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ABSTRACT 

Weather stations provide key information related to soil moisture and have been used by 

farmers to decide various field operations. We first evaluated the discrepancies in soil moisture 

between a weather stations and nearby field; due to soil texture, crop residue cover, crop type, 

growth stage and duration of temporal dependency to recent rainfall and evaporation rates using 

regression analysis. The regression analysis showed strong relationship between soil moisture at 

the weather station and the nearby field at the late vegetative and early reproductive stages.  The 

correlation thereafter declines at later growth stages for corn and wheat. We can adduce that the 

regression coefficient of soil moisture with four-day cumulative rainfall slightly increased with 

an increase in the crop residue resulting in a low root mean square error (RMSE) value. We then 

investigated the effectiveness of machine learning techniques such as random forest regression 

(RFR), boosted regression trees (BRT), support vector regression, and artificial neural network 

to predict soil moisture in nearby fields based on RMSE of a 30% validation dataset and to 

determine the relative importance of predictor variables. The RFR and BRT performed best over 

other machine learning algorithms based on the lower RMSE values of 0.045 and 0.048 m3 m-3, 

respectively. The Classification and Regression Trees (CART), RFR and BRT models showed 

soil moisture at nearby weather stations had the highest relative influence for moisture 

prediction, followed by the four-day cumulative rainfall and Potential Evapotranspiration (PET), 

and subsequently followed by bulk density and Saturated Hydraulic Conductivity (Ksat). We 

then evaluated the integration of weather station data, RFR machine learning, and remotely 

sensed satellite imagery to predict soil moisture in nearby fields. Soil moisture predicted with an 

RFR algorithm using OPtical TRApezoidal Model (OPTRAM) moisture values, rainfall, 

standardized precipitation index (SPI) and percent clay showed high goodness of fit (r2=0.69) 



 

iv 

and low RMSE (0.053 m3 m-3). This research shows that the integration of weather station data, 

machine learning, and remote sensing tools can be used to effectively predict soil moisture in the 

Red River Valley of the North among a large diversity of cropping systems. 
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GENERAL INTRODUCTION 

Soil moisture is an important variable in hydrology and climate studies due to its strong 

influence on water infiltration, runoff, evaporation, erosion and heat and gas fluxes (Verstraeten 

et al., 2007; Amani et al., 2017). Similarly, soil moisture plays a key role in farm activities such 

as crop selection and the timing of tilling, planting, applying fertilizers and harvesting (Hamman 

et al., 2002; Helms et al., 1996). However, the heterogeneity of soil moisture within and across 

spatial scales creates difficulties for both research efforts and land management decisions. The 

most accurate methods for representing soil moisture are point measurements (e.g., gravimetric 

sampling, in-situ electromagnetic sensors). Although, these methods are limited in terms of 

spatial extent, are time consuming and labor intensive (Brocca et al. 2007; Laguardia and 

Niemeyer 2008). Other methods with larger spatial extents include proximal and remote sensing 

technologies as well as hydrologic simulations to model soil moisture on the landscape 

(Babaeian et al., 2019). In contrast to point measurements, the larger spatial extents innately 

result in lower resolution and a loss of information in landscapes with complex physical 

attributes (e.g., topography, parent materials) and land management (e.g., crop rotations and 

diversity) and require adequate point-scale validation. Therefore, an efficient and reliable means 

to represent soil moisture in and across landscapes are highly desired by both the research and 

agricultural communities. 

Researchers and farmers commonly use data from nearby weather stations to inform them 

on a location’s soil moisture (if available), atmospheric conditions, and potential 

evapotranspiration. The key assumption for using these weather station data is that they 

adequately represent the actual conditions of nearby fields for some tasks of interest, even 

though these fields may differ in physical (e.g., soil texture, slope) and crop (e.g., type, previous 
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year’s plant residues, growth stage) and attributes (Dalton et al., 2011; Rosenbaum et al., 2012). 

There are various factors such as crop type, soil texture, saturated hydraulic conductivity, 

topography, residue content affecting the soil moisture in crop field. The manual calculation of 

effect of these factors on the soil moisture is tedious work. There are two ways of predicting crop 

soil moisture using variables from weather station and crop factors; empirical model and 

machine learning methods. Empirical model uses statistical regression techniques to develop a 

mapping function based on the in-situ measurements of target variable and predictor variables. 

The advantage of empirical models is that they are typically fast to derive and do not require 

many inputs (Ali et al., 2015). The disadvantage of empirical models is the need for higher 

quality ground measurement that could be time consuming and expensive. Recently, the use of 

machine learning techniques has gained increased attention because it can overcome limitations 

of empirical and physical-based models. Popular machine learning methods currently in use are 

random forest, Artificial Neural Network (ANN), Support Vector Regression (SVR), Boosted 

Regression Trees (BRT), Classification and Regression Trees (CART), and Multiple Linear 

Regression (MLR). Matei et al. (2017) used different machine learning models for real time soil 

moisture prediction in Transylvania Depression of Romania. They used data (soil temperature, 

air temperature, precipitation) from a nearby weather station and used crop and soil information 

nearby station. Machine learning-based model (i.e., an RFR) achieved better performance when 

compared with the physics-based Richards equation model in predicting soil matric potential in 

the root zone (Gumiere et al., 2020). 

Remote sensing has also been used as an advanced tool for agricultural interpretation 

since the early 2000s (Lillesand et al., 2008). A prime area of research in agriculture is the in-

field variability of plant water stress across large scales, which directly relates to in-field soil 
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moisture (Bastiaanssen et al., 2000). Estimation of soil moisture provides farmers with key 

information of water stress, which aids in yield estimation, assessment of drought and excessive 

water conditions, and informs water management practices (e.g., irrigation, drainage) (Penuelas 

et al., 1993; Tucker, 1980). Remote sensing can be effectively used to estimate soil moisture 

because soil optical reflection and thermal emissions are highly correlated with soil moisture 

content (Zeng et al., 2016; Zhang and Zhou, 2016). In particular, the combination of remotely 

sensed visible and thermal infrared wavelengths provide more information for soil moisture 

estimation than either by themselves (Zhang et al., 2014). However, to get precise and accurate 

soil moisture estimations, both spatial and temporal information are needed (Zhang and Zhou, 

2016). Remote sensing methods has provided tools for soil moisture mapping at large spatial and 

temporal scales (Das and Paul, 2015). Several mathematical models using remote sensing 

methods has been developed to estimate soil moisture using satellite optical image dataset such 

as Landsat or Sentinel that are freely available. Ali et al. (2015) and Paloscia et al. (2008) 

showed machine learning techniques (e.g., Artificial Neural Network, Support Vector 

Regression) can outperform other parametric approaches for estimating soil moisture and 

improved their performance with an increasing number of observed datasets. Therefore, 

integrating meteorological data from weather Mesonet and field characteristics (soil and crop 

data) along with OPTRAM soil moisture values in a machine learning algorithm has the potential 

to be a valuable tool in mapping high-resolution soil moisture across large areas. 

The goal of this dissertation is to develop methodologies for producing accurate and 

high-resolution soil moisture maps throughout agriculturally dominated landscapes. In doing so, 

I focused on the Red River Valley of the North in North Dakota and Minnesota, USA, to 

develop, calibrate, and validate our methodologies. A variety of soil and crop characteristics, 
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meteorological data, and satellite imagery are used with machine learning methods to predict soil 

moisture and produce high-resolution maps.  

This dissertation has three research chapters, where each will be prepared in the form of 

journal manuscripts. Each chapter title and specific objectives are: 

• Chapter I: Factors affecting the use of weather stations data in predicting soil 

moisture for agricultural applications. 

o Determine the level of discrepancies in soil moisture between weather stations in 

the Red River Valley of the North (RRVN) and nearby agricultural fields. 

o Identify correlations of any discrepancies based on soil texture, crop type, residue 

cover and crop growth stage. 

o Determine the duration of temporal dependency of these soil moistures to recent 

rainfall and evapotranspiration rates. 

• Chapter II: Machine learning for predicting field soil moisture using soil, crop, and 

nearby weather station data in Red River Valley of North.  

o Study the effectiveness of different machine learning tools in soil moisture 

prediction. 

o Find out the important predictor variables affecting field soil moisture content 

using machine learning tools. 

• Chapter III: An integrated random forest–OPTRAM algorithm performed better than 

vegetation indices and OPTRAM for mapping surface soil moisture from Landsat 8 

images.  
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o Obtain a representative surface soil moisture dataset across an agricultural 

geographic region with a complex mosaic of crop species and soil management on 

dates aligned with the Landsat 8 satellite.  

o Calculate and determine the effectiveness of vegetation indices in predicting 

surface soil moisture. 

o Predict surface soil moisture from the satellite images using OPTRAM. 

o Evaluate if the OPTRAM predictions can be improved by incorporating weather 

station, soil, and crop data with a Random Forest machine learning algorithm. 
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CHAPTER I. FACTORS AFFECTING THE USE OF WEATHER STATIONS DATA IN 

PREDICTING SOIL MOISTURE FOR AGRICULTURAL APPLICATIONS 

Abstract 

Weather stations often provide key information related to soil moisture, temperature, and 

evaporation. This information is used by farmers when deciding farm operations of nearby 

agricultural fields. However, the site conditions at the weather stations where data are recorded 

may not be similar with these nearby fields. The objective of this study was to determine the 

level of discrepancies in soil moisture between weather stations and nearby agricultural fields 

based on 1) the soil texture, crop residue cover, crop type, growth stages and 2) the duration of 

temporal dependency of soil moisture to recent rainfall and evaporation rates. Soil moisture from 

25 weather stations in the North Dakota Agricultural Weather Network (NDAWN) and 75 

nearby fields were measured biweekly during the 2019 growing season in Red River Valley of 

North. Field characteristics including soil texture, crop residue cover, crop type and growth 

stages along with rainfall and potential evapotranspiration were collected during the study 

period. The regression analysis between soil moisture at weather station and nearby crop field 

showed strong relationship at late vegetative and early reproductive stage then declined at later 

stage for corn and wheat, whereas correlation values increased for initial vegetative stage to 

podding for soybean. We can adduce that the regression coefficient of soil moisture with four-

day cumulative rainfall slightly increased with an increase in the crop residue cover percentage 

resulting in a decreased Root Mean Square Error (RMSE).  In general, we observed that soil 

moisture at weather stations could reasonably predict moisture in nearby agricultural fields 

considering crop type, soil type, weather, and distance from weather station. 

Key words: soil moisture, weather station, Red River Valley, soil texture, rainfall, PET  
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Introduction 

Soil moisture is an important variable in hydrology and climate studies due to its strong 

influence on water infiltration, runoff, evaporation, erosion and heat and gas fluxes (Verstraeten 

et al., 2007; Amani et al., 2017). Similarly, soil moisture plays key role in farm activities such as 

crop selection and the timing of tilling, planting, applying fertilizers and harvesting (Hamman et 

al., 2002; Helms et al., 1996). However, the heterogeneity of soil moisture within and across 

spatial scales creates difficulties for both research efforts and land management decisions. The 

most accurate methods for representing soil moisture are point measurements (e.g., gravimetric 

sampling, in-situ electromagnetic sensors). These methods are limited in terms of spatial extent 

and are time consuming and labor intensive (Brocca et al. 2007; Laguardia and Niemeyer 2008). 

Other methods with larger spatial extents include proximal and remote sensing technologies as 

well as hydrologic simulations to model soil moisture on the landscape (Babaeian et al., 2019). 

In contrast to point measurements, the larger spatial extents innately result in lower resolution 

and a loss of information in landscapes with complex physical attributes (e.g., topography, parent 

materials), land management (e.g., crop rotations and diversity) and require adequate point-scale 

validation. Therefore, an efficient and reliable means to represent soil moisture in and across 

landscapes are highly desired by both the research and agricultural communities. 

Researchers and farmers commonly use data from nearby weather stations to inform them 

on a location’s soil moisture (if available), atmospheric conditions, and potential 

evapotranspiration. The key assumption for using these weather station data is that they 

adequately represent the actual conditions of nearby fields for some tasks of interest, even 

though these fields may differ in physical (e.g., soil texture, slope) and crop (e.g., type, previous 

year’s plant residues, growth stage) attributes (Dalton et al., 2011; Rosenbaum et al., 2012). In 
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the United States, there are 122 weather stations managed by National Weather Services to 

provide weather related products in addition to state-managed mesonets (NWS, 2020; NDAWN, 

2020). The North Dakota Agricultural Weather Network (NDAWN) is an example of a state-

managed mesonet, which provides up to 32 measured weather and soil parameters from 117 

weather stations in North Dakota (83 stations), Minnesota (28 stations) and Montana (6 stations) 

(NDAWN, 2020). Similar state-level mesonets are also deployed in Kansas and Oklahoma 

(Kansas Mesonet, 2020; Oklahoma Mesonet, 2020). 

In agricultural fields with annual grain crops, soil moisture is likely more dynamic over 

time than when under perennial cover. For instance, the amount, type and management (e.g., 

tillage) of crop residues left from previous growing season influences soil water evaporation and 

retention of soil moisture over time in the top soil (Dabney, 1998; Gwak and Kim, 2017). In 

addition, the live vegetation type and plant canopy cover modify the root-zone microclimate and 

affect evapotranspiration rates, while root morphologies and age strongly affect infiltration rates 

and patterns, and water uptake into the plant (Fernandez-Illescas et al., 2001). Therefore, the 

dynamics of live vegetation strongly affects soil moisture (Daigh et al., 2014; Thompson et al., 

2010). Soil moisture measurement at weather stations is typically taken under a mowed perennial 

grass (i.e., turf), which starkly differs from the characteristics of nearby cropped fields 

(Patrignani and Ochsner, 2018). Moreover, if neighboring fields differ in soil texture, then soil 

moisture spatial variability and its dynamics over time will be impacted accordingly (Vereecken 

et al., 2007; Pan and Peters-Lidard, 2008; Ivanov et al., 2010; Vivoni et al., 2010). Using linear 

correlation and empirical orthogonal function analysis, Gwak and Kim (2017) reported that soil-

particle-size distributions was a more dominating factor than vegetation in the soil moistures 

distribution. At larger scales, Dong and Ochsner (2018) reported that the variation of soil-
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particle-size distributions across the landscape also controls soil moisture more than rainfall 

distributions during storm events. 

The spatial extrapolation of measured soil and atmospheric conditions at weather stations 

is a major concern for representing nearby fields. However, most agricultural management 

decisions are also made based on inferences of what the conditions in those nearby fields will be 

in the following days or weeks. Weather forecasts of rainfall is likely the most obvious parameter 

to use for making such inferences. Rainfall history has a large impact on soil moisture and is a 

main determinant in farm activities (Western et al., 2002). Entekhabi and Rodriguez-Iturbe 

(1994) reported rainfall as the primary factor in controlling the state and subsequent evolution of 

soil moisture. Similarly, Pan et al. (2003) observed soil moisture to be a function of the time-

weighted average of previous cumulative rainfall over a period of 14 days. However, 

evapotranspiration, air and soil temperatures, and wind speeds are also some of the more widely 

used weather data from stations to make inferences on near-future soil moisture conditions 

(Western et al., 2002). The variety of factors influencing soil moisture variability in space and 

time (e.g., soil physical properties, topography, microclimate, groundwater, evapotranspiration) 

presents a barrier for farmers and agricultural consultants to infer the representativeness of 

weather station data to nearby fields readily and efficiently (Famiglietti et al., 1998; McMillan 

and Srinivasan, 2015; Rosenbaum et al., 2012; Vereecken et al., 2007; Western et al., 2002). 

Therefore, it is important to determine discrepancies in soil moisture between local 

weather stations and nearby agricultural fields. Moreover, identifying correlations of any 

discrepancies to differences in soil type, residue cover, or crop type and growth stage can then 

guide the development of simple quantitative relationships to extend weather station data to 

inform on-farm management decisions. Such discrepancies are intuitively expected. However, 



 

12 

little to no evidence is currently reported in the literature. To our knowledge, the literature lacks 

any such evaluations for the upper interior plains of North America. Thus, our objectives are to: 

(i) determine the level of discrepancies in soil moisture between weather stations in the Red 

River Valley of the North (RRVN) and nearby agricultural fields, (ii) identify correlations of any 

discrepancies based on soil texture, crop type, residue cover and crop growth stage, and (iii) 

determine the duration of temporal dependency of these soil moistures to recent rainfall and 

evapotranspiration rates.   

Material and Methods 

Study area, weather station network and data collection 

The study area was in North Dakota and Minnesota within the Red River of North 

(RRVN). The Red River of North extends 885 km northward from its source near Breckenridge, 

Minnesota in the United States (US) to Lake Winnipeg in Canada. The segment of river in the 

US (634 km) forms most of the border between Minnesota and North Dakota. The Red River 

valley of north is a glaciolacustrine lake bed formed by the ancient Lake Agassiz, which existed 

for about 4,000 years. The topography is minimal with a gradient of only 1:5000 (1 meter per 5 

kilometer). The dominant soil orders in RRVN are Mollisols and Vertisols, whereas soil texture 

ranges from loamy sand to clay. The large range in textures can be attributed to variations in the 

lake deposits and formation of braided streams as the ancient lake drained to the north in around 

8,000 years ago. The parent material is poorly drained and consists of gray, slickensided, flat 

clays of Brenna/Argusville formations, which are overlain by the tan-buff, laminated silty clays 

of the Sherack Formation. Shales within the parent materials commonly result in the shallow 

perched water tables being saline or saline-sodic. The major crops grown in this region are (Zea 

mays L.), soybean (Glycine max (L.) Merr.), wheat (Triticum aestivum L.), barley (Hordeum 
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vulgare L.), sugar beet (Beta vulgaris) along with canola (Brassica napus), sunflower 

(Helianthus annuus L.), potato (Solanum tuberosum L.), dry beans (Phaseolus vulgaris), and 

oats (Avena sativa L.) as the major crops grown annually. Summers are long and warm, whereas 

winters are frigid, snowy, windy and partly cloudy year-round. The average annual air 

temperature is 4 °C, typically varies from -16 °C to 29 °C and rarely below -27 °C or above 32 

°C, whereas, 30-year mean annual rainfall is 60 cm and snowfall of 317 cm (NOAA/NCEI, 

2020). 

The North Dakota Agricultural Weather Network (NDAWN) was used for the study. 

NDAWN reports 32 weather parameters (e.g. air temperature, rainfall, wind direction, soil 

moisture) at 117 weather stations, which includes stations in North Dakota (N = 83), Minnesota 

(N = 28) and Montana (N = 6). A subset of these stations (i.e., those located in the RRVN) were 

selected for this study. This included a total of 25 stations, where 15 stations were located across 

8 counties in North Dakota and 10 stations were located across 7 counties in Minnesota (Figure 

1.1). 

Weather station data and measurements in nearby agricultural fields of the study area 

were collected during the cropping season from June 1 to September 30 in 2019. Three nearby 

agriculture fields (corn, soybean, wheat, sugarbeet, potato, dry bean, canola) within the range of 

30 meter to 2 kilometers were selected around weather station (N = 75 fields). From each field, 

three different soil samples were randomly selected to determine soil moisture content. Soil 

samples were collected in 16-day intervals from the field and weather station between June to 

September 2019 (Table 1.1). 
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Figure 1.1. Map showing counties of North Dakota and Minnesota and weather stations under 

study area around Red River Valley. Black dots in map represents weather stations and italic 

with underline word represents counties 

Table 1.1. Soil sampling date with corresponding weather station for soil moisture determination 

for year 2019 

Weather station Date Sampled (2019) 

Campbell, Mooreton, Wahpeton 6/27, 7/13, 7/29, 8/14 

Leonard, Sabin, Fargo, Ulen, Prosper, Galesburg, Perely, 

Hillsboro, Ada, Waukon, Mayville, Finley, Eldred, Grand 

Forks, Forest River, Inkster, Warren, Grafton, St. Thomas, 

Kennedy, Cavalier, Humboldt 

6/18, 7/20, 8/5, 8/21 

Grafton, St. Thomas, Kennedy, Cavalier, Humboldt 7/27 

 

Determination of soil moisture 

Soil moisture was measured using the gravimetric method for each location and sample 

date (N = 985).  NDAWN has only recently started installing soil moisture sensors in the top soil 
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(0-6 cm) at their weather stations, and only 4 stations under our study had these sensors at the 

time of the study. Therefore, soil samples were collected from all weather stations to determine 

soil moisture. GPS coordinates for each station and sampling location were also recorded.  Three 

composite soil samples (0-6 cm) from each field and station were collected using Uhland cores 

to determine soil moisture. Soil was sampled using core sampler with dimension (6 cm x 8 cm), 

the field-wet weight of the soil was recorded, and then oven dried at 105°C for 48 hours. The 

weight of dry soil was again recorded, and gravimetric water content was determined as the mass 

of water lost due to drying. The soil’s volumetric water content (VWC) was calculated by 

multiplying gravimetric water content with the soil bulk density (e.g. Reynolds, 1970).  

Crop type and growth stages 

The major crops grown in RRVN are corn, soybean, wheat, barley, sugar beet along with 

canola, sunflower, potato, dry beans, and oats. For this study, the selected fields nearby the 

weather stations, were planted with soybean (N=24), wheat (N=18), corn (N=16), sugar beet 

(N=6), drybeans (N=5), oats (N=2), barley (N=1), potato (N=1), canola (N=1), and alfalfa (N=1). 

Soil samples taken after crops were planted and germinated. Growth stages for each crop were 

recorded every 16 days throughout the growing period until harvest. The growth stages for each 

crop were determined using standards developed by the United States Department of Agriculture 

(e.g. USDA, 2020). These coincided with the dates for soil sampling, and soil moisture values 

determined for each growth stage. 

Antecedent site characteristics: Crop residue cover, soil texture and saturated hydraulic 

conductivity (Ksat) 

Crop residue cover was determined along eight transects per sample site using the rope 

method (i.e., residue presence at 100 points along 15 m oriented 45° to plant rows) (Daigh et al. 
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2019) at the start of growing season. Crop residue was then pooled into three categories: <10, 20-

30 and 50-60% crop residue cover. Soil texture was determined for each site (i.e., weather 

stations and nearby fields) using the pipette method described by Gee & Bauder (1986) using 

composite soil samples. Saturated hydraulic conductivity (Ksat) was estimated using the Rosetta 

neural network pedotransfer function in Hydrus-1D, which used input data of sand (%), silt (%), 

clay (%), bulk density (g cm-3), and water contents at 33 and 1500 kPa suctions (cm3 cm-3) 

(www.pc-progress.com) (Schaap et al., 2001; Simunek et al., 2008). Water contents at 33 and 

1500 kPa suctions were determined using pressure plate apparatus (e.g. Richards, 1948). 

Rainfall and potential evapotranspiration 

Rainfall at the NDAWN stations was measured hourly at a 1m height above the soil 

surface using TE525 tipping bucket rain gauges (Texas Electronics TR-525I, Dallas, Texas). 

Each bucket tip measures 0.254 millimeters of rainfall. The Potential Evapotranspiration (PET) 

estimates of the maximum daily crop water loss when water is readily available. PET is 

calculated from solar radiation, dew point temperature, wind speed, and air temperature using the 

Penman (Penman, 1948) equation and is based on alfalfa which is called reference ET. Rainfall 

and PET (mm) for the preceding 10 days before soil sampling were downloaded from each 

weather station (https://ndawn.ndsu.nodak.edu/) and used to calculate cumulative values.  

Statistical analysis 

Linear and nonlinear regression was performed and Pearson correlation coefficients 

determined to describe the relationships between soil moisture at the weather stations 

(independent variable) and the nearby cropped fields (dependent variable) using Proc Reg in 

SAS software (version 9.4, SAS, 2017). The analysis was repeated by pooling the data for each 

factor [i.e., crop type, crop growth stage, crop residue cover, soil texture, distance from weather 
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station, and their interactions] separately. The recent cumulative rainfall and potential 

evapotranspiration history at the weather station were compared with the current soil moisture 

using non-linear regression using Proc Reg in SAS software (version 9.4, SAS, 2017). The 

analysis was repeated by pooling the data for each factor [i.e., crop type, crop growth stage, crop 

residue cover, soil texture, distance from weather station, and their interactions] separately. The 

regression parameters (slopes and intercept), correlation coefficients, and root mean square error 

(RMSE) are reported and discussed below. 

Results 

VWC discrepancies between crop field and weather station 

Soil moisture ranged from 0.028 to 0.523 m3 m-3 across the study area of the RRVN and 

sampling time frame (May to September, 2019). VWC at weather stations and nearby 

agricultural fields were linearly correlated, with the weather station VWC explaining 50% 

(r2=0.50, N=675, slope=0.7, RMSE=0.0654 m3 m-3) of the variance for the nearby fields (Figure 

1.2). Distances to 2 Km from the weather station moderately affected this relationship (Appendix 

A1). The correlation coefficient was higher (r2=0.55, N=215) for fields nearer (0-100m) as 

compared to fields farther (1200-2000m) from weather stations (r2=0.40, N=42). 
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Figure 1.2. Linear relationship between volumetric water content (VWC) of crop fields with 

nearby weather stations in the Red River Valley during 2019. 

VWC discrepancy due to crop type and their growth stage  

Discrepancies associated with crop types and growth stage were apparent between VWC 

at the weather stations and nearby fields (Figure 1.3, Appendix A2). Fields planted to dry beans 

(r2=0.69, N=33, RMSE=0.041 m3 m-3) had the highest correlation, followed by wheat (r2=0.56, 

N=159, RMSE=0.06 m3 m-3) and corn (r2=0.46, N=156, RMSE=0.068 m3 m-3), whereas, the 

lowest correlations were in sunflower (r2=0.41, N=9, RMSE=0.061 m3 m-3) and barley (r2=0.18, 

N=9, RMSE=0.052 m3 m-3), which also had the lowest sample size. Moreover, the slope of all 

the linear regression equations was less than 1 (i.e., corn = 0.81; wheat = 0.72; sugarbeet = 0.70; 

soybean = 0.69; alfalfa = 0.45) (Appendix A1). 
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Figure 1.3. Linear relationship between Volumetric Water Content (VWC) of crop fields with 

nearby weather stations under different crop types. 

Regression coefficients increased with corn growth stage [V10 stage (r2=0.92), V11 stage 

(r2=0.99)] until the silking reproductive phase and then declined [tasseling (r2=0.59), grain filling 

(r2=0.78)]. Wheat expressed a similar trend [tillering (r2=0.17); flowering (r2=0.68); hard dough 
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(r2=0.590 and after harvest (r2=0.24)], whereas correlations in soybean continued to increase [V1 

stage (r2=0.11); V2 stage (r2=0.15); flowering (r2=0.51); podding (r2=0.70)].  

VWC discrepancy due to residue cover and soil texture 

Crop residue cover and soil texture had a moderate influence on the disparity between the 

weather stations and nearby fields. Crop fields with the lowest amount of crop residue cover 

(<10%) had the highest correlation (r2=0.63, N=275, RMSE=0.058 m3 m-3) with the VWC of 

weather station as compared to higher residue covered fields [20-30% residue (r2=0.44, N=198, 

RMSE=0.066 m3 m-3); 50-60% residue (r2=0.46, N=198, RMSE=0.067 m3 m-3)] (Figure 1.4). 

Soils with a relatively high clay content, such as clay (r2=0.63, N=48, RMSE=0.061 m3 m-3), 

clay loam (r2=0.57, N=69, RMSE=0.063 m3 m-3), silty clay loam (r2=0.52, N=117, RMSE=0.054 

m3 m-3) and silty clay (r2=0.46, N=153, RMSE=0.073), had higher correlation coefficients as 

compare to soils with a high sand content (Figure 1.5). 
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Figure 1.4. Linear relationship between volumetric water content (VWC) of crop field with 

weather stations at different residue percentage (<10, 20-30, 50-60). 
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Figure 1.5. Linear relationship between Volumetric Water Content (VWC) of crop field with 

weather station at different type of soil texture in the study area. 
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Temporal dependency of soil moisture in crop fields to recent rainfall and PET rates 

Soil moisture expressed a non-linear (cubical) relationship with past cumulative rainfall 

and PET (5 days) measured from the weather station. The highest correlation (r2=0.49) was 

observed between soil moisture and a four-day cumulative rainfall that was improved 

significantly from a one-day cumulative rainfall (r2=0.16). Similarly, the highest correlation 

(r2=0.29) was observed between soil moisture and a four-day cumulative PET (Appendix A3). 

The non-linear relationship between soil moisture with four-day cumulative rainfall had 

various weak to strong influences by crop residue cover, crop type, distance from weather station 

and soil texture (Figure 1.6; Appendix A4). The regression coefficient of soil moisture with four-

day cumulative rainfall slightly increased with an increase in the crop residue cover percentage 

(<10, 20-30, 50-60%) from 0.48 to 0.51 and RMSE decreased from 0.068 to 0.063 m3 m-3. The 

highest correlation coefficient between soil moisture and a four-day cumulative rainfall was 

observed with alfalfa (r2=0.93), followed by oats (r2=0.86), sugarbeet (r2=0.71), dry beans 

(r2=0.65), wheat (r2=0.56), corn (r2=0.48) and lowest in soybean (r2=0.45). The non-linear 

relationship between soil moisture and four-day cumulative rainfall shows crop fields near to 

weather station (100-200m) had higher correlation coefficient (r2=0.65), whereas fields further 

away (1200-2000m) had a lower coefficient (r2=0.25). A strong non-linear relationship was 

observed between soil moisture and four-day cumulative rainfall for soils having high clay 

content [clay (r2=0.75), silty clay loam (r2=0.65), clay loam (r2=0.52)], whereas a weak 

relationship was observed with soils having high sand content. 
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Figure 1.6. Non-linear relationship between volumetric water content (VWC) of crop field 

(N=675) with cumulative rainfall for past five days (D1, D2, D3, D4 and D5) for the study area. 
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Similarly, the highest correlation coefficient of soil moisture with four-day cumulative 

PET (r2=0.37) was observed with 20-30% crop residue cover followed by the 50-60% (r2=0.31) 

and lowest observed with <10%. The RMSE was also lowest with 20-30% crop residue cover 

(0.071 m3 m-3) followed by 50-60% (0.076 m3 m-3) and <10% (0.083 m3 m-3) (Appendix A5). 

For different types of crops, similar trends were evident between soil moisture and a four-day 

PET as with four-day cumulative rainfall. In contrast to cumulative rainfall, the opposite was 

observed between soil moisture and four-day cumulative PET, where farther crop fields (800-

1200m) had higher correlation coefficients (r2=0.57) and the nearest fields (0-100m) had a lower 

coefficient (r2=0.33). 

Similarly, correlation between soil moisture and four-day cumulative PET for soils was 

higher with high clay content [clay (r2=0.59), clay loam (r2=0.59), silty clay (r2=0.51)] as 

compared to soils having high sand content [loamy sand (r2=0.09)] as with cumulative rainfall. 

Discussion 

In general, we observed that soil moisture at weather stations could reasonably predict 

moisture in nearby agricultural fields (Figure 1.2) considering crop, soil, weather, and distance 

from weather station. This corroborates with findings by Famiglietti et al. (1998) regarding 

correlations between topographical attributes, soil properties and soil moisture measured along 

distances of 200 m. Therefore, the discrepancies in soil moisture observed in the present study 

are likely due to spatial heterogeneities of soil characteristics (Hu et al., 1997), vegetation 

characteristics (Qiu et al., 2001), and land management practices (Daigh et al., 2018).  

As expected, the analysis showed the moisture prediction weakens with an increase in 

distance from the weather stations. This is likely due to change in soil moisture spatial patterns 

caused by the field variations in the landscape as well as other autocorrelated factors (soil 
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texture, vegetation, rainfall, evapotranspiration) that influence local hydrologic processes 

(Bardossy and Lehmann, 1998; Famiglietti et al., 1998; Western et al., 1999, Brocca et al., 

2007). The large spatial and temporal variability of the study area might have resulted in the 

lower prediction value which can be improved by considering those factors in a prediction model 

(McMillan and Srinivasan, 2015). The changes in the spatial pattern of soil moisture was studied 

by Hawley et al. (1983) in the flat areas of Central Italy under different soil wetness condition, 

Cunningham et al. (1978) in ten-year long revegetating study in Australia, and Dunin and 

Reyenga (1978) in evaporation study of sub-humid grassland of Australia.  

Crop type and their growth stages showed weak to strong relationships in the soil 

moisture prediction from the weather stations (Figure 1.3). Crops with dense, closed leaf 

canopies and at their peak vegetative growth stage showed higher regression coefficients 

compared to thin, open crop leaf canopies. This is consistent with studies showing that cropping 

system and crop growth stage influence soil water storage (Daigh et al., 2014) and impacts soil 

hydrology (Steele et al., 2012; Kravchenko et al., 2011; McIsaac et al., 2010). The type of crop 

and their growth stage influences small-scale soil moisture variability due to the pattern of 1) 

throughfall imposed by the canopy (Zheng et al., 2019), 2) shading the soil surface and affecting 

rate of evaporative drying (Todd et al., 1991), 3) moderating or inducing turbulence airflows and 

corresponding evapotranspiration rates (Katul et al., 2012), and 4) affecting soil Ksat through 

root distributions and their activity with extracting soil moisture for plant transpiration 

(Schymanski et al., 2008). The degree to which these factors affect the soil moisture depends 

upon plant species, density and season (Famiglietti et al., 1998; Lull and Reinhart, 1995; 

Reynolds 1970b. These results are in accordance with Hawley et al. (1983), Francis et al. (1986), 

Ozkan and Gokbulak (2017) who found significant difference in soil moisture content due to 
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difference in vegetation cover. For instance, row crop systems tend to have lower water storage 

capacities than natural or restored perennial systems (Mitchell et al., 2012; Qi et al., 2011; Brye 

et al., 2000) which is linked with soil moisture contents. Similarly, Gomez-Plaza et al. (2000) 

argued vegetated areas and vegetation cover improves soil structure and capacity of water 

retention into the soil compared to drier with low vegetation cover in southeastern Spain. The 

vegetation and land-use could have significant effect on the temporal and spatial dynamics of 

soil water (Qiu et al., 2001; Fu et al., 2003; Jun et al., 2010). However, Zhao et al. (2010) 

postulated that correlation analysis showed that soil properties were important factors controlling 

temporal stability of soil moisture spatial patterns for any cropping practices or vegetation cover 

in a semi-arid region. 

Soil physical properties (bulk density, Ksat, soil texture) are well known parameters that 

significantly affect soil moisture. The regression analysis for soil moisture prediction showed 

higher r2 values for soils with higher clay percentage as compared to sand percentage. Variation 

in soil texture, organic matter and macro porosity affect the water retention of soils, thereby 

causes the soil moisture variation (Famiglietti et al., 1998; Crave and Gascuel-Odoux, 1997; 

Dong and Ochsner, 2018). Similar to our findings, English et al. (2005) found sand-rich soil 

throughout the soil profile increases gravimetric water and soil water potential compared to clay-

rich soils. Soil texture influences soil moisture through its direct effects on pore spaces 

governing evaporation and drainage rates, which are two main factors for controlling soil drying 

(Pan and Peters-Lidard, 2008; Dexter, 2004). The irrigation cycle study conducted by Li et al. 

(2014) showed soil water content was significantly and consistently correlated with soil texture 

and bulk density. Similarly, both principal component analysis and multiple linear regression 

identified soil texture as primary physical process controlling variability in soil water content of 
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agriculture field (Manns et al., 2014). Gao et al. (2011) in their study in Loess plateau, China, 

reported strong correlation between soil texture and surface soil moisture in gullies. Gao et al. 

(2011) also reported clay and silt content were both positively correlated with soil moisture 

during and regression values decrease with rainfall events. In the study of eleven textural classes, 

Vereecken et al. (2007) found that standard deviation of soil moisture peaked between 0.17 and 

0.23 m3 m-3 for most textual classes such as, silt loam to clay loam soils. In contrast, they found 

standard deviation increases with increase in soil moisture for sandy loam and loamy sand soils. 

Residue cover was also correlated with soil moisture prediction. We observed high r2 

values in areas with low residue cover (<10%) and lower r2 values in areas with high residue 

cover. Residue cover on the soil surface not only limit soil erosion due to water and air but also 

changes soil moisture spatial patterns within fields (Dabney, 1998; Daigh et al., 2019). Studies 

have shown that the reduction of soil evaporation due to residue cover maintains higher soil 

moisture contents at field level over time (Dabney, 1998; Unger and Vigil, 1998). Partial residue 

covers in the field contribute to a slower, but still positive effect on soil moisture recharge as 

compared to completely covered soils, this difference in water recharge at different residue 

covers affects the prediction of soil moisture at field level (Patrignani and Ochsner, 2018). 

As aforementioned, many of the plant and soil characteristics in fields induce not only 

spatial variability, but also influence soil moisture over time. We observed that a four-day 

cumulative rainfall and PET had the highest non-linear regression coefficient and lowest RMSE 

as compared to other cumulative periods. Several studies have established similar relationships 

between soil moisture with the rainfall at larger spatial scales than the RRVN (Brocca et al., 

2007; Entin et al., 2000; Yoo et al., 1998; Cosh et al., 2004; Ziadat and Taimeh, 2013). With the 

application of satellite data, Brocca et al. (2013) also established that four-day cumulative 
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rainfall can effectively predict soil moisture with correlation value close to 0.8, which is similar 

to our finding. Additionally, Brocca et al. (2007) reported that higher correlation coefficients for 

soil moisture as the antecedent precipitation increased, which were in accordance with Western 

et al. (1999) and Gomez-Plaza et al. (2001). Rainfall, as well as incoming solar radiation, are key 

factors affecting soil moisture at point scale measurements (Vivoni et al., 2010). Entekhabi and 

Rodriguez-Iturbe, (1994) and Pan et al. (2003) in their extensive studies on predicting surface 

soil moisture from rainfall, observed that time-weighted averages of previous cumulative rainfall 

over a given period resulted in high correlation coefficients with soil moisture.  

Conclusion 

The results shown in this study offers evidence that soil moisture can be reasonably 

represented by using information obtained at nearby weather stations despite large differences in 

soil and crop characteristics. The correlation between the soil moisture at weather stations and 

nearby agricultural fields is affected by crop type and their growth stages, crop residue, soil 

texture, and distance from the weather station. In Red River Valley, crops with thick canopy 

cover showed higher correlations compared to sparse crop canopies. Similar associations were 

observed when crop growth stages were at peak vegetative and reproductive stages. However, 

higher correlations were observed with lower crop residue cover of the soil surface and vice-

versa. The correlation between soil moisture at weather stations and nearby fields decrease as the 

distance from weather stations increase. Rainfall and evapotranspiration measured at weather 

stations can be used to estimate soil moisture in these nearby agricultural fields. The four-day 

cumulative rainfall and PET showed higher correlations with field soil moisture as compared to 

other durations. This shows that rainfall and precipitation data can be effectively used in the 

prediction on soil moisture in the nearby fields despite discrepancies in soil and crop 
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characteristics. This study showed promising results on estimation of soil moisture on 

agricultural fields using nearby weather station data when considering key field variables. 

However, the level of effect of each of the variables on the soil moisture prediction using soil 

moisture of weather station needed further exploration. The use of different multivariate or 

machine learning algorithms to model and evaluate the influence of variables needs further 

exploration.  
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CHAPTER II. MACHINE LEARNING FOR PREDICTING FIELD SOIL MOISTURE 

USING SOIL, CROP, AND NEARBY WEATHER STATION DATA IN RED RIVER 

VALLEY OF NORTH 

Abstract 

Soil moisture plays important role in agricultural production and hydrological cycles and 

its precise prediction is important for water management and logistics of on-farm operations. 

However, soil moisture is affected by various soil, crop and meteorological factors, and it is 

difficult to establish ideal mathematical models for soil moisture prediction. In this study, we 

investigate various machine learning techniques for predicting soil moisture in the Red River 

Valley of North (RRVN). Specifically, the machine learning techniques evaluated include: 

Classification and Regression Trees (CART), Random Forest Regression (RFR), Boosted 

Regression Trees (BRT), Multiple Linear Regression (MLR), Support Vector Regression (SVR) 

and Artificial Neural Network (ANN). The objective of this study was to determine the 

effectiveness of these machine learning techniques and evaluate the importance of predictor 

variables. Variables to predict field soil moisture included soil texture, bulk density, saturated 

hydraulic conductivity (Ksat), crop type and growth stage, crop residue cover, four-day 

cumulative rainfall and potential evapotranspiration (PET). The RFR and BRT algorithms 

performed the best with mean absolute errors (MAE) of < 0.040 m3 m-3 and root mean square 

errors (RMSE) of 0.045 and 0.048 m3 m-3, respectively. Similarly, RFR, SVR, and BRT showed 

high correlations (r2 of 0.72, 0.65 and 0.67 respectively) between predicted and measured soil 

moisture. The MLR and ANN had the poorest performance (r2=0.52, RMSE=0.059 and r2=0.53, 

RMSE=0.085, respectively). The CART, RFR, and BRT models showed soil moisture at nearby 

weather stations had the highest relative influence for moisture prediction, followed by the four-
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day cumulative rainfall and PET, and subsequently followed by bulk density and Ksat. The RFR, 

SVR, and BRT algorithms showed promising results in soil moisture prediction using soil, crop, 

and weather station variables in RRVN. Soil moisture, four-day cumulative rainfall and PET, 

bulk density and Ksat can be effectively used in soil moisture prediction of nearby field. 

Therefore, machine learning models, provided with few weather stations, crop and soil data can 

effectively predict soil moisture of nearby agricultural fields. 

Key words: Machine learning algorithms, Vertisols, Mollisols, soil moisture prediction, weather 

station. 

Introduction 

Soil moisture has a strong influence on the distribution of water between various 

components of hydrological cycle in agricultural field. It helps in understanding the hydrology 

and climate that have high spatial and temporal variability. Precise measurement and/or 

prediction of soil moisture provides insights in expected infiltration and runoff generation during 

rainfall event and management of the water for agricultural purpose (Gill et al., 2006). In 

agricultural field, soil moisture affects key farm activities from crop selection to timing of tilling, 

planting, fertilizer application and harvesting due to infiltration, evaporation, runoff, heat and gas 

fluxes (Amani et al., 2017; Hamman et al., 2002). Soil moisture prediction across large spatial 

scales is difficult due to the heterogeneity in soil texture, crop type, crop residue cover. Point 

measurement that includes gravimetric method, in-situ electromagnetic sensors are accurate but 

have limited spatial extent and need a lot of time and labor (Laguardia and Niemeyer, 2008). 

In practice, farmers typically rely on heuristic approaches with weather station data (i.e., 

rainfall, evapotranspiration, temperature) to predict (or extrapolate) the conditions in their crop 

fields. More accurate and optimal computational approaches need to explicitly consider various 
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factors such as crop type, soil texture, saturated hydraulic conductivity, and residue content 

affecting the soil moisture in these crop fields.  

Soil moisture is predicted using information collected from nearby weather station and 

variables from soil and crop using one of three empirical, regression and machine learning 

methods (Cai et al., 2019). These methods include forecasting models such as empirical formula 

(Sanuade et al., 2020), water balance approach, dynamic soil water models (Zhou, 2007), time 

series models (Zhang et al., 2008), and neural network models (Huang et al., 2010). Traditional 

models include statistical regression techniques to develop geospatial functions from in-situ 

measurements of target and predictor variables. The advantage of traditional models is that they 

are typically fast to derive and do not require many inputs (Ali et al., 2015). While the 

disadvantage of traditional models is the need for an abundance of ground measurements that 

could be time consuming and expensive. Moreover, traditional modeling approach follow strict 

statistical assumptions and data requirements that frequently utilize linear and additive modeling 

approach that are not consistent with natural processes (Clapcott et al., 2013).  

Recently, the use of machine learning techniques has gained attention because they can 

overcome some of the limitations of traditional and physics-based models. Ali et al. (2015) 

suggested machine learning models provide the benefit to understand and estimate complex non-

linear mapping of the data distributed without any presupposition. In addition to that, this also 

helps to combine various sources that are poorly defined and have unknown probability 

functions. However, machine learning algorithms provide no information on how they have 

established relationships between different variables and only perform better with the large 

number of data sets used for training. The machine learning technique is rapidly growing in 

predictive modeling to identify complex data structures, which are often non-linear, and 
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generating accurate predictive models (Olden et al., 2008; Naghibi et al., 2016). Machine 

learning models have greater power for resolving and establishing complex relations (nonlinear, 

nonmonotonic, multimodal relationships common with landscape and ecological applications) as 

they are not restricted to traditional assumptions about data characteristics. There are numerous 

machine learning algorithms such as, classification and regional tress (CART), random forest 

regression (RFR) (Liaw and Wiener, 2002), support vector regression (SVR) (Zaman et al., 

2012; Zaman and Mckee, 2014), multiple linear regression modeling, boosted regression tree 

(BRT), artificial neural networks (ANN) (Hassan-Esfahani et al., 2015), etc. that are used for 

predictions. In the hydrology domain, neural networks (Qiao et al., 2014), vector machines 

(Kashif Gill et al., 2007), and polynomial regression (Gorthi and Dou, 2011) has been used in 

soil moisture prediction using historical soil moisture datasets.   

For example, Matei et al. (2017) used different machine learning models (SVR, NN, LR, 

RFR, etc.) for real time soil moisture prediction in Transylvania Depression of Romania. They 

used data (soil temperature, air temperature, precipitation) from a nearby weather station and 

used crop and soil information nearby station. Machine learning-based model (i.e., an RFR) 

achieve better performance when compared with the physics-based Richards equation model in 

predicting soil matric potential in the root zone (Gumiere et al., 2020). Yoon et al. (2011) used 

ANN to model the water table dynamics of various agricultural systems. Random Forest model 

was found to be superior to ANN model when predicting lake water levels with fewer parameters 

and training time (Li et al., 2016). Alternatively, Gill et al. (2006) used SVM to predict soil 

moisture using meteorological data, field data and crop data. The SVM employs structural risk 

minimization instead of the traditional risk minimization that formulates quadratic optimization 

to ensure a global optimum. The resulting SVM model is sparse and not affected by the 
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dimensionality. Support Vector regression is less prone to overfitting the regression function 

because it uses generalize error bound (ɛ)-insensitive loss function and structural risk 

optimization (Vapnik, 2000). 

Machine learning algorithms 

Classification and regression trees (CART) 

CART is a tree-based regression model and rule-based procedure that creates a binary 

tree using binary recursive partitioning (BRP) to yield the maximum reduction in the variability 

of the response variable (Stewart, 1996). The BRP is a nonparametric nonlinear technique that 

splits the data into subsets based on available independent factors, which means it divides nodes 

into yes/no answers as predictor values. Regression trees are generated for continuous data and 

classification trees for categorical data (Samadi et al., 2014). 

Suppose input variables are x1, x2, …. xn and output variable is y for training dataset in the 

space D with n input variables and m input samples. Let D = {(x11, x12, ….x1n, y1), (x21, x22, 

….x2n, y1), (xm1, xm2, ….xmn, ym)}. The CART model splits D into certain number of subspaces 

using a BRP. Each recursive process attempts to select several splitting variables and splitting 

points from the current space S (parent node) to divide the space into two inhomogeneous 

subspaces S1 and S2. Every subspace has an estimated value ŷ determined by fitting using least 

square method; the optimal splitting variable j and splitting point s are finally selected to ensure 

that the binary division has the minimum residual variance (Breiman et al., 1984).  

Random forest regression (RFR) 

Random forest regression was developed by Breiman (2001) and are relatively simple to 

train, tune, and apply. This technique is developed as average over the many individual decision 

tree-based models that are built on the bootstrapped training sample. Each training sample 
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considers a small group of predictor variables at every split that maintains decorrelation among 

the variables and splits (James et al., 2013). The RFR improves predictive accuracy by 

generating large numbers of decision trees that classify a case using each tree in the new forest 

and deciding a final predicted outcome by combining the results across all the trees. Each tree is 

built using a deterministic algorithm by selecting a random set of variables and a random sample 

from the training dataset (i.e., the calibration data set). The RFR uses three parameters, 1) the 

number of regression trees grown based on the bootstrap sample of the observation (e.g., 

hundreds or thousands of trees), 2) the number of different predictors tested at each node (e.g., 

one third of the total number of the variables) and 3) the minimal size of the terminal nodes of 

the trees (e.g., one).  

Boosted regression trees (BRT) 

Friedman (2002) defined BRT as a decision tree model that is improved by the gradient 

boosting algorithm, which constructs an additive regression model that fits in chronological 

order based on simple base learner function to current pseudo-residuals at each iteration. The 

pseudo-residuals are defined as the slope of the loss function that is being minimized. Due to the 

use of pseudo-residual, simple base learner function and iteration at each level, this model has 

performed better compared to other machine learning models (Elith et al., 2008; Natekin and 

Knoll, 2013). Due to its ability to perform better in complicated data, BRT models are popular 

and attractive among data scientists (Friedman, 2001), whereas, the data used for training sets are 

compiled from different sources makes it susceptible to some kind of inconsistencies (Breiman, 

2001; James et al., 2013). 

The BRT helps in partitioning influences of the independent (predictor) variables on the 

dependent variable (soil moisture for this study). This combination of regression trees with the 
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boosting algorithm has been used by ecologists to explore the relationship between ecological 

processes and predictors. The BRT handles predictor variables with different data types, 

distributions, and completeness (i.e., level of missing values) (Zhang et al., 2015). The fitting of 

the BRT model is controlled by different factors such as: the learning rate that determines the 

contribution of each tree to the growing model, the tree complexity that controls the level of 

interactions in BRT, the bagging fractions that sets the proportion of observations used in 

selecting variables, and the cross validation that specifies the number of times to randomly 

divide the data for model fitting and validation (De’Ath, 2017). 

Multiple linear regression (MLR) 

Multiple linear regression is an extension of simple linear regression used to predict an 

outcome variable based on multiple distinct predictor variables. With ‘n’ number of predictor 

variables (x), the predictions of y are expressed by the following equation.  

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 … … . . 𝑏𝑛𝑥𝑛 (2.1) 

The b values are called the regression weights (beta coefficients). The measures of 

association between the predictor variable and the outcome. ‘bi’ can be interpreted as the average 

effect on y of a unit increase in xi, holding all other predictors fixed.  

Support vector regression (SVR) 

Support vector regression uses a support vector machine (SVM) to solve regression 

problems (Cortes and Vapnik, 1995; Drucker et al., 1997). SVM learning simplifies a maximal 

margin classifier to map the input variables into a high dimensional space using fixed mapping 

kernel function. To overcome local minima problems created due to use of few parameters while 

tuning the training dataset, SVR uses radial basis kernel function by constructing the hyperplanes 

that can be used for regression. Yang et al. (2009) found radial basis functions powerful because 

they are simple and reliable and deal with complex dimensional space, margin separation factors. 
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The SVR involves use of a sub-set of data points that are based on a predefined error 

margin to fit a regression model between dependent variable and explanatory variables. Those 

sub-set of data points are called support vectors. Let us suppose, there are given samples X = {�⃗�1, 

�⃗�2,…,�⃗�l} and corresponding target value Y = {y1, y2,….,yl}, yi ∈ R. The goal of SVR is to find the 

function f(x) that has at most standard deviation from the obtained target yi for all training data 

and meanwhile as flat as possible. 

Artificial neural network (ANN) 

Artificial neural networks are a powerful computing tool constructed through many 

simple interconnected elements called neurons with unique capability of recognizing underlying 

relationship with input and output events. An ANN consist of input, hidden and output layers 

arranged in a discrete manner (Priddy and Keller, 2005). A collection of neurons arranged in the 

dimensional array is called a layer, where each layer includes one or more individual nodes. The 

number of input variables necessary for predicting the desired output variables determines the 

number of input nodes. The complexity of modeling is dependent upon the optimum number of 

hidden nodes and hidden layers (i.e., the greater the number of hidden layer results in a larger 

more complex model) (Grimes et al., 2003).  

These ANN models mimic the human-learning ability by learning from a training data 

set. They handle robust to noisy data and create a powerful tool to approximate multivariate non-

linear relations among the variables (Twarakavi et al., 2006). ANN is powerful tool that can 

approximate all types of non-linear mapping. These models have been used for input-output 

correlations of non-linear processes in water resources and hydrology (Ahmad and Simonovic, 

2005). 
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Objectives of the study 

The goal of this study was to determine the performance of the aforementioned machine 

learning models for predicting soil moisture of crop fields throughout the Red River Valley of 

the North by using weather station observations and field characteristics of nearby areas under 

crop management. The objective of this study was to (i) evaluate the effectiveness of different 

machine learning tools in soil moisture prediction, (ii) find out the important predictor variables 

affecting field soil moisture content using machine learning tools. 

Methods 

Study site and weather station  

This study was conducted along the Red River Valley of the North (RRVN) in North 

Dakota and Minnesota. The RRVN is a glaciolacustrine lakebed formed by ancient Lake Agassiz 

that existed for more than 4,000 years. The topography is minimal (1 meter per 5 kilometer) and 

Mollisols and Vertisols are the dominant soil orders with soil texture ranges from clay to loamy 

sand. The parent material for RRVN is poorly drained and consist of gray, slickensided, flat 

clays of Brenna/Argusville formation that are overlain by the tan-buff, laminated silty clays of 

the Sherack formation. The major corps cultivated in this area includes corn, soybean, wheat, 

sugarbeet, barley, canola and potato. The annual mean temperature is 4 °C typically varies from -

16 °C to 29 °C and rarely below -27 °C or above 32 °C, whereas the 30 year mean annual 

rainfall is 60 cm and snowfall of 125 cm (NOAA/NCEI, 2020). Summers are long and warm 

whereas, winters are frigid, snowy, windy, and partly cloudy year-round.  

There are 117 Weather stations under North Dakota Agricultural Weather Network 

(NDAWN) in North Dakota (83), Minnesota (28) and Montana (6), which reports 32 weather 

parameters (e.g., air temperature, rainfall, wind direction, soil moisture). Our study area covers a 
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total of 25 weather stations, where 15 stations are located across 8 counties of North Dakota and 

10 stations are located across 7 counties in Minnesota (Figure 2.1). Weather station data and 

measurements in nearby agricultural fields of study area were collected during the cropping 

season from June to September, 2019. Soil moisture was measured around the weather station 

and nearby crop field in 16 days interval to coincide with satellite imagery pass dates. The 

distance between crop field and weather station was measured in meters. The distance measure 

was classified into five different classes (0-100 m, 100-200 m, 200-400 m, 400-800 m, 800-1200 

m and 1200-2000m). The crop field under study were within the range of 2000 m of the weather 

station for entire study area of the RRVN.  
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Figure 2.1. Map showing counties of North Dakota and Minnesota and weather stations under 

study area around Red River Valley. Black dots in map represents weather stations and italic 

with underline word represents counties 

Soil moisture measurement 

Soil moisture from each field and weather station was measured using gravimetric 

method. Soil samples were collected from field using Uhland cores. Composite soil sample was 

collected from three different location of individual field using sampling core of dimensions 6 
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cm × 8 cm at 0 to 6 cm depth and GPS coordinates were recorded. The weight of wet soil 

samples collected from field were taken and oven dried at 105°C for 48 hours. Gravimetric water 

content was determined using dry weight of soil and amount of water loss during the drying. 

Volumetric water content (VWC) of soil was calculated by multiplying gravimetric water 

content (m3 m-3) with bulk density (g cm-3) (Reynolds, 1970).  

Crop types in the study area 

This study covers all types of crops grown in this area such as soybean (24 plots), wheat 

(18 plots), corn (16 plots), sugar beet (6 plots), dry beans (5 plots), oats (2 plots), barley (plots 1), 

potato (plots 1), canola (plots 1) and alfalfa (plots 1). Soil samples for bulk density and moisture 

content were collected after the germination of the crops starting from first week of June, 2019. 

Soil samples were taken in 16 days intervals and growth stages for each crop were recorded 

using the standards developed by United States Department of Agriculture (USDA, 2020). 

Residue cover, soil texture and saturated hydraulic conductivity 

Antecedent characteristics such as residue cover, soil texture and saturated hydraulic 

conductivity (Ksat) was determined for each location from where soil samples were collected. 

Residue cover was determined using the rope method along eight transects per sample site (i.e., 

residue presence at 100 points along 15 m oriented 45° to plant rows) (Daigh et al. 2019). The 

crop residue was then pooled and classified as percentage in three different categories (<10%, 

20-30% and 50-60% residue cover) for analysis. Soil texture for this experiment was determined 

for each soil sample using pipette method described by Gee and Bauder (1986). Ksat (inch hr-1) 

was estimated using Rosetta neural network pedotransfer function in Hydrus-1D that uses input 

data of sand, silt, clay percent, bulk density (g cm-3), water contents at 33 and 1500 kPa suctions 
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(cm3 cm-3) (Schaap et al., 2001; Simunek et al., 2008). Pressure plate apparatus were used to 

determine water contents at 33 and 1500 kPa suctions (e.g. Richards, 1948). 

Rainfall and potential evapotranspiration 

Rainfall and potential evapotranspiration as recorded by the weather station were 

downloaded from the North Dakota Agricultural weather network (NDAWN) 

(https://ndawn.ndsu.nodak.edu/) for each weather station. Rainfall was measured hourly at a one-

meter height above soil surface using TE525 tipping bucket rain gauges (Texas Electronics TR-

525I, Dallas Texas) at every NDAWN weather station. Each bucket tip measures 0.254 

millimeters of rainfall. Potential evapotranspiration (PET) is the estimate of the maximum daily 

crop water loss when water is readily available. It is calculated using Penman equation (Penman, 

1948) that use soil radiation, dew point temperature, and wind speed and air temperature. The 

four-day cumulative rainfall and PET was calculated by adding preceding 4 days values of 

rainfall and PET in mm. 

Machine learning procedures 

The machine learning procedures were done using the R environment software (R 

Development Core Team 2020). The caTools R package was used to handle training and testing 

the dataset and Metrics package was used to calculate RMSE and MAE for all models. 

Karatzolou et al., (2004) suggested the use of kernlab R-package along with eps-

regression SVM type, radial kernel, cost value of 1, gamma value of 0.04167 and epsilon value 

of 0.1 to execute SVR function for analysis. Liaw and Wiener (2015) have used randomForest 

R-package to implement random forest regression model and used values for ntree, mtry and 

nodesize as 1000, 4 and 1, respectively. 
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BRT algorithm was implemented using gbm R package and CART algorithm using rpart 

R package. Similarly, neuralnet package (Gunther and Fritsch, 2010) was used for ANN 

algorithm, which depends on two other packages grid and MASS (Venables and Ripley, 2002). 

The metrics R package is used in supervised machine learnings and it implements metrics for 

regression, classification, and information retrieval problems.  The iml R-package is used for 

predictor variable importance and accumulated local effects plots. 

The entire set of data are divided in 70-30%, where 70% of data are used as training set 

and 30% of data are used for testing (i.e., validation). The testing set was used to evaluate final 

trained models. All the training sets have samples from all the seven sampling dates throughout 

the study period. Twelve predictor variables were used as input variables viz., station soil 

moisture, crop type, crop residue content, four-day cumulative rainfall and PET, station bulk 

density and Ksat, field bulk density and Ksat, sand, silt and clay percent to predict field soil 

moisture (dependent variable). 

Statistical analysis 

Model performance 

The model was developed based on the training dataset and the performance of the model 

is evaluated based on the testing dataset also known as validation. Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE) and coefficient of determination (r2) are used as tool to 

measure the performance of different models and are determined as follows: 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1 ,  (2.2) 

 𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑖−�̂�𝑖)2𝑁
𝑖=1

𝑁
, (2.3) 

 𝑟2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑁

𝑖=1
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,  (2.4)   
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Where N, y, ŷ, ȳ denotes number of observations, measured value, predicted value and mean of 

measured value, respectively. Scatter plot and box plots were used to show relationship between 

the observed and predict soil moisture for different machine learning models. 

Soil moisture (VWC) of crop field was set as the dependent variable, whereas predictor 

variables were VWC of weather station, bulk density and Ksat of crop field and weather station, 

crop type, distance from crop field to weather station, sand, silt and clay percent of crop field, 

residue cover, four-day cumulative rainfall, and PET.  

Variable importance 

Each predictor variable has an impact on the model generated by the machine learning 

algorithm, the statistical significance can be measured using the variable importance. RFR 

algorithms calculate variable importance internally in the form of increase on the RMSE, 

whereas, BRT determines variable importance as percentage. On the other hand, the CART 

model derives the variable importance as the relative contribution of the predictor variable to 

field soil moisture. 

Loss of mean absolute error (MAE) can characterize the influence of the predictor 

variable in the generated model and showed a level of effect if not considered on the prediction 

model. This loss of MAE was implemented using the iml R-package and showed 5% and 95% 

quartile of the loss of MAE due to the particular model.  

Effect of predictor variables 

Apley (2016) and Greenwell (2017) have proposed the concept of accumulated local 

effects (ALE) plots to establish relationship between the predictor variables and generated 

output. ALE plots are used to study the relationship between the outcome of machine learning 

models and predictor variables. Machine learning algorithms can use a lot of variables in 
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prediction models but few variables have huge impacts when compared to others. In this study, 

the top four predictor variables were selected based on the variable importance and ALE plots 

were created using iml R-package. ALE plots construct unbiased plots even when the variables 

under study are correlated (Apley, 2016). ALE values in the plot showed the effect of a variable 

on the outcome at certain values when compared to the average prediction and center values 

indicate the mean effect as zero. Molnar (2019) gave an example on ALE estimate of -2 when 

variable interest has value of 3, then it can be understood that the prediction is lowered by 2 

compared to average prediction. 

Result and Discussion 

Model performance 

Machine learning algorithms tested for performance based on the MAE, RMSE and r2 

are presented in Table 2.1. The best performance was observed under RFR and BRT models and 

have values of MAE less than 4%. The RMSE of the predicted soil moisture using five 

difference machine learning algorithm ranges from 0.045 to 0.085 m3 m-3. The RFR model 

outperformed other models based on the lowest RMSE value of 0.045 m3 m-3 and higher r2 value 

of 0.72. After RFR model, SVR and BRT performed well based on the RMSE (0.050 m3 m-3, 

0.048 m3 m-3), MAE (0.039 m3 m-3, 0.037 m3 m-3) and r2 (0.65, 0.67) values, respectively. 

The soil moisture estimates from difference models for testing phase are shown in Figure 

2.2. The RFR, BRT and SVR model performed reasonably well in capturing the soil moisture 

prediction in the scatter plot diagrams. The RFR model can capture the extremes (low and high 

values) in soil moisture content depicted by most of the sample points lying on and around the 

bisector line. There are few sample points which lie far away from the bisector line representing 

poor estimates (too high or too low). The soil moisture estimates for the BRT and SVR models 
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showed they can depict soil moisture prediction with slope values of 0.69 and 0.65, respectively.  

MLR and ANN models showed poorer performance (0.58, 0.53) in terms of spread along the 

bisector line for the test data. 

Table 2.1. Comparison of the machine learning algorithms for soil moisture prediction using 

coefficient of determination (r2), root mean squared error (RMSE) and mean absolute error 

(MAE). Algorithms included classification and regression trees (CART), multiple linear 

regression (MLR), random forest regression (RFR), support vector regression (SVR), boosted 

regression trees (BRT), and artificial neural networks (ANN). 

Algorithms r2 RMSE MAE 

CART 0.57 0.056 0.045 

MLR 0.52 0.059 0.046 

RFR 0.72 0.045 0.034 

SVR 0.65 0.050 0.039 

BRT 0.67 0.048 0.037 

ANN 0.53 0.085 0.068 

 

Box plots depicting the median and percentiles (5th, 25th, 75th and 95th) of the testing data 

set for both the measured and predicted soil moisture is shown in Figure 2.3. The horizontal line 

inside the box shows the median value and box represents the 25th and 75th percentile 

(interquartile range) values whereas the whiskers extend from 5th to 95th percentile values. The 

dashed line inside the box represents the mean of the measured data for testing phase. The RFR 

model shows that the mean of the measured soil moisture is represented by the median of the 

estimated soil moisture. The RFR model performs well for estimating both low and high soil 

moisture values as the 5th and 95th percentile whisker of the measured soil moisture and predicted 

soil moisture satisfactorily matches. RFR followed by SVR and BRT models were able to 

capture the relationship between the soil moisture at each field with VWC as recorded at each 

pertinent weather station, rainfall, PET, crop and soil factors with lower RMSE and MAE.  

The RMSE, r2 and MAE values for the six different machine learning model showed 

RFR, SVR and BRT has RMSE less 0.05 m3 m-3 and satisfactory r2 values (0.65-0.67) whereas, 
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remaining three models had RMSE higher than 0.05 m3 m-3 and r2 lower than 0.60. This showed 

RFR as the best model compared to other machine learning models due to powerful averaging 

capacity of all the random trees generated by the model based on the number of parameters used 

to predict soil moisture (Matei et al., 2017). The results for scatter (Figure 2.2) and box plots 

(Figure 2.3) indicated that the difference in soil moisture estimates can be due to the cumulative 

effect of soil and crop types and change in micro-climate variables (i.e., rainfall and PET). The 

relatively high accuracy of RFR and BRT models is consistent with other studies that find 

ensemble decision-based regression models perform better than many other machine learning 

models (Caruana and Niculescu-Mizil, 2006); particularly in terrain and soil spatial predictions 

(Hengl et al., 2018; Nussbaum et al., 2018; Keskin et al., 2019; Szabo et al., 2019; Araya et al., 

2020). The scatter plots and box plots showed that CART, MLR, and ANN models do not 

capture the extreme values in the prediction of soil moisture as well as the RFR, BRT and SVR 

models. Results showed that machine learning model such RFR, BRT and SVR outperformed 

ANN, MLR and CART models, possibly due to the carefully selected parameter optimization 

algorithm used to train the model. Superiority of RFR and SVR over the other models has also 

been reported various studies (Kalra and Ahmad, 2009; Dibike et al., 2001; Asefa et al., 2006; 

Gill et al., 2006; Liong and Sivapragasam, 2002; Achieng, 2019).  
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Figure 2.2. Scatter plot showing observed versus predicted volumetric water content (m3 m-3) 

during the testing phase along with regression coefficient (r2) and root mean square error 

(RMSE) for six different machine learning models. Algorithms included classification and 

regression trees (CART), multiple linear regression (MLR), random forest regression (RFR), 

support vector regression (SVR), boosted regression trees (BRT), and artificial neural networks 

(ANN). 



 

59 

 

Figure 2.3. Box plots depicting the spread of observed and predicted soil moisture (m3 m-3) 

during the testing phase for six different machine learning models. The box shows the 

interquartile range (25th-75th percentile). The whiskers extend from 5th to 95th percentile values. 

The solid line inside the box shows the median value (50th percentile) and the dashed line 

represents the mean value of the observed soil moisture during testing phase. Algorithms 

included classification and regression trees (CART), multiple linear regression (MLR), random 

forest regression (RFR), support vector regression (SVR), boosted regression trees (BRT), and 

artificial neural networks (ANN). 
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The SVR model provides an appropriate choice of kernels that allow non-separable data 

in original space to become separable in the feature space. This subsequently helps to obtain non-

linear algorithms from algorithms previously restricted to handling linearly separable data sets 

(Karandish and Simunek, 2016; Bray and Han, 2004). Similar results of SVR model performance 

over other machine learning models was also observed by Karandish and Simunek (2016) in soil 

water content prediction under water stress condition; Pal and Mather (2003) for land cover 

classification; and Gill et al., (2006) for soil moisture prediction in Southwestern Oklahoma. The 

CART model performed better than the MLR with the formation of binary tree using binary 

recursive partitioning that yields the maximum reduction in the variability of the response 

variable (Stewart, 1996). The soil moisture estimation using CART model has also been 

successfully reported by Han et al. (2018). 

Importance of predictor variables 

The predictors’ variables importance was determined for the three tree-based machine 

learning models. The variable importance for CART, RFR and BRT models are separated based 

on the weather station variables (5) and crop field variables (8) (Figure 2.4). The CART and 

BRT models measure variable importance (as a percentage) by the relative contribution of each 

variable to the output (crop field soil moisture). However, the RFR measures variable importance 

based on the percent increase in root mean square error (RMSE) after removing a particular 

variable and compared with the previous value. The higher the value of percent increase in 

RMSE, the more important is the variable for soil moisture prediction. 

All three models showed soil moisture at the weather station to have the high relative 

influence for the moisture prediction at nearby fields. This was followed by the four-day 

cumulative rainfall as PET as the next most important variable. For the CART model, the 
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weather station VWC, four-day cumulative rainfall and four-day PET had 29%, 20% and 21% 

relative importance, respectively, in predicting field soil moisture, followed by the weather 

station’s bulk density (8%), the crop field’s Ksat (6%) and the weather station’s Ksat (4%). 

Similarly, the BRT model showed that the weather station VWC, four-day cumulative rainfall 

and four-day PET had the highest influence at 32%, 32%, and 16%, respectively. This was 

followed by the crop field’s clay content and Ksat, which both contributed 4%. Among the 

CART and BRT models, the weather station VWC, rainfall and PET were the dominant variables 

for predicting nearby crop field soil moisture. For the RFR model, the four-day cumulative 

rainfall, four-day PET, weather station VWC and crop field’s Ksat had 43%, 40%, 39% and 38% 

increase in the RMSE, respectively, when they were left out of the model, indicating their 

relative importance. The soil sand, silt and clay contents had 29%, 30% and 34% increase in 

RMSE, respectively, while the remaining variables ranged from 23% to 28%.  

Another way to evaluate variable importance is by the loss of MAE, which is presented in 

Figure 2.5. Similar to the previous measures of variable importance, all models showed weather 

station VWC, four-day cumulative rainfall and PET as the variables with highest importance 

followed by the silt and clay content from the crop field. The range of loss in MAE was highest 

in the RFR model (1.6-2.5) as compared to the other models (1.2-1.6). 
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Figure 2.4. Variable importance for three tree-based model types: a. classification and regression 

trees (CART), calculated as the relative influence (%); b. random forest regression (RFR), 

calculated as the increase in mean squared error (MSE) (%) and c. boosted regression trees 

(BRT), calculated as the relative influence (%). Out of 13 predictor variables first 8 represents 

field and remaining 5 represents station variables. As the calculation of variable importance 

differs among CART, RFR and BRT, only the ranking of the variables can be compared, but not 

the absolute values. 

These findings are in accordance with Araya et al. (2020), where precipitation was one of 

the top four important variables for moisture prediction in grassland catchment area of 
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California, and with Revermann et al. (2016) study where precipitation related variables had high 

influence on the soil moisture. This is expected since rainfall, and evapotranspiration, have a 

direct influence on the soil moisture (Brocca et al., 2007; Cosh et al., 2004; Ziadat and Taimeh, 

2013). Our study also reveals that Ksat of both the nearby crop field and at the weather stations 

were the next most influential variables for predicting soil moisture.  This is due to Ksat being a 

governing property for water flows in the soil (Zhang, 1997) and well known to have high spatial 

variability (Upchyrch et al. 1988). Additionally, soil particle sizes in the crop fields are an 

important variable since these govern pore sizes and their ability to retain water in the field (Li et 

al., 2014; Manns et al., 2014). Other variables under this study (i.e., residue cover, crop type and 

distance from station) showed little influence on the ability to accurately predict soil moisture by 

these machine learning models, which corroborates Araya et al., (2020), Kravchenko et al. 

(2011), and McIsaac et al. (2010) studies. 
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Figure 2.5. Feature importance of predictor variables for five different machine learning model 

based on the loss of mean absolute error (MAE) along with 5th to 95th percentile values. 

Algorithms included classification and regression trees (CART), multiple linear regression 

(MLR), random forest regression (RFR), support vector regression (SVR), and boosted 

regression trees (BRT). 
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Accumulated local effect (ALE) of predictor variables 

The ALE of predictor variables on predicting soil moisture with the various machine 

learning algorithms were evaluated graphically (Figure 2.6). The variables previously determined 

to have a high relative influence (i.e., importance) were graphed, which included the weather 

station’s VWC, four-day cumulative rainfall, four-day cumulative PET and Ksat. The ALE plots 

show the predicted soil moisture generally increase with higher values of weather station VWC. 

The CART model showed stationary ALE values except for a sharp increase at 0.25 m3 m-3 in 

the weather station VWC. This sharp increase in ALE is likely due to the single tree structure of 

the CART model. In contrast, the RFR model (an ensemble of thousands of trees) showed a 

gradual sigmoidal increase in the ALE values with station VWC values. This same general trend 

was observed in the BRT and SVR models. 

The ALE for predicting the crop field VWC also increased with the four-day cumulative 

rainfall (Figure 6). All four models showed a similar trend with the steepness of the ALE slope 

tending to dissipate with higher weather station VWC and a tendency for the ALE to flatten 

between 10-25 mm of cumulative rainfall. For the four-day cumulative PET, the ALE was 

generally stationary until 23 mm of PET, after which the ALE decreased as the PET increased. 

The only exceptions were slight irregularities in the ALE near 25 mm of PET. This showed that 

cumulative PET less than 23 mm has no effect on the moisture prediction and have inverse effect 

on the predicted soil moisture. In this study, the ALE plots showed that station Ksat have 

minimal effect on the predicted soil moisture. Although there was a slight decrease in predicted 

soil moisture between 1.5-1.7-inch hr-1 in RFR and BRT models, the other models showed only 

stationary AEL values at zero. 
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Figure 2.6. Accumulated local effect plots for (a) weather station VWC, (b) four-day cumulative rainfall, (c) four-day cumulative 

potential evapotranspiration (PET) and (d) weather station saturated hydraulic conductivity (Ksat) under four machine algorithms 1. 

Classification and regression trees (CART), 2. Random forest regression (RFR), 3. Boosted regression trees (BRT) and 4. Support 

vector regression (SVR) for model training datasets. 
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Overall, the cumulative rainfall, PET and weather station VWC are the most important 

predictor variables for soil moisture prediction in nearby crop fields, which also contain dynamic 

local effects. For instance, there were particular points for each of predictor variables (i.e., 0.25 

m3 m-3 for the weather station VWC, 10 mm for the cumulative rainfall, and 23 mm for PET) 

which led to large changes in the crop field soil moisture predictions. In Araya et al. (2020), 

similar dynamics were observed among predictor variables (topography, curvature and flow 

accumulation) on soil moisture estimates using ALE plots for a BRT model. Similarly, other 

studies have showed the significant effect of cumulative rainfall and PET on predicting soil 

moisture, for example, Entekhabi and Rodriguez-Iturbe, (1994), Pan et al., (2003), and Brocca et 

al., (2013). 

Conclusion 

Machine learning algorithms can be used effectively in predicting field soil moisture. 

These algorithms are based on different principles (regression trees, kernels, and regression) and 

results in different levels of effectiveness in prediction. Successful soil moisture prediction 

involves establishing the effect of each variable on the output (variable importance). The RFR, 

BRT and SVR predictions performed better than the remaining algorithms based on high 

correlations, low RMSE and MAE, during model validation using an independently derived 

dataset. The weather station variables (station soil moisture, four-day cumulative rainfall, and 

PET) were relatively more influential than the soil and crop variables for predicting field soil 

moisture in the nearby plots. 

In summary, the following conclusions can be drawn from this study: 

• RFR, BET and SVR outperformed other models in soil moisture prediction based on 

the r2, RMSE and MAE values. 
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• RFR showed the highest r2 (0.72), and lowest MAE (0.034 m3 m-3) and RMSE (0.045 

m3 m-3). 

• RFR, CART and BRT showed the weather station soil moisture, four-day cumulative 

rainfall and PET have a high influence compared to soil and crop factors on 

predicting soil moisture in nearby crop fields.  

• ALE plots showed the weather station moisture, four-day cumulative rainfall and PET 

as the most important predictor variables for soil moisture prediction close to crop 

fields. 
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CHAPTER III. AN INTEGRATED RANDOM FOREST–OPTRAM ALGORITHM 

PERFORMED BETTER THAN VEGETATIVE INDICES AND OPTRAM FOR 

MAPPING SURFACE SOIL MOISTURE FROM LANDSAT 8 IMAGES 

Abstract 

Remote sensing tools have been extensively used for large scale soil moisture mapping in 

recent years using Landsat satellite images. Rainfall, soil clay percent, standardized precipitation 

index play key roles in the moisture content of the crop field. Large scale soil moisture 

prediction required to process large amounts of data and machine learning algorithms effectively 

used. The objective of this study was to (i) obtain representative soil moisture dataset across 

agricultural geographic region with complex mosaic of crop species and soil management, (ii) 

calculate and determine the effectiveness of vegetation indices in predicting surface soil 

moisture, (iii) predict surface soil moisture from satellite images using (Optical Trapezoid Model 

(OPTRAM), and (iv) evaluate if the OPTRAM predictions can be improved by incorporating 

weather station, soil and crop data with a random forest machine learning algorithm. ENVI® 

platform was used to create vegetation indices maps and google earth engine (GEE) was used to 

prepare OPTRAM maps. Random forest regression was performed on the R-software platform. 

Results showed a very weak relationship between the vegetation indices and surface soil 

moisture content where r2 and slopes were ˂ 0.10 and ˂ 0.20 respectively. OPTRAM soil 

moisture when compared with in situ surface moisture showed weak relationship with regression 

values ˂  0.2. Surface soil moisture was then predicted using random forest regression using 

OPTRAM moisture values, rainfall, standardized precipitation index (SPI) and percent clay 

showed high goodness of fit (r2=0.69) and low root mean square error (RMSE = 0.053 m3 m-3). 

This showed that rainfall, SPI and percent clay are important infield characteristics that can be 
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used along with OPTRAM moisture values to improve soil moisture prediction in the 

agricultural field. The surface soil moisture prediction model was developed using OPTRAM 

values, rainfall, SPI and percent clay map for the Red River Valley of North. 

Key words: OPTRAM, random forest, vegetation indices, soil moisture prediction 

Introduction 

Remote sensing has been used as an advance tool for agricultural interpretation (Lillesand 

et al., 2008). A prime area of research in agriculture is the in-field variability of plant water stress 

across large scales, which directly relates to in-field soil moisture (Bastiaanssen et al., 2000). 

Estimation of surface soil moisture provides farmers with key information on water stress, which 

aids crop yield projective, assessment of drought and excessive water conditions, and informs 

water management practices (e.g., irrigation, drainage) (Penuelas et al., 1993; Tucker, 1980). 

Remote sensing can be effectively used to estimate soil moisture because soil optical reflection 

and thermal emissions are highly correlated with soil moisture (Zeng et al., 2016; Zhang and 

Zhou, 2016). Remotely sensed visible and thermal infrared wavelengths provide more 

information when combined, rather than alone (Zhang et al., 2014). However, spatial and 

temporal information are needed to produce precise and accurate estimates (Zhang and Zhou, 

2016). Remote sensing techniques provide tools for mapping soil moisture at large spatial and 

temporal scales (Das and Paul, 2015). Several mathematical models using remotely sensed data 

have been developed to estimate soil moisture using satellite optical image datasets, such as 

Landsat and sentinel that are freely available. Remote sensing provides time and cost-effective 

data, which are valuable for soil moisture estimation at regional and national level using various 

techniques (Verstraeten et al., 2008; Wang and Qu, 2009; Peng et al., 2017). There are numerous 

methods used in remote sensing to estimate soil moisture. All these methods are based on the 
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type of image used, such as microwaves (Francois, 2000), thermal, visible and infrared (Sobrino 

and Raissouni, 2000), radiometric behavior of infrared waves (Levit et al. 1990), and the use of 

relationships between surface temperature and fractional vegetation cover to estimate soil 

moisture (Dupigny-Giroux and Lewis, 1999). Vegetation indices can be misleading for 

estimating soil moisture due to the time lag between changes in soil moisture and corresponding 

changes in the vegetation indices (Sandholt et al. 2002; Tadesse et al., 2005) 

Vegetation indices 

One common approach to estimate soil moisture across landscapes has been to derive 

moisture from proxy measurements like vegetation indices derived from satellite imagery.  For 

instance, investigators have used reflectance data to estimate soil moisture by the greenness and 

water content in the leaves of crop canopies, such as Normalized Difference Vegetation index 

(NDVI) (Rouse et al., 1973) and Normalized Difference Water Index (NDWI) (Gao, 1996). 

NDVI is a routinely produced and used product for indicating vegetation water content, soil 

moisture, and crop yield prediction. NDVI has limitations for estimating soil moisture because 

each crop species has its own unique relation with chlorophyll content, and a decrease in 

chlorophyll does not imply low soil moisture (Ceccato et al., 2001). Jackson et al. (2004) found 

NDWI as a superior index to NDVI for estimating soil moisture. For examples, in maize, they 

reported that NDVI and NDWI have a root mean square error (RMSE) of 0.735 and 0.576 kg m-2 

with a bias of 0.336 and -0.010 kg m-2, respectively. Similarly, in soybean, RMSE of 0.203 and 

0.171 kg m-2 with bias of 0.071 and -0.015 kg m-2 were observed for NDVI and NDWI, 

respectively. NDWI determines the water volume per leaf, which mostly depends on the leaf area 

index and crop canopy and not necessarily soil moisture content. Other vegetation indices such 

as Normalized Difference Moisture Index (NDMI), Enhanced Vegetation Index (EVI), 
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Atmospherically Resistant Vegetation Index (ARVI), and Structure Insensitive Pigment Index 

(SIPI) have been used to established relationships with soil moisture using different bands 

(green, blue, red, infrared, short-wave infrared). These indices have been successful in some 

region-specific cases, but not generally across all cases and lacks wide application (Jackson et 

al., 2004).   

Physically-based models 

Physically-based models are commonly preferred over the empirical vegetation indices, 

but they also have their own limitations due to various confounding factors and the need for 

specific parameters.  For instance, land surface temperature (LST) has been used as key 

parameter that relates with surface energy and water balance at local and large scales and helps 

in monitoring climate, vegetation and hydrological cycles (Liang, 2004). Energy is exchanged 

between land surface and atmosphere when soil moisture evaporates into atmosphere. This 

demonstrates that soil moisture not only depends on rainfall but also on soil surface temperature. 

The triangle (NDVI-LST) method is a widely used model (Rahimzadeh-Bajgiran et al., 2013; 

Shafian and Mass, 2015; Sun, 2016) for estimating soil moisture, but it has two major 

limitations. The first limitation is the requirement of thermal data, which is not applicable to all 

types of satellite images. The second limitation is that LST is affected by wind speed, air 

temperature, and humidity.  

To overcome these two limitations, Sadeghi et al. (2017) proposed the physically-based 

Optical Trapezoidal Model (OPTRAM) for soil moisture estimation. This model uses Short 

Wave Infrared (SWIR) transformed reflectance (STR) instead of LST. This results in the STR-

NDVI space to remain nearly time invariant because reflectance is a function of only the surface 

properties and not the ambient atmospheric condition as LST. The OPTRAM model forms a 
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trapezoid space using both NDVI as a measure of vegetative fraction and the STR to establish 

the linear relationship for dry and wet edges that helps to estimate soil moisture. STR does not 

significantly change with ambient atmospheric condition and can be universally parameterized 

for a given location. The combination of vegetation indices and STR can provide useful 

information for detection of spatial and temporal distribution of soil moisture. Additionally, 

researchers have used historical meteorological records to develop time-invariable coefficients, 

which are used with remote sensing data such as LST and STR to estimate soil moisture (Leng et 

al., 2016). This is important in improving the spatial and temporal resolution of surface soil 

moisture information for precision agriculture. There is great potential of using optical/thermal 

satellite images and meteorological data to develop an all-weather soil moisture model (Leng et 

al., 2017).  

However, soil moisture mapping using satellite image processing may not provide 

accurate values in all cases, because field soil moisture is dependent on a suite of complex 

factors (canopy, crop type and growth stage, crop residue, soil type). In addition to field 

conditions, rainfall is another important factor affecting soil moisture content. There has been 

significant work in establishing relation between rainfall and soil moisture, so that rainfall data 

can be used to predict soil moisture. Brocca et al. (2013) found four-day cumulative rainfall can 

be effectively used to predict soil moisture with correlation coefficient values of 0.8 and root 

mean square error (RMSE) of 1.36 mm day-1. Standardized Precipitation Index (SPI) is used to 

measure precipitation change over time at different time scale level (1, 3, 6, 12 months) and is a 

valuable tool for indicating meteorological drought using past rainfall patterns.  
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Potential for machine learning to overcome challenges with OPTRAM 

Despite the progress for estimating high-resolution soil moisture across large areas, an 

integrated approach to predict soil moisture with the use of meteorological data, crop and field 

data and remote sensing images has been lacking (Yu et al., 2017). Additionally, some studies 

have reported poor performance of the OPTRAM model for specific regions. For instance, 

Babaeian et al. (2018) observed r2 values from 0.01 to 0.49 and RMSE ranges from 0.05 to 0.08 

m3 m-3 soil moisture in the United States. Yadav et al. (2019) reported accuracies of less than 

10% when compared with other models (thermal) for the Lalitpur district of India. Yadav et al. 

(2019) concluded this reduced accuracy might be due to lack of penetration of optical bands in 

the fully or densely covered vegetation. Similarly, Chen et al. (2020) evaluated OPTRAM soil 

moisture estimates using MODIS data and observed r2 values of 0.10 to 0.50 with RMSE’s from 

0.05 to 0.13 m3 m-3, respectively. They suggested the poor performance between the OPTRAM 

soil moisture estimates and in situ soil moisture might be due to rough image resolution and 

heterogenous terrains (Chen et al., 2020). 

These studies characterized the spatial distribution of surface soil moisture solely by 

using remote sensing. Very few studies have been conducted to incorporate climatic conditions 

and geographical or field and crop characteristics (Vicente-Serrano et al., 2004). As part of the 

surface-atmosphere energy flux, parameters such as precipitation, LST and ET can substantially 

modify soil moisture across the landscape (Alfieri et al., 2008; Hu et al., 2017). Recently, 

machine learning techniques have become useful in predicting soil moisture under different field 

conditions. Machine learning techniques have the advantage and ability to learn and approximate 

complex non-linear mapping while requiring no assumptions on the distribution of the data. 

Machine learning techniques can also integrate data from different sources with poorly-defined 
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or unknown probability density functions (Ali et al., 2015). For example, Ali et al. (2015) and 

Paloscia et al. (2008) showed machine learning techniques (e.g., Artificial Neural Network, 

Support Vector Regression) can outperform other parametric approaches for estimating soil 

moisture and improved their performance with an increasing number of observed datasets. 

Therefore, integrating meteorological data from weather Mesonet and field characteristics (soil 

and crop data) along with OPTRAM soil moisture values in a machine learning algorithm has the 

potential to be a valuable tool in mapping high-resolution soil moisture across large areas. 

Study objectives 

The objectives of this study were to (1) obtain a representative surface soil moisture 

dataset across an agricultural geographic region with a complex mosaic of crop species and soil 

management on dates aligned with the Landsat 8 satellite, (2) calculate and determine the 

effectiveness of vegetation indices in predicting surface soil moisture, (3) predict surface soil 

moisture from the satellite images using OPTRAM, and (4) evaluate if the OPTRAM predictions 

can be improved by incorporating weather station, soil, and crop data with a Random Forest 

machine learning algorithm. 

Material and Methods 

Study area 

The study area covered eight counties of North Dakota and seven counties of Minnesota 

that lies on either side of Red River of North (Latitude = 45.96 to 48.99 and Longitude = - 95.51 

to - 98.01). Surface soil moisture was collected for 2019 crop growing season. Maize (Zea mays 

L.), soybean (Glycine max (L.) Merr.), wheat (Triticum aestivum L.), barley (Hordeum vulgare 

L.), sugar beet (Beta vulgaris), canola (Brassica napus), sunflower (Helianthus annuus L.), 

potato (Solanum tuberosum L.), dry beans (Phaseolus vulgaris), and oats (Avena sativa L.) are 
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major crops grown in the Red River Valley of North (RRVN). Twenty-five weather stations 

(NDAWN, 2020) distributed over counties of MN (n=10) and ND (n=15) were selected for this 

study that covers the RRVN (Figure 3.1).  

 

Figure 3.1. Location of NDAWN stations in counties of ND and MN around the Red River 

Valley of North. 
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Field data collection 

Soil samples were collected from the 25 weather stations and three adjacent crop fields 

within 2 Km of each weather station (i.e., 100 sample collection sites). Samples from all 100 

collection sites were obtained at 16 days intervals, coinciding with the Landsat 8 satellite passing 

days (June 18 to September 29, 2019). The adjacent crop fields near the weather stations were 

planted with soybean (n = 24), wheat (n = 18), corn (n = 16), sugar beet (n = 6), dry beans (n = 

5), oats (n = 2), barley (n = 1), potato (n = 1), canola (n = 1) and alfalfa (n = 1). At each 

collection site, three composite soil samples (0 – 6 cm) were collected and averaged to get a 

representative surface soil moisture. Gravimetric water content was calculated using oven drying 

method and volumetric water content (VWC) was determined by multiplying the bulk density 

with the gravimetric water content (Reynolds, 1970). Growth stages of crops were monitored 

following the standard methods by United States Department of Agriculture (USDA, 2020) for 

each cropped field and recorded every 16 days.  

Satellite image processing  

Vegetation indices 

Multispectral NASA Landsat 8 (L8) satellite images were acquired from the United 

States Geological Survey (USGS) Earth explorer (URL: https://earthexplorer.usgs.gov/) for the 

study area. Landsat-8 houses the Operational Land Imager (OLI) and the Thermal Infrared 

Sensor (TIRS), which image the land surface at 11 spectral bands in the optical and thermal 

infrared domains with 30 m to 100 m spatial resolution and 16-day temporal resolution. A total 

of 28 level-1 L8 images acquired in the 2019 growing season were used in this study (Table 3.1). 

The Fmask algorithm was used to detect and remove clouds and cloud shadows for all Landsat 

imagery (Zhu et al., 2015). 
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Radiometric corrections of the multispectral bands were performed using the Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) toolbox, included in the 

Environment for Visualizing Image (ENVI) 5.5 software (https://www.harrisgeospatial.com/). 

The FLAASH atmospheric correction algorithm was chosen due to its better performance 

compared to algorithms, such as Quick Atmospheric Correction (QUAC) and Dark Object 

Subtraction (DOS) (Shi et al., 2016). After removing clouds and obtaining the atmospheric 

corrected bands, a variety of vegetation indices were calculated for each pixel as described 

below. 

Table 3.1. List of the Landsat 8 image (path/row) acquired over the study area covering weather 

stations in 2019. 

Path/Row Weather station Date Sampled (2019) 

29/28 Campbell, Mooreton, Wahpeton, Fargo 

Sabin 

6/11, 6/27, 7/13, 7/29, 8/14, 8/30, 9/15 

30/26 Forest River, Inkster, Warren, Grafton, 

St. Thomas, Kennedy, Cavalier, 

Humboldt 

6/18, 7/4, 7/20, 8/5, 8/21, 9/6, 9/22 

30/27 Leonard, Sabin, Fargo, Ulen, Prosper, 

Galesburg, Perely, Hillsboro, Ada, 

Waukon, Mayville, Finley, Eldred, 

Grand Forks, Forest River, Inkster, 

Warren,  

6/18, 7/4, 7/20, 8/5, 8/21, 9/6, 9/22 

31/26 Grafton, St. Thomas, Kennedy, Cavalier, 

Humboldt, Forest River, Inkster 

6/25, 7/11, 7/27, 8/12, 8/28, 9/13, 9/29 

 

Six vegetation indices were calculate using band math toolbox of ENVI software. These 

indices included Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Water Index (NDWI), Normalized Difference Moisture Index (NDMI), Enhanced Vegetation 

Index (EVI), Structure Insensitive Pigment Index (SIPI) and Atmospherically Resistant 

Vegetation Index (ARVI). The vegetation indices were calculated using equations that involve 

different bands (blue, green, red, NIR, SWIR) and ranges (descriptions shown in Table 3.2). 
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Those images of the vegetation index were processed in ArcGIS pro software and pixel values 

for each location of soil sampling were extracted from the image. These normalized values of 

vegetation indices were then plotted against the measured in-situ surface soil moisture (VWC). 

Table 3.2. List of vegetation indices along with formula to calculate, and their range for Landsat 

8 satellite image used in this study. 

Index Formula for calculation Range Reference 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

NDVI = (NIR - R) / (NIR + R) -1 to +1; Where +1 

represents dense green 

leaves and -1 

represents a likely 

water body  

Tucker, 

1979 

Normalized 

Difference Water 

Index (NDWI) 

NDWI = (Green - NIR) / (Green + 

NIR) 

-1 to +1; Where +1 

represents extensive 

deep-water bodies and 

-1 represents 

vegetation cover  

McFeeters, 

1996; Xu, 

2006; Sims 

and Gamon, 

2003 

Normalized 

Difference 

Moisture Index 

(NDMI) 

NDMI = (NIR - SWIR) / (NIR + 

SWIR) 

-1 to +1; Where +1 

represents high 

canopy cover and no 

water stress and -1 

represents low canopy 

cover to bare soil  

Gao, 1996 

Enhanced 

Vegetation Index 

(EVI) 

EVI = 2.5[(NIR - R) / (NIR + 6R - 

7.5Blue + 1)] 

-1 to +1; healthy 

vegetation generally 

falls between values 

of 0.20 to 0.80 

Liu and 

Huete, 1995 

Structure 

Insensitive 

Pigment Index 

(SIPI) 

SIPI = (NIR - Blue) / (NIR - R) 0 to 2; healthy green 

vegetation is from 0.8 

to 1.8.  

Penuelas et 

al., 1995 

Atmospherically 

Resistant 

Vegetation Index 

(ARVI) 

ARVI = (NIR - 2R + Blue) / (NIR 

+ 2R + Blue) 

-1 to +1 healthy 

vegetation generally 

falls between values 

of 0.20 to 0.80 

Kaufman 

and Tanre, 

1992 

Where, wavelengths range for blue band is 0.450-0.515µm; green band is 0.525-0.600µm; red 

(R) band is 0.600-0.680µm; near infrared (NIR) band is 0.845-0.885µm; and shortwave infrared 

(SWIR) band is 1.560-1.660µm at Landsat 8 satellite image. 
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OPTRAM model 

The OPTRAM model developed by Sadeghi et al. (2017) to estimate soil moisture is a 

physically-based trapezoidal space of pixel distribution within the STR-NDVI space (Figure 

3.2). The NDVI is normalized difference vegetation index and STR is SWIR transformed 

reflectance (Sadeghi et al., 2015). The OPTRAM model only uses optical data, which means that 

no thermal infrared data area is used for retrieving soil moisture. The normalized soil moisture 

content (W) for each pixel was estimated from the dry edge and wet edge parameters as follows:  

 𝑊 =
𝑆𝑇𝑅−𝑆𝑇𝑅𝑑

𝑆𝑇𝑅𝑤−𝑆𝑇𝑅𝑑
, (3.1) 

where, STR is the SWIR transformed reflectance, as follows: 

 𝑆𝑇𝑅 =
(1−𝑅𝑆𝑊𝐼𝑅)2

2𝑅𝑆𝑊𝐼𝑅
, (3.2) 

where, STRd and STRw are STR at the dry (e.g., θd ~ 0%, where θd is soil moisture content) and 

wet (e.g., θs ~ 100%, where θs is soil moisture content) states, respectively, and R is surface 

reflectance for SWIR electromagnetic domain (1650 nm corresponding to band 6 of the Landsat 

8). 

 

Figure 3.2. Sketch illustrating parameters of the optical trapezoidal model (OPTRAM) (Equation 

v). OPTRAM is parameterized based on the pixel distributions within the STR-NDVI space and 

was proposed by Sadeghi et al. (2017). 
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The STR-NDVI space forms a trapezoid shape based on the assumption of a linear 

relationship between soil- and vegetation-water contents. Therefore, the parameters for equation 

(3.1) can be obtained for a specific location in the satellite scene from the dry and wet edges of 

the optical trapezoid;  

 𝑆𝑇𝑅𝑑 = 𝑖𝑑 +  𝑆𝑑𝑁𝐷𝑉𝐼, (3.3) 

 𝑆𝑇𝑅𝑤 = 𝑖𝑤 +  𝑆𝑤𝑁𝐷𝑉𝐼, (3.4) 

where, id and Sd are the intercept and slope of the dry edge and iw and Sw are the intercept and 

slope of the wet edge. Based on the equations (3.1) - (3.4), soil moisture within a given satellite 

image pixel can be estimated from its STR and NDVI values: 

 𝑊 =
𝑖𝑑+𝑆𝑑𝑁𝐷𝑉𝐼−𝑆𝑇𝑅

𝑖𝑑−𝑖𝑤+(𝑆𝑑−𝑆𝑤)𝑁𝐷𝑉𝐼
, (3.5) 

where, the saturation degree W can be expressed as θ (m3 m-3) when multiplied with the soil 

porosity. 

Google earth engine (GEE) was used to process Landsat 8 images for the study period 

and area to obtain soil moisture maps via the OPTRAM model. GEE provides access to archived 

Landsat data, which includes Landsat 5, Landsat 7 and Landsat 8 OLI/TIRS from 2013 (Google 

Earth Engine, 2012; Google Earth Engine: A planetary-scale platform for Earth science data & 

analysis; URL: https://earthengine.google.com; accessed 01/06/2020). GEE was used to obtain 

STR, NDVI and OPTRAM surface soil moisture maps as suggested by Yadav et al. (2019) and 

Huang et al. (2017). 

Standardized precipitation index (SPI) 

The change in precipitation over time has direct impacts on groundwater, reservoir 

storage, surface soil moisture, snowpacks and stream flow. SPI is a statistical method for 

assessing rainfall developed by McKee et al (1993). It is often preferred over the mean 

https://earthengine/
http://google.com/
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precipitation as a representation of what is the normal daily rainfall. For calculating SPI, the 

observed rainfall values from previous years are fitted to a gamma distribution and then 

transformed to a Gaussian distribution (Abramowitz and Stegun, 1948). For this study, we used 

R statistical software 2020 using the precintcon R-package.  

SPI was designed to quantify the precipitation deficit for multiple timescales, which 

reflects the impact of drought based on the rainfall in specific year. In this study, we are 

establishing precipitation and surface soil moisture that responds on a relatively short time scale. 

Precipitation data were collected from the weather stations since their establishment date and the 

SPI was calculated. The SPI values range from ±2, where +2 is extremely wet, -2 is extremely 

dry, and -1 to +1 is near normal conditions (NDMC, 2008). For this study, we calculated 

monthly SPI values that displayed the percentage of normal precipitation for 30-day periods. 

Model development and workflow 

The following paragraphs describe the model development and workflow for objectives 

2, 3, and 4 in this study (Figure 3.3). For objective 2, the Landsat 8 images for the study area 

through the 2019 growing season were processed by using ENVI software to establish 

relationships between the various vegetation indices described in section 2.3.1 above with the 

corresponding in-situ surface soil moisture. For objective 3, Google Earth Engine was used to 

prepare soil moisture saturation maps via the OPTRAM model proposed by Sadeghi et al. (2017) 

and used by Yadav et al. (2019) and Huang et al. (2017). Surface moisture for each location pixel 

was extracted from the OPTRAM moisture map using ArcGIS Pro® to establish relationship with 

in-situ surface soil moisture (Figure 3.3).  
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Figure 3.3. Flow chart showing the Landsat 8 image processing and soil moisture prediction model using Random forest regression 

(RFR) algorithm 

 



 

94 

For objective 4, rainfall data from 25 weather stations for entire 2019 growing season 

were downloaded from NDAWN website (https://ndawn.ndsu.nodak.edu) and four-day 

cumulative rainfall (mm) for each soil sampling dates (day of Landsat 8 satellite overhead pass) 

were calculated. Four-day cumulative rainfall maps were created using the rainfall values and 

ArcGIS Pro® ordinary kriging geospatial tool. SPI maps were also created using ordinary kriging 

for each month based on SPI values previously calculated in the R-software environment. The 

SPI maps were created for three months (June, July and August) (Figure 3.10) and cumulative 

rainfall maps were developed for four dates (June 18, July 20, August 5 and August 21) (Figure 

3.11) for the 2019 growing season. Percent clay were extracted from the map downloaded from 

the University of California Davis – California soil resources lab and extracted for each sampling 

location. The pixel size of the maps was maintained at 30 m × 30 m. 

The OPTRAM model’s soil moisture, four-day cumulative rainfall, SPI and percent clay 

values were all extracted from respective maps for each soil sampling location. These four 

variables were used as predictor variables for in-situ surface soil moisture in a random forest 

regression model (RFR) as described in Breiman (2001). The whole dataset was divided into 

training and testing data at 70:30 ratio. Training dataset was used to develop the random forest 

regression algorithm and testing dataset was used for validation. The validation was assessed by 

the model’s root mean square error (RMSE) and coefficient of determination (r2).  

The trained and validated random forest regression algorithm was then applied to selected 

agricultural fields within Cass County, North Dakota to estimate surface soil moisture. The 

OPTRAM soil moisture, percent clay, four-day cumulative rainfall and SPI was extracted from 

each pixel (30 m × 30 m) in the selected area. The extracted values were then used as input to the 
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trained random forest algorithm in the R-software environment to predict the area’s surface soil 

moisture and the output mapped in ArcGIS Pro® using the pixel-by-pixel method.  

Results 

Relationship between vegetation indices and surface soil moisture 

No relationship was observed between the vegetation indices and the surface soil 

moisture content for the entire study area and growing season (Figure 3.4). The scatter plot 

showed none of the sample points lie around the bisector line (red colored line) for all the 

vegetation indices, with r2 values less than 0.10 and slopes less than 0.20. The NDVI values for 

corn increased with vegetative growth after the emergence until the silking stage (Figure 3.5). 

Afterwards, NDVI values remained the same until the crop started drying and was ready for 

harvest. The rate of increase is different in the soybean and wheat but NDVI values remain 

mostly constant after closure of the leaf canopies and crops grain fill. The NDVI values after 

planting remained the same for 80 days for all crops until drying and harvesting.  

Early in the growing season, there was some bare ground on corn and soybean fields, but 

the wheat field was quickly covered with greenness after emergence. This can be observed in the 

NDMI values (Figure 3.5), where early stages in the corn and soybean crops showed negative 

values; however, there were positive values in the wheat fields. In NDMI values, variation was 

observed until the full canopy was observed in all crops, and not much change was observed 

afterwards. Unlike the NDVI and NDMI, the values are less for NDWI and approaches -1 when 

the crop is at peak vegetative growth. A similar trend to NDVI was also observed with EVI and 

ARVI for all crops and days after planting. SIPI for all crops did not change much with growth 

stages because it is based on the leaf area index, chlorophyll, and carotenoid content. The values 

for each crop are different, but changes within the crop growth stages are minimal.  
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Figure 3.4. Scatter plot showing observed field VWC (m3 m-3) versus vegetation indices (NDVI, 

NDMI, NDWI, EVI, ARVI, SIPI) for 2019 growing season in the RRVN using Landsat 8 images 

along with regression coefficient (r2) and linear equation. 
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Figure 3.5. Changes in the values of vegetation indices (NDVI, NDMI, NDWI, EVI, ARVI, 

SIPI) with the days after planting for three crops (corn, soybean and wheat) for 2019 growing 

season in the RRVN. 
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Surface soil moisture prediction using OPTRAM 

Pixel distribution within the STR-NDVI space for different days (6/18-8/21) did not show 

distinct trapezoidal shapes (Figure 3.6). Each of the six days exhibited a wide range of SRT and 

NDVI values due to variability of soil moisture and land cover. In general, STR and NDVI 

values are larger at the peak vegetative state (7/27/2019) as compared to early and later growth 

stages of crop.  

Soil moisture maps created with OPTRAM model showed the surface soil moisture 

values were higher in the month of July and early August compared to early June and later 

August (Figure 3.7). However, the performance of OPTRAM with predicting the surface soil 

moisture was poor as shown in terms of the regression slope, r2 and RMSE (Figure 3.8). The 

regression slopes for all dates are less than 0.20 with negative slope values on multiple dates. 

Surface soil moisture mapping with a random forest algorithm 

The RFR algorithm’s validation showed a high goodness of fit (r2=0.69) and low RMSE 

value (0.053 m3 m-3) (Figure 3.9) with just the four predictor variables (SPI, four-day cumulative 

rainfall, percent clay values, and the OPTRAM soil moisture). The SPI for each month (June, 

July and August) and four-day cumulative values for the specific dates of satellite passage (June 

18, July 20, August 5 and 15) showed a wide range of values. The SPI values ranged from -0.26 

to 0.94 for June, -0.78 to 1.40 for July and -0.14 to 1.40 for August, 2019 (Figure 3.10). This 

showed that July had normal precipitation over the study area, and July and August months were 

wetter this year compared to previous years. Negative values of the SPI indicate less than median 

precipitation (dry conditions) and positive values showed greater than median precipitation (wet 

conditions). However, four-day cumulative rainfall for June 18 was observed lowest for the 

entire study area (5.38 to 21.55 mm) compared to August 21, which ranged from 0 to 48.20 mm. 
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For July 20 and August 5, the cumulative rainfall was similar ranging from 0 to 37.37 mm and 

0.31 to 37.22 mm (Figure 3.11). Some parts of the study area have not received rainfall for past 

four days in two dates (July 20 and August 21). 

Each pixel values of SPI, four-day cumulative rainfall, percent clay, and OPTRAM soil 

moisture among the select are of agricultural fields in Cass County, ND were used to 

demonstrate mapping of the algorithm’s surface soil moisture (Figure 3.12). The surface soil 

moisture for all four dates ranges from 0.22 to 0.39 m3 m-3. The surface soil moisture values on 

June 18 and August 21 were less compared to July 20 and August 3. 

Discussion 

Surface soil moisture estimation using vegetation indices  

Vegetation indices used in this study are interrelated based on the Landsat 8 bands used 

to calculate them (Figure 3.13). This interrelation is likely part of the reason why all the 

vegetation indices were similar in their poor performance for indicating surface soil moisture. 

The NIR band is common in the calculation of all vegetation indices. In addition to NIR band, 

NDVI used red band, NDWI used green band, NDMI used SWIR band, SIPI used blue band for 

calculation. EVI and ARVI are two indices that have used red and blue bands along with NIR. 

Green vegetation strongly reflects NIR bands and green vegetation is directly related to the 

moisture of soil where it is grown. Red band of the spectrum is absorbed by the vegetation, 

SWIR band discriminates moisture content of soil and vegetation. Blue band is sensitive to the 

chlorophyll and carotenoid molecules of the plant leaf, and the green band boosts water 

information. All the vegetation indices are useful tools to measure greenness based on the crop 

vegetative growth, but are not useful to indicating surface soil moisture in the RRVN.  
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Figure 3.6. Pixel distributions within the SRT-NDVI space for all the image for 2019 growing 

season (6/18 to 8/21) in the RRVN. 
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Figure 3.7. Surface soil moisture maps generated with OPTRAM using Landsat 8 images for 

different dates (6/18, 7/20, 8/5, 8/21) of 2019 growing season in the RRVN. White pixels 

represent maxed pixel due to water bodies, shadows, clouds, and rural/urban areas. 
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Figure 3.8. Soil moisture estimated by OPTRAM compared to field soil moisture for different 

dates during 2019 growing season in the RRVN.  
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Figure 3.9. Scatter plot showing observed versus predicted volumetric water content (m3 m-3) 

during the testing phase along with regression coefficient (r2) and root mean square error 

(RMSE) for random forest regression model. 
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Figure 3.10. Standardized Precipitation Index (SPI) maps created using rainfall data from 25 weather stations by ordinary kriging 

interpolation in the RRVN for June, July and August month of 2019. 
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Figure 3.11. Four-days cumulative rainfall maps created using past four-days rainfall data from 

25 weather stations by ordinary kriging interpolation in the RRVN for 2019 growing season 

(6/18, 7/20, 8/5 and 8/21). 



 

106 

 

Figure 3.12. Predicted surface soil moisture (m3 m-3) for four days (6/18, 7/20, 8/5 and 8/21) over 

selected agriculture field in Cass County within the study area.  
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Figure 3.13. Relationship between the vegetation indices on how they are calculated using 

different Landsat 8 image bands (red, green, blue, near infrared, short wave infrared) and their 

formula. 
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Cushion et al. (2005) also found little to no relationship between NDVI and surface soil 

moisture in time series data. In contrast, Martyniak et al. (2007) claimed that water availability in 

the root zone is one of the main factors controlling crop growth and the vegetation status, hence 

soil moisture can be represented by the NDVI. Wang et al. (2007) concluded mapping root-zone 

soil moisture is challenging because the relationship between NDVI and root-zone soil moisture 

is dependent on the vegetation species and climate zones. They noted NDVI derived from 

satellite images may provide a proxy for root-zone soil moisture mapped at large scales. 

Adegoke and Carleton (2002) found neutron probe measurements of soil moisture taken in forest 

and crop sites are weakly correlated with full-resolution NDVI for each pixel. They also found 

the association measured by Pearson correlation coefficient between NDVI and soil moisture is 

stronger over forest than over the cropland during the growing season. NDVI along with other 

vegetation indices (NDMI, NDWI, EVI, ARVI and SIPI) showed the same trend during the 

growing season for the three major crops in the RRNV of our study. The region of the RRVN in 

this study has a continental climate (Bell and Halpert, 1998), thick underlying glaciolacustrine 

deposits of low permeability, and shallow perched water tables (Remenda et al., 1994). We 

observed that fields did not dry to levels where plants were water stressed enough to affect crop 

physiology and vegetative growth. This may be due to adequate root-zone soil moisture and 

shallow ground water tables serving as a supply of water even when surface soil moisture is quiet 

low. This would likely result in the low variability in the values of vegetation indices.  

Effectiveness of OPTRAM to predict surface soil moisture 

The weak relationship between the OPTRAM model’s estimated soil moisture and the 

actual field surface soil moisture may have been partly due to high values of SRT coupled with 

low NDVI in peak vegetative stage. This can occur when there is water in excess of saturated 
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soil moisture. The soils in the RRVN are derived from an ancient glaciolacustrine lakebed with 

high clay content, poor internal drainage, and are prone to flooding. Water in excess of the 

saturated soil moisture will cause an increase in STR while the actual soil moisture cannot 

increase beyond the saturated soil moisture content (Sadeghi et al., 2015, 2017).  

Similar results were observed by Babaeian et al. (2018) in across the diverse climate of 

the United States, where r2 ranges from 0.01 to 0.49 and RMSE ranges from 5-8%. They used 

the OPTRAM model to estimate soil moisture in Arizona, California and Georgia, and found 

nearly trapezoidal shape by STR-NDVI points. They observed that distributions of STR-NDVI 

points differ with the area under study due to characteristics of climate and land cover. Yadav et 

al. (2019) also used OPTRAM model to predict soil moisture in Lalitpur district of India and 

found the accuracy of this model was less than 10% when compared with other models 

(thermal). However, Yadav et al. (2019) concluded this reduced accuracy might be due to lack of 

penetration of optical bands in the fully or densely covered vegetation. Similarly, Chen et al. 

(2020) evaluated OPTRAM-based soil moisture estimates using MODIS data provide overall 

RMSE from 0.05 to 0.13 m3 m-3, and r2 from 0.10 to 0.50 respectively, which corroborate with 

our results. The poor performance between the OPTRAM soil moisture estimates and in situ soil 

moisture might be due to rough image resolution and heterogeneous terrains (Chen et al., 2020). 

Machine learning for soil moisture prediction 

As anticipated, the RFR algorithm we developed substantially outperformed the other 

methods for predicting soil moisture in the RRVN. Moreover, this was accomplished with very 

few input variables (n=4) from typical weather stations and soil maps. Recently, machine 

learning algorithms for remote sensing data have been used elsewhere to predict soil moisture 

with variable success (Adab et al., 2020; Araya et al., 2020; Li et al., 2020; Satalino et al., 2002; 
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Paloscia et al., 2013). Adab et al. (2020) compared four different machine learning models 

(support vector machine (SVM), artificial neural network (ANN), elastic net regression, and 

RFR) for predicting near-surface soil moisture in semi-arid Iran using Landsat-8 images and 

found highest explanatory ability (NS = 0.73) with RFR algorithm. Similarly, Araya et al. (2020) 

compared five machine learning models (ANN, SVM, support vector regression, relevance 

vector regression, and boosted regression trees) using unmanned aircraft system (UAS) to 

capture reflectance (green, red and near infrared) along with topographic and meteoric (rainfall 

and precipitation) variables to predict surface soil moisture. They found RFR and BRT models 

performed better with error less than 4% volumetric soil water content. 

Overall, the integration of machine learning (particularly RFR) with physically-based 

remote-sensing models and commonly available weather and soil data appears to be a reliable 

tool for estimating and mapping surface soil moisture at high-resolutions across temperate, arid, 

and now frigid soil landscapes, deep and shallow water tables, and with a wide range of 

homogenous and heterogeneous vegetation. Future research efforts should be aimed at directly 

resolving the STR-NDVI space issues of the OPTRAM model in landscapes with frequent or 

prolonged flooding, discontinuous water-filled potholes, and permafrost and/or aimed at 

indirectly resolving them by identifying key parameters to include in the machine learning 

algorithm input.  

Conclusion 

Remote sensing and machine learning are powerful tools that not only can cover a large 

area but also process a large amount of dataset and can be used in moisture prediction. This study 

showed the integrated use of satellite images, weather stations and soil properties to predict 

surface soil moisture of agricultural fields. Six vegetation indices calculated by using ENVI 
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platform showed poor relationship with infield soil moisture. The weak relationship was 

established due to the difference in growth stages of crop and canopy cover. In extreme drought 

conditions vegetation indices may reflect low soil moisture content. OPTRAM soil moisture 

maps developed by using google earth engine also showed weak relationship with infield surface 

moisture content. However, the soil moisture prediction improved significantly after OPTRAM 

values were incorporated with rainfall, SPI and percent clay using random forest regression 

machine learning algorithm. This research proposed an integrated model to predict surface soil 

moisture over a larger area using satellite images and weather stations that are easily available. 

However, this model has to be tested in different areas and consider other possible factors that 

can affect surface soil moisture depending on the landscape and location. 
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GENERAL CONCLUSION 

This study offers evidence that soil moisture can be reasonably represented by using 

information obtained at nearby weather stations despite large differences in soil and crop 

characteristics. The correlation between the soil moisture at weather stations and nearby 

agricultural fields is affected by crop type and their growth stages, crop residue, soil texture, and 

distance from the weather station. Similar associations were observed when crop growth stages 

were at peak vegetative and reproductive stages. However, higher correlations were observed 

with lower crop residue cover of the soil surface and vice-versa. Rainfall and evapotranspiration 

measured at weather stations can be used to estimate soil moisture in these nearby agricultural 

fields. The four-day cumulative rainfall and PET showed higher correlations with field soil 

moisture as compared to other durations. This shows that rainfall and precipitation data can be 

effectively used in the prediction on soil moisture in the nearby fields despite discrepancies in 

soil and crop characteristics. Machine learning algorithms can be used effectively in predicting 

field soil moisture. The RFR, BRT and SVR predictions performed better based on high 

correlations, low RMSE and MAE, during model validation using an independently derived 

dataset. The weather station variables (station soil moisture, four-day cumulative rainfall, and 

PET) were relatively more influential than the soil and crop variables for predicting field soil 

moisture in the nearby plots. 

Remote sensing and machine learning are powerful tools that not only can cover a large 

area but also process a large amount of dataset and are used in moisture prediction. OPTRAM 

soil moisture maps developed by using google earth engine showed weak relationship with 

infield surface moisture content. However, the soil moisture prediction improved significantly 

after OPTRAM values were incorporated with rainfall, SPI and percent clay using random forest 
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regression machine learning algorithm. This research proposed an integrated model to predict 

surface soil moisture over a larger area using satellite images and weather stations that are easily 

available. Future research should evaluate the model in different regions and ecosystems where 

other landscape factors may have prominent effects on surface soil moisture.  
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APPENDIX 

Table A1. Linear relationship between volumetric water content (VWC) of crop fields with 

nearby weather stations for different crop residue cover, crop type, distance from station and soil 

texture in study area. 

  Intercept (c) Gradient (m) r2 RMSE N 

Overall 

  0.06692** 0.70216** 0.4977 0.06546 675 

Residue (%) 

>10 0.06437** 0.78619** 0.6255 0.05806 279 

20-30 0.06475** 0.65107** 0.4434 0.06691 198 

50-60 0.04933** 0.72622** 0.4612 0.06671 198 

Crop type 

Alfalfa 0.147* 0.45* 0.44 0.055 12 

Barley 0.170 0.34 0.18 0.052 9 

Canola 0.140** 0.71** 0.78 0.034 9 

Corn 0.039 0.81** 0.46 0.068 156 

Dey bean 0.066** 0.62** 0.69 0.041 33 

Oats 0.012 0.68** 0.83 0.030 15 

Potato 0.032 0.58* 0.83 0.022 6 

Soybean 0.066** 0.69** 0.43 0.069 222 

Sugar beet 0.064* 0.70** 0.54 0.066 45 

Sunflower -0.013 0.99 0.41 0.061 9 

Wheat 0.076** 0.72** 0.56 0.060 159 

Distance from station (m) 

0-100 0.041** 0.78** 0.55 0.069 215 

100-200 0.032 0.83** 0.54 0.064 131 

200-400 0.087** 0.68** 0.44 0.060 117 

400-800 0.109** 0.49** 0.40 0.064 122 

800-1200 0.027 0.86** 0.67 0.058 48 

1200-2000 0.161** 0.45** 0.40 0.050 42 

Soil Texture 

Clay 0.07905** 0.70793** 0.6301 0.0611 48 

Clay loam 0.00792 0.81143** 0.5971 0.06211 69 

Loam 0.08111** 0.58034** 0.3028 0.06012 96 

Loamy sand -0.00096 0.80678** 0.3372 0.08426 21 

Sandy clay loam -0.07746 1.28096 0.8953 0.03814 6 

Sandy loam 0.04157* 0.8028** 0.5913 0.06031 129 

Silt loam 0.14036** 0.55042** 0.2691 0.05989 36 

Silty clay 0.08712** 0.66551** 0.4719 0.06537 270 

* significant at 5% level of significance  

** significant at 1% level of significance 
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Table A2. Linear relationship between volumetric water content (VWC) of crop fields with 

nearby weather stations for corn, soybean and wheat and their different growth stages. 

Growth stage Intercept (c) Gradient (m) r2 RMSE N 

Corn 

Overall 0.039 0.80** 0.46 0.069 156 

V4 stage 0.227** 0.18 0.07 0.049 39 

V7 stage 0.420* -0.15 0.02 0.042 9 

V10 stage 0.263 0.43 0.92 0.019 3 

V11 stage 0.587* -0.68 0.99 0.001 3 

V12 stage -0.028 0.96** 0.71 0.059 30 

Tasseling -0.021 0.97** 0.59 0.067 45 

Silking 0.112 0.55 0.05 0.074 18 

Grain filling 0.579 -0.95 0.78 0.014 3 

Cut down 0.298 0.12 0.01 0.082 6 

Wheat 

Overall 0.076** 0.72** 0.56 0.06 159 

Tillering 0.199** 0.28** 0.17 0.043 48 

Jointing 0.407 -0.08 0.01 0.068 6 

Flowering 0.021 0.93** 0.68 0.066 6 

Hard dough 0.076** 0.70** 0.59 0.06 57 

Harvested -0.014 1.09* 0.24 0.056 18 

Soybean 

Overall 0.066** 0.69** 0.43 0.069 222 

V1 stage 0.174** 0.27 0.11 0.049 30 

V2 stage 0.162** 0.39* 0.15 0.075 48 

V3 stage 0.183 0.39 0.81 0.004 3 

V5 stage 0.327 0.16 0.02 0.045 9 

V6 stage 0.08 0.65 0.09 0.094 9 

Flowering 0.045 0.74** 0.51 0.077 72 

Podding 0.036 0.86** 0.7 0.05 42 

Pod filling -0.003 0.87** 0.24 0.07 36 

* significant at 5% level of significance  

** significant at 1% level of significance 
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Table A3. Non-linear relationship between volumetric water content (VWC) of crop fields 

(N=675) with cumulative rainfall and potential evapotranspiration (PET) during the previous one 

to five days (D1, D2, D3, D4 and D5) for the study area. 

 Intercept (c) Gradient (m) Gradient (m2) Gradient (m3) r2 RMSE 

Cumulative rainfall 

1 Day 0.233** 0.013** -0.00036 2.9E-06 0.16 0.084 

2 Days 0.226 0.008 -3.8E-05 -2.8E-06 0.18 0.083 

3 Days 0.191** 0.159** -0.0008** 1.4E-05** 0.27 0.079 

4 Days 0.138** 0.022** -0.001** 1.5E-05** 0.48 0.066 

5 Days 0.148** 0.0156** -0.0004** 3.9E-06** 0.49 0.066 

Cumulative PET 

1 Day 0.187 0.005 0.0031 -0.00027 0.28 0.078 

2 Days 0.737 -0.127 0.0111** -0.00031** 0.29 0.078 

3 Days 0.327 -0.025 0.0025 -6.8E-05* 0.28 0.078 

4 Days 0.753** -0.079* 0.0043** -7.4E-05** 0.29 0.077 

5 Days 0.836** -0.072* 0.0031* -4.3E-05** 0.25 0.079 

* significant at 5% level of significance  

** significant at 1% level of significance 
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Table A4. Cubical relationship between the volumetric water content (VWC) of crop fields with 

the four-day cumulative rainfall at different crop residue cover, crop type, distance from the 

station and soil texture. 

 Intercep

t (c) 

Gradient 

(m) 

Gradient 

(m2) 
Gradient (m3) r2 

RMS

E 
N 

Residue cover (%) 

<10 0.143** 0.0195** -0.0007** 1.1E-05** 0.48 0.068 279 

20-30 0.136** 0.0212** -0.0009** 1.5E-05** 0.5 0.064 198 

50-60 0.135** 0.0279** -0.0013** 1.9E-05** 0.51 0.063 198 

Crop type 

Alfalfa 0.966** -0.2647* 0.0179* -2.9E-04* 0.93 0.023 12 

Corn 0.152** 0.0179** -0.0007** 8.9E-06* 0.48 0.068 156 

Dry beans 0.107** 0.0061 0.0013 -6.30E-05 0.65 0.045 33 

Oats 0.023 0.0429 -0.003 7.20E-05 0.86 0.030 15 

Soybean 0.137** 0.0247** -0.0012** 1.8E-05** 0.45 0.069 222 

Sugarbeet 0.061** 0.0308** -0.0013** 1.8E-05* 0.71 0.054 45 

Wheat 0.137** 0.0282** -0.0013** 1.9E-05** 0.56 0.061 159 

Distance from station (m) 

0-100 0.114** 0.0263** -0.0012** 1.7E-05** 0.52 0.071 215 

100-200 0.142** 0.0248** -0.0011** 1.7E-05** 0.67 0.055 131 

200-400 0.209** 0.0041 4.56E-05 -1.40E-06 0.37 0.064 117 

400-800 0.126** 0.0293** -0.0017** 2.9E-05** 0.44 0.062 122 

800-1200 0.124** 0.0263** -0.0009 8.30E-06 0.58 0.066 48 

1200-2000 0.220** 0.0113 -0.0004 5.20E-06 0.25 0.057 42 

Soil texture 

Clay 0.118** 0.0242** -0.0007* 6.10E-06 0.75 0.057 48 

Clay Loam 0.122** 0.220* -0.0004 -4.50E-06 0.52 0.070 69 

Loam 0.211** 0.0134** -0.0004 2.80E-06 0.45 0.051 96 

Loamy sand 0.230** 0.0260** -0.0024** 6.2E-05** 0.62 0.049 21 

Sandy loam 0.137** 0.0231** -0.0009** 1.5E-05* 0.45 0.069 129 

Silt loam 0.169** 0.0116 -0.0003 1.30E-06 0.45 0.050 36 

Silty clay 0.188** 0.0168** -0.0007* 9.50E-06 0.46 0.073 153 

Silty clay 

loam 
0.086** 0.0227** -0.0007** 6.00E-06 0.68 0.048 117 

* significant at 5% level of significance  

** significant at 1% level of significance 
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Table A5. Cubical relationship between the volumetric water content (VWC) of crop fields with 

four-day cumulative PET at different residue content (%), crop type, distance from station and 

soil texture. 

Residue (%) 
Intercept 

(c) 
Gradient (m) 

Gradient 

(m2) 

Gradient 

(m3) 
r2 RMSE N 

Residue cover (%) 

<10 1.281** -0.1420* 0.0067** -1.0E-04** 0.24 0.083 279 

20-30 0.172 -0.0051 0.0012 -3.20E-05 0.37 0.071 198 

50-60 0.940* -0.1068 0.0055* -9.2E-05** 0.31 0.076 198 

Crop type 

Alfalfa -264** 31.99** -1.2815** 0.0170** 0.93 0.022 12 

Corn 1.65** -0.2054** 0.0099** -1.5E-04** 0.21 0.084 156 

Dry beans -0.769 0.1237 -0.0048 5.50E-05 0.7 0.042 33 

Oats -4.96 0.6578 -0.0267 3.40E-04 0.82 0.033 15 

Soybean 1.11** -0.1328* 0.0067** 1.1E-04** 0.25 0.08 222 

Sugarbeet -4.77* 0.6064** -0.0234** 2.97E-04** 0.68 0.056 45 

Wheat 0.645 -0.059 0.0033 -5.90E-05 0.41 0.074 159 

Distance from station (m) 

0-100 1.424** -0.1741** 0.0085** -1.3E-04** 0.33 0.084 215 

100-200 0.643 -0.0709 0.0043 -7.9 E-05* 0.39 0.074 131 

200-400 2.356* -0.3004* 0.01408* - 2.1E-04* 0.04 0.079 117 

400-800 -1.709* 0.2482** -0.0099** 1.2E-04* 0.35 0.067 122 

800-1200 1.512* -0.1854* 0.0090* -1.4E-04** 0.57 0.066 48 

1200-2000 0.79 0.1018 0.0042 5.70E-05 0.48 0.0482 42 

Soil Texture 

Clay -8.153** 1.0239** -0.0399** 0.0005** 0.59 0.074 48 

Clay Loam -0.083 0.0379 0.0009 2.90E-07 0.59 0.065 69 

Loam -0.702 0.0978 -0.0023 1.50E-07 0.35 0.056 96 

Loamy sand -1.315 0.2414 -0.0118 1.90E-04 0.09 0.075 21 

Sandy loam 4.424** -0.6044** 0.0284** 4.30E-04 0.39 0.071 129 

Silt loam 32.08* -4.0517* 0.1705* -0.0023 0.39 0.053 36 

Silty clay 1.261** -0.1519* 0.0076** -1.2E-04** 0.51 0.07 153 

Silty clay 

loam 
2.051** -0.2713** 0.0137** -2.2E-04** 0.33 0.07 117 

* significant at 5% level of significance  

** significant at 1% level of significance 

 


