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ABSTRACT 

Challenges associated with ensuring the accuracy and reliability of cost estimation of 

highway bid items, especially during the conceptual phase of a project, are of significant interest 

to state highway agencies. Even with the existing research undertaken on the subject, the 

problem of inaccurate estimation of highway bid items still exists.  

A systematic literature review was performed to determine research trends, identify, 

categorize the factors influencing highway unit prices, and assess the performance of conceptual 

cost prediction models.  

This research proposes a geographic information system (GIS)–based methodology that 

leverages vast historical bid data for unit-price estimation and the robust GIS capabilities with 

consideration of the effects of project-specific location and variations due to cost escalation on 

different bid items. 

A comparison of the three spatial interpolation techniques operationalized in this research 

revealed that disjunctive and empirical Bayesian kriging models led to more accurate cost 

prediction than ordinary kriging algorithms.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

The construction industry in the world, especially in the United States, is one of the 

largest industry sectors that deliver projects with substantial budgets (Zhang et al. 2017). 

Historically, the construction sector has been plagued by poor performances, characterized by 

lagging productivity growth, cost overruns, and low levels of customer satisfaction 

(Rameezdeen, 2007; Yap et al. 2019; Biörck et al. 2020). State highway transportation agencies 

(SHAs) require multiple cost estimates for various purposes throughout the life cycle of 

construction projects (Migliaccio et al. 2015; Zhang et al. 2017). Conceptual cost estimates are 

vital for decision making, initial appropriation, and economic feasibility studies of capital 

projects (Sinnette 2007; Hyari et al. 2015; Dursun and Stoy 2016). Developing a reliable and 

accurate total cost estimate at the preliminary stages of a project is a challenge for any state 

highway agency (SHA) due to personnel shortages, lack of information and data, and incomplete 

design (Asmar et al. 2011; Elbeltagi, et al. 2014; Gardner et al 2016). With federal financial aid 

swirling with uncertainty and the increasing demand for highway construction projects, 

inaccurate estimates often present challenges in the successful delivery of much-needed highway 

projects (Baek and Ashuri 2019). The accuracy of conceptual cost estimates is crucial to the 

success of construction projects.  

Improving the accuracy of cost estimates is key to addressing the shortcomings of current 

cost estimating methods (Zhang et al. 2014) and ensuring the successful planning, execution, and 

completion of transportation projects. It is even more important for contracting authorities to 

optimize taxpayer’s money by utilizing it as responsibly as possible. Yet, authorities often must 

choose between different projects during the feasibility stage. Sometimes, under the pressure of 
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time constraints, funding decisions are made before the project scopes are fully finalized. This 

presents difficulty in preparing adequate estimates of the probable project costs of highway 

construction projects. However, it is in the preliminary stages of the project that control over the 

budget is most necessary.  

Conceptual cost estimates are developed based on historical cost data and adjustment 

factors, which include location, time, size, and complexity. Thus, the accuracy of those 

adjustment factors directly affects the accuracy of the estimate (Elbeltagi et al. 2014; Zhang et al. 

2016). A wide range of construction cost estimation methods exists to verify feasibility studies 

on facilities or in evaluating design alternatives. Estimating methods at the conceptual phase 

needs to be quick, economical, and reasonably accurate (Kim et al. 2012). Several studies have 

been conducted to improve the estimation process, including a geographic information systems 

estimation based on project location (Le et al. 2019; Martinez 2010; Zhang 2010). Other 

researchers also applied case-based reasoning (CBR), genetic algorithms(GA), and multiple 

regression analysis (MRA) to improve the cost estimation process (Shrestha et al. 2014). 

Existing forecasting models for instance regression and artificial intelligence use binary weight 

values which are not robust enough to quantify the spatial variation of highway construction 

costs. However, an important consideration with the selection of any method for cost estimation 

is the accuracy by which actual costs can be predicted (Ashworth and Skitmore 1982; 

Elmousalami 2020). Cost estimates expressed as a deterministic value often leads to a false 

inference of accuracy because of the inability to account for the vagaries associated with the 

deterministic approach making it difficult for transportation agencies to cater for cost growth 

(Anderson et al. 2007; Gardner et al. 2017). The communication of a range of values 

representing the array of probable project costs creates a better understanding of estimation 
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precision (Anderson et al. 2007). The stochastic conceptual estimate approach produces a 

probability distribution of the likely construction costs and addresses the level of confidence in 

an estimate (Gardner et al. 2017). Hence, it is necessary to devise a method that would improve 

the accuracy of construction cost estimation during the planning phase (Shrestha et al. 2014). 

1.2. Statement of the Problem 

The development of cost estimates that accurately reflect project scope, microeconomic  

conditions and macroeconomic conditions that provide a reliable baseline cost (Shane et al. 

2009) are vital for decision making, preliminary appropriation, and economic feasibility studies 

of capital projects (Dursun and Stoy 2016). Reliable cost data are often difficult to obtain during 

the conceptual stages of a project, particularly if the design and cost drivers remain unresolved 

(Trost and Oberlender 2003; Wilmot and Cheng 2003). Conceptual estimating methods require 

considerable effort in data collection and analyses before modeling construction costs. The 

preparation of the estimate takes little time, however, compiling historical cost data is a time-

consuming process and is only useful if updated and monitored regularly (Barzandeh and 

Zealand 2011). Construction and engineering organizations that can successfully collect, store, 

analyze, and generate insights from historical data and project information are among the 

winners in this new information age (Huang et al. 2006). Available computing hardware and 

database technology allow for easy, efficient, and reliable data storage and retrieval. 

Furthermore, the widespread use of cloud computing and sophisticated database systems enables 

companies to pool their data together from across different geographical locations using data 

servers. However, the amount of data generated by these firms presents both a challenge and 

opportunity- a challenge to traditional methods of data analysis since the data are often complex, 

and large (Ahiaga-Dagbui and Smith 2013). The actual cost of a project is subject to many 
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variables including scope, location, time, size, capacity, human judgmental factors, market 

fluctuations, weather, and complexity; which could significantly influence the range of probable 

projected costs (AASHTO 2013; Zhang et al. 2016; Baek and Ashuri 2019). Geographic location 

considerations are powerful project characteristics that may substantially affect unit prices (ITD 

2020). This is evident in several empirical studies conducted by Shash and Al-Khaldi (1992) in 

which a number of contractors identified project location as a predominant factor that influences 

the probable cost of highway projects. A project's location, whether in an urban, suburban, or 

rural setting should be considered in establishing the probable cost of highway construction 

projects at the conceptual phase (NJDOT 2019). The geographic location of a highway 

transportation project is a larger cost driver in asphalt pavement bid unit prices than mix design. 

Therefore, bid prices for other asphalt bid items in a similarly priced geographical area should be 

investigated (WisDOT 2020). A location factor is an instantaneous overall project factor for 

translating all of the project cost elements of a defined construction project scope of work from 

one geographic location to another (Pietlock 1996). One of the problems that may be 

encountered in conceptual cost estimation location adjustment is that not all cities or 

communities are accounted for in published standard cost indices (Martinez 2010). To adjust cost 

estimates for geographical locations without location adjustment factor, the state of practice is to 

apply factors from nearby cities with similar economic characteristics. SHA’s depend on 

estimators’ judgment and experience to make these adjustments. However, this subjective 

recommendation does not ensure consistent and reliable location adjustment of cost estimates. 

Additionally, estimating construction cost using manual comparison and interpolation from 

historical data is time-consuming and error-prone due to the challenges of two-dimensional 

interpolation from multiple historical values (Zhang, 2010; Zhang et al. 2016). Furthermore, 
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practical, technical, and economical constraints make it difficult to collect, store, and process 

historical cost data for every desired point over space and time. Location-cost adjustment factors 

(LCAF) are commercially available to account for spatial variation in construction cost. 

However, they do not include all geographic locations. Therefore, LCAFs for unsampled 

locations need to be inferred through spatial interpolation or prediction methods (Migliaccio et 

al. 2013). The state of the art has applied interpolation methods to location cost-adjustment 

factors to adjust the total costs of two similar projects in two different cities. However, existing 

methods are most beneficial to conceptual cost estimation without considering variances between 

two projects in the same city and various effects of location on different work items (Le et al. 

2019). A recent study conducted by Le, et al. (2019) in a GIS-based framework for estimating 

and visualizing unit prices used inverse distance weighted (IDW), ordinary kriging (OK), and 

ordinary cokriging (OCK) methods. The shortcoming of this research, however, is only a 

deterministic and linear kriging approach were deployed for the study. Invariably, the choice of 

an optimal kriging method is dependent on how well the variogram model fits the data set 

(Shamo et al. 2012). Out of the 11 semivariogram models in ArcGIS, only one was fitted for the 

entire study. Additionally, classical interpolation methods assume that the estimated 

semivariogram is the true semivariogram for the interpolation region and does not assess the 

uncertainty introduced by estimating the underlying semivariogram. If a new method can be 

introduced that can be statistically proven to increase prediction accuracy, this will be a great 

contribution to construction cost estimation of highway construction bid items (Martinez 2010). 

This warrants a further study to improve the unit price estimation process for SHAs’ estimators 

by proposing ordinary kriging(linear), Disjunctive kriging (non-linear), and empirical Bayesian 

kriging(EBK) methods for estimating unit prices based on historical bid data. 
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1.3. Statement of Purpose 

Even with the existing research undertaken on the subject, the problem of inaccurate 

estimation of highway bid items still exists. Intense competition coupled with the demand for 

shorter completion times and lower costs have been driving innovative approaches within the 

construction industry. The accuracy of conceptual cost estimates is a major concern for project 

sponsors.  

This study proposes a geographic information system(GIS)–based methodology that 

leverages vast historical bid data for unit-price estimation and the robust GIS capabilities with 

consideration of the effects of project-specific location and variations due to cost escalation and 

inflation overtime on different bid items. This study will investigate which combination of 

kriging and semivariogram model would best fit the data since the kriging results are based on 

the intrinsic properties of the data. Three spatial interpolation methods ordinary kriging(OK), 

Disjunctive kriging(DJ), and empirical Bayesian kriging(EBK) methods will be combined with 

several semivariogram models one at a time, to ascertain the best combination of the kriging 

method and variogram fitting for the historical cost data used in the study. 

1.4. Research Questions 

1. What context are cost models used to estimate the cost of highway construction 

bid items and their associated shortcomings? 

2. What is the level of accuracy associated with the estimating methods adopted in 

the selected articles?  

3. What were the factors affecting the costs of highway unit prices in the published 

papers? 
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4. What are trends of unit prices for the top 5 historical highway bid items from 

2013 to 2018? 

5. Which combination of ordinary kriging and variogram models yields the best 

results in estimating unit prices for highway construction bid items?  

6. What is the prediction accuracy associated with the ordinary kriging and 

disjunctive kriging in estimating unit prices of highway construction bid items?  

7. Which combination of empirical Bayesian kriging and variogram models yields 

the best results in estimating unit prices for highway construction bid items and 

what is the standard prediction error introduced by estimating the underlying 

semivariogram?  

8. How can the validity of the prediction results be checked concerning the actual 

unit prices bid items? 

1.5. Overview of Research Approach 

Although the primary research is essential for producing crucial original data and 

insights, reviews can inform us about what is known, how it is known, how this varies across 

studies, and thus also what is not known from previous research (Gough et al. 2012). Conducting 

a systematic literature review on a subject matter provides extensive insight into previous 

research and limitations. Even with the existing research undertaken on the subject, the problem 

of inaccurate estimation of highway bid items still exists. A systematic literature review was 

performed to search, select, and review 105 papers from six electronic databases on conceptual 

cost estimation of highway bid items. This study used content and non-parametric statistical 

analyses to determine research trends; identify and categorize the factors influencing highway 
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unit prices; and to assess the combined performance of conceptual cost prediction models from 

existing literature.  

A reliable method of tracking construction costs is to observe the variability in the 

average unit price of individual highway construction bid items that occur in several contracts; 

thus, enabling their comparisons yearly (Cheng and Wilmot 2009). The frequency of the bid 

items of each highway project in the database was determined to identify the common bid items 

from 2013 to 2018. Bid items whose units were not precisely defined for instance lump sum, 

were discarded and those with consistent and specific characteristics that allowed a price 

comparison over time were retained for the analyses. The dataset was visually screened to check 

for completeness, consistency, and to ensure the location of each bid item corresponded to the 

precise project location. The bid data were then subjected to exploratory data and statistical 

analyses to help understand the data and make logical choices and conclusions for further 

modeling procedures. Two research hypotheses were formulated to further ascertain the impact 

of competition and project size on unit prices submitted by contractors for 5 common bid items 

identified in the database. 

Three spatial Interpolation algorithms ordinary kriging(OK) will be combined with the 

three(3) semi-variogram models(exponential, spherical, Gaussian) one at a time, to ascertain the 

best combination of the kriging method and variogram fitting for the historical cost data used in 

the study. Subsequently, the prediction performance of ordinary kriging(linear) and disjunctive 

kriging (non-linear) will be assessed to ascertain which of the two algorithms performs best for 

the top five highway bid unit prices. To accurately assess the standard prediction error 

introduced by estimating the underlying semivariogram in quantifying the effect of project-

specific location and time on highway bid unit-price estimation, empirical Bayesian 
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kriging(EBK) with three semivariograms (exponential detrended, whittle detrended, and K-

Bessel detrended) to model and interpolate top five bid unit prices. Cross-validation will be used 

to assess the variability and validity of the modeling results and formed the basis of comparison 

and selection of the optimal results.  

1.6. Research Contribution 

The accuracy of conceptual cost estimates for capital projects has been a major concern 

and the subject of much scrutiny over the last 35 years (Trost and Oberlender 2003). A majority 

of studies conducted on the subject matter failed to validate their methodology on vast real 

project cost data. The primary contribution to the body of knowledge of the study is to apply 

three spatial interpolation algorithms ordinary kriging(OK), disjunctive kriging (non-linear), and 

empirical Bayesian kriging(EBK) methods for unit-price estimation and geovisualization with 

consideration of the effects of project-specific location and inflation on different highway bid 

items at the conceptual phase of projects. This research will validate the proposed methodology 

using different types of highway construction bid items from WisDOT. The geovisualized maps 

will help state highway authorities to increase their efficiency in developing and updating 

conceptual estimates and will serve as a leverage for verifying existing historical bid costs. The 

generated maps will be integrated into an ArcGIS online platform, in a cloud environment that 

enables stakeholders involved in planning and delivering transportation projects to easily access 

complete historical cost data to make better-informed funding decisions. The following are 

proposed research papers that will be generated from this study;  

1. Conceptual Cost Estimation of Highway Bid Items- A Systematic Literature 

Review  

2. Exploratory Data and Statistical Analyses of Highway Construction Bid Items  
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3. Conceptual Cost Estimation of Highway Unit Prices Using Ordinary Kriging 

4. Comparison of Ordinary and Disjunctive Kriging Methods for Conceptual Cost 

Estimation of Highway Bid Items 

5. Conceptual Cost Estimation of Highway Unit Prices: An Empirical Bayesian 

Kriging Approach 

1.7. Organization of the Study 

The thesis is organized into seven chapters as illustrated in Figure 1. 

1.7.1. Chapter One-Introduction 

This chapter sets out the background and context of the research, laying the basis for the 

problem statement along with the objectives of the research. The research questions have also 

been stated in this chapter 

1.7.2. Chapter Two- Conceptual Cost Estimation of Highway Construction Bid Items- A 

Systematic Literature Review 

This chapter forms the spine of the research where the thesis statement is identified and 

refined. The systematic literature review provides an exhaustive and comprehensive review of 

the article on conceptual cost estimation of highway bid items from six major electronic 

databases. This section's unique contribution to the body of knowledge is its in-depth statistical 

analysis of the data to assess and provide preliminary insight into the combined accuracy of the 

cost estimation models identified from the selected literature. This section identified and 

categorized a comprehensive set of factors that affect highway construction costs. This study 

serves as a reference for future research in advancing cost estimation modeling at the early stages 

of highway projects. This chapter answers research questions one, two, and three of this research. 
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Figure 1. Thesis research methodology 
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1.7.3. Chapter Three-Exploratory Data and Statistical Analyses of Highway Construction 

Bid Items 

In this chapter, data-driven empirical insights and patterns of historical highway cost data 

will be generated to enhance the efficacy of conceptual cost estimates. This paper explored and 

investigated trends in historical highway construction bid data from 2013 to 2018 obtained from 

the Wisconsin Department of Department (WisDOT), determined the relationship between 

project size and unit prices, and assessed the impact of competition on unit prices of highway 

construction bid items using exploratory data and statistical analyses. This chapter answers 

research question four. 

1.7.4. Chapter 4- Conceptual Cost Estimation of Highway Unit Prices Using Ordinary 

Kriging 

Kriging is an optimal spatial regression technique that requires a spatial statistical model, 

popularly known as a semivariogram, representing the internal spatial structure of the data. It is 

known as the best linear unbiased estimator (BLUE) (Asa et al. 2012). Although other nonlinear 

geostatistical algorithms are now vastly deployed, the relative transparency and 

straightforwardness of the OK algorithm, combined with its good performance in the past, ensure 

its continued popularity (Van Groenigen 2000). In this paper, ordinary kriging will be combined 

with three commonly used semivariograms (spherical, exponential, and Gaussian) one at a time 

to estimate highway construction unit prices from the Wisconsin Department of Transportation 

(WisDOT) from 2013 to 2018. Chapter 4 answers research question five. Cross-validation will 

be used to assess the variability and validity of the modeling results and formed the basis of 

comparison and selection of the optimal results. 
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1.7.5. Chapter 5- Comparison of Ordinary and Disjunctive Kriging Methods for 

Conceptual Cost Estimation of Highway Bid Items 

Depending on the highway project type and cost data being deployed, the use of 

nonlinear models could be necessary to capture the nonlinearity inherent in the cost data 

(Sonmez 2005). The state-of-the-art has applied deterministic and linear geostatistical models to 

assess the spatial variation on highway cost estimates. However, deterministic and linear 

approaches assume that the data are from a realization of a Gaussian or nearly Gaussian random 

field; an assumption that produces linear predictors (Rivoirard et al. 2014). Therefore, these 

algorithms are not capable of accurately modeling the nonlinear relationship and also handling 

non-Gaussian distributions associated with construction cost data and the cost drivers influencing 

highway unit prices. To answer research question six, this study will compare the prediction 

performance of ordinary and disjunctive kriging methods to model and interpolate six years 

(2013 to 2018) of the top five common highway bid data: common excavation, base aggregate 

dense 1 ¼”, base dense aggregate ¾”, tack coat, and asphaltic surface obtained from WisDOT. 

1.7.6. Chapter 6- Conceptual Cost Estimation of Highway Unit Prices Using Empirical 

Bayesian Kriging 

Empirical Bayesian kriging(EBK) differs from classical kriging methods by accounting 

for the error introduced by estimating the semivariogram model. This is done by estimating, and 

then using a spectrum of semivariogram models rather than a single semivariogram. If the data 

distribution is Gaussian, the best predictor is one that uses a linear combination of the nearby 

data values. For other distributions, however, the best predictor is often non-linear and, therefore, 

more complex (Krivoruchko 2012). EBK models do not require specification of the prior 

distributions for the model parameters, allow moderate local and large global data non-
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stationarity, locally transform data to Gaussian distribution, and work reasonably fast and 

produce reliable outputs with default parameters (Krivoruchko and Gribov 2019). The novel 

contribution of this study is exploring the potential application of the empirical Bayesian kriging 

in spatially interpolating the highway bid unit prices. To answer research question seven, this 

section will investigate which combination of empirical Bayesian kriging and variogram models 

yields the best results in estimating unit prices for highway construction bid items and investigate 

whether the same set of kriging and variogram algorithms could be fitted to the unit price data 

set from year to year. 

1.7.7. Chapter 7- Conclusions and Recommendation  

In the closing chapter, conclusions will be made based on the findings from the literature 

review, exploratory and statistical data analyses, and geostatistical modeling chapters. The 

objectives set out in the initial chapter of the thesis will be revisited and a judgment made on 

whether these have been achieved, and to what extent. Theoretical and practical contributions of 

the research will be summarized while detailing the implications of the findings for enhancing 

the efficacy of cost estimation at the conceptual phase. Some considerations of future research 

will then be provided to stimulate future studies in improving highway construction cost 

estimates along with limitations of the current research. 
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CHAPTER 2.  CONCEPTUAL COST ESTIMATION OF HIGHWAY BID ITEMS- A 

SYSTEMATIC LITERATURE REVIEW1 

2.1. Abstract 

Challenges associated with ensuring the accuracy and reliability of cost estimation of 

highway construction bid items, especially during the conceptual phase of a project, are of 

significant interest to state highway transportation agencies. Even with the existing research 

undertaken on the subject, the problem of inaccurate estimation of highway bid items still exists. 

This paper systematically searched, selected, and reviewed 105 papers from six electronic 

databases on conceptual cost estimation of highway bid items. This study used content and non-

parametric statistical analyses to determine research trends, identify, categorize the factors 

influencing highway unit prices, and to assess the combined performance of conceptual cost 

prediction models.  

Findings from the trend analysis showed that between 1983 to 2019 North America, Asia, 

Europe, and the Middle East contributed the most to improve highway cost estimation research. 

Aggregating the quantitative results and weighting the findings using each study’s sample size 

revealed that the average error between the actual and the estimated project costs of Monte-Carlo 

simulation models(5.49%) performed better compared to Bayesian model(5.95%), support vector 

machines(6.03%), case-based reasoning(11.69%), artificial neural networks(12.62%), and 

regression models(13.96%). This paper identified 41 factors and was grouped into three 

categories, namely: (1) factors relating to project characteristics; (2) organizational factors; and 

                                                 
1 Awuku, B., Asa E., Baffoe-Twum, E., and Adikie Essegbey. (2021). To be submitted to ASCE Journal of 

Construction Engineering and Management. The material in this chapter was co-authored by Awuku, B., Baffoe-

Twum, E., and Adikie Essegbey and Dr. Eric Asa. Bright Awuku had primary responsibility for conceptualization 

and research design, literature search, analysis, writing and revising the manuscript . Bright Awuku was the primary 

developer of the conclusions, drafted and revised all versions of this chapter that are advanced here. Baffoe-Twum, 

E., and Adikie Essegbey proofread the entire chapter. Dr. Eric Asa served as proofreader and checked and approved 

the statistical analysis conducted by Bright Awuku. 
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(3) estimate factors based on the common classification used in the selected papers. The mean 

ranking analysis showed that a majority of the selected papers used project-specific factors more 

when estimating highway construction bid items than the other factors.This paper contributes to 

the body of knowledge by analyzing and comparing the performance of highway cost estimation 

models, identifying, and categorizing a comprehensive list of cost drivers to stimulate future 

studies in improving highway construction cost estimates. 

2.2. Introduction 

The construction industry in the world, especially in the United States, is one of the 

largest industry sectors that deliver projects with substantial budgets ( Zhang et al. 2017a). State 

highway transportation agencies(SHAs) require multiple cost estimates for various purposes 

throughout the life cycle of construction projects (Migliaccio et al. 2015; Zhang et al. 2017a). To 

prepare reliable highway construction programs, transportation authorities must have accurate 

estimates of future funding and project costs (Wilmot and Cheng 2003). Estimating the costs of 

highway bid items at the conceptual stage is critical to the initial decision-making process for the 

construction of capital projects (Trost and Oberlender 2003). Completing highway projects 

within budget is essential to SHAs because such performance enables them to fund, manage, and 

maintain their set of transportation projects ( Wilmot and Cheng 2003; Alavi and Tavares 2009; 

Zhang et al. 2017b). The accuracy of conceptual cost estimates for capital projects has been a 

major concern and a subject of much scrutiny over the last 35 years (Trost and Oberlender 2003). 

Because of incessant cost overrun experienced during the construction phase of transportation 

projects, engineering skill, and judgment invested in project planning is obscured (Schexnayder 

et al. 2003; Molenaar 2005). Depending on the phase of a project, cost estimates are defined 

differently (Membah and Asa 2015). Oberlender and Trost (2001) defined a conceptual estimate 
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as an estimate prepared from the inception of a project up to and including when funding is 

allocated. Asmar et al. (2011) also defined a conceptual cost estimate as an estimate prepared at 

the point at which only a general idea exists about what the project will entail. As a result, 

estimators must infer many of the cost components from historical costs associated with past 

projects of similar scope (Trost and Oberlender 2003; Asmar et al. 2011). The construction 

sector over the years has focused its efforts and resources on improving the quality of cost 

estimates (Zhang et al. 2017a). While future funding is fraught with uncertainty, incorrect 

estimation of transportation costs leads to significant overestimation and underestimation of 

highway construction costs (Baek and Ashuri 2019) and often presents challenges in the 

successful planning, execution, and completion of construction programs (Wilmot and Cheng 

2003; Bayram and Al-Jibouri 2016). Overestimated cost could cause a misjudgment for the 

feasibility of a project, which could limit the number of business opportunities an owner can 

pursue at a time or loss of a contract to competitors (Chou and O’Connor 2007; Liu and Zhu 

2007; Migliaccio et al. 2015). In contrast, underestimated cost could later force the owner to 

secure additional funding, reduce project scope, and probably lead to the suspension or 

termination of the proposed project (Kyte et al. 2004; Chou and O’Connor 2007; Liu and Zhu 

2007; Migliaccio et al. 2015). Over the years, several researchers have conducted studies to 

improve the estimation of highway bid items at the conceptual phase. However, an important 

consideration with the selection of any method for cost estimation is the accuracy by which 

actual costs can be predicted (Ashworth and Skitmore 1982; Elmousalami 2020). Estimating 

performance is an essential indicator used to assess the quality of highway cost estimates during 

project development (Meeampol and Ogunlan 2006; An et al. 2007). There is a need to assess the 
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quality of cost estimation models by measuring the deviation between the estimated and actual 

cost for transportation projects (Odeck 2003; Harper et al. 2014; Bayram and Al-Jibouri 2016). 

To address these limitations in conceptual cost estimation modeling of highway bid 

items, this paper aims to answer the following research questions: 

1. What is the publication trend of estimating the cost of highway construction bid 

items at the conceptual phase from 1980 to 2019? 

2. What context are the models used to estimate the cost of highway construction bid 

items and their associated shortcomings? 

3. What is the level of accuracy associated with the estimating methods adopted in 

the selected papers?  

4. What were the factors affecting the costs of highway unit prices in the published 

papers? 

To address these research questions, a systematic literature review was used to search 

several databases and a content analysis approach was employed to identify the context in which 

the estimation methods are used and their shortcomings. Factors affecting highway unit prices 

were identified and categorized based on the common classification identified from the selected 

literature. To assess the accuracy of the cost estimation methods, we performed statistical 

analyses to compare the mean absolute percent error between the actual and estimated costs. The 

rest of this paper is organized as follows. First, this study presents an overview of models used in 

estimating highway bid items, the factors affecting unit prices, and the research method used for 

the study. Content analysis was used to explore the publication trend in conceptual cost 

estimation of highway construction bid items from 1980 to 2019, the algorithms adopted by 

previous studies and their shortcomings, and the evaluation techniques used to assess the level of 
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accuracy of the models. This was followed by assessing the level of accuracy associated with the 

cost estimation methods and identifying the factors influencing highway construction bid items. 

Finally, conclusions, limitations, and suggestions for future work are outlined. 

2.3. Cost Estimation Modeling during the Conceptual Phase of Highway Construction 

Projects 

The top-down and bottom-up approach which can either be deterministic or stochastic are 

the predominant methods used to estimate construction costs ( Kim and Reinschmidt 2011; El-

Sawalhi 2015; Elmousalami 2020). The top-down estimation approach is mainly used in the 

conceptual phase of construction projects and is based on similar historical project information 

and cost data to forecast future project costs. Therefore, the accuracy of the top-down approach 

is contingent on the quality of cost data, project information, the expertise of the estimation team 

amongst other cost drivers (Kim and Reinschmidt 2011; Elmousalami 2020). In contrast, the 

bottom-up approach is used when detailed design and work packages are substantially complete 

to estimate the cost of resources, labor, materials, equipment, and subcontracting (Kim and 

Reinschmidt 2011; Elmousalami 2020). 

Recent advances in computational intelligence have enabled the development of several 

algorithms; namely artificial neural networks (ANNs), genetic algorithms (GA), support vector 

machines (SVM), and a multitude of tools that are readily available to model construction cost 

(Hegazy and Ayed 1998; Hassanein 2006). However, the subjectivity and randomness associated 

with using modeling techniques and tools to estimate construction costs have been criticized 

because such randomness is intrinsic in the construction industry (Hassanein 2006). Several 

researchers have conducted studies to improve the estimation process, including the use of 

geographic information systems to estimate highway construction bid items (Martinez 2010; 
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Zhang 2010; Shrestha and Shrestha 2014; Le et al. 2019). Other researchers also applied artificial 

neural networks (ANNs), case-based reasoning (CBR), genetic algorithms (GA) and regression 

analysis (RA) to enhance the cost estimation process (Adeli & Wu, 1998; Hegazy and Ayed 

1998; Al-Tabtabai et al. 1999; Chou 2009; Kim and Kim, 2010; Cirilovic et al. 2014; Adel et al. 

2016). Cost estimation models capable of modeling construction costs as a function of 

influencing factors are highly likely to generate reliable estimates (Wilmot and Cheng 2003). 

With increasing transportation needs, funding limitations at both the federal and state 

levels, and the high cost of transportation improvement projects, it is important to have a toolbox 

of techniques that support accurate estimation of project costs (AASHTO 2013). Cost estimates 

expressed as a deterministic value often leads to a false inference of accuracy because of the 

inability to account for the vagaries associated with the deterministic approach making it difficult 

for transportation agencies to cater for cost growth (Anderson et al. 2007; Gardner et al. 2017). 

The communication of a range of values representing the array of probable project costs creates a 

better understanding of estimation precision (Anderson et al. 2007). They encourage the adoption 

of a stochastic conceptual estimate approach to produce a probability distribution of the likely 

construction costs and address the level of confidence in an estimate (Gardner et al. 2017). 

2.4. Cost Estimation in Lump-Sum Contracts 

State Highway Transportation agencies have been implementing alternate project 

delivery and procurement methods for transportation projects (Khalafalla and Rueda-Benavides 

2018). Therefore, the impact of these methods on project cost must be considered when 

preparing estimates and managing estimated costs (Anderson et al. 2007). In lump-sum 

contracts, a contracting firm delivers a single price either for the entire project, for each bid item, 

or a group of bid items (Wasserman 2012). Lump-sum contracts will normally require the 
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contractor to break down the project into a variety of work items and estimate cost and 

contingencies to arrive at the total project cost (Frein 1980; Hinze 2011). Unlike unit rate 

contracts, lump-sum contracts require estimators to be highly accurate in the quantities and the 

unit prices of highway construction bid items (Chua and Li 2000). Therefore, using historical 

bid-based estimating techniques for predicting lump-sum items is a complex and difficult 

process. Most lump-sum items differ from one project to another. Thus, using past bid history is 

often not a good indicator of the future price for lump-sum items. In a lump-sum bidding 

situation, the profit margin of the contractor depends on the accuracy of his or her estimate. If the 

project is exceptionally large, the loss from an inaccurate estimate on a lump-sum bid might 

cause a significant loss to the contractor (Dysert and Elliot 2002). 

2.5. Factors Affecting Highway Construction Unit Prices 

The development of cost estimates that accurately reflect project scope, project economic 

conditions, and macroeconomic conditions that provide a reliable baseline cost (Shane et al. 

2009) is vital for decision making, preliminary appropriation, and economic feasibility studies of 

capital projects (Dursun and Stoy 2016). Reliable cost data are often difficult to obtain during the 

conceptual stages of a project, particularly if the design and cost drivers remain unresolved 

(Trost and Oberlender 2003; Wilmot and Cheng 2003). The actual cost of a project is subject to 

many variables including scope, location, time, size, capacity, human judgmental factors, 

random market fluctuations, and weather, and complexity, which could significantly influence 

the range of probable projected costs(AASHTO 2013; Zhang et al. 2016; Baek and Ashuri 2019). 

These variables may not all be directly quantifiable and determining the change in cost is often a 

fuzzy, qualitative, and ill-structured process (Al-Tabtabai et al. 1999). Therefore, there is a need 
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to explore a recognized logical process to quantify cost drivers when assessing project costs 

(Schexnayder et al. 2003).  

Modeling cost as a function of many variables is complex and an opaque process mainly 

owing to a lack of transparent algorithms capable of incorporating the required variables and the 

effects of their associated interactions (Hegazy and Ayed 1998; Al-Tabtabai et al. 1999). 

Traditionally, cost estimation relationships are modeled by applying regression analysis to 

historical cost information (Hegazy and Ayed 1998) as a linear function using mathematical 

equations (Al-Tabtabai et al. 1999). In addition, cost drivers are highly correlated to each other, 

resulting in multicollinearity when more than one factor is included in the modeling procedure 

(Wilmot and Mei 2005). However, the variables affecting highway construction costs function in 

a linear or non-linear form (Adeli and Wu 1998; Al-Tabtabai et al. 1999; Wilmot and Mei 2005). 

While estimators may address this through a transformation of variables, the assumption 

of a specific mathematical formulation limits the ability of the model to fit the data on which it is 

estimated (Wilmot and Mei 2005). Highway construction cost data are very noisy because only a 

few of the major factors are considered in the mathematical modeling of the cost-estimation 

problem (Adeli and Wu 1998; Wilmot and Cheng 2003). Therefore, improving the accuracy of 

predicted costs is contingent on finding a properly fitted approximation for factors influencing 

highway construction unit prices and selecting an appropriate model that can quantify the 

relationship between these factors (Adeli and Wu 1998; Trost and Oberlender 2003). 

2.6. Methodology 

The research methodology is a systematic literature review of previous work related to 

the conceptual cost estimation of highway bid items. Systematic literature review (SLR) is a 

logical approach of presenting findings across multiple research studies on a research question 
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through a systematic collection, critical evaluation, and integration of previous work (Pati and 

Lorusso 2018; Linnenluecke et al. 2019). To ensure adequate coverage of articles on the subject 

matter, the title, abstract, and keyword (T/A/K) field of Scopus, Google Scholar, American 

Society of Civil Engineers (ASCE), Transportation Research Board (TRB), and Science Direct 

(SD) were searched. The search string used to identify relevant articles were “cost estimates”, 

“conceptual cost estimates”, “early cost estimates”, “preliminary cost estimates” based on the 

research topic, and was limited to “highway projects”. The databases were selected to ensure that 

a broad range of published literature on highway construction projects was retrieved (Membah 

and Asa 2015).  

The inclusion and exclusion criteria used to select the articles include: (1) the article 

should be specifically related to cost estimation of highway bid items; (2) the article should 

report estimation accuracy (error matrices); (3) the article should mention, discuss, or list factors 

affecting highway bid items in the key text, tables, or figures; (4) the selected article must be a 

peer-reviewed paper; and (5) it must be published in English. However, some peer-reviewed 

conference papers, reports which met the criteria were included in the study.  

Selected articles for the content analysis were profiled based on the journal, year of 

publication, and the geographical distribution. The values derived from the analysis were 

determined based on the ratio of references per each journal to the total number of articles 

considered for the review. This was followed by the categorization of the methods used in 

estimating construction costs and identifying the factors affecting unit prices in highway 

construction projects. After categorizing the methods, quantitative findings were collected, and 

statistical analyses were performed to assess the collective performance of the methods adopted 

in estimating highway construction cost. 
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Figure 2. Systematic literature review research methodology 
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2.6.1. Content Analysis 

Content analysis has been adopted for various research studies across different disciplines 

because it is useful for examining trends and patterns in documents (Stemler 2001; White and 

Marsh 2006). The qualitative content analysis examines data that is the product of open-ended 

data collection techniques aimed at detail and depth, rather than measurement(Forman and 

Damschroder 2007). This paper adopted a qualitative content analysis approach to categorize the 

methods used in estimating construction costs at the conceptual stages of highway projects and to 

identify factors affecting unit prices in highway construction projects. 

2.6.2. Estimation Performance 

This paper collected the findings from studies that quantitatively assessed the accuracy of 

the estimation methods and combined them to measure the performance of the methods adopted 

by the authors in producing realistic forecasts of highway construction bid items. Estimating 

accuracy is a performance measure of the spread between a current cost estimate and estimates 

prepared earlier during project development (Harper et al. 2014). Articles selected for the 

analysis were based on data available on the variable of interest, mean absolute percentage error 

(MAPE) a performance metric which is a common measure used for assessing the level of 

accuracy of the algorithms used to estimate the cost of highway bid items shown in equation 1 

(Choi et al. 2014):  

 𝑀𝐴𝑃𝐸 = (
100%

𝑛
)∑ |

𝑃𝑖−𝐴𝑖

𝐴𝑖
| 

𝑛

𝑖=1
 (1) 

where n= number of data points; Pi = predicted construction cost Ai = Actual construction cost 

for the ith project.  

However, MAPE was calculated for studies that reported their actual and estimated 

construction costs. After collecting the quantitative findings from selected studies, descriptive 
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statistics were determined for the cost estimation methods. Weighted averages are common when 

combining and analyzing results from multiple studies to factor sample size, quality of the study, 

variance, or other characteristics. MAPE values extracted from each study were converted to 

weighted averages to account for the difference in study characteristics by weighting the results 

based on the total number of studies considered for the analysis. Studies that considered a larger 

sample have a greater influence on the weighted average since larger samples tend to generate 

more robust results (Sullivan et al. 2017).  

Outliers were identified and removed from the quantitative findings extracted from the 

selected studies. Based on an assessment of the normal distribution and variance of the data 

extracted, statistical analysis (t-test, Mann-Whitney U-test, and Moods median test) was 

performed to determine the level of significance of the combined results between the different 

estimating methods identified from the selected articles. The weighted average is given in 

equation 2 (Sullivan et al. 2017): 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝐴𝑃𝐸)𝑖 ×(𝑠𝑡𝑢𝑑𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒)𝑖

∑ 𝑎𝑙𝑙 𝑠𝑡𝑢𝑑𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒𝑠
 (2) 

After identifying and categorizing the factors influencing unit prices of highway 

construction bid items, a mean ranking system was determined based on the individual 

frequencies identified in the papers, and a mathematical calculation was used to determine the 

mean scores of each category. The category with the highest mean was ranked first and follows 

in that order. For instance, project-specific factors (PF) was calculated as follows; 

 𝑀𝑒𝑎𝑛 𝑆𝑐𝑜𝑟𝑒 =
∑𝑃𝐹

𝑁
 (3) 

where PF= the number of Project-Specific factors identified in each article and N = total number 

of measures per variable. 
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2.7. Results and Discussion 

2.7.1. Profile of Selected Articles 

The selected articles for the content analysis were profiled based on the journal and year 

of publication. About 37% of the total articles were selected from six journals in the American 

Society of Civil Engineers database (ASCE); namely Journal of Construction Engineering and 

Management (27%), Journal of Management in Engineering (3%), Journal of Infrastructure 

Systems (3%), Journal of Risk and Uncertainty in Engineering Systems (1%), Journal of 

transportation engineering (1%), and Journal of Computing in Civil Engineering (3%). The 

remaining 63% of the selected articles were published in the other 51 journals as shown in Figure 

3. 

 

Figure 3. Distribution of selected articles published in each journal 
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2.7.2. Overview of Conceptual Cost Estimation of Highway Projects Publication Trend 

Figure 4 depicts the distribution of conceptual cost estimation of highway-related articles 

that were published from 1983 to 2019. The period between 1983 to 1986, 1986 to 1990, and 

1992 to 1996 showed no record of conceptual cost estimation publications. However, several 

studies were conducted to improve cost estimation in highway projects between 1999 and 2019 

with the highest number of publications recorded in 2011(8.6%), followed by 2009(7.62%), and 

2006 (7.62%). Despite an increase in publication over the years, the number of studies recorded 

in 1999, 2004, 2008, 2012, 2014, and 2019 fluctuated from the previous years.  

 

Figure 4. Trend of conceptual cost estimation of highway related articles trend from 1983 to 

2019 

Figure 5 shows the geographical distribution of the 105 selected articles. The results 

show that 41% of the studies were conducted in North America with the United States 

contributing 38% of the total articles to improve the estimation of highway construction bid 

items at the conceptual stage. About 25% of the studies were conducted in Asia, and 16% of the 

articles were published in Europe. About 8% of the studies were conducted in the Middle East, 

5% in Africa, 4% in Australia, and 1% in South America. 
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Figure 5. Profile of selected publications by geographical location 
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different feedforward neural networks are distinguished as multilayer perceptron (MLP), radial 

basis function neural network (RBFNN), generalized regression neural network (GRNN), and 

belief networks (Tijanić et al. 2019; Elmousalami 2020). The choice of ANN architecture 

depends on several factors such as the nature of the problem, data characteristics, complexity, 

and the number of sample data (Sodikov 2005). ANNs can perform with superior accuracy in 

forecasting the cost of construction projects to other AI-based algorithms because of their ability 

to be trained on historical information and real-time data to generalize solutions (Tijanić et al., 

2019). Highway construction costs are affected by many factors, but only a few key factors are 

usually recorded and can be considered in the mathematical modeling of the cost-estimation 

problem ( Hegazy and Ayed 1998; Adeli and Wu 1998). Artificial neural networks help to 

eliminate the need to manually identify the relationship and to quantify the interactions between 

variables influencing highway cost estimates. They do not also limit the number of variables that 

can be incorporated into the modeling procedure(Wilmot and Mei 2005). However, there are 

drawbacks, such as the need to determine the correct ANN architecture, which is a complex, 

time-consuming, and tedious process in explaining the effects of the variables on the unit price 

bids (Baek and Ashuri 2019). 

2.8.2. Case-Based Reasoning (CBR)  

CBR is a widely used AI-algorithm by construction managers not only in estimating costs 

but also in many decision-making models. The principle of CBR assumes that similar problems 

have similar solutions. For a new problem, the CBR model first retrieves previous similar cases 

from its case base to reuse their solutions as a proposed solution for the new problem. Then, the 

model examines and revises the proposed solution and confirms it. Finally, the model retains the 

revised, confirmed solution as a new case in the case base for future use (Kim et al., 2004; Kim 
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& Kim, 2010; Kim 2013; Choi et al. 2014). The case similarity score for case n can be computed 

as follows (Chou 2009; Choi et al. 2014): 

 𝐶𝑎𝑠𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
∑ |𝑠𝑖𝑚(𝑥𝑎

𝐼 ,𝑥𝑎
𝑛)×𝑤𝑎|

𝑚

𝑎=1
 

∑ 𝑤𝑎
𝑚
𝑎=1  

 (4) 

where m= number of attributes; and wa = weight of the attribute a.  

The revised step is used to predict and confirm the cost of the input cases. This step 

consists of adjusting by similarity score, road length, and construction price index which can be 

calculated at once as follows (Choi et al. 2014):  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 cos𝑡 =∑
(𝐶𝑖  ×

𝑠𝑐𝑜𝑟𝑒𝑖
∑𝑠𝑐𝑜𝑟𝑒

 ×
𝑙𝑒𝑛𝑔𝑡ℎ
𝑙𝑒𝑛𝑔𝑡ℎ𝑖

×
𝐶𝑃𝐼
𝐶𝑃𝐼𝑖

)

𝑛

𝑛

𝑖=1

 (5) 

where Ci = direct cost of the ith top-scored case, scorei = similarity score of the ith top-scored 

case, score = sum of scorei, length = road length of the input case, lengthi = road length of the ith 

top-scored case, CPI = construction price index of the input case, and CPIi = construction price 

index of the ith top-scored case.  

2.8.3. Support Vector Machines(SVMs)  

SVMs are machine learning techniques based on the minimization of structural risk and 

statistical learning theory (Wang et al. 2012). SVMs help to minimize misclassification cases by 

optimizing the margins and hyperplanes distances (Elmousalami 2020). SVMs solve a convex 

optimization problem in a relatively short time, provides excellent generalization performance, 

and sparse representation with acceptable accuracy; making it more advantageous than other 

machine learning algorithms (El-Sawalhi 2015). The following steps are required to construct a 

cost model using support vector machine include; (1) model building, (2) data collection and 

organization, (3) dividing the data into sets and building the network, model training, and testing, 
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and (4) model validation. The objective function for SVM optimization can be expressed as 

(Wang et al. 2012; Elmousalami 2020):  

𝑀𝑖𝑛 ∑
1

2
𝑤 × 𝑤𝑇 

𝑖=𝑚

𝑖=0

 + 𝑐∑ 𝜉𝑖

𝑖=𝑚

𝑖=0

 (6) 

2.8.4. Rough Set Theory(RST) 

RST is a rule-based algorithm used to model uncertain knowledge(Hongwei 2009). A 

rough set model can identify and estimate the significance of specific attributes to be utilized as 

input variables for other cost estimation models (Choi et al. 2014). The concept of rough set 

algorithm is described as follows(Hongwei 2009; Choi et al. 2014):  

As an Information system (IS) let (U, A) be an information system where: 𝑈 =

{𝑥1, 𝑥2, ⋯ , 𝑥𝑛} is a finite non-empty set of n cases, called the universe, 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑚} is the 

finite set of m attributes. The information system can be deduced as a decision table, assuming 

that C, D ⊂ A, and C ∩ D= ∅, where C, D are subsets of attributes denoted as condition attributes 

and decision attributes, respectively. As an Indiscernibility relation (IR), let 𝑎 = 𝐶 and 𝐵 ⊆ 𝐶, 

where B is a subset of attributes. The indiscernibility relation is defined as: 

𝐼𝑁𝐷(𝐵) = {(𝑥𝑖 , 𝑥𝑗) ∈ 𝑈 × 𝑈|∀ 𝑎 ∈ 𝐵, 𝑓𝑎(𝑥𝑖) = 𝑓𝑎(𝑥𝑗)} (7) 

where (𝑥𝑖 , 𝑥𝑗) is a pair of cases, and the information function is 𝑓𝑎 ∶ 𝑈 → 𝑉𝑎 for any 𝑎 ∈ 𝐶, 

where 𝑉𝑎 is the set of values of a, called the domain of attribute a.  

2.8.4.1. Regression Models (RM) 

RM are well established and widely used in estimating construction costs at the 

conceptual phase (Sodikov 2005; Fragkakis et al. 2011) because they are easy and relatively fast 

to implement and can determine how well a fitted curve matches a given data set ( Kim et al. 

2004; Sodikov 2009). In addition, they are effective due to a well-defined mathematical 



 

37 

expression, as well as being able to explain the significance of each variable and relationship 

between independent variables ( Sodikov 2005; Sodikov 2009). When there is only one predictor 

variable it is called simple linear regression, and when there are several predictors, it is referred 

to as multiple linear regression (Petruseva et al. 2017). Regression model equations can be 

expressed as follows( Kim et al. 2004; Sodikov 2009): 

𝑌 =  𝐶 + 𝐵1 𝑋1  + 𝐵2 𝑋2  +  ……… 𝐵𝑛 𝑋𝑛 (8) 

where Y= dependent variable; C= constant Bi = variable coefficient and Xi = independent 

variable. The following steps are required to construct a cost model using regression models 

include: (1) Collect and prepare historical cost data, (2) Identify cost drivers and project 

variables (3) Check for normality and linearity of the data, (4) Develop regression model and 

check for significance in results, (5) Check homoscedasticity, and (6) Model Validation  

2.9. Evaluation Techniques for Assessing Highway Cost Estimation Accuracy 

One of the crucial and difficult aspects of developing a prediction model is to obtain a 

model that provides realistic estimates( Kim et al. 2004; Bayram and Al-Jibouri 2016). The 

performance measures of a model are considered in terms of bias, consistency, and accuracy. 

Measures of bias, consistency, and accuracy are concerned with the average of the deviation 

between the actual costs and the estimated costs, with the degree of variation around the average, 

and with the combination of bias and consistency ( Kim et al. 2004). 

To measure the accuracy of cost estimation models, estimators need to monitor key 

performance indicators which include elements such as targets, benchmarks, milestone dates, 

numbers, percentages, variances, distributions, rates, time, cost, indexes, ratios, survey data, and 

report data (Molenaar and Navarro 2011). The common performance metrics used to assess the 
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performance of data-driven cost estimation models are mean absolute error (MAE), mean 

absolute percentage error (MAPE) and mean squared error (MSE).  

Mean Absolute Error (MAE) measures how close the predicted is to the actual. The 

absolute value of the difference between the predicted and actual costs is summed and 

normalized over each data point (Aminikhanghahi and Cook 2017). It is the average size of 

forecasting errors when negative signs are ignored. If MAE approaches zero, it is an indication 

of the model’s high accuracy (Azadi and Karimi-Jashni 2016; Bayram and Al-Jibouri 2016). 

MAE is given in equation 9: 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝐴𝑖|
𝑛
𝑖=1

𝑛
 (9) 

where n= number of cases; i= case number; Pi = predicted construction cost Ai = Actual 

construction cost for the ith project.  

Mean Squared Error (MSE) is an alternative to MAE. However, because the errors are 

squared, the resulting measure will be exceptionally large if a few outliers exist in the data 

(Aminikhanghahi and Cook 2017). MSE can be expressed as follows (Aminikhanghahi and 

Cook 2017): 

𝑀𝑆𝐸 =
1

𝑛
∑|𝑃𝑖 − 𝐴𝑖| 

2 

𝑛

𝑖=1

(10) 

where n= number of cases; i= case number; Pi = predicted construction cost Ai = Actual 

construction cost for the ith project 

Mean Absolute Percentage Error (MAPE) is the mean or average of the sum of the 

percentage errors for a given data set taken without regard to sign (Ryu 2002). The closer MAPE 

is to zero, the better the performance of the model. This method of validation is traditionally used 

by authors of data-driven conceptual estimating models (Gardner et al. 2017). 
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 𝑀𝐴𝑃𝐸 = (
100%

𝑛
)∑|

𝑃𝑖 − 𝐴𝑖
𝐴𝑖

|

𝑛

𝑖=1

(11) 

where n= number of data points; Pi = predicted construction cost Ai = Actual construction cost 

for the ith project. 

2.10. Performance of Cost Estimation Models 

Performance measures are powerful tools used to establish the quality of highway project 

cost estimates and help to improve a state transportation agency’s(STA's) estimating processes. 

Estimating accuracy is a measure of the spread between a current cost estimate and estimates 

prepared earlier during project development (Harper et al. 2014). Studies on the accuracy of 

specific estimation approaches rather than a mixture of approaches would define a fruitful path in 

developing theories and practices for effective estimation (Liu et al. 2010). 

With the inadequate provision of state and federal funding and the need for new 

transportation infrastructure, estimation performance measures will assist STAs to improve cost 

estimation practices, manage construction costs, and make informed funding decisions (Harper et 

al. 2014; Bayram and Al-Jibouri 2016). Therefore, this study seeks to synthesize the performance 

of cost estimating methods for highway projects. A total of 70 studies reported the performance 

of the models used to estimate highway construction costs. Models were grouped into (1) 

artificial intelligence algorithms, (2) regression models, and (3) statistical models. The results are 

compared and discussed in the subsequent sections. Studies that used more than one method 

were reported as separate results. For instance, Tijanić et al. (2019) used three neural network 

architectures MLPNN, GRNN, and RBFNN and therefore were reported separately to 

distinguish amongst their associated MAPE results. 
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2.10.1. Artificial Intelligence-Based Cost Estimation Performance 

Thirty-three studies identified from the selected articles used ANNs to estimate highway 

construction costs. However, Adeli and Wu (1998) and Cirilovic et al. (2014)’s studies reported 

a coefficient of determination(r2) as their matrix for measuring estimation performance. Also, the 

estimated and actual amount was not reported to compute MAPE values and therefore, their 

study was excluded from the analysis. The estimation performance for the rest of the thirty-one 

ANNs studies is shown in Figure 6.  

 

Figure 6. Quantitative findings for the performance of ANNs cost estimation algorithm 

 

The MAPE values recorded between the predicted cost estimate and the actual cost 

estimate ranged between 0.57%(BPNN) and 38.04%(RBFNN), respectively. The average 

estimation error measured by the MAPE for the entire ANN algorithm is 12.62% with a median 
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value of 9.05%, and the standard deviation for the magnitude of estimation error is 10.04%. 

Mood’s Median test was performed on the data to compare the significance of the differences in 

the estimated growth for the ANNs algorithms identified from the selected literature. However, 

there is insufficient evidence to reject the null hypothesis of equal means between the ANNs at a 

confidence level of 95% (p=0.133). A Levene's test of equal variance was applied to test whether 

there is significant variability between the different ANN projects. The significance of Levene’s 

test was p=0.001 indicating there is significant evidence of unequal variance between the 

different ANN projects. After weighting the results of the common ANN architectures adopted in 

the studies by sample size, BPNN (7.75%) had the least amount of error between the estimated 

and the actual amount.  

The weighted averages for the GRNN, RBFNN, and MLPNN were 11.81%, 12.24%, 

27.09% respectively. Mann-Whitney U test was performed to compare the significance of the 

difference between estimation performance for the common ANN architectures identified. The 

results indicate there are significant differences between the estimated and actual costs of BPNN 

and MLPNN (p= 0.011) and GRNN and MLPNN(p=0.037). However, insufficient differences 

were observed between the estimated and actual costs of the BPNN and GRNN (p= 0.085), 

BPNN and RBFNN (p=0.346), RBFNN and GRNN(p=1.00), RBFNN and MLPNN(p=0.663). 

Estimation performance of case-based reasoning, support vector machines, Monte-Carlo 

simulation, Bayesian models, and other algorithms as measured by MAPE values are shown in 

Table 1 and Figure 7. From the selected articles, five studies used CBR to estimate highway 

projects with an average estimation error of 11.69%, a median value of 9.17%, and a standard 

deviation of 5.26%. MAPE of the other algorithms identified from the selected articles were 

PIREM (8.49%), and Kalman filter (3.19%). 
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Table 1. Descriptive statistics of aggregated cost accuracy of estimation models from the selected 

articles 

Descriptive Statistics ANN CBR MCS BAY.M SVM RM 

Number of studies 31 5 2 2 2 19 

Number of Projects 7764 491 1472 76 236 4647 

Median  8.79% 9.17% 5.40% 5.95% 6.03% 11.54% 

Standard Deviation 9.93% 5.26% 6.30% 1.65% 1.50% 7.55% 

Q1 5% 7.31% 0.00% 0.00% 0.00% 8.62% 

Q3 21.80% 17.33% 0.00% 0.00% 0.00% 21.44% 

minimum 0.57% 7% 1% 4.30% 5.00% 3.04% 

maximum 38.04% 18.40% 9.86% 7.60% 7.10% 33.00% 

Number of outliers 0 0 0 0  0 

Mean 12.62% 11.69% 5.40% 5.95% 6.03% 13.96% 

Weighted Average 12.99% 13.29% 9.43% 5.95% 6.45% 12.13% 

Note: Includes Only studies using a common measure of assessing estimation accuracy (MAPE) 

 

Figure 7. Quantitative findings of performance for other AI-based cost estimation algorithm.  

Yu (2006) proposed Principal Item Ratios Estimating Method (PIREM) that integrates 

several existing conceptual estimating methods (parametric estimating, ratios estimating, and 

cost significant model) with advanced nonlinear mapping techniques and adopts a scheme that 

separates unit prices from the quantities of a cost item. It allows estimators to predict highway 
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construction costs based on the prevailing market unit prices, thus accounts for price fluctuation 

on a real-time basis. The error between the estimated and actual cost was approximately 8.49%.  

The study by Cao et al. (2018) used an ensemble machine learning algorithm to model 

bid prices for more than 1,400 projects, along with 57 related variables. A total of 20 variables 

were selected using the Boruta feature analysis to train and test the model. The results showed 

that the ensemble learning model has a mean absolute percentage error of approximately 7.56%.  

Based on 10 projects, Zang et al. (2017) modeled highway historical cost using the 

Kalman filter algorithm. The resulting model predicted the actual cost with an average error of 

3.15% as shown in Figure 7. 

2.10.2. Performance of Regression Models in Estimating Highway Construction Cost 

Twenty-two studies identified from the selected publications used regression models to 

estimate highway construction costs. However, two studies conducted by Fragkakis et al. (2011) 

and Cirilovic et al. (2014), reported a coefficient of determination(r2) to measure the estimation 

performance of their regression models. Also, Chou and O’Connor (2007) and Swei et al. (2017) 

used a different form of sensitivity analysis and therefore could not be combined with the other 

regression models identified from the selected articles. Their estimated and actual amount was 

not reported to compute MAPE value and therefore four studies were excluded from the analysis.  

The estimation performance for the eighteen regression models is shown in Figure 8. The 

MAPE values recorded between the predicted cost estimate and the actual cost estimate ranged 

from 3.04%(generalized linear models) to 38.04%(multiple linear regression), respectively. The 

average estimation error measured by the MAPE for the entire regression models is 13.96% with 

a median value of 11.54%, and the standard deviation for the magnitude of estimation error is 

7.55%. The arithmetic means of the cost growth performance for multiple linear regression 
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(17.90%) was greater than the simple linear regression (14.43%). However, when weighted by 

the study sample, multiple linear regression (11.83%) performed better than simple linear 

regression (15.01%). The variances in the MAPE values for the multiple and simple linear 

regression models were the same: the significance level of the Levene’s test p =0.233. Mann-

Whitney test was performed to compare the difference between MAPE values for multiple and 

simple linear regression. The results of the Mann-Whitney U test revealed no statistically 

significant difference in the MAPE values between multiple and simple linear regression (p-

value= 0.478). 

 

Figure 8. Quantitative findings of performance for regression models 

Williams (2002) used a regression model to estimate the cost of 276 highway 

construction projects from the New Jersey Department of Transportation. The models produced 

reasonable results with a MAPE of 7.96%. 

Kyte et al. (2004) developed a tool to estimate highway construction cost using 132 

completed highway projects collected from the Virginia Department of transportation. To 

improve the accuracy of the models, the project scope was used as an input to calibrate the model 

to account for cost variations. Validation of the estimation model yielded results that on average 

differed from actual final project costs by 22%. 
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Yu et al. (2006) developed a web-based intelligent cost estimator (WICE) based on the 

neuro-fuzzy system and data mining to estimate highway construction costs. The proposed 

WICE is a real-time conceptual cost estimating system in practical use. Using 30 highway 

pavement projects, the validation results showed MAPE of 8.49%. The testing results show that 

the proposed system provides not only a globally accessible and promptly responding means for 

cost estimation but also an effective and reliable tool for real-time decision-making. 

Huntington and Ksaibati's (2009) developed a method for generating estimates of 

annualized maintenance and construction costs incurred by small agencies. These inputs are used 

to generate annualized network-level cost estimates for each county. The models generated 

reasonable results with a MAPE of 36.03%. 

Liu et al. (2010) assessed the estimation accuracy using a hybrid estimating approach 

blending primarily reference class forecasting(RCF) with a fixed contingency approach on 74 

road projects conducted by an Australian State Road & Traffic Authority. The model performed 

better when compared with historical results from selected literature on infrastructure projects 

and samples of two other dominant estimation methods, namely, the conventional fixed 

contingency approach and risk-based estimating (RBE). 

Asmar et al. (2011) used an analysis similar to the program evaluation and review 

technique (PERT), to assign certainty factors to cost estimates. The approach used a combination 

of 77 historical highway projects for major roadway items whose quantities can be estimated 

early in the development process and historical percentages called allowance and contingency 

factors. The results of the PERT-type technique showed that construction costs were accurately 

predicted at the conceptual stage within 20% of the actual construction costs (Figure 9). 



 

46 

 

Figure 9. Quantitative findings of performance for cost estimation tools and other statistical 

methods 

2.10.3. Comparison of the Accuracy for the Top Cost Estimation Models 

Figure 10 shows the accuracy of the top estimation methods from the selected studies. 

The MAPE values show that Monte-Carlo simulation models(5.49%), performed better 

compared to Bayesian model (5.95%), support vector machines (6.03%), case-based reasoning 

(11.69%), artificial neural networks (12.62%), and regression models (13.96%) on the average. 

However, when these results are weighted by sample size, Bayesian models (5.95%), performed 

better followed by support vector machines (6.45%), Monte-Carlo simulation (9.43%), 

regression models (12.13%), artificial neural networks (12.99%), and the Case-based reasoning 

(13.29%) shown in Figure 10. 

Mann-Whitney U test was performed to compare the significance of the difference in the 

accuracy of the six cost estimation models. Insignificant differences were found between the 

estimation accuracy for ANNs and CBR at a confidence level of 95% (p=0.891), CBR and 

Bayesian models (p=0.175), CBR and MCS(p =0.561), RM and SVM(p-value=0.082), ANN and 

RM(p=0.289), RM and CBR(p-value= 0.522), ANN and SVM(p-value=0.346), ANN and 

MCS(p-value=0.407), and RM and MCS(p-value=0.168). 
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Figure 10. Quantitative findings of performance for the top cost estimation algorithms. 

2.11. Factors Influencing Highway Construction Unit Prices 

Identification and selection of the appropriate input variables that affect highway 

construction prices can enhance the accuracy of the construction cost estimate, especially at the 

preliminary stages of project development (Meharie et al. 2019). Due to a lack of preliminary 

information or a comprehensive database (Tijanić et al. 2019) and difficulty associated with 

collecting information on the qualitative conditions surrounding each construction contract 

(Wilmot and Cheng 2003), most of the construction cost models developed in the past have used 

only a few of the many influential factors that affect construction costs (Adeli & Wu 1998; 

Wilmot and Cheng 2003).  

In this paper, the factors identified from the selected publications were categorized into 

three groups: (1) factors related to project characteristics, (2) organizational factors, and (3) 

estimate factors because it was the most common classification method used in the selected 

articles. A total of 41 factors were identified from the 105 articles selected for the literature 

review. The intensity of the factors influencing highway unit prices was determined using mean 

ranking analysis (Equation 3) as shown in Table 2.  
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2.11.1. Project Specific Factors  

Project-specific factors are directly related to the characteristics of the project which 

affects cost performance ( Akintoye 2000; Chou 2009). Project-specific characteristics help 

estimators define each project in the database which aids the development of the required project 

scope resulting in the uniqueness of each construction project (Walton and Stevens 1997). These 

project-specific factors include project type, project size, project location, duration of the project, 

market conditions, and project complexity (Akintoye 2000; Trost and Oberlender 2003; Chou 

2009). 

The project type defines the type of work to be executed during the construction phase. 

Various highway projects include grading, draining, surfacing, and resurfacing, new 

construction, rehabilitation projects (Walton and Stevens 1997). It is assumed that different 

project types, due to possible differences in their construction methods and management 

practices, would have a different impact on construction cost (Gkritza and Labi 2008). 

Project size can be categorized based on the total dollar amount of the project (Gkritza 

and Labi 2008). On larger projects, more care may be exercised in the estimating and planning 

process; thus, the cost overruns may be reduced (Jahren and Ashe 1991). Therefore in 

developing a cost estimation relationship, the size of the historical projects compared with the 

estimated projects must be factored in (Anderson et al. 2007). 

Project duration has a direct influence on construction cost because several agencies 

have fixed annual or biannual budgets and project schedules must often be adjusted to ensure 

that project funding is available for all projects as needed (Shane et al. 2009). Therefore, project 

owners must think in terms of the time value of money and recognize the inflation rate and the 
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timing of project expenditures. Estimators frequently do not know what expenditure timing 

adjustments will be made in the course of project development (Shane et al. 2009). 

Table 2. Factors influencing highway construction bid items 

Category Factors Frequency Mean  Rank 

Project-Specific Factors    41.13 1 

 Project Type 99  1 

 Project Location 60  7 

 Project Size 80  2 

 Year of Construction 56  8 

 Project Capacity (1-lane, 2-lane, others) 80  2 

 Duration of Project 66  5 

 Project Complexity 38  12 

 Design 61  6 

 Project Scope 71  4 

 Inflation 43  10 

 Market Conditions 34  14 

 Site Restrictions 40  11 

 Annual Average Daily Traffic Data 25  15 

 Scope Changes 25  15 

 Technological Innovation 16  19 

 Scope Creep 14  20 

 Financial Capacity of the Owners 14  20 

 Soil Type 35  13 

 Ground Conditions 45  9 

 Construction Season 8  30 

 Hauling Distance 14  20 

 Labor Productivity  8  30 

 Construction Method 14  20 

Organizational Factors    11.0 2 

 Contract Type 24  17 

 Expertise of Consultants 12  26 

 Poor Communication  6  35 

 Lack of site Familiarity 6  35 

 Political Requirements 5  39 

 Risk Sharing Strategy  4  41 

 Contractors Bidding Strategy  7  32 

 Owners Experience level 12  26 

 Environmental Requirements 20  18 

 Contractors Past Performance 14  20 

Estimate Factors   8.25 3 

 Estimating team experience 12  26 

 Quality of Cost Information 10  29 

 Review of estimate by management 6  35 

 Data processing Techniques 6  35 

 Adequate Guidelines for estimating 5  39 

 Time allowed for preparing cost estimates 7  32 

 Contingency Determination 13  25 

  Procedure for Updating Cost Information 7   32 
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Year of construction is an adjustment factor that is applied to account for the difference 

in time between when the estimate is created and the actual timing for construction to account for 

the time value of money (Anderson et al. 2007). It is also perceived that contracts let in the 

fourth quarter of the fiscal year tended to result in higher bid prices. This was due to a tendency 

for projects to accumulate in the fourth quarter due to various delays, and the increased volume 

of projects resulting in decreased competition among contractors (Wilmot and Cheng 2003). 

Project location distinguishes between urban and rural locations (Ilbeigi et al. 2016). 

However, districts are not consistently cheaper or more expensive than other districts as districts 

that are cheaper on one item may be more expensive on other bid items, and vice versa. Certain 

patterns can be discerned concerning conditions in each project location. For instance, asphalt 

pavement construction is more expensive in those districts furthest removed from asphalt 

production sites, and embankment material is cheaper in districts with fewer wetlands or clay 

material due to the greater potential to use in situ material and the greater likelihood of having 

shorter linehaul distances. However, not all variations have logical explanations, and 

interpretations from them should be performed with caution (Wilmot and Cheng 2003; Ilbeigi et 

al. 2016). 

Scope creep is the tendency for the accumulation of many minor scope changes to 

increase the project cost. While individual scope changes have only minimal cost effects, the 

accumulation of these minor changes, which may not be essential to the intended function of the 

facility, can result in a significant cost increase over time (Anderson et al. 2007; Shane et al. 

2009). 
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Annual average daily traffic data helps in planning and managing traffic in construction 

work-zones and is a significant challenge in projects such as widening and resurfacing projects, 

including associated safety and travel time conditions (Hassanein 2006).  

Project complexity is important because it may determine when, and to what extent, a 

specific cost estimation method and the tool should be used (Anderson et al. 2007). Engineering 

and construction complexity caused by the project’s location or purpose can make early design 

work particularly challenging and lead to internal coordination problems and project component 

errors. Internal coordination problems can include conflicts or problems between the various 

disciplines involved in the planning and design of a project. (Shane et al. 2009; Hatamleh et al. 

2018) . 

Market conditions must be assessed when estimating construction costs to take into 

account the trends in the financial market and their implications on the costs of the resources for 

a project (Akintoye, 2000). Specifically, economic fluctuation causes changes in highway 

construction costs. During economic booms, for instance, when there are more projects available 

in the market, contractors might accumulate an extensive backlog and become more selective 

when bidding for jobs, which increases completed construction costs. In contrast, during 

economic recessions, available jobs in the market are scarce, but contractors do not want to lay 

off their productive crews and efficient management teams because they want to survive these 

difficult times and begin making profits again when the economy recovers. During these times, 

contractors hungry for new jobs are willing to take jobs with small profits or even no profit to 

keep the crews and management team working (Zhang et al. 2017b).  
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2.11.2. Organizational Factors 

Cost estimation is a multifaceted process impacted by the unique characteristics of an 

agency’s organizational structure, policies, and operational capabilities. Managing the capital 

construction of megaprojects requires the coordination of a multitude of human, organizational, 

and technical resources (Molenaar 2005). These unique characteristics make the problems 

associated with cost estimation practices different among agencies (Alavi and Tavares 2009). 

Projects can be influenced by organizational factors, including, contract type, political 

requirements, communication, lack of site familiarity (Chou 2009) 

Contract type influences construction costs differently because of the uniqueness of the 

various contracts used in construction contracts. Estimation must be geared towards the proposed 

contract to cater for the specific contract provisions. Ambiguous contract provisions dilute 

responsibility and cause misunderstanding between an owner, design team, and contractors. 

Providing too little information in the project documents can lead to cost overruns during the 

execution of the project. The accuracy of the prediction result is affected when the core 

assumptions underlying an estimate are based on ambiguous contract provisions (Wilmot and 

Cheng 2003; Shane et al. 2009). 

Communication is dependent upon the stakeholder who is receiving the information but 

should consider the mechanism for communicating the cost estimate for its intended purpose, 

level of uncertainty to be communicated in the estimate given the information upon which it is 

based, and a mechanism to communicate the estimate to external parties (Anderson et al. 2007). 
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2.11.3. Estimate Factors 

Estimate factors include time allowed to prepare the cost estimate, the experience of the 

estimation team, lack of data processing techniques, and quality of cost historical cost data 

(Akintoye 2000; Trost and Oberlender 2003; Chou 2009). 

Cost estimation review is conducted to ensure the validity of the base estimate during the 

project development process. However, the formality and depth of the review will vary 

depending on the type of project and its complexity. Reviews of construction cost estimates will 

determine whether estimation criteria and requirements have been met and that a well-

documented estimate has been developed (Dysert and Elliot 2002). Also, an estimate review can 

establish whether the construction cost estimate accurately reflects the project's scope, items are 

not missing, that historical data reasonably reflects project scope and site conditions, and that 

cost driver assumptions are appropriate for the project. Upper management reviews often focus 

on substantiating the overall adequacy of the estimate regarding its intended use (Dysert and 

Elliot 2002; Trost and Oberlender 2003). This process is to assure management that the level of 

detail available for the estimate, the estimating methods employed, and the skills of the 

estimating and project teams support their decision-making process on whether to bid on the 

proposed project (Dysert and Elliot 2002). State highway agencies must approach estimation 

development in the same manner as design and construction with documented processes to guide 

cost estimation practice and cost estimation management throughout project development 

(Anderson et al. 2007).  

Experience of the estimation team highlights the importance of human factors in 

estimate preparation. This factor emphasizes the importance of the experience level not only of 

the estimating team but also of the engineering staff (Trost and Oberlender 2003). Estimation of 
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costs demands considerable amounts of experience and a well-founded understanding of the 

limitations imposed on equipment and personnel under many diverse field conditions(Hicks 

1993). 

Time allowed to prepare the estimate enables estimation team to adequate scope 

definition, an experienced project team, and good cost information does not fully explain the 

estimate accuracy picture but must be combined with an adequate allotment of time (Trost and 

Oberlender 2003). 

Contingency determination is meant to cover a variety of possible events and problems 

that are not specifically identified or to account for a lack of project definition during the 

preparation of early planning or programming estimates. Misuse and failure to define what cost 

contingency amounts cover can lead to inadequate cost estimates. In many cases, it is assumed 

that contingency amounts can be used to cover added scope and planners seem to forget that the 

purpose of the contingency amount in the estimate is to cover lack of design definition (Shane et 

al. 2009). 

2.12. Summary of Efficiency of Cost Estimation Models from the Selected Articles  

Comparing the aggregated results from the selected literature showed that on average, 

Monte-Carlo simulation models, Bayesian model, support vector machines, Case-based 

reasoning, artificial neural networks, and Regression models gave MAPE values of 5.49%, 

5.95%, 6.03%, 11.69%, 12.62%, and 13.96% respectively. However, when these results were 

weighted by sample size, Bayesian models, performed better followed by support vector 

machines, Monte-Carlo simulation, regression models, artificial neural networks, and Case-based 

reasoning in that order. Mann-Whitney U test and Levene’s test were performed to assess the 

significance level of the error between the cost estimation models. The results showed 
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insignificant differences between the estimation accuracy for ANNs, CBR, Bayesian models, 

Monte-Carlo simulation, Regression Models, and SVM. When the MAPE for the common ANN 

architectures adopted in the studies were weighted by sample size, and the BPNN had the least 

amount of error between the estimated and the actual amounts. This is followed by GRNN, 

RBFNN, and MLPNN, respectively. This finding is consistent with previous studies. For 

instance, Petroutsatou et al. (2012) and Tijanić et al. (2019) accentuated that GRNN has proven 

to be a promising approach to use in the preliminary phase of road projects when there is usually 

a limited or incomplete set of data, and could yield much more accurate results corroborating the 

results obtained from the analysis.  

Mann-Whitney U test was performed to compare the significance of the difference 

between estimation performance for the common ANN architectures identified. The results 

indicate there are significant differences between the estimated and actual costs of BPNN versus 

MLPNN and GRNN versus MLPNN. However, insufficient differences between the MAPE for 

the BPNN versus GRNN, BPNN versus RBFNN, RBFNN versus GRNN, and RBFNN versus 

MLPNN. The arithmetic mean of the cost growth performance for multiple linear regression was 

greater than the simple linear regression. However, multiple linear regression performed better 

than simple linear regression when weighted by the study sample size. A Mann-Whitney U test 

performed revealed an insignificant difference in the MAPE values between multiple and simple 

linear regression. 

2.13. Summary of Factors Influencing Highway Unit Prices 

This study systematically identified and classified the factors influencing the conceptual 

cost estimation of highway bid items under 3 categories; (1) project-specific, (2) organizational, 

and (3) estimate factors. The results from the mean ranking analysis showed that most of the 
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studies used project-specific factors more than the other factors in predicting highway 

construction costs. Project type was the highest-ranked project-specific factor identified from the 

105 articles followed by project capacity, project size, project capacity, project scope, duration of 

the project, design, project location, year of construction, ground conditions, soil type, inflation, 

market conditions, and site restrictions in descending order of importance.  

The results from ranking the organizational factors showed that the contract type, 

environmental requirements, contractors' past performance, owners’ level of experience, the 

expertise of consultants, and contractors bidding strategy were the most prevalent factors 

affecting the cost of highway construction bid items. Among the estimate factors, contingency 

amount ranked first, followed by the experience of estimating team, quality of cost information, 

lack of review of estimate by management, lack of data processing techniques, the time allowed 

for preparing cost estimates, and procedure for updating cost information.  

2.14. Gaps and Opportunities for Future Research  

Using a combination of dissimilar highway projects to model construction costs may not 

provide an accurate assessment of the probable project cost because the project type influences 

cost differently. Some studies identified from the selected literature used heterogeneous projects 

where unit prices for unique highway projects were collected and combined to model cost. Due 

to different methods of construction for each type of project, pricing for new construction 

projects differs from reconstruction works. Also, the levels of unit-price variations of different 

bid items are often diverse, the optimal methods for two separate items may not be the same (Le 

et al. 2019). Future research must distinguish between different highway construction projects or 

work type by using homogenous projects (Tijanić et al. 2019). This will provide a clear 
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indication of the level of accuracy and enhance the generalization for each project or work type ( 

Zhang et al. 2017b). 

The number of data points is integral to the efficacy of data-driven cost estimation 

models and tools as more data allows for better performance. One possible reason for the poor 

performance of construction costs estimation models is because there is not enough data for 

training and validation purposes (Setyawati et al. 2003). With the proliferation of data-driven 

modeling tools and techniques for highway construction cost estimation, future research could 

expand the size of datasets used in the modeling procedure to create a generalized and accurate 

highway construction estimate. In addition, future studies could investigate how the number of 

data points influences the accuracy of data-driven estimation models. Furthermore, the selection 

of modeling techniques is contingent on the intrinsic properties of the data. There is a need to 

develop a framework to preprocess historical cost data and project information before modeling 

future costs. This will enable the selection of the appropriate algorithm to optimize the modeling 

process. 

The cost drivers are interrelated and do not influence the cost of the project 

independently. However, a majority of the studies identified from the selected literature did not 

account for the interaction effects between the factors affecting highway construction costs. 

Adopting fuzzy intelligent systems will yield an accurate and realistic representation of expert 

reasoning of incorporating cost drivers in modeling the cost estimation problem. Therefore, 

further studies could use fuzzy intelligent systems with other AI-based modeling techniques such 

as neural networks, case-based reasoning, genetic algorithm, and support vector machines to 

assess the interaction effects of the factors identified in this paper (Kim 2011; Kim 2013; Ilbeigi 

et al., 2016; Barros et al. 2018). 
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This paper found areas of potential improvement in standardizing the way highway 

construction estimation performance metrics are reported. The studies reviewed in this paper 

used several statistical measures to assess the performance of the cost estimation models. 

However, the disparate performance metrics reported do not enable an exhaustive comparison of 

results among empirical highway cost estimation studies. There is a need to standardize 

estimation performance measures to monitor the differences between a current cost estimate to 

previous estimates for highway construction projects. Future research could focus on creating a 

framework for developing and implementing cost-estimating performance measures and 

generating additional performance measures for highway cost estimation. Future studies could 

also provide a longitudinal assessment of how these performance measures improve the 

estimation accuracy of highway construction projects (Harper et al. 2014). 

2.15. Conclusion and Limitations 

Accurate forecast of highway construction cost enables state highway transportation 

agencies to plan, execute, complete, and maintain their set of transportation assets. Even with the 

existing research undertaken to improve the accuracy of highway construction cost predictions, 

the problem of inaccurate estimates still exists. To address this research gap, this paper provides 

a systematic review and synthesizes previous articles on highway bid items to determine research 

trends, identify the factors affecting highway construction unit prices, and to compare the 

combined performance of the estimation models. The results of the trend analysis showed that 

from 1983 to 2019, North America, Asia, Europe, and the Middle East made significant research 

contributions to improve highway cost estimation practice.  

Non-parametric statistical analyses were performed to assess the efficacy of the common 

cost estimation models identified from the selected literature. On average, Monte-Carlo 
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simulation models performed better compared to the Bayesian model, support vector machines, 

case-based reasoning, artificial neural network, and regression models in that order when 

weighted by sample size. A comparison between artificial neural networks showed that back-

propagation neural network and generalized regression neural network performed superior to 

multilayer perceptron neural network when weighted by sample size. From the content analysis, 

41 factors influencing highway unit prices were identified and classified into three categories, (1) 

factors relating to project characteristics; (2) organizational factors; and (3) estimate factors 

based on the common classification used in the selected articles. The results obtained from the 

mean ranking analysis showed that most of the studies incorporated project-specific factors than 

the other factors in predicting highway construction costs.  

In view of a lack of published empirical studies and standardized performance metrics to 

measure the accuracy of cost estimates, the small sample size in SVM, Bayesian, and Monte-

Carlo simulation models could lead to type II error, not being able to detect the differences in 

hypothesized relationships. Findings should be interpreted with caution as a further validation on 

a larger sample is required to reach a generalization and a more accurate assessment of the 

combined performance of the cost estimation models.  

This paper’s unique contribution to the body of knowledge is its in-depth statistical 

analysis of the data to assess and provide preliminary insight into the combined accuracy of the 

cost estimation models identified from the selected literature. In addition, this paper identified 

and categorized a comprehensive set of factors that affect highway construction costs. This study 

will serve as a reference for future research in advancing cost estimation modeling at the early 

stages of highway projects. 
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CHAPTER 3. EXPLORATORY DATA AND STATISTICAL ANALYSES OF 

HIGHWAY CONSTRUCTION BID ITEMS 

3.1. Abstract 

Challenges associated with ensuring the accuracy and reliability of conceptual cost 

estimation of highway construction bid items are of significant interest to transportation 

agencies. State highway transportation agencies are increasingly storing vast amounts of data 

generated during their operations. Therefore, generating data-driven empirical insights and 

patterns of highway cost data is of great importance for enhancing the efficacy of conceptual cost 

estimates. This paper explored and ascertained trends in historical highway construction bid data 

from 2013 to 2018 obtained from the Wisconsin Department of Department (WisDOT), 

determined the relationship between project size and unit prices, and assessed the impact of 

competition on unit prices of highway construction bid items using exploratory data and 

statistical analyses. The results of the exploratory data analysis showed that the unit price of tack 

coat and asphaltic surface bid items to be more volatile than common excavation, base aggregate 

1 ¼”, and base aggregate ¾” bid items. The changing instability of crude oil market conditions 

presents a challenge to accurately predict the cost of asphaltic surface and tack coat within 

budget during project development. This study confirmed that larger highway construction 

contracts yield economies of scale. However, the findings suggest that there is a threshold 

beyond which the unit cost of the top five bid items starts increasing with an increase in project 

size due to inherent complexity and uncertainty causing contractors to increase their variable 

cost. The results of the correlational analysis showed a trend in which the number of bidders 

increased, the unit price decreased from 2013 to 2017. However, for common excavation, 
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asphaltic surface, and tack coat bid items, the number of bidders did not significantly influence 

the probable cost. 

3.2. Introduction  

Infrastructure projects are essential to support the world’s economic 

development(Martins et al. 2015). Conceptual cost estimates are vital for business unit decisions 

that include strategies for asset development, potential project screening, and resource 

commitment for further project development (Oberlender and Trost 2001). Completing highway 

projects within budget is essential to (Wilmot and Cheng 2003; Zhang et al. 2017) state highway 

transportation agencies (SHAs) because such performance enables them to fund, manage, and 

maintain their set of transportation projects (Wilmot and Cheng 2003; Zhang et al. 2017). SHAs 

require accurate cost data to predict future highway infrastructure costs to effectively plan and 

fund highway construction programs (Huntsman et al. 2017).  

Historical cost data is useful for preparing accurate cost estimates at the conceptual phase 

if collected and prepared in a way that is compatible with future applications (Antinuke 2010; 

Chou 2009; Ji et al. 2010). The development of an effective conceptual estimate can be a 

challenging task because these estimates are conducted before the design phase with minimal 

scope definition. In addition, the accuracy of highway construction estimates is closely correlated 

to the extent of historical cost data and project information available at the time the estimate is 

established (Chou 2009). Selecting appropriate historical data for accurately predicting the 

probable construction cost is vital to project prioritization, selection of design alternatives, and 

budget allocations (Kunt 2003; AASHTO 2013). Therefore, it is germane to evaluate cost data 

and its source because it can greatly influence the accuracy of an estimate (Martinez et al. 2009). 

Conceptual estimating methods are characterized as requiring considerable effort in data 
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collection and data analysis before modeling construction costs. The preparation of the estimate 

takes little time, however, compiling historical cost data is a time-consuming process and is only 

useful if updated and monitored regularly (Barzandeh and Zealand 2011). In addition, there is a 

need of defining more objective and consistent criteria for the selection of historical construction 

data for estimating construction cost (Riquelme and Serpell 2013). Vast data are being produced 

at faster rates due to the explosion of internet-related information and the increased use of 

operational systems to collect business, engineering, and scientific data, as well as measurements 

to make timely decisions in the construction industry (Myatt and Johnson 2014). Despite huge 

investments in data collection and archiving efforts, these data remain underutilized and are not 

adequately prepared. Due to a multitude of available methods, selecting the appropriate 

algorithm which will result in high prediction accuracy and facilitate data interpretation is not an 

easy and straightforward task (Konopka et al. 2018). The lack of properly treated historical cost 

data further amplifies the inaccuracy of conceptual cost estimates (Chou and O’Connor 2007). 

Therefore, developing accurate conceptual cost estimates for highway construction projects is 

very challenging (Chou 2009).  

Bid unit price is the sum of all direct costs, allocated indirect costs, and the contractor’s 

profit for a given item of work divided by the total number of units of work (Gransberg and 

Riemer 2009). Highway construction costs are made up of different bid items and therefore, 

diverse factors influence bid prices of individual items, or the overall contract price (Cheng and 

Wilmot 2009). Preprocessing historical cost data is a precedent practice of cost modeling for 

denoising internal errors or abnormal values. However, few cost estimation approaches have 

considered preprocessing historical cost data prior to estimating construction costs (Ji et al. 

2010). A majority of studies assessed the impact of quantity on the unit price of construction 
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projects(Gransberg and Riemer 2009; Shrestha et al. 2014). However, several factors influence 

unit prices, and therefore, there is a need to identify and evaluate the impact of these factors on 

the unit price of highway bid items. 

The objective of this paper was to explore and ascertain trends in historical highway 

construction bid data between 2013 to 2018 obtained the from Wisconsin Department of 

Department (WisDOT), to determine the relationship between project size and unit prices, and to 

assess the impact of competition on unit prices of highway construction bid items using 

exploratory data and statistical analyses. The remaining parts of the paper are as follows. The 

literature review section examined previous related research in exploratory and statistical 

analyses of highway cost data. A detailed description of the data, the data exploration and 

statistical analyses used in the study are presented in the methodology section. The final part of 

the paper discusses the results and conclusions derived from the analyses of the study, 

limitations, and also presents ideas for future work.  

3.3. Literature Review 

Historical project data is essential for planning capital projects at the early stages (Pickett 

and Elliott 2007) and are important for learning from past projects for accurate cost estimation of 

construction projects (Kiziltas and Akinci 2009). Construction organizations including state 

highway transportation agencies are increasingly storing large amounts of data generated during 

their operations. Therefore, conducting proper analyses through data exploration to detect 

patterns that indicate the effectiveness of the various processes is of great importance for 

effective decision making (Nassar 2007).  

Ji et al. (2010) addressed the issue of noise, errors, and abnormal values in cost data, 

using a combination of correlation analysis, principal component analysis, normalization, 
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interval estimation, and regression analysis for data preprocessing. This led to further 

development of an alternative cost model, a statistically preprocessed data-based parametric 

(SPBP) cost model. The cost model was operationalized based on case studies from Korean 

construction projects, and the results showed that the model enhances cost estimate accuracy and 

reliability than conventional statistical cost models.  

Nassar (2007), explored the applicability of data mining to Illinois DOT’s database 

containing information about asphalt paving projects such as cost and schedule data to discover 

patterns within the data. Association learning, a data-mining technique was adopted to discover 

interesting patterns in the data by determining association rules. The study showed that data 

mining can provide information on a dataset beyond some conventional statistical methods only 

and provides a source of valuable information that could not have been detected otherwise to 

support decision-making. However, one limitation of the proposed framework is that it is a 

computationally time-consuming and complex process. However, if the time-consuming data 

collection process can be reduced, the method can extract information faster than other statistical 

analysis methods.  

Sheng et al. (2008) analyzed historical cost data from 927 projects in Utah to explore 

trends in the dataset. The results indicated that owners can partially offset the effect of a reduced 

number of bidders by timing their projects to seasonal or cyclical periods of construction 

slowdown or by bundling their projects together into a single, larger project to yield the benefits 

of economies of scale. 

Shrestha and Pradhananga (2010) analyzed 435 bids on 113 public projects between 1991 

and 2008 worth $554 million in construction value to determine a correlation between the lowest 

bid price and construction cost growth in Clark County, Nevada. Their study also determined a 
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correlation between the number of bidders and the deviation of the bid cost from the engineers’ 

estimate. Their study results showed no correlation between the lowest bid price and construction 

cost growth. However, they found that public owners would have received the lowest 

construction bid price if more bidders had been involved in the bidding process.  

Shrestha et al. (2014) estimated the cost of highway construction bid items of 151 

Design-bid build road projects which cost approximately $841 million undertaken by the Clark 

County Department of Public Works in southern Nevada from 1991 through 2008. Their study 

developed regression models to predict a future project’s bid cost of unit price items, based on 

the quantities of items. The validation of models also showed that these models predicted the unit 

bid cost accurately.  

Cao and Ashuri (2017) used a non-parametric framework to explore long-term trends of 

bid price on resurfacing projects in Georgia. The non-parametric analysis framework adopted 

identified the variation in a trend of the unit bid price in different segments and then assessed the 

relation of trend pattern among unit bidding price and other selected indicators. The results 

showed that the national highway construction cost index (NHCCI) could be a useful indicator to 

reflect the trend changes in unit bidding prices. 

Qiao et al. (2018) used a data-driven approach that involved initial comparisons of the 

unit average project costs of single and bundled projects, preliminary investigations of the 

potential influential variables of project cost, the development of project cost statistical models, 

and an analysis of past and possible future bundling strategies. Their study found that the 

primary drivers of project cost include the project size (economies of scale), bundling strategy 

(economies of bundling), and bidding market conditions (demand and supply). In addition, their 

results showed that the similarity between different project types in terms of their constituent pay 
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items is an influential factor in project cost. The study confirmed that larger contracts yielded 

economies of scale but also lead to less competition thereby discouraging all but the largest firms 

from bidding. This finding suggests the existence of a contract-size threshold beyond which the 

unit project cost increases with increasing project cost. 

3.4. Project Size ( Economies of Scale) 

Economies of scale are probably the most dominant factor among all the variables that 

may affect the cost of a project (Qiao et al. 2018). Economies of scale happen due to size, output, 

or operation scale for an enterprise which results in cost advantages, where fixed costs are spread 

out over more units of output thus lowering down their cost (Gruneberg 1997; Ariffin et al. 2016; 

Qiao et al. 2018). It can be hypothesized that large projects typically attract higher class 

contractors and therefore, are managed more efficiently, resulting in lower project costs. 

Construction economies of scale occur when construction costs rise as construction size 

increases, though in a manner that is less proportional(Gkritza and Labi 2008; Kishore and 

Abraham 2009; Qiao et al. 2018). However, it may be argued that large projects typically involve 

several subcontractors and are more vulnerable to construction management problems such as 

communication lapses that translate to a higher likelihood of cost overrun (Gkritza and Labi 

2008).  

Project costs do not always vary linearly with different facility sizes. Screening cost 

estimates are often based on a single variable representing the capacity or some physical measure 

of the design such as floor area in buildings, length of highways, the volume of storage bins, and 

production volumes of processing plants. Empirical data are sought to establish the economies of 

scale for various types of facilities, if they exist, to take advantage of lower costs per unit of 

capacity(Hendrickson and Au 1989). However, if the project continues beyond one season, 
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likely, efficiencies due to such economies of scale may not be significantly realized (Kishore and 

Abraham 2009). 

3.5. Effect of Competition on Bid Unit Prices 

The number of potential competitors in the market reflects the supply capacity utilization 

in the industry. Therefore, the degree of competition can be measured in terms of the likely 

number of potential competitors for projects in the market, and the degree of competition 

depends on the market conditions (Ngai et al. 2002). It is also typical for contractors to trim their 

estimated costs when competing against a large number of competitors(Carr 1983). The number 

of bidders is negatively correlated to construction cost, suggesting that the completed cost 

decreases when the number of bidders increases in the bidding process(Carr 2005; Baek and 

Ashuri 2018). In practice, more bidders mean more competition; thus, contractors are forced to 

lower their bid prices to win the jobs (Zhang et al. 2017).  

Regardless of whether the reduction of bid unit price is due to material limitations, bid 

timing, overall contractor disinterest, or an imposed limitation based on labor policy; the fewer 

bid offers received will, on average, result in a higher cost of an award to the low, responsible, 

responsive bidder(Carr 2005). The dynamics of the bidding process include not only the prime 

contractors bidding the work but also the various subcontractors and suppliers who provide 

services and goods on the project. During the bid period, active competitive pricing from all of 

these entities impact bid prices: contractors, subcontractors, and suppliers. One might suggest 

that with increased competition, through a wider field of prime bidders, there would be greater 

interaction within and among the contractors, subcontractors, and suppliers; resulting in a 

lowering of the average bid price (Carr 2005).  
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3.6. Methodology 

Exploratory data analysis methods are general-purpose instruments that illustrate the 

essential features of a data set and determine relationships between datasets (Kaski and Kohonen 

1996) through the application of resistant and robust descriptive statistical and graphical tools 

that are qualitatively distinct from the classical statistical tools (Carranza 2009). A reliable 

method of tracking construction costs is to observe the variability in the average unit price of 

individual highway construction bid items that occur in several contracts, which enables them to 

be compared yearly (Cheng and Wilmot 2009). The frequency of the bid items of each project in 

the database was determined to identify the top five common bid items between 2013 to 2018. 

Bid items whose units were not precisely defined for instance each, lump sum, were discarded 

and those with consistent and specific characteristics that allowed a price comparison over time 

were retained for the analyses. The dataset was visually screened to check for completeness, 

consistency, and to ensure the location of each bid item corresponded to the precise project 

location. Bid data were then subjected to exploratory data and statistical analyses. The 

descriptive statistics consisted of the total count, mean, mode, median, standard mean error, 

standard deviation, coefficient of variation, skewness, and kurtosis. These outputs helped to 

understand and make logical choices and conclusions for further modeling procedures. Statistical 

plots were used to display the distribution of the bid items, detect, and remove outliers, ascertain 

trends, and make inferences about the bid data. Although graphical methods are useful in 

checking the normality of sample data, they are unable to provide formal conclusive evidence 

that the normality assumption holds because the graphical method is generally subjective (Yap 

and Sim 2011). Therefore, two statistical (Anderson–Darling, and Kolmogorov-Smirnov) tests 

were conducted to confirm the results from graphical methods. Also, research hypotheses were 
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developed to further ascertain the impact of competition and project size on unit prices submitted 

by contractors for the top five common bid items identified in the database. The output of the 

exploratory and statistical data analyses for each year will be analyzed, interpreted, and 

discussed. 

 

Figure 11. Research methodology 

3.6.1. Research Hypotheses 

Two research hypotheses were formulated to determine the relationship between unit 

prices and the number of bidders and between project size as well as unit prices of the highway 

construction bid items used for the study.  

Table 3. Research hypotheses 

Hypothesis No. Research Hypothesis 

I Ha1: There is a relationship between the number of bidders 

and bid unit prices  

II Ha2: There is a relationship between Project sizes and unit 

prices of the Highway Bid Items  

 

Hypothesis No. Research Hypothesis 

I Ho1: There is no relationship between the number of 

bidders and bid unit prices  

II H02: There is no relationship between project size and 

Unit prices of the Bid Items 

Data Collection and Preparation 

Results and Discussion 

Conclusions  

Research Hypothesis 

Exploratory & Statistical Data Analyses   
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3.6.2. Data Description 

The data used in this study were obtained in Excel format from the contract division of 

the Wisconsin Department of Transportation (WisDOT). Table 4 provides a sample of the bid 

unit data used in this study. The database contained 1,670 projects that were let between 2013 to 

2018. Details of the contract type, proposal Improvement type and concept, work rating, region, 

county, project size, the lowest bidder, total bid amount, longitude and latitude of each project, 

and other project attributes were provided in the dataset. A detailed database for each of 1, 670 

projects, and each project consisted of individual pay items with attributes such as item number, 

description, quantity, unit, unit price, and the bid amount. Unit prices of the top five bid items 

from the responsible and responsive bids were extracted and used for the study. The detailed 

database comprising of all the bid items for each of the 1,670 transportation projects was 

categorized quarterly from 2013 to 2018. This data was cross-referenced with the main database 

to check the correctness and ensure the integrity of the data set. The transportation historical cost 

data consisted of highway projects, bridge projects, and cofferdams. For this study, 380 highway 

projects were extracted from the original database for further analyses. 

3.6.3. Data Preparation 

This section summarizes the data collection and cleaning procedures implemented in this 

study. Many decisions about data preparation are made during the data processing Stage (Dasu 

and Johnson 2003). The frequency of the bid items of each project in the database was 

determined to identify the top 5 common bid items between 2013 to 2018; (1) Base Aggregate 

Dense 1 ¼”; (2) Base Aggregate Dense ¾”; (3) Common Excavation; (4) Tack Coat; and (5) 

Asphaltic Surface as shown in Figure 3.  
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Table 4. Sample of 2013 highway bid data for Wisconsin state 

Project Year County Bid Total Item Description Units Quantity 

Unit 

Price Amount Longitude  Latitude 

Mosinee - Elderon 2013 Marathon 1,615,976.43  Excavation Common CY 1135 7 7945 -89.64 44.79 

Westboro - Rib Lake 2013 Taylor 2,377,424.87  Excavation Common CY 9020 4.65 41943 -90.25 45.35 

Stockton - Amherst 2013 Portage 3,675,286.82  Excavation Common CY 12250 2.74 33565 -89.40 44.45 

City Wausau, Grand Ave 2013 Marathon 2,856,082.09  Excavation Common CY 245 17 4165 -89.62 44.95 

City Superior, Tower Ave 2013 Douglas 13,372,078.96  Excavation Common CY 68430 6 410580 -92.10 46.73 

Eau Claire - Osseo 2013 Eau 

Claire 

25,335,293.58  Excavation Common CY 364950 7.03 2565599 -91.47 44.77 

Lake Delton - I 90 2013 Sauk 2,723,412.57  Excavation Common CY 13920 8.8 122496 -89.79 43.59 

Eau Claire, C.A 2013 Eau 

Claire 

1,047,731.02  Excavation Common CY 3252 14.5 47154 -91.54 44.83 

Wisconsin Dells E. 2013 Marquette 1,192,671.85  Excavation Common CY 1119 11.25 12588.8 -89.54 43.67 

Mount Horeb - Madison 2013 Dane 26,108,864.59  Excavation Common CY 117000 8 936000 -89.46 43.03 

Park Falls - Springstead 2013 Price 618,268.00  Excavation Common CY 1300 16 20800 -90.30 45.95 

Mineral Point - Spring  2013 Iowa 1,614,935.78  Excavation Common CY 17101 7.99 136637 -90.13 43.09 

USH 18 - Woodman 2013 Grant 2,290,665.88  Excavation Common CY 1300 8 10400 -90.85 43.03 

N-S Freeway, CTH K INTER 2013 Racine 17,075,835.83  Excavation Common CY 407949 3.78 1542047 -87.95 42.78 

Clam Lake - STH 13 2013 Ashland 713,823.53  Excavation Common CY 940 11.5 10810 -90.90 46.16 
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Missing data are a constant feature of massive data, where individual cells, columns, 

rows, or entire sections of the data can be missing (Dasu and Johnson 2003).There are three 

broad categories of data cleaning: (1) missing data, (2) incomplete data, and (3) outliers. Missing 

data are unobserved values that would be meaningful for analysis if observed. In other words, a 

missing value hides a meaningful value. Missing attributes relevant to predict highway unit 

prices were cross-referenced with the main data and were corrected, respectively. In other 

instances where attributes especially geographic coordinates were missing, the entire bid item 

was deleted and not considered for the analyses.Table 1 shows a sample of 2013 common 

excavation bid data for Wisconsin state. 

3.6.4. Outlier Detection and Removal  

In unit price, competitive bidding, awarding a contract to an unbalanced bid may cause 

the owner’s project cost to increase during the project development process (Arditi and 

Chotibhongs 2009). Unit price contracts require the engineer’s estimated quantities to be as 

accurate as possible to ensure the profitability of a balanced bid. A quantity underrun occurs 

when bid quantities are altered to build an additional project contingency to guard against 

construction price volatility (Gransberg and Riemer 2009). This forces contractors to unbalance 

their unit prices to protect their fixed costs and target profit (Gransberg and Riemer 2009). When 

actual quantities are less than the bid quantities, the contractor does not recover the fixed costs, 

overhead, and profit that were allocated to the actual quantities of work that were not performed 

and therefore cannot claim payment. Therefore, as most contractors have limited ability to pick 

and choose which projects they bid and remain in business, inaccurate bid quantities lead to 

unbalancing unit prices to recover all the costs associated with the project and to protect the 

contractor’s target profit on the bid (Moon et al. 2007; Gransberg and Riemer 2009).  
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Polat et al. (2018) drew the attention of project owners to consider not only the total bid 

price but also the unit prices offered for each item when selecting the most appropriate contractor 

for a project. According to Le et al.(2019), when dealing with bid items with small quantities, 

bidders tend to give extremely high unit prices because those bid items do not necessarily have 

significant effects on the total bidding amount and ensure a higher profit in case the quantities 

increase during the construction phase. Those circumstances are extreme and not of interest in 

this research and therefore were excluded from the dataset. For instance, the common excavation 

dataset for 2013 consists of 111 bid items. However, 8 outliers were identified with high values 

ranging between $ 20 to $200 as shown in the violin plot in Figure 12.  

To substantiate the results obtained from the visual outlier detection approach, Grubbs 

(1969) outlier detection approach value was used to determine whether all data values for 2013 

excavation common come from the same normal distribution at a significance level of 5%. 

Grubbs (1969) detects outliers by calculating the Z value as the difference between the mean 

value for the attribute and the query value divided by the standard deviation for the attribute 

where the mean and standard deviation are calculated from all attribute values including the 

query. Figure 13 shows the number of data points for the top 5 bid items after removing outliers.  

 

Figure 12. Outlier detection for common excavation 2013 
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To account for variations due to cost escalation and inflation over time, the bid unit prices 

were converted to a march 2020 base cost using the Wisconsin Department of transportation 

Construction Cost Index and Equation 12.  

 

Figure 13. Sizes of the datasets for top 5 bid items 

The WisDOT Chained Fisher Construction Cost Index (WisDOT CCI) uses the same 

methodology as the Federal Highway Administration’s National Highway Construction Cost 

Index (NHCCI). The WisDOT CCI shown in Figure 3, shows the trend of construction cost 

escalation over time and provides inflation rates to convert past bid history into current year 

dollars.  

 

Figure 14. Wisconsin department of transportation chained fischer construction cost index.  
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The WisDOT CCI accounts for changes in the basket and weight of bid items and 

performs better than fixed weight indices when prices and quantities are volatile (WisDOT 

2010). 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝑖𝑑 𝑃𝑟𝑖𝑐𝑒 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒

𝑃𝑎𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒
× 𝑃𝑎𝑠𝑡 𝐵𝑖𝑑 𝑃𝑟𝑖𝑐𝑒 (12) 

3.7. Results and Discussion 

The descriptive statistics of the unit price of the top 5 bid items for each year were 

analyzed as shown in Table 5. The analysis shows that the mean and median are close indicating 

a nearly normally distributed for excavation common, base aggregate 1 ¼”, base aggregate ¾”, 

asphaltic surface, and tack coat. However, the distribution for the tack coat is negatively skewed 

from 2013 to 2018 as shown in Figures 15 and 16. Therefore, the bid unit price data may need to 

be transformed before cost modeling to meet the normality assumption and optimize the 

modeling results. The high standard deviation of the asphaltic surface and tack coat bid unit 

prices indicates a considerable variation in the pricing between 2013 to 2018. The volatility 

associated with tack coat and asphaltic bid items results in complexities and uncertainties for 

accurate cost modeling in highway transportation projects. The mean unit prices for the common 

excavation bid item followed a general upward trend from $10.95/CY to $14.87/CY between 

2013 and 2017. However, this trend was interrupted by a leveling off in prices in 2018. For the 

base dense aggregate 1 ¼”, the average bid price increased steadily from 2013 to 2015. 

However, the mean unit price decreased in 2016 and increased in 2017 and finally declined in 

2018. Unit prices for base aggregate ¾” increased gradually from $20.58/CY to $23.26/CY from 

2013 to 2015. However, the unit price in 2016 decreased by 3%($22.60) from the previous year 

and subsequently increased in 2018 by 4.42%($26.45/CY). For the asphaltic surface, the bid unit 

prices increased from 2013 to 2014 by 19.54% and decreased in 2015 by 17.97%. 
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Table 5. Descriptive statistics of highway bid unit prices 

Note: CY= Cubic Yards, TON= Tons, GAL= Gallons , SD= Standard Deviation  

Bid Item  N Unit Mean SD Minimum Q1 Median Q3 Maximum 

Excavation Common          

2013 100 CY 10.95 4.45 3.28 7.74 10.27 14 22.65 

2014 144 CY 11.21 4.45 1.40 7.9 10.56 14 22.6 

2015 179 CY 11.73 5.75 0.01 7.73 11.00 16 27.16 

2016 170 CY 12.84 6.72 0.01 7.6 11.62 17 29.46 

2017 116 CY 14.87 6.19 4.99 10.2 13.57 19 30.92 

2018 190 CY 12.30 4.55 0.01 9.79 11.96 15 22.26 

          

Base Aggregate 1 1/4"         

2013 163 TON 14.69 3.82 6.41 11.6 14.19 17 24.50 

2014 160 TON 15.59 3.87 5.27 12.6 15.75 18 26.40 

2015 178 TON 16.07 4.05 5.80 13.2 16.03 19 26.08 

2016 214 TON 15.54 4.12 6.57 12.5 15.21 18 25.29 

2017 217 TON 17.98 5.76 3.89 13.6 17.11 21 31.69 

2018 185 TON 17.61 4.73 5.56 14 17.80 20 29.92 

          
Base Aggregate 3/4"          

2013 161 TON 20.58 5.55 6.45 16.7 19.98 24 35.39 

2014 151 TON 21.76 5.54 10.80 18 21.25 25 35.56 

2015 159 TON 23.26 7.17 3.63 18.5 21.77 28 43.10 

2016 180 TON 22.60 6.64 11.19 17.7 21.18 26 41.11 

2017 159 TON 25.33 7.64 11.32 19.4 22.77 30 45.75 

2018 173 TON 26.45 8.53 5.56 19.9 24.52 33 48.94 

          

Asphaltic Surface          

2013 65 TON 125.63 33.11 69.84 101 122.50 147 218.79 

2014 96 TON 150.17 50.28 62.87 114 144.79 186 279.42 

2015 85 TON 123.18 33.3 63.46 95.6 118.81 145 209.14 

2016 102 TON 133.08 48.05 18.47 100 118.44 171 241.18 

2017 106 TON 131.09 36.16 65.16 107 127.26 157 219.65 

2018 105 TON 127.67 31.79 61.13 105 125.98 146 206.77 

          

Tack Coat          
2013 142 GAL 4.25 1.40 2.49 3.07 3.93 5.2 7.66 

2014 176 GAL 6.56 4.48 0.13 3.22 4.71 9.8 19.17 

2015 92 GAL 3.39 1.16 0.61 2.61 2.98 3.9 6.05 

2016 151 GAL 3.15 0.84 1.25 2.51 2.87 3.7 5.29 

2017 195 GAL 4.52 2.58 0.01 2.52 3.38 6.2 11.39 

2018 202 GAL 4.92 2.78 1.87 2.75 3.63 6.5 12.56 
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Excavation Common 2013                                           Base Aggregate 1 ¼” 2015 

 

Base Aggregate ¾” 2014                                               Asphaltic Surface 2014 

  

Tack Coat 2015                                                         Tack Coat 2016 

Figure 15. Histogram plots of unit prices for top 5 highway bid items 
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Anderson-Darling Test  p-value =0.018                        Anderson-Darling Test p-value =0.330 

Kolmogorov-Smirnov     p-value<0.010                        Kolmogorov-Smirnov  p-value>0.150 

Excavation Common 2013                                           Base Aggregate 1 ¼” 2015 

 
Anderson-Darling Test   p-value <0.005                   Anderson-Darling Test   p-value =0.06 

Kolmogorov-Smirnov     p-value<0.010                   Kolmogorov-Smirnov     p-value=0.03 

Base Aggregate  ¾“ 2014                                        Asphaltic Surface 2014 

 

Anderson-Darling Test p-value <0.005             Anderson-Darling Test p-value <0.05 

Kolmogorov-Smirnov p-value<0.010               Kolmogorov-Smirnov p-value<0.010 

Tack Coat 2015                                                  Tack Coat 2016 

Figure 16. Normality tests for top 5 highway bid items  

However, in 2016, the unit price increased by 8.04% from the previous year. In 2017 and 

2018, the unit prices decreased by 1.52% and 4.24% from the 2016-unit price. The mean unit 
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price for tack coat bid items increased from $4.25/Ton to $6.56/Ton which indicates a 54% 

increase between 2013 to 2014. However, the bid unit price decreased in 2015 and 2016 by 48% 

and 52% respectively from 2014. Subsequently, the bid unit price increased in 2017 and 2018 by 

43% and 51% respectively from 2016. 

3.7.1. Multiple Comparisons between Project Size and Bid Unit Price 

This section examines the significance of the difference of the average bid unit prices 

associated with the different sizes of highway projects for the five bid items used in the study. 

The unit prices for the bid items submitted by the lowest responsive and responsible bidder was 

proposed to be different. These differences reflect the influence of project size on the pricing 

mechanisms implemented by different contractors between 2013 to 2018. Multiple comparisons 

analysis was used to examine whether the bid data provide support for the null hypothesis related 

to the average bid unit prices and project sizes.  

Two sample t-tests were applied to determine the level of significance between the mean 

unit prices of the bid items and their associated project sizes. Table 6 shows the difference of the 

mean bid unit prices of excavation common for each pair of project size between 2013 to 2018. 

The results of the analysis show that there are significant differences between the means of $0.5 

million or less versus $1 million to 2 million, $0.5 million or less versus $10 million to 20 

million, $0.5 million to $1 million versus $10 million to 20 million, and $2 million to 10 million 

versus $10 million to 20 million at a significance level of 95%. The largest mean value of bid 

unit prices related to each pair of project sizes can be determined by the difference of the mean 

values. The average bid unit prices for ($0.5 million or less) projects were higher compared to $1 

million to 2 million and $10 million to 20 million project sizes. This showed that, for common 

excavation, bidders tended to decrease their unit prices with an increase in the size of projects $1 
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million to 2 million versus $10 million to 20 million as shown in Table 6. For projects within the 

$0.5 million to $1 million threshold, bidders tended to increase their bid prices for common 

excavation compared to projects within $10 million to 20 million. There was a significant 

difference between unit prices for projects within $2m to $10m versus $10 million to 20 million. 

Table 6. Multiple comparisons for the excavation common bid unit price mean differences per 

project size category 

Project Size Project Size  Mean difference P-Value 95% Confidence Interval 

(In millions of $) (A) (In millions of $) (B) (A-B)   Lower bound Upper bound 

0.5m or less 0.5m-1m 0.342 0.569 -1.521 0.838 

 1m-2m 1.263* 0.027 0.148 2.379 

 2m-10m 0.261 0.596 -0.707 1.229 

 10m-20m 2.757* 0.000 1.256 4.258 

 20m-More 1.464 0.123 -0.408 3.337 
      

0.5m-1m 1m-2m 0.922 0.156 -0.352 2.196 

 2m-10m -0.081 0.890 -1.228 1.067 

 10m-20m 2.415* 0.004 0.795 4.035 

 20m-More 1.123 0.259 -0.843 3.089 
      

1m-2m 2m-10m -1.002 0.069 -2.084 0.08 

 10m-20m 1.493 0.063 -3.068 0.081 

 20m-More 0.201 0.836 -1.729 2.131 
      

2m-10m 10m-20m 2.496* 0.001 -3.792 -1.019 

 20m-More -1.203 0.199 -3.506 0.65 
      

10m-20m 20m or More        -1.290 0.239 -3.46 0.87 

 

However, for project size(10m- 20m), the unit price stopped decreasing and might have 

increased, and therefore there were insignificant differences in the average bid prices. 

Table 7 shows the mean differences of base dense aggregate 1 ¼” bid unit price per 

project size category from 2013 to 2018. The results of the analysis showed that there are 

significant differences between the mean unit prices of $0.5 million or less versus $1 million to 2 

million, $0.5 million or less versus $10 million to 20 million, and $0.5 million or less versus $20 

million or more. At a significance level of 95%, the average bid unit prices for project size $0.5 

million to $1 million and $1 million to 2 million, $0.5 million to $1 million and $2 million to 10 

million, $0.5 million to $1 million and $10 million to 20 million, and $0.5 million to $1 million 



 

90 

and $20 million or more were significant for 1¼” base dense aggregate between 2013 to 2018 

and therefore the null hypothesis should be rejected. However, a comparison between bid unit 

price for $0.5 million or less versus $1 million to 2 million and $10 million to 20 million versus 

$20m or More diminished marginally with an increase in the project size.  

Table 7. Multiple comparisons for the base dense aggregate 1 ¼” bid unit price mean differences 

per project size category 

Project Size Project Size Mean difference P-Value 95% Confidence Interval 

(In millions of $) (A) (In millions of 

$) (B) 

(A-B) 
 

Lower bound Upper bound 

0.5m or less 0.5m-1m 0.463 0.274 -1.293 0.368 

 1m-2m 1.844 0.000* 1.003 2.684 

 2m-10m 2.680 0.000 1.951 3.408 

 10m-20m 4.884 0.000* 3.977 5.790 

 20m-More 4.187 0.000* 2.676 5.698 
      

0.5m-1m 1m-2m 1.381 0.002* 0.499 2.263 

 2m-10m 2.217 0.000* 1.441 2.993 

 10m-20m 4.421 0.000* 0.795 4.035 

 20m-More 3.724 0.000* 2.191 5.258 
      

1m-2m 2m-10m 0.836 0.037* 0.049 1.623 

 10m-20m -3.040 0.000* -3.994 -2.086 

 20m-More 2.343 0.003* 0.805 3.882 
      

2m-10m 10m-20m 2.215 0.000* -3.073 -1.357 

 20m-More 1.518 0.045* -3.002 -0.035 
      

10m-20m 20m or More -0.696 0.380 -2.269 0.876 

 

Table 8 shows the results of the multiple comparisons of the effect of economies of scale 

on the unit price of base aggregate ¾-inch. A comparison between project size 0.5m or less 

versus 0.5 to 1m, 1m to 2m, 2m to 10m, 10m to 20m, and 20m or more revealed significant 

differences between the mean prices between the respective project sizes as shown in Table 8.  

Also, a comparison between the mean unit prices for project size (0.5m to 1m) versus 

(1m to 2m, 2m to 10m, 10m to 20m, and 20m or more) showed that contractors tend to price 

lower as the size of the project increases. This result was also evident in the subsequent analysis 

between project sizes (1m to 2m) versus (2m to 10m, 10m to 20m, and 20m or more) with a 
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positive increase in the difference between the average bid unit prices for the respective project 

sizes.  

Table 8. Multiple comparisons for the base dense aggregate ¾-inch bid unit price mean 

differences per project size category 

Project Size  Project Size  Mean difference P-Value 95% Confidence Interval 

(In millions of $) (A) (In millions of $) (B) (A-B)   

Lower 

bound 

Upper 

bound 

0.5m or less 0.5m-1m -2.242 0.003 -3.731 -0.754 

 1m-2m 3.049 0.000 1.541 4.558 

 2m-10m 4.680 0.000 3.413 5.948 

 10m-20m 5.051 0.000 3.275 6.828 

 20m-More 4.83 0.000 2.49 7.17 

      

0.5m-1m 1m-2m 0.807 0.302 -0.730 2.344 

 2m-10m 2.438 0.000 1.137 3.739 

 10m-20m 2.809 0.002 1.009 4.609 

 20m-More 2.590 0.032 0.230 4.950 

      

1m-2m 2m-10m 1.631 0.016 0.307 2.955 

 10m-20m 2.002 0.031 -3.819 -0.186 

 20m-More 1.780 0.138 -0.590 4.150 

      

2m-10m 10m-20m 0.371 0.652 -1.996 -1.254 

 20m-More 0.150 0.892 -2.380 2.080 

10m-20m 20m or More -0.220 0.864 -2.760 2.320 

 

Table 9 shows the results of the multiple comparisons of the mean differences of the bid 

unit prices for each pair of the size of projects for asphaltic surface bid item. There are 

significant means differences between each pair of project sizes ( 0.5m or less, 2m to 10m, 10m 

to 20m) at a 0.05 significance level (all P<0.05). The mean differences of the asphaltic bid unit 

prices increased according to the increase in project value, which means that contractors tend to 

decrease the per-unit price of asphaltic surface within these project size thresholds. There are 

significant means differences between each pair of project sizes ( 0.5m to 1m, 2m to 10m, 10m 

to 20m) at a 95% significance level (all P<0.05) for asphaltic bid items. 
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Table 9. Multiple comparisons for the asphaltic surface bid unit price mean differences per 

project size category 

Project Size  Project Size  Mean difference P-Value 95% Confidence Interval 

(In millions of $) (A) (In millions of $) (B) (A-B)   

Lower 

bound 

Upper 

bound 

0.5m or less 0.5m-1m -0.04 0.969 -9.84 9.46 

 1m-2m 10.84 0.058 -0.39 22.07 

 2m-10m 11.49 0.007 3.15 19.83 

 10m-20m 20.78 0.002 8.17 33.39 

 20m-More 11.4 0.287 -10.1 32.90 

      

0.5m-1m 1m-2m 10.65 0.102 -2.14 23.44 

 2m-10m 11.30 0.033 0.92 21.68 

 10m-20m 20.59 0.004 6.61 34.56 

 20m-More 11.20 0.313 -11.0 33.40 

      

1m-2m 2m-10m 0.65 0.914 -11.21 12.51 

 10m-20m -9.63 0.215 -24.96 5.70 

 20m-More 0.6 0.961 -22.40 23.50 

2m-10m 10m-20m -8.98 0.187 -22.44 4.48 

 20m-More 0.10 0.993 -21.70 21.90 

      

10m-20m 20m or More -9.40 0.425 -32.90 14.10 

 

For the tack coat bid item, there was a significant mean difference between each pair of 

project sizes(0.5m or less, 0.5m to 1m, 1m to 2m, 2m to 10m, 10m to 20m, and 20m or more) at 

0.05 significance level as shown in Table 10. 

Table 10. Multiple comparisons for the tack coat bid unit price mean differences per project size 

category 

Project Size  Project Size  Mean difference P-Value 95% Confidence Interval 

(In millions of $) (A) (In millions of $) (B) (A-B)   

Lower 

bound 

Upper 

bound 

0.5m or less 0.5m-1m -1.684 0.000 -2.549 -0.818 

 1m-2m 3.139 0.000 2.394 3.885 

 2m-10m 3.329 0.000 2.644 4.013 

 10m-20m 3.309 0.000 2.500 4.118 

 20m-More 3.270 0.000 2.353 4.187 

0.5m-1m 1m-2m 1.156 0.010 0.285 2.027 

 2m-10m 1.345 0.002 0.526 2.165 

 10m-20m 1.325 0.005 0.401 2.250 

 20m-More 1.287 0.014 0.267 2.306 

1m-2m 2m-10m 0.189 0.367 -0.223 0.602 

 10m-20m 0.169 0.578 -0.769 0.430 

 20m-More 0.131 0.727 -0.611 0.872 

2m-10m       10m-20m 0.371 0.652 -1.996 -1.254 

     20m-More 0.059 0.864 -0.623 0.741 

10m-20m 20m or More -0.039 0.924 -0.843 0.766 



 

93 

3.7.2. Effect of Competition on Bid Unit Prices 

To assess the influence of the number of bidders on the unit price of the top 5 bid items, 

statistical analyses were performed to compare the level of significance between the average 

number of bidders and the mean unit prices per each year as shown in Figure 17  

 

Excavation Common                                            Base Aggregate 1 ¼”  

 

 

 

 

 

 

 

 

 

Base Aggregate  ¾ ”                                            Asphaltic Surface  

 

 

 

 

 

 

    Tack Coat 

Figure 17. Number of bidders vs. unit prices for top 5 highway bid items 
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For the common excavation bid item, between 2013 to 2014 as the average number of 

bidders increased the average bid unit price reduced. However, the subsequent increase in the 

average number of bidders did not result in a lower mean unit price from 2014 to 2018. A t-test 

was performed to compare the significance of the difference in the number of bidders for each 

bid item from 2013 to 2018. There was significant difference in the number of bidders for 2013 

common excavation (M= 4.18, SD= 2.07) and 2014 common excavation (M= 3.69, SD= 2.12). 

Parametric and non-parametric correlation analyses were performed to assess the 

relationship between the number of bidders and the unit price for the top 5 bid items used for the 

study from 2013 to 2018. The results from the correlation analysis between the number of 

bidders and unit price for 2013 and 2014 common excavation, indicated a significant moderate 

negative correlation between the two variables. That is, as the unit prices decreased with an 

increase in the number of bidders. However, between 2014 to 2018, there was an insignificant 

correlation between the number of bidders and unit prices for common excavation bid items. The 

results translate the minimal effect of competition on the pricing of common excavation. In 

pricing excavation works, contractors may weight other factors about ground conditions such as 

soil and geological factors more than other factors that might influence the probable cost. 

A comparison between the number of bidders and unit price for base aggregate 1 ¼” 

revealed a moderate negative correlation between the two variables from 2013 to 2017, 

indicating a statistically significant association between the two variables. However, the findings 

for the 2018 base aggregate 1 ¼” the negative association between the number of bidders and 

unit price was not statistically significant. For the asphaltic surface bid items, the number of 

bidders is not a statistically significant explanatory variable with a weak positive association in 

2013, 2014, 2016, and 2018 and a weak negative relationship was recorded in 2015 and 2017.  
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Table 11. Correlation analysis of the effect of the number of bidders on bid unit prices 

 

These findings are consistent with results from Wang and Liu (2012) and Ilbeigi et al. 

(2016). Their study accentuated that even though there is an inverse relationship between the 

Bid Item 

Mean Unit 

Prices 

Mean Number 

of Bidders 

Pearson 

Correlation 

P-Value Spearman 

Correlation 

P-Value 

Excavation Common       

2013 10.95 4.18 -0.378 0.000 -0.436 0.000 

2014 11.21 3.69 -0.399 0.000 -0.399 0.000 

2015 11.73 3.91 0.079 0.293 0.077 0.308 

2016 12.84 4.14 0.052 0.499 0.065 0.396 

2017 14.87 4.26 -0.112 0.233 -0.146 0.117 

2018 12.30 3.53 -0.160 0.027 -0.096 0.188 

Base Aggregate 1 ¼”    
  

2013 14.69 4.34 -0.325 
0.000 

-0.338 
0.000 

2014 15.59 3.66 -0.503 
0.000 

-0.507 
0.000 

2015 16.07 3.82 -0.363 
0.000 

-0.336 
0.000 

2016 15.54 3.93 -0.409 
0.000 

-0.373 
0.000 

2017 17.98 4.09 -0.314 
0.000 

-0.280 
0.000 

2018 17.61 3.38 -0.116 
0.116 

-0.102 
0.165 

Base Aggregate 3/4"       

2013 20.58 3.94 -0.138 
0.082 

-0.125 
0.114 

2014 21.76 3.39 -0.165 
0.042 

-0.161 
0.048 

2015 23.26 3.59 -0.177 
0.000 

-0.179 
0.024 

2016 22.60 3.58 -0.256 
0.001 

-0.224 
0.002 

2017 25.33 3.86 -0.112 
0.161 

-0.069 
0.391 

2018 26.45 3.29 0.090 
0.238 

0.128 
0.093 

Asphaltic Surface    
 

 
 

2013 125.63 3.85 0.009 

 

0.946 0.045 

 

0.724 

2014 150.17 3.33 0.040 
0.699 

0.089 
0.390 

2015 123.18 3.61 -0.172 
0.116 

-0.128 
0.245 

2016 133.08 3.59 0.065 
0.518 

0.084 
0.403 

2017 131.09 4.09 -0.100 
0.310 

-0.066 
0.503 

2018 127.67 3.31 0.116 
0.240 

0.175 
0.074 

       

Tack Coat    
 

 
 

2013 4.25 3.74 0.261 0.002 0.239 0.004 

2014 6.56 3.18 -0.006 0.932 0.144 0.057 

2015 3.39 3.37 -0.108 0.307 -0.046 0.664 

2016 3.15 3.33 0.219 
0.007 

0.171 
0.036 

2017 4.52 3.79 0.229 
0.001 

0.214 
0.003 

2018 4.92 3.20 0.305 

 

0.000 0.349 

 

0.000 
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number of bidders on the unit price of asphaltic bid items, most contractors own and operate 

their plants which require intensive capital to build, operate, and manage. Therefore, contractors 

need to secure enough asphalt projects in the geographical area adjacent to the plant to recover 

the capital investment and support the plant operation. The results of the correlation analyses 

between the number of bidders and unit price for tack coat bid items showed a significant 

moderate positive relationship between the two variables in 2013 and between 2016 to 2018. 

This means that the number of bidders increased in these years, the unit price of the tack coat 

also increased. However, in 2014 and 2015, there was a negative association between the number 

of bidders and the unit price even though they were insignificant. 

3.8. Conclusions  

State highway transportation agencies are increasingly storing vast amounts of data 

generated during their operations. Therefore, conducting proper analyses to track highway 

construction costs and detect patterns is essential for ensuring the accuracy of cost estimation 

models.  

This study explored and ascertained trends in historical highway construction bid data 

from the Wisconsin department of transportation from 2013 to 2018 to generate forward-looking 

insights. In addition, statistical analyses were performed to determine the impact of economies of 

scale and competition on the unit prices of the top 5 bid items. The results of the data exploration 

revealed that among the top 5 bid items identified, asphaltic surface and tack coat bid items 

recorded severe price volatility. The trend analysis showed high variability in the pricing of bid 

items for the study. This reflects the need for data transformation and normalization for the bid 

unit prices to meet the assumption of normality to enhance the performance of cost estimation 

models.  
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This study confirmed that larger highway construction contracts yield leads to economies 

of scale. However, findings suggest that there is a threshold beyond which the unit cost of the top 

5 bid items starts increasing with an increase in project size. In addition, larger projects due to 

inherent complexity and uncertainty will limit the number of potential bidders because not all 

construction firms have the required financial and technical capacities to deliver larger 

transportation projects.  

For common excavation, due to inherent complexities in-ground and geotechnical 

conditions, contractors tend to allocate high variable cost to cater for uncertainties associated 

with delivering large project sizes. Consequently, the unit price for the base aggregate 1 ¼” and 

¾” bid items were predominately significantly influenced by the size of the projects. The results 

of the correlational analysis showed that the number of bidders significantly affects the unit price 

of base aggregate 1 ¼” and ¾” bid items from 2013 to 2017. However, for common excavation, 

asphaltic surface, and tack coat bid items, the number of bidders does not significantly influence 

the probable cost. This empirical evidence is the result of extensive exploratory data analysis and 

pattern-seeking visualizations of highway historical cost data.  

To optimize the accuracy of highway cost predictions, preference must be given to cost 

drivers that have a high association of influencing the probable price of such a bid item. To 

ascertain the optimal cost drivers influencing asphaltic surface and tack coat bid items, future 

research could focus on assessing the effect of macroeconomic factors such as crude oil prices, 

the spatial proximity of asphaltic plants, on the unit price of asphalt bid items to improve 

estimation results. 
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CHAPTER 4. CONCEPTUAL COST ESTIMATION OF HIGHWAY BID UNIT PRICES 

USING ORDINARY KRIGING 2 

4.1. Abstract 

State highway agencies (SHAs) adopt state average historical bid unit prices to estimate 

the cost of highway bid items and use location factors to adjust estimates to reflect the 

appropriate geographical location at the conceptual phase. However, these location factors are 

not readily available for all projects or work types for all geographic locations. Practical, 

technical, and economic constraints make it difficult for SHAs to store and process historical 

cost data of highway projects for every desired point over space and time. In this paper, ordinary 

kriging (OK) was combined with three commonly used semivariograms (spherical, exponential, 

and Gaussian) models one at a time to interpolate six years of the top five common highway bid 

items: common excavation, base aggregate dense 1 ¼- inch, base aggregate dense ¾-inch, tack 

coat, and asphaltic surface obtained from Wisconsin Department of Transportation (WisDOT). 

For the common excavation, base aggregate dense 1 ¼ inch, and tack coat bid items, a 

combination of OK and exponential semivariogram yielded a better prediction accuracy 

compared to spherical and Gaussian models. A combination of OK and Gaussian model 

performed better in minimizing the mean absolute percentage error for the base aggregate dense 

¾ inch, compared to spherical and exponential models. The unique contribution of this paper to 

the state-of-practice is an in-depth application of linear geostatistical models (ordinary kriging) 

to interpolate bid data that would enable estimators to develop unit price maps of highway 

                                                 
2 Awuku, B., Asa E., and Baffoe-Twum, E. (2021). To be submitted to ASCE Journal of Transportation 

Engineering. The material in this chapter was co-authored by Awuku, B., Baffoe-Twum, E., and Dr. Eric Asa. 

Bright Awuku had primary responsibility for conceptualization and research design, literature search, analysis, 

writing and revising the manuscript . Bright Awuku was the primary developer of the conclusions, drafted and 

revised all versions of this chapter that are advanced here. by Baffoe-Twum, E., proofread the entire chapter. Dr. 

Eric Asa helped in the conceptualization, served as proofreader and checked and approved the methodology and 

analysis conducted by Bright Awuku. 
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construction bid items. The geovisualized bid price maps would enable SHAs to generate 

forward-thinking insights by considering the effects of spatial variations and time of highway bid 

unit prices across multiple geographic locations. 

4.2. Introduction 

Developing accurate cost estimates is important to the successful delivery of capital 

projects. SHAs must estimate the cost of highway projects at several stages in the project 

development process, from initial planning through the design phase to bidding and award of a 

construction project (Cao et al. 2018). Preliminary project estimates represent a key ingredient in 

business unit decisions and often become the basis for the ultimate funding of a project (Trost 

and Oberlender 2003) and are conceived as a significant starting process that influences the fate 

of new transportation projects (Chou 2009). Despite the recent developments in cost estimating 

methodologies and the increase in cost estimation research, the accuracy of highway cost 

estimates has not significantly improved over the last few decades (Hassanein 2006). 

 Inaccurate estimation of highway construction costs could lead to two unintended 

consequences- overestimation and underestimation (Hassanein 2006; Chou 2009). An 

overestimated cost could cause a misjudgment of the feasibility of a project, which could limit 

the number of business opportunities an owner can pursue at a time (Chou and O’Connor 2007; 

Liu and Zhu 2007; Migliaccio et al. 2015). In contrast, an underestimated cost could later force 

the owner to secure additional funding, reduce project scope to satisfy budgetary constraints, 

which could subsequently disrupt the successful delivery of SHAs construction program (Chou 

and O’Connor 2007; Liu and Zhu 2007; Migliaccio et al. 2015). Developing a reliable and 

accurate total project estimate is a challenge for SHAs (Chou 2009; Asmar et al. 2011) especially 
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at the conceptual stage because very little project information is available to perform the 

estimation (Sodikov 2005; Hassanein 2006).  

Using historical bid prices is a relatively straightforward and common method of 

estimating highway costs, which could yield good results if applied properly (Chou 2009). 

However, cost escalation associated with this method can be attributed to project location, 

project size, environmental conditions, market conditions, bidding volume, time inflation, 

political risk, geological conditions, and uncertainty (Tarek Hegazy 1998; Hassanein 2006; Chou 

2009).  

Project costs vary by location, thus an essential process in cost estimation is the accurate 

cost adjustment to reflect the appropriate geographical variation (Zhang et al. 2017) and ensure 

the accuracy of conceptual cost estimates. The geographic location of a highway transportation 

project is a larger cost driver in asphalt pavement bid unit prices than mix design. Therefore, bid 

prices for other asphalt bid items in a similarly priced geographical area should be investigated 

(WisDOT 2020). A cost estimating procedure for accounting for the spatial variability of 

highway project costs is to automatically derive the cost-driving characteristics of road 

components for any specific location and to analyze cost per unit of road length based on their 

unit cost data (Stückelberger et al. 2006). However, these location adjustment factors are not 

readily available for every type of highway project across all locations in the United States 

(Migliaccio et al. 2013; Zhang et al. 2014; Zhang et al. 2017). Furthermore, practical, technical, 

and economical constraints make it difficult to collect, store, and process historical cost data for 

every desired point over space and time.  

Construction cost models reflect experiences that are unique to a construction 

organization for a certain project or work type (Sonmez 2011). The inherent heterogeneity 
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associated with historical cost data from multiple highway transportation projects affects the 

accuracy of conceptual cost estimation modeling (Neill 1984; Oberlender and Trost 2001). 

Therefore, the inclusion of estimation variability is crucial for management decisions as cost 

estimates of highway bid items are characterized by a high amount of uncertainty at the 

conceptual phase  

(Sonmez 2011). 

Over the past few decades, geographic information systems(GIS) has proven to be a 

versatile and effective tool for decision making in several fields including geoscience, civil, and 

environmental engineering (Hassanein 2006; Mendes and Lorandi 2006; Asa et al. 2012, Le et 

al. 2019). GIS provides a robust platform that could be employed in estimating construction costs 

and aid in visualization and analyses of several spatial parameters, such as location, topography, 

right-of-way acquisition costs, and haul distances (Hassanein 2006; Le et al. 2019). Despite the 

widespread applications of GIS to the construction industry, GIS-based visualization has not 

been extensively employed in construction planning. The construction industry uses different 

tools other than the GIS for visualization, which are not capable of storing large amounts of 

spatial and non-spatial project data (Bansal and Pal 2007). By accurately visualizing 

infrastructure prices on a map, total project resources can be optimized using geospatial analytics 

(RSMeans 2020).  

Spatial interpolation methods differ from classical modeling approaches in that they 

incorporate information on the geographic coordinates of the sample data points to predict spatial 

phenomena (Setianto and Triandini 2015). The choice of an appropriate kriging method is 

dependent on how well the variogram model used fits the data set (Shamo et al. 2012). In this 

paper, OK will be combined with three commonly used semivariograms (spherical, exponential, 
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and Gaussian) one at a time to predict highway construction unit prices from the WisDOT from 

2013 to 2018. This study seeks to ascertain which combination of ordinary kriging and 

variogram models yields the best results in estimating unit prices for highway construction bid 

items and quantify the level of variability included in the estimated unit prices. The remaining 

parts of the paper are organized as follows. The literature review section examines previous 

related research in accounting for spatial variation of estimating highway bid unit prices. A 

detailed description of the data, the data exploration, and the geostatistical algorithms used in the 

study are presented in the methodology section. The final part of the paper discusses the results 

and conclusions derived from the study. 

4.3. Literature Review 

Zhang et al. (2017) proposed a new method of using nighttime light satellite imagery 

(NLSI) to estimate location adjustment factors at unmeasured locations. The NLSI method for 

estimating location adjustment factors was evaluated against an established cost index database, 

and the results showed that NLSI can be used to effectively estimate location adjustment factors. 

One key advantage of the NLSI-based method over purely proximity-based interpolation 

methods is that it indirectly incorporates local economic conditions. When compared with the 

nearest neighbor(NN) and other proximity-based location adjustment methods, the proposed 

NLSI method led to a 25–40% reduction of the median absolute error.  

Martinez et al. (2009) used GIS tools to conduct spatial and statistical analyses to confirm 

the validity of the nearest available method. An assessment of alternative interpolation methods 

was also conducted, including an evaluation of the state average and the nearest available 

method. A comparison among conditional nearest neighbor method, unconditional nearest 

neighbor method, and state average method demonstrated that the conditional nearest neighbor 
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method produced the least amount of error between actual and estimated values and therefore, 

should produce the most accurate location adjustment estimate among the methods evaluated. 

Migliaccio et al. (2013) deployed commonly used set of LCAFs, the city cost indexes 

(CCI) by RSmeans, and the socioeconomic variables included in the ESRI Community 

Sourcebook, to assess the accuracy of various spatial prediction methods in estimating LCAF 

values for unsampled locations. Two regression-based prediction models, global regression 

analysis and geographical weighted regression analysis (GWR) were employed to model the 

spatial variation of LCAF values at unsampled locations. A comparison of the methods showed 

that GWR produced a better prediction accuracy in modeling CCI as a function of multiple 

covariates.  

Le et al. (2019) applied GIS-based interpolation methods (Inverse distance weighted, 

ordinary kriging, and ordinary cokriging) and location cost-adjustment factors to adjust the total 

costs of two similar projects in two different cities. The GIS-based framework proposed by Le et 

al. (2019) leveraged historical bid data for unit-price estimation and visualization with 

consideration of the effects of project-specific location on different bid items. Additionally, 

various strategies such as the use of quantity in interpolation models were employed to improve 

the accuracy of the preliminary estimates. Temporal changes in unit prices and relationships 

between quantities and unit prices were also explored. A comparison of the spatial interpolation 

algorithms indicated that ordinary cokriging (OCK) performed better than the OK and inverse 

distance weighted (IDW) models.  

4.4. Methodology 

Finding an appropriate GIS-based interpolation method to model spatial phenomena 

poses several challenges. Additionally, the modeled fields are usually very complex, data are 



 

108 

spatially heterogeneous and often based on sub-optimal sampling, and significant noise (Caruso 

and Quarta 1998; Mitas and Mitasova 1999; Apaydin et al. 2004). Kriging often known as the 

best linear unbiased estimator (BLUE) is an optimal spatial regression technique that requires a 

spatial statistical model and a semivariogram which represents the internal spatial structure of the 

data. In this paper, the OK model will be combined with three common semivariograms 

(spherical, exponential, and Gaussian) one at a time to predict highway construction unit prices 

from the WisDOT from 2013 to 2018. Ordinary kriging is evaluated in this study because it is 

one of the most commonly used geostatistical interpolation techniques across multiple 

disciplines (Eldeiry and Garcia 2012).  

Exploratory spatial data analysis was used to study the statistical properties of the data 

followed by variogram modeling and kriging. Cross-validation was then used as a diagnostic to 

assess the variability and validity of the modeling results and formed the basis of comparison and 

selection of the optimal results (Figure 18). The same process was repeated for all the 

combinations of the kriging and variogram algorithms. 

 

Figure 18. Research methodology 

Ordinary Kriging   

Variogram Modeling   

Cross-Validation: CV statistics & MAPE 

Generation of Price Maps 

Diagnostics   

Data Preparation & Statistical Analyses  
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4.4.1. Variogram Modeling 

A variogram model is an important statistical tool in the geostatistical analysis used to 

assess the spatial variability between data points (Asa et al. 2012). The variogram is a fitted 

function used to express the relationship between the known and unknown data points. A 

theoretical semivariogram model, which is a mathematical function, is selected to fit the 

empirical semivariogram. The theoretical function reflects the relationships between distance h 

and differences in values at two locations separated by distance h (Le et al. 2019). The variogram 

approach to developing kriging weights is similar to inverse distance weighting except that in the 

case of kriging weights, the weights are modeled by the best-fitted variogram (Shamo et al. 

2015). Accurate semivariogram modeling is not an easy task, and some experience is required to 

find models and parameters close to the optimal ones (Krivoruchko 2011). 

 

Figure 19. Graphical representation of theoretical semivariogram 

This study employed three commonly used variogram models ( Pang et al. 2012; Mälicke 

et al. 2018), namely (1) spherical (Eq.13), (2) exponential (Eq. 14), and (3) Gaussian (Eq. 15) to 

assess the spatial variability of unit price data from 2013 to 2018.  
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 Spherical Model = 𝑆𝑝ℎ (
ℎ

𝑎
) {
1.5ℎ

1
− 0.5 (

ℎ

𝑎
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} (13) 

Exponential model = 1 − 𝑒𝑥𝑝 (
−3ℎ

𝑎2
) (14) 

Gaussian model = 1 − 𝑒𝑥𝑝 (
−3ℎ2

𝑎
) (15) 

were h and a are referred to as distance and range, respectively.  

4.4.2. Ordinary Kriging  

Ordinary kriging (OK), a linear weighted-average technique is the most widely used 

interpolation method in geostatistics and is unbiased to the expected value of errors (Adhikary 

and Dash 2017). It is a nonstationary algorithm that involves estimating the mean value at each 

location and can be generally applied in moving search neighborhoods. However, the covariance 

function is stationary (Asa et al. 2012). OK assumes that variation is random and spatially 

dependent and that the underlying random process is intrinsically stationary with constant mean 

and a variance that depends only on separation in distance and direction between data points and 

not on absolute position (Oliver and Webster 2015). Although other nonlinear geostatistical 

algorithms are now utilized, the relative transparency and straightforwardness of the OK 

algorithm, combined with its good performances in the past, has ensured its continued popularity 

(Van Groenigen 2000). The equation for ordinary kriging is given by (Shamo et al. 2015): 

𝑍 ∗ (𝑏) = ∑ 𝜆𝑎(𝑏)𝑍(𝑏𝑎)

𝑛(𝑏)

𝑎=1

 + [1 − ∑ 𝜆𝑎 (𝑏)

𝑛(𝑏)

𝑎=1

 ] 𝜇(𝑏) (16) 

The sill, range, and nugget obtained from the variogram used in combination with this 

estimator is then employed to compute the kriging weight (λα); for which the sum is 1. To ensure 
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that the estimate is unbiased, the mean is obtained by requiring the kriging weights sum to 1 

(Shamo et al. 2015): 

∑𝜆𝑎 (𝑏)  = 1

𝑛(𝑏)

𝑎=1

 (17) 

Therefore, the estimator in OK becomes (Shamo et al. 2015): 

𝑍 ∗ (𝑏) = ∑ 𝜆𝛼  (𝑏)𝑍(𝑏𝛼)

𝑛(𝑏)

𝛼=1

 (18) 

4.4.3. Cross-Validation and Validation  

The generation of spatially distributed maps and interpolated values through the 

geostatistical modeling approach is accompanied by uncertainty and thus, requires the accuracy 

of the estimated values to be assessed (Mirzaei and Sakizadeh 2016; Gupta et al. 2017). The 

cross-validation technique is generally adopted to validate the generated spatial maps by 

evaluating the accuracy of the critical parameters that could affect the interpolation process of 

the variable under study (Gupta et al. 2017). The true prediction error of the estimates obtained 

from each of the kriging techniques is then measured by comparing the estimated values with the 

actual sample data at the data validation points (Asa et al. 2012; Le et al. 2019). The calculated 

statistics serve as diagnostics that indicate whether the model and its associated parameter values 

are reasonable (ESRI 2020).  

To assess the accuracy of the interpolation methods, this study employed the output of 

cross-validation statistics (Eqns 19 through 21), mean standardized error (MSE), root mean 

square error (RMSE), and average standard errors (ASE). For a model that provides accurate 

predictions, the MSE should be close to zero (Gupta et al. 2017). To ensure an accurate and 

unbiased geostatistical model, then the RMSE should equal the kriging variance, so the RMSE 
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should equal 1. If the average standard errors are close to the root mean squared prediction 

errors, then the variability in the prediction is correctly assessed. However, if the RMSE is 

greater than 1, then the variability in the predictions is being underestimated, and vice versa. 

Likewise, if the average standard errors (ASE) are greater than the root mean square errors 

(RMSE), then the variability is overestimated, and vice versa (Robinson and Metternicht 2006; 

Asa et al. 2012; Eldeiry and Garcia 2012; ESRI 2020). The equations of the cross-validation 

statistics employed in this study are (Asa et al. 2012; Eldeiry and Garcia 2012; ESRI 2020): 

Mean Standardized Error =  
1

𝑁
∑[𝑍1(𝑦1) − 𝑍2(𝑦2)]

𝑁

𝑖=1

 (19) 

Root Mean Square Error =  √
1

𝑁
∑[𝑍1(𝑦1) − 𝑍2(𝑦2)]2
𝑁

𝑖=1

 (20) 

 Average Standard Error =  

√
  
  
  
  
 

1

𝑁
∑[𝑍1(𝑦1) − (∑𝑍2(𝑦2)

𝑁

𝑖=1

 ) /𝑁]

2

𝑁

𝑖=1

(21) 

where 𝑍1(𝑦1) and 𝑍2(𝑦2) are the measured and estimated bid unit price, respectively, of the ith 

unit-price data point N, is the total number of cost data points. 

Mean absolute percentage error (MAPE) is a performance metric that is a common 

measure used for assessing the level of accuracy of the algorithms used to estimate the cost of 

highway bid items. This method of validation is traditionally used by authors of data-driven 

conceptual estimating models (Gardner et al. 2017). The equation for computing MAPE is 

furnished in equation 10 (Choi et al. 2014; Gardner et al. 2017): 

𝑀𝐴𝑃𝐸 = (
100%

𝑛
)∑|

𝑃𝑖 − 𝐴𝑖
𝐴𝑖

|

𝑛

𝑖=1

 (22) 
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where n= number of data points; Pi = predicted bid unit price Ai = actual bid unit price for the ith 

project.  

4.5. Results and Discussion  

4.5.1. Exploratory Spatial and Statistical Data Analysis 

Unit price data were subjected to exploratory and spatial data analyses to ascertain 

descriptive statistics and to detect spatial trends in the observed data. Table 12 provides an 

assessment of univariate descriptive statistical indexes such as total count, mean, mode, median, 

and standard deviation for a sample of the bid unit price data. These outputs help to understand 

and make logical choices about the data and conclusions for further modeling procedures. The 

analysis shows that the mean and median are close indicating approximately normally distributed 

for excavation common.  

The high standard deviation of the bid unit prices indicates a considerable variation in the 

pricing from 2013 to 2018. Statistical plots were used to display the distribution of the bid items, 

detect trends, and make inferences about the bid data. Kolmogorov-Smirnov (K-S) and 

Anderson–Darling(AD) statistical tests were conducted to check the normality condition. The 

results show that the distribution of the bid items is not of a normal distribution from 2013 to 

2018. As shown in Figure 5, the data points are not closely positioned along a 45-degree inclined 

line and therefore the assumption of normality is rejected by the Anderson-Darling test or the 

Kolmogorov-Smirnov test or both at a 95% significance level. Optimal geostatistical models 

assume that the data is generated from a normal distribution. Data not meeting the normality 

assumption is transformed before variogram and geostatistical modeling to improve the 

prediction accuracy of interpolation results. Therefore, to test the significance of this claim, this 

paper compared the kriging results using non-transformed data and the case where the data was 
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transformed to determine the best kriging results. The results of the exploratory spatial analysis 

showed trends in the bid dataset. Therefore, prior to performing the structural analysis and 

kriging, the dataset was detrended to satisfy the stationarity assumption and model short-range 

variation.  

4.5.2. Comparison of Spatial Interpolation Methods 

This section highlights the structural analysis performed to generate interpolation 

surfaces for the five top bid items from 2013 to 2018. Three semivariogram models (spherical,  

exponential, and Gaussian) were fitted to the data before interpolation with ordinary kriging. 

This paper used the cross-validation leave-one-out approach as a diagnostic to assess the 

variability and validity of the modeling results for each of the five bid items from 2013 to 2018.  

Table 13 shows the cross-validation results for common excavation bid data sets 

evaluated from 2013 to 2018. The MSE show values close to zero for the three semivariograms 

used for the study from 2013 to 2018, which indicates that the models are unbiased for all 

combinations of the variogram and kriging models. A comparison of the cross-validation results 

showed the RMSE is closer to the ASE for the 2013, 2014, and 2016 data set when ordinary 

kriging is combined with a spherical semivariogram model.  

Table 12. Sample descriptive statistics of the top five highway bid unit prices 

Bid Item  N Unit Mean Median SD Minimum Q1 Q3 Maximum 

Excavation 

Common          
2013 100 CY 10.95 10.27 4.45 3.28 7.74 14 22.65 

2014 144 CY 11.21 10.56 4.45 1.4 7.9 14 22.6 

2015 179 CY 11.73 11 5.75 0.01 7.73 16 27.16 

2016 170 CY 12.84 11.62 6.72 0.01 7.6 17 29.46 

2017 116 CY 14.87 13.57 6.19 4.99 10.2 19 30.92 

2018 190 CY 12.3 11.96 4.55 0.01 9.79 15 22.26 

Note: CY= Cubic Yards, SD= standard deviation, N= Number of Data Points 

This indicates a more valid model because it captures the variability in the interpolated 

values accurately (Asa et al. 2012). Even though the variability of the interpolated values for the 
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2013 and 2018 data set is overestimated, this estimation is comparably small. In 2016 and 2018, 

a combination of OK and Gaussian models performed best and in 2013, 2015, and 2017, a 

combination of OK and exponential semivariogram models performed best with lower MSE, 

RMSE, ASE, and, MAPE values. This indicates that a combination of kriging and variogram 

models with the lowest aggregate value for all the cross-validation statistics was considered to 

assess the accuracy of the unit price prediction of the bid items at unsampled locations. The 

closeness of the ASE to the RMSE values, which indicates a good assessment of variability of 

the interpolation results, does not translate to the best interpolation result. Subsequently, in 2014, 

OK combined with spherical semivariogram performed best with lower cross-validation error 

metrics and MAPE values (Table 2). However, the MAPE differences between the distinctive 

semivariograms used to interpolate unit prices are not significant.  

Table 13. Cross-validation results for common excavation bid item from 2013 to 2018 

 

Table 14 summarizes the cross-validation results obtained from combining three 

semivariograms and ordinary kriging to model base aggregate dense 1 ¼-inch from 2013 to 

2018. A combination of OK and spherical semivariogram performed better than spherical and 

exponential models in 2013, 2015, 2016, and 2018 with lower MSE, RMSE, ASE, and MAPE 

 2013  2014  2015 

Prediction 

Error  Spherical Exponential Gaussian Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 4.23475 4.17656 4.2104  3.8613 3.882656 3.85564  4.26602 4.267902 4.26398 

ASE 4.32358 4.36161 4.33333  3.80002 3.735279 3.80955  4.82113 4.748584 4.90977 

MSE 0.00607 -0.00204 0.0062  0.00133 0.000335 0.00111  0.00778 0.007106 0.0064 

MAPE % 32.84 32.31 32.64  28.33 29.09 28.90  27.72 27.51 27.49 

 2016  2017  2018 

Prediction 
Error  Spherical Exponential Gaussian Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 5.74757 5.75058 5.7326  5.81696 5.809145 5.82931  3.75662 3.75369 3.74598 

ASE 5.80413 5.87961 5.8944  5.43479 5.499458 5.39412  3.72517 3.715106 3.74359 

MSE 0.00294 0.00448 0.0056  0.00502 -0.00099 0.00578  0.02757 0.028647 0.02751 

MAPE % 32.60 32.61 32.45  33.51 33.08 33.76  24.10 24.10 24.01 
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values. Subsequently, OK based on the Gaussian semivariogram model performed best in 2014 

and 2017 (Table 3). 

Table 14. Cross-validation results for base aggregate dense 1 ¼-inch bid item from 2013 to 2018 

 

The performance of the combination of OK and three semivariogram models used to 

interpolate historical unit prices for base aggregate sense ¾” are evaluated in Table 15. A 

combination of OK and exponential semivariogram model outperformed Gaussian and 

exponential models in 2013 to 2015 as shown in the cross-validated statistics in Table 15. In the 

2016 to 2018 base aggregate ¾-inch bid dataset, a combination of the OK and Gaussian 

semivariogram model performed better when compared to other models. 

Table 16 summarizes the cross-validation results obtained from combining three 

semivariograms and ordinary kriging for tack coat from 2013 to 2018. In 2013, 2014, and 2018 a 

combination of OK and Gaussian semivariogram model performed best whereas a combination 

of OK and exponential semivariogram model is the best fitted experimental semivariogram in the 

2015 and 2016 data set. Subsequently, in 2017, a combination of OK and spherical 

semivariogram performed best with lower MSE, RMSE, and MAPE ( Table 16). 

 

 2013  2014  2015 

Prediction 

Error  Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 3.72577 3.80222 3.74460  3.46286 3.47245 3.452  3.62921 3.677102 3.7147 

ASE 3.60047 3.92973 3.77358  3.45636 3.421763 3.46448  3.38857 3.570687 3.65977 

MSE 0.00085 -0.00511 0.00125  -0.0079 -0.00736 -0.0093  -0.0015 0.003517 0.00467 

MAPE % 21.26 21.82 21.56  17.92 17.95 17.83  18.93 19.32 19.48 

            

 2016  2017  2018 

Prediction 

Error  Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 3.91946 3.92197 3.91946  5.46175 5.447715 5.43554  4.66265 4.632346 4.67302 

ASE 3.85537 3.83422 3.85076  5.27707 5.324651 5.32909  4.68242 4.678923 4.67757 

MSE 0.02015 0.02037 0.02018  0.00907 -0.00834 0.00718  0.01207 0.009666 0.01295 

MAPE % 21.26 21.29 21.63  25.87 25.81 25.72  22.40 22.51 22.73 
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Table 15. Cross-validation results for base aggregate dense ¾-inch bid item from 2013 to 2018 

  2013   2014   2015 

Prediction 

Error  
Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 5.50239 5.50023 5.53593  5.85645 5.842782 5.84622  6.97804 6.963859 6.94882 

ASE 5.43462 5.40693 5.39724  5.86083 5.857025 5.85951  6.93759 6.88751 6.94563 

MSE -0.0162 -0.0136 -0.0127   0.00361 0.000388 0.00194   0.00437 -0.00262 0.01299 

MAPE % 22.63 22.58 22.66  22.92 22.94 22.84  24.61 24.50 24.69 

 
2016 

 
2017 

 
2018 

Prediction 
Error  

Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 6.7149 6.72541 6.67774  7.6912 7.686483 7.72022  7.71038 7.647754 7.57644 

ASE 6.70981 6.71884 6.69079  7.28263 7.28481 7.37465  7.29505 7.413284 7.45695 

MSE 0.0094 0.01078 0.00898   -0.01944 -0.01991 -0.01802   -0.0221 -0.01584 -0.0088 

MAPE % 25.73 25.79 25.50  26.34 26.34 26.32  24.61 24.69 24.47 

 

Table 16. Cross-validation results for tack coat bid item from 2013 to 2018 

 

Table 17 provides an assessment of the quality of the models used to interpolate unit 

prices of the asphaltic surface bid items based on cross-validation results. The results indicate 

that several combinations of OK and semivariograms assessed the variability of the interpolated 

surfaces accurately. The MSE values approached zero, which indicates that the model is 

unbiased. A combination of OK and Gaussian semivariogram performed best in 2013, 2016, 

2017. However, in the 2013 dataset, the MAPE value of the OK and Gaussian model versus the 

OK and spherical model revealed an insignificant difference (0.01%). The high MAPE value 

obtained from combining OK and exponential semivariogram could be attributed to the high 

  2013   2014   2015 

Prediction 

Error  
Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 1.33747 1.3404 1.33999  1.55031 1.553394 1.54862  1.26152 1.142544 1.15129 

ASE 1.39979 1.30247 1.30871  1.51385 1.50524 1.52013  1.29857 1.254809 1.23866 

MSE -0.0323 -0.0378 -0.0376  -0.0062 -0.00645 -0.0064  0 -0.00874 -0.0049 

MAPE % 25.74 25.55 25.5   29.76 29.72 29.56   26.15 25.73 26.05 

 
2016 

 
2017 

 
2018 

Prediction 
Error  

Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 0.79563 0.79007 0.801  1.48662 1.493959 1.49371  1.40199 1.433607 1.41586 

ASE 0.77203 0.77307 0.77204  1.45922 1.472317 1.46617  1.42175 1.292284 1.29737 

MSE -0.00816 -0.00482 -0.01211  -0.00222 0.000573 -0.0002  -0.0028 0.012417 -0.0112 

MAPE % 20.37 20.26 20.49   31.49 31.77 31.64   28.99 28.99 28.82 
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ASE obtained from the cross-validation results. These results suggest that an appropriate 

prediction performance could be accomplished using a combination of OK and spherical 

semivariogram based on MAPE values and the cross-validation statistics. In 2014 and 2018, the 

prediction performance metrics results suggest that a combination of the OK and exponential 

semivariogram model was able to predict unit prices of the asphaltic surface with greater 

precision than Gaussian and spherical semivariogram. Subsequently, a combination of OK and 

spherical semivariogram performed best in 2015 as shown in Table 17. 

Table 17. Cross-validation results for asphaltic surface bid item from 2013 to 2018 

 

Highway construction unit price bids undergo significant variations because of inflation 

and deflation over time. This study combined historical cost data of the same bid item in 

different years (2013 to 2018) and accounted for variation because of inflation and deflation to 

generate current bid unit price maps. The maps for bid items common excavation and base dense 

aggregate 1 ¼-inch bid items are shown in Figures 20a and b, respectively. For each of the bid 

unit price maps, the point shapefile represents the actual bid unit prices for each project 

location.The unit price maps would enable SHAs to accurately visualize, query, and retrieve unit 

prices infrastructure unit prices of disparate highway bid items on a map and improve the 

prediction performance using geospatial analytics. Additionally, cost estimators can ascertain the 

 2013  2014  2015 

Prediction 
Error  Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 24.6742 24.6655 24.6842  
29.76504 29.23062 30.15866 

 28.2085 28.33452 28.2185 

ASE 23.8760 23.9605 23.7163  
28.42308 28.3221 28.4515 

 28.1814 28.12884 28.259 

MSE 0.0166 0.0168 0.0165  -0.00594 -0.00361 -0.00961  0 0.003513 0.01362 

MAPE % 19.43 19.44 19.43  20.78 20.26 21.18  20.80 23.12 21.75 

 2016  2017  2018 

Prediction 

Error  Spherical Exponential Gaussian   Spherical Exponential Gaussian   Spherical Exponential Gaussian 

RMSE 33.5461 33.4785 33.0403  27.256 27.27187 26.9529  23.8368 23.68897 23.84 

ASE 33.8486 34.4532 34.6437  25.7551 25.52324 25.6753  23.9264 23.25351 23.4793 

MSE -0.00199 0.00651 0.00511  -0.00596 -0.00057 -0.00752  0.01779 0.008974 0.01569 

MAPE % 23.41 23.43 23.07  19.76 19.74 19.18  16.38 16.12 16.29 
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impact of geographical differences in pricing highway bid items to make better-informed funding 

decisions at the conceptual phase. To enhance inference from the price maps, SHAs can zoom 

into a specific county or region and accurately visualize the bid price using the legend provided 

for each map. 

 

(a)                                                                            (b) 

Figure 20. Interpolation map for combined bid data (2013 to 2018) for (a) common excavation 

and (b) base aggregate dense 1 ¼” bid data 

The performance of the interpolation results for the combined data of the common 

excavation bid data ranged from 31.57% to 31.87% (Figure 21a), as measured by the MAPE, 

which is consistent with the year-wise interpolation results from 2013 to 2018. Compared with 

spherical and Gaussian semivariograms, a combination of OK and exponential variogram 

provides a more accurate unit price forecast. Similarly, for the base dense aggregate 1 ¼” bid 

item, a combination of the OK and exponential semivariogram model yielded greater precision 

than spherical and Gaussian semivariogram models (Figure 21b).  

 

(a)                                                                   (b) 

Figure 21. Comparison of kriging results for combined data (2013 to 2018) for (a) common 

excavation and (b) base aggregate dense 1 ¼” bid data 
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Figures 22a and b show the interpolated map for base dense ¾” and tack coat bid items. 

These maps provide a granular indication of the spatial variation of base dense ¾” and tack coat 

unit prices across Wisconsin state.

 

(a)         (b) 

Figure 22. Interpolation map for combined bid data (2013 to 2018) for (a) base aggregate dense 

¾” bid unit price and (b) tack coat bid unit price 

For the base aggregate dense ¾” bid item, kriging based on the Gaussian semivariogram 

model performed best with a MAPE value of 25.54% as shown in Figure 23a. The superior 

performance in Figure 9a is in accordance with the results of the year-wise base dense ¾” bid 

unit price interpolation models. In Figure 23b, it is evident that a combination of OK and 

exponential semivariogram model prediction performance (MAPE=22.56%) was superior to 

spherical and Gaussian variogram models. The results of the disparate combination of OK and 

semivariogram models are within the range suggested by the AASHTO practical guide to cost 

estimating (AASHTO 2013) at the conceptual stage of transportation projects. 
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(a)                                  (b) 

Figure 23. Comparison of kriging results for combined data (2013 to 2018) for (a) base aggregate 

dense ¾” and (b) tack coat bid item 

The map for the asphaltic surface bid item were developed and are shown in Figure 24. 

Figure 25 shows the prediction performance for the combined bid data of the asphaltic surface. 

The results of the MAPE values ranged from 19.31% to 19.32%. A combination of OK and two 

semivariograms (spherical and exponential) models performed better compared to ordinary 

kriging based on the Gaussian semivariogram model. Nevertheless, the results obtained from 

combining OK and the Gaussian semivariogram model produced acceptable results as the 

difference between the MAPEs is insignificant. This indicates that the Gaussian model could be 

used to interpolate tack coat unit prices at unmeasured locations within acceptable prediction 

accuracy. 

 

Figure 24. Interpolation map for asphaltic surface bid unit price 
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Figure 25. Comparison of asphaltic kriging results for combined data (2013 to 2018) 

4.6. Conclusion and Future Works  

Challenges associated with ensuring the efficacy and reliability of cost estimation of 

highway construction bid items, especially during the conceptual phase of a project, are of 

significant interest to state highway transportation agencies. Even with the existing research 

undertaken on the subject, the problem of inaccurate estimation of highway bid items still exists. 

Highway construction costs are subject to significant spatial variations that could disrupt 

transportation agencies in making the right funding decisions at the conceptual phase. In this 

study, ordinary kriging was combined with three commonly used semivariogram (spherical, 

exponential, and Gaussian) to model and interpolate six years (2013 to 2018) of the top five 

highway bid data; common excavation, base aggregate dense 1 ¼”, base dense aggregate ¾”, 

tack coat, and asphaltic surface obtained from WisDOT. 

For the common excavation, base aggregate dense 1 ¼”, and tack coat bid items, a 

combination of OK and exponential semivariogram provided an improved prediction accuracy 

compared to spherical and Gaussian models. Regarding the base aggregate dense ¾”, a 

combination of ordinary kriging and Gaussian model performed better in minimizing the mean 

absolute percentage error compared to spherical and exponential models. A combination of OK 

and two semivariograms (spherical and exponential) models performed best for the unit prices of 

the asphaltic surface bid item. Nonetheless, a combination of the OK and Gaussian 
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semivariogram model produced acceptable results as the difference between the MAPEs of the 

three distinct combinations of OK and variograms is insignificant. 

This chapter’s unique contribution to the start-of-practice is its in-depth application of 

linear geostatistical (OK) models to interpolate bid data that would enable estimators to easily 

develop unit price maps of highway construction bid items. Additionally, the geovisualized price 

maps enable state highway agencies to generate forward-thinking insights about the effect of 

spatial variations and time of highway bid unit prices across multiple geographic locations.  
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CHAPTER 5. COMPARISON OF ORDINARY AND DISJUNCTIVE KRIGING 

METHODS FOR CONCEPTUAL COST ESTIMATION OF HIGHWAY BID ITEMS3 

5.1. Abstract 

In developing highway construction cost estimates, state highway agencies (SHAs) use 

location factors to account for uncertainty associated with the spatial variation of highway bid 

prices across multiple geographic locations. The state-of-the-art has been the application of 

deterministic and linear geostatistical algorithms that consider only a linear combination of 

historical cost data to assess the spatial variation on highway unit-price estimates. However, for 

non-Gaussian data, deterministic and linear predictions are not optimal. This study seeks to 

compare the prediction performance of ordinary kriging (OK) and disjunctive kriging(DK) 

methods when used to model and interpolate six years (2013 to 2018) of the top five common 

highway bid data: common excavation, base aggregate dense 1 ¼-inch, base dense aggregate ¾-

inch, tack coat, and asphaltic surface obtained from WisDOT. The findings indicate that for the 

common excavation, base aggregate dense 1 ¼-inch, base aggregate dense ¾-inch, and tack bid 

items, the DK algorithms provided a better prediction accuracy over the OK models. Conversely, 

for the asphaltic surface bid item, the OK model yielded superior prediction accuracy compared 

to the performance obtained from employing the DK methods. The contribution to the body of 

knowledge of this paper is the empirical comparison and assessment of the predictive 

performance of OK and DK algorithms to model and quantify the effect of spatial variation and 

time on different highway bid unit prices. The price maps developed from this study would 

                                                 
3 Awuku, B., and Asa E., (2021). To be submitted to ASCE Journal of Computing in Civil Engineering. The 

material in this chapter was co-authored by Awuku, and Dr. Eric Asa. Bright Awuku had primary responsibility for 

conceptualization and design, literature search, analysis, writing and revising the manuscript . Bright Awuku was the 

primary developer of the conclusions, drafted and revised all versions of this chapter that are advanced here. Dr. Eric 

Asa helped in the conceptualization and served as proofreader, checked and approved the methodology and analysis 

conducted by Bright Awuku. 
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enable SHAs to visualize and evaluate the temporal changes in prices due to the effect of spatial 

variability and time on bid unit prices in different geographical areas to make better-informed 

funding decisions at the conceptual phase of highway projects. 

5.2. Introduction 

Transportation infrastructure is pivotal for the economic and social development of the 

world, especially the United States. Many governmental agencies commit significant portions of 

their budgetary allocations to plan, construct, and maintain their set of highway transportation 

projects (Love et al. 2019). Cost estimates evolve through conceptual phases into detailed 

estimates, depending on the amount of information known at the time the estimate is prepared 

(Al-Tabtabai et al.1999). SHAs require accurate cost estimates for planning future highway 

construction programs (Wilmot and Mei 2005). Conceptual cost estimates are important to 

owners, who need to examine the financial viability of a proposed project before committing 

their resources. While future funding is fraught with uncertainty, incorrect estimation of 

transportation costs leads to significant overestimation or underestimation of highway 

construction costs (Walton and Stevens 1997; Baek and Ashuri 2019) and often presents 

challenges in the successful completion of construction projects (Wilmot and Cheng 2003; 

Molenaar 2005).  

The actual cost of a project is subject to many variables including scope, location, time, 

size, capacity, human judgmental factors, random market fluctuations, and weather, and 

complexity, which could significantly influence the range of probable projected costs (AASHTO 

2013; Zhang et al. 2016; Baek and Ashuri 2019). Transportation agencies face significant 

uncertainties in price volatility across different geographical locations due to the changes in the 

availability of local contractors, materials, equipment, and labor ( Baek and Ashuri 2017). A 
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fundamental process in conceptual construction cost estimation is the appropriate adjustment of 

costs to reflect project location (Zhang et al. 2017). Location adjustment is made using the 

location factor to convert a base project cost from one geographic location to another by 

reflecting the relative difference in cost between the two locations (Woo et al. 2017; 

Parameswaran et al. 2019). There must be a methodology for localizing the cost data, either 

through a robust and granular localization factor or through deep local research that incorporates 

local requirements and conditions (Gordian 2020).  

The costs of construction materials, equipment, and labor depend on numerous factors, 

with no explicit mathematical model for price prediction (Adeli and Wu 1998). In construction 

cost modeling, beta and log-normal distributions are commonly used distribution functions for 

modeling construction costs. However, selecting an appropriate distribution function for a 

specific data set may depend on the characteristics of the project data and thus, other distribution 

functions may provide better fits (Sonmez 2005). The relationship in linear regression imposes a 

functional relationship that may not always be appropriate for every project or work type 

(Wilmot and Mei 200; Cao et al. 2018). While this may be partially addressed through the 

transformation of cost data, the assumption of a specific mathematical formulation limits the 

ability of the model to fit the data on which it is estimated (Wilmot and Mei 2005). Furthermore, 

depending on the highway project type and cost data being deployed, the use of nonlinear models 

could be necessary to capture the nonlinearity inherent in the cost data (Sonmez 2005).  

Visualization techniques hold significant potential to represent large data sets of 

construction information that provide valuable insight into various construction domains (Leite 

et al. 2016). Geographic information systems (GIS) is a robust technology and can be used to 

fulfill various requirements of projects including, the integration of diverse datasets to facilitate 
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the development of interactive databases for various construction applications and collective 

decision making by a single repository within GIS (Bansal 2011). Although GIS has been 

successfully implemented in many fields for construction engineering management, which 

includes planning, scheduling, and construction material management, its application in 

construction cost estimation, especially at the conceptual level, is not prominent (Zhang 2010).  

The state-of-the-art has applied deterministic and linear geostatistical models to assess 

the spatial variation of unit prices on highway cost estimates. However, deterministic and linear 

approaches assume that the data form a realization of a Gaussian or nearly Gaussian random 

field, an assumption that produces linear predictors (Rivoirard et al. 2014). Therefore, these 

algorithms are not capable of accurately modeling the nonlinear relationships and also cannot 

handle non-Gaussian distributions associated with construction cost data and the cost drivers 

influencing highway unit prices. Nonlinear kriging methods have a further advantage over linear 

kriging: their predictions should be more accurate when a Gaussian random process is 

inappropriate to model the observations (Moyeed and Papritz 2002). Therefore, in assessing the 

spatial variability of construction costs, there is a need to employ stochastic models that can 

provide a range of probable costs and account for nonlinear unit price functions to accurately 

model the cost of highway projects. Unlike linear spatial interpolation, where there is evidence 

about the predictive performance of various methods, there is a lack of empirical validation 

studies that compare nonlinear with linear interpolation methods to predict highway construction 

unit prices at unsampled locations.  

In this paper, ordinary kriging, a linear interpolation algorithm is compared to disjunctive 

kriging, a non-linear geostatistical interpolation method to predict highway construction unit 

prices from the Wisconsin Department of Transportation (WisDOT) from 2013 to 2018. This 
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study seeks to ascertain the predictive performance of the disjunctive and ordinary kriging 

models in forecasting the top five highway bid unit prices and quantify the level of variability 

included in the estimated bid unit price. The remaining parts of the paper are organized as 

follows. A detailed description of the data, the data preprocessing and exploration, and the 

geostatistical models used in the study are described in the methodology section. The results and 

discussion section offer an in-depth assessment of the study’s findings and compare the 

prediction accuracy of the disjunctive kriging and ordinary kriging algorithms. The final part of 

the paper presents the conclusions derived from the study. 

5.3. Methodology 

Spatial and spatio-temporal distributions of both physical and socioeconomic phenomena 

can be approximated by functions depending on location in a multi-dimensional space (Mitas 

and Mitasova 1999). In this paper, ordinary kriging is compared to the disjunctive kriging 

technique to estimate highway construction unit prices from the Wisconsin Department of 

Transportation (WisDOT) from 2013 to 2018. This study combined each kriging technique with 

the three commonly used variogram models (spherical, exponential, and Gaussian) one at a time 

to model the top five bid items.  

Exploratory spatial data analysis was used to determine the statistical properties of the 

data. Geostatistical inferences using kriging techniques are more efficient when data for 

variables are distributed normally (Wu et al. 2006). Transformation of data may be desirable 

before kriging to satisfy the normality assumption, suppress outliers, and improve data 

stationarity (Varouchakis et al. 2012). Disjunctive kriging requires that the data follow a 

bivariate normal distribution (Eldeiry and Garcia 2012), using the normal score transformation 

(NST). NST ranks the dataset from lowest to highest values and matches these ranks to 
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equivalent ranks from a standard normal distribution (Gribov and Krivoruchko 2012; Cecinati et 

al. 2017). The exploratory spatial and statistical data analysis was followed by variogram 

analysis and kriging. Cross-validation and statistical error metrics were then used to evaluate the 

validity and correctness of the results. The same process was repeated for all the combinations of 

the kriging and variogram algorithms and formed the basis of comparison and selection of the 

best results (Figure 26). 

 

Figure 26. Research methodology  

5.3.1. Geostatistical Interpolation Methods 

Spatial interpolation models are employed to predict the value of a variable of interest at 

unmeasured locations using available measurements at sampled locations (Meng et al. 2013). 

Kriging, a variant of spatial interpolation is one of the commonly used geographic techniques for 

spatial data visualization, the spatial query of properties, and decision-making (Hassanein 2006; 

Asa et al. 2012; Meng et al. 2013). Linear kriging algorithms are distribution-free linear 

interpolation techniques, which are similar to linear regression (Asa et al. 2012).  
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In contrast, nonlinear estimation methods like disjunctive kriging perform better, have 

lower estimation variance, and allow less risky economic decision-making (Daya and 

Zaremotlagh 2013). The steps in applying these techniques include developing theoretical 

semivariogram models that describe the spatial variation between pairs of spatially related 

samples and then using these models to estimate sample parameters and their error variances at 

unknown locations (Gupta et al. 2017). 

5.3.2. Variogram Modeling  

The experimental variogram represents the spatial variability in the data and is used to 

determine the optimal weights during kriging. Accurate estimates of variograms are needed for 

efficient and reliable prediction by kriging, for optimizing sampling schemes and subsequent 

mapping (Armstrong 1984; Oliver and Webster 2015). Different variogram models may lead to 

different predictions (Li and Heap, 2008) thus, selecting an appropriate model to capture the 

features of the data is critical (Li et al. 2011). In this study, three commonly used variogram 

models, namely (1) spherical (Eq. 23), (2) exponential (Eq. 24), and (3) Gaussian (Eq. 25) were 

employed to assess the spatial variability of unit price data from 2013 to 2018. 

𝛾(ℎ) = 𝑆𝑝ℎ (
ℎ

𝑎
) {
1.5ℎ

1
− 0.5 (

ℎ

𝑎
)
3

} (23) 

𝛾(ℎ) = 1 − 𝑒𝑥𝑝 (
−3ℎ

𝑎
) (24) 

𝛾(ℎ) = 1 − 𝑒𝑥𝑝 (
−3ℎ2

𝑎
) (25) 

were h and a are referred to as distance and range, respectively.  

5.3.3. Ordinary Kriging (OK) 

In the OK algorithm, unknown values are obtained from linear combinations of observed 

data (Adhikary et al. 2016) where the weights are determined by a stochastic model of the spatial  
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dependence quantified by the semivariogram (Shiode and Shiode 2011). The ordinary kriging  

estimator is furnished in Eq. (26) (Asa et al. 2012): 

𝑍𝑂𝐾
∗  (𝜒) =∑𝜔𝑖 (𝜒). 𝑍(𝜒𝑖)

𝑛

𝑖=1

 + [1 −∑𝜔𝑖 (𝜒)

𝑛

𝑖=1

 ]  𝑚(𝜒) (26) 

where 𝑍(𝜒𝑖)= random variable at the location 𝜒; 𝜒𝑖 = n data locations; 𝜔𝑖 (𝜒)= weights; and 

𝑚(𝜒)= mean.  

5.3.4. Disjunctive Kriging  

The disjunctive kriging (DK) method is a nonlinear estimator that is suitable for 

interpolating a spatially variable property. Generally, the DK has several advantages over linear 

estimation methods in that it reduces kriging variance compared to linear kriging estimators 

(Yates et al. 1986; Samui and Sitharam 2010). DK provides a solution space larger than the 

conventional kriging techniques that only rely on linear combinations of the data (Yates and 

Warrick 1986; Asa et al. 2012). The disjunctive kriging estimator is given by Eq. (27) (Asa et al. 

2012; Daya and Zaremotlagh 2013): 

𝑍𝐷𝐾
∗  (𝑦) =∑𝜆𝑖 (𝑍(𝑦𝑖))

𝑁

𝑖=1

 (27) 

where 𝑍(y) = measured values, 𝑍(𝑦𝑖) = predicted value, and 𝜆𝑖 = nonlinear functions of the data.  

5.3.5. Cross-Validation 

To evaluate the performance of the ordinary and disjunctive kriging algorithm, cross-

validation statistics were computed and used as a diagnostic to indicate whether the performance 

of the models are acceptable and to compare the two methods. Cross-validation removes each 

data location one at a time and predicts the associated data value and compares the measured and 

predicted values. Cross-validation prediction errors (Eqns 28 through 32) were used to guarantee 

that the prediction was unbiased, as close as possible to the measured values, and that the 
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variability of the prediction was correctly assessed (Eldeiry and Garcia 2012; Wackemagel 2013; 

Oliver and Webster 2014).  

The mean standardized error (MSE) was used to check if the models were unbiased, the 

closer the MSE values to zero, the better the performance of the model. The root-mean-square 

error (RMSE) (Eqn 30) was used to check whether the prediction is close to the measured values. 

The smaller the RMSE value, the closer the predictions were to the measured values.  

The variability of the predicted data was assessed in two ways; first, by comparing the 

average standard error (ASE) with the RMSE. If the values are similar, then the variability in the 

prediction is correctly assessed. If the ASE value is greater than the RMSE value, then the 

variability of the predictions is overestimated; otherwise, the variability of the predictions is 

underestimated. Second, the variability of the data was assessed by evaluating the root-mean-

square standardized error (RMSSE). If the RMSSE is close to one, then the variability of the 

prediction is correctly assessed; if greater than one, then it is underestimated; and otherwise, it is 

overestimated (Robinson and Metternicht 2006; Asa et al. 2012; Eldeiry and Garcia 2012; ESRI 

2020). 

        Mean Error =
1

𝑛
∑{(𝑦𝑖) − (𝑦𝑜)}

𝑛

𝑖=1

 (28) 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑{(

𝑦𝑖 − 𝑦𝑜
𝜎2(𝑦𝑖)

)}

𝑛
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 (29) 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 = √
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑜)2
𝑛

𝑖=1

 (30) 
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𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝑆tan𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = √
1

𝑛
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆tan𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 = √
1

𝑛
∑𝜎2(𝑦𝑖)

𝑖=1

𝑛

 (32) 

where (𝑦𝑖) and 𝑦𝑜 are measured and predicted bid unit price, respectively, of the ith data point, n 

is the total number of data points, and 𝜎2= kriging variance for location 𝑦𝑖. 

5.3.6. Statistical Analyses 

Examining residuals is a key part of all statistical modeling, and a careful look at 

residuals can determine if the selected algorithm and its underlying assumptions are reasonable 

and appropriate to model the phenomena. To evaluate which spatial prediction method provided 

the most accurate estimates of unit prices for each bid item, the following statistical analyses 

were computed to compare the OK and DK model residuals: 

Mean absolute percentage error (MAPE) is a common measure used for assessing the 

level of accuracy of the algorithms used to estimate the cost of highway bid items (Gardner et al. 

2017). The equation for computing MAPE is furnished in equation 33 (Choi et al. 2014; Gardner 

et al. 2017):  

𝑀𝐴𝑃𝐸 = (
100%

𝑛
)∑|

𝑆𝑖 −𝑀𝑖

𝑀𝑖
| 

𝑛

𝑖=1

(33) 

The RMSE-observations standard deviation ratio (RSR) is the ratio of the RMSE to 

the standard deviation (Eldeiry and Garcia 2012a). RSR varies from the optimal value of zero, 

which indicates zero residual variation and therefore a better model prediction to a large positive 

value (Moriasi et al. 2007). RSR is calculated using equation 34 ( Moriasi et al. 2007): 
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𝑅𝑆𝑅 =

√∑
         

(𝑀𝑖 − 𝑆𝑖)
2𝑛

𝑖=1

√∑ (𝑀𝑖 −𝑀)
2𝑛

𝑖=1

 (34) 

Percent bias (PBIAS) is a measure of the deviation of the evaluated data expressed as a 

percentage. It measures the tendency of the predicted data to be higher or lower than the 

observed data, indicating the model performance (Jung et al. 2020). The optimal value of PBIAS 

is zero with low magnitude values indicating accurate model simulations (Gupta et al. 1999).  

PBIAS is computed using equation 35 (Gupta et al. 1999):  

𝑃𝐵𝐼𝐴𝑆 =

∑
  

(𝑀𝑖 − 𝑆𝑖) × 100
𝑛

𝑖=1

∑
  
(𝑆𝑖)

𝑛

𝑖=1

  (35) 

Mean Absolute Error (MAE) measures the average magnitude of absolute differences 

between actual and predicted values. MAE is calculated using equation 36 (Ashuri and Lu 2010): 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑆𝑖 −𝑀𝑖|

𝑛

𝑖=1

 (36) 

In equations (11)-(14), n= number of data points; Si = predicted bid unit price Mi = actual bid 

unit price for the ith project, and 𝑀=average of actual bid unit prices  

To ascertain the benefit of introducing the DK model, this paper quantified the 

performance of the advanced approach (DK) compared to the reference (OK). The relative 

improvement in the RMSE and MAE values due to the disjunctive kriging algorithm are 

measured using equation 37:  

𝑅𝐼 =
100 × (𝑅𝑀𝑆𝐸𝑂𝐾 − 𝑅𝑀𝑆𝐸𝐷𝐾)

𝑅𝑀𝑆𝐸𝑂𝐾
 (37) 
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To account for variations due to cost escalation and inflation over time in the unit prices 

of the highway bid items, the unit prices were converted to a march 2020 base cost using the 

Wisconsin Department of transportation Construction Cost Index and Equation 38. The WisDOT 

CCI uses the same methodology as the Federal Highway Administration’s National Highway 

Construction Cost Index (NHCCI). The WisDOT Chained Fisher Construction Cost Index 

(WisDOT CCI) provides an indication of construction cost escalation over time and inflation 

rates to convert past bid history into current year dollars (WisDOT 2010). 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝑖𝑑 𝑃𝑟𝑖𝑐𝑒 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡  𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒

𝑃𝑎𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒
× 𝑃𝑎𝑠𝑡 𝐵𝑖𝑑 𝑃𝑟𝑖𝑐𝑒 (38) 

5.4. Results and Discussion  

5.4.1. Exploratory and Statistical Data Analysis  

The descriptive statistics of the unit price of a sample bid unit price, tack coat for each 

year was computed to characterize and describe the data (Table 18). The coefficient of variation 

(SD/Mean) and median absolute deviation(MAD), a measure of heterogeneity indicates high 

variability in the pricing of the bid unit prices from 2013 to 2018. This heterogeneity could be 

attributed to the uniqueness of each construction project selected for the study (Ballesteros-Pérez 

et al. 2020). The heterogeneity associated with these bid items presents complexity due to the 

need to meet stationarity assumptions for accurate cost modeling using linear geostatistical 

algorithms.  

The normality assumption was assessed using two numerical measures of shape-

skewness and kurtosis indexes. From Table 1, the results indicate that the data is skewed and 

have kurtosis that is fairly different from that of the normal distribution. If a variable of interest 

has a positive skewness, the confidence limits on the variogram are wider than they would 

otherwise be and consequently, the kriging variances are less accurate (Reza et al. 2010). 
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The results of the exploratory spatial analysis indicated the presence of trends in the bid 

dataset. Therefore, to satisfy the stationarity assumption and model short-range variation, these 

datasets were detrended prior to modeling the semivariograms to improve the model’s prediction 

performance. 

The global Moran’s I test results for the top 5 bid items from 2013 to 2018 are 

summarized in Table 2. The Moran’s I index for common excavation, base aggregate 1 ¼-inch, 

tack coat, and asphaltic surface bid items are positive, and the Z score and p-value are 

significant, which indicates that the null hypothesis of no spatial autocorrelation is rejected. For 

the base aggregate dense ¾-inch bid item, the Moran’s I index was positive. However, there was 

insufficient evidence to reject the null hypothesis of no spatial autocorrelation as indicated in 

Table 19. 

Table 18. Descriptive statistics of top five highway bid unit prices 

Bid Item   N Unit Mean COV Skewness Kurtosis MAD SD 

Tack Coat         
2013 142 GAL 4.25 32.96 0.74 -0.52 0.97 1.4 

2014 176 GAL 6.56 68.25 1.19 0.43 1.88 4.48 

2015 92 GAL 3.39 34.31 0.84 0.14 0.53 1.16 

2016 151 GAL 3.15 26.51 0.78 -0.09 0.41 0.84 

2017 195 GAL 4.52 57.18 1.11 0.3 0.99 2.58 

2018 202 GAL 4.92 56.5 1.15 0.22 1.14 2.78 

 

Table 19. Spatial autocorrelation for the combined data of the top five highway bid unit prices 

 

Bid Data Moran’s, I Index Z-score P-value Clustered Significance 

Excavation Common  0.053 2.904 0.004 Yes Yes  

Base Aggregate 1 1/4"  0.148 8.636 0 Yes Yes 

Base Aggregate 3/4"  0.031 1.618 0.1057 Yes No 

Asphaltic Surface  0.104 4.992 0 Yes Yes 

Tack Coat 0.096 4.84 0 Yes Yes 
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5.4.2. Performance Evaluation of Spatial Interpolation Algorithms 

Highway construction costs are subject to significant variations from project to project 

and over time which results in dynamic changes in prices for different bid items. Different 

datasets of the same bid item converging toward one value provide a high degree of confidence 

in the data (GAO 2020). This study combined historical cost data of the same bid item in 

different years and accounted for spatial variations and variation due to inflation and deflation to 

generate current price maps for the top five bid items. To establish which spatial prediction 

method provided the most accurate estimates of unit prices for each bid item, cross-validation, 

and statistical analyses were used to compare the interpolation results with their actual values.  

The results of different combinations of common excavation models indicate robust 

performance with insignificant differences. For each kriging technique, the ME and MSE 

generally approach zero which indicates an unbiased for the two kriging algorithms. The RMSSE 

and the difference between the RMSE and ASE values for all combinations of DK and 

semivariogram models overestimated the variability of the interpolated unit prices. In contrast, 

the OK algorithms underestimated the variability of the interpolated unit prices as measured by 

RMSSE. However, the DK models used to interpolate unit prices yielded the least error as 

measured by cross-validation statistics, ME, MSE, ASE, RMSE, and thus was considered as the 

best predictive geostatistical algorithm (Table 20).  

Table 20. Cross-validation results for the combined data of common excavation bid item  

  OK DK   OK DK   OK DK 

Prediction 

Error  
Spherical Spherical   Exponential Exponential   Gaussian Gaussian 

ME 0.00939515 -0.007228 
 -0.0092713 0.00065027  0.0242742 -0.0147 

RMSE 4.93730573 4.8451894 
 4.93295446 4.84318872  4.9390726 4.84706 

ASE 4.94197071 4.7834449 
 4.9617995 4.78723897  4.8781986 4.77851 

MSE 0.00201683 -0.001539 
 -0.0019845 0.000074  0.0049455 -0.0031 

RMSSE 0.9982792 1.0129245   0.99343504 1.01177257   1.0124009 1.01432 
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To substantiate the cross-validation results, residual assessment statistics: MAPE, MAE, 

RSR, and PBIAS values were computed to assess the performance of the several combinations of 

OK and DK geostatistical models. From Figure 27, the DK models have smaller MAPE, RSR, 

and MAE values, which indicate better prediction performance compared to the OK models. 

Subsequently, the PBIAS values of both kriging models based on the spherical and exponential 

semivariogram models indicate 0.10% model underestimation bias. However, OK incorporating 

Gaussian semivariogram model indicates an overestimation bias whereas, DK based on Gaussian  

semivariogram indicates 0.10% model underestimation bias (Figure 27d).  

 

(a)                                                                            (b) 

 

(c)                                                                    (d) 

Figure 27. Model residual assessment parameters evaluated for combined data of common 

excavation bid item: (a) MAPE; (b) MAE; (c) RSR; (d) PBIAS 
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Table 21 presents the relative improvement performance of the DK technique over the 

OK models used to interpolate the common excavation bid unit prices. A comparison of OK and 

DK models shows that a reduction in prediction error of 2% for RMSE and MAE was obtained 

with the DK algorithms. However, this improvement obtained from combining the DK and 

semivariograms are relatively small. Therefore, the computational complexity associated with 

the DK model does not compensate for the 2% accuracy over the OK interpolation model.  

Table 21. Performance of interpolation methods in terms of improvement over ordinary kriging 

models for prediction of common excavation bid unit prices 

  Improvement in RMSE by DK    Improvement in MAE by DK 

Models OK DK RI (%)   OK DK RI(%) 

Spherical 4.94 4.85 1.82  3.94 3.87 1.78 

Exponential 4.93 4.84 1.83  3.94 3.87 1.78 

Gaussian 4.94 4.85 1.82   3.95 3.86 2.28 

 

Figures 28a and b show the interpolated surfaces for common excavation based on 

ordinary kriging and disjunctive kriging in a 2D visualization environment. The closer the 

surface is to the sample points, the better the performance of the interpolation technique for that 

dataset (Eldeiry and Garcia 2012). 

The price map (Figure 28b) shows that OK captures the spatial variation of unit prices 

accurately; and therefore, the interpolated surfaces are close to the actual bid unit prices. 

However, the price map generated using the DK model appears to have a smoother surface with 

higher unit prices across multiple geographical locations.  

The performance of the OK and DK algorithms used to predict unit prices for aggregate 

dense 1 ¼-inch bid items are evaluated in Table 22.  
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(a)                                                            (b) 

Figure 28. Excavation common price maps for (a) ordinary kriging and (b) disjunctive kriging 

The ME and MSE were near zero and suggest that the unit price predictions for the base  

aggregate dense 1 ¼-inch are fairly unbiased for both DK and OK algorithms. Additionally, in 

both algorithms, the ASE values were greater than the RMSE, therefore, the models are 

overestimating the variability of the predictions. This observation was substantiated by the 

results of the RMSSE values which are greater than one, hence the variability is being 

overpredicted to a small magnitude. However, for the OK techniques based on the Gaussian 

semivariogram model, the RMSE was greater than the ASE values which indicates that the 

model underestimated the variability of the interpolated unit prices. 

Table 22. Cross-validation results for base aggregate dense 1 ¼” bid item  

  OK DK   OK DK   OK DK 

Prediction 

Error  
Spherical Spherical   Exponential Exponential   Gaussian Gaussian 

ME 0.00916436 0.0072187 
 0.00087855 -0.0260082  0.0098973 -0.06076 

RMSE 4.36959142 4.3496413 
 4.36152288 4.33708869  4.378139 4.343115 

ASE 4.22583781 4.3054413 
 4.16118353 4.15268018  4.3886204 4.1742973 

MSE 0.0025144 0.0020808 
 0.00086513 -0.0057416  0.0024396 0.0133894 

RMSSE 1.0332604 1.0097129   1.04690019 1.04390098   0.9971108 1.039385 
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The individual cross-validation statistics were ranked for each combination of the OK 

and DK models. The results indicate that for each combination of kriging and semivariogram 

algorithm, the DK model yielded a better prediction accuracy compared to OK algorithms. 

Figure 29 shows the plots of various error statistics used to evaluate the residuals of DK 

and OK models for the base aggregate 1 ¼-inch bid item. OK, and DK algorithms based on 

spherical semivariogram yielded a similar performance as measured by MAPE values (Figure 

29a). However, the performance of the base aggregate dense 1 ¼-inch cost models measured by 

the mean absolute percentage error indicates that for the exponential and Gaussian 

semivariogram,the DK algorithm yielded better predictive accuracy than the OK algorithm. 

 

(a)                                                                            (b) 

 

(b)                                  (d) 

Figure 29. The model residual assessment parameters evaluated for combined data of base dense 

aggregate 1 ¼-inch bid item: (a) MAPE; (b) MAE; (c) RSR; (d) PBIAS 
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Similarly, the DK algorithm yielded lower RSR and MAE error analysis values, which 

indicate a better model performance compared to the OK algorithms. The PBIAS values for the 

DK based on exponential and Gaussian semivariograms indicate model underestimation bias, 

whereas the OK algorithms incorporating spherical, and Gaussian overestimated the bias 

compared to the actual base aggregate 1 ¼-inch bid unit prices. 

The relative performance of the DK models over the OK was quantified and is presented 

in Table 23. The results show that the DK models yielded an RMSE between 0.5% to 5% lower 

than the OK geostatistical models. Similarly, the reduction of MAE for the DK over the OK 

algorithm was between 0.5% to 1.5%.  

Table 23. Performance of interpolation methods in terms of improvement over ordinary kriging 

models for prediction of base dense aggregate 1 ¼-inch bid unit prices 

  Improvement in RMSE by DK   Improvement in MAE by DK 

Models OK DK RI (%)   OK DK RI(%) 

Spherical 4.37 4.34 0.69  3.41 3.39 0.59 

Exponential 4.36 4.33 0.69  3.39 3.36 0.88 

Gaussian 4.38 4.17 4.79   3.42 3.38 1.17 

 

Figure 30 shows a set of 2D price maps for the base aggregate 1 ¼-inch bid items. The 

actual bid unit prices of the base dense 1 ¼-inch bid item were superimposed onto the 

interpolation surfaces generated from the respective kriging algorithms. 

Comparison between the two price maps shows that both kriging algorithms captured 

most of the spatial variation of the base aggregate dense 1 ¼-inch bid unit prices accurately 

across multiple geographical locations.  

Leave-one-out cross-validation was performed to evaluate the prediction performance of 

the OK and DK models used to interpolate base aggregate dense ¾-inch (Table 24). The results 

indicate that the ME and MSE for the OK and DK algorithm yielded nearly unbiased estimates 

of the accuracy, but with relatively high variability, particularly the RMSE values were greater 
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than the ASE, which indicates that the OK models underestimated the variability of the 

predictions than the Dk models.  

 

(a)                                                           (b) 

Figure 30. Base aggregate dense 1 ¼-inch price maps for (a) ordinary kriging and (b) disjunctive 

kriging 

Table 24. Cross-validation results for base aggregate dense 3/4” bid item 

  OK DK   OK DK   OK DK 

Prediction 

Error  
Spherical Spherical   Exponential Exponential   Gaussian Gaussian 

ME 0.00567673 -0.053297 
 -0.0044389 -0.027157  -0.007233 -0.0299963 

RMSE 7.1754479 6.9930364 
 7.1709925 6.98808169  7.1684188 6.98672918 

ASE 6.95601444 6.8979323 
 6.91080837 6.86271188  7.0234152 6.868496177 

MSE 0.00082514 -0.007734 
 -0.0006649 -0.0039762  -0.001032 0.004386019 

RMSSE 1.03099305 1.0135867   1.0368697 1.01796667   1.0201503 1.01697952 

 

A comparison between the results of the different combinations of DK and the OK 

models indicates that DK algorithms produce an enhanced prediction performance (lower ME, 

MSE, RMSE, and RMSSE) for the combined base dense aggregate ¾-inch bid data (Table 24). 

To further assess and corroborate the comparative performance of the different combinations of 

OK and DK models used to interpolate base aggregate dense ¾-inch bid unit prices, MAPE, 

MAE, RSR, and PBIAS values were computed and formed the basis of comparison (Figure 31). 
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The results of the MAPE, MAE, and RSR values were low for the DK models, which 

indicate a superior performance that is consistent with the results obtained from the cross-

validation statistics from Table 24. The PBIAS values show that the overestimation bias of the 

DK models' is higher compared to the OK algorithms (Figure 31)

  

(a)               (b) 

 

 

(c)                                                                        (d) 

Figure 31. Model residual assessment parameters evaluated for combined data of base dense 

aggregate 3/4-inch bid item: (a) MAPE; (b) MAE; (c) RSR; (d) PBIAS 
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ranged from 2.51% to 2.65%. Subsequently, the MAE value of the DK algorithm showed a 

moderate reduction from 2.30% to 2.65% as shown in Table 25.  

Table 25. Performance of interpolation methods in terms of improvement of DK over OK 

models for prediction of base dense aggregate ¾-inch bid unit prices 

  Improvement in RMSE by DK    Improvement in MAE by DK 

Models OK DK RI (%)   OK DK RI(%) 

Spherical 7.18 6.99 2.65  5.66 5.52 2.47 

Exponential 7.17 6.99 2.51  5.66 5.51 2.65 

Gaussian 7.17 6.98 2.65   5.65 5.52 2.30 

 

Figure 32 shows the interpolated surfaces for base aggregate ¾-inch bid unit prices 

generated using ordinary kriging and disjunctive kriging in a 2D visualization environment. 

From Figure 32 (a), the OK price map is closer to the actual price data whereas the DK 

interpolation map for the base aggregate dense ¾-inch appears smoother with more values 

between ($22.16 to $24.84). This indicates that the OK model offers a more accurate price map 

compared to the maps obtained from the DK algorithm, which provides a misleading picture of 

the variation in a region.  

 

(a)                                                       (b) 

Figure 32. Base aggregate dense ¾-inch price maps for (a) ordinary kriging and (b) disjunctive 

kriging 
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The cross-validation comparison of the OK and DK algorithms for the tack coat bid unit 

prices is presented in Table 26. In terms of accuracy, DK models yielded slightly better results 

than the OK algorithms with lower prediction errors. However, a comparison of the kriging 

models shows that both algorithms overestimated the variability of the interpolated values with 

the OK models generating an accurate variability of the predicted values. 

Table 26. Cross-validation results for tack coat bid item  

 

Mean absolute percentage error (MAPE) values were used to rank the predictive 

performance of the different interpolation algorithms to interpolate tack coat bid unit prices. The 

DK model incorporating spherical semivariogram produced the least MAPE value (Figure 33a). 

However, a combination of OK and the two semivariograms (exponential and Gaussian) one at a 

time yielded a lower MAPE value than when DK was combined with these two semivariograms. 

The MAE and RSR values obtained from the distinct combination of DK and the three 

semivariograms were lower compared to OK algorithms. Subsequently, the PBIAS values for 

both kriging models were similar for the spherical and Gaussian semivariograms. However, for 

the kriging based on exponential semivariogram, OK algorithms resulted in a lower PBIAS 

compared to the DK model.  

The relative performance of the DK models over the OK for the tack coat bid item was 

quantified and are presented in Table 27. The results suggest that the superior predictive power 

of the DK does not offer significant improvement relative to the other OK models. 

  OK DK   OK DK   OK DK 

Prediction 

Error  
Spherical Spherical   Exponential Exponential   Gaussian Gaussian 

ME 0.02110056 -0.024284  -0.0185729 -0.0237875  -0.024472 -0.0215281 

RMSE 1.41421655 1.3890988  1.40893847 1.38873187  1.4187475 1.38833357 

ASE 1.37745318 1.2870931  1.3790302 1.2750683  1.3773384 1.276243049 

MSE 0.01549432 -0.019442  -0.0140277 -0.0192094  -0.017656 0.017738371 

RMSSE 1.02674021 1.0794925   1.02212203 1.08925282   1.0299017 1.08815301 
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(a)                                       (b) 

 

(c)               (d) 

Figure 33. Model residual assessment parameters evaluated for combined data of tack coat bid 

item: (a) MAPE; (b) MAE; (c) RSR; (d) PBIAS 

Table 27. Performance of interpolation methods in terms of improvement of DK over OK 

models for prediction of tack coat bid unit prices 

  Improvement in RMSE by DK    Improvement in MAE by DK 

Models OK DK RI (%)   OK DK RI(%) 

Spherical 1.41 1.39 1.42  1.11 1.10 0.90 

Exponential 1.41 1.39 1.42  1.10 1.10 0 

Gaussian 1.42 1.39 2.11   1.11 1.10 0.90 

 

Figure 34 shows a set of 2D maps for the base aggregate 1 ¼-inch bid items. The 

geovizualized map for the tack coat bid unit price shows predominantly clusters of high unit 

prices ( $4.48 to $ 5.45) in the north-east, central, and north-west part of the study area for both 

kriging methods. However, a comparison between the two maps shows that the OK algorithm 
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captured most of the spatial variation of the tack coat bid unit prices accurately across multiple 

locations. 

 

(a)                                                         (b) 

Figure 34. Tack coat price maps for (a) ordinary kriging and (b) disjunctive kriging 

The cross-validation prediction errors of the asphaltic surface bid item are presented in 

Table 28. For the kriging based on the spherical semivariogram model, the DK model provides 

an enhanced prediction accuracy (lower ME, MSE, RMSE, and RMSSE near 1) than the OK 

model.  

Table 28. Cross-validation results for asphaltic surface bid item  

  OK DK   OK DK   OK DK 

Prediction 

Error  
Spherical Spherical   Exponential Exponential   Gaussian Gaussian 

ME 0.371838 0.13321  -0.34268 0.23843687  0.38389 -0.1164 

RMSE 27.46524 27.34483  27.44861 27.5497558  27.49583 27.35395 

ASE 28.96443 27.956  28.8869 26.1247848  28.90665 28.35201 

MSE 0.01286 0.00513  -0.01204 0.00912685  0.01322 0.00487 

RMSSE 0.948591 0.978632   0.950627 1.05454479   0.951452 0.966094 

 

However, a comparison of the kriging incorporating the other two semivariograms 

(exponential and Gaussian) semivariograms one at a time showed that OK models yielded a 

better prediction performance than the DK models. These results indicate that different dataset 

characteristics may favor different prediction models. 
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Figure 35 presents a comparison of the prediction accuracies of the OK and DK models 

employed to interpolate the asphaltic surface bid item. The OK algorithms outperformed the DK 

algorithms with lower MAPE, MAE, and RSR values. The PBIAS values show that OK models 

underestimated the bias to a higher magnitude compared to the DK algorithms. However, the DK 

based on spherical semivariogram overestimated the prediction bias (Figure 35b). The findings 

of the MAPE analysis reinforce the conclusions of the cross-validation results in Table 28. 

 

(a)                                                                      (b) 

 

(c)             (d) 

Figure 35. Model residual assessment parameters evaluated for combined data of asphaltic 

surface bid item: (a) MAPE; (b) MAE; (c) RSR; (d) PBIAS 

The relative improvement performance of the DK over the OK models used to interpolate 

the asphaltic surface bid unit prices were assessed and are presented in Table 29. Apart from the 

improvement in RMSE by the DK over the OK algorithm, the OK models outperformed DK 
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algorithms when each kriging model was combined with the other two semivariograms 

(exponential and Gaussian). 

Table 29. Performance of interpolation methods in terms of improvement of DK over OK 

models for prediction of asphaltic surface bid unit prices. 

  Improvement in RMSE by DK    Improvement in MAE by DK 

Models OK DK RI (%)   OK DK RI(%) 

Spherical 27.47 27.34 0.47  21.83 21.99 -0.73 

Exponential 27.44 27.54 -0.36  21.83 22.10 -1.24 

Gaussian 27.50 27.35 0.55   21.84 21.96 -0.55 

 

Figure 36 shows the maps generated by the two kriging methods to model and interpolate 

the asphaltic surface bid item. A comparison between the two models indicates similar 

performance in describing the spatial variation of asphaltic bid unit prices across the study 

region. However, the DK model shows a fairly smoother surface, with higher unit prices of the 

asphaltic surface bid item.  

 
 (a)                                                   (b) 

Figure 36. Asphaltic surface price maps for (a) ordinary kriging and (b) disjunctive kriging 

5.5. Conclusion 

Developing an accurate forecast of highway construction cost estimates poses 

considerable challenges for state highway transportation agencies due to the uncertainty 

associated with the variability in construction prices across multiple geographic locations. The 
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state-of-the-art has applied deterministic and linear geostatistical models to assess the spatial 

variation on highway cost estimates. However, deterministic and linear approaches do not 

accurately model the nonlinear relationship and also handle non-Gaussian distributions 

associated with construction cost data. Unlike linear spatial interpolation, where there is some 

evidence about the predictive performance of various methods, there is a lack of empirical 

studies that compare nonlinear kriging algorithms with linear interpolation methods when used to 

predict highway construction unit prices. 

 To this end, this study evaluated the prediction capabilities of ordinary and disjunctive 

kriging algorithms to model and interpolate six years (2013 to 2018) of the top five highway bid 

data: common excavation, base aggregate dense 1 ¼-inch, base dense aggregate ¾-inch, tack 

coat, and asphaltic surface obtained from WisDOT. The findings of the study show that for the 

common excavation, base aggregate dense 1 ¼-inch, and base aggregate dense ¾-inch, 

disjunctive kriging algorithms provide a better prediction accuracy over the ordinary kriging 

models. However, the prediction power of the disjunctive kriging models was shown to not offer 

significant improvement over the performance of the ordinary kriging models. Regarding the 

tack coat bid item, the disjunctive kriging algorithm yielded superior prediction accuracy 

compared to the performance obtained from the ordinary kriging method. The computational 

cost associated with the disjunctive kriging could pose a challenge to SHAs who require quick 

cost estimates of highway projects at the conceptual phase. In contrast, ordinary kriging yielded a 

better prediction performance accuracy compared to the disjunctive kriging method for the 

asphaltic surface bid item. 

This paper contributes to the growing literature on cost estimation of highway 

transportation projects by comparing the prediction accuracy of ordinary kriging to the 
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disjunctive kriging algorithm to predict unit prices of the top five common highway bid items 

and quantify the effect of spatial variation and time on construction costs. The price maps 

developed from this study would enable SHAs to visualize and evaluate the temporal changes 

due to the effect of spatial variability and time on bid unit prices in different geographical areas 

to make better-informed funding decisions at the conceptual phase of highway projects. 
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CHAPTER 6. CONCEPTUAL COST ESTIMATION OF HIGHWAY UNIT PRICES: AN 

EMPIRICAL BAYESIAN KRIGING APPROACH4 

6.1. Abstract  

Challenges associated with ensuring the accuracy and reliability of cost estimation of 

highway construction bid items are of significant interest to state highway agencies (SHAs). 

Highway construction unit prices are subject to spatial variation, which causes significant 

uncertainty in developing accurate cost estimates. The state-of-the-art encompasses the 

application of deterministic and linear geostatistical interpolation methods to assess the 

uncertainty associated with the spatial variation of highway bid prices. However, these 

interpolation methods assume that the estimated semivariogram is the true semivariogram for the 

interpolation region and does not assess the uncertainty introduced by estimating the underlying 

semivariogram. To address this shortcoming, this paper employed a combination of empirical 

Bayesian kriging (EBK) with three semivariograms (exponential detrended, whittle detrended, 

and K-Bessel detrended) to interpolate six years (2013 to 2018) of the top five highway bid data: 

common excavation, base aggregate dense 1 ¼-inch, base dense aggregate ¾-inch, tack coat, and 

asphaltic surface obtained from WisDOT. The findings show that EBK based on exponential 

detrended semivariogram yields superior prediction accuracy for the common excavation and 

tack coat bid items whereas a combination of EBK and K-Bessel detrended variogram provides 

better predictive performance for the base aggregate dense 1 ¼-inch, base aggregate dense ¾-

inch, asphaltic surface bid items. This study contributes to the body of knowledge by applying 

                                                 
4 Awuku, B., and Asa E., (2021). To be submitted to ASCE Journal of Construction Engineering and Management. 

The material in this chapter was co-authored by Awuku, and Dr. Eric Asa. Bright Awuku had primary responsibility 

for conceptualization and design, literature search, analysis, writing and revising the manuscript . Bright Awuku was 

the primary developer of the conclusions, drafted and revised all versions of this chapter that are advanced here. Dr. 

Eric Asa helped in the conceptualization and served as proofreader, checked and approved the methodology and 

analysis conducted by Bright Awuku. 
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EBK algorithms to accurately assess the standard prediction error introduced by estimating the 

underlying semivariogram in quantifying the effect of project-specific location and time on 

highway bid unit-price estimation.  

6.2. Introduction 

Completing transportation projects under their budgeted cost remains a challenge for 

many transportation agencies in the United States (Love et al. 2019). SHAs require accurate 

estimates of future funding and project costs to prepare reliable highway construction programs 

(Wilmot and Cheng 2003) under minimal scope definition and time constraints (Kim and Kim 

2010), which presents challenges in developing an accurate and reliable conceptual estimate 

(Gardner et al. 2017). Inaccurate estimation of highway construction costs could lead to two 

unintended consequences-overestimation and underestimation (Hassanein 2006; Chou 2009). An 

overestimated cost could result in a misjudgment of the feasibility of a project or loss of a 

contract to competitors. On the other hand, the contractor could incur significant losses from an 

underestimated cost (Liu and Zhu 2007) or it could present challenges in the successful 

completion of a construction project (Wilmot and Cheng 2003). While inaccurate estimates may 

be more tolerable during periods of stable economic growth, most governmental agencies 

currently struggle to meet capital requirements for new construction and renovation of 

infrastructures while being subjected to continuous budget cuts (Zhang et al. 2017).  

Conceptual cost estimates are developed based on historical cost data and adjustment 

factors, which include project location, time, size, and complexity, and thus the accuracy of those 

adjustment factors directly influence the accuracy of cost estimates (Wilmot and Mei 2005; 

Elbeltagi et al. 2014; Zhang et al. 2016). These estimates are crucial to the success of 

construction projects, and knowledge of project location is fundamental to developing them. 
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Construction projects are typically planned and executed at the local level and therefore, 

significant variation could exist in construction costs across locations (Choi et al. 2021). It is 

essential to incorporate local economic conditions when estimating location adjustment factors at 

unsampled locations (Zhang et al. 2017). Price volatility in labor rates, materials, and equipment 

has a significant effect on highway construction costs. This volatility may irregularly be 

distributed across different geographical locations due to the changes in the availability of local 

contractors, materials, equipment, and labor (Baek and Ashuri 2017). Thus, there is a need for 

SHAs to assess the uncertainty associated with the influence of spatial variation on construction 

costs (Baek and Ashuri 2018).  

Location-cost adjustment factors (LCAF) are commercially available to account for 

spatial variation in construction cost but, they do not include all geographic locations. Therefore, 

LCAFs for unsampled locations need to be inferred through spatial interpolation or prediction 

methods (Migliaccio et al. 2013). Construction cost models reflect experiences that are unique to 

a construction organization for a particular project or work type (Sonmez 2011). The inherent 

heterogeneity associated with historical cost data from multiple highway transportation projects 

affects the accuracy of conceptual cost estimates (Neill 1984; Oberlender and Trost 2001). The 

inclusion of estimation variability is crucial for management decisions as cost estimates of 

highway bid items are characterized by a high amount of uncertainty at the conceptual phase 

(Sonmez 2011).  

The state-of-the-art has employed classical kriging algorithms, deterministic and linear 

geostatistical approaches to assess the spatial variability of unit prices on construction cost. 

However, these geostatistical models assume that there is one process that generates the data, and 

that process is usually Gaussian (Gribov and Krivoruchko 2020). Beyond Gaussianity, lognormal 
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kriging, disjunctive kriging, generalized linear model-based kriging, and trans-Gaussian kriging 

have been proposed in the literature. However, these kriging variants do not take into account the 

uncertainty concerning the distribution and the estimated covariance function of the data (Pilz 

and Spöck 2008). Furthermore, the spatial process is usually described by a single covariance 

model. Some interpolation models allow a spatially varying covariance model, but the 

covariance structure can only change slowly and smoothly. The number of data-generating 

processes can be large, and information about these processes is typically incomplete or absent. 

Therefore, there is a need for statistical models that produce reasonably accurate predictions 

given spatial data that does not change smoothly and when the sources of this change are at least 

partially unknown.  

To account for uncertainty in estimating the underlying semivariogram models, empirical 

Bayesian kriging (EBK) predicts values at unsampled locations using the weighted sum of the 

models from the possibly overlapping or disjoint nearby subsets has been proposed in the 

literature (Gribov and Krivoruchko 2020). EBK models do not require specification of the prior 

distributions for the model parameters; allow moderate local and large global data non-

stationarity; locally transform data to Gaussian distribution, if required; allow for varying 

measurement error; produce reliable outputs with default parameters (Krivoruchko and Gribov 

2019). Classical kriging also assumes that the estimated semivariogram is the true 

semivariogram of the observed data. This means the data was generated from Gaussian 

distribution with the correlation structure defined by the estimated semivariogram. This is a very 

strong assumption, and it rarely holds in practice (Krivoruchko 2012).  

This study aims to automate the unit-price estimation process and investigate which 

combination of EBK and the three semivariogram models yields the best results in estimating 
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unit prices for highway construction bid items. The remaining parts of the paper are organized as 

follows. The literature review section examines previous related research in accounting for 

spatial variation of estimating highway bid unit prices. A detailed description of the data, the 

data exploration, and the EBK algorithms used in the study are presented in the methodology 

section. The final part of the paper discusses the results and conclusions derived from the study. 

6.3. Literature Review 

Previous studies employed the deterministic and linear geostatistical interpolation 

methods, nearest neighbor (NN); local averaging method; inverse distance weighted (IDW); 

linear kriging; global regression analysis (GRA) geographically weighted regression analysis 

(GWR); and  nighttime light satellite imagery (NLSI) to assess the spatial variation of unit prices 

on highway construction costs, and interpolate LCAFs at unsampled locations (Zhang et al. 

2014).  

The NN is the simplest method because it relies on the simple equality function that 

determines values using a linearly weighted combination of a set of sample points (Zhang et al. 

2014). The accuracy of this method depends largely on sampling density. Additionally, since the 

transitions between polygons are often abrupt, this method does not accurately model continuous 

data. Martinez et al. (2009) and Migliaccio et al. (2009, 2013) assessed the validity of NN 

interpolation using empirical LCAF data to interpolate LCAF at unsampled locations. Despite 

the evidence supporting the validity of the NN proximity-based location adjustment method, 

when compared against alternative geostatistical interpolation methods, the NN method does not 

yield better prediction accuracy (Zhang et al. 2014). 

Migliaccio et al. (2009, 2013) evaluated the state averaging method, which is derived 

from the local averaging (LA) method by using the state boundary, instead of fixed radius 
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circles, to define the spatial extents of the search. However, the LA interpolation method is a 

slightly more complex method that uses fixed radius interpolation to produce a raster grid in a 

specified region of interest. All values within a state were averaged to estimate a collective value 

used for every potential project location within the state (Zhang et al. 2014).  

The IDW interpolation method is one of the most frequently used deterministic models in 

spatial interpolation (Zhang et al. 2014). IDW assumes that the attribute value of an unsampled 

point is the weighted average of known values within the neighborhood, and the weights are 

inversely related to the distances between the prediction and the sampled locations (Le et al. 

2019). Le et al. (2019) evaluated the IDW interpolation method and location cost-adjustment 

factors to adjust the total costs of two similar projects in two different cities. Shrestha and Jeong 

(2019) developed a unit price visualization tool using IDW to enable estimators to develop unit 

price maps of desired bid items. Despite the acceptable prediction accuracy, the IDW method, a 

deterministic approach could lead to a false inference of accuracy because of its inability to 

account for the uncertainty of the interpolated values making it difficult for transportation 

agencies to cater for cost growth (Anderson et al. 2007; Gardner et al. 2017).  

Baek and Ashuri (2017) employed two statistical techniques, ordinary least square (OLS) 

regression, and GWR to explain spatial variation in the submitted highway bid unit prices. 

Compared to the OLS model, the GWR, a local approach of linear regression yielded a higher 

prediction performance in explaining the spatial variation with key identified factors including 

the quantity of asphalt line items, total bid price, and the number of asphalt plants within 50 

miles of a project. The primary result of this study indicates that the key identified factors are not 

uniformly distributed across different geographical locations. However, the limitations of GWR 
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include problems of multicollinearity and could present modeling complexities in obtaining 

accurate interpolation results.  

Zhang et al. (2017) proposed a new method of using NLSI to estimate location 

adjustment factors at unmeasured locations. The NLSI method for estimating location adjustment 

factors was evaluated against an established cost index database, and the results showed that 

NLSI can be used to effectively estimate location adjustment factors. One key advantage of the 

NLSI-based method over purely proximity-based interpolation methods is that it indirectly 

incorporates local economic conditions. When compared with the nearest neighbor (NN) and 

other proximity-based location adjustment methods, the proposed NLSI method leads to a 25–

40% reduction of the median absolute error. However, this interpolation model does not address 

uncertainties inherent in highway cost estimates or consider the realized cost of the actual 

construction project. 

Le et al. (2019) applied linear interpolation methods, ordinary kriging, and ordinary 

cokriging (OCK) to adjust the total costs of two similar projects in two different cities. The GIS-

based framework proposed by Le et al. (2019) leveraged historical bid data for unit-price 

estimation and visualization with consideration of the effects of project-specific location on 

different bid items. Additionally, various strategies such as the use of quantity in interpolation 

models were employed to improve the accuracy of the preliminary estimates. Temporal changes 

in unit prices and relationships between quantities and unit prices were also explored. A 

comparison of the spatial interpolation algorithms indicated that OCK performed better than the 

OK which was consistent with the results from year-wise unit price interpolation from 2011 to 

2014.  
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To obtain optimal kriging results, it is essential to select the appropriate parameters for 

each method and assess the significance of the various combinations of these parameters on the 

modeling results (Zhang et al. 2014). The selection of an appropriate kriging method is 

dependent on how well the variogram model used fits the data set (Shamo et al. 2012; Batistella 

et al. 2014). Classical kriging methods estimate the semivariogram from known data locations 

and use this single semivariogram to make predictions at unknown locations; this process 

implicitly assumes that the estimated semivariogram is the true semivariogram for the 

interpolation region ( Zhang et al. 2020). However, in modeling practical applications, these 

assumptions may not be appropriate. As a result, the true prediction error in kriging is 

underestimated or overestimated (Krivoruchko 2012; Zhang et al. 2020). Therefore, in assessing 

the spatial variability of unit prices on highway construction costs, there is a need to account for 

the error introduced by estimating the underlying semivariogram.  

6.4. Methodology 

Reliable interpolation algorithms should satisfy several important demands: accuracy and 

predictive power, robustness and flexibility in modeling the phenomena and smoothing for noisy 

data applicability to large datasets (Mitas and Mitasova 1999). In this paper, EBK geostatistical 

technique will be combined with three semivariograms (exponential detrended, whittle 

detrended, and K-Bessel detrended) to predict highway construction unit prices from the 

WisDOT from 2013 to 2018.  

Geostatistical inferences using kriging techniques are more efficient when data are 

normally distributed (Wu et al. 2006). Data transformation may be required before kriging to 

satisfy the normality assumption, suppress outliers, and improve data stationarity (Varouchakis 

et al. 2012). Therefore, to test the significance of this claim, this paper compared the kriging 
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results using non-transformed data and the case where the data was transformed to determine the 

best kriging results. The results showed that prediction errors from models using a log-empirical 

transformation tended to be smaller than models with data that were not transformed. Cross-

Validation was then used to evaluate the validity and correctness of the interpolation results. The 

same process was repeated for all the combinations of the EBK and variogram algorithms and 

formed the basis of comparison and selection of the best results (Figure 37). 

 

Figure 37. Research methodology 

6.4.1. Semivariogram Estimation  

EBK, like other kriging variants, uses a semivariogram which is a function of the distance 

and direction separating two locations to quantify the spatial dependence in the data (Dhakal et 

al. 2020). A semivariogram is constructed by calculating half the average squared difference of 

the values of all the pairs of measurements at locations separated by a given distance h 

(Krivoruchko 2012). There are several semivariogram models available in EBK which are based 

on the choice of data transformation. EBK offers linear, power, and thin-plate spline as the 

Data Preparation and Exploratory 

Data Analyses  

Empirical Bayesian  

Kriging 

Modeling spatial 

variability  

Semivariogram 

Simulation 

Generation of Unit-Price 

Maps 

Diagnostics 

Cross-Validation: CV statistics & MAPE  



 

168 

default semivariogram models when data transformation is not required. Linear or thin-plate 

spline should be selected if faster results and a compromise on some prediction accuracy is 

desired. If there is no trend or a weak trend is detected from the exploratory spatial data analysis, 

then a linear semivariogram is a better choice. However, if a balance of accuracy and speed is 

required, power is a better choice compared to linear and thin-plate spline. 

If data transformation is required to satisfy the normality assumption, but the 

computational expense cannot be compromised, then the exponential or Whittle or their 

detrended counterparts should be chosen depending on the presence or absence of trends. 

Equally, K-Bessel or K-Bessel detrended should be chosen, if the problem under investigation 

requires the most accurate results. Furthermore, the selection of semivariogram in EBK should 

be based on the theoretical semivariogram that best fits the empirical semivariogram taking into 

consideration, cross-validation diagnostics (ESRI 2020). This study employed exponential 

detrended (Eq.39), (2) whittle detrended (Eq. 40), and (3) K-Bessel detrended (Eq. 41) 

variograms to assess the spatial variability of unit price data from 2013 to 2018 because of the 

presence of trends detected from the exploratory spatial data analysis. The K-Bessel 

semivariogram model is given by equation 39 (Johnston et al. 2001; Pasini et al. 2014): 

𝛾(ℎ; 𝜃) = 𝜃𝑠 [1 −
(𝛺𝜃𝑘 ∥ h ∥/𝜃𝑟)

𝜃𝑘

2𝜃𝑘−1𝛤(𝜃𝑘)
 𝐾𝜃𝑘(𝛺𝜃𝑘 ∥ h ∥/𝜃𝑟)]  𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ, (39) 

where 𝜃𝑠 ≥ 0, 𝜃𝑟 ≥ 0, 𝜃𝑘 ≥ 0, 𝛺𝜃𝑘 is a value found numerically so that 𝛾(𝜃𝑟)= 0.95 𝜃𝑠 for any 

𝜃𝑘, 𝛤 (𝜃𝑘) is the gamma function,  

𝛤(𝑦) = ∫ 𝜒𝑦−1𝑒𝑥𝑝(−𝑥)𝑑𝑥 
∞

0

 (40) 

and 𝐾𝜃𝑘(·) is the modified Bessel function of the second kind of order 𝜃𝑘. 
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Exponential semivariogram and whittle semivariogram are given in equation 41 

(Johnston et al. 2001; Asa et al. 2012) and equation 3 ( Schlather et al. 2015) respectively: 

𝛾(ℎ) = 1 − 𝑒𝑥𝑝 (
−3ℎ

𝑎
) (41) 

𝛾(ℎ) = 21−𝜈 𝛤(𝑣)−1 ∥ ℎ ∥𝑣 𝐾𝑣(∥ ℎ ∥), ℎ ∈ ℝ
𝑑  (42) 

where K is a modified Bessel function, 𝛤 is the Gamma function, 𝑣 > 0 a smoothness parameter, 

and h and a are referred to as distance and range 

6.4.2. Empirical Bayesian Kriging (EBK) Algorithm 

Empirical Bayesian kriging differs from classical kriging methods because it accounts for 

the error introduced by estimating the underlying semivariogram model. The EBK model 

automates the function of building a valid kriging model, which is considered the most difficult 

aspect in spatial interpolation through geostatistical modeling (Gupta et al. 2017). EBK modeling 

technique is an automated simulation-based optimization, which facilitates a quick fitting of 

several theoretical semivariogram models by estimating their model parameters instead of 

adjudging the suitability of a single semivariogram. Classical kriging methods use weighted least 

squares (WLS) approach to estimate valid semivariograms during the interpolation process. 

However, the semivariogram parameters in EBK are estimated using restricted maximum 

likelihood (REML). Due to the computational limitations of REML for large datasets, the input 

data is first divided into overlapping subsets of a specified size (defaulted to 100 points per 

subset). EBK consists of two geostatistical models: the intrinsic random (IRFK) approach which 

allows the removal of local nonstationary data and the linear mixed model (LMM) algorithm also 

known as simple kriging with an external trend in geostatistical modeling (Gribov and 

Krivoruchko 2020). Therefore, the EBK algorithm can be expressed as a combination of IRFK 

and LMM processes ( equation 43 ):  
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𝑍𝑖 = 𝑦(𝑆𝑖) + 𝜀𝑖, 𝑖 = 1…𝐾, (43) 

where 𝑍𝑖 is the measured value at the observed location 𝑆𝑖, 𝑦(𝑆) is the Gaussian process 

understudy at the location S, 𝜀𝑖 is the measurement error, and K is the number of measurements.  

The following process is followed in EBK modeling: First, parameters of the spatial process 𝛩, 

including the semivariogram model, are estimated from the input data. Using 𝛩, new values are 

unconditionally simulated at each of the sampled locations Ksim times. New parameters 𝛩𝑖, i = 

1 − 𝐾𝑠𝑖𝑚, are then predicted from the simulated data. A histogram of 𝛩𝑖 could be used as an 

approximation of the prior distribution. Where 𝛩𝑖, i=1. . . Ksim, is referred to as the empirical 

prior distribution. The model parameters are assumed to take only; 𝛩𝑖 values, that is 𝑓(𝛩′|𝑧) =

0 for 𝛩′ ≠ 𝛩𝑖. Bayes rule, 𝜔𝑖 ∝ 𝑓(𝑍|𝛩𝑖), 𝜔𝑖=
𝑓(𝑍|𝛩𝑖)

∑ 𝑓(𝑍|𝛩𝑖)
𝐾𝑠𝑖𝑚
𝑖=1

, ∑ 𝜔𝑖  = 1
𝐾𝑠𝑖𝑚
𝑖=1  is used to determine a 

weight for each simulated model. where  𝑓(𝑍|𝛩𝑖) is the conditional probability of the data Z 

given the model parameters 𝛩𝑖. Prediction and prediction standard errors are produced at 

unsampled locations using equations 44 and 45 (Tan et al. 2020; Gribov and Krivoruchko 2020). 

𝐸[𝑦(𝑠)|𝑍] = 𝑦
^
(𝑠) = ∑[𝜔𝑖 · 𝐸[𝑦(𝑠)|𝑍, 𝛩𝑖|)

𝑘𝑠𝑖𝑚

𝑖=1

 (44) 

𝑉𝑎𝑟[𝑦(𝑠)|𝑍] = 𝐸 [(𝑦(𝑠))
2
|𝑍] =  ∑𝑉𝑎𝑟[𝑦(𝑠)𝑧, 𝛩𝑖  ] + (𝐸[𝑦(𝑠)|𝑍, 𝛩𝑖] − (𝑦

^
(𝑠))

2

)

𝐾𝑠𝑖𝑚

𝑖=1

 (45) 

where 𝐸 [𝑦(𝑠) − 𝑦
^
(𝑠)𝑍, 𝜃𝑖] and Var[𝑦(𝑠)𝑧, 𝜃𝑖] are given by the kriging equations.  

6.4.3. Comparison of Spatial Interpolation Using Cross-Validation 

To evaluate the predictive performance of the several combinations of EBK and the three  

semivariograms, leave-one-out cross-validation was used. Cross-validation removes each data 

location one at a time and predicts the associated data value and compares the measured and 
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predicted values. The mean standardized error (MSE) was used to check if the model is 

unbiased, the closer the MSE values to zero, the better the performance of the model. The root-

mean-square error (RMSE) was used to check whether the prediction is close to the measured 

values (the smaller the RMSE, the closer the prediction is to the measured value).  

The variability of the predicted data was assessed by comparing the average standard 

error (ASE) with the RMSE. If the values are similar, then the variability in the prediction is 

correctly assessed. If the ASE value is greater than the RMSE value, then the variability of the 

predictions is overestimated; otherwise, the variability of the predictions is underestimated 

(Robinson and Metternicht 2006; Asa et al. 2012; Eldeiry and Garcia 2012; Wackemagel 2013; 

Oliver and Webster 2014; ESRI 2020).  

EBK model introduces additional cross-validation diagnostics, the average continuous 

ranked probability score (CRPS) for model comparison (ESRI 2020). The average CRPS is a 

diagnostic that measures the deviation from the predictive cumulative distribution function to 

each observed data value and evaluates both calibration and sharpness of predictive distributions. 

This value should be as small as possible. This CRPS diagnostic has advantages over other cross-

validation diagnostics because it compares the data to a full distribution rather than to single-

point predictions (Krivoruchko and Gribov 2019; ESRI 2020). 

Mean Squared Error =
1

𝑛
∑[𝑍(𝑦𝑖) − 𝑍(𝑦𝑜)]

𝑛

𝑖=1

 (46) 

Root Mean Square Error =  √
1

𝑛
∑[𝑍(𝑦𝑖) − 𝑍(𝑦𝑜)]2
𝑛

𝑖=1

 (47) 
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Average Standard Error = √
1

𝑛
∑[𝑍(𝑦𝑖) − (∑𝑍(𝑦𝑜)

𝑛

𝑖=1

)/𝑛]

𝑛

𝑖=1

2

(48) 

Average CRPS = ∫ (𝐹(𝑦) − 𝟙𝑥<𝑦)
2
𝑑𝑦

+∞

−∞

 (49) 

where 𝑍(𝑦𝑖) and 𝑍(𝑦𝑜) are the measured and estimated bid unit price, respectively, of the ith 

data point, n is the total number of data points, and 𝐹(𝑦)= is the estimated cumulative 

distribution function.  

Mean absolute percentage error (MAPE) is a common measure used for assessing the 

level of accuracy of the algorithms used to estimate the cost of highway bid items (Gardner et al. 

2017). The equation for computing MAPE is furnished in equation 50 (Choi et al. 2014; Gardner et 

al. 2017):  

𝑀𝐴𝑃𝐸 = (
100%

𝑛
)∑|

𝑏𝑖 − 𝑎𝑖
𝑎𝑖

|

𝑛

𝑖=1

 (50) 

where n= number of data points; bi = predicted construction cost ai = Actual construction cost for 

the ith project.  

6.5. Performance Evaluation of Spatial Interpolation Algorithms  

To establish which spatial prediction method provided the most accurate estimates of unit 

prices for each bid item, cross-validation was used to compare the interpolation results with their 

actual values. Figure 38 shows the empirical semivariogram for the top five common bid items. 

Ideally, the empirical semivariogram should fall in the middle of the semivariogram spectrum. 

However, from Figure 38, the blue crosses mostly fall toward the top and bottom of the spectrum 

and do not fall exactly in the middle of the semivariogram spectrum. Table 31 to 35 summarizes 

the cross-validation results of the top five highway construction bid items from 2013 to 2018. 
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The results of different combinations of EBK and three semivariograms show better predictive 

performance with minimal differences. For the common excavation bid item, the MSE generally 

approach zero, which indicates an unbiased geostatistical model. Additionally, the RMSE and 

ASE values for all year-wise combinations of EBK and semivariogram models are all close and 

thus indicate that the variability of the interpolated unit prices for the common excavation bid 

item fairly accurate. 

 

Common excavation 2015 (exponential)                                 Base aggregate 1 ¼” 2017 (exponential) 

 

Base aggregate ¾”2015 (K-Bessel Detrended)                            Tack Coat 2017 (Whittle Detrended) 

 

 

 

 

Asphaltic Surface 2017 (Whittle Detrended) 

Figure 38. Empirical semivariogram for the top five common bid items 



 

174 

The variability of the interpolated values for the 2017 data set using K-Bessel detrended 

semivariogram is overestimated, however, this estimation is comparably small. Subsequently, 

CRPS and the MAPE values for all the different combinations of EBK and semivariogram 

models for the common excavation bid item are low, implying better geostatistical interpolation.  

From Table 30, a combination of EBK and exponential detrended semivariogram model 

performed superior in 2013, 2014, and 2018, respectively. Conversely, a combination of EBK 

and K-Bessel detrended semivariogram performed superior to the other semivariograms in 2015 

and 2017. In 2015, a combination of EBK based on whittle detrended semivariogram yielded the 

least error as measured by cross-validation statistics, average CPRS, MSE, MSE, ASE, and 

MAPE values thus was considered as the best predictive model. 

Table 30. Cross-validation results for common excavation bid item from 2013 to 2018 

 

Table 31 provides an assessment of the performance of the models used to interpolate 

unit prices of the base aggregate 1 1/4-inch bid items based on cross-validation results and 

MAPE values. In terms of the prediction accuracy, EBK incorporating the exponential 

semivariogram model yielded slightly better results than the other variogram models with lower 

prediction errors from 2014 to 2016. Subsequently, a combination of EBK and K-Bessel 

  2013   2014   2015 

Prediction 
Error  

Exponential 
D. 

Whittle D. K_Bessel D. 
Exponential 
D. 

Whittle D. 
K_Bessel 
D. 

Exponential 
D. 

Whittle 
D. 

K_Bessel 
D. 

ACRPS 2.25476 2.25451 2.25970   2.0821890 2.08868 2.09866  2.30119 2.28957 2.27409 

RMSE 4.04617 4.04554 4.05394  3.7314644 3.74070 3.75396  4.08669 4.06539 4.03700 

ASE 4.084569 4.08847 4.08441  3.7995270 3.82854 3.74483  4.21373 4.17962 4.19802 

MSE 0.018295 0.01957 0.02545  0.0052922 0.01357 0.01596  0.00365 0.00128 0.00595 

MAPE% 31.62 31.64 31.82  28.15 28.28 28.38  26.64 26.48 26.42 

 
2016   2017 

 
2018 

Prediction 

Error  

Exponential 

D. 
Whittle D. K_Bessel D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

Exponential 

D. 

Whittle 

D. 

K_Bessel 

D. 

ACRPS 3.1292444 3.1442654 3.1407781   3.1159259 3.11463 3.1201  1.92670 1.9280 1.93218 

RMSE 5.509871708 5.5337156 5.5331476  5.5202204 5.52612 5.52517  3.45424 3.4561 3.46246 

ASE 5.732946995 5.6606749 5.6927906  5.634247 5.5806732 5.41140  3.55697 3.5656 3.5604388 

MSE 0.02752545 0.0178917 0.0179434  0.0048586 0.00746 0.0047  0.00164 0.0083 0.00211 
MAPE% 33.28 33.14 33.15  31.58 31.62 31.40  21.56 21.56 21.62 
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detrended semivariogram models outperformed spherical and exponential semivariograms, with 

lower cross-validated results in 2017 and 2018. However, a comparison of the three 

semivariogram models in 2013 showed that the kriging variance from the whittle detrended 

model is slightly lower and more accurate than the exponential and K-Bessel detrended 

semivariogram models. However, the disparate models underestimated the variability of the 

interpolated, with RMSE greater than the ASE value.  

Table 31. Cross-validation results for base aggregate dense 1 ¼” bid item from 2013 to 2018 

  2013   2014   2015 

Predictio

n Error  

Exponential 

D. 

Whittle 

D. 
K_Bessel D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

ACRPS 1.97995 1.970191 1.972187   1.834849 1.836913 1.832156  2.033541 2.033108 2.037652 

RMSE 3.57351 3.556160 3.553800 
 

3.313134 3.317520 3.309841 
 

3.596861 3.599781 3.599923 

ASE 3.88755 3.853009 3.913463 
 

3.323764 3.335436 3.325204 
 

3.737447 3.728560 3.783082 

MSE 0.006357 0.008405 0.020323  -0.022486 -0.014917 -0.010865  -0.006345 0.007693 0.001590 
MAPE % 20.76 20.6 20.76  17.05 17.09 17.06  19.25 19.34 19.28 

 
2016   2017 

 
2018 

Predictio

n Error  

Exponential 

D. 

Whittle 

D. 
K_Bessel D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

ACRPS 
2.106963 2.104046 2.104110 

  
2.985233 2.999655

8 

2.970514  2.379325 2.379333358 2.373603 

RMSE 3.758416 3.747761 3.746893 
 

5.348373 5.377826 5.318736 
 

4.245239 4.249506845 4.237160 

ASE 3.805041 3.822127 3.830338 
 

5.669075 5.692221 5.550225 
 

4.375789 4.353051612 4.323981 

MSE 0.011849 0.017280 0.037547 
 

0.008307 0.016914 0.006029 
 

-0.011821 0.020627096 0.014977 

MAPE % 20.2 20.25 20.41 
 

26.02 26.22 25.71 
 

20.81 20.74 20.73 

 

Table 32 presents the predictive performance of the different combinations of EBK and 

the three semivariogram models used to interpolate base aggregate dense ¾-inch from 2013 to 

2018. The results indicate that leave-one-out cross-validation gives nearly unbiased estimates of 

the accuracy, but with relatively high variability, particularly the ASE values were greater than 

the RMSE. This indicates that the semivariogram models are overestimating the variability of the 

predictions.  

The results of the cross-validated results show that a combination of EBK based on 

whittle detrended semivariogram yielded lower prediction errors in 2014, 2016, 2018. In 2013 

and 2017, EBK based on the K-Bessel semivariogram model shows a better prediction accuracy 
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(lower CRPS, MSE, RMSE, and MAPE) while a combination of EBK incorporating exponential 

semivariogram performed superior in 2015.  

Table 32. Cross-validation results for base aggregate dense 3/4” bid item from 2013 to 2018 

 

Table 33 summarizes the cross-validation results obtained from combining three 

semivariograms and ordinary kriging to model the tack coat bid item from 2013 to 2018. In 

2013, 2016, and 2017, a combination of OK and Gaussian semivariogram model was the best 

whereas a combination of OK and exponential semivariogram model is the best fitted 

experimental semivariogram in the 2015 and 2018 data set. However, in 2014, a combination of 

EBK and K-Bessel semivariogram yielded the least prediction error values (Table 33). 

Table 34 provides an assessment of the performance of the EBK models used to 

interpolate unit prices of the asphaltic surface bid items based on cross-validation results. From 

2013 to 2015, EBK based on K-Bessel detrended semivariogram model shows an enhanced 

prediction accuracy (lower CRPS, MSE, RMSE) and MAPE values than exponential and whittle 

detrended semivariogram models. Subsequently, a comparison of the different combinations of 

EBK and three semivariograms showed that EBK incorporating whittle detrended semivariogram 

yielded a better prediction performance than the other two semivariogram models from 2016 to 

  2013   2014   2015 

Prediction 

Error  

Exponential 

D. 

Whittle 

D. 
K_Bessel D. 

Exponential 

D. 

Whittle 

D. 

K_Bessel 

D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

ACRPS 2.949622 2.949339 2.945718   2.999423 3.00352 3.011798 
 3.638855 3.6516679 3.644175 

RMSE 5.219923 5.216658 5.210829  5.324325 5.336376 5.355173  
6.606257 6.6035264 6.589878 

ASE 5.441714 5.380482 5.400686  5.284970 5.303257 5.279307  
6.926909 6.7307322 6.8535365 

MSE 0.016932 0.008606 0.007608  -0.008362 -0.00873 -0.00142  
-0.027261 0.0192964 0.0151897 

MAPE % 21.96 21.87 21.86  21.04 21.01 21.12  
23.13 23.23 23.21 

 
2016   2017 

 
2018 

Prediction 

Error  

Exponential 

D. 

Whittle 

D. 
K_Bessel D. 

Exponential 

D. 

Whittle 

D. 

K_Bessel 

D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

ACRPS 3.599701 3.591885 3.581901   4.231749 4.209527 4.224931 
 

4.460718 4.427902 4.431696 

RMSE 6.433773 6.421543 6.407041  7.565323 7.563316 7.550422  8.072678 8.02323 8.01805 

ASE 6.392420 6.296052 6.3194  7.523263 7.598777 7.539387  8.186884 8.190953 8.309138 

MSE -0.001637 -0.01379 0.007451  -0.022214 -0.01481 -0.02268  -0.006902 -0.02378 0.018518 

MAPE % 24.74 24.55 24.69  25.96 26.06 25.90  26.50 26.18 26.72 
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2018. These results corroborate the assertion that different dataset characteristics may favor 

different prediction models. 

Table 33. Cross-validation results for tack coat bid item from 2013 to 2018 

 

Table 34. Cross-validation results for asphaltic surface bid item from 2013 to 2018 

  2013   2014   2015 

Prediction 

Error  

Exponential 

D. 

Whittle 

D. 
K_Bessel D. 

Exponential 

D. 

Whittle 

D. 

K_Bessel 

D. 

Exponential 

D. 
Whittle D. K_Bessel D. 

ACRPS 13.263128 13.23343 13.23558   16.491802 16.45771 16.44455 
 15.124317 15.14003003 15.08763658 

RMSE 23.052809 23.00329 23.00636  28.883460 28.84035 28.79843  
26.253547 26.26084886 26.19390634 

ASE 23.619128 23.53562 23.47082  29.822310 29.21202 28.64234  
26.834837 27.00066217 26.68713285 

MSE -0.000222 0.006073 -0.00732  0.009012 0.021879 0.030045  
0.034053 0.028040934 0.029875643 

MAPE % 17.96 17.96 17.89  20.19 20.15 20.11  
21.01 21.1 20.91 

 
2016   2017 

 
2018 

Prediction 

Error  

Exponential 

D. 

Whittle 

D. 
K_Bessel D. 

Exponential 

D. 

Whittle 

D. 

K_Bessel 

D. 

Exponential 

D. 
Whittle D. K_Bessel D. 

ACRPS 17.918678 17.57597 17.97447   14.909204 14.82092 14.76038 
 

12.882433 12.76823 12.70572 

RMSE 31.933367 31.37994 31.99071  26.302803 26.17613 26.12289  23.002884 22.77603 22.60104 

ASE 33.295524 32.37045 32.71002  26.842677 26.74857 26.19466  23.718089 23.34522 23.32787 

MSE 0.025939 0.004226 0.012656  0.010330 -0.01137 0.016578  0.004819 0.000527 0.009602 

MAPE % 22.78 22.06 22.77  19.21 18.96 19.01  15.64 15.56 15.66 

 

Highway construction costs are subject to significant variations from project to project 

and over time, which results in dynamic changes in prices. To account for variations due to cost 

escalation over time, this study combined historical cost data of the same bid item in different 

  2013   2014   2015 

Prediction 

Error  

Exponential 

D. 
Whittle D. K_Bessel D. 

Exponential 

D. 

Whittle 

D. 

K_Bessel 

D. 

Exponential 

D. 
Whittle D. 

K_Bessel 

D. 

ACRPS 0.685873 0.685002 0.686742   0.814767 0.812364 0.808941 
 0.587860 0.5857961 0.605869 

RMSE 1.248700 1.248334 1.250008  1.491766 1.490616 1.487912  
1.073205 1.0701654 1.1060108 

ASE 1.249037 1.244459 1.273939  1.422101 1.428899 1.416199  
1.009261 1.063268 1.008249 

MSE 
-0.026007 -0.02887 0.003945  -0.009218 -0.00502 -0.02503  

-

0.011486 

0.004853 0.0335231 

MAPE % 24.09 24.08 24.32  29.65 29.47 29.03  
25.09 25.3 25.49 

 
2016   2017 

 
2018 

Prediction 
Error  

Exponential 
D. 

Whittle D. K_Bessel D. 
Exponential 
D. 

Whittle 
D. 

K_Bessel 
D. 

Exponential 
D. 

Whittle D. 
K_Bessel 
D. 

ACRPS 0.415846 0.414531742 0.413950907   0.813740 0.810527 0.810984 
 

0.741280 0.741029 0.740878 

RMSE 0.754450 0.751998085 0.74966651 
 1.488115 1.483062 1.483617  1.374817 1.373495 1.382028 

ASE 0.737434 0.722339337 0.715856626 
 1.469812 1.452637 1.452434  1.350142 1.369045 1.447502 

MSE -0.014346 0.014360595 0.010072458 
 -0.020680 -0.03292 -0.03414  0.005691 0.001836 0.018286 

MAPE % 19.12 19.05 19.17 
 32.98 32.53 32.58  28.32 28.37 28.37 
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years and accounted for spatial variations and variation because of inflation and deflation to 

generate current price maps for the top five bid items. Figures 39a and b show the 2D price maps 

for common excavation and base dense aggregate 1 ¼-inch bid items. Comparison between the 

two maps shows that the common excavation map appears smoother with less extreme unit 

prices than the base aggregate dense 1 ¼-inch which appears to have higher unit prices across the 

north-western part of the study area.  

The performances of the different combinations of the interpolation method and the three 

semivariogram models have been assessed and compared using MAPE indexes. The results 

indicate that for the common excavation models, a combination of EBK and exponential 

detrended semivariogram yielded a better predictive accuracy compared to K-Bessel and whittle 

detrended semivariograms (Figure 40a). 

 

                       (a)                                                               (b) 

Figure 39. Price map for combined bid data from 2013 to 2018 for (a) common excavation and (b) 

base aggregate dense 1 ¼-inch bid data 

To test the statistical significance of these results, Table 36 presents the results of two-

sample t-tests, which assume unequal variances between the different combinations of EBK and 

the three semivariogram models for the common excavation bid item. The results suggest that 
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the superior predictive power of the EBK based on exponential detrended semivariogram does 

not provide statistically significant differences over the other semivariogram models.  

Regarding the base dense aggregate 1 ¼-inch models, a combination of the EBK and K-

Bessel detrended semivariogram model performed better than whittle and exponential detrended 

semivariogram models (Figure 40b). Despite the different prediction performance from the base 

aggregate dense 1 ¼-inch models, there is no statistical evidence that the models differ 

significantly (Table 35).  

 

(a)                                                                     (b) 

Figure 40. Comparison of kriging results for combined data from 2013 to 2018 for (a) common 

excavation and (b) base aggregate dense 1 ¼-inch bid data 

Table 35. Statistical significance test on the prediction accuracy of the different combinations of 

EBK and semivariogram models 

 Bid Item Exponential detrended 

versus Whittle 

detrended 

  Exponential 

detrended versus K-

Bessel detrended 

  Whittle 

detrended versus K-

Bessel detrended    
 t-statistic p-value   t-statistic p-value   t-statistic p-value 

Common Excavation -0.02 0.98  -0.29 0.78  -0.27 0.79 

Base Aggregate 1 ¼” 0.01 0.99  0.14 0.88  0.14 0.89 

Base Aggregate ¾” 0.04 0.96  0.05 0.96  0.01 0.99 

Tack Coat -0.05 0.96  -0.26 0.79  -0.22 0.83 

Asphaltic Surface -0.01 0.99   0.05 0.96   0.03 0.98 

 

Figures 41a and b show the maps for bid items dense aggregate 1 ¼” and tack coat base 

bid items. From Figure 9a, the price map of the base aggregate dense ¾-inch bid item appears 
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smoother surface with more values between $22.16 to $24.84. In contrast, the geovizualized map 

for the tack coat bid unit price shows predominantly clusters of high unit prices ( $4.48 to $ 5.45)  

and $5.46 to $6.86 in the north-east, central, and north-west part of the study area. 

In terms of the prediction accuracy of the interpolation models used to predict the 

combined data of the base aggregate dense ¾-inch, EBK based on K-Bessel semivariogram 

produced a better prediction accuracy compared to other semivariograms (Figure 42a). Despite 

the variances of predictive performance among the different base aggregate 1 ¼- inch bid item 

models, there is no statistical evidence that the predictive performance of the models differs 

significantly. 

 

(a)                                                               (b) 

Figure 41. Price map for combined bid data from 2013 to 2018 for (a) base aggregate dense ¾” 

bid unit price and (b) tack coat bid unit price 

For the tack coat bid item, a combination of EBK and exponential detrended 

semivariogram performed superior compared to the other two semivariograms. However, Table 

36 indicates that there is no evidence of statistically significant differences among the different 

interpolation methods used to model the tack coat bid item.  

Figure 43 shows the interpolated surface for the combined data of the asphaltic surface 

bid item. From the geovizualized map in Figure 11, the overall trend shows low to medium unit 



 

181 

prices at the central part of the study area with sporadic higher unit prices occurs at the south-

west and eastern parts of the study area.  

 

(a)                                   (b) 

Figure 42. Comparison of kriging results for combined data from 2013 to 2018 for (a) base 

aggregate dense ¾” and (b) tack coat bid item 

 

Figure 43. Price map for asphaltic surface bid unit price 

The quantitative assessment of the asphaltic surface bid item models reveals that EBK 

based on K-Bessel detrended semivariogram yields better prediction performance compared to 

the whittle and exponential detrended semivariograms (Figure 44). However, the predictive 

power of incorporating K-Bessel detrended semivariogram is not statistically significant 

compared to the exponential and whittle detrended semivariograms (Table 36). 
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Figure 44. Comparison of asphaltic kriging results for combined data from 2013 to 2018 

6.6. Conclusion 

Challenges associated with ensuring the accuracy and reliability of cost estimation of 

highway construction bid items, especially during the conceptual phase of a project, are of 

significant interest to SHAs. Highway construction unit prices are subject to spatial variation 

which causes significant uncertainty in developing accurate cost estimates and impedes SHAs 

capital programming requirements. Therefore, there is a need to accurately account for the 

uncertainty associated with the spatial variation of highway bid prices across multiple geographic 

locations. The state-of-the-art encompasses the application of the deterministic and linear 

geostatistical interpolation methods assumes that the estimated semivariogram is the true 

semivariogram for the interpolation region and considers only a linear combination of historical 

cost data to assess the spatial variation on highway unit-price estimates. Additionally, employing 

classical kriging methods requires manual model parameter configuration to create a valid 

kriging model which poses several computational difficulties to accurately assess the uncertainty 

due to spatial variation of highway bid unit prices.  

To address this shortcoming, this paper employed a combination of empirical Bayesian 

kriging with three semivariograms (exponential detrended, whittle detrended, and K-Bessel 

detrended) to model and interpolate six years (2013 to 2018) of the top five highway bid data: 
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common excavation, base aggregate dense 1 ¼-inch, base dense aggregate ¾-inch, tack coat, and 

asphaltic surface obtained from WisDOT. The findings of the study show that EBK based on 

exponential detrended semivariogram algorithm yields superior prediction accuracy and provides 

the greater capability of describing variations in common excavation and tack coat bid unit 

prices. Subsequently, regarding the base aggregate dense 1 ¼-inch, base aggregate dense ¾-inch, 

asphaltic surface bid items, a combination of EBK and K-Bessel detrended provides enhanced 

predictive performance compared to the other combinations of EBK and semivariogram models 

used for the study. 

The contribution of this study to the body of knowledge is the application of empirical 

Bayesian kriging algorithms to accurately assess the standard prediction error introduced by 

estimating the underlying semivariogram in quantifying the effect of project-specific location 

and time on highway bid unit-price estimation. The bid unit-price maps generated from this 

study would enable SHAs to visualize and assess the temporal changes due to the effect of 

spatial variability and time on bid unit prices in different geographical areas to make better-

informed funding decisions at the conceptual phase of highway projects. 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATION 

7.1. Introduction 

State highway agencies (SHAs) need to deliver capital programs within their planned 

budgetary and time allocations. SHAs require multiple cost estimates for various purposes 

throughout the life cycle of highway projects. Therefore, the challenges associated with ensuring 

the accuracy and reliability of cost estimation of highway construction bid items, especially 

during the conceptual phase of a project, are of significant interest to SHAs. Even with the 

existing research undertaken, the problem of inaccurate estimation of highway bid items still 

exists.  

To this end, this research synthesized previous articles on highway bid items to determine 

research trends, identify the factors affecting highway construction unit prices, and compare the 

combined performance of the estimation models. A fundamental premise in construction cost 

estimation is to adjust the estimate to reflect the geographic location of the proposed project. 

This study employed three geographic information system (GIS)–based methodology for unit-

price estimation considering the effects of project-specific location and variations because of cost 

escalation and inflation on different bid items. This chapter presents a summary and synthesis of 

the study findings to determine whether the objectives and research questions set out in the 

introductory section of the thesis have been met. Furthermore, the chapter outlines the theoretical 

and practical implications of the study findings and presents ideas for future research. 

7.1.1. Research Question One to Four (Chapter 2) 

From the systematic literature review, this thesis explored the context in which the cost 

models were used to estimate the cost of highway construction bid items and their associated 

shortcomings (research question one). Using computational intelligence has enabled the 
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development of several algorithms; namely artificial neural networks (ANNs), genetic 

algorithms (GA), support vector machines (SVM), regression analysis (RA), and a multitude of 

tools that are readily available to model construction cost. However, a majority of the existing 

forecasting models use binary weight values, which are not robust enough to quantify the spatial 

variation of highway unit prices on construction costs.  

To answer research question 2, this study compared the cost estimation methods 

identified in chapter 2. The findings show that on average, Monte-Carlo simulation models 

performed superior compared to the Bayesian model, support vector machines, case-based 

reasoning, artificial neural network, and regression models in that order when weighted by 

sample size. A comparison amongst artificial neural networks showed that the back-propagation 

neural network and generalized regression neural network performed better than the multilayer 

perceptron neural network when weighted by sample size. To ascertain the factors affecting the 

costs of highway unit prices in the published papers (research question 3), this research 

employed a qualitative content analysis approach. From the content analysis, 41 factors 

influencing highway unit prices were identified and classified into three categories, (1) factors 

relating to project characteristics; (2) organizational factors; and (3) estimate factors based on the 

common classification used in the selected articles. The results obtained from the mean ranking 

analysis showed that most of the studies incorporated project-specific factors than the other 

factors in predicting highway construction costs.  

7.1.2. Chapter Three 

SHAs are increasingly storing vast amounts of data generated during their operations. To 

enhance the efficacy of conceptual cost estimates, SHAs need to generate data-driven insights 

from historical highway cost data. To answer research question 4, this study explored and 
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ascertained trends in historical highway construction bid data from 2013 to 2018 obtained from 

the Wisconsin Department of Department (WisDOT), determined the relationship between 

project size and unit prices, and assessed the impact of competition on unit prices of highway 

construction bid items using exploratory and statistical data analyses. The results of the 

exploratory data analysis showed tack coat and asphaltic surface to be more volatile than 

common excavation, base aggregate 1 ¼”, and base aggregate ¾” bid items. This volatility could 

be attributed to the changing instability of crude oil market conditions which could present a 

challenge to accurately predict the cost of asphaltic surface and tack coat at the conceptual phase. 

This study confirmed that larger highway construction contracts yielded economies of scale. 

However, the findings suggest that there is a threshold beyond which the unit cost of the top 5 

bid items starts increasing with an increase in project size due to inherent complexity and 

uncertainty causing contractors to increase their variable cost. The results of the correlational 

analysis show a trend in which as the number of bidders increased, the unit price decreased from 

2013 to 2017. However, for common excavation, asphaltic surface, and tack coat bid items, the 

number of bidders did not significantly influence the probable bid unit-price estimates.  

7.1.3. Chapter Four 

State highway agencies (SHAs) employ state average historical bid unit prices and use 

location adjustment factors to adjust estimates to reflect the appropriate geographical variation at 

the conceptual phase. Ordinary kriging is one of the most commonly used and straightforward 

geostatistical interpolation techniques across multiple disciplines. To stimulate the application of 

GIS-based interpolation techniques that could enable SHAs to account for location-adjustment of 

highway unit-prices and to address research question 4, this study combined ordinary kriging 

with three commonly used semivariogram (spherical, exponential, and Gaussian) to model and 
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interpolate six years (2013 to 2018) of the top five highway bid data; common excavation, base 

aggregate dense 1 ¼”, base dense aggregate ¾”, tack coat, and asphaltic surface obtained from 

WisDOT. For the common excavation, base aggregate dense 1 ¼”, and tack coat bid items, a 

combination of OK and exponential semivariogram provided an improved prediction accuracy 

compared to spherical and Gaussian models.  

Regarding the base aggregate dense ¾-inch, a combination of ordinary kriging and 

Gaussian model performed better compared to spherical and exponential models as measured by 

the cross-validation and MAPE values. Subsequently, a combination of OK and two 

semivariograms, spherical and exponential models yielded similar performances, which was 

superior to the Gaussian model for the unit prices of the asphaltic surface bid item. Nonetheless, 

a combination of the OK and Gaussian semivariogram model produced acceptable results as the 

difference between the MAPEs of the three distinct combinations of OK and variograms is 

insignificant. 

7.1.4. Chapter Five 

In modeling construction costs, beta and log-normal distributions are commonly used 

distribution functions for construction cost data. However, the choice of an appropriate 

distribution function for a specific data set may depend on the characteristics of the project data 

and therefore, other distribution functions may provide better fits (Sonmez 2005). Depending on 

the highway project type and cost data being deployed, the use of nonlinear models could be 

necessary to capture the nonlinearity inherent in the cost data (Sonmez 2005). The state-of-the-

art has applied deterministic and linear geostatistical models to assess the spatial variation on 

highway cost estimates. However, deterministic and linear approaches assume that the data are 

from a realization of a Gaussian or nearly Gaussian random field, an assumption that produces 
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linear predictors (Rivoirard et al. 2014). Therefore, these algorithms are not capable of accurately 

modeling the nonlinear relationship and also handling non-Gaussian distributions associated with 

construction cost data and the cost drivers influencing highway unit prices. 

A comparative study was conducted to assess the performance of ordinary and 

disjunctive kriging methods to model and interpolate six years (2013 to 2018) of the top five 

common highway bid data: common excavation, base aggregate dense 1 ¼”, base dense 

aggregate ¾”, tack coat, and asphaltic surface obtained from WisDOT to answer research 

question 6. The study’s findings for the common excavation, base aggregate dense 1 ¼-inch, 

base aggregate dense ¾-inch, and tack bid items, the DK algorithms provide a better prediction 

accuracy over the OK models. However, the prediction power of the DK models was shown to 

not offer statistically significant differences over the performance of the other two 

semivariograms. Conversely, for the asphaltic surface bid item, the OK model yielded better 

prediction performance accuracy compared to the results obtained from employing the DK 

methods.  

7.1.5. Chapter Six 

Classical kriging also assumes that the estimated semivariogram is the true 

semivariogram of the observed data. This means the data was generated from Gaussian 

distribution with the correlation structure defined by the estimated semivariogram. This is a very 

strong assumption, and it rarely holds in practice (Krivoruchko 2012). The state-of-the-art has 

applied deterministic and linear geostatistical interpolation methods to assess the uncertainty 

associated with the spatial variation of highway bid prices. However, classical interpolation 

methods assume that the estimated semivariogram is the true semivariogram for the interpolation 
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region and does not assess the uncertainty introduced by estimating the underlying 

semivariogram.  

To address this shortcoming and answer research question 7, this paper employed a 

combination of empirical Bayesian kriging (EBK) with three semivariograms (exponential 

detrended, whittle detrended, and K-Bessel detrended) to interpolate six years (2013 to 2018) of 

the top five highway bid data. The findings show that EBK based on exponential detrended 

semivariogram yields superior prediction accuracy for the common excavation and tack coat bid 

items whereas a combination of EBK and K-Bessel detrended variogram provides better 

predictive performance for the base aggregate dense 1 ¼-inch, base aggregate dense ¾-inch, 

asphaltic surface bid items. 

7.1.6. Research Question Eight 

To assess the performance of cost estimation models, several empirical studies employed 

MAE, MSE, RMSE, and MAPE values. To answer research question 8, this study rigorously 

evaluated (cross-validation and statistical error metrics) the performance of the different models 

employed to account for spatial variation and time of highway unit price estimation. The results 

of the cross-validation statistics corresponded with the assessment of the results obtained from 

the statistical error assessments.  

7.2. Theoretical Contribution  

Having achieved the aims and objectives and answered the research questions, it is 

essential to place the study findings within the wider context of highway construction cost 

estimation research and practice. The first theoretical contribution is an in-depth statistical data 

analysis that provides preliminary data-driven insight into the combined accuracy of the cost 

estimation models identified from the selected literature survey. Chapter 2 identified and 
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categorized a comprehensive set of factors that affect highway construction costs that will serve 

as a reference for future research in advancing cost estimation modeling at the early stages of 

highway projects. 

This study contributes to the body of knowledge by employing a GIS-based methodology 

that leverages vast historical bid data for unit-price estimation and the robust GIS capabilities 

with consideration of the effects of project location and variations because of cost escalation and 

inflation overtime on different bid items. This study provides evidence supporting the use of 

advanced geostatistical prediction models (disjunctive and empirical Bayesian kriging) to deal 

with non-Gaussian data and accurately assesses the standard prediction error introduced by 

estimating the underlying semivariogram in considering the effect of spatial variation and time 

on different highway bid unit prices, which is an additional point of departure from the existing 

body of knowledge. 

7.3. Contribution to Practice  

SHAs employ state average historical bid unit prices and use location factors to adjust 

estimates to reflect the appropriate geographical location at the conceptual phase. Ordinary 

kriging, the most commonly used and straightforward geostatistical interpolation techniques 

across multiple disciplines, could stimulate the application of GIS-based interpolation techniques 

that could enable SHAs to account for location-adjustment of highway unit-price estimation.  

A comparison of the three different spatial interpolation techniques operationalized in 

this research, including ordinary kriging for how well they can interpolate cost indexes across 

space revealed that two alternative methods, the disjunctive and empirical Bayesian kriging, lead 

to more accurate cost prediction at the conceptual stage than ordinary kriging algorithms. These 

findings are relevant to industry practitioners, especially SHAs because it enables them to 



 

195 

accurately quantify the effect of spatial variation of highway unit prices and ultimately improve 

the efficacy of highway conceptual cost estimates. Finally, the bid unit-price maps generated 

from this study would enable SHAs to visualize and assess the effect of spatial variability and 

time on bid unit prices and make better-informed funding decisions at the conceptual phase of 

highway projects. 

7.4. Recommendations  

From the literature review in chapter 2, this paper found areas of potential improvement 

in the way SHAs report highway construction estimation performance metrics. The studies 

reviewed in the literature review section used several statistical measures to assess the 

performance of the cost estimation models. However, the disparate performance metrics reported 

do not enable an exhaustive comparison of results among empirical highway cost estimation 

studies.  

To monitor the differences between a current cost estimate to previous estimates for 

highway construction projects, there is a need for standardized estimation performance metrics. 

Future research could focus on creating a framework for developing and implementing cost-

estimating performance metrics and generate additional performance metrics to evaluate the 

accuracy of highway cost estimation models. Future studies could also provide a longitudinal 

assessment of how these performance measures improve the estimation accuracy of highway 

construction projects. 

Although this study achieved acceptable prediction accuracy using the proposed models, 

this further research is recommended to enhance the efficacy of location-adjustment of highway 

unit prices. For each of the three kriging models employed in this study, further research could 

employ other semivariogram models which could increase the accuracy of the preliminary cost 
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estimation that has not been experimented within this thesis. For further improvement of the 

modeling results, the interpolation methods need to be further validated using different highway 

projects executed in different geographic locations across the country. 
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