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ABSTRACT

With the advancement of technology in data collection, repeated measurements with high

dimensional covariates have become increasingly common. The classical statistics approach for

modeling the data of this kind is via the linear mixed model with temporally correlated error.

However, most of the research reported in the literature for variable selection is for independent

response data. In this study, the proposed algorithm employs Expectation and Maximization

(EM) and Least Absolute Shrinkage and Selection Operator (LASSO) approaches under the linear

mixed model scheme with the assumption of Gaussianity, an approach that works for data with

interdependence. Our algorithm involves two steps: 1.Variance-covariance components estimation

by EM; and 2.Variable selection by LASSO. The crucial challenge arises from the fact that linear

mixed models usually allow structured variance-covariance, which, in return, renders complexity

in its estimation: No explicit maxima in general in the M-step of the EM algorithm. Our EM

algorithm uses one iteration of projection gradient descent method, which turns out to be quite

computationally efficient compared with the classical EM algorithm because it obviates the process

of finding the maxima of the variance-covariance components in the M-step. With the estimates

of variance-covariance components obtained from step 1, the LASSO estimation is executed on

the full log-likelihood function imposed with an l1 regularization. The LASSO method has the

effect of shrinking all coefficients towards zero, which plays a variable selection role. We apply the

gradient descent algorithm to find LASSO estimates and the pathwise coordinate descent to set up

the tuning parameter for the penalized log-likelihood function. The simulation studies are carried

out under the assumption that measurement errors of each subject are of first-order autoregressive

AR(1) correlation structure. The numerical results show that the variance-covariance parameters

estimates by our method are comparable to the classic Newton-Raphson (NR) method in the simple

case and outperforms NR method when the variance-covariance matrix having a complex structure.

Moreover, our method successfully identifies all the relevant explanatory variables and most of the

redundant explanatory variables. The proposed method is also applied to a life data and the result

is very reasonable.
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1. INTRODUCTION

In the longitudinal study, measurements are repeatedly collected from the same subjects for

a certain period of time; therefore, the data are usually correlated. Longitudinal data have been

widely observed in areas such as the medical and health sciences and the social sciences. With the

advancement of data collection and storage technology in the age of big data, longitudinal data

of high dimension becomes more and more accessible. A typical way to deal with longitudinal

data in statistics is via the linear mixed model (LMM), which, in its systematic component, allows

both deterministic and random components. The random components could explain the additional

source of variation in measurements due to heterogeneity of subjects that could not be explained

by the covariates of subjects considered in the deterministic components.

There are two main tasks when analyzing longitudinal data of high dimension: 1. Modeling

the correlation among the repeated measurements collected from same subject; and 2. Variable

selection. Taking account of the correlation among the repeated measurements reduces the vari-

ability of the estimate due to time change within subject, while ignoring the correlation leads to

misleading inferences about the parameters. Variable selection aims to build a meaningful model

with as few covariates as possible since not all of the covariates collected contribute to explaining

the response variable. In this work, we propose a new approach to accomplish those two tasks in

two steps.

The estimation in LMM involves estimating the fixed effects and estimating the variance-

covariance parameters. The preferred method used to estimate variance-covariance components

is restricted maximum likelihood (REML) estimation [16]. Compared to Maximum Likelihood

Estimation(MLE), REML yields estimates with smaller variance when the number of covariates

is larger [9]. With the implementation of the REML technique, the likelihood function of LMM

can be written as a product of marginal likelihood function and conditional likelihood function.

The conditional likelihood function depends only on fixed effect and does not contain information

about variance-covariance components [9]. The marginal likelihood function known as REML is

used to estimate variance-covariance components. The REML estimators of the variance-covariance

components are not only invariant to the fixed effects of the model, but are also free of the estimates
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of the fixed effects [3]. To make full use of REML’s strength and increase the computational

efficiency, we propose a model with two steps: 1. estimate variance-covariance components with

the REML; and 2. select and estimate the fixed effects with the full likelihood function.

The log-likelihood function of REML is not a linear function of variance-covariance param-

eters; therefore, an iterative algorithm is needed. In this study, the EM algorithm is chosen to

iteratively maximize the log-likelihood function. However, there is a crucial challenge to perform-

ing the classic EM algorithm with longitudinal data: there is no closed form solution in M-step,

i.e, another iterative scheme is required in each M-step. In order to increase the computational

efficiency, we propose to use an EM algorithm with the M-step solved by one iteration of gradient

descent algorithm. This concludes step 1 of our algorithm.

Step 2 of our algorithm involves using the least absolute shrinkage and select operator

(LASSO) [19] to select the important explanatory variables. With the estimated variance-covariance

components from step 1, the full log-likelihood function is equivalent to a quadratic loss function;

therefore, the penalized full log-likelihood is equivalent to a penalized quadratic loss function of

the fixed effect coefficients. Lasso minimizes penalized quadratic loss function by imposing an l1

regularization. With the l1 regularization, parameters are shrunk toward zero and some are exactly

zero. Thus, implementing LASSO yields a parsimonious and meaningful model because most of

the redundant explanatory variables can be removed.

The rest of this work is organized as follows: A review of the related work is presented in

Section 2 and technical details of the proposed method are given in Section 3. Section 4 illustrates

the performance of the proposed method with simulation study and real life data application.

Section 5 includes conclusions and future directions.
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2. LITERATURE REVIEW

As explained in Diggle [4], the variations of longitudinal data consist of variation between

subjects, variation between times within each subject, and variation due to measurement errors.

The Linear Mixed Model (LMM) is widely used to analyze the longitudinal data because it can

incorporate these three sources of variation in the modeling procedure. The variance-covariance

parameters of LMM are usually estimated by the restricted maximum likelihood (REML) proce-

dures with the second order algorithms, such as the Newton Ralphson (NR) algorithm. However,

the NR algorithm has two drawbacks: it becomes more computationally expensive as the number

of parameters increases and it may fail to converge when the second derivatives of the objective

function are complicated. Consequently, the Expectation and Maximization (EM) algorithm is a

good alternative to the NR algorithm because the EM algorithm allows us to separately estimate

the parameters involved in the random effects and the parameters corresponding to the temporally

correlated error term. Again however, there is a problem in the use of the EM algorithm to esti-

mate correlation parameters that pertain to time processes: no closed form solution exists; thus,

an iterative solution is required at the M step. Therefore, Rai and Matthews [17] and Lange [12]

suggested solving the M step by involving only one cycle of iterative solution of the maximization

problem while keep the E-step unchanged. Like the classic EM algorithm, this modified version was

shown to be self-consistent under suitable conditions [17]. In contrast to Foulley [8], who solved the

M-step with one iteration of the NR algorithm, we propose to solve the M-step with one iteration

of gradient descent algorithm, which is a first order algorithm.

The history of variable selection can be traced back to the 1960s when Beale, Kendall,and

Mann [1] proposed the best subset selection and Efroymson [5] proposed the forward/backward

stepwise selection. Even though these traditional variable selection methods seem easy to im-

plement, they are very time consuming when the number of explanatory variables is large. Ad-

ditionally, Breiman [2] claimed that these methods tend to lack stability due to their inherent

discreteness. Modern variable selection techniques include the least absolute shrinkage and select

operator (LASSO) technique proposed by Tibshirani [19] and the smoothly clipped absolute devi-

ation (SCAD) method proposed by Fan [6]. Recently, there have been many research studies on
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variable selection based on penalized log-likelihood and the computational issues of solving these

problems within the linear model scheme, for example, Ni et al.[15], Fan and Li [7], and Lin et al.

[13]. However, most of these works focused on select fixed effect and random effect either simulta-

neously or separately, and all of them assume residuals are independently identically distributed,

which is unrealistic in the setting of longitudinal data. A study that is close to our work is presented

by Lan [11]. Lan proposed selecting variables by the penalized likelihood estimation procedure with

the SCAD penalty and estimating variance-covariance components with REML. However, she ne-

glected the fact that REML estimations of variance-covariance parameters are invariant to fixed

effects. As a result, the algorithm she proposed had some unnecessary steps.

A common concern for all the penalized variable selection techniques is the determination

of the penalty parameter. The Akaike information criterion (AIC) and the Bayesian information

criterion (BIC) are two popular criteria used in variable selection and model selection. Zou et al.

[21] evaluated the performance of the AIC and BIC in the application of variable selection and

concluded that BIC is better than AIC in the sense of identifying the sparsity of a model.

4



3. METHODOLOGY

3.1. Linear Mixed Model for Longitudinal Data

Longitudinal data set contains measurement taken repeatedly over time on a set of subjects,

the Linear Mixed Model (LMM) for the subject i is:

ỹi = Xiβ̃ + Ziũ+ ẽi (3.1)

with i=1,2,...,m subjects, measurements of ni time points are collected for subject i, ỹi is ni × 1

vector of observations taken from subject i over time, Xi is ni× p design matrix for fixed effect for

subject i, β̃ is p× 1 vector of fixed effect parameters. The random effect ũ′ consists of q subvectors

such that ũ′ = (ũ′1, ..., ũ
′
q) where ũs is the vector of the sth random effect and is of length bs × 1.

Let b =
∑
bs, then ũ is b×1 vector and follows N (0, G); Zi is ni×b design matrix corresponding to

random effects for subject i; ẽi is stationary residual vector of ith subject and follows N
(
0, σ2Σi

)
,

Σi depends on i through its dimension only. ũ is independent of ẽi for any i = 1, 2, 3, ..,m. Stacking

Xi, Zi and ẽi respectively and setting Σ = diag(Σ1,Σ2, ...,Σm), the linear mixed model in equation

3.1 becomes

ỹ = Xβ̃ + Zũ+ ẽ (3.2)

and the marginal distribution of ỹ is

ỹ ∼ N(Xβ̃,H) (3.3)

where H = ZGZ ′ + σ2Σ. Denote G = G(γ̃) and Σ = Σ(φ̃), where γ̃ and φ̃ are vectors of variance

parameters associated with random effects and error term respectively. Then we can define the

variance parameter space as ξ̃ = (σ2, γ̃, φ̃).

In general, the variance-covariance components in LMM are estimated by maximum like-

lihood, however maximum likelihood estimates of variance-covariance components are known as

downward biased because it fails to take into account estimation of fixed effects; the bias is es-

pecially severe when the number of covariates p is large. To correct this bias, REML[16] is used

to estimate variance-covariance components. Additionally, REML estimators are invariant to the

fixed effects of the model, therefore, it is also free of the estimates of the fixed effects[9].
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As proposed by Verbyla [20], the implementation of REML technique begins by considering

nonsingular matrix L = [L1, L2] where L1 and L2 are n × p and n × (n− p) matrices respectively,

and L1 and L2 satisfy L′1X = Ip and L′2X = 0, then transform ỹ by left multiplying L′, i.e.

L′ỹ =

[
L′1ỹL

′
2ỹ

]
=

 ỹ1

ỹ2

 (3.4)

And the transformed data follows following distribution: ỹ1

ỹ2

 ∼ N

 β̃

0

 ,

 L′1HL1 L′1HL2

L′2HL1 L′2HL2


 (3.5)

we can show that for L2 of such choice and any positive definite matrix A following equality holds

L2(L′2AL2)−1L′2 = A−1 −A−1X(X ′A−1X)−1X ′A−1 (3.6)

Lemma 1. Given L1 and L2 described as above, for any n× n positive defined matrix A, we have

L2(L′2AL2)−1L′2 = A−1 −A−1X(X ′A−1X)−1X ′A−1

Proof. Let C(B) be the linear space spanned by the column vectors of matrix B of dimension

n × p (with rank(B) = p < n). Note that for any non-singular matrix Q of dimension p ×

p, C(BQ) = C(B) and (BQ)[(BQ)′(BQ)]−1(BQ)′ = B(B′B)−1B′, uniqueness of the projection

matrix B(B′B)−1B′ follows.

Note with C(B1) ∪ C(B2) = Rn and C(B1) ∩ C(B2) = 0̃, ∀ỹ ∈ Rn has a unique decompo-

sition, i.e., ỹ = ỹ1 + ỹ2 where ỹ1 ∈ C(B1), ỹ2 ∈ C(B2). Note that ∀ỹ ∈ Rn,

{B2(B′2B2)−1B′2}ỹ = {B2(B′2B2)−1B′2}(ỹ1 + ỹ2) = {B2(B′2B2)−1B′2}ỹ2 = ỹ2,

{In −B1(B′1B1)−1B′1}ỹ = ỹ −B1(B′1B1)−1B′1ỹ = ỹ − ỹ1 = ỹ2,

B2(B′2B2)−1B′2 = In −B1(B′1B1)−1B′1 concludes.

Now, for any positive definite matrix A of dimension n × n, let B1 = A−1/2X and B2 =

A1/2L2. Clearly, C(B1) ∪ C(B2) = Rn and C(B1) ∩ C(B2) = 0̃, since B′1B2 = X ′L2 = 0̃. Apply

the equation obtained above, then

A1/2L2(L′2AL2)−1L′2A
1/2 = In −A−1/2X(X ′A−1X)−1X ′A−1/2.

Multiplying A−1/2 to both the left and right end of the two sides of the equation, the conclusion

follows.

6



The probability density function of transformed data L′ỹ can be written as the product of

conditional density function of ỹ1 given ỹ2 and the marginal density function of ỹ2. The conditional

distribution of ỹ1 given ỹ2 is:

ỹ1|ỹ2 ∼ N(β̃ + L′1HL2(L′2HL2)−1ỹ2, (X
′H−1X)−1) (3.7)

where
var(ỹ1|ỹ2) = L′1HL1 − L′1HL2(L′2HL2)−1L′2HL1

= L′1(H −HL2(L′2HL2)−1L′2H)L1 by lemma1

= L′1X(X ′H−1X)−1X ′L1

= (X ′H−1X)−1

and the conditional log-likelihood function l(ξ̃; ỹ1|ỹ2) excluding constant term can be written as

l(β̃, ξ̃; ỹ1|ỹ2) = −1

2
[−log|X ′H−1X|+ (ỹ1 − β̃ − ỹ∗2)′(X ′H−1X)(ỹ1 − β̃ − ỹ∗2)]. (3.8)

where ỹ∗2 = L′1HL2(L′2HL2)−1ỹ2. The marginal distribution of ỹ2 is:

ỹ2 ∼ N(0̃, L′2HL2) (3.9)

and corresponding log-likelihood function (excluding constant term) is

l(ξ̃; ỹ2) = −1

2
[log|L′2HL2|+ ỹ′2(L′2HL2)−1ỹ2. (3.10)

Then the the full log-likelihood function of L′y excluding constant term is:

l(β̃, ξ̃;L′ỹ) = l(ξ̃; ỹ2) + l(β̃, ξ̃; ỹ1|ỹ2)

= −1

2
[log|L′2HL2|+ ỹ′2(L′2HL2)−1ỹ2

−1

2
[−log|X ′H−1X|+ (ỹ1 − β̃ − ỹ∗2)′(X ′H−1X)(ỹ1 − β̃ − ỹ∗2)] (3.11)

Usually, the marginal log-likelihood function l(ξ̃; y2) is used to estimate variance-covariance param-

eters, and Sprott [18] claimed that y2 is marginally sufficient for ξ̃. Fixed effects are estimated

by maximizing the conditional log-likelihood function l(β̃, ξ̃; ỹ1|ỹ2) with the estimated variance-

covariance parameters. Even the expression of l(β̃, ξ̃; ỹ1|ỹ2) contains unknown parameter ξ̃, Pat-

terson [16] stated that, in the absence of outside knowledge of β̃, y1 has no information about

variance-covariance parameter ξ̃.
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3.2. Variance Estimation by EM algorithm

The log-likelihood function of marginal distribution of ỹ2 is used for REML estimation of

variance parameters. In order to use EM algorithm, complete data set is defined as ỹc = (ỹ′2, ũ).

Note that the parameter space of REML log-likelihood is defined as ξ̃ = (σ2, γ̃, φ̃). The joint

distribution of ỹ2 and ũ is ỹ2

ũ

 ∼ N

 0

0

 ,

 L′2HL2 L′2ZG

GZ ′L2 G


 (3.12)

And the conditional distribution of ỹ2 given ũ and marginal distribution of ũ are

ỹ2|ũ ∼ N
(
L′2Zũ, σ

2L′2ΣL2

)
(3.13)

ũ ∼ N (0, G) (3.14)

Therefore the complete log-likelihood function is

l = log (f (ỹ2, ũ))

= log (f (ỹ2|ũ)) + log (f (ũ))

(3.15)

Let l1 = log (f (ỹ2|ũ)) and l2 = log (f (ũ)), then excluding constant term

l1 = −1

2
[log|σ2L′2ΣL2|+ σ−2

(
ỹ2 − L′2Zũ

)′ (
L′2σL2

)−1 (
ỹ2 − L′2Z̃̃u

)
]

= −1

2
[log|σ2L′2ΣL2|+ σ−2 (ỹ − Zũ)′ L2

(
L′2ΣL2

)−1
L′2 (ỹ − Zũ) ]

= −1

2
[log|σ2L′2ΣL2|+ (ỹ − Zũ)′ S (ỹ − Zũ) ]

(3.16)

where S = σ−2L2 (L′2ΣL2)−1 L′2 = σ−2Σ−1 − σ−2Σ−1X(X ′Σ−1X)−1X ′Σ−1. And

l2 = −1

2
[log|G|+ ũ′G−1ũ] (3.17)

3.2.1. E-step of REML EM algorithm

The E-step of the REML EM algorithm requires the conditional distributions ũ|ỹ2, use the

property of conditional distribution of normal distribution, we have

E (ũ|ỹ2) =
(
GZ ′L2

) (
L′2HL2

)−1
ỹ2

= GZ ′L2

(
L′2HL2

)−1
L′2ỹ

= GZ ′P ỹ

(3.18)
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var (ũ|ỹ2) = G−GZ ′L2

(
L′2HL2

)−1
L′2ZG

= G−GZ ′PZG
(3.19)

where P = L2 (L′2HL2)−1 L′2 = H−1−H−1X(X ′H−1X)−1X ′H−1 . The E-step involves expectation

of l over ũ given ỹ2 and the kth iteration of ξ̃, ξ̃(k). E
(
l|ỹ2; ξ̃(k)

)
= E

(
l1|ỹ2; ξ̃(k)

)
+ E

(
l2|ỹ2; ξ̃(k)

)
and

E
(
l1|ỹ2; ξ̃(k)

)
= − 1

2

{
log|σ2L′2ΣL2|+ E[

(
ỹ′Sỹ − ũ′Z ′Sỹ − ỹ′SZũ+ ũ′Z ′SZũ

)
|ỹ2; ξ̃(k)]

}
=− 1

2

[
log|σ2L′2ΣL2|+ ỹ′Sỹ −

(
µ̃(k)

)′
Z ′Sỹ − ỹ′SZ

(
µ̃(k)

)
+
(
µ̃(k)

)′
Z ′SZ

(
µ̃(k)

)
+ tr

(
Z ′SZV (k) (ũ|ỹ2)

)]
= − 1

2
[log|σ2L′2ΣL2|+

(
ỹ − Zµ̃k

)′
S
(
ỹ − Zµ̃k

)
+ tr

(
Z ′SZV (k)

)
]

(3.20)

E
(
l2|ỹ2; ξ̃(k)

)
= − 1

2
[log|G|+

(
µ̃(k)

)′
G−1µ̃(k) + tr

(
G−1V (k)

)
] (3.21)

where µ̃(k) = E
(
ũ|ỹ2; ξ̃(k)

)
= G(k)Z ′P (k)ỹ and V (k) = V

(
ũ|ỹ2; ξ̃(k)

)
= G(k)−G(k)Z ′P (k)ZG(k) are

conditional expectation and variance of ũ given ỹ2 at the kth iteration.

3.2.2. M-step for σ2 and φ̃

The estimations of σ2 and φ̃ are obtained by maximizing of equation 3.20. Noting that

, R = σ2Σ(φ̃) and the length of φ̃ depends on the structure of the residual variance covariance

matrix, for example, φ̃ = {ρ} with length 1 for first-order autoregressive AR(1) covariance structure.

Derivatives of equation 3.20 with respect to σ2 and φ̃ are

∂E
(
l1|ỹ2; ξ̃(k)

)
∂σ2

=− 1

2

{
n− p
σ2

− 1

(σ2)2

(
ỹ − Zµ̃(k)

)′
U
(
ỹ − Zµ̃(k)

)
− 1

(σ2)2 tr
(
Z ′UZV (k)

)} (3.22)

∂E
(
l1|ỹ2; ξ̃(k)

)
∂φj

=− 1

2

{
tr

(
U
∂Σ

∂φj

)
− 1

σ2

(
ỹ − Zµ̃(k)

)′
U
∂Σ

∂φj
U
(
ỹ − Zµ̃(k)

)
− 1

σ2
tr

(
Z ′U

∂Σ

∂φj
UZV (k)

)} (3.23)

where U = L2(L′2ΣL2)−1L′2 = Σ−1−Σ−1X
(
X ′Σ−1X

)−1
X ′Σ−1. Set equation 3.22 to zero we get

(σ2)(k+1) =
1

n− p

{(
ỹ − Zµ(k)

)′
U
(
ỹ − Zµ̃(k)

)
+ tr

(
Z ′UZV (k)

)}
(3.24)
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Equations 3.22 and 3.23 indicate that the updating formulas for σ2 and φ̃ depend on each other.

In this situation, Meng and Rubin [14] suggested that the Expectation Conditional Maximization

(ECM) algorithm can be used to update σ2 and φ̃ sequentially, i.e, in the current M-step, σ2 is

estimated with estimation of φ̃ from the last EM iteration, then φ̃ could be estimated with current

estimation of σ2. However, the updating formula for φ̃ that doesn’t have closed form solution

makes the problem worse. Another iteration solution with each of EM iteration would make the

algorithm inefficient. Instead, one cycle of projected gradient descent algorithm is employed to

update φ̃. Then the new update formulates are given by

(σ2)(k+1) =
1

n− p

{(
ỹ − Zµ(k)

)′
U (k)

(
ỹ − Zµ̃(k)

)
+ tr

(
Z ′U (k)ZV (k)

)}
(3.25)

where U (k) = Σ(k)−1 − Σ(k)−1
X
(
X ′Σ(k)−1

X
)−1

X ′Σ(k)−1
. And

d̃(k+1) = φ̃(k) − αk(
∂E
(
l1|ỹ2; ξ̃(k)

)
∂φ̃

|θ̃=θ̃(k),σ2=(σ2)(k+1)) (3.26)

φ̃(k+1) = argminφ̃∈Φ

1

2
||φ̃− d̃(k)||2 (3.27)

where αk is the step size for gradient descent algorithm at iteration k and Φ is the parameter space

of φ̃. In the case of Σ takes AR(1) covariance structure with |ρ| < 1, the updating formula for ρ is

ρk+1 = sign(dk+1)min(1, abs(dk+1)). (3.28)

3.2.3. M-step for γ̃

Estimations of γ̃ are obtained by maximizing of equation 3.21. Noting that G = G(γ) is

a matrix of γgh and γgh = γhg for all h 6= k and g,h=1,2,....,b. Derivative of equation 3.21 with

respect to γ̃ is

∂E
(
l2|ỹ2; θ(k)

)
∂γgh

=− 1

2

{
tr

(
G−1 ∂G

∂γgh

)
− µ̃(k)′G−1 ∂G

∂γgh
G−1µ̃(k)

− tr

(
G−1 ∂G

∂γgh
G−1V (k)

)} (3.29)

The updating formula for γgh depends on the form of variance matrix G.

Case 1 For linear mixed model contains only one random effect and G has simple form

G = σ2
ũIb, updating equation for σ2

ũ is

(σ2
u)(k+1) =

1

b
[µ̃(k)′ µ̃(k) + tr(V (k))] (3.30)
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Case 2 For linear mixed model contains correlated two correlated random effect ũ1, ũ2 that

are b× 1 vectors and cov(u1, u2) =

 γ11 γ12

γ12 γ22

, the updating formula for γgh is

γgh =
1

m
(µ̃(k)′
g µ̃

(k)
h + tr(V k

gh)) (3.31)

where g, h = 1, 2. See detail derivation in the Appendix B

3.3. Variable Selection Via LASSO

As mentioned earlier, LASSO can reduce the dimension of fixed effect coefficients β̃. Con-

sider log likelihood function of ỹ excluding constant term

l(β̃; ỹ) = −1

2
[log|Ĥ−1|+ (ỹ −Xβ̃)′Ĥ−1(ỹ −Xβ̃)] (3.32)

where Ĥ is the estimated variance-covariance matrix of y that is obtained from section 3.2. The

LASSO method imposes an l1 norm on above likelihood function to achieve the goal of variable

selection, i.e, instead of minimize −l(β̃; ỹ), we minimize

L(β) =
1

2
[log|Ĥ−1|+ (ỹ −Xβ̃)′Ĥ−1(ỹ −Xβ̃)] + λ||β̃||1 (3.33)

where λ ∈ [0,+∞) is the Lagrange multiplier and ||β̃||1 =
∑j=p−1

j=1 |βj |. Notice that when λ is large

enough, the l1 norm penalty will force ||β̃||1 = 0 and when λ = 0, estimation of β̃ is exactly same as

the ordinary least square estimation. Hence, we are looking for an appropriate λ value that yields

a parsimonious model, i.e., a meaningful model with less fixed effects.

Removing the constant term, equation 3.33 can be rewritten as

L(β) =
1

2
||ỹ∗ −X∗β̃||2 + λ||β̃||1 (3.34)

where ỹ∗ = D′ỹ and and X∗ = D′X, D is the Cholesky decomposition of Ĥ−1, i.e. Ĥ−1 = DD′ and

D is lower triangular matrix. Let X∗ = (X̃∗0 , X̃
∗
1 , ..., X̃

∗
p−1), then derivatives of L(β) with respect

to βi with βj , j 6= i fixed are:

∂L(β̃)

∂β0
= (X̃∗0 )′X̃∗0β0 − (X̃∗0 )′(ỹ∗ − X̃∗−0β̃−0) as we don’t penalize β0 (3.35)

∂L(β̃)

∂βi
= (X̃∗i )′X̃∗i βi − (X̃∗i )′(ỹ∗ − X̃∗−iβ̃−i) + λsi i = 1, 2, .., p− 1 (3.36)
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whereX∗−i is the matrixX∗ without ith column and β̃−i is β̃ without βi, si ∈ ∂|βi|, i = 0, 1, 2, .., p−1.

Setting equations 3.35 and 3.36 to zero, β’s can be updated coordinate wisely:

β
(k+1)
0 =

(X̃∗0 )′(ỹ∗ − X̃∗−0β̃
(k+1)
−0 )

(X̃∗0 )′X̃∗0
(3.37)

β
(k+1)
i = Sλ/||X∗i ||2

(X̃∗i )′(ỹ∗ − X̃∗−iβ̃
(k+ 1

2
)

−i )

(X̃∗i )′X̃∗i

 i = 1, 2, .., p− 1 (3.38)

where β̃
(k+ 1

2
)

−i = (β
(k+1)
0 , β

(k+1)
1 , .., β

(k+1)
i−1 , β

(k)
i+1, ...β

(k)
p−1) and Sλ(β) is soft-threshold operator and

Sλ(β) =


β − λ if β > λ

0 if |β| ≤ λ

β + λ if β < −λ

Pathwise Coordinate Descent (PCD) algorithm is used to find best tuning parameter λ. PCD

begins with a large λ so that β̃−0 = 0̃, then the value of λ is reduced a little bit and the coordinate

descent is performed until convergence. λ is reduced again, we then run coordinate descent until

convergence with the previous solution as initial value. By doing this over and over again, we run

coordinate descent over a grid of λ values. The critical question here is which λ is the best. AIC

and BIC are the common criteria used to identify the best λ, Zou et al. [21] suggested that BIC is

preferred when the the goal is to detect the sparsity of a model. Following their proposed BIC for

LASSO definition, the BIC in our case is

BIC(X∗β̂λ) =
||y∗ −X∗β̂λ||

N
+
log(N)

N
d̂f(λ) (3.39)

where N is total number of observations, β̂λ is the estimation of β̃ at a given value of λ, and d̂f(λ))

is defined as the degrees of freedom of the LASSO. Zou.etc.[21] also showed that number of nonzero

coefficients in the lasso at a given value of λ is an unbiased estimate of the degrees of freedom. The

λ that yields smallest BIC value is the best λ.

12



4. NUMERICAL EXPERIMENT

We have presented the details of the proposed two-stage model in Chapter 3; in this chapter,

we present the performance of the proposed method with simulation studies and analysis of a life

data set.

4.1. Design of The Simulation

Simulation studies for longitudinal data are designed based on the linear mixed model in

the following form

ỹi = Xiβ̃ + Ziũ+ ẽi (4.1)

where i = 1, 2, ...,m, m is the number of subjects, the number of measurements collected for the

ith subject is tpi. To investigate how the sample size influences the performance of the proposed

method, m takes values of 50, 80, 100, and 200. Because dropout is a common concern in longitu-

dinal studies, to make the simulation more close to reality, we consider the following two scenarios

in terms of the number of time points: 1. Set the maximum number of time points as 10 and the

minimum number of time points as 6 and 2. Set set the maximum number of time points as 10 and

the minimum number of time points as 8. By doing so, we can evaluate the effect of the dropout

rate on the performance of the proposed method.

Let β̃ = (3, 3.6, 8,−5.4, 5, 2, 0, 0, ..., 0)′ which is a p × 1 vector and contains 6 non-zero

values and p − 6 zero values, here p takes values of 20, 40 and 100. The design matrix of fixed

effects is Xi = (Xi1, Xi2, ..., Xip) where Xi1 = 1̃ is the design matrix corresponding to intercept

β0, Xi2 = (Ti1, Ti2, ...Ttpi)
′ is design matrix corresponding to time effect. To make the example

closer to reality, we allow Xi3, Xi4 and Xi5 correlated in the following way: Xi3 ∼ unif(−0.3, 0.3),

Xi4 ∼ N(Xi3, 0.5
2), Xi5 ∼ unif(Xi4 − 1, Xi4 + 1), Xi6 ∼ N(0, 22) and (Xi7, Xi8, Xi9)′ ∼ N(0̃,Σ0),

(Xi10, ..., Xip) ∼ N(0̃, Ip−9), where

Σ0 =


0.5 0.1 0.1

0.1 0.4 0.1

0.1 0.1 0.6

 .
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The random errors ẽi ∼ N(0, σ2
εΣi) where σ2

ε = 2 and (Σi)ts = (ρ|Tit−Tis|) with ρ = 0.8

and t, s = 1, 2, ..., tpi. For random effect, two scenarios are considered: (1) model with the random

slope only, (2) model with correlated random intercept and random slope.

For the model has random slope only, ũ = (u1, u2, ..., um)′ ∼ N(0̃, σ2
1Im) with σ2

u = 0.64

and corresponding design matrix Z = bdiag(Z̃i), i = 1, 2, 3, ...,m and Z̃i = (T1, T2, ...Ttpi)
′. For the

model with the random intercept and random slope, the random intercept ũ1 = (u11, u12, ..., u1m)′

and random slope ũ2 = (u21, u22, ..., u2m)′ follow multivariate normal distribution

 ũ1

ũ2

 ∼ N

 0̃

0̃

 ,
 γ11 γ12

γ12 γ22

⊗ Im
 .

where γ11 = 1.44, γ12 = 0.64 and γ22 = 1. The design matrix Z = (Z1, Z2) where Z1 =

bdiag(1̃tpi), i = 1, 2, ...,m, Z2 = bdiag(Z̃i), i = 1, 2, 3, ...,m and Z̃i = (T1, T2, ...Ttpi)
′.

Totally, there are 4× 2× 3 = 48 scenarios in the design of simulation, 100 sets of data are

generated for each of those scenarios. The update equations for all the parameters and variable

selection procedure are given in the Chapter 3.

4.2. Simulation Results

The simulation results contain two parts that correspond to the two steps in the proposed

method. The first part contains the results for variance-covariance parameters estimation. In

this part, we compare the results yielded by our method (denoted as pEM in the tables) to those

obtained from the NR method. We provide the sample mean and sample standard deviation (Std)

of estimated variance-covariance parameter vector ξ̂ over the 100 data sets for both methods. The

sample means are presented in the first row of each cell in Table 4.1-4.3 and Table 4.5-4.7 and Stds

are given in the parenthesis under the means. The second part of the simulation results corresponds

to the variable selection stage. In this part, average true nonzero rate, average false nonzero rate,

average true zero rate, average false nonzero rate, and F-score are used to assess the performance

of the second step of our method. F-score is one of the common metrics used to measure the

performance of a classification algorithm and is calculated via the following formula:

F − score = 2 ∗ precision ∗ recall
precision+ recall

(4.2)
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where

precision =
# of True Zero

# of True Zero+ # of False Zero
(4.3)

recall =
# of True Zero

# of True Zero+ # of False Nonzero
(4.4)

The higher an F-score, the higher capability of identifying redundant explanatory variables a model

has. The variable selection results are presented in Table 4.4 and Table 4.8.

The results presented in Tables 4.1-4.4 are for the model with one random effect. Tables 4.1-

4.3 present the results for the variance-covarance parameters estimation corresponding to number

of fixed effect p=20,40,and 100 respectively. Table 4.4 contains the variable selection results in all

scenarios. When we look closely at each table, we find that, in this simple case, the estimation of

variance-covariance parameters values yielded by both methods are always very close to the true

values. This is true even when the sample size is small and the drop out rate increases. When

we compare the results across Tables 4.1- 4.3, it is easy to see that the results are similar when

p (the number of the coefficients) varies from 20 to 100. This further verifies the fact that the

REML variance-covariance estimators are invariant to the fixed effect. Table 4.4 shows that, in all

scenarios, LASSO successfully identifies all the relevant fixed effects (average true nonzero rate is

100%). On average when p=100, LASSO identifies at least 90 out of 94 irrelevant fixed effects; on

average when p=40, at least 31 out of 34 zero coefficients are shrunken to zero; and on average

when p=20, more than 12 out of 14 zero coefficients are identified by LASSO.The F-score also

shows that LASSO can identify the redundant explanatory variables with very high accuracy in all

scenarios. Overall, our method performs well in this simple case.
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Table 4.1. Comparison of variance estimation for the model with random slope only with number
of coefficients p=20

tp # of subject Method σ2
u σ2

ε ρ
(0.64) (2) (0.8)

tp=8 ∼ 10

m=200

pEM 0.6395 1.9981 0.7995
(Std) (0.0616) (0.1906) (0.0201)

NR 0.6394 2.0075 0.8004
(Std) (0.0616) (0.1916) (0.0201)

m=100

pEM 0.6413 1.9926 0.7962
(Std) (0.0911) (0.2644) (0.0255)

NR 0.6409 2.0131 0.7982
(Std) (0.0910) (0.2678) (0.0254)

m=80

pEM 0.6412 1.9860 0.7902
(Std) (0.0995) (0.2105) (0.0426)

NR 0.6409 2.0052 0.7951
(Std) (0.0990) (0.2059) (0.0393)

m=50

pEM 0.6576 1.9387 0.7730
(Std) (0.1187) (0.2416) (0.0636)

NR 0.6566 1.9995 0.7909
(Std) (0.1186) (0.2416) (0.0512)

tp=6∼ 10

m=200

pEM 0.6378 1.9850 0.7915
(Std) (0.0695) (0.1352) (0.0296)

NR 0.6376 1.9955 0.7943
(Std) (0.0695) (0.1290) (0.0273)

m=100

pEM 0.6346 2.0112 0.7985
(Std) (0.0855) (0.1844) (0.0398)

NR 0.6344 2.0218 0.8017
(Std) (0.0854) (0.1618) (0.0357)

m=80

pEM 0.6393 2.0003 0.7928
(Std) (0.1168) (0.2214) (0.0512)

NR 0.6388 2.0269 0.8009
(Std) (0.1169) (0.2059) (0.0426)

m=50

pEM 0.6488 1.9341 0.7758
(Std) (0.1293) (0.2774) (0.0667)

NR 0.6474 2.0188 0.8012
(Std) (0.1294) (0.2746) (0.0545 )
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Table 4.2. Comparison of variance estimation for the model with random slope only with number
of coefficients p=40

tp # of subjects Method σ2
u σ2

ε ρ
(0.64) (2) (0.8)

tp=8 ∼ 10

m=200

pEM 0.6467 1.9871 0.7956
(Std) (0.0696) (0.1245) (0.0273)

NR 0.6465 1.9951 0.7975
(Std) (0.0696) (0.1260) (0.0257)

m=100

pEM 0.6300 2.0155 0.7978
(Std) (0.0963) (0.3119) (0.0318)

NR 0.6296 2.0382 0.8000
(Std) (0.0964) (0.3135) (0.0313)

m=80

pEM 0.6390 1.9807 0.7939
(Std) (0.1028) (0.2727) (0.0307)

NR 0.6386 2.0035 0.7961
(Std) (0.1028) (0.2788) (0.0308)

m=50

pEM 0.6464 1.9079 0.7826
(Std) (0.1211) (0.3566) (0.0481)

NR 0.6458 1.9542 0.7887
(Std) (0.1211) (0.35758) (0.0434)

tp=6∼ 10

m=200

pEM 0.6341 1.9894 0.7973
(Std) (0.0748) (0.1336) (0.0275)

NR 0.6340 1.9942 0.7986
(Std) (0.0747) (0.1292) (0.0243)

m=100

pEM 0.6319 1.9785 0.7947
(Std) (0.0986) (0.2521) (0.0266)

NR 0.6316 1.9991 0.7968
(Std) (0.0986) (0.2559) (0.0261)

m=80

pEM 0.6383 1.9827 0.7953
(Std) (0.1081) (0.2640) (0.0272)

NR 0.6379 2.0076 0.7978
(Std) (0.1081) (0.3708) (0.0269)

m=50

pEM 0.6440 1.9583 0.7900
(Std) (0.1494) (0.3708) (0.0417)

NR 0.6433 2.0074 0.7958
(Std) (0.1496) (0.3769) (0.0388)
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Table 4.3. Comparison of variance estimation for the model with random slope only with number
of coefficient p=100

Time points # of subject Method σ2
u σ2

e ρ
(0.64) (2) (0.8)

tp=8 ∼10

m=200

pEM 0.6397 1.9892 0.7969
(Std) (0.0667) (0.1724) (0.0181)

NR 0.6396 1.9975 0.7978
(Std) (0.0667) (0.1707) (0.0177)

m=100

pEM 0.6564 1.9752 0.7908
(Std) (0.0846) (0.1912) (0.0443)

NR 0.6560 1.9992 0.7979
(Std) (0.0847) (0.1768) (0.0375)

m=80

pEM 0.6513 1.9728 0.7859
(Std) (0.0942) (0.2143) (0.0587)

NR 0.6509 1.9992 0.7943
(Std) (0.0941) (0.2123) (0.0483)

m=50

pEM 0.6285 1.9128 0.7607
(Std) (0.1302) (0.2388) (0.0653)

NR 0.6269 1.9987 0.7856
(Std) (0.1300) (0.2610) (0.0643)

tp=6∼ 10

m=200

pEM 0.6373 1.9944 0.7956
(Std) (0.0682) (0.1556) (0.0360)

NR 0.6371 2.0039 0.7989
(Std) (0.0683) (0.1435) (0.0282)

m=100

pEM 0.6529 1.9637 0.7897
(Std) (0.1037) (0.2119) (0.0508)

NR 0.6525 1.9875 0.7973
(Std) (0.1037) (0.2011) (0.0428)

m=80

pEM 0.6420 1.9756 0.7822
(Std) (0.1018) (0.2245) (0.0587)

NR 0.6408 2.0410 0.8020
(Std) (0.1021) (0.2134) (0.0509)

m=50

pEM 0.6475 1.9499 0.7752
(Std) (0.1165) (0.3025) (0.0756)

NR 0.6453 2.0707 0.8102
(Std) (0.1166) (0.3341) (0.0695)
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Table 4.4. Variable select results for the model with random slope only

# of subjects True Nonzero False Nonzero True Zero False Zero F score

Rate Rate Rate Rate

tp=8 ∼10

p=100

m=200 100% (6/6) 2.04% (1.92/94) 97.96% (92.08/94) 0% (0/6) 0.9897

m=100 100% (6/6) 3.51% (3.30/94) 96.49% (90.70/94) 0% (0/6) 0.9821

m=80 100% (6/6) 4.02% (3.78/94) 95.98% (90.22/94) 0% (0/6) 0.9795

m=50 100% (6/6) 4.15% (3.90/94) 95.85% (90.10/94) 0% (0/6) 0.9788

p=40

m=200 100% (6/6) 4.88% (1.66/34) 95.12% (32.34/34) 0% (0/6) 0.9750

m=100 100% (6/6) 5.41% (1.84/34) 94.59% (32.16/34) 0% (0/6) 0.9722

m=80 100% (6/6) 5.65% (1.92/34) 94.35% (32.08/34) 0% (0/6) 0.9709

m=50 100% (6/6) 6.62% (2.25/34) 93.38% (31.75/34) 0% (0/6) 0.9658

p=20

m=200 100% (6/6) 11.14% (1.56/14) 88.86% (12.44/14) 0% (0/6) 0.9410

m=100 100% (6/6) 11.29% (1.58/14) 88.71% (12.42/14) 0% (0/6) 0.9402

m=80 100% (6/6) 5.43% (0.76/14) 94.57% (13.24/14) 0% (0/6) 0.9721

m=50 100% (6/6) 8.57% (1.20/14) 91.43% (12.80/14) 0% (0/6) 0.9552

tp=6 ∼ 10

p=100

m=200 100% (6/6) 2.23% (2.10/94) 97.77% (91.90/94) 0% (0/6) 0.9887

m=100 100% (6/6) 3.60% (3.38/94) 96.40% (90.62/94) 0% (0/6) 0.9817

m=80 100% (6/6) 3.60% (3.38/94) 96.40% (90.62/94) 0% (0/6) 0.9817

m=50 100% (6/6) 4.06% (3.82/94) 95.94% (90.18/94) 0% (0/6) 0.9793

p=40

m=200 100% (6/6) 4.68% (1.59/34) 95.32% (32.41/34) 0% (0/6) 0.9760

m=100 100% (6/6) 5.68% (1.93/34) 94.32% (32.07/34) 0% (0/6) 0.9708

m=80 100% (6/6) 6.15% (2.09/34) 93.85% (31.91/34) 0% (0/6) 0.9683

m=50 100% (6/6) 7.43% (2.53/34) 92.57% (31.47/34) 0% (0/6) 0.9614

p=20

m=200 100% (6/6) 5.93% (0.83/14) 94.07% (13.17/14) 0% (0/6) 0.9694

m=100 100% (6/6) 6.29% (0.88/14) 93.71% (13.12/14) 0% (0/6) 0.9675

m=80 100% (6/6) 7.64% (1.07/14) 92.36% (12.93/14) 0% (0/6) 0.9603

m=50 100% (6/6) 9.43% (1.32/14) 90.57% (12.68/14) 0% (0/6) 0.9505

Tables 4.5-4.8 give the full simulation results for the model with correlated random intercept

and random slope. Tables 4.5-4.7 present the results for variance-covarance parameters estimation

corresponding to number of fixed effect p=20, 40, and 100 respectively. Table 4.8 contains the

variable selection results. Table 4.5 shows that when the sample size is large, the estimated variance-

covariance parameter values produced by our method are much closer to the true values than the

NR method. However, when the sample size is small, equaling 50 in our case, the accuracy of our

method is slightly lower than the NR method. The same conclusion can be drawn from Tables

4.6 and 4.7, where number of the coefficients p varies from 20 to 100. Therefore, the fact that the

REML variance-covariance estimators are invariant to the fixed effect is also true in this complicated

case . Table 4.8 shows that, in all scenarios, LASSO successfully identifies all the relevant fixed

effects (true nonzero rate is 100%). On average when p=100, LASSO identifies at least 93 out of 94
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irrelevant fixed effects; on average when p=40, at least 29 out of 34 zero coefficients are shrunken to

zero; on average when p=20, more than 11 out of 14 zero coefficients are identified by LASSO. The

F-score also shows that LASSO can accurately identify the redundant explanatory variables in all

scenarios. Comparing the results in this case to the results of the random slope only model, we can

tell that the performance of our method is affected by the complexity of the variance-covariance

structure.
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Table 4.5. Comparison of variance estimation for the model with correlated random intercept and
random slope with number of coefficients p=20

tp # of subjects Method γ11 γ12 γ22 σ2
ε ρ

(1.44) (0.64) (1) (2) (0.8)

tp=8 ∼ 10

m=200

pEM 1.4773 0.6241 1.0023 1.9773 0.7883
(Std) (0.6265) (0.1015) (0.0306) (0.4343) (0.0454)

NR 1.7114 0.5013 0.9995 1.8140 0.7720
(Std) (0.5245) (0.1442) (0.0292) (0.3632) (0.0447)

m=100

pEM 1.4618 0.6367 0.9971 2.0000 0.7845
(Std) (0.7131) (0.1524) (0.0422) (0.5650) (0.0604)

NR 1.7496 0.4793 1.0081 1.7536 0.7585
(Std) (0.6851) (0.1618) (0.0423) (0.4784) (0.0638)

m=80

pEM 1.6079 0.6079 1.0095 1.8936 0.7721
(Std) (0.7552) (0.1722) ((0.0493) (0.5490) (0.0609)

NR 1.6975 0.4968 1.0100 1.8247 0.7648
(Std) (0.7727)) (0.1793) (0.0476) (0.5290) (0.0650)

m=50

pEM 1.9483 0.5978 1.0020 1.6607 0.7336
(Std) (0.9092) (0.1921) (0.0567) (0.5831) (0.0816)

NR 2.0711 0.4333 1.0014 1.5987 0.7244
(Std) (0.7763) (0.1883) (0.0547) (0.5258) (0.0860)

tp=6 ∼ 10

m=200

pEM 1.4597 0.6629 0.9900 2.0419 0.7990
(Std) (0.5560) (0.1135) (0.0302) (0.4046) (0.0390)

NR 1.6408 0.5372 0.9916 1.9031 0.7853
(Std) (0.5251) (0.1441) (0.0290) (0.3665) (0.0406)

m=100

pEM 1.5061 0.6039 1.0059 1.9386 0.7761
(Std) (0.7153) (0.1548) (0.0405) (0.5739) (0.0651)

NR 1.7493 0.4674 1.0115 1.7398 0.7519
(Std) (0.6544) (0.1562) (0.0399) (0.4974) (0.0701)

m=80

pEM 1.6252 0.6133 1.0096 1.8389 0.7660
(Std) (0.7612) (0.1818) (0.0520) (0.5055) (0.0644)

NR 1.7679 0.4710 1.0137 1.7549 0.7552
(Std) (0.7065) (0.1714) (0.0497) (0.4810) (0.0694)

m=50

pEM 2.0006 0.5742 1.0082 1.5989 0.7235
(Std) (0.9204) (0.2326) (0.0676) (0.6197) (0.0781)

NR 1.9261 0.4592 1.0143 1.6898 0.7442
(Std) (0.8676) (0.1982) (0.0629) (0.5727) (0.0712)
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Table 4.6. Comparison of variance estimation for the model with correlated random intercept and
random slope with number of coefficients p=40

tp # of subjects Method γ11 γ12 γ22 σ2
ε ρ

(1.44) (0.64) (1) (2) (0.8)

tp=8 ∼ 10

m=200

pEM 1.3699 0.6475 0.9979 2.0744 0.7989
(Std) (0.5689) (0.1175) (0.0333) (0.4205) (0.0427)

NR 1.5540 0.5363 1.0000 1.9617 0.7872
(Std) (0.5419) (0.1513) (0.0336) (0.4289) (0.0465)

m=100

pEM 1.5507 0.6302 0.9988 1.9194 0.7800
(Std) (0.7199) (0.1552) (0.0443) (0.5054) (0.0561)

NR 1.7697 0.5009 0.9971 1.7692 0.7625
(Std) (0.6677) (0.1753) (0.0460) (0.4627) (0.0587)

m=80

pEM 1.5139 0.6128 1.0001 1.9694 0.7844
(Std) (0.7815) (0.1717) (0.0458) (0.5711) (0.0539)

NR 1.6782 0.4961 1.0025 1.8261 0.7732
(Std) (0.7434 (0.1874) (0.0457 (0.4283) (0.0483)

m=50

pEM 1.9847 0.5991 1.0018 1.6304 0.7309
(Std) (0.9379) (0.2265) (0.0661) (0.5613) (0.0747)

NR 2.0366 0.4411 1.0043 1.6864 0.74044
(Std) (0.8223) (0.1882) (0.0529) (0.5960) (0.0756)

tp=6 ∼ 10

m=200

pEM 1.4597 0.6371 1.0000 2.0273 0.7920
(Std) (0.5819) (0.1004) (0.0289) (0.4652) (0.0441)

NR 1.6884 0.4936 1.0050 1.8435 0.7733
(Std) (0.5404) (0.1158) (0.0273) (0.3844) (0.0427)

m=100

pEM 1.4679 0.6314 1.0052 1.9834 0.7839
(Std) (0.7536) (0.1429) (0.0437) (0.5404) (0.0574)

NR 1.7386 0.5048 1.0070 1.8034 0.7650
(Std) (0.6972) (0.1758) (0.0452) (0.4403) (0.0610)

m=80

pEM 1.7608 0.6325 0.9949 1.7883 0.7613
(Std) (0.9004) (0.1581) (0.0459) (0.4886) (0.0642)

NR 1.9761 0.4773 0.9966 1.7464 0.7552
(Std) (0.8319) (0.1645) (0.0465) (0.4700) (0.0707)

m=50

pEM 2.1079 0.5953 1.0146 1.5342 0.7114
(Std) (0.9414) (0.2380) (0.0695) (0.5447) (0.0782)

NR 2.0949 0.4476 1.0163 1.6048 0.7272
(Std) (0.8892) (0.2107) (0.0672) (0.4943) (0.0844)
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Table 4.7. Comparison of variance estimation for the model with correlated random intercept and
random slope with number of coefficients p=100

tp # of subjects Method γ11 γ12 γ22 σ2
ε ρ

(1.44) (0.64) (1) (2) (0.8)

tp=8 ∼ 10

m=200

pEM 1.4057 0.6353 1.0030 1.9924 0.7913
(Std) (0.5666) (0.1094) (0.0268) (0.3998) (0.0437)

NR 1.6220 0.5120 1.0042 1.8583 0.7773
(Std) (0.4868) (0.1318) (0.0278) (0.3601) (0.0435)

m=100

pEM 1.3595 0.6586 1.0022 2.0606 0.7979
(Std) (0.5815) (0.0982) (0.0311) (0.3896) (0.0391)

NR 1.5135 0.5660 1.0049 1.9624 0.7891
(Std) (0.5577) (0.1591) (0.0312) (0.3597) (0.0395)

m=80

pEM 1.6250 0.6098 1.0085 1.8391 0.7653
(Std) (0.8041) (0.1627) (0.0445) (0.5495) (0.0620)

NR 1.7439 0.4950 1.0068 1.7829 0.7608
(Std) (0.6845) (0.1836) (0.0457) (0.4886) (0.0598)

m=50

pEM 2.2636 0.5608 1.0225 1.4211 0.6901
(Std) (0.9102) (0.2274) (0.0669) (0.4307) (0.0781)

NR 2.0974 0.4447 1.0176 1.5973 0.7162
(Std) (0.9259) (0.1981) (0.0586) (0.6224) (0.0963)

tp=6 ∼ 10

m=200

pEM 1.3370 0.6476 1.0018 2.1304 0.8033
(Std) (0.5921) (0.1068) (0.0320) (0.4780) (0.0449)

NR 1.5842 0.5336 1.0044 1.9323 0.7844
(Std) (0.5681) (0.1539) (0.0310) (0.4315) (0.0478)

m=100

pEM 1.5881 0.6254 1.0021 1.8844 0.7704
(Std) (0.7915) (0.1607) (0.0494) (0.5651) (0.0638)

NR 1.8939 0.4632 1.0058 1.6658 0.7474
(Std) (0.6866) (0.1494) (0.0536) (0.4114) (0.0599)

m=80

pEM 1.7318 0.6249 0.9991 1.7782 0.7528
(Std) (0.8223) (0.1637) (0.0486) (0.5579) (0.0703)

NR 1.8547 0.4806 1.0002 1.7313 0.7492
(Std) (0.7365) (0.1709) (0.0474) (0.5000) (0.0730)

m=50

pEM 2.2161 0.5539 1.0097 1.3446 0.6742
(Std) (0.9364) (0.2479) (0.0646) (0.4906) (0.0826)

NR 1.8639 0.4344 1.0103 1.6478 0.7329
(Std) (0.9170) (0.2044) (0.0645) (0.5595) (0.0922)

23



Table 4.8. Variable selection results for the model with correlated random intercept and random
slope

# of subjects True Nonzero False Nonzero True Zero False Zero F score

Rate Rate Rate Rate

tp=8 ∼ 10

p=100

m=200 100% (6/6) 4.66% (4.38/94) 95.34% (89.62/94) 0% (0/6) 0.9761

m=100 100% (6/6) 4.67% (4.39/94) 95.33% (89.61/94) 0% (0/6) 0.9761

m=80 100% (6/6) 6.63% (6.23/94) 93.37% (87.77/94) 0% (0/6) 0.9657

m=50 100% (6/6) 9.64% (9.06/94) 90.36% (84.94/94) 0% (0/6) 0.9494

p=40

m=200 100% (6/6) 9.71% (3.30/34) 90.29% (30.70/34) 0% (0/6) 0.9490

m=100 100% (6/6) 10.65% (3.63/34) 89.35% (30.37/34) 0% (0/6) 0.9438

m=80 100% (6/6) 11.06% (3.76/34) 88.94% (30.24/34) 0% (0/6) 0.9415

m=50 100% (6/6) 12.50% (4.25/34) 87.50% (29.75/34) 0% (0/6) 0.9333

p=20

m=200 100% (6/6) 8.14% (1.14/14) 91.86% (12.86/14) 0% (0/6) 0.9576

m=100 100% (6/6) 12.18% (1.71/14) 87.82% (12.29/14) 0% (0/6) 0.9352

m=80 100% (6/6) 12.74% (1.78/14) 86.86% (12.16/14) 0% (0/6) 0.9297

m=50 100% (6/6) 14.07% (1.97/14) 85.93% (12.03/14) 0% (0/6) 0.9243

tp=6 ∼ 10

p=100

m=200 100% (6/6) 5.18% (4.87/94) 94.82% (89.13/94) 0% (0/6) 0.9734

m=100 100% (6/6) 6.33% (5.95/94) 93.67% (88.05/94) 0% (0/6) 0.9673

m=80 100% (6/6) 7.50% (7.05/94) 92.50% (86.95/94) 0% (0/6) 0.9610

m=50 100% (6/6) 11.37% (10.68/94) 88.63% (83.32/94) 0% (0/6) 0.9397

p=40

m=200 100% (6/6) 10.32% (3.51/34) 89.68% (30.49/34) 0% (0/6) 0.9456

m=100 100% (6/6) 11.41% (3.88/34) 88.59% (30.12/34) 0% (0/6) 0.9395

m=80 100% (6/6) 11.53% (3.92/34) 88.47% (30.08/34) 0% (0/6) 0.9388

m=50 100% (6/6) 12.79% (4.35/34) 87.21% (29.65/34) 0% (0/6) 0.9317

p=20

m=200 100% (6/6) 13.79% (1.93/14) 86.21% (12.07/14) 0% (0/6) 0.9259

m=100 100% (6/6) 14.57% (2.04/14) 85.43% (11.96/14) 0% (0/6) 0.9214

m=80 100% (6/6) 15.00% (2.10/14) 85.00% (11.90/14) 0% (0/6) 0.9189

m=50 100% (6/6) 16.57% (2.32/14) 83.43% (11.68/14) 0% (0/6) 0.9097

4.3. Life Data Analysis

In this section, we apply the proposed method to a life data set that is provided by the

researchers from the North Dakota State University Department of Agricultural and Biosystems

Engineering.

In agriculture, the level of water and temperature in the soil are believed to have critical

impact on the quality of tomato crops. Drip irrigation under mulch is one way to control both

soil moisture and temperature. In this type of irrigation system, a soil moisture sensor is used

to control the drip system so that it can provide irrigation based on the plants’ needs. A two-

factor factorial design with 3 replications in an experiment field was employed to investigate the

effect of the irrigation system and the mulch type on the quality of the ripe tomato fruit under
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Table 4.9. List of variables collected during the field experiment

Notation
PH Measurement of ripe tomato PH which is the response variable we are interested in

Week Week at which tomato was harvested, it takes value 1,2,...,7
Irrigation Irrigation system, either Irrigation (DI) or No Irrigation (NI))

Mulch Mulch type. There were three type of mulch: Clear Plastic (CP), Black Plastic (BP),
Fabric Mulch (PF), plus No Mulch (NM)

T15 Weekly average soil temperature at 15cm depth underground
T30 Weekly average soil temperature at 30cm depth underground
R15 Weekly average soil resistance at 15cm depth underground
R30 Weekly average soil resistance at 30cm depth underground
P15 Weekly average absolute soil water potential at 15cm depth underground
P30 Weekly average absolute soil water potential at 30cm depth underground

the climate conditions in Fargo, North Dakota. The layout of the design is showed in Figure 4.1.

The experiment field was divided into 24 plots; two soil moisture sensors and two soil temperature

sensors were installed at 15 cm and 30 cm in each plot to monitor soil moisture and soil temperature

variations. Soil resistance and soil temperature readings were collected every 15 minutes throughout

the season. Soil water potential was calculated based on the soil resistance readings. Any ripe

tomatoes were harvested weekly from each plot during the harvest season, and the PH value of the

tomatoes from each plot was measured. The variables collected during this experiment study is

listed in Table 4.9.

Figure 4.1. Layout of the two-factor factorial design

An ANCOVA model with random intercept and random slope is employed to detect the

factors that are important to PH value of ripe tomato. For the random effect model, instead of

setting a unique random intercept/slope coefficient for each subject which would results in too

many parameters, we assume random intercept/slope coefficients follows certain distribution, such

as normal distribution which only has two parameters involved. The model can be expressed as:
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PHij = β0 + β1Weekij + β211{Muchi=CP} + β221{Muchi=BP} + β231{Muchi=PF}

+β31{Irrigationi=DI} + β411{Muchi=CP}1{Irrigationi=DI}

+β421{Muchi=BP}1{Irrigationi=DI} + β431{Muchi=PF}1{Irrigationi=DI}

+β5T15ij + β6T30ij + β7R15ij + β8R30ij + β9P15ij + β10P30ij + u0i + u1iWeekij + εij

Where i = 1, 2, .., 24, j = T1, T2, ..., Ttpi and tpi is total number of weeks tomato was harvest for

the ith plot during throughout the season and tpi varies from 5 to 7. We assume random intercept

u0i follows N(0, σ2
u0), random slope u1i follows N(0, σ2

u1), and the error term ε̃i follows N(0, σ2
εΣi)

where (Σi)st = ρ|Tis−Tit|. We further assume that u0i, u1i and ε̃i are mutually independent.

Table 4.10. Variance-covariance parameter estimation for tomato PH value

method σ̂2
u0 σ̂2

u1 σ̂2
ε ρ̂

pEM 0.0039 1.95e-07 0.0140 0.3816

NR 0.0047 9.23e-13 0.0128 0.2974

Table 4.11. Variable selection results for tomato PH value

Intercept Week MulchCP MulchBP MulchPF

4.0514 -0.0024 - - -

IrrigationDI MulchCP*IrrigationDI MulchBP*IrrigationDI MulchPF*IrrigationDI T15

- - - - -

T30 R15 R30 P15 P30

- - - - 0.0011

Table 4.10 shows that the variance-covariance parameters estimated by our method are

similar to those estimated by the NR method, both showing that the random slope is zero, which

implies the impact of growth time (week) on the PH value is uniform across all the experiment units.

In addition, Table 4.11 shows the LASSO identifies the variables week and soil water potential at 30

cm depth underground as important variables. LASSO selects the explanatory variable P30 instead

of P15 because the root of the tomato plant at 30cm to 40cm depth absorbs more water than other

parts of the root. The existence of multicolinearity between P30 and other explanatory variables

may be another reason that other explanatory variables are not selected. The multicolinearity is

evidenced in Tables 4.12 and 4.13. The correlation coefficient matrix in Table 4.12 shows that P30 is

highly correlated with R30 and moderately correlated with R15; consequently, the effect of R30 and
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R15 could be absorbed by P30. To detect the correlation between P30 and Mulch, two multinomial

linear models with mulch as the response variable are fitted, where the null model has T15 and

T30 as explanatory variables and alternative model contains P30 as additional explanatory variable.

The deviance test shown in Table 4.13 indicates that P30 is significantly correlated with Mulch.

Table 4.12. Pairwise correlation among soil variables

R15 P15 T15 R30 P30 T30

R15 1.0000 -0.9968 -0.2767 0.5709 -0.5577 -0.2972
P15 1.0000 0.2429 -0.5766 0.5675 0.2660
T15 1.0000 -0.1514 0.0928 0.9608
R30 1.0000 -0.9929 -0.1908
P30 1.0000 0.1320
T30 1.0000

Table 4.13. Deviance test to detect correlation between mulch and P30

Model Explanatory Variables Residual deviance Change in deviance P-value

Null T15, T30 420.7092 18.3517 < 0.0001

Alternative T15, T30, P30 402.3575
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5. DISCUSSION

Like the Restricted Maximum Likelihood (REML) estimator for the linear mixed effect

models, the model estimation procedure proposed in this work for LASSO regression of repeated

measurements involves two estimation stages: 1. Estimation of the variance-covariance components

of the model via EM algorithm and 2. LASSO estimation of deterministic coefficients of model

covariates with the estimated variance-covariance components derived in the first stage. For the

M-step in the Expectation Maximization (EM) algorithm, we use the gradient descent method

instead of the classical NR method, which may avoid computing the variance-covariance matrix of

high dimension. Our numerical experiment indicates that, for the first stage, the result of using the

gradient descent method is quite comparable to that of NR method and outperforms the NR method

when the variance-covariance matrix of the model has a more complex structure. It is noteworthy

that in some cases, even when the NR method fails, the gradient descent method is convergence-

guaranteed. For the second stage, our numeric experiment shows that the LASSO estimation could

successfully identify all the relevant and most of the irrelevant explanatory variables. We also find

some limitations of the proposed model estimation procedure. Success of the procedure sometimes

relies on a delicate choice of tuning parameters in both the gradient descent method and the

LASSO estimation, which largely result from the two estimation methods. The model assumption

of Gaussian distribution plays a critical role in both the E-step of EM-algorithm and LASSO

estimation. Although, theoretically speaking, it is possible to extend the estimation procedure to

non-Gaussian linear models, much more effort is needed in the E-step and the LASSO estimation

involved in the proposed estimation procedure.
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APPENDIX A. MATRIX PROPERTIES AND DERIVATIVES

A.1. Conditional Distribution Between Two Vectors

if (x̃′, ỹ′)′ has joint distribtuion Np(µ̃,Σ) where µ = (µ′x, µ
′
y), and Σ =

 Σx Σxy

Σxy Σy

, and

Σy is nonsigular, then for a given value of ỹ

x̃|ỹ ∼ N(µ̃x + ΣxyΣ
−1
y (ỹ − µ̃y),Σx − ΣxyΣ

−1
y Σxy)

A.2. Quadratic Form

If ỹ ∼ N(µ̃,Σ) and A is a symmetric matrix, then

E(ỹ′Aỹ) = µ̃′Aµ̃+ tr(AV )

A.3. Properties of Vec Operator and Kronecker Products

If A and B are square matrices, C is same dimension as A then

(vec(A))′(B ⊗ C)vec(A) = tr(B′A′CA)

Proof see Harville [10]

A.4. Derivatives with Matrices

Given a nonsingular p×p matrix lA = A(x) whose elements depend on x and is continuously

differentiable over x, then

∂A−1

∂xj
= −A−1 ∂A

∂xj
A−1

∂ log |A|
∂xj

= tr

(
A−1 ∂A

∂xj

)

A.5. Derivatives of log|L′2ΣL2|

∂log|L′2ΣL2|
∂ρ

= tr

{
(L′2ΣL2)−1L′2

∂Σ

∂ρ
L2

}
= tr

{
L2(L′2ΣL2)−1L′2

∂Σ

∂ρ

}
= tr(U

∂Σ

∂ρ
)

where U = L2(L′2ΣL2)−1L′2.
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APPENDIX B. UPDATING FORMULA

Let G0 =

 γ11 γ12

γ12 γ22

 and G−1
0 =

 γ11 γ12

γ12 γ22

, then G = G0⊗ Im and G−1 = G−1
0 ⊗ Im.

Define U (k) such that vec(U (k)) = (µ̃
(k)′

1 , µ̃
(k)′

2 )′ = µ̃(k).

The M-step for γgh is given by

∂E
(
l2|ỹ2; θ(k)

)
∂γgh

= −1

2

{
tr

(
G−1 ∂G

∂γgh

)
− µ̃(k)′G−1 ∂G

∂γgh
G−1µ̃(k) − tr

(
G−1 ∂G

∂γgh
G−1V (k)

)}
The first term is given by

tr

(
G−1 ∂G

∂γgh

)
= tr

(
(G−1

0 ⊗ Im)(
∂G0

∂γgh
⊗ Im)

)
= tr

(
G−1

0

∂G0

∂γgh
⊗ Im

)
= m tr

(
G−1

0

∂G0

∂γgh

)
When g=h, ∂G0

∂γgh
is matrix of zero except the (g,g) position, then tr

(
G−1 ∂G

∂γgh

)
= m(G−1

0 )gg.

When g 6= h, ∂G0
∂γgh

is matrix of zero except the (g,h) and (h,g) positions, then tr
(
G−1 ∂G

∂γgh

)
=

2m(G−1
0 )gh.

The second term is given by

µ̃(k)′G−1 ∂G

∂γgh
G−1µ̃(k) = vec(U (k))′((G−1

0

∂G0

∂γgh
G−1

0 )⊗ Im)vec(U (k))

= tr

(
(U (k))′U (k)G−1

0

∂G0

∂γgh
G−1

0

)
= tr

(
G−1

0 (U (k))′U (k)G−1
0

∂G0

∂γgh

)
When g=h, µ̃(k)′G−1 ∂G

∂γgh
G−1µ̃(k) = (G−1

0 (U (k))′U (k)G−1
0 )gg

When g 6= h, µ̃(k)′G−1 ∂G
∂γgh

G−1µ̃(k) = 2(G−1
0 (U (k))′U (k)G−1

0 )gh

The third term is given by

tr

(
G−1 ∂G

∂γgh
G−1V (k)

)
= tr

(
(G−1

0 ⊗ Im)(
∂G0

∂γgh
⊗ Im)(G−1

0 ⊗ Im)V (k)

)
= tr

((
(G−1

0

∂G0

∂γgh
G−1

0 )⊗ Im
)
V (k)

)
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Partition V (k) into 4 matrices of size m by m, i.e., V (k) =

 V k
11 V k

12

V k
12 V k

22

.

When g=h,

(G−1
0

∂G0

∂γgh
G−1

0 )⊗ Im =

 γ1gγg1 γ1gγg2

γ2gγg1 γ2gγg2

⊗ Im
=

 γ1gγg1Im γ1gγg2Im

γ2gγg1Im γ2gγg2Im

 .
Then

tr

(
G−1 ∂G

∂γgh
G−1V (k)

)
=

2∑
l=1

2∑
s=1

tr(γsgγglImV
(k)
ls )

=
2∑
l=1

2∑
s=1

γsgγgl tr(V
(k)
ls )

= (G−1
0 ΨG−1

0 )gg

where Ψ =

 tr(V
(k)

11 ) tr(V
(k)

12 )

tr(V
(k)

12 ) tr(V
(k)

22 )


When g 6= h,

(G−1
0

∂G0

∂γgh
G−1

0 )⊗ Im =

 2γ1gγh1 2γ1gγh2

2γ2gγh1 2γ2gγh2

⊗ Im
=

 2γ1gγh1Im 2γ1gγh2Im

2γ2gγh1Im 2γ2gγh2Im

 .
Then

tr

(
G−1 ∂G

∂γgh
G−1V (k)

)
=

2∑
l=1

2∑
s=1

tr(2γsgγglImV
(k)
ls ) = 2

2∑
l=1

2∑
s=1

γsgγgl tr(V
(k)
ls ) = 2(G−1

0 ΨG−1
0 )gh

Therefore the M-step for γgh can be written as

∂E
(
l2|ỹ2; θ(k)

)
∂γgh

=

 −1
2

{
m(G−1

0 )gg − (G−1
0 (U (k))′U (k)G−1

0 )gg − (G−1
0 ΨG−1

0 )gg
}
, g = h

−1
2

{
2m(G−1

0 )gh − 2(G−1
0 (U (k))′U (k)G−1

0 )gh − 2(G−1
0 ΨG−1

0 )gh
}
, g 6= h

Let above equation equal to zero results into following equation

m(G−1
0 )gh = (G−1

0 (U (k))′U (k)G−1
0 )gh + (G−1

0 ΨG−1
0 )gh
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and this can be written in matrix form as

m(G−1
0 ) = (G−1

0 (U (k))′U (k)G−1
0 ) + (G−1

0 ΨG−1
0 ).

Left and right Mutiplying by G0 yields

m(G0) = (U (k))′U (k) + Ψ

therefore,

mγgh = ((U (k))′U (k))gh + (Ψ)gh

= µ̃(k)′
g µ̃

(k)
h + tr(V k

gh)

and

γgh =
1

m
(µ̃(k)′
g µ̃

(k)
h + tr(V k

gh)).
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APPENDIX C. CODE

library(MASS)

library(Matrix)

library(nlme)

library(foreach)

library(doParallel)

library(openxlsx)

registerDoParallel(cores = detectCores())

comb <- function(...) {

mapply(’rbind’, ..., SIMPLIFY=FALSE)

}

set.seed(628)

t_start <- proc.time()

GEM.out=NULL

nlme.out=NULL

lasso_out=NULL

m=100 # number of subject

####generate number of time points for each individual

####maximum number of time points is 10

tp_min=8

tp_max=10

tp <- round(runif(m,tp_min,tp_max))

age<- unlist(sapply(tp, function(x)

c(1, sort(sample(2:tp_max, x-1, replace=FALSE)))))

ID=rep(1:m, times=tp)

n=length(age)
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################true parameter values############

beta=c(3,3.6,8,-5.4,5,2,rep(0,34))

p=length(beta) ## number of fixed effects(betas)

sig.u0=1.44

sig.u1<- 1 #variance of random effect u2

sig.u01<-0.64

sig.e<- 2 #variance of residual

rho=0.8

############Generate design matrix corresponding to fixed effect#############

X1=runif(n, -0.3, 0.3)

X2=rnorm(n,X1, 0.5)

X3=runif(n,X2-1,X2+1)

X4=rnorm(n,0,2)

X567=mvrnorm(n,c(0,0,0), matrix(c(0.5,0.1,0.1,

0.1,0.4,0.1,

0.1,0.1,0.6),nrow=3), empirical = FALSE)

X_rest=mvrnorm(n,rep(0,31),diag(31))

X=cbind(rep(1,n),age,X1,X2,X3,X4,X567,X_rest)

##########split X into 100 individual design matrices######

X_list=split.data.frame(X,ID)

#################design matrix for random effect####################

age_list=split.default(age,ID)

Z0_list=split.default(rep(1,n),ID)

Z0=do.call(bdiag, Z0_list)

Z1=do.call(bdiag, age_list)

result <- foreach(re=1:100, .combine="comb", .multicombine=TRUE) %dopar%{

G0=matrix(c(sig.u0,sig.u01,sig.u01,sig.u1),2,2)

u=mvrnorm(m, rep(0, 2), G0, empirical=TRUE)
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b0=length(u[,1])

b1=length(u[,2])

##simulate correlated error term with AR(1) structure and rho=0.8

Sigma=do.call(bdiag, lapply(age_list,

FUN = function(x) rho^abs(outer(as.vector(x),as.vector(x),"-"))))

e=as.vector(t(mvrnorm(1, rep(0, n), sig.e*Sigma, empirical=FALSE)))

Z=cbind(Z0,Z1)

y=X%*%beta+Z0%*%u[,1]+Z1%*%u[,2]+e

###################ECM algorithm with one iteration of gradient decent#######

##initial value

iteration=0

sig.u0=1

sig.u1=0.25

sig.u01=0.35

sig.e=1.5

rho=0.5

cc=1 ##initial convergence criterion value

alpha=0.0001 ##initial step size for projection gradient descent alogrithm

while (cc>1e-5) {

iteration=iteration+1

## step size for projection gradient descent alogrithm

alpha=(2/(1000*(iteration+0.0005)))

kapa=c(sig.u0, sig.u01,sig.u1,sig.e,rho)

G0=diag(sig.u0,b0)

G1=diag(sig.u1,b1)

G01=diag(sig.u01,b0)

G=rbind(cbind(G0,G01),cbind(G01,G1))

Sigma=do.call(bdiag, lapply(age_list,
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FUN = function(x) rho^abs(outer(as.vector(x),as.vector(x),"-"))))

Sigma_list=lapply(age_list,

FUN = function(x) rho^abs(outer(as.vector(x),as.vector(x),"-")))

if (rho==1){

SigmaInv_list=lapply(age_list,

FUN = function(x) rho^abs(outer(as.vector(x),as.vector(x),"-"))/length(x)^2)

X_Sinv_X=Reduce("+",lapply(X_list,

FUN = function(x) colSums(x) %*% t(colSums(x))/nrow(x)^2))

} else if(rho==-1){

SigmaInv_list=lapply(age_list,

FUN = function(x) ginv(rho^abs(outer(as.vector(x),as.vector(x),"-"))))

X_Sinv_X=Reduce("+",

Map(function(x,y,z) t(x) %*% y %*% z, X_list, SigmaInv_list, X_list))

} else{

SigmaInv_list=lapply(age_list,

FUN = function(x) solve(rho^abs(outer(as.vector(x),as.vector(x),"-"))))

X_Sinv_X=Reduce("+",

Map(function(x,y,z) t(x) %*% y %*% z, X_list, SigmaInv_list, X_list))

}

###variance matrix for each individual H1=z%*%G%*%t(z)+sig.e*Sig###

Sigma_inv=do.call(bdiag, SigmaInv_list)

HInv_list=Map(function(x,y,z)

ginv(cbind(x,y)%*%matrix(c(sig.u0,sig.u01,sig.u01, sig.u1),2)

%*%t(cbind(x,y))+sig.e*z), Z0_list,age_list, Sigma_list)

H_inv=do.call(bdiag,HInv_list)
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X_Hinv_X=Reduce("+",Map(function(x,y) t(x) %*% y %*% x, X_list, HInv_list))

Hinv_X=do.call(rbind,Map(function(x,y) y %*% x, X_list, HInv_list))

Sinv_X=do.call(rbind,Map(function(x,y) y %*% x, X_list, SigmaInv_list))

P=H_inv-Hinv_X%*%solve(X_Hinv_X)%*%t(Hinv_X)

U=Sigma_inv-Sinv_X%*%solve(X_Sinv_X)%*%t(Sinv_X)

V=G-G%*%t(Z)%*%P%*%Z%*%G

M=G%*%t(Z)%*%P%*%y

M0=M[1:m] ##conditional expected value of u0

M1=M[(m+1):(2*m)] ##conditional expected value of u1

V0=V[1:m,1:m] ##conditional variance of u0

V1=V[(m+1):(2*m),(m+1):(2*m)] ##conditional variance of u1

V01=V[1:m,(m+1):(2*m)]

###update for sig.e#####

sig.e_new=drop(t(y-Z%*%M)%*%U%*%(y-Z%*%M)+sum(diag(t(Z)%*%U%*%Z%*%V)))/(n-p)

##use projected gradient decent method to update rho

##first derivative of Sigma w.r.t rho

Sigma_d=do.call(bdiag, lapply(age_list, FUN = function(x)

abs(outer(as.vector(x),as.vector(x),"-"))*

rho^abs(outer(as.vector(x),as.vector(x),"-"))-1))

##first derivative of negative E(l_1 | y_2; theta) w.r.t rho

grad_rho=1/2*(sum(diag(U%*%Sigma_d))

-(1/sig.e_new)*drop(t(y-Z%*%M)%*%U%*%Sigma_d%*%U%*%(y-Z%*%M)
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+sum(diag(t(Z)%*%U%*%Sigma_d%*%U%*%Z%*%V))))

g_d=rho-alpha*grad_rho ##gradient decent update

rho_new=sign(g_d)*min(1, abs(g_d)) ##projected gradient decent update

sig.u0_new=drop(t(M0)%*%M0+sum(diag(V0)))/b0

sig.u1_new=drop(t(M1)%*%M1+sum(diag(V1)))/b1

sig.u01_new=drop(t(M0)%*%M1+sum(diag(V01)))/b1

kapa_new=c(sig.u0_new,sig.u01_new,sig.u1_new,sig.e_new,rho_new)

cc=sqrt(sum((kapa_new-kapa)^2)/sum((kapa_new)^2)) #converge criteria#

sig.u0=sig.u0_new

sig.u1=sig.u1_new

sig.e=sig.e_new

sig.u01=sig.u01_new

rho=rho_new

}

GEM.out=rbind(GEM.out,c(sig.u0,sig.u01,sig.u1,sig.e,rho,iteration))

Y=as.vector(y)

data=data.frame(ID,Y,age,X1,X2,X3,X4,X567,X_rest)

out=try(lme(Y~age+X1+X2+X3+X4+X1.1+X2.1+X3.1+X1.2+X2.2+X3.2+X4.1+X5+X6+X7+X8+X9

+X10+X11+X12+X13+X14+X15+X16+X17+X18+X19+X20+X21+X22+X23+X24+X25+X26

+X27+X28+X29+X30+X31, data=data,random=~age|ID,

correlation = corExp(form = ~age |ID)),silent=TRUE)

if(grepl( "Error", out[1], fixed = TRUE)){

nlme_out1=c("NA","NA","NA","NA","NA")} else{

phi=as.vector(exp(-1/coef(out $modelStruct$corStruct,unconstrained=FALSE)))

nlme_out1=c(VarCorr(out)[1,1],VarCorr(out)[2,3],VarCorr(out)[2,1],

VarCorr(out)[3,1], phi)}

nlme.out=rbind(nlme.out,nlme_out1)
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###############################################

#####variable selection by LASSO#############

##############################################

G0=diag(sig.u0,b0)

G1=diag(sig.u1,b1)

G01=diag(sig.u01,b0)

G=rbind(cbind(G0,G01),cbind(G01,G1))

Sigma=do.call(bdiag, lapply(age_list,

FUN = function(x) rho^abs(outer(as.vector(x),as.vector(x),"-"))))

R=sig.e*Sigma ##residual variance##

H=Z%*%G%*%t(Z)+R

if (abs(rho)!=1){

D=chol(round(solve(H),6))} else {

D=chol(round(ginv(as.matrix(H)),6))}

X_star=D%*%X

Y_star=D%*%y

beta=rep(0,p)

LASSO=NULL

lambda_max=80/log(n)/sqrt(n)

lambda_min=20/log(n)/sqrt(n)

grid <- exp(seq(log(lambda_max),log(lambda_min),length = 1000))

for (lambda in grid){

tol=1

while(tol>0.00006){

beta_new=beta

beta[1]=as.numeric(t(X_star[,1])%*%(Y_star-X_star[,-1]%*%beta[-1])

/t(X_star[,1])%*%X_star[,1])

for (k in 2:p) { beta1=as.numeric(t(X_star[,k])%*%(Y_star-X_star[,-k]

%*%beta[-k]))/t(X_star[,k])%*%X_star[,k]

41



lambda1=n*lambda/(2*t(X_star[,k])%*%X_star[,k])

if (beta1 > lambda1){

beta[k]=beta1-lambda1

} else if (beta1 < -lambda1){

beta[k]=beta1+lambda1

} else{beta[k]=0}

}

tol=sqrt(sum((beta_new-beta)^2))

}

BIC=(sum(Y_star-X_star%*%beta)^2/n)+sqrt(2)*log(n)*sum(beta!=0)/sqrt(n)

lasso=cbind(lambda,BIC,t(beta))

LASSO=rbind(LASSO,lasso)

}

lasso_best=LASSO[which(LASSO[,2]==min((LASSO[,2]))),]

lasso_out=rbind(lasso_out,lasso_best)

#lasso_out=rbind(lasso_out,lasso)

list(GEM.out,nlme.out,lasso_out)

}
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