also allowed for analysis of the patient population’s 

reliability about utilizing appointments. Specifically, we can see that the likelihood of a patient 

not utilizing an appointment is skewed across the patient population. The results indicated that 

most patients have a relatively low probability of not utilizing an appointment, but there are 

some outliers with high no-show or cancelation probability in the population.  

Though specialized routines for implementing the mixture distribution models are not 

commonly available as are those for regression models, this study has demonstrated how the 

mixture distribution model can be implemented using commonly available spreadsheet tools. 

Regarding predicting appointment utilization, the skewed distribution of ϴ across the patient 

population suggests pursuing approaches that identify outlier patients. This study further 

analyzed the three failures resulting in unutilized appointments. The results show that 

cancelations by patients to be the greatest cause of unutilized appointments, followed by patient 

no-shows and physician cancelations, respectively. Also, it is easy to see that the mixture 

distribution models worked well at predicting patient cancelations and no-shows, but not so well 

for physician cancelations. Finally, to test the generalizability of the results, an analysis on open-

source data was repeated, and the mixture distributions proved to work well, but at this time, a 
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quadratic regression model also shows a good projection accuracy. Taken together, these results 

highlight the promise of mixed distribution models in predicting no-show rates but also 

demonstrate the need for a variety of models to be used as patterns can change in different 

contexts. 
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3. NO-SHOW PREDICTION 

Appointment no-show is one of the most common issues for appointment scheduling, and 

no-show prediction is one of the most challenging topics among no-show studies. Therefore, 

many studies have been conducted to seek the methods able to predict the probability of no-

shows and the factors that influence patients’ behavioral patterns. Almost all of these studies are 

based on data that have major impacts on patient no-shows. However, it is not always easy to 

obtain data due to business, privacy, or ethical issues. What’s more, inequality in appointment 

scheduling is also one of the issues that should be taken into consideration. Therefore, it is better 

not to include the patient’s demographic and personal information like race and age scheduling a 

patient to ensure equality. In this case, some recommend or popular predictive models, such as 

logistic regression, might not work under this circumstance.  

Therefore, this chapter will focus on the literature review, methodologies, and models of 

appointment no-show prediction. In the first section, the literature review covers the background, 

factors, and models used in various studies. The second section talks about the research 

methodology used in this dissertation, and three models are introduced in this section. The third 

section discusses the outputs of the three models introduced in this study, the results are 

compared, and some conclusions can be generated. Lastly, a discussion of the research gaps and 

the contributions of the study are presented at the end of this chapter. 



 

39 

3.1. Literature Review 

3.1.1. Background 

No matter how perfect the system is, there are still no-shows. What’s worse, it is very 

harmful to both patients and providers, as Gupta and Denton (2008) said, “Late cancellations and 

no-shows can lead to poor resource utilization, lower revenues and longer patient waiting times”. 

Thus, how to accurately predict appointment no-shows becomes extremely important. No-shows 

can be predicted through data mining, which is a process of finding patterns and relationships 

between variables in large data sets using methods from machine learning, statistics, and 

database systems.  B1 in Appendix B summarized some of the modeling patients’ no-shows in 

recent years. In general, the factors used to predict the no-shows can be classified into the 

following categories: 

• Patients’ demographic information, such as race, age, gender, and income level. 

• Appointment information, such as appointment time, attendance records, etc.  

• Clinical information, like clinical characteristics and prescriptions.  

• Provider’s information, such as provider type and gender.  

• Environmental factors, such as weather, distance, and transportation. 

Although there are other types of factors that could be used to predict no-shows, most of 

the factors belong to the five categories mentioned above. Dantas et.al. (2018) have conducted a 

systematic literature review of the no-show in appointment scheduling, 105 articles and review 

papers were studied, and they found 46 factors were assessed in previous studies. Among those 
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factors, the following have been identified as significant determinants of appointment no-shows: 

patient’s age; socioeconomic status; place of residence; ownership of private insurance, lead 

time, and prior no-show history (Dantas et. al., 2018). 

From the factors above, it is easy to find that patients’ demographic information is 

extremely useful for no-show prediction. However, this violates the principle of equality if 

healthcare organizations schedule a patient differently based on one’s demographic information. 

Inequality in healthcare access is a common issue all around the world. Researchers have 

discovered that in the United States, people with low income have worse healthcare access when 

compared with others (Dickman, Himmelstein, & Woolhandler, 2017). This situation is not 

realized in the United States, pro-rich inequity in healthcare, especially for outpatient care, is a 

common issue worldwide ( Allin, 2008; Liu, Hsiao, & Eggleston, 1999; Dror, Koren, & 

Steinberg, 2006 ). Other articles also addressed the inequalities of healthcare access among 

different races (Thomson, 1997; Lorence, Park, & Fox, 2006), ages (Fitzpatrick et al., 2004), 

gender (Namasivayam, Osuorah, Syed, & Antai, 2012), place of residence (Hartley, 2004), 

education (Plug et al., 2012), cultures and languages (Ngo-Metzger, et al., 2003), and people 

with disabilities (Lagu, Iezzoni, & Lindenauer, 2014). Under these circumstances, many 

researchers believe predicting patient no-show rates and making corresponding appointment 

schedules based on patient's demographic information is unethical and result in inequality in 

accessing healthcare.  
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Apart from the equality principle, patient's privacy and data security are becoming more 

and more important due to the development of electronic health records (EHRs) and big data 

technologies, which significantly improved the efficiency of data collecting and quantity of data 

collected (Kamble, Gunasekaran, Goswami, & Manda, 2018). EHRs contain information that is 

highly sensitive, such that leakage of this data violates the patient’s privacy rights and may lead 

to serious consequences (Kaletsch & Sunyaevwhere, 2011). For this reason, it is not always easy 

to obtain demographic information, and it might violate patient’s privacy rights to require 

patient’s confidential data when making a healthcare appointment (Hong, Patrick, & Gillis, 

2008). Similar to clinical information, it is either unethical to treat patients differently based on 

one’s clinical condition, or it is hard to obtain enough information due to privacy protection and 

data security. In terms of the environmental factors, they are not only hard to collect and record, 

but also out of providers’ control. Due to these reasons, this study focused on predictive model 

construction using limited data, which does not include any personally identifiable information 

that can be used to profile patients. 

3.1.2. Model Comparison 

As shown in  B1, the most popular approach used to project appointment no-shows is the 

multivariate logistic regression model because the model has several advantages (Tufféry, 2011). 

First, logistic regression can deal with both independent variables and dependent variables that 

are not normally distributed. Second, it can handle nonlinear effects so that the independent 

variables and dependent variables do not have to be linearly related. Also, it can be used to 
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generate probabilities of different levels for each observation in the response variable and thus 

can be used to classify new observations. Further, it has fewer requirements for variables, no 

homogeneity of variance assumption is needed, and independents can be either interval or 

unbounded. Last but not the least, the algorithm is easy to implement, computation is easy and 

fast, and low storage resources are needed. Simply speaking, it is a model that benefits data 

matching and easy to use.  

Nevertheless, a major disadvantage of logistic regression is that it requires all 

observations to be independent of each other; otherwise, the model will tend to overweight the 

significance of them (Tufféry, 2011). Because of this, this study also proposed a general linear 

model (GLM) with interaction terms using a logit link function, which converts the probabilities 

of a binary response variable to a continuous scale so that it can be modeled with linear 

regression. With this model, the effects of each factor and interactions between factors can then 

be identified. However, it increases the complexity of interpretation of interactions in a GLM due 

to the effect of the link function, and misinterpretation is a central issue (Tsai & Gill, 2013).  

Another issue of logistic regression is that it relies heavily on indicator selection (Tufféry, 

2011). If the analysis includes the wrong factors or misses some important explanatory variables, 

which may occur in this study, the model will have litter predictive value. In other words, 

without enough features, the logistic regression model tends to underfit data and leads to a large 

bias. Further, logistic regression is sensitive to extreme values and missing values of variables 

(Tufféry, 2011). For these reasons, a decision tree model was carried out because it is a non-
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linear model, which is less likely to underfit data when dealing with non-linear data, and it is 

robust to outliers and missing values. Besides, it is easier to interpret the results. Nevertheless, a 

large decision tree could indicate a pruning strategy that does not accurately capture the data 

statistics (Long, Griffith, Selker, & Dagostino, 1993). Thence, choosing the right algorithm to 

prune the tree for the decision tree model is very important for our study.  

The most common decision tree algorithms are Classification and Regression Trees 

(CART) and C4.5 (an algorithm developed by Ross Quinlan in 1993), both tend to select 

variables with many possible splits or many missing values, which makes them easily overfit the 

data (Hothorn, Hornik, & Zeileis, 2006). Therefore, a so-called conditional inference trees 

(CTree) model was used to build our decision trees. Unlike CART and C4.5, Ctree uses 

significance test procedures to measure the association between responses and covariates rather 

than selecting the degerminators that maximize an information measure of node impurity 

(Hothorn, Hornik, & Zeileis, 2015). In this case, a pruning tree is not necessary for this 

algorithm; instead, selecting an appropriate alpha value and minimum split size is required.  

3.1.3. Contributions 

The main contributions of this study can be summarized from three aspects.  

First, it demonstrated the ability to predict no-shows without profiling patients. Unlike 

previous studies, which require demographic information for prediction, this study used only 

appointment information for no-show prediction, providing a way to help the provider make a 

better appointment schedule and treat all patients equally at the same time. Although it is 
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uncertain if the proposed prediction models can be generalized to other clinic settings, the 

methods and the analytic process used in this study can be extended and adapted. 

Second, it is the first time a conditional inference tree (Ctree) model was used in 

predicting appointment no-shows. Unlike other decision tree models, Ctree uses recursive 

partitioning of the dependent variable based on the value of correlations, which avoids variable 

selection bias towards variables with many possible splits or missing values. The trees not only 

give the expected probability of no-shows like other classification and regression algorithms but 

also help us to better interpret the results with a tree plot. Hence from a practical perspective, this 

is critical as it can help identify where the high no-shows occur and determine which part(s) in 

the design and policies should be changed to reduce appointment no-shows.  

Last but not the least, unlike many other studies, this study explored the use of different 

machine learning algorithms with different machine learning tools to build predictive models 

from large-size data. By comparing different predictive modeling methodologies, we can reveal 

different information from them, learn the weaknesses and advantages of each model, and select 

the right model for different objectives, as well as investigate the impact of a variety of 

appointment factors on patient no-shows.  

3.2. Methodology & Model 

3.2.1. Methodology Development 

As shown in Figure 14, a Wald chi-square test was performed with a significance level of 

α = 0.05 to identify the significant factors. Furthermore, a Tukey-Kramer method was used to 
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perform pairwise multiple comparisons between the different levels of the factors. The Tukey-

Kramer test is more balanced than other commonly used tests like Dunnett’s test and Dunn’s test, 

neither too reckless nor too strict, and can be applied to unbalanced data (Lee & Lee, 2018). By 

doing this, the dimension of the data and the complexity of the computation were successfully 

reduced.  

The classified data was then used in a multivariate logistic regression model because of 

the advantages mentioned in section 3.1.2. Further, to study the interactions between the factors, 

a GLM univariate analysis with interactions was proposed. Also, to diminish the impact of 

underfitting, missing values, and outliers, a decision tree model was carried out. Then the 

prediction results were compared with two evaluation metrics: Root Mean Squared Error 

(RMSE) and R-squared (R2). The most accurate outputs were then be selected and exported for 

further analysis and interpretation. 
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Figure 14. Flowchart of the Methodology Development 

3.2.2. Model Formula 

3.2.2.1. Logistic Regression Model 

The formula for the logistic regression model is: 

Logit(P) = ln (
𝑃

1−𝑃
)= b0+b1X1+…+bkXk  or P = 

1

1+𝑒−(𝑏0+𝑏1𝑥1+⋯+𝑏𝑘𝑥𝑘) (21)

where P is the estimated no-show probability of an observation, b0 is the intercept, and b1, b2, …, 

bk are coefficients for different indicators X1, X2, …, Xk. 
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3.2.2.2. General Linear Model (GLM) with Interactions 

The formula of GLM with interactions (two-way) is: 

P = b0+b1X1+…+bkXk+ bk+1X1*X2+ bk+2X1*X3+ 

 …+ b2k-1X1*Xk+b2kX2*X3+…+ 𝑏k^2+k

2

Xk-1* Xk  (22) 

where P is the estimated no show probability of an observation, b0 is the intercept, bk is the 

coefficient of a significant factor Xk, and b2k-1, …, 𝑏k^2+k

2

 are coefficients of the interaction terms.  

3.2.2.3. Conditional Inference Trees (Ctree) Model 

The conditional class probabilities (Hothorn, Hornik, & Zeileis, 2006): 

 P(Y=y|X=x)=( ∑ 𝑤𝑖
𝑛
𝑖=1 (x))−1 ∑ 𝑤𝑖

𝑛
𝑖=1 (x)I(𝑌𝑖=y), y=1, …,J.   (23) 

where J is the number of levels of the nominal response variable,  ∑ 𝑤𝑖
𝑛
𝑖=1 (x) denotes the sum of 

the case weights, and I(𝑌𝑖=y) denotes the indicator function. 

In this study, the number of levels J is 2 (0s and 1s). The case weight is a vector 

indicating if an observation is being included in a decision tree node. Therefore, the sum of case 

weights in a terminal node is the number of observations in that node. 

3.3. Data Processing & Model Fitting 

3.3.1. Data Processing 

As listed in  A1, the original dataset included two date variables, “Appointment Date” 

and “Scheduled Date”, which contained too many levels for reliable analysis. To reduce the 

dimension of these two variables, the date information was clustered based on the month of the 

date. As a result, there were only 12 levels in each variable instead of hundreds. The new 
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variables are called “APT Month” and “SHD Month” correspondingly. After cleaning the 

redundant and invalid data, 11 factors were selected for predicting no-shows. To test which 

factors have significant effects on appointment no-shows, a Wald chi-square test was conducted. 

As shown in Table 5, 7 out of 11 of selected factors were proved to have significant effects on 

appointment no-shows. Meanwhile, the appointment time, at which month an appointment is 

scheduled, the appointment session, and the scheduling provider designation are not significant 

factors.  

Table 5. Wald Chi-square Test of Effects 

Effect DF Wald Chi-Square Pr>ChiSq 

APT_Month 11 37.4776 <.0001 

SHD_Month 11 13.2856 0.2751 

Appt_Time 94 105.3936 0.1983 

DOW 5 72.6108 <.0001 

SessionName 2 0.0121 0.9940 

IWT 1 52.1392 <.0001 

Duration_of_Appt 9 69.4297 <.0001 

Is_Same_Day_Appointm 1 761.9221 <.0001 

Location 6 43.0491 <.0001 

Provider_Type 5 43.8920 <.0001 

Scheduling_Provider_Designation 4 3.3265 0.5047 

 

However, there are still too many levels in some factors that will lead to three major 

problems. First, with too many levels in the nominal data, the complexity of calculation will be 

extremely high, and therefore, requires more time and storage for computation. Second, there 

will be more outliers and noise in data, which leads to poor performance in predictive modeling. 

Last but not the least, it increases the difficulty of interpretation. Therefore, to reduce the levels 
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of these factors, a Tukey-Kramer test for all significant factors was conducted. The results are 

shown in Figure 15.  

As we can see, variables clustered based on the statistical tests indicated that some of the 

levels belong to the same group, and it might tell us some important information about no-shows. 

For example, appointments in March had the lowest no-show rate, while appointments in May, 

June, and July had the highest no-show rates. One possible assumption is the appointment no-

shows are probably associated with the weather or holidays. For the day of the week, Saturday 

has the highest no-show rate, followed by Monday and Friday. That’s likely because Saturdays 

are on the weekend, and Mondays and Fridays are the first days and the last days of the working 

days. Also, appointments with durations of 30 mins or 60 mins seem to have the highest no-show 

rates, it is probably due to different types of appointments. Besides, different provider types and 

locations might affect the no-show rate. Most importantly, there is a significant difference 

between same-day appointments and pre-scheduled appointments in terms of no-shows. This is 

obvious because patients are likely to get treated right away other than waiting a couple of days 

or weeks. 

Nevertheless, the above assumptions need to be testified, but the reason for such a test in 

this study is to reduce the levels in data. The revised dataset and the clustered levels were 

described in Table 6. Compare with the original dataset, this new dataset could lead to more s 

coefficient estimates and better prediction performances.  
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Figure 15. Tukey-Kramer Test Results for Significant Categorical Factors 
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Table 6. Revised Dataset and Clustered Levels 

Variables Levels 

No_Show (Dependent Variable) 0,1 

Month (Appointment Month) Mar, May/Jun/Jul, & Other Months 

DOW (Day of the week) Sat, Mon/Fri, & Other DOWs 

IWT (Indirect waiting time) NA (Ordinal Data) 

Duration (Duration of appointment) 30/60, Other Durations 

Sameday (Same day appointment? ） 0,1 

Location (Hospital Suite Location) STE 700, Other STEs 

Provider (Provider Type) Nurse/Fellow/Faculty, Resident/NP, Other 

 

3.3.2. Model Fitting 

To estimate the no-show probability (the expected probability of the value 1 in the 

dependent variable) in the logistic regression, a classification threshold was set to 0.5. In this 

case, an observation can be classified as a no-show if the predicted probability is larger than the 

threshold. To generate the output, a statistical tool SAS 9.4 was used for this model. 

As for the GLM model with interactions, a test of subject effects is required to identify 

which interaction terms would likely impact appointment no-shows. As shown in Table 7, any 

term that has a p-value (Sig.) larger than 0.05 will be considered non-significant. Based on the 

result in the , the final GLM model should have a structure like the following :  

Is No-show = Intercept + DOW + Location + Sameday + Provider + Month + DOW * Provider 

+ DOW * Sameday + Duration * Location + Duration * Provider  + Duration * 

Sameday + Provider * IWT + Location * Month + Location * Provider +Provider 

* Month + Sameday * Provider 

To identify the coefficients for each term in this model and calculate the corresponding 

no-show probabilities for each observation, the GLM procedure in SPSS was used in this study. 
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Table 7. Tests of Between-Subjects Effect 

 

Source Type III Sum 

of Squares 

df Mean Square F Sig. 

Corrected Model 204.638a 51 4.013 39.716 .000 

Intercept 2.142 1 2.142 21.201 .000 

DOW .818 2 .409 4.049 .017 

Duration .068 1 .068 .669 .413 

Location 1.332 1 1.332 13.183 .000 

Sameday .514 1 .514 5.086 .024 

Provider 1.346 2 .673 6.662 .001 

Month .974 2 .487 4.823 .008 

IWT .052 1 .052 .519 .471 

DOW * Duration .080 2 .040 .394 .675 

DOW * IWT .235 2 .118 1.164 .312 

DOW * Location .065 2 .033 .322 .725 

DOW * Month .687 4 .172 1.700 .147 

DOW * Provider 1.552 4 .388 3.841 .004 

DOW * Sameday 2.123 2 1.062 10.509 .000 

Duration * IWT .003 1 .003 .028 .867 

Duration * Location 2.183 1 2.183 21.608 .000 

Duration * Month .583 2 .291 2.885 .056 

Duration * Provider 1.834 2 .917 9.079 .000 

Duration * Sameday 1.845 1 1.845 18.260 .000 

Location * IWT .172 1 .172 1.705 .192 

Month * IWT .190 2 .095 .939 .391 

Provider * IWT 4.247 2 2.123 21.018 .000 

Sameday * IWT .000 0 . . . 

Location * Month .848 2 .424 4.196 .015 

Location * Provider 5.254 2 2.627 26.002 .000 

Location * Sameday .001 1 .001 .010 .920 

Provider * Month 1.107 4 .277 2.738 .027 

Sameday * Month .310 2 .155 1.533 .216 

Sameday * Provider .973 2 .487 4.817 .008 



 

53 

In terms of the decision tree predictive model, Ctree uses significance test procedures to 

measure the association between responses and covariates rather than selecting the 

degerminators that maximize an information measure of node impurity (Hothorn, Hornik, & 

Zeileis, 2015). In this case, a pruning tree is not necessary for this algorithm; instead, selecting 

an appropriate alpha value and minimum split size is required. Therefore, a commonly used 

alpha value of 0.05 and a minimum split size of 30 were selected in the dissertation. The tool 

used to generate the results is RStudio. 

3.4. Outputs & Results 

3.4.1. Coefficient Estimates & Output Interpretation 

3.4.1.1. Logistic Regression Model 

Table 8 is the analysis of the maximum likelihood estimates (MLEs). The “Estimate” 

column in Table 8 represents the coefficient estimates (bk) for the logistic regression model. 

Knowing these coefficients, the predicted probabilities of no-shows can now be generated. 

Moreover, this value also shows significance for the factors with more than two levels below 

<0.05. Any level that has a p-value smaller than 0.05 indicates there is a significant difference 

between this level and the base level. A positive value for an MLE indicates a higher no-show 

rate and a negative MLE value indicates a lower no-show rate.  
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Table 8. Analysis of Maximum Likelihood Estimates 

Parameter 
 

DF Estimate Standard 

Error 

Wald 

ChiSq 

Pr>ChiSq 

Intercept 
 

1 -1.1933 0.0850 196.9999 <.0001 

Month Mar 1 -0.1909 0.0349 29.8868 <.0001 

Month May/Jun/Jul 1 0.1337 0.0212 39.9176 <.0001 

DOW Other DOWs 1 -0.1394 0.0192 52.8764 <.0001 

DOW Sat 1 0.2348 0.0584 16.1415 <.0001 

IWT 
 

1 0.00345 0.000473 53.2394 <.0001 

Duration Other Duration 1 -0.6096 0.0835 53.2930 <.0001 

Sameday 1 1 -1.2658 0.0439 833.1074 <.0001 

Location STE700 1 -0.1512 0.0273 30.7776 <.0001 

Provider Nurse/Fellow/Faculty 1 -0.3305 0.0206 256.4369 <.0001 

Provider Other 1 0.0315 0.0556 0.3219 0.5705 

 

To better compare the base level and other levels in the factors, odds ratio point estimates 

were calculated. As shown in Table 9, the no-show rates in March are significantly lower than 

the no-show rates in other months (baseline). The average no-show rate in March is about 0.826 

times of average no-show rates in other months, whereas average no-show rates in May, June, 

and July are about 1.143 times of average no-show rates in other months. Similarly, for the day 

of the week, Saturday has significantly higher no-show rates, while Tuesday, Wednesday, and 

Thursday have significantly lower no-show rates compared to Friday and Monday. For the 

duration of the appointment, patients are more likely to miss an appointment with a 30-minute or 

60-minute duration. In terms of the location factor, suite 700 has lower no-shows than other 

locations. In the factor “Provider_Type”, the value “Nurse/Fellow/Faculty” has a significantly 

lower no-show rate. 



 

55 

Table 9. Odds Ratio Estimation 

 

3.4.1.2. General Linear Model (GLM) with Interactions 

The coefficients of all terms including those non-significant factors and interactions are 

shown in Table B2. To predict the no-show probabilities,  use the value in “B” column in Table 

B2 as the coefficients for significant terms as indicated in Table 7. The parameters were 

computed using an alpha value of 0.05, and any parameter of 0 indicates it is either the baseline 

or redundant. With coefficients identified, the no-show probabilities can finally be predicted. 

3.4.1.3. Conditional Inference Trees (Ctree) Model 

Unlike the previous two models, the Ctree model uses significance test procedures to 

measure the association between responses and covariates. Therefore, there is no need to 

estimate the coefficients. Instead, a decision tree is required. It is a supervised machine learning 

algorithm that uses a binary tree graph (each node has two branches) to assign each data sample 

Effect Point 

Estimate 

95% Wald 

Confidence Limits 

Month: Mar vs Other Months 0.826 0.772 0.885 

Month: May/Jun/Jul vs Other Months 1.143 1.097 1.191 

DOW: Other DOWs vs Mon/Fri 0.870 0.838 0.903 

DOW: Sat vs Mon/Fri 1.265 1.128 1.418 

IWT 1.003 1.003 1.004 

Duration: Other Duration vs 30/60 0.544 0.462 0.640 

Sameday: 1 vs 0 0.282 0.259 0.307 

Location: STE700 vs Other STEs 0.860 0.815 0.907 

Provider: Nurse/Fellow/Faculty vs Resident/NP 0.719 0.690 0.748 

Provider: Other vs Resident/NP 1.032 0.926 1.151 
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to a target value in the tree leaf. The outputs are presented in a tree plot shown in Figure B1. For 

better visualization, it was separated into 4 parts as shown in Figure B2-B5. 

To interpret this plot, take terminal node 4 in the plot as shown in Figure B2 as an 

example. The sum of case weights is 8265, which means there are 8265 observations in this 

terminal node. The y=(0.962,0.038) indicates the average rate of appointment no-shows is 0.038 

in this node, where the provider types belong to other and resident or NP, same-day 

appointments (IWT ≤ 0), and the appointment durations are not 30 mins or 60 mins. Similarly, 

the average no-show rates for all nodes in the tree plot can be obtained. An observation that falls 

in a terminal node will then assigned with a no-show probability that equals the average no-show 

rates in that node. 

3.4.2. Model Evaluation & Comparison 

As shown in Table B1, the most common evaluation method used for this type of study is 

the area under the ROC curve (AUC-ROC), which measures the percentage of correct 

classification. However, models using the original dataset returned relatively low AUC-ROC 

values, which indicated poor performances at classifying the appointment no-shows. For 

example, the logistic regression model based on the original data gave an AUC-ROC value of 

0.6129, which indicates that it is unlikely to distinguish whether an individual would show up or 

not based on the non-demographic features obtained in this dissertation. 

For this reason, binary classification was not the objective of this study. Instead, it aimed 

to predict the no-show probabilities of groups of individuals with the same clinical records. 
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Therefore, the coefficient of determination, known as R-squared (R2), was used to evaluate the 

performance of the predictive models. The R2 could be interpreted as the percent of the variation 

in the response variable explained by the model. One weakness of R2 is that it tells nothing about 

the prediction error. In this case, another evaluation method called Root Mean Squared Error 

(RMSE) was also applied for evaluation. The reason why we chose RMSE instead of Mean 

Squared Error (MSE) is that the scale of the RMSE is the same as the scale of the targets. As a 

result, RMSE can be more accurately represent the average error between actual no-show 

probability and prediction.  

To reduce the impact of outliers and noise, only groups with at least 30 observations were 

taken into the calculation sample sizes equal to or greater than 30 based on the Central Limit 

Theorem (CLT). The comparison results were presented in Table 10. The R2 values indicated 

that the conditional interference trees model fit the data best, but the logistic regression model 

has the lowest RMSE value among the three. This means although the decision tree model 

explained more variance in the dependent variable, the logistic regression model gave a more 

accurate prediction than the decision tree model. It is hard to conclude which one of the two 

models is better, but both models performed better than the GLM model with interactions.  

Nevertheless, the decision tree plot is much easier to interpret and use, especially for 

healthcare providers who do not have a strong statistical background, people can easily interpret 

the result and make corresponding appointment plans and schedules. For example, as shown in 

Figure B2, the same-day appointments with 30 or 60 minus durations have a significantly higher 
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rate of no-shows than the same-day appointments of other durations. In this case, providers could 

overbook the same-day appointments with 30 or 60 minus duration and schedule as many same-

day appointments with other duration as possible.  

What’s more, the decision tree model provided a simpler way to cluster all observations 

in a node as shown in Figure B1 rather than considering every single observation in the node. For 

example, considering appointments with an IWT less than 4 days as a whole part instead of 

IWTs from 0 to 4 days. In this case, the actual no-show rate will then equal the overall no-shows 

divided by the total number of appointments for all appointments with an IWT less than 4 days, 

and there is no need to compare the predicted probability for appointments with IWTs of 0 to 4 

days. Using this way of appointment clustering, the evaluation results would improve 

remarkably. The clustered IWT decision model will then return an R2 value of 0.9208 and an 

RMSE value of 0.0300. An advantage of this method is that it significantly simplified the 

calculations and improved the prediction accuracy. However, it does not change the fact that, 

when compared to the estimated probabilities to the no-show rates of all possible scenarios, this 

decision tree model did not perform better than the logistic regression model. 

Table 10. Comparison of R-Squared and RMSE for Different Models 

(For N>=30) 

Evaluation Parameters 

Logistic 

Regression 

GLM with 

Interactions 

Conditional 

Inference Trees 

RMSE 0.0392 0.0436 0.0414 

R-Squared 0.5490 0.3650 0.5547 
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3.5. Summary & Discussion 

This chapter focused on how to predict patients’ no-show probabilities without profiling 

the patients. Although demographic and private information is extremely helpful for predicting 

patient behavior, they are sometimes unavailable and violate the right of patients. To relieve the 

impact of appointment no-shows, this dissertation proposed several models to predict 

appointment no-show probability based on mostly non-human related clinical information, such 

as appointment date, appointment duration, and IWT. These models are not meant to classify 

appointments, but rather, were built to predict no-show probabilities for a group of patients that 

share similar clinical information. Simply speaking, this study was trying to predict no-show 

rates for appointments with different clinical characteristics without profiling the patients. 

Providers can then make a corresponding schedule strategy to improve the healthcare 

accessibility for every patient, without considering their race, gender, age, income, education 

level, etc. In this way, patients are ensured to get equal rights to schedule an appointment, and at 

the same time, appointment no-shows can be reduced.  

For future studies, it would be interesting to develop a survey to find out why these 

factors could impact appointment no-shows. Is it because of the weather? Maybe because of 

school and work schedule? Or different types of appointments? These could help us to better 

understand the impacts of nonhuman-related factors on appointment no-shows and make a better 

scheduling plan. What’s more, health equity is another major issue in the current healthcare 

system. Unlike health equality, which provides equal opportunities for everyone to access 
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healthcare services, health equity focuses on how to make sure no particular subset of groups is 

leftover or at a particular disadvantage. For example, providing accessible and affordable 

transportation services for the homeless, the handicapped, and the low-income patients so that 

they can access healthcare services. Besides, the decision tree plot model provided a good idea of 

clustering the appointments based on different scenarios. Based on the no-show rate for each 

scenario, providers are able to optimize and allocate the health care resources to better serve the 

people and communities. 
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4. CAPACITY ALLOCATION 

In this chapter, a real dataset from a medical center with a no-show rate of around 12% 

was analyzed to reduce the waste of healthcare resources and improve capacity utilization. Two 

scheduling strategies are studied and compared to maximize the provider’s profit. Also, a 

traditional single-stage stochastic program and a two-stage newsvendor model are built for 

comparison. Instead of only identifying the optimal number of open-access appointments for 

daily appointment capacity like other studies, this study provides a more comprehensive 

allocation of healthcare resources. Further, the sensitivity of the corresponding factors of an 

appointment on optimal capacity, average profit, and the maximum number of appointments that 

can be scheduled is investigated.  

The first section of this chapter covers the literature review of outpatient appointment 

allocation. models of appointment no-show prediction, including some basic background of 

outpatient capacity allocation and commonly used models for optimizing appointment 

scheduling. In the second section, a profit formula is introduced. Further, several optimization 

methodologies are introduced, and two scheduling strategies are described. The third section 

displays the results and outputs of different optimization methods and scheduling strategies, 

followed by a sensitivity analysis for the best optimization method and scheduling strategy. Last 

but not the least, research contributions and potential future studies are discussed at the end of 

this chapter. 
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4.1. Literature Review 

4.1.1. Background 

Many studies have been conducted to seek an advanced access scheduling plan to 

minimize the impact of patient no-shows and waste of healthcare resources. The key to a 

successful advanced scheduling plan is to match the daily appointment demand with the 

healthcare provider’s capacity. Recognition of the importance of an efficient healthcare system is 

rapidly growing in many developed countries. Nevertheless, many patients are still suffering 

from high healthcare costs and long wait times. This leads to patient no-shows and waste of 

healthcare resources, which will then conversely increase healthcare costs and patient wait times. 

To improve patient access to healthcare services and lower costs, many researchers have devoted 

themselves to develop new admission policies and scheduling methods to better allocate 

healthcare resources.  

Capacity allocation in the outpatient appointment system (OAS) is a process dealing with 

how available slots should be distributed to different patient groups. Patients are classified into 

different groups based on many factors, such as appointment demand, patient type, no-show 

probability, priority level, revenue from each patient group, and preferences of patients and 

physicians. If patient characteristics are known, then these classifications can be used for 

prioritizing, scheduling, sequencing, and adjusting the appointment intervals (Cayirli & Veral, 

2003). For example, Qu et al. (2012) developed a mean-variance model and an efficient solution 

procedure to select the percentage for open appointments in an open-access scheduling system to 
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increase the average number of patients seen while also reducing the variability by classifying 

the patients by different appointment types. While Nguyen, Sivakumar, and Graves (2015) 

introduced a deterministic model to identify the optimal capacity between two patient groups, 

including those on their first visit and returning patients. Depending on the different objectives, 

the factors taken into consideration are different. One of the main tactical objectives for an OAS 

is how to assign the available slots to fulfill the appointments requested by the patients. For this 

objective, a variety of modeling approaches can be used. 

4.1.2. Model Comparison 

As shown in Table 11, stochastic optimization and stochastic dynamic programming are 

widely used to solve OAS problems because of their ability to deal with uncertainty and 

randomness. In particular, single-stage and two-stage stochastic programs are the most popular 

stochastic optimization models for OAS problems. Single-stage stochastic programs deal with 

problems with a random objective function or constraints where a decision is implemented 

without subsequent recourse (Luo et al., 2012). For a two-stage stochastic program, decision 

variables are divided into the first stage and second stage variables. First stage variables are 

decided without full information of the random parameters. Once the full information is received 

and uncertainty is discovered, further adjustments can be made through second-stage variables 

(Al-Qahtani & Elkamel, 2010).  

Another useful model for dealing with general parametric demand distributions and 

unknown parameter values is the newsvendor model (Ding et al., 2002). It was originally an 



 

64 

operations management and applied economics model used to determine optimal inventory 

levels, but more and more researchers have started to use it for scheduling problems in 

healthcare. For example, Strum, Vargas, and May (1999) applied a newsvendor model to 

determine the operating room schedule duration to allocate for surgical subspecialties to 

minimize costs associated with underutilization and overutilization of operating room time. 

Similar works include Houdenhoven et al. (2007), Denton, Viapiano, and Vogl (2006), and 

Olivares, Terwiesch, and Cassorla (2008). The Newsvendor model has also been used to solve 

appointment scheduling optimization problems for decades. Weiss (1990) proved that when there 

are only two patients, the optimal scheduling problem is similar to a simple newsvendor 

problem. Green, Savin, and Wang (2006) proposed a newsvendor policy in their research to 

achieve the most profi allocation of scheduled and nonscheduled examination slots. 
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Table 11. Commonly Used Models for Outpatient Appointment Capacity Allocation  

Reference Access Policy Objective Model Solution Method  

Qu et al., 2007. Pre-Schedule 

& Sameday 

Max the number of 

patients consulted. 

Single-stage 

stochastic 

model 

Sensitivity 

Analysis & 

Analytical Method 

Qu et al., 2012. Pre-Schedule 

& Sameday 

Min. variability in the 

number of patients 

consulted. 

Single-stage 

stochastic 

model 

Sensitivity 

Analysis & 

Analytical Method 

Qu et al., 2013. Traditional Min difference of 

service times between 

clinic sessions 

Mixed-integer 

program 

Monte Carlo 

Simulation & 

Computer 

packages 

Hannebauer & 

Muller, 2001. 

Traditional Min the cumulated 

weighted between 

assignments & 

derivation of 

appointment’s starting 

time. 

Distributed 

constraint 

optimization 

model 

Computer 

packages & 

Simulation 

Luo et al., 2012. Traditional Max the profit between 

the revenue and the 

costs. 

Single-stage 

stochastic 

model 

Analytical Method 

& 

Simulation 

Samorani & 

LaGanga, 2015. 

Pre-Schedule 

& Sameday 

Max the profit between 

the revenue and the 

costs. 

Two-stage 

stochastic 

model 

Column-

generation & 

Heuristic 

Rezaeiahari & 

Khasawneh, 2020. 

Traditional Min deviations from a 

patient’s preferred start 

day & the flow time of 

patients at the clinic. 

Two-stage 

stochastic 

model 

Simulation-based 

tabu search & 

simulated 

annealing 

Dobson et al., 

2011. 

Pre-Schedule 

& Sameday 

Max the profit between 

the revenue and the 

costs. 

Single-stage 

stochastic 

model/ 

Queuing theory 

Analytical Method 

& 

Heuristic 

Creemers et al., 

2012. 

Pre-Schedule 

& Same day 

Min the total expected 

weighted waiting time 

of a single patient. 

Single-stage 

stochastic 

model/ 

Queuing theory 

Heuristic 

Balasubramanian 

et al., 2013 

Pre-Schedule 

& Sameday 

Max the number of 

same-day patients 

consulted and 

continuity of care. 

Stochastic 

dynamic 

programming 

Heuristics & 

Simulation 

Wang et al., 2018 Traditional Max the revenue based 

on the number of 

patients consulted. 

Dynamic 

programming 

Computer 

packages/ 

Simulation 
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4.1.3. Contributions 

The primary contribution of this study comes from its unique combination of 

optimization modeling and scheduling strategy. This combination covered the study of outpatient 

appointment scheduling (OAS) decisions from all classification groups introduced by Ahmadi-

Javid, Jalali, and Klassen (2017), which included the access policy, the number of resources, and 

the capacity allocation. Also, overbooking is taken into consideration. 

The contribution is also distinctive in its ability to deal with the daily fluctuations in 

patient demand, which may lead to poor capacity utilization because of patient appointment-

booking preferences, which prevent clinics from applying extensive use of open-access policies. 

In this study, the proposed strategy suggests a flexible number of slots to cover as many pre-

scheduled appointments as possible, meanwhile it uses an open-access policy for same-day 

appointments and a certain number of overbookings to cover appointment no-shows. 

Furthermore, this study has a significant contribution to balancing and utilizing 

healthcare resources (appointment capacity). The level of resources is a key factor for the 

provider's profit. A high level of resources may increase costs due to waste of capacity, but a low 

level of resources may increase patient waiting time due to overbooking and loss of profit for 

excessive rejecting of patient demand, thus impacting the quality of healthcare and the provider’s 

revenue. This proposed approach solved this conflict through two aspects. First, it identified an 

optimal capacity to balance the level of resources. Second, the scheduling strategy improved 
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capacity utilization by assigning an appropriate number of slots for same-day and pre-scheduled 

appointments. 

Other contributions include its representation of the demand classification and the use of 

the newsvendor model for optimal capacity identification. An empirical probability was used in 

this study, which ensures the accuracy of demand classification and optimal capacity 

identification because no assumption is required on the distribution of patient demand. 

Moreover, the application of the newsvendor model in identifying optimal capacity for outpatient 

appointments is also an interesting aspect. It is easy to use, and the results proved the model has 

a high accuracy by giving a near-optimal solution. 

4.2. Methodology 

4.2.1. Problems Statement & Assumptions 

In an advanced access scheduling system, there are generally two types of appointments, 

which are pre-scheduled appointments and open access appointments. For pre-scheduled 

appointments, the patient can be scheduled days to months in advance, while open access 

appointments or same-day appointments can usually receive an appointment within 12–72 hours 

(Qu et al., 2007). Therefore, appointments with a maximum IWT of 2 days were considered as 

same-day appointments in this study. Also, walk-ins were treated as same-day appointments 

since the sample size of walk-in patients in this dataset is extremely small. According to 

Kodjababian (2013), the number of no-shows increases as the IWT increases. This has also been 

testified to by the previous two chapters in this dissertation. As a result, more pre-scheduled 
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appointments will result in more no-shows. On the other hand, there will be no enough capacity 

or demand for same-day appointments. Both risks decrease the expected profit. Hence, it is 

necessary to allocate the capacity and find the optimal number of slots for each type of demand 

to find a balance.  

In this study, it is assumed that the appointments are independent of each provider 

regardless of the appointment policies and types of providers. Further, it is assumed the decision 

a patient makes is independent of other patients’ decisions. Finally, it is assumed that the daily 

capacity (the number of appointment slots available each day), denoted by C, is fixed. 

4.2.2. Optimization Methods 

In this study, the appointments scheduled by providers are independent of each other, and 

there is no association between patients' attendance. Also, the unit revenue and the unit fixed cost 

for each appointment are consistent, donated by R and F, and Pi is the daily profit on day i during 

the study period.   

4.2.2.1. Single-Stage Stochastic Programming 

In terms of the single-stage stochastic program, the expected daily profit can be expressed 

as: 

P = ((1 – αP)*Min{DP, NP}+(1 – αS)*Min{DS, NS})*R – F*C 

– αP*Min{DP, NP}*LP – αS*Min{DS, NS}*LS 

    – Max{(1 – αP)*Min{DP, NP}+(1 – αS)*Min{DS, NS} – C, 0}*ϴ   (24) 

where, 
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Parameters: 

R = Revenue from each serviced customer. 

F = Fixed cost per one appointment worth of capacity. 

LP = Penalty cost associated with a preschedule no-show beyond lost revenue and unused 

capacity. 

LS = Penalty cost associated with a same-day no-show beyond lost revenue and unused capacity. 

αP = Actual no-show rate of prescheduled appointments. 

αS = Actual no-show rate for same-day appointments. 

ϴ = Penalty for each customer who shows up beyond capacity C (covers additional waiting time 

penalty). 

Random Variables: 

DP = Number of requests for prescheduled appointments. 

DS = Number of requests for same-day appointments. 

Decision Variables: 

NP = Maximum number of prescheduled appointments to schedule. 

NS = Maximum number of same-day appointments to schedule. 

C = Provider’s Capacity. 

The first term ((1 – αP)*Min{DP, NP}+(1 – αs)*Min{Ds, NS})*R is the revenue of the 

appointments that are expected to be utilized. The second term F*C is the total fixed cost for all 

available appointment slots regardless of the utilization. The αP*Min{DPi, NP}*LP –αS*Min{DS, 

NS}*LS refers to total penalty cost due to appointment no-shows. The last term Max{(1 – 

αP)*Min{DP, NP}+(1 – αS)*Min{DS, NS} – C, 0}*ϴ is the total penalty cost for all patients that 

showed up but beyond the capacity. 
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With the formula of P identified, the objective of this model is then finding the optimal 

number for each type of appointment that should be reserved to maximize the average daily 

profit, which can be expressed as: 

 Max 𝑃 ̅= ∑ 𝑃𝑖
𝑛
i=0  / n (25) 

subject to C = Np + Ns, where C, Np, Ns are non-negative integers, and n is the number of 

observations in the dataset. 

4.2.2.2. Two-Stage Newsvendor Model 

This model is very similar to the last model, the difference is in the first stage. Unlike the 

single-stage stochastic program, this model identifies the optimal capacity C in the first stage and 

uses it in the second stage to find an optimal number of pre-scheduled appointments Np. Assume 

this optimal daily capacity is C*, it can be expressed as follows in this study: 

 C* = F-1 (
R

R+F
)   (26) 

where F-1 denotes the inverse distribution function of demand and the critical fractile CR = 
𝑅

𝑅+𝐹
  

is the ratio corresponding to the optimal quantity C*. In other words, CR = P(C ≤ C*). 

In this case, if there is one observation whose cumulative probability matches the value 

of CR, then the optimal capacity is identified. Otherwise, find an observation that has a 

cumulative probability closest to and larger than CR in the demand empirical distribution, 

labeled as upper bound demand (CU). Similarly, label the demand that has a cumulative 

probability closest to and smaller than CR as lower bound demand (CL). Also, label the 

corresponding cumulative probabilities as PU and PL. Thus, the optimal quantity is: 
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 C* = CU - 
𝑃𝑢−CR

𝑃𝑢−𝑃𝐿
 *(CU - CL) or CL + 

CR−𝑃𝐿

𝑃𝑢−𝑃𝐿
 *(CU - CL)  (27) 

After the optimal capacity is identified, the corresponding number of slots for pre-

scheduled and same-day appointments can be identified to maximize the overall profit. The 

objective function is similar to equation (25) except that the optimal capacity is not equal to the 

sum of Ns and Np. Instead, the number of reserved same-day appointment slots  Ns will equal C* 

- Np + Np* αp so that overbooking is considered to reduce the impact of no-shows from pre-

scheduled appointments. The objective function is shown below: 

 Max �̅� = ∑ 𝑃𝑖
𝑛
𝑖=0  / n  (28) 

subject to Ns = C* - Np + Np* αp, where C*, Np, Ns are non-negative integers, and n is the number 

of observations in the dataset. 

4.2.2.3. Two-Stage Newsvendor Model with Demand Classification 

Different from the newsvendor model in the last section, this model adds one more step 

which classifies the appointment demands based on the distribution among different months and 

days of the week. The appointment demands were classified using Tukey’s HSD test, the results 

are shown in Table C1.  

Based on these results, the appointment demands can be classified into two groups 

(May/Jun & Other Months) by different months of the year and three groups (Mon/Tue/Wed, 

Thu/Fri, Sat) by different days of the week. As observed in Table C1, it is evident that there are 

fewer requests for appointments in May and June. Further, appointment requests on Saturdays 

are much less than on other days of the week, and appointment requests on Mondays, Tuesdays, 



 

72 

and Wednesdays have the highest daily average. Given these test results, the appointment 

demands can be classified into six groups, donated as ξs. These six groups include May/June – 

Monday/Tuesday/Wednesday, Other Months –Monday/Tuesday/Wednesday, May/June – 

Thursday/Friday, Other Months – Thursday/Friday, May/June – Saturday, Other Months – 

Saturday. Label them from ξ1 to ξ6 correspondingly.  

After the classification, apply the optimization function (28) for each group, and 

therefore, there will be an optimal average profit �̅�s for each group ξs. Hence, the overall average 

profit �̅� = ∑ �̅�6
𝑠=1 s*ns / ∑ 𝑛6

𝑠=1 s, where ns is the number of observations under each group. 

4.2.3. Scheduling Strategies 

Other than the three optimization methods, two scheduling strategies are examined in this 

chapter. One of the strategies is to try to identify two optimal values, Np and Ns, based on the 

historical data. The logic behind it is to reserve a certain percentage of available appointment 

slots for potential same-day appointments. Another strategy is to keep the Np and Ns flexible and 

try to identify their values based on the pre-scheduled appointment demands. The reason behind 

this strategy is simple. Since pre-scheduled demands can be known before the appointment date 

so that providers can adjust the corresponding Nps for different values of Dp.  

4.2.3.1. Fixed NP & NS 

Theoretically speaking, it is better to fulfill the same-day appointments first because 

same-day appointments usually have a lower no-show rate. As many studies have revealed, it is 

recommended to hold appointments open if the provider has a very high demand for same-day 
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appointments. However, this limitation of this suggestion is obvious. It is common sense to keep 

all appointments open if a high same-day appointment demand is given, but it is risky for the 

provider if the same-day appointment demand is low or fluctuating. Sometimes, the demand 

distribution does not follow any known distribution and cannot be predicted. Therefore, it is 

usually better to reserve a certain number of available slots for same-day appointments if the 

demand is not high enough or fluctuates wildly.  

To identify the average daily profit using this strategy, fixed Np and Ns values will be 

applied to each observation. In other words, Np and Ns are consistent in each working day, 

regardless of the difference in daily demand. Nevertheless, there is a minor difference between 

the three optimization methods mentioned in the previous section. For the single-stage stochastic 

program, both Np and Ns are the decision variables that need to be optimized, and the optimal 

capacity equals the sum of them. For the second optimization method, the optimal capacity C* is 

identified in the first stage, and only Np needs to be optimized in the second stage. Ns can then be 

calculated based on constraints (28). The C* - Np covers the appointment slots left in the 

capacity, and Np* αp covers the potential no-shows of the pre-scheduled appointments by 

overbooking the same-day appointments. As for the last optimization method, it is very similar to 

the second method except that fixed NP and Ns are calculated under each group, and they could 

be different due to the different demand distribution of each group. 
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4.2.3.2. Flexible NP & NS 

Unlike the first strategy, this scheduling strategy will allow a flexible NS corresponding 

to the DP. As shown in formula (24), the number of pre-scheduled appointments that are actually 

scheduled is min{DP, NP}, denoted by AP. And the number of same-day appointments that are 

actually scheduled is min{DS, NS}, denoted by AS. For a random value of AP, we can maximize 

the profit by changing the AS value according to (24) given the optimal capacity and the values 

of the parameters. As a result, an optimal AS value can be identified for a given AP value. 

Although the number of same-day appointment demands DS is usually unknown and difficult to 

control, the maximum number of same-day appointments to be scheduled NS is optimized when 

it equals this optimal AS. This is because AS is equal to the min{DS, NS}, which makes sure the 

daily profit is optimal if the DS value is equal to or larger than the optimized NS value. To 

demonstrate this process, an enumerate method is carried out with parameters and optimal 

capacity values given in Table 12. Using values in Table 12, an example of corresponding 

optimal NS values for a list of given AP values is shown in Table C2. 

Table 12. Given Values of Required Parameters and Capacity for Capacity Allocation 

R F LP LS θ 

10 3 3 3 13 

 

After the optimal NS is identified for a given AP, the daily profit can be calculated for any 

given DS. Assume there is a list of DS values with n observations, then those demands can be 

denoted from D1 to Dn, respective to the sequence of the observations in the list. Also, their 
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corresponding daily profit can be labeled as P1 to Pn. Therefore, the expected profit for each pair 

of AP and NS values can be calculated by summing the product of Pn with the corresponding 

probability of each Dn in the list. The results are presented in Table C3. Unlike the result in Table 

C2, Table C3 indicates that a higher NP is probably a better choice. This is reasonable since the 

DS can be small compared with the optimal NS. In this case, scheduling more pre-scheduled 

appointments would be safer to maximize the expected profit in case of the waste of the same-

day appointment capacity.  

Similarly, let the maximum number of pre-scheduled appointments allowed NP to equal 

the AP value for the given optimal NS in Table C3.  And consider a list of DP values with n 

observations, the expected profit for each pair of NP and NS values can be calculated by summing 

the product of profits for all DP values with the corresponding probabilities of DP in the list. The 

results are shown in Table C4, which indicates an optimal pair of NP and NS occurs when the NP 

value equals the maximum DP value in the list.  

To sum up, the strategy with flexible NP and NS values tends to schedule the pre-

scheduled appointment first and leave the rest of the capacity and overbooking slots for same-

day appointments and pre-scheduled appointment no-shows. Since pre-scheduled appointment 

demand is known, if we can fulfill the pre-scheduled appointments (except no-shows) first and 

make the NS open for the same-day appointments, it is probably better than just fixing NS and NP 

for all appointments. 
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4.3. Outputs & Results 

To evaluate the performances of the optimization methods and scheduling strategies in 

this study, the average daily profit, the expected annual profit, the optimal capacity, and the sum 

of NP and NS are compared. Further, a sensitivity analysis was proposed to study the impact of 

the related parameters on these indicators.  

To optimize profit, the first step is to identify the unit revenue R and the fixed cost F for 

each appointment slot. The problem with these two parameters is that they vary for different 

organizations, and largely depend on the types of appointments, thus, without knowing the 

information of the two parameters, dummy values were given to them in this study. The initial 

values for R and F were set to be 10 and 3, respectively. Also, the initial values of LP, LS, and θ 

were given as 3, 3, and 13 as indicated in Table12. Further, all parameters are considered 

consistent for all appointments in the dataset. Other than these parameters, αp and αs values used 

in this study were set to be the actual daily no-show rates of pre-scheduled and same-day 

appointments from the real dataset obtained from the medical center. 

4.3.1. Performance Comparisons 

The numerical results generated in this study are based on the real data obtained from the 

medical center. First, three optimization methods are compared. The results are shown in Table 

13. The results indicate that the two-stage newsvendor model has better performance than the 

single-stage stochastic program. One reason is that the single-stage stochastic program identifies 

the optimal capacity by adding the NP and NS. In this case, overbooking is not taken into 
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consideration. Meanwhile, the two-stage newsvendor model has identified the optimal capacity 

based on the distribution of the demand. Thus, in the second stage, only NP needs to be 

identified, and NS can be formulated to cover the no-shows of the pre-scheduled appointments. 

Thus, the sum of NP and NS can allow an overbooking over the capacity. The best optimization 

method is the two-stage newsvendor model with classified demands because the average daily 

profit improved significantly. This is because the demands are not balanced. Therefore, 

classifying the demands could improve the accuracy of the model that helps to build a better 

allocation of capacity. The detailed capacity allocation plans are presented in Table 14.  

Table 13. Comparison of Three Optimization Methods 

Methods N 
Average 

Profit 

Annual 

Profit 
C Np Ns Np+Ns 

Single Stochastic 306 $1,448 $442,955 458 325 133 458 

Two-Stage 

Newsvendor 
306 $1,519 $464,856 483 364 167 531 

Newsvendor 

(Classified Group) 
306 $1,809 $553,531 NA NA NA NA 

 

Table 14. Capacity Allocation for Two-Stage Newsvendor Model Under Each Group 

Newsvendor  

(Classified Group) 

N Average 

Profit 

Total 

Profit 

C Np Ns Np+Ns 

Group 1: 

May/June+Mon/Tue/Wed 

26 $1,804 $46,901 442 323 167 490 

Group 2: 

May/June+Thu/Fri 

18 $1,198 $21,569 320 274 87 361 

Group 3:  

May/June+Sat 

8 $137 $1,099 31 21 12 33 

Group 4: 

Other+Mon/Tue/Wed 

125 $2,575 $321,931 530 385 194 579 

Group 5:  

Other+Thu/Fri 

85 $1,809 $153,778 404 351 100 451 

Group 6:  

Other+Sat 

44 $188 $8,252 47 31 20 51 
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Since the newsvendor model with classified demand has the best performance, two 

strategies were applied using this optimization method. The results of the first strategy (Strategy 

1) are discussed in Table 13 and Table 14. For the second strategy (Strategy 2), the results are 

indicated in Table 15. Comparing Table 14 with Table 15, it is easy to see that the second 

strategy slightly outperforms the first strategy with a higher average daily profit and allows for 

more appointments to be scheduled as shown in Figure C1 and Figure C2. Note that there is no 

fixed NP and NS for the second strategy, therefore only the maximum number of appointments 

that can be scheduled is indicated. This also indicated that Strategy 2 allows more overbooking 

than Strategy 1. The average daily profit for the newsvendor model using Strategy 2 is $1,838, 

and the total annual profit is $562,464. This also outperformed all other options as indicated in 

Figure 16.  

Table 15. Capacity Allocation for the Proposed Optimization Method Using Strategy 2 

Newsvendor  

(Classified Group) 

N Average 

Profit 

Total 

Profit 

C Max (Np+Ns) 

Group 1: 

May/June+Mon/Tue/Wed 

26 $1,850 $48,099 442 512 

Group 2: 

May/June+Thu/Fri 

18 $1,230 $22,140 320 373 

Group 3:  

May/June+Sat 

8 $151 $1,205 31 35 

Group 4: 

Other+Mon/Tue/Wed 

125 $2,602 $325,237 530 602 

Group 5:  

Other+Thu/Fri 

85 $1,849 $157,171 404 465 

Group 6:  

Other+Sat 

44 $196 $8,612 47 55 
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Figure 16. Comparison of Average Daily Profit for All Methods and Strategies 

4.3.2. Sensitivity Analysis 

To study the impact of the given parameters on the indicators, a sensitivity analysis is 

conducted. Since the combination of the third optimization method and the second strategy 

outperformed all other combinations, the sensitivity analysis is only conducted for this option. 

Also, for the sensitivity analysis, it is assumed that the change of unit revenue R and unit fixed 

cost F will not change how much a patient needs to pay for a visit because there have been many 

studies that have stated that the amount paid has a significant impact on patient no-shows 

(Osborn et al., 2016; Mohamed et al., 2016).  

Take group 1 as an example, the sensitivity analysis results were demonstrated in Figures 

C3-C9. Comparing Figure C3 and Figure C4, it is clear that there is a strong positive correlation 

between unit revenue R and the average profit, and a strong negative correlation between fixed 

cost F and the average profit. However, the increase of the unit revenue R does not have a 
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significant impact on the optimal capacity and the maximum number of appointments that can be 

scheduled, but the decrease of the unit revenue does. On the other hand, the fixed cost does have 

a strong negative correlation with both optimal capacity and the maximum number of 

appointments allowed. This is probably because demand is limited; therefore, there is no need to 

increase capacity and appointments scheduled very much to maximize the expected profit.  

Comparing Figure C5 and Figure C6, both no-show rates have a strong positive 

correlation with the maximum number of appointments that can be scheduled but have a strong 

negative correlation with the average daily profit. This makes sense because a higher no-show 

rate will reduce the profit that can be generated, and therefore, to compensate for the loss, it is 

necessary to have more overbooking. However, the no-show rates won’t impact the optimal 

capacity since the optimal capacity using the newsvendor model only depends on the unit 

revenue R and fixed cost F.  

Comparing Figure C7 and Figure C8, it is interesting to see that they have no impact on 

the maximum appointments allowed. This probably indicates that the proposed strategy is very 

efficient at eliminating appointment no-shows. Both LP and LS will have a negative correlation 

with the average daily profit, but LP has more impact on it. There are two explanations for this 

phenomenon. First, the no-show rate for the pre-scheduled appointments is usually higher than 

the no-show rate for the same-day appointments. Second, this strategy tends to schedule a large 

number of pre-scheduled appointments, which is explained in the previous section. Also, they do 

not have any impact on the optimal capacity in this model. 
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As for Figure C9, the increase of the penalty cost for each customer who shows up 

beyond capacity θ has almost no impact on the average daily profit and the maximum number of 

appointments that can be scheduled, but the decrease of θ does, especially on the maximum 

number of appointments allowed. This proves the proposed combination is robust to the 

appointment conflicts but sensitive to appointment no-shows. Hence, this combination of 

scheduling suggests a large amount of overbooking if θ is small to compensate for the impact of 

appointment no-shows. Again, θ does not have any impact on optimal capacity. 

4.4. Summary & Discussion 

In this study, three optimization methods and two scheduling strategies were compared. 

The proposed combination not only generated the highest average daily profit but also allowed 

the highest number of appointments to be scheduled. This indicates the flexibility of the 

combination. One of the major advantages is the high utilization of the capacity. Since the pre-

scheduled appointments can be known before the appointment date, this proposed strategy will 

first schedule all pre-scheduled appointments until (1- αP)*DP equals the optimal capacity 

identified in the first stage using the newsvendor model. If (1- αP)*DP is less than the optimal 

capacity, same-day appointments can then be scheduled. The number of same-day appointments 

that can be scheduled NS will be (C* - (1- αP)*DP)/(1- αS). As a result, the maximum number of 

conflicts will be αP*DP + αS*DS if and only if all scheduled appointments are utilized. In other 

words, the proposed combination is very efficient at utilizing the appointment capacity and very 

robust to appointment conflicts.  
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This study also classified the appointment demands into different groups based on 

empirical distributions instead of the Poisson distribution. The reason for this is because the 

distributions of demands in some groups do not fit any commonly known distribution type. 

Further, the appointment demands in this dataset are highly related to the office hours of the 

medical center, which explains the difference in appointment demands for different days of the 

week shown in Table C1. Therefore, it is reasonable to use empirical distributions for all demand 

distributions.  

One drawback of this study is that all models did not consider the appointment costs (e.g., 

transportation cost and penalty cost paid by patients), from the patient’s side, which would 

certainly impact the overall no-show rate and the total profit. Hence, for future studies, it is 

necessary to consider the cost from the patient’s perspective as one of the decision variables. 

Further, it would be interesting to add a percentage (other than 100% in this study) of DP that 

would be scheduled or set a bar (for example, schedule all pre-scheduled appointments if it is 

less than N for a given capacity. If the DP is larger than N, leave it for same-day appointments). 

Also, a combination of these two strategies by setting a bar value N for NP first and covering 

only a flexible percentage of the DP if it exceeds N can be studied. 
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5. CONCLUSION 

This dissertation has studied several traditional models and proposed new approaches for 

three objectives, which are projecting the relationship between appointment utilization and IWT, 

predicting the probability of no-shows for patients without profiling them, and developing an 

optimization approach and scheduling strategy for outpatient capacity allocation. The results 

indicated that the proposed methods generally outperformed the traditional ones. Further, the 

results in this dissertation corroborated the results and outputs reported in the previous literature. 

For example, it has been proved by many studies that longer IWT is likely to lead to more 

appointment no-shows.  

The findings and methods in this study can be used to help providers to make more 

accurate predictions and improved allocation plans. In a traditional outpatient appointment 

system, predictions and optimizations are not applied in such a system. These clinics usually 

schedule patients based on previous experience or routine practice. As a result, many resources 

are wasted, and patients are dissatisfied. The proposed models and approaches could 

significantly reduce the waste of resources and improve the accessibility of healthcare services 

for patients.  

Nevertheless, there are some limitations to this study. The first and biggest limitation is 

the dataset obtained. Although one of the objectives of this dissertation is to avoid profiling 

patients, it is unlikely to give a very accurate prediction of patient’s behavior on no-shows 

without demographic and personal information. Simply speaking, the dataset used in this 
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dissertation missed some important information. Therefore, no-show classification becomes very 

challenging. Another limitation of this study is that the generalizability of the results and controls 

may not be met. This is due to the irregular distribution of the data and data groups being 

classified instead of randomly assigned. All of these will affect the interpretation of the results.  

Because of these limitations, future studies should focus on three aspects. First, to collect 

more related information to enhance the models and approaches so that more accurate 

predictions and better optimizations could be generated. The second aspect is to discover more 

information from the current dataset and find a way to test the assumptions based on it. Both 

aspects are related to the dataset, but the study can also be improved by refining the current 

models or developing new approaches to generate more accurate predictions and better 

optimizations.  
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APPENDIX A. SUPPLEMENT MATERIAL FOR UTILIZATION PROJECTION 

Table A1. Sample Data Variables & Description. 

Variable Description 

Appointment Date The date of the appointment  

Appt Time Exact appointment time (e.g., 9:00 am) 

DOW Day of the week  

Session Name Including morning session (AM), afternoon session (PM), 

and evening session (EVE). 

Appointment Date – Scheduled 

Date 

Same as IWT, that is, the time difference between the 

appointment date and the scheduled date.  

Scheduled Date The date when the patient is scheduled  

Appointment Status There are four statuses of the appointment: patient no-show, 

appointment utilized, appointment canceled, appointment 

canceled by the physician.  

Cancellation Reason The reason why patients cancel his/her appointment 

Canceled Date The date of the cancellation 

Duration_of_Appt Duration of the appointment (vary from 10mins to 90 mins) 

Is No Show? Binary decision. 1 if yes, 0 otherwise 

Is Same-Day Appointment? Binary decision. 1 if yes, 0 otherwise 

Is Same-Day Cancellation? Binary decision. 1 if yes, 0 otherwise 

Location Location of the clinic 

Provider Name Name of the provider 

Scheduling Provider 

Designation 

The designation of provider that has been scheduled to 

patients.  

Provider Type The type of the provider 

Patient # A specific ID for each patient  

Walk-in? Binary decision. 1 if yes, 0 otherwise 
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Table A2. Parameters, R2, MSE, MAE, and RMSE for all Models  

Model Parameter Value Model Parameter Value 

Linear Regression 

alin 0.6301 

BG Model 

as 0.5507 

blin -0.0018 alpha 1.8014 

R^2 0.2984 beta 5.6545 

MSE 0.0021 R^2 0.4565 

MAE 0.0320 MSE 0.0016 

RMSE 0.0458 MAE 0.0303 

Exponential Regression 

ae -0.4859 RMSE 0.0403 

be -0.0020 

BdW Model 

as 0.5506 

R^2 0.3068 alpha 8314.1850 

MSE 0.0021 beta 24559.6700 

MAE 0.0319 c 0.7579 

RMSE 0.0455 R^2 0.4670 

Quadratic Regression 

aq 0.6729 MSE 0.0016 

b1 -0.0061 MAE 0.0298 

b2 0.0001 RMSE 0.0399 

R^2 -1.5666 

MSE 0.0077 

MAE 0.0574 

RMSE 0.0876 

Logistic Regression 

alog 0.5462 

blog -0.0076 

R^2 0.0247 

MSE 0.0029 

MAE 0.0388 

RMSE 0.0540 
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 Table A3. R-squared (R^2) of All Models for Different Appointment Statuses 

Comparison of R^2 
 

Linear Exponential Quadratic Logistic BG BdW 

Utilization 0.298401 0.306845 -1.566643 0.024704 0.456543 0.467014 

No-show 0.016449 0.015773 0.076598 0.015873 0.140357 0.149185 

Cancellation 0.081063 0.076970 0.146271 0.078388 0.093917 0.225949 

BMP 0.601708 0.626573 0.624874 0.000000 0.027520 0.365258 

 

 Table A4. Mean Square Error (MSE) of All Models for Different Appointment Statuses 

Comparison of MSE 
 

Linear Exponential Quadratic Logistic BG BdW 

Utilization 0.002095 0.002070 0.007665 0.002913 0.001623 0.001592 

No-show 0.000609 0.000610 0.000572 0.000610 0.000533 0.000527 

Cancellation 0.001651 0.001659 0.001534 0.001656 0.001628 0.001391 

BMP 0.000291 0.000273 0.000274 0.000731 0.000711 0.000464 

 

 Table A5. Mean Absolute Error (MAE) of All Models for Different Appointment Statuses 

Comparison of MAE 
 

Linear Exponential Quadratic Logistic BG BdW 

Utilization 0.032035 0.031918 0.038796 0.057429 0.030267 0.029753 

No-show 0.017028 0.017047 0.015774 0.017045 0.016430 0.016216 

Cancellation 0.028979 0.029023 0.027972 0.029007 0.029310 0.025348 

BMP 0.012924 0.012032 0.012053 0.021618 0.021259 0.015967 

 

Table A6. Root Mean Squared Error (RMSE) of All Models for Different Appointment Statuses 

Comparison of RMSE 
 

Linear Exponential Quadratic Logistic BG BdW 

Utilization 0.045775 0.045499 0.053970 0.087552 0.040287 0.039897 

No-show 0.024686 0.024695 0.023919 0.024693 0.023079 0.022960 

Cancellation 0.040636 0.040726 0.039167 0.040695 0.040350 0.037295 

BMP 0.017066 0.016525 0.016562 0.027041 0.026667 0.021544 
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 Figure A1. Equations for Recursion in Excel 
 

 

 Figure A2. Values for Recursion in Excel 
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Figure A3. Entries for Excel Solver 
 

 

 Figure A4. Equations for Recursion of BdW Model in Excel 
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Figure A5. Model Estimates Versus Actual Appointment Utilization 
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Figure A6. Model Estimates Versus Actual Appointment Utilization for Open-Source Data 
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APPENDIX B. SUPPLEMENT MATERIAL FOR NO-SHOW PREDICTION 

Table B1. Summary of Patient No-show Prediction Studies in Recent Years. 

B. Study Model Factors Evaluation Methods 

Mohammadi 

et al. (2018) 

Multivariable logistic 

regression, Artificial 

neural network, naïve 

Bayes classifier. 

Clinic operational and financial data, 

patients’ demographic information and 

clinical characteristics. 

Area under the ROC curve 

(AUC-ROC), Percentage of 

correct classification. 

Daggy et al. 

(2010) 

Multivariable logistic 

regression 

Patients’ demographic information, 

appointment details, appointment 

attendance records, and clinical 

characteristics 

Area under the ROC curve 

(AUC-ROC), Hosmer–

Lemeshow test. 

Samuels et al. 

(2015) 

Multivariable logistic 

regression 

Patients’ demographic information, 

appointment details, appointment 

attendance records, and providers’ 

information. 

Chi-square test and Fisher’s 

exact test. 

Kurasawa et 

al. (2016) 

Multivariable logistic 

regression 

Patients’ clinical condition, 

demographic information, 

appointment details, medical 

information, etc. 

Area under the ROC curve 

(AUC-ROC), F-measure. 

Reid et al. 

(2015) 

Multivariable logistic 

regression 

Patients’ demographic information, 

appointment attendance records, 

appointment type, clinical diagnoses, 

and clinical procedure information. 

Area under the ROC curve 

(AUC-ROC) 

Farro (2013) Multivariate logistic 

regression 

Patients’ demographic factors, 

environmental factors, and patients’ 

behavior. 

R-squared (R2 ) statistic. 

Alaeddini et 

al. (2015) 

Hybrid probabilistic 

model based on 

logistic regression and 

empirical Bayesian 

inference. 

Patients’ social and demographic 

information, appointment attendance 

records, and clinical characteristics. 

Mean Square Error (MSE), 

Area under the ROC curve 

(AUC-ROC). 

Elvira et al. 

(2017) 

Gradient boosting 

machine (GMB) 

model 

Patients’ social and demographic 

information, appointment details, and 

attendance records. 

Area under the ROC curve 

(AUC-ROC), Confusion 

matrix. 

Huang and 

Hanauer 

(2014) 

Multivariate logistic 

regression 

Patients’ demographic information, 

appointment characteristics, insurance 

information. 

Goodness of Fit test with 

Anderson-Darling (AD) 

statistic. 
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Table B2. Parameter Estimates of the GLM Model 

Dependent Variable:   No-show 

Parameter B 

Std. 

Error t Sig. 

95% Confidence 

Interval Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Lower 

Bound 

Upper 

Bound 

Intercept .012 .022 .547 .584 -.031 .056 .000 .547 .085 

[Month=Jun] -.002 .026 -.069 .945 -.053 .049 .000 .069 .051 

[Month=Mar] -.012 .025 -.463 .643 -.060 .037 .000 .463 .075 

[Month=Other] 0a . . . . . . . . 

[DOW=M/F] .009 .022 .422 .673 -.034 .053 .000 .422 .071 

[DOW=Other] .010 .022 .436 .663 -.033 .053 .000 .436 .072 

[DOW=Sat] 0a . . . . . . . . 

[Duration=30/60] .357 .079 4.549 .000 .203 .511 .000 4.549 .995 

[Duration=Other] 0a . . . . . . . . 

[Sameday=0] .173 .018 9.347 .000 .137 .209 .001 9.347 1.000 

[Sameday=1] 0a . . . . . . . . 

[Location=Other] -.006 .019 -.337 .736 -.043 .031 .000 .337 .063 

[Location=STE700] 0a . . . . . . . . 

[Provider=Faculty] .007 .015 .480 .632 -.023 .037 .000 .480 .077 

[Provider=Other] 0a . . . . . . . . 

IWT .001 .000 2.613 .009 .000 .002 .000 2.613 .743 

[DOW=M/F] * 

[Duration=30/60] 

.052 .073 .710 .478 -.091 .195 .000 .710 .109 

[DOW=M/F] * 

[Duration=Other] 

0a . . . . . . . . 

[DOW=Other] * 

[Duration=30/60] 

.076 .073 1.039 .299 -.067 .218 .000 1.039 .180 

[DOW=Other] * 

[Duration=Other] 

0a . . . . 

 

. . . . 

[DOW=Sat] * 

[Duration=30/60] 

0a  . . . . . . . 

[DOW=Sat] * 

[Duration=Other] 

0a . . . . . . . . 

[DOW=M/F] * IWT -.001 .000 -2.273 .023 -.002 .000 .000 2.273 .623 

[DOW=Other] * 

IWT 

-.001 .000 -2.717 .007 -.002 .000 .000 2.717 .775 

[DOW=Sat] * IWT 0a . . . . . . . . 

[DOW=M/F] * 

[Location=Other] 

.015 .018 .812 .417 -.021 .051 .000 .812 .128 

[DOW=M/F] * 

[Location=STE700] 

0a . . . . . . . . 

[DOW=Other] * 

[Location=Other] 

.016 .018 .907 .365 -.019 .052 .000 .907 .148 

[DOW=Other] * 

[Location=STE700] 

0a . . . . . . . . 

[DOW=Sat] * 

[Location=Other] 

0a . . . . . . . . 

[DOW=Sat] * 

[Location=STE700] 

0a . . . . . . . . 

[Month=Jun] * 

[DOW=M/F] 

.002 .024 .100 .920 -.044 .049 .000 .100 .051 
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Table B2. Parameter Estimates of the GLM Model (continued) 

95% Confidence 

Interval 

Parameter B 

Std. 

Error t Sig. 

Lower 

Bound 

Upper 

Bound 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

[Month=Jun] * 

[DOW=Other] .005 .024 .221 .825 

-.041 .052 

.000 .221 .056 

[Month=Jun] * 

[DOW=Sat] 

0a . . . . . . . . 

[Month=Mar] * 

[DOW=M/F] 

.010 .023 .435 .664 -.035 .054 .000 .435 .072 

[Month=Mar] * 

[DOW=Other] 

-.006 .022 -.246 .805 -.050 .038 .000 .246 .057 

[Month=Mar] * 

[DOW=Sat] 

0a . . . . . . . . 

[Month=Other] * 

[DOW=M/F] 

0a . . . . . . . . 

[Month=Other] * 

[DOW=Other] 

0a . . . . . . . . 

[Month=Other] * 

[DOW=Sat] 

0a . . . . . . . . 

[DOW=M/F] * 

[Provider=Faculty] 

.001 .014 .041 .968 -.027 .028 .000 .041 .050 

[DOW=M/F] * 

[Provider=Other] 

0a . . . . . . . . 

[DOW=Other] * 

[Provider=Faculty] 

.002 .014 .165 .869 -.025 .029 .000 .165 .053 

[DOW=Other] * 

[Provider=Other] 

0a . . . . . . . . 

[DOW=Sat] * 

[Provider=Faculty] 

0a . . . . . . . . 

[DOW=Sat] * 

[Provider=Other] 

0a . . . . . . . . 

[DOW=M/F] * 

[Sameday=0] 

-.049 .018 -2.784 .005 -.083 -.014 .000 2.784 .795 

[DOW=M/F] * 

[Sameday=1] 

0a . . . . . . . . 

[DOW=Other] * 

[Sameday=0] 

-.066 .017 -3.800 .000 -.100 -.032 .000 3.800 .967 

[DOW=Other] * 

[Sameday=1] 

0a . . . . . . . . 

[DOW=Sat] * 

[Sameday=0] 

0a . . . . . . . . 

[DOW=Sat] * 

[Sameday=1] 

0a . . . . . . . . 

[Duration=30/60] * 

IWT 

.000 .000 -.793 .428 -.001 .001 .000 .793 .125 

[Duration=Other] * 

IWT 

0a . . . . . . . . 

[Duration=30/60] * 

[Location=Other] 

-.003 .032 -.107 .915 -.067 .060 .000 .107 .051 
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Table B2. Parameter Estimates of the GLM Model (continued) 

95% Confidence 

Interval 

Parameter B 

Std. 

Error t Sig. 

Lower 

Bound 

Upper 

Bound 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

[Duration=30/60] * 

[Location=STE700] 

0a . . . . . . . . 

[Duration=Other] * 

[Location=Other] 

0a . . . . . . . . 

[Duration=Other] * 

[Location=STE700] 

0a . . . . . . . . 

[Month=Jun] * 

[Duration=30/60] 

-.016 .030 -.527 .598 -.075 .043 .000 .527 .082 

[Month=Jun] * 

[Duration=Other] 

0a . . . . . . . . 

[Month=Mar] * 

[Duration=30/60] 

-.005 .031 -.159 .874 -.066 .056 .000 .159 .053 

[Month=Mar] * 

[Duration=Other] 

0a . . . . . . . . 

[Month=Other] * 

[Duration=30/60] 

0a . . . . . . . . 

[Month=Other] * 

[Duration=Other] 

0a . . . . . . . . 

[Duration=30/60] * 

[Provider=Faculty] 

.023 .060 .388 .698 -.094 .141 .000 .388 .067 

[Duration=30/60] * 

[Provider=Other] 

0a . . . . . . . . 

[Duration=Other] * 

[Provider=Faculty] 

0a . . . . . . . . 

[Duration=Other] * 

[Provider=Other] 

0a . . . . . . . . 

[Duration=30/60] * 

[Sameday=0] 

-.540 .025 -21.794 .000 -.589 -.492 .004 21.794 1.000 

[Duration=30/60] * 

[Sameday=1] 

0a . . . . . . . . 

[Duration=Other] * 

[Sameday=0] 

0a . . . . . . . . 

[Duration=Other] * 

[Sameday=1] 

0a . . . . . . . . 

[Location=Other] * 

IWT 

.000 .000 2.132 .033 2.438E-5 .001 .000 2.132 .568 

[Location=STE700] 

* IWT

0a . . . . . . . . 

[Month=Jun] * IWT 3.784E-6 .000 .022 .982 .000 .000 .000 .022 .050 

[Month=Mar] * IWT .000 .000 .747 .455 .000 .000 .000 .747 .116 

[Month=Other] * 

IWT 

0a . . . . . . . . 

[Provider=Faculty] * 

IWT 

.000 .000 -3.559 .000 -.001 .000 .000 3.559 .945 

[Provider=Other] * 

IWT 

0a . . . . . . . . 

[Sameday=0] * IWT 0a . . . . . . . . 
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Table B2. Parameter Estimates of the GLM Model (continued) 

95% Confidence 

Interval 

Parameter B 

Std. 

Error t Sig. 

Lower 

Bound 

Upper 

Bound 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

[Sameday=1] * IWT 0a . . . . . . . . 

[Month=Jun] * 

[Location=Other] 

.005 .009 .559 .576 -.013 .023 .000 .559 .087 

[Month=Jun] * 

[Location=STE700] 

0a . . . . . . . . 

[Month=Mar] * 

[Location=Other] 

.008 .009 .936 .349 -.009 .026 .000 .936 .155 

[Month=Mar] * 

[Location=STE700] 

0a . . . . . . . . 

[Month=Other] * 

[Location=Other] 

0a . . . . . . . . 

[Month=Other] * 

[Location=STE700] 

0a . . . . . . . . 

[Location=Other] * 

[Provider=Faculty] 

-.002 .006 -.297 .767 -.013 .010 .000 .297 .060 

[Location=Other] * 

[Provider=Other] 

0a . . . . . . . . 

[Location=STE700] 

* [Provider=Faculty]

0a . . . . . . . . 

[Location=STE700] 

* [Provider=Other]

0a . . . . . . . . 

[Sameday=0] * 

[Location=Other] 

-.024 .008 -2.929 .003 -.040 -.008 .000 2.929 .834 

[Sameday=0] * 

[Location=STE700] 

0a . . . . . . . . 

[Sameday=1] * 

[Location=Other] 

0a . . . . . . . . 

[Sameday=1] * 

[Location=STE700] 

0a . . . . . . . . 

[Month=Jun] * 

[Provider=Faculty] 

.001 .007 .089 .929 -.013 .015 .000 .089 .051 

[Month=Jun] * 

[Provider=Other] 

0a . . . . . . . . 

[Month=Mar] * 

[Provider=Faculty] 

-.009 .007 -1.286 .198 -.023 .005 .000 1.286 .251 

[Month=Mar] * 

[Provider=Other] 

0a . . . . . . . . 

[Month=Other] * 

[Provider=Faculty] 

0a . . . . . . . . 

[Month=Other] * 

[Provider=Other] 

0a . . . . . . . . 

[Month=Jun] * 

[Sameday=0] 

.012 .011 1.162 .245 -.008 .033 .000 1.162 .213 

[Month=Jun] * 

[Sameday=1] 

0a . . . . . . . . 

[Month=Mar] * 

[Sameday=0] 

-.017 .010 -1.696 .090 -.037 .003 .000 1.696 .396 



109 

Table B2. Parameter Estimates of the GLM Model (continued) 

95% Confidence 

Interval 

Parameter B 

Std. 

Error t Sig. 

Lower 

Bound 

Upper 

Bound 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

[Month=Mar] * 

[Sameday=1] 

0a . . . . . . . . 

[Month=Other] * 

[Sameday=0] 

0a . . . . . . . . 

[Month=Other] * 

[Sameday=1] 

0a . . . . . . . . 

[Sameday=0] * 

[Provider=Faculty] 

.000 .006 .049 .961 -.012 .013 .000 .049 .050 

[Sameday=0] * 

[Provider=Other] 

0a . . . . . . . . 

[Sameday=1] * 

[Provider=Faculty] 

0a . . . . . . . . 

[Sameday=1] * 

[Provider=Other] 

0a . . . . . . . . 

a. This parameter is set to zero because it is redundant.

b. Computed using alpha = .05
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Figure B1. Decision Tree Plot (Ctree Model) for Appointment No-show Prediction 
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Where Provider Types ∈ (Resident, NP, and Other) 

 

Figure B2. Part 1 of Decision Tree Plot Using Conditional Inference Trees Model 
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Figure B3. Part 2 of Decision Tree Plot Using Conditional Inference Trees Model 
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Figure B4. Part 3 of Decision Tree Plot Using Conditional Inference Trees Model 
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Where Provider Types ∈ (Nurse, Fellow, and Faculty) 

 

Figure B5. Part 4 of Decision Tree Plot Using Conditional Inference Trees Model 
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APPENDIX C. SUPPLEMENT MATERIAL FOR CAPACITY ALLOCATION 

Table C1. Tukey's Studentized Range (HSD) Test for Demand 

Means with the same letter 

are not significantly different. 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N Month Tukey Grouping Mean N DOW 

  A   426.96 25 Jan A 447.46 56 Mon 

B A   373.34 29 Mar A 396.02 62 Wed 

B A   365.75 24 Nov A 389.92 64 Tue 

B A   362.76 25 Feb B 319.15 62 Fri 

B A   362.68 25 Sep B 296.9 60 Thu 

B A   348.88 26 Oct C 34.64 59 Sat 

B A   345.15 26 Dec 
    

B A   344.37 30 Aug 
    

B A C 322.85 26 Jul 
    

B A C 303.86 29 Apr 
    

B   C 226.63 46 May 
    

    C 188.25 52 Jun 
    

 

 

Table C2. The Expected Profit and Optimal Ns Given Ap  

Ap Ns  Expected Profit if Ds ≥ Ns  

30 456 $                               2,968.71  

117 375 $                               2,950.05  

167 329 $                               2,939.31  

196 302 $                               2,933.08  

225 275 $                               2,926.85  

274 230 $                               2,916.33  

295 210 $                               2,911.82  

323 184 $                               2,905.80  

353 156 $                               2,899.35  

391 121 $                               2,891.18  

 

 

 



 

 

 

1
1
6
 

Table C3. Expected Profit for Each Pair of Ap and Ns Given Ds. 

  
Ds 

 

Ap Ns 98 119 128 138 148 164 173 194 205 212 Expected profit 

30 456 $  (206.86) $   (19.00) $     61.51 $   150.97 $   240.42 $   383.55 $   464.07 $   651.92 $   750.33 $   812.95 $         328.99 

117 375 $   496.29 $   684.15 $   764.66 $   854.11 $   943.57 $1,086.70 $1,167.21 $1,355.07 $1,453.47 $1,516.09 $       1,032.13 

167 329 $   900.39 $1,088.25 $1,168.76 $1,258.22 $1,347.68 $1,490.81 $1,571.32 $1,759.18 $1,857.58 $1,920.20 $       1,436.24 

196 302 $1,134.78 $1,322.63 $1,403.15 $1,492.60 $1,582.06 $1,725.19 $1,805.70 $1,993.56 $2,091.96 $2,154.58 $       1,670.62 

225 275 $1,369.16 $1,557.02 $1,637.53 $1,726.98 $1,816.44 $1,959.57 $2,040.08 $2,227.94 $2,326.34 $2,388.96 $       1,905.00 

274 230 $1,765.18 $1,953.04 $2,033.55 $2,123.01 $2,212.47 $2,355.60 $2,436.11 $2,623.97 $2,722.37 $2,784.99 $       2,301.03 

295 210 $1,934.91 $2,122.77 $2,203.28 $2,292.73 $2,382.19 $2,525.32 $2,605.83 $2,793.69 $2,892.09 $2,904.73 $       2,465.75 

323 184 $2,161.21 $2,349.07 $2,429.58 $2,519.03 $2,608.49 $2,751.62 $2,832.13 $2,898.54 $2,898.54 $2,898.54 $       2,634.68 

353 156 $2,403.67 $2,591.53 $2,672.04 $2,761.50 $2,850.96 $2,891.92 $2,891.92 $2,891.92 $2,891.92 $2,891.92 $       2,773.93 

391 121 $2,710.79 $2,890.00 $2,883.53 $2,883.53 $2,883.53 $2,883.53 $2,883.53 $2,883.53 $2,883.53 $2,883.53 $       2,866.90 

 

Table C4. Expected Profit for Each Pair of Np and Ns Given Dp. 

  
Dp 

 

Np Ns 117 167 196 196 225 274 295 323 353 295 Expected profit 

30 456 $328.99 $328.99 $328.99 $328.99 $328.99 $328.99 $328.99 $328.99 $328.99 $328.99 $328.99 

117 375 $1,032.13 $1,032.13 $1,032.13 $1,032.13 $1,032.13 $1,032.13 $1,032.13 $1,032.13 $1,032.13 $1,032.13 $1,032.13 

167 329 $1,032.13 $1,436.24 $1,436.24 $1,436.24 $1,436.24 $1,436.24 $1,436.24 $1,436.24 $1,436.24 $1,436.24 $1,395.83 

196 302 $1,032.13 $1,436.24 $1,670.62 $1,670.62 $1,670.62 $1,670.62 $1,670.62 $1,670.62 $1,670.62 $1,670.62 $1,583.33 

225 275 $1,032.13 $1,436.24 $1,670.62 $1,670.62 $1,905.00 $1,905.00 $1,905.00 $1,905.00 $1,905.00 $1,905.00 $1,723.96 

274 230 $1,032.13 $1,436.24 $1,670.62 $1,670.62 $1,905.00 $2,301.03 $2,301.03 $2,301.03 $2,301.03 $2,301.03 $1,921.98 

295 210 $1,032.13 $1,436.24 $1,670.62 $1,670.62 $1,905.00 $2,301.03 $2,465.75 $2,465.75 $2,465.75 $2,465.75 $1,987.87 

323 184 $1,032.13 $1,436.24 $1,670.62 $1,670.62 $1,905.00 $2,301.03 $2,465.75 $2,634.68 $2,634.68 $2,465.75 $2,021.65 

353 156 $1,032.13 $1,436.24 $1,670.62 $1,670.62 $1,905.00 $2,301.03 $2,465.75 $2,634.68 $2,773.93 $2,465.75 $2,035.58 

391 121 $1,032.13 $1,436.24 $1,670.62 $1,670.62 $1,905.00 $2,301.03 $2,465.75 $2,634.68 $2,773.93 $2,465.75 $2,035.58 
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Table C5. Empirical Distribution for Demands under Each Group 

 

 

 

 

ξ1: May/June - Mon/Tue/Wed ξ2: May/June - Thu/Fri ξ3: May/June – Sat 

Date Sum of 

Demand 

CDF Date Sum of 

Demand 

CDF Date Sum of 

Demand 

CDF 

5/9/2016 5 0.0204 5/6/2016 1 0.0294 5/28/2016 1 0.0667 

5/11/2016 26 0.0408 5/12/2016 32 0.0588 5/14/2016 2 0.1333 

5/10/2016 40 0.0612 6/30/2017 34 0.0882 5/21/2016 5 0.2000 

5/18/2016 43 0.0816 5/13/2016 35 0.1176 6/4/2016 8 0.2667 

5/16/2016 49 0.1020 6/29/2017 43 0.1471 6/11/2016 10 0.3333 

5/17/2016 58 0.1224 5/19/2016 55 0.1765 6/18/2016 13 0.4000 

5/24/2016 59 0.1429 5/26/2016 60 0.2059 6/17/2017 16 0.4667 

5/25/2016 90 0.1633 5/20/2016 67 0.2353 6/24/2017 16 0.5333 

5/23/2016 92 0.1837 5/27/2016 75 0.2647 6/25/2016 18 0.6000 

5/31/2016 98 0.2041 6/2/2016 104 0.2941 6/10/2017 27 0.6667 

6/1/2016 98 0.2245 6/9/2016 112 0.3235 5/27/2017 31 0.7333 

6/28/2017 101 0.2449 6/3/2016 114 0.3529 6/3/2017 31 0.8000 

6/7/2016 122 0.2653 6/22/2017 132 0.3824 5/13/2017 32 0.8667 

6/27/2017 127 0.2857 6/23/2017 141 0.4118 5/6/2017 43 0.9333 

6/13/2016 128 0.3061 6/10/2016 151 0.4412 5/20/2017 44 1.0000 

6/6/2016 145 0.3265 6/16/2016 156 0.4706 

6/8/2016 154 0.3469 6/23/2016 194 0.5000 

6/26/2017 180 0.3673 6/16/2017 202 0.5294 

6/14/2016 187 0.3878 6/17/2016 212 0.5588 

6/20/2016 233 0.4082 6/24/2016 218 0.5882 

6/15/2016 238 0.4286 6/15/2017 239 0.6176 

6/21/2017 241 0.4490 6/8/2017 252 0.6471 

6/20/2017 253 0.4694 6/30/2016 259 0.6765 

6/21/2016 254 0.4898 5/25/2017 302 0.7059 

6/22/2016 276 0.5102 6/9/2017 316 0.7353 

6/27/2016 280 0.5306 6/2/2017 318 0.7647 

6/19/2017 282 0.5510 5/12/2017 328 0.7941 

6/14/2017 290 0.5714 6/1/2017 337 0.8235 

6/28/2016 326 0.5918 5/18/2017 340 0.8529 

6/7/2017 335 0.6122 5/5/2017 349 0.8824 

6/13/2017 335 0.6327 5/26/2017 349 0.9118 

6/29/2016 346 0.6531 5/4/2017 352 0.9412 

6/12/2017 361 0.6735 5/19/2017 359 0.9706 

6/6/2017 377 0.6939 5/11/2017 385 1.0000 

5/17/2017 408 0.7143 

5/16/2017 412 0.7347 

5/10/2017 441 0.7551 

5/24/2017 442 0.7755 

5/23/2017 443 0.7959 

6/5/2017 447 0.8163 

5/31/2017 448 0.8367 

5/3/2017 449 0.8571 

5/9/2017 458 0.8776 

5/2/2017 491 0.8980 

5/30/2017 493 0.9184 

5/15/2017 500 0.9388 

5/8/2017 504 0.9592 

5/22/2017 533 0.9796 

5/1/2017 596 1.0000 
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Table C5. Empirical Distribution for Demands under Each Group (continued) 

ξ4: Other - Mon/Tue/Wed ξ5: Other - Thu/Fri ξ6: Other– Sat 

Date Sum of 

Demand 

CDF Date Sum of 

Demand 

CDF Date Sum of 

Demand 

CDF 

2/23/2016 1 0.0075 4/22/2016 1 0.0114 7/2/2016 17 0.0227 

3/1/2016 1 0.0150 4/28/2016 1 0.0227 8/13/2016 19 0.0455 

3/30/2016 1 0.0226 8/11/2017 1 0.0341 12/31/2016 23 0.0682 

4/11/2016 1 0.0301 4/13/2017 59 0.0455 9/24/2016 26 0.0909 

4/12/2016 1 0.0376 12/15/2016 263 0.0568 12/17/2016 29 0.1136 

7/18/2017 1 0.0451 7/15/2016 288 0.0682 1/21/2017 29 0.1364 

8/14/2017 1 0.0526 7/14/2016 296 0.0795 10/1/2016 30 0.1591 

8/16/2017 1 0.0602 10/20/2016 296 0.0909 11/12/2016 30 0.1818 

2/14/2017 267 0.0677 4/7/2017 300 0.1023 12/3/2016 30 0.2045 

3/15/2017 324 0.0752 7/21/2016 303 0.1136 10/15/2016 31 0.2273 

11/23/2016 348 0.0827 9/1/2016 305 0.1250 3/18/2017 33 0.2500 

12/14/2016 387 0.0902 9/15/2016 305 0.1364 12/10/2016 35 0.2727 

8/23/2016 395 0.0977 8/18/2016 311 0.1477 3/4/2017 35 0.2955 

11/8/2016 414 0.1053 8/25/2016 316 0.1591 4/8/2017 35 0.3182 

8/3/2016 417 0.1128 7/1/2016 319 0.1705 7/9/2016 36 0.3409 

10/4/2016 417 0.1203 9/22/2016 320 0.1818 8/6/2016 36 0.3636 

3/14/2017 417 0.1278 7/28/2016 321 0.1932 11/5/2016 37 0.3864 

12/21/2016 418 0.1353 12/23/2016 323 0.2045 3/25/2017 37 0.4091 

7/26/2016 420 0.1429 3/2/2017 323 0.2159 4/1/2017 38 0.4318 

7/20/2016 424 0.1504 10/6/2016 325 0.2273 10/22/2016 40 0.4545 

11/2/2016 424 0.1579 8/4/2016 326 0.2386 10/29/2016 40 0.4773 

11/1/2016 428 0.1654 7/29/2016 328 0.2500 12/24/2016 40 0.5000 

9/21/2016 430 0.1729 4/27/2017 335 0.2614 4/22/2017 40 0.5227 

7/27/2016 431 0.1805 2/23/2017 339 0.2727 4/29/2017 41 0.5455 

8/31/2016 431 0.1880 9/29/2016 340 0.2841 11/19/2016 42 0.5682 

11/22/2016 433 0.1955 11/11/2016 340 0.2955 2/4/2017 42 0.5909 

10/12/2016 435 0.2030 11/3/2016 341 0.3068 9/17/2016 43 0.6136 

10/25/2016 437 0.2105 12/8/2016 341 0.3182 10/8/2016 43 0.6364 

10/5/2016 441 0.2180 12/29/2016 342 0.3295 1/28/2017 43 0.6591 

10/31/2016 442 0.2256 7/7/2016 343 0.3409 4/15/2017 43 0.6818 

1/24/2017 445 0.2331 9/23/2016 344 0.3523 7/30/2016 44 0.7045 

4/19/2017 445 0.2406 4/20/2017 345 0.3636 7/16/2016 45 0.7273 

8/17/2016 446 0.2481 8/26/2016 347 0.3750 7/23/2016 46 0.7500 

12/13/2016 446 0.2556 9/8/2016 348 0.3864 9/3/2016 47 0.7727 

12/28/2016 446 0.2632 2/2/2017 349 0.3977 2/18/2017 47 0.7955 

11/9/2016 448 0.2707 2/24/2017 349 0.4091 8/27/2016 48 0.8182 

2/22/2017 449 0.2782 11/4/2016 351 0.4205 2/25/2017 49 0.8409 

7/6/2016 450 0.2857 8/5/2016 352 0.4318 3/11/2017 49 0.8636 

11/21/2016 453 0.2932 11/17/2016 352 0.4432 9/10/2016 50 0.8864 

9/14/2016 454 0.3008 2/9/2017 352 0.4545 2/11/2017 51 0.9091 

10/26/2016 455 0.3083 7/8/2016 353 0.4659 8/20/2016 52 0.9318 

11/16/2016 455 0.3158 9/30/2016 356 0.4773 11/26/2016 52 0.9545 

12/6/2016 456 0.3233 10/28/2016 358 0.4886 1/7/2017 62 0.9773 

7/19/2016 459 0.3308 10/21/2016 360 0.5000 1/14/2017 62 1.0000 

10/18/2016 460 0.3383 3/9/2017 360 0.5114 

9/27/2016 461 0.3459 11/10/2016 361 0.5227 

2/20/2017 461 0.3534 12/22/2016 362 0.5341 

11/15/2016 462 0.3609 12/1/2016 364 0.5455 

8/2/2016 463 0.3684 3/23/2017 367 0.5568 

10/24/2016 465 0.3759 7/22/2016 372 0.5682 

7/13/2016 466 0.3835 12/16/2016 372 0.5795 

1/31/2017 466 0.3910 10/27/2016 375 0.5909 

4/12/2017 466 0.3985 10/13/2016 379 0.6023 

2/21/2017 469 0.4060 4/6/2017 380 0.6136 

4/26/2017 472 0.4135 10/7/2016 381 0.6250 

8/9/2016 474 0.4211 8/19/2016 383 0.6364 

9/13/2016 474 0.4286 8/12/2016 384 0.6477 

10/11/2016 474 0.4361 10/14/2016 384 0.6591 

10/3/2016 475 0.4436 9/9/2016 387 0.6705 
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Table C5. Empirical Distribution for Demands under Each Group (continued) 

ξ4: Other - Mon/Tue/Wed ξ5: Other - Thu/Fri 

Date Sum of 

Demand 
CDF Date Sum of 

Demand 
CDF 

10/10/2016 475 0.4511 4/21/2017 388 0.6818 

2/1/2017 475 0.4586 11/18/2016 389 0.6932 

8/24/2016 477 0.4662 4/28/2017 390 0.7045 

11/29/2016 478 0.4737 3/30/2017 392 0.7159 

3/8/2017 478 0.4812 3/16/2017 394 0.7273 

7/18/2016 480 0.4887 2/3/2017 395 0.7386 

3/7/2017 480 0.4962 12/9/2016 399 0.7500 

4/18/2017 480 0.5038 1/20/2017 399 0.7614 

9/28/2016 481 0.5113 9/2/2016 406 0.7727 

8/30/2016 486 0.5188 4/14/2017 406 0.7841 

12/5/2016 487 0.5263 12/30/2016 407 0.7955 

3/1/2017 487 0.5338 3/17/2017 407 0.8068 

8/16/2016 492 0.5414 12/2/2016 408 0.8182 

8/10/2016 493 0.5489 1/26/2017 408 0.8295 

12/7/2016 494 0.5564 2/16/2017 408 0.8409 

11/14/2016 495 0.5639 8/11/2016 409 0.8523 

9/26/2016 496 0.5714 2/10/2017 418 0.8636 

11/30/2016 496 0.5789 3/10/2017 420 0.8750 

2/8/2017 496 0.5865 1/5/2017 421 0.8864 

7/12/2016 499 0.5940 1/27/2017 422 0.8977 

2/7/2017 499 0.6015 2/17/2017 423 0.9091 

12/12/2016 500 0.6090 9/16/2016 424 0.9205 

9/19/2016 501 0.6165 1/19/2017 425 0.9318 

1/17/2017 502 0.6241 1/6/2017 444 0.9432 

4/4/2017 503 0.6316 1/13/2017 456 0.9545 

4/5/2017 505 0.6391 3/3/2017 456 0.9659 

9/7/2016 506 0.6466 1/12/2017 458 0.9773 

3/29/2017 506 0.6541 3/31/2017 460 0.9886 

8/22/2016 508 0.6617 3/24/2017 468 1.0000 

10/19/2016 509 0.6692 

4/10/2017 509 0.6767 

8/29/2016 510 0.6842 

9/6/2016 511 0.6917 

12/20/2016 513 0.6992 

4/25/2017 515 0.7068 

4/3/2017 516 0.7143 

9/20/2016 519 0.7218 

2/28/2017 519 0.7293 

4/11/2017 521 0.7368 

1/16/2017 523 0.7444 

7/25/2016 525 0.7519 

3/28/2017 527 0.7594 

8/1/2016 528 0.7669 

9/12/2016 533 0.7744 

2/15/2017 533 0.7820 

4/17/2017 536 0.7895 

1/25/2017 538 0.7970 

4/24/2017 540 0.8045 

7/5/2016 541 0.8120 

12/27/2016 542 0.8195 

1/10/2017 542 0.8271 

10/17/2016 544 0.8346 

2/6/2017 545 0.8421 

11/7/2016 547 0.8496 

12/19/2016 547 0.8571 

2/13/2017 548 0.8647 

3/6/2017 548 0.8722 

3/21/2017 553 0.8797 

1/30/2017 555 0.8872 
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Table C5. Empirical Distribution for Demands under Each Group (continued) 

ξ4: Other - Mon/Tue/Wed 

Date Sum of 

Demand 
CDF 

3/13/2017 556 0.8947 

1/3/2017 559 0.9023 

1/11/2017 560 0.9098 

3/22/2017 573 0.9173 

1/4/2017 578 0.9248 

1/18/2017 578 0.9323 

1/23/2017 579 0.9398 

8/15/2016 583 0.9474 

3/27/2017 583 0.9549 

2/27/2017 585 0.9624 

7/11/2016 587 0.9699 

3/20/2017 592 0.9774 

11/28/2016 602 0.9850 

1/9/2017 620 0.9925 

8/8/2016 642 1.0000 

 

 

 

Figure C1. Comparison of Strategies on the Maximum Appointments Can Be Scheduled   
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Figure C2. Comparison of Strategies on the Average Profit under Each Demand Group   

 

 

 

Figure C3. Sensitivity Analysis of Unit Revenue on Group 1  
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Figure C4. Sensitivity Analysis of Fixed Cost on Group 1  

 

 

 

Figure C5. Sensitivity Analysis of αP on Group 1 

$800

$1,100

$1,400

$1,700

$2,000

$2,300

$2,600

$2,900

340

380

420

460

500

540

580

1 3 5

A
ve

ra
ge

 P
ro

fi
t

N
u

m
b

er
 o

f 
Sl

o
ts

Fixed Cost

Sensitivity Analysis of F on Group 1 

Max (Np+Ns) Capacity Average Profit

$1,650

$1,700

$1,750

$1,800

$1,850

$1,900

$1,950

$2,000

480

490

500

510

520

530

540

0.200 0.148 0.100

A
ve

ra
ge

 P
ro

fi
t

M
ax

 (
N

p
 +

 N
s)

αp

Sensitivity Analysis of αp on Group 1 

Max (Np+Ns) Average Profit



 

123 

 

 

Figure C6. Sensitivity Analysis of αS on Group 1 

 

 

 

 

Figure C7. Sensitivity Analysis of LP on Group 1 
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Figure C8. Sensitivity Analysis of LS on Group 1 

 

 

 

Figure C9. Sensitivity Analysis of θ on Group 1 
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