
DEVELOPMENT AND VALIDATION OF A LIBRARY FOR ITERATIVE WINDOW-BASED

PROCESSING OF GEOSPATIAL DATA

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

David Michael Schwartz

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

April 2021

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

DEVELOPMENT AND VALIDATION OF A LIBRARY FOR ITERATIVE

WINDOW-BASED PROCESSING OF GEOSPATIAL DATA

By

David Michael Schwartz

The supervisory committee certifies that this thesis complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Anne Denton
Chair

Dr. Simone Ludwig

Co-Chair

Dr. Azer Akhmedov
Co-Chair

Approved:

April 15, 2021

Date

Dr. Simone Ludwig

Department Chair

ABSTRACT

High-resolution spectral images and digital elevation models are widely available. With this

quantity of data, it is imperative to develop fast algorithms to extract information. We present a

Python library that implements a set of algorithms for aggregating data within sliding windows.

The algorithms have O(log(n)) time complexity and maintain the original image resolution. They

are vectorized and written with NumPy to create fast code with C-like performance. The library

offers several analysis procedures, architected such that additional procedures utilizing sliding win-

dows can easily be added. Slope, aspect, and curvature analyses exist for digital elevation models.

Fractal dimensions and correlation analyses are also present to be used on a range of different

images. The software architecture of the library is outlined and motivated. It includes visualized

comparisons of analyses and unit testing. Testing procedures are implemented using analytical

results from Wolfram Mathematica combined with brute-force algorithms.

iii

ACKNOWLEDGEMENTS

Thank you to my wonderful advisor, Dr. Anne Denton. She took me under her wing and

inspired me to push through the hardest parts of writing a thesis. Thank you to my committe

members. Dr. Azer Akhmedov, who is also an excellent math advisor, and Dr. Simone Ludwig,

who showed me the fascinating world of computer architecture.

iv

DEDICATION

In memory of Jack Schwartz, my loving grandfather and biggest fan.

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF FIGURES . viii

1. INTRODUCTION . 1

1.1. Geographic Information Systems . 1

1.2. Problem Statement . 4

1.3. Software Design . 5

2. CONCEPTS . 7

2.1. Sliding Window . 7

2.2. Software Architecture . 7

2.2.1. sliding window.py . 9

2.2.2. aggregation.py . 9

2.2.3. rbg.py . 11

2.2.4. dem.py . 13

2.2.5. cluster.py . 14

2.2.6. test.py . 16

2.2.7. helper.py . 17

2.3. Topographical Calculations . 17

2.3.1. Slope . 17

2.3.2. Curvature . 19

2.4. DEM Formula Generation . 21

2.5. Installation . 23

2.5.1. Virtual Environment . 23

vi

2.5.2. Rasterio Installation . 24

2.5.3. SlidingWindow Installation . 25

3. DEM TESTING AND EVALUATION . 28

3.1. Python Image Generator . 28

3.2. Wolfram Image Generation . 28

3.3. Slope . 30

3.4. Aspect . 30

3.5. Curvature . 32

4. RESULTS . 37

4.1. Spectral . 37

4.2. Digital Elevation Model . 38

5. CONCLUSION . 43

REFERENCES . 44

vii

LIST OF FIGURES

Figure Page

2.1. The first three iterations of the sliding window aggregation algorithm. Each iterations
has a sliding window size of 2n for the nth aggregation. Arrows represent individual
pixels being aggregated together. The aggregates of the shaded regions are stored in the
top left corner of the region. 8

2.2. Diagram representing how all of the files in the library utilize each other. Files at the
tails of arrows are importing the files at the heads of the arrows. Lines with no arrow
head represent related files that are generally imported together. The actors represent
those who use the library and what files they generally interface with. 8

2.3. Generic analytical results generation for our linear and quadratic equations. These are
mathematical derivations written in the Wolfram Mathematica programming language.
The linear equation is g and the quadratic equations is f . Various calculus and algebraic
operations are performed to get results for slope, aspect, and curvature. Both with map
unit normalization and without. 27

3.1. A snippet from the image generator.py file in the library. This file has many different
methods designed to aid in testing the class. This method in particular is very useful
for DEM testing. A multivariate Gaussian hill is generated and exported to a file on
disk, with the name of the file returned to the user. 29

3.2. Gaussian analytical result generation written in Wolfram Mathematica. This follows the
same process as in Figure 2.3, except with a multivariate Gaussian function. Results
are computed for slope, aspect, and curvature. Results are saved to variables such as
gaussSlope and gaussStandard, but are not printed to the user. 31

3.3. 3D plot generation of analytical results written in Wolfram Mathematica. Plot3D func-
tion is used for generation and Export function is used for saving the image. The word
”plot” is used as a placeholder for any double variate mathematical function. 31

3.4. Image generated by the Gauss function in the image generater.py file. An image size of
4096 pixels square was used with a standard deviation (σ) of 512 pixels and an offset
(µ) of 2048 pixels. 33

3.5. Results from using the Wolfram Mathematica Plot3D function on the multivariate Gauss
function. An image size of 4096 pixels square was used with a standard deviation (σ)
of 512 pixels and an offset (µ) of 2048 pixels . 33

3.6. Results from using the Wolfram Mathematica Plot3D function on the analytical slope
results of the Gauss function. An image size of 4096 pixels square was used with a
standard deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels 34

viii

3.7. Image generated when the slope function of the sliding window library operated on a
Gaussian hill. The Gaussian hill had an image size of 4096 pixels square with a standard
deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels. Eight aggregation steps were
used for a total sliding window size of 256 pixels. 34

3.8. Results from using the Wolfram Mathematica Plot3D function on the analytical aspect
results of the Gauss function. The Exclusions -> None option was used to remove
discontinuities. An image size of 4096 pixels square was used with a standard deviation
(σ) of 512 pixels and an offset (µ) of 2048 pixels . 35

3.9. Image generated when the aspect function of the sliding window library operated on a
Gaussian hill. The Gaussian hill had an image size of 4096 pixels square with a standard
deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels. Eight aggregation steps were
used for a total sliding window size of 256 pixels. 35

3.10. Results from using the Wolfram Mathematica Plot3D function on the analytical stan-
dard curvature results of the Gauss function. An image size of 4096 pixels square was
used with a standard deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels 36

3.11. Image generated when the standard function of the sliding window library operated on a
Gaussian hill. The Gaussian hill had an image size of 4096 pixels square with a standard
deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels. Eight aggregation steps were
used for a total sliding window size of 256 pixels. 36

4.1. The adjusted image from a pair plot operation on a National Agricultural Imagery
Program (NAIP) file. Resulting from the maximum number of aggregations equaling 7,
sum img size = 512, and sub img start = [0, 0]. 39

4.2. The output image from a pair plot operation on a National Agricultural Imagery Pro-
gram (NAIP) file. Calculated with the following parameters: sum img size = 512, sub
img start = [0, 0], analyses = [Analysis.regression, Analysis.regression, Analysis.regression,
Analysis.regression, Analysis.regression], bands = [[1, 2], [1, 2], [1, 2], [1, 2], [1, 2]],
and num aggres = [3, 4, 5, 6, 7]. 40

4.3. The adjusted image from a pair plot operation on a DEM file. Resulting from the
maximum number of aggreagations equaling 7, sum img size = 1000, and sub img start
= [1000, 1000]. 41

4.4. The output image from a cluster operation on a DEM file. Calculated with the fol-
lowing parameters: sum img size = 1000, sub img start = [1000, 1000], num clusters
= 10, average cluster values = True, analyses = [Analysis.slope, Analysis.aspect, Anal-
ysis.standard, Analysis.fractal, Analysis.fractal 3d], bands = [1, 1, 1, 1, 1], and num
aggres = [7, 7, 7, 7, 7]. 41

4.5. The output image from a pair plot operation on a DEM file. Calculated with the
following parameters: sum img size = 1000, sub img start = [1000, 1000], analyses
= [Analysis.slope, Analysis.aspect, Analysis.standard, Analysis.fractal, Analysis.fractal
3d], bands = [1, 1, 1, 1, 1], and num aggres = [7, 7, 7, 7, 7]. 42

ix

1. INTRODUCTION

1.1. Geographic Information Systems

The simplest definition of geospatial data is any data that has a geographic location associ-

ated with it. These locations can be either global coordinates or addresses. According to Behm et.

al. [2], geospatial data is used in almost every industry, ”Geospatial data has become an integral

element in how companies and organizations conduct business around the world.”. The uses are

as varied as choosing the right store placement in retail to finding the best route for emergency

vehicles in the transportation industry.

In remote sensing a distinction is made between active and passive techniques. Sensing

generally involves sensing the wave lengths of light bouncing off of the observed surfaces. This is

called the spectral signature of the surfaces. This type of sensing results in spectral images, where

data in an image is layered in bands. For the typical consumer camera, these are red, green, and

blue bands. Active sensing involves providing an energy souce and sensing that same energy when

it bounces back. Passive techniques provides no such energy source and simply senses the energy

available in the environment. Another type of sensing involves active sensors measuring the time

it takes their energy to bounce back. Such as for light detection and ranging (LiDAR) data, which

we will be using in the form of digital elevation models (DEMs) in this thesis.

Remotely sensed data can have spatial resolutions in the range of centimeters to kilometers.

The spatial resolution describes the linear dimension of each pixel. This resolution depends on the

quality of the camera sensor and the altitude of the device. As stated by Allan [1], ”The higher

the resolution of the imagery, the more man made objects that can be identified. The human eye –

the best image processor of all – can quickly detect and identify these objects.”. Although, higher

resolution isn’t a complete boon when we consider that computers, and not the human eye, are

tasked with identifying these objects, ”If the same techniques that were developed for earlier lower

resolution satellite imagery are used on the high-resolution imagery, (such as maximum likelihood

classification), the results can actually create a negative impact.”. The new information gives a

much more fined grained representation of the surfaces, and must be accounted for. Objects will

have more precise shapes and more discrete colors. With lower resulution images, objects can often

1

be simplified to simple shapes and colors. For example, a road may be a straight line with a single

color in a low resultion image, but in a higher resolution it will have many curves and discrete

colors for the roadway, lines, and shoulder.

Geospatial data is a broad term that encompasses all data that has any geographic compo-

nent. GIS stands for Geographic Information System. It traditionally refers to a software system

built on top of a database of geospatial and attribute data. GIS enables visualizations and manip-

ulation of the stored data. It can be used to process vector or raster geospatial data. Vector data

is defined by points, lines, or other shapes. Raster data is defined by grids cells with discrete or

continuous values. The attribute data is more akin to traditional databases, represented in columns

and rows of a table. The attribute data is generally auxilliary information for the geospatial data.

It includes information such as names or construction dates of different man made geographic

features.

The main function of GIS is the combination and analysis of many types of geospatial

data. Dempsey [4] says, ”On the most basic level, geographic information systems technology

is used as computer cartography, that is for straight forward map making. The real power of

GIS, however, is through using spatial and statistical methods to analyze attribute and geographic

information. The end result of the analysis can be derivative information, interpolated information

or prioritized information.”. Dempsey mentions that examples of such analyses include: calculating

relative distances with buffer analysis and detecting types of vegetation with Normalized Difference

Vegetation Index (NDVI). The NDVI analysis is actually included in this thesis.

Among the myriad ways of obtaining remote sensing data, satellite data is very common.

The longest running satellite program is the Landsat program created by the United States Ge-

ologial Survey (USGS) and the National Aeronautics and Space Administration (NASA). The first

Landsat was launched in 1972. NASA has continued to relase new missions since then, with a

plan to release Landsat 9 in 2021 [17]. In 2009, a decade after the launch of Landsat 7 in 1999,

these images became freely available to the public [13]. While the Landsat missions 1-3 touted 60m

resolutions, all subsequent missions have had 30m spatial resolutions [18]. For satellites with higher

spatial resolution, there exists the field of small satellites. These satellites can range from 1m to

10m in spatial resolution [11]. The highest resolution available is going to be that of Unmanned

2

Aerial vehicles (UAVs). These devices are much more flexible by their very nature of not being put

into orbit. They can have very high resolutions of up to .1m [19].

There exists a need for more robust statistical methods in GIS. According to Nelson [14],

there is an opinion among established researchers that the following exist as future opportunites

for improvement in spacial statistics: ”integration of GIS and spatial analysis”, ”methods for large

and multitemporal data sets”, ”advancing local spatial statistics”, ”communicating spatial analysis

results collectively”, and ”geography as the home for spatial analysis”.

Remotely sensed DEMs can be used to calculate the slope, aspect, and curvature of a

surface. According to two approaches to ranking hill slope algorithms, the best performing are

those by Sharpnack & Akin’s and Fleming & Hoffer’s [10]. Both of these algorithms use small 3x3

pixel windows. The Sharpnack & Askin algorithm [15] subtracts the sum of the 3 pixels along one

edge of the 3x3 window from the sum of the 3 pixels on the opposite edge. The resulting value is

used for the slope in one direction. The opposing direction is calculated in the same fashion. The

Fleming & Hoffer’s algorithm [7] follows a very similar process with the exception that it only uses

the four ortholinear pixels. These are common techniques used in GIS software for topographical

calculations.

Typically these 3x3 windows are used. Sometimes even larger windows of sizes 5x5 or 7x7

are used. Even with these larger sizes, it is still common to parse the entire window. We will refer

to these types of algorithms as brute force. The computational time of these algorithms generally

scales n2 with the input size n. When resolutions are very high, the 3x3 pixel area may not represent

much area at all. When we desire to increase the scale of the pixels, images require resampling. This

involves combining pixels, reducing the resolution of the image and making each pixel represent a

larger area. This helps us achieve our desired computation, but defeats the purpose of our higher

resolution image!

Other quantities that can be derived using window-based algorithms include fractal dimen-

sions. Fractal dimensions were originally proposed by Mandelbrot in his curiously simple question

of ”How long is the coast of Britain?” [12]. A common method used to calcuate fractal dimensions

is the box counting method, first proposed by Gagenpain et. al. [8]. This is where an image is

broken up into grids of increasingly smaller size, and the number of boxes counted in each grid is

plotted against the scale of the grid. The regression slope of such a plot would be the theoretical

3

fractal dimension. Such a calculation lends itself very well to the algorithm discussed later in this

thesis, where simple aggregations and regressions are all that is required.

1.2. Problem Statement

Algorithms have been proposed to help solve some of the issues with topographical cal-

culations. A sliding-window based algorithm has been developed by Denton et. al. [5], originally

for computing regression coefficients between bands. Several uses of the algorithm have been pro-

posed by Denton, including slope, curvature, and fractal dimensions. Algorithms of this nature are

able to do simple aggregations involving operations such as max, min, and sum in O(log(n)) time

complexity and don’t reduce the resolution of the image. These algorithms have been developed

in isolation and have not been combined into a single library or integrated into an existing GIS

software suite such as ArcGIS. In this thesis, we propose a software library that combines the uses

of the sliding window algorithm into a consistent package.

The algorithm works by reusing aggregates in each iteration. Four non-overlapping aggre-

gates are added from the previous iteration, quadrupling the total number of aggregated pixels.

Aggregates are stored in the top left pixel of a sliding window. In each iteration, the top left

corners of four aggregation windows are added. These result in aggregates of windows 2n pixels

long, with n being the current aggregation number starting at one. We desire to aggregate four

non-overlapping adjacent windows every iteration, to form new windows with quadruple the pre-

vious previous amount of aggregated pixels. Crucial parts of the algorithm are review in Section

2.1.

The library we developed for the sliding-window algorithm was written as an open source

Python package. It utilized the NumPy Python package for high performance sliding-window

computations. NumPy was actually written in C and uses Single Instruction, Multiple Data

(SIMD) CPU architecture for vectorized array operations. Other packages include Rasterio for

GIS raster image manipulation, Matplotlib for result visualization, Scikit-learn for clustered re-

sults, and Seaborn for pairplotted results.

The library is broken up into five basic parts: A high level class for general image manipla-

tion tasks, an aggregation file for sliding window operations, two files for analysis formulae, a file

for unit tests, and a file for combined visualizations of multiple different analyses. The high level

class abstracts away the complexities of analyzing images. In the simplest case, all it requires is

4

a file path and a function call to analyze an image. The aggregation file encapsulates the sliding

window algorithms, so that they are able to be resused in a variety of different analyses. This file

includes brute-force versions of the functions for testing purposes as well. The files containing the

formulas are separated based on file type. One for DEMs called dem.py and one for spectral images

called rbg.py. The DEM file requires the user to aggregate the arrays beforehand, but rbg.py does

the aggregations for the user. The unit test file ensures the validity of our operations. Currently,

all DEM and aggregation operations have been validated. Finally, the cluster file enables the com-

bined visualization of analyses. It specifies the visualization by function call and by the different

arguments passed in, such as aggregation numbers, analysis types, spectral bands, and so on. These

parts are covered in Section 2.2.

Unit tests in this library are performed with brute-force operations and analytical results

derived in Wolfram Mathematica. For DEM tests, the derived formulae of a Gaussian hill are com-

pared against the sliding window results of an artificially generated Guassian hill image. Results

from the library are iterated though in a brute-force O(n2) fashion, where each pixel is compared

to its expected result in the corresponding formula. In addition to the formulae, three dimensional

visuals are generated in Wolfram Mathematica for visual validation of library results. The aggrega-

tion results are compared to the results of simpler aggregation algorithms that are non-vectorized

and use brute force. These are compared using a built in NumPy function. These tests are covered

in Section 3.

The interesting part of this library is the ability to combine multiple different analyses into

a single image. As example applications we use k-means clustering, a way of clustering data into

discrete groups, and pairplots, a way of plotting multiple datasets against each other in a single

image. Although the library already contains a fair amount of analyses to choose from, more may

still be added. Because of the library’s open source nature, anybody can contribute a new analysis

utilizing the sliding window algorithm. Even algorithms without a need for aggregations can be

added, such as the already present NDVI function. Results of these combinations are covered in

Section 4.

1.3. Software Design

When developing an open source library, careful consideration needs to be taken in the

decision of the chosen programming paradigm, language, and libraries. According to Castro [3],

5

the decision of software design should never really be about the programming language. It is much

more mentally taxing for developers to switch design paradigms than programming languages. It

is the design paradigm that ultimately affects the architecture of the software. For this thesis,

the authors have opted for an imperative paradigm. Imperative programming languages are more

ubiquitous, with the added benefit of packaging data with its associated algorithms. These features

allow our library to be more approachable and logically coherent. To aid in the readability of our

library, the Python programming language was chosen. Python is famous for being an easy to use

and easy to learn langauge. It is extremely popular among newer developers and data scientists.

In addition, it has the open source library NumPy, which is a very popular library in the scientific

computing community. NumPy is actually an open source academic project [9], like this thesis is.

NumPy is written in C, with bindings to Python. This allows us to utilize the expressiveness and

readability of Python combined with the high performance of C.

A misconception among inexperienced software engineers is that all well designed code is

object-oriented. As Stroustrup [16] has pointed out, this is untrue. This misconception only goes

to show what sorts of paradigms young developers are being taught and the prevalence of object-

oriented programming in the software space. This is not a bad thing of course. The principles of

object-orientation, such as polymorphism and data abstraction, are great boons in some designs.

They enable separation of concerns and an increase in abstract thinking. The only caveat is that

these qualities are not suited for all problems. Stroustrup outlines four different programming

paradigms that are imperative: procedural, data hiding, data abstraction, and object-oriented.

This thesis uses data abstraction. This paradigm involves breaking up code into functions and

user defined types. User defined types are software modules where operations such as operators,

initializations, and deallocations can be defined. This helps to manage the lifecycle of memory and

conceptualizes blocks of code into objects. Actual object-oriented programming involves finding

commonalities among user defined types and putting them into hierarchies. Types higher up in

the hierarchy can be used to generalize different operations on lower types. For examples, in a

graphical program, a circle can inherit from a shape object and is able to use the ”draw” function

defined in the shape object. The reason we are not using object-oriented programming is because

adding a hierarchy of types would add unnecessary complexity to our library.

6

2. CONCEPTS

2.1. Sliding Window

The sliding window aggregation algorithm is done over windows of increasing sizes, reusing

aggregates from previous steps. For each step, the window size will be 2n pixels square, where n is

the current aggregation number. The corners of a sub window 2n−1+1 pixels square are aggregated.

The corners of the sub window represent non-overlapping aggregates from the previous step. These

combine to create the whole aggregate of the window in the current aggregation step. The window

is doubled in scale every step, resulting in O(log(n)) time complexity. The first three aggregations

of this process can be seen in Figure 2.1.

For aggregation number one, corner pixels of the window 21−1 + 1 = 2 pixels square are

aggregated. These form the aggregate of a window 21 = 2 pixels square. This can be seen in the

top left corner of Figure 2.1. The next iteration we add the corners of the 22−1 + 1 = 3 pixel square

window. This includes the aggregate from the last step, plus the three immediate non-overlapping

windows next to it. These form the aggregate of the 22 = 4 pixel square window. This can be

seen in the bottom left corner of Figure 2.1. This process repeats itself until the desired amount of

aggregations is acheived.

This same aggregation stategy can be used for a variety of algorithms in the library. Using

this algorithm to sum all pixels is useful for correlations and fractal dimensions, where a sum is

all that is required. Operations other than summing all four pixels each iteration can be used.

For example, pixels on the −x axis can be subtracted while pixels on the +x axis are added. The

same operation can be done for the y axis. These and other special aggregates are used in the

topographical calculations later in this thesis.

2.2. Software Architecture

Well designed software is decoupled and human-readable. These were the two concepts at

the forefront of the author’s minds when designing this software library. The most obvious form of

decoupling is the application programming interface (API). An API is the interface between two

different pieces of software, it is how they communicate. When a piece of software interacts with

another using an API, it doens’t care how the backend of the API is implemented, or how it stores

7

Figure 2.1. The first three iterations of the sliding window aggregation algorithm. Each iterations
has a sliding window size of 2n for the nth aggregation. Arrows represent individual pixels being
aggregated together. The aggregates of the shaded regions are stored in the top left corner of the
region.

Figure 2.2. Diagram representing how all of the files in the library utilize each other. Files at
the tails of arrows are importing the files at the heads of the arrows. Lines with no arrow head
represent related files that are generally imported together. The actors represent those who use
the library and what files they generally interface with.

8

its data. All the requesting software cares about is if the API does what it says it will do. This

library is decoupled and broken up into 7 main Python files, which are covered in detail later in

this section. A diagram describing how the files import each other can be seen in Figure 2.2.

To make the library human readable, much care was taking in the nomenclature of identi-

fiers. Logical structure and nomenclature took presedence over verbose comments. This helps to

protect the library from future contributions that may forget to update the comments. In addition,

consistency with theoretical results will also help in the creation of human readable, expressive

code. Code resulting from mathematical derivations can result in confusion for the reader. With

a resemblance to theoretical results, a reader can refer to the research where the equations were

derived to get a better understanding of the results. With the non-trivial nature of the sliding

window computations, this is likely to be the most important step in readable code.

2.2.1. sliding window.py

The sliding window class is at the highest abstraction level of the library. It is designed to

be the main way users interface with the library. The only parameters that the class requires are

the file name and the width/height in meters per pixels. In an ideal situation, the class would only

require the file name, but at the time of writing the class is unable to dynamically determine the

width and height. This information does exist in the metadata, but is not guaranteed to be in the

correct units. Metadata of GIS data can also be in angular degrees.

This class interfaces with many of the classes at lower levels of abstraction and combines

them all together. These include: rbg.py, dem.py, helper.py. The user merely has to specify an

operation and a spectral band, and this class takes care of the band extraction, calculations, and

saving to disk. Additionally, options have been added to save a lower resolution plot of the output,

to convert the output datatype, and to specify the work datatype or output datatype. The python

library MatPlotLib is used to generate the lower resolution images. These enable quick and easy

viewing or sharing of results, when further analysis of the image isn’t required.

2.2.2. aggregation.py

This file contains all of the aggregation methods. These aggregation methods do not require

state, and thus are not written in a class. They are simply exported from the file. Included among

the functions are vectorized versions, which utilize Single Instruction Multiple Data (SIMD) CPU

architecture, and normal brute-force operations. As the vectorized versions are not entirely intuitive

9

to understand, they have been written adjacent to the brute-force operations which follow a much

more logical structure but are far less efficient. These two methods are compared directly in the

test class for validation.

The vectorized aggregation methods aggregated pixels in a w long square area, where w = 2n

and n is the number of aggregations. The resulting aggregation is saved in the top left pixel of

the aggregated area. As such, aggregation outputs an image of the same resolution, containing

aggregated values, and truncated by 2n−1 units on the +x and +y axes for pixels whose aggregates

existed off the image. When saving these aggregated images they must be shifted in their metadata

by 2n−1
2 pixels. Shifting occurs to put the aggregated values in the center of the aggregation areas,

instead of in the top left corner.

This class could not simply accept an aggregation operations and a number of of aggrega-

tions. This would not allow for mixing and matching of the aggregation operations. The functions

also requires knowledge of the number of previous aggregations, to enable the function to calcuate

aggregations in chunks instead of all at once. The number of previous aggregations sets the window

size that is used for aggregation. If this is set incorrectly the function has undefined behavior.

As well as having the normal aggregation method, there is also an aggregation method for

DEM files. Per the DEM algorithm the following values must be aggregated: z, xz, yz, xxz, yyz,

xyz. These represent the average values of the corresponding product. The window is assumed

to be centered at 0, z being the image value, x being the x coordinate of the pixel, and y being

the y coordinate of the pixel. All of these values, including the number of aggregations, are stored

in an auxilliary data structure called Dem data. Thus, the only arguments required are a Dem

data object and the number of desired additional aggregations. Like with the normal aggregation

method, these average values calculated also have appropriate brute-force testing methods that

behave identically.

2.2.2.1. agg ops.py

Contained in agg ops.py is an enum describing the different available aggregation operations

implemented in aggregation.py. These include: add all, add bottom, add right, add main diag,

maximum, and minimum. The aggregation function only add 4 values at a time, helping to describe

its O(log(n)) performance. With this in mind, it can be seen that the operations are relatively self

10

explanatory. The operation add all adds all values, add bottom adds the values on the +y axis,

and so on.

This file exists by itself instead of within the aggregation.py file to allow it to be used

without aggregation.py. For example, if an operation were to be added to the SlidingWindow class

which allowed the user to specify the aggregation method, then this file could be imported to specify

the operation.

2.2.3. rbg.py

The lower level analysis operations that can be performed on multispectral bands exist in

rbg.py. This file does not require state and only exports functions. These functions are not only

for images with red, green, and blue bands. The name rbg.py is merely a convenient name. These

operations can be used on any spectral image. In fact, this file has no concept of spectral bands,

that only exists in sliding window.py. Any NumPy arrays can be passed into theses functions

given that they all have the same datatypes and shapes. This file also attempts to maintain the

datatypes of the passed in arrays. This is to make it very transparent who is manipulating the

representation of numbers being used. The user is expected to pass in the appropriate data types

to avoid overflow. If an 8-bit array is passed in and numbers are aggregated above the maximum

value of 255, overflow will occur.

Operations included in this file are: ndvi, binary, regression, pearson, fractal, and fractal

3d. Two of these operation do not actually use the sliding window algorithm: ndvi and binary.

The goal of this software library is not to include all possible applications of the sliding window

algorithm, it is to include a variety of operations in one package so they may be combined and

compared. The operations using the sliding window algorithm are all aggregated over a 2n square

area, with n being the number of aggregations. Thus each pixel in the resulting image will describe

a 2n square area in the original image.

2.2.3.1. NDVI

The ndvi function, or Normalized Difference Vegetation Index, is a common analysis used

in GIS to asses the presence of vegetation. It is a simple difference between the red and infrared

bands, not requiring the sliding window algorithm. Since there is no concept of spectral bands

in rbg.py, the user is expected to pass in the red and infrared bands as NumPy arrays to get the

expected results.

11

2.2.3.2. Binary

This function is relatively self explanatory. It takes in an array with a range of values, and

maps them to two values. Using a threshold parameter, it can determine how to map the array

values. The threshold parameter is a percent of the existing values in the image. Our threshold

value will be ((threshold ∗ (max − min)) + min). Values less than this threshold value will be

zero and values greater than or equal to it will become the maximum value of the desired data

type. The maximum and minimum values present in the image are used to ensure the entire image

doesn’t get mapped to the exact same value.

2.2.3.3. Correllations

The regression and pearson are common statistical correlation tools. A statistical regression

function will commonly return a linear polynomial, a best fit line describing the relationship between

the two sets of numbers. The regression present in this library uses the sliding window algorithm

to aggregate values and returns the slope of the regression line. These slope values are used to

generate the resulting image, describing the relationship between the specified spectral bands. The

pearson corrleation is very similar, although it returns a value in the range [−1, 1]. A value of -1

respresents a perfect indirect relationionship, a 0 represents zero correlation, and a 1 represents a

perfect direct relationship.

2.2.3.4. Fractal Dimension

The degree of self similarity of a geometric object can be described by its fractal dimension.

That is, in more colloquial terms, the degree of ”roughness” of a geometric shape. If a rough shape

continues to be rough as it is scaled to larger sizes, then it is more likely to have a non-integer

fractal dimension. In general, geometric shapes are considered to have integer dimensions, zero for

a point, one for a line, and so on. Fractal dimensions describe the non-integer dimension, if they

exist. For example, the prototypical perfect fractal, the Sierpiński triangle, has a fractal dimension

of 1.585. This function returns an image where each pixel is a fractal dimension. The 3D variant

of this function does the same, with the exception that array values are treated as elevation and

fractal dimensions are computer over a 2n cubed volume instead of a square area.

12

2.2.4. dem.py

The second lower level analysis file is dem.py, working very similarly to rbg.py. As the name

implies, it is intended to be used with DEMs. It still has no state, but requires a Dem data object

to hold its working data, which does have state. The passed in Dem data object contains all of the

data required for array aggregation, the other parameters required for many functions in this file

are pixel width and pixel height. For DEMs, the elevation and the pixel width/height are often not

in the same units. For this reason, these values must be passed in for all but the aspect function.

This file contains three functions: slope, aspect, and curvature. Just like in rbg.py, each resulting

pixel from these functions describes a 2n square area, with n being the number of aggregations. A

polynomial is fit to the 2n square area and calculus derived formulae are then applied.

2.2.4.1. Slope

This method returns an image where each pixel is the slope of the corresponding location

in the original image. In the SlidingWindow class, a slope angle operation is also supported, which

simply takes the arc tangent of the result from this function.

2.2.4.2. Aspect

This method doesn’t require pixel width or height because it is only a direction. Ouput

from this method describes the direction of steepest descent, i.e. the direction opposite to the slope.

This is denoted following GIS conventions. Aspect is defined as the degrees in radians from north.

Due to the +y axis pointing down in raster images, the positive direction for radians is clockwise,

instead of the normal counter-clockwise direction. For example, if the direction of steepest descent

is due east, the aspect would be π
2 radians.

2.2.4.3. Curvature

To understand curvature, we much first understand that the slope is the first derivative

in the direction of steepest descent. Several different types of curvature exist: profile, planform,

and standard. Profile is the second derivative in the direction of steepest descent. Planform is the

second derivative in the direction perpendicular to the steepest descent. Standard is the average

of profile and planform. This library only contains a function for standard curvature.

13

2.2.4.4. dem data.py

The container for the working data of dem.py is found in dem data.py. It contains arrays

for the aggregated averages of z, xz, yz, xxz, yyz, and xyz. It automatically ensures that all of

these arrays are the same data type and shape. It also has a value to keep track of the number of

aggregations. These values can be set directly, but the preferred way is to let the aggregate dem

function in aggregations.py do it for us. Lastly, this class offers the ability to export and import

working data using numpy’s archiving methods: numpy.savez and numpy.load. Since aggregating

all these arrays takes a non-trivial amount of time to do, exporting and importing are very helpful

methods when working with DEMs.

2.2.5. cluster.py

The purpose of cluster.py is to combine multiple analyses into a single image. This is

done by specifying multiple different analyses, bands, and aggregations numbers. One of the main

purposes of this library is to enable the combined usage of many different statistical methods. This

file is really the cornerstone of such a feature. Cluster.py currently contains two functions, gen

clustered img and gen pairplot img. Many different arguments can be passed to these function to

specify their behavior. Results of both of these operations can be see in Section 4.

Our first function is gen clustered img. In this function, m dimensional vectors are clustered,

where m is the number of analyses. There will be one vector for each pixel in the output image.

For a vector, each index will be populated with the corresponding output from one of our specified

analyses.

For gen clustered img, our first argument is the file path, the path to the image being

analyzed. Following that are three arguments named analyses, num aggres, and bands. These three

are Python lists containing information about the different analyses to be clustered. The analyses

parameter contains values from the analyses enum, which is convered in the following subsection.

The num aggre parameter contains the number of aggregations. The bands parameter contains the

bands to extract from the image to use as input to the analyses. These can either be a single band,

like for DEM methods, or a list of 2 bands, like for the correlation methods.

The rest of the options are more fine grained control of the clustering operation. There

is num clusters, the number of groups to cluster the vectors into. Next there is the sub image

14

size, which allows us to analyze only a small sub image of the original, to speed up computations.

Currently, the default for this value is 256. After that is sub image start, which is a python list

of size two. This specifies the coordinates of the top left corner our sub image. If the sub image

extends beyond the images bounds, an error will be thrown. Following that is the map width to

meters and map height to meters for DEM operations, and then the output file path. Lastly, we

have the average cluster values boolean parameter. This tells the function to create output values

that are either the cluster number, or the average of the dimensions of the cluster center vector.

The second function, gen pairplot img , is very similar to the first. Instead of clustering the

analysis results, they are plotted against each other. Each analysis will be plotted on the x axis

in a column and the y axis in a row. Along the diagonal are bar graphs of a single analysis. The

arguments to this function are identical to gen cluster img except for the fact that the average

cluster values and num clusters arguments are omitted, as there are no cluster values.

As a result of these functions accepting analyses with a range of aggregation numbers, many

analyses will have to be truncated to reach a standard size. The resulting image of the functions

will be the same size as the analysis with the largest number of aggregations, which has the largest

amount of truncated pixels. 2n − 1 truncated pixels to be exact, with n being the number of

aggregations. Every other analysis will have to have 2i − 2j additional pixels truncated, where i is

the maximum amount of aggregations of any analysis, and j is the number of aggregations of the

analysis in question.

As a results of the cluster.py functions using sub images and truncating pixels with the

aggregation function, it is diffictult to compare results back to the original image. To remedy this,

an ”adjusted” image is created. It is not possible to simple truncate pixels off of the original image

to create our adjusted image. That would require us to remove a half pixel from each side. This is

due to the fact that 2n − 1 pixels are truncated when aggregating. We would need to remove 2n−1
2

pixels from each side, resulting in a half pixel because 2n − 1 is an odd number. Additionally, it is

not wise to simply aggregate the original image to match the output. This could result in a very

blurry image if a sufficiently small sub image is used. The solution is to only aggregate 4 pixels

together, resulting in 21−1
2 = 1

2 pixels being removed from each side. Then 2n−21

2 pixels can be

truncated from each side, which is guarenteed to be an integer because 2n − 2 is an even number.

15

2.2.5.1. analyses.py

The analyses enum contains eight options: ndvi, regression, pearson, fractal, fractal 3d,

slope, aspect, and standard. Each of these methods corresponds to one of the functions in either

rbg.py or dem.py. If new additions to these files are made, more options will have to be added to

this enum and corresponding logic will have to be added to cluster.py.

2.2.6. test.py

This library is tested using unit tests with Python’s standard unittest package. Methods

have been written to test aggregation and DEM functions. Fractal functions have yet to be tested.

These tests can easily be run by using Python to run the test.py class: python3 /path/to/test.py in

Linux or python \path\to\test.py for Windows.

For testing the aggregation file, the brute-force functions are written in aggregation.py. All

that is done in the test.py file is a comparison of the results of the vectorized functions and the

brute-force funtions. The vectorized functions use Denton’s sliding window algorithm, and the

brute-force operations use a simple operation with O(n2) time complexity.

The testing methods for the DEM functions are slightly less transparent. These tests use

analytical results derived in Wolfram Mathematica. Results are obtained from the typical vectorized

DEM functions. Next, the analytically derived functions are used to determine the correct value

for every pixel. Again with O(n2) time complexity. This testing is covered more in depth in Section

3.

2.2.6.1. image generator.py

For input to our testing methods we can use results from the image generator.py file. This

file has the ability to make several different algorithmic images. Arguably the most useful is the

Gaussian hill function. This function, along with the functions using the Wolfram Mathematica

analytical results, are used to test the functions in the dem.py file. The analytical Wolfram functions

also exist in this file, they simply return a single point instead of generating a whole image. For

all the algorithmic image generation functions, size can be specified. The values mu (µ) and sigma

(σ) can also be specified for the Gaussian functions. These values describe the Gaussian hill, its

standard deviation and offset respectively.

16

2.2.7. helper.py

For functions that don’t quite belong in any one file, or are used by multiple different files,

this auxilliary file was made. It contains such fuctions as: dtype max min, create tif, and arr dtype

conversion.

The tiff creation function helps to automate the process of creating tiffs from multiple arrays

and with modified profile information. In rasterio, the GDAL library we are using, the profile of

an image is all of the metadata. This includes information such as an image’s location on the

globe. The profile object primarily has to be modified to account for the truncated pixels after

aggregation. This is why the num aggre parameter on this function exits. This function can also

generate multi-spectral images by accepting a Python list of numpy arrays. Each element of the

Python list will become a band in the resulting image.

The image conversion algorithm used in the arr dtype conversion function is fairly simple.

It requires a low bound and a high bound parameter. If these are not supplied, they are set to the

minimum and maximum values of the array, respectively. The input array is then mapped from

the range [low bound, high bound] to the range [0, newDataType.max]. A copy of the array is

returned, converted to the new data type and with its values mapped as previously mentioned.

2.3. Topographical Calculations

Using DEM files, we can fit polynomials to the topography represented in the file. These

polynomials are written in terms of elevation-data aggregates and xy-coordinate aggregates. They

will be used in Section 2.4 to derive our mathematical formulae to calculate slope, aspect, and

curvature. A brief review of the methods used to calculate these polynomals will follow in this

section.

2.3.1. Slope

As discussed by Denton et. al. [6] the slope computations are as follows. The polynomial

we are fitting to the DEM is of the following form:

z1(x, y) =

(
b0 b1

)x
y

+ cs = b0x+ b1y + cs (2.1)

17

We minimize the squared error from our image values to fit the polynomial.

〈(z − z1(x, y))2〉 = 〈(z − xb0 − yb1 − cs)2〉 (2.2)

Where 〈v〉 represents an average for any variable v.

We take the partial derivatives with respect to b0, b1, and cs, then set them to zero to min-

imize. With our resulting equations, many of the terms can be cancelled out with the assumption

that our image is centered on the origin. For example, the 〈x〉 term will be zero, equal parts of the

image exist on the +x axis and the −x axis. Our resulting equations are the following:

0 = 〈xz〉 − 〈x2〉b0 0 = 〈yz〉 − 〈y2〉b1 0 = 〈z〉 − cs (2.3)

Solving these we get:

b0 =
〈xz〉
〈x2〉

b1 =
〈yz〉
〈y2〉

cs = 〈z〉 (2.4)

Again, assuming our grid is centered on the origin, we can see that 〈x2〉 = 〈y2〉. Using a grid of

pixels, each of our pixels will have coordinates that are between whole numbers, e.g. 1
2 or 3

2 . We

can see that the resulting summation for 〈x2〉 with w window size is:

〈x2〉 = 〈y2〉 =
1

w2
2w

w
2∑

k=1

(k − 1

2
)2 =

2

w


w
2∑

k=1

k2 −

w
2∑

k=1

k +
w

8

 (2.5)

To solve the summations we can use Gauss’s Identity and Sum of Squares:

w
2∑

k=1

k =
w
2 (w2 + 1)

2
=
w2

8
+
w

4
(2.6)

w
2∑

k=1

k2 =
w
2 (w2 + 1)(2w2 + 1)

6
=
w3

24
+
w2

8
+
w

12
(2.7)

Solving for 〈x2〉 we have:

〈x2〉 =
2

w

((
w3

24
+
w2

8
+
w

12

)
−
(
w2

8
+
w

4

)
+
w

8

)
=
w2 − 1

12
(2.8)

18

Now we can construct our polynomial that is fit to the DEM file in terms of 〈z〉, 〈xz〉, 〈yz〉, and

w. These aggregates are computed in the aggregation.py file and are coverered in more depth in

Denton’s paper on Slope computations [6].

2.3.2. Curvature

A similar process is followed for curvature, using a quadratic polynomial. Our quadratic

formula looks like the following:

z2(x, y) =

(
x y

)a00 a10

a10 a11


x
y

+

(
bc0 bc1

)x
y

+ cc

= a00x
2 + 2a10xy + a11y

2 + bc0x+ bc1y + cc

(2.9)

We minimize the squared error from our image values to fit the polynomial.

〈(z − z2(x, y))2〉 = 〈(z − a00x2 − 2a10xy − a11y2 − bc0x− bc1y − cc)2〉 (2.10)

Using partial derivatives again, and canceling out symmetric variables, we get:

〈x2z〉 = 〈x4〉a00 + 〈x2y2〉a11 + 〈x2〉cc

〈xyz〉 = 2〈x2y2〉a10

〈y2z〉 = 〈x2y2〉a00 + 〈y4〉a11 + 〈y2〉cc

〈xz〉 = 〈x2〉bc0

〈yz〉 = 〈y2〉bc1

〈z〉 = 〈x2〉a00 + 〈y2〉a11 + cc

(2.11)

19

We use our symmetrical grid to assert that 〈x2〉 = 〈y2〉 and 〈x2y2〉 = 〈x2〉2 are true. Next we solve

for our desired variables to form our polynomial.

a00 =
〈x2z〉 − 〈x2〉〈z〉
〈x4〉 − 〈x2〉2

a10 =
〈xyz〉
2〈x2〉2

a11 =
〈y2z〉 − 〈x2〉〈z〉
〈x4〉 − 〈x2〉2

bc0 =
〈xz〉
〈x2〉

= b0

bc1 =
〈yz〉
〈x2〉

= b1

cc = 〈z〉 − 〈x
2〉〈x2z〉+ 〈x2〉〈y2z〉 − 2〈x2〉2〈z〉

〈x4〉 − 〈x2〉2

(2.12)

The only term we have left to solve for is 〈x4〉. To solve this we can follow a process similar to

what was done for the slope polynomial:

〈x4〉 = 〈y4〉 =
1

w2
2w

w
2∑

k=1

(k − 1

2
)4 =

2

w


w
2∑

k=1

k4 −

w
2∑

k=1

2k3 +

w
2∑

k=1

3k2

2
−

w
2∑

k=1

k

2
+
w

32


(2.13)

Using more power summations:

w
2∑

k=1

k3 =
(w2)4

4
+

(w2)3

2
+

(w2)2

4
=
w4

64
+
w3

16
+
w2

16
(2.14)

w
2∑

k=1

k4 =
(w2)5

5
+

(w2)4

2
+

(w2)3

3
−

w
2

30
=

w5

160
+
w4

32
+
w3

24
− w

60
(2.15)

20

Adding it all together:

〈x4〉 =
2

w


w
2∑

k=1

k4 −

w
2∑

k=1

2k3 +

w
2∑

k=1

3k2

2
−

w
2∑

k=1

k

2
+
w

32


=

2

w

(
(
w5

160
+
w4

32
+
w3

24
− w

60
)− 2(

w4

64
+
w3

16
+
w2

16
) +

3

2
(
w3

24
+
w2

8
+
w

12
)− 1

2
(
w2

8
+
w

4
) + (

w

32
)

)
=

3w4 − 10w2 + 7

240

(2.16)

Now we can construct our second polynomial that is fit to the DEM file in terms of 〈z〉,

〈xz〉, 〈yz〉, 〈x2z〉, 〈y2z〉, 〈xyz〉, and w. These aggregates are computed in the aggregation.py file.

2.4. DEM Formula Generation

Using the polynomials that were just derived in Sections 2.3.2 and 2.3.1, we will use some

calculus to derive our formulas used in the library. Wolfram Mathematica was used to derive our

results, the code snippet can be seen in Figure 2.3. In Mathematica, we are deriving results for

slope, aspect, and standard curvature. This will include variants with map unit normalization and

ones without. We will also be comparing the results from the linear and the quadratic polynomial

equations.

Our linear equation is labeled g, and our quadratic is f . Our computations are fairly straight

forward. Taking the partial derivatives with respect to x and y. We then normalize and negate

those values to get our direction of steepest descent. We take the derivative of g in the direction of

steepest descent to get our slope equation.

For our aspect equation, we must use a special form of the arctangent function that accepts

two parameters. These parameters are x and y respectively, and this function uses those values

to return us the arctangent result in the correct quadrant. This function will return us the aspect

starting at due East and moving in a counter-clockwise direction. We want the aspect starting from

due North and moving in a clockwise direction. First we add π
2 to move our starting point 90°.

Our y values are actually already flipped because we are working with raster data, where +y is in

the downward direction. This causes our aspect to be calculated in a clockwise direction. Lastly,

we use the modulo operator to wrap values back to zero.

21

To normalize with our map units, we need to get the length in meters of moving one unit

in the direction of steepest descent. To do this we require the length in meters between adjacent

pixels on the x axis and the length in meters between adjacent pixels on the y axis. These values

can be derived using the conversion values passed to sliding window.py, map width to meters and

map height to meters, as well as the transform data from the rasterio image. Now to obtain our

length in meters in the direction of steepest descent, we multiple our x slope direction by map

width to meters and our y slope direction by map height to meters. After this we use Pythagoreans

theorem and we are done. We will divide our slope and curvature computations by this value to

normalize them to map meters. This operation is not required with the aspect function because it

only describes a direction.

A process identical to g’s is followed for f . In addition, we will be taking second derivatives

in the direction of steepest descent and the direction perpendicular to steepest descent. These two

values are the profile and planform equations, respectively. Averaging these values gives us the

equation we want, the standard curvature.

When viewing our results at the bottom of the code snippet in Figure 2.3, we set our x and

y values to zero. This is because our aggregates are designed to describe a point at the origin of

the aggregation. Thus we only care when x = 0 and y = 0. Viewing our results we can see that

our linear and quadratic equations are identical for slope and aspect. We display these results in

Equations 2.17 through 2.21, ignoring the duplicates. These are the equations used in the sliding

window library, using our previously derived symbols such as b0 and a00.

−
√
b02 + b12√

b12mapHeight2 + b02mapWidth2

b02 + b12

(2.17)

−
√
b02 + b12 (2.18)

(
π

2
+ atan2(b0, b1)) mod 2π (2.19)

22

a00 + a11√
b12mapHeight2 + b02mapWidth2

b02 + b12

(2.20)

a00 + a11 (2.21)

2.5. Installation

The project exists in a GitHub repository and it will exist in the Python Package Index.

On the web, it can be found at this GitHub URL: https://github.com/amdenton/SlidingWindows.

When the project is published to the Python Package Index, it will also be available at this PyPi

URL: https://pypi.org/project/name to be determined. These URLs just describe the library. To

install and use it, Python3 and pip will have to be installed. If GitHub is preferred, git will need

to be installed as well. The pip installation is preferred for simple usage, as it makes the package

available everywhere in the Python environment. The Github installation is useful for modifying

the source code, but the source files must be imported directly. If we desire to contribute source

code changes to the original project, we will need to fork and send a pull request to the GitHub

repository. This process of contributing is not outlined in this thesis. With either installation

process, we must follow special installation instructions due to a dependency of the project called

Rasterio.

2.5.1. Virtual Environment

When using git, the author uses a virtual environment to encapsulate the Python environ-

ment for development purposes. When Python packages are installed after such an environment

is activated, the packages will only exist in that virtual environment and will only be accesible

when it is activated. They will have no affect on the rest of the system. Such an environment

is activated and deactivated with generated scripts, which differ between operating systems. To

create our environment we will use the Python package virtualenv.

• Activation

– Windows

∗ $ cd \path\to\desired\directory\

∗ $ python -m pip install –upgrade pip

23

∗ $ python -m pip install virtualenv

∗ $ python -m virtualenv EnvironmentName

∗ $.\EnvironmentName\Scripts\activate.bat

– Linux

∗ $ cd /path/to/desired/directory/

∗ $ python3 -m pip install –upgrade pip

∗ $ python3 -m pip install virtualenv

∗ $ python3 -m venv EnvironmentName

∗ $ source EnvironmentName/bin/activate

• Deactivation

– $ deactivate

2.5.2. Rasterio Installation

Rasterio allows us to access geospatial data of raster images. As such, we need to install

the Geospatial Data Abstraction Library (GDAL), which is a C library and not readily available

on pip. As an alternative to globally installing GDAL on Windows, we will be using some high

quality unofficial binaries created by Christoph Gohlke. This will allow us to manage GDAL

with the virtual environment. For Linux, it will be easier for us to globally install GDAL from

the source distribution. This will not be managed by the virtual environment and will have to

be manually removed later. According to the installation instructions on Rasterio’s official docs

website: https://rasterio.readthedocs.io/en/latest/installation.html, Rasterio can be installed with

the following steps:

• Windows

– Download GDAL binaries from https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal

– Download Rasterio binaries from https://www.lfd.uci.edu/~gohlke/pythonlibs/#rasterio

– $ python -m pip install –upgrade pip

– $ python -m pip install \path\to\GDAL\binaries.whl

24

– $ python -m pip install \path\to\Rasterio\binaries.whl

• Linux (Ubuntu)

– $ sudo add-apt-repository ppa:ubuntugis/ppa

– $ sudo apt-get update

– $ sudo apt-get install python-numpy gdal-bin libgdal-dev

– $ python3 -m pip install rasterio

2.5.3. SlidingWindow Installation

Github is currently our only option for installing the Sliding Window library. It is planned

to be released on the Python Package Index in the future to make a pip installation available as

well. Pip is the easier option, and it is preferred for the typical user who has no need to modify

the code or contribute new code. The Rasterio intructions still need to be followed with the pip

installation, but only one commmand is required after that. In addition, pip allows the package to

be available from everywhere in the environment with a simple import statement such as import

packagename.

Github is the preferred installation method for the curious reader who desires to read

through the algorithms in the library, or contribute new ones. Since pip will not be directly

managing our dependencies for us, it is helpful to create a virtual environment to encapsulate

them. Although, then the library will only be available for use when the environment is activated.

A typical git clone operation happens first, then a rasterio installation, followed by a pip installation

of the requirements file. The requirements file enumerates all of the dependencies of the package.

When using the package with git it will have to be imported with a path to the source files, e.g.

import /path/to/package/source/file.

• pip (not available as of writing)

– Install Rasterio, see Section 2.5.2

– Install SlidingWindow

∗ Windows

$ python -m pip install name to be determined

25

∗ Linux

$ python3 -m pip install name to be determined

• git

– Change directory

∗ Windows

$ cd \path\to\desired\directory

∗ Linux

$ cd /path/to/desired/directory

– $ git clone git@github.com:amdenton/SlidingWindows.git

– $ cd SlidingWindows

– Optionally activate virtual environment, see Section 2.5.1

– Install Rasterio, see Section 2.5.2

– Install requirements

∗ Windows

$ python -m pip install -r requirements.txt

∗ Linux

$ python3 -m pip install -r requirements.txt

26

Figure 2.3. Generic analytical results generation for our linear and quadratic equations. These
are mathematical derivations written in the Wolfram Mathematica programming language. The
linear equation is g and the quadratic equations is f . Various calculus and algebraic operations are
performed to get results for slope, aspect, and curvature. Both with map unit normalization and
without.

27

3. DEM TESTING AND EVALUATION

To test our DEM function we will be using a double-variate Gaussian distribution. It is a

very common statistical function we can use to test our library. The function itself can be seen

in Equation 3.1. To get the more typical 2D variant of the Gaussian function, simply remove the

expression (−µ + y)2. We can see the Gaussian 3D Wolfram plot in Figure 3.5, and its Python

generated variant in Figure 3.4.

3.1. Python Image Generator

Our image generation for the Gaussian hill can be see in Figure 3.1 written in Python.

It accepts an image size, offset (µ), standard deviation (σ), and noise. If the image size is not

specified, a constant is used, defined at the top of the file. The µ variable is used to change the

center of the Gaussian hill. Without an offset, a Gaussian hill will be centered on the origin. By

default, we shift the Gaussian hill by one half of our image size, to be centered in our image. The

σ variable is used to change the distribution of our Gaussian hill. Within one σ of the mean exists

68% of the volume, within two σ of the mean exists 95% of the volume, then 99.7% and so on.

By default, σ is 1
8

th
of the image size, as it is here. Lastly we have the noise, which adds slight

variations to the output. It makes a slightly imperfect guassian hill.

Our image generator simply loops though both the x and y indices, then uses our Gaussian

hill function with the appropriate values for x, y, µ, and σ. Our Gaussian image is saved with the

helper.py file and the name of the file is returned to the caller of the function. The equation in the

function is spread over multiple lines to aid in readability.

The results of our Python function can be seen in Figure 3.4. As expected, the Gaussian

hill is centered in the image, and the majority of the hill exists within 1
4 of the image. The reason

such a small standard deviation was chosen was to enable more room for the results of the slope

and curvature calculations. These will have some more interesting results than just the base Gauss

function, and will cover more area.

3.2. Wolfram Image Generation

To get 3D theoretical results of what our library should be outputting, we can use Wolfram

Mathematica. We can use the same process outlined in Figure 2.3 to generate our theoretical

28

Figure 3.1. A snippet from the image generator.py file in the library. This file has many different
methods designed to aid in testing the class. This method in particular is very useful for DEM
testing. A multivariate Gaussian hill is generated and exported to a file on disk, with the name of
the file returned to the user.

results. We will simply replace the f and g functions with our Gauss equation, as seen in Equation

3.1. We will also remove the map units, because all of our data will be synthetic. What results is

Figure 3.2.

We can view the results from our equations by executing the code in Figure 3.3. Plotting

the equations is done with the Plot3D function. A few options are passed to format our results.

First we pass in our mathematical function, then we specify the range of values to evaluate over.

29

We are using a predefined variale named size, which is 4096 in our results. To ensure all of the z

values are plotted we use PlotRange -> ALL. To label our axes we have AxesLabel -> Automatic.

Lastly, to make our axes correspond with what we see in Python, we must reverse the direction of

the y axis with ScalingFunctions -> {None, ”Reverse”, None}. This is due to the fact that +y is

considered downwards in raster images.

To export these images we use the Export function. Accepting a file name and a plotted

object, we can save our plot to disk as an image. The results of the process on the Gauss equation

can be seen in Figure 3.5.

All of the following images have been confirmed to be correct within our test.py file using

unit tests. First the sliding window algorithm results were generated and each pixel was compared

directly to the results from analytical equations resulting from Figure 3.2. Analytical results were

generated using the x and y indices of the image pixel, input into the corresponding equation.

The same values for µ and σ are required for both the image generation and the analytical result

generation.

3.3. Slope

When using the process in Figure 3.2 we get Equation 3.2 for our slope. The results from

plotting this equation in Wolfram Mathematica can be seen in Figure 3.6. We can compare this

image to the results from the sliding window algorithm in Figure 3.7. We can visually confirm

the validity of the Wolfram plot with some observations. First, we expect the calculation to be in

a direction extending radially outwards from the center, because this is the direction of steepest

descent in a Gaussian hill. The slope in this direction is expected to be zero when there is a change

in direction and when the Gaussian hill has a constant change in slope. There is potentially one

occurance of this, a constant slope when the hill bottoms out at the edges of the image. This is

exactly what we observe in both the Python and the Wolfram images. The center is very close to

zero, but not exactly zero. We also expect the Gauss values to rapidly decrease on the curves of

the hill and then taper off to zero. This is also visible in the images.

3.4. Aspect

Figure 3.2 returns Equation 3.3 when we are calculating the aspect. We use the modulo

operator to keep the results in the range [0, 2π). This modulo operator results in a few discontinu-

ities in Mathematica. To fix these for our plotting purposes we will pass the Exclusions -> None

30

Figure 3.2. Gaussian analytical result generation written in Wolfram Mathematica. This follows
the same process as in Figure 2.3, except with a multivariate Gaussian function. Results are
computed for slope, aspect, and curvature. Results are saved to variables such as gaussSlope and
gaussStandard, but are not printed to the user.

Figure 3.3. 3D plot generation of analytical results written in Wolfram Mathematica. Plot3D
function is used for generation and Export function is used for saving the image. The word ”plot”
is used as a placeholder for any double variate mathematical function.

option to the Plot3D function. Our plotted Wolfram Mathematica results are in Figure 3.8. We

can compare these to our sliding window algorithm results in Figure 3.9.

Visualizing the apsect results is fairly straightforward. We are still doing calculations ra-

dially from the center at the point (2048, 2048). There are no flat faces on the hill of a Gaussian

31

surface, we expect the aspect to be unique in every radial direction from the center. Calculat-

ing from due North, we expect values in North-Eastern directions to be the lowest, and values in

North-Western directions to be the highest. This is what we see in our results from Wolfram and

Python, although the wolfram results seem to be slightly more curved than the perfect corkskrew

shape we expect. This is potentially a result of the discontinuities from our modulus operation. In

addition, we see black in the four corners of our Python image. This can potentially be explained

by a lack of data due to having a zero slope in those areas.

3.5. Curvature

Our last computation is curvature. Computed again from Figure 3.2, we see the analytical

results in Equation 3.4, Wolfram results in Figure 3.10, and sliding window algorithm results can

be seen in Figure 3.11. To visually confirm these images, we must look at the slope images, the

Python results in Figure 3.7 are helpful in particular.

We will first consider the curvature in the direction of steepest descent, the profile curvature.

Observing movement radially from the center, in the Python image we can see that the slope is

relatively constant in a black band around the middle of the hill and along the edges of the image.

We can also see that the slope starts with a large negative change in value and then quickly rises

to a positive value and ends at zero.

Now we will consider the curvature perpendicular to the steepest descent, the planform

curvature. We can imagine that since the Gaussian hill is a perfect circle, with every direction of

steepest descent extending radially from the center, movement perpendicular to this would be zero.

Averaging the results of the profile and planform curvature, we can ignore the planform

results because they are zero. Considering the theoretical profile results, we see the spots in the

curvature where we expected zero results. We also see locations where we expected the slope to

first be negative and then increase, leveling off to zero near the edges of the image.

32

Figure 3.4. Image generated by the Gauss function in the image generater.py file. An image size of
4096 pixels square was used with a standard deviation (σ) of 512 pixels and an offset (µ) of 2048
pixels.

Figure 3.5. Results from using the Wolfram Mathematica Plot3D function on the multivariate
Gauss function. An image size of 4096 pixels square was used with a standard deviation (σ) of 512
pixels and an offset (µ) of 2048 pixels

1

σ
√

2π
e
−

(−µ+ x)2 + (−µ+ y)2

2σ2 (3.1)

33

Figure 3.6. Results from using the Wolfram Mathematica Plot3D function on the analytical slope
results of the Gauss function. An image size of 4096 pixels square was used with a standard
deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels

Figure 3.7. Image generated when the slope function of the sliding window library operated on a
Gaussian hill. The Gaussian hill had an image size of 4096 pixels square with a standard deviation
(σ) of 512 pixels and an offset (µ) of 2048 pixels. Eight aggregation steps were used for a total
sliding window size of 256 pixels.

−

√√√√√e
−

(µ− x)2 + (µ− y)2

σ2 (2µ2 + x2 + y2 − 2µ(x+ y))

σ6√
2π

(3.2)

34

Figure 3.8. Results from using the Wolfram Mathematica Plot3D function on the analytical aspect
results of the Gauss function. The Exclusions -> None option was used to remove discontinuities.
An image size of 4096 pixels square was used with a standard deviation (σ) of 512 pixels and an
offset (µ) of 2048 pixels

Figure 3.9. Image generated when the aspect function of the sliding window library operated on a
Gaussian hill. The Gaussian hill had an image size of 4096 pixels square with a standard deviation
(σ) of 512 pixels and an offset (µ) of 2048 pixels. Eight aggregation steps were used for a total
sliding window size of 256 pixels.

atan2

e
−

(µ− x)2 + (µ− y)2

2σ2 (−µ+ x)

σ3
√

2π
,
e
−

(µ− x)2 + (µ− y)2

2σ2 (−µ+ y)

σ3
√

2π

+
π

2

 mod 2π

(3.3)

35

Figure 3.10. Results from using the Wolfram Mathematica Plot3D function on the analytical
standard curvature results of the Gauss function. An image size of 4096 pixels square was used
with a standard deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels

Figure 3.11. Image generated when the standard function of the sliding window library operated
on a Gaussian hill. The Gaussian hill had an image size of 4096 pixels square with a standard
deviation (σ) of 512 pixels and an offset (µ) of 2048 pixels. Eight aggregation steps were used for
a total sliding window size of 256 pixels.

e
−

2µ2 + x2 + y2 − 2µ(x+ y)

2σ2 (2µ2 − σ2 + x2 + y2 − 2µ(x+ y))

2σ5
√

2π
(3.4)

36

4. RESULTS

Not only was this library created to easily switch between analyses without switching soft-

ware packages, but also to combine these analyses into a single image. Code for these types of

operations exist in the previously mentioned cluster.py file. In this section we will cover a few

example uses of this file.

4.1. Spectral

Our first example is an analysis of a National Agricultural Imagery Program (NAIP) image

taken on the border of North and South Dakota. It is a hyperspectral RBG/IR image, so we will be

analyzing it using our rbg.py file. In this scenario we are going to do a spectral correlation between

the red and green bands. We want to see how this result correlates with itself when calculated

with varying sliding window sizes. We will arbitrarily be calculating this analysis with the number

of aggregations varying in the range [3, 7]. That is, a sliding window size varying in the range

[8, 128], in powers of two. We will make our sub image 512 pixels long, 4 times the size of our

largest aggregation, to allow for some breathing room. To make this calculation we will pass the

following to our function: analyses=[Analysis.regression, Analysis.regression, Analysis.regression,

Analysis.regression, Analysis.regression], bands=[[1, 2], [1, 2], [1, 2], [1, 2], [1, 2]] for our red and

green bands, num aggres=[3, 4, 5, 6, 7], and sub img size=512.

Our adjusted image can be seen in Figure 4.1. This image is a 384x384 pixel image taken

from the very top left corner of the original. It was a 512x512 pixel image, which had 27−1
2 = 63.5

pixels removed from each side, to match our analyses output which has been aggregated 7 times.

The results of our pair plot can be seen in Figure 4.2. We can see in this image that all of

the window sizes correlate fairly strongly having a regression slope that is approximately one. The

correlation is the strongest when aggregation windows are a factor of two away from each other.

For example, the correlation between the window sizes of 8 and 16 is very strong. This makes sense

when we observe that the histograms of all the analyses on the main diagonal have the same general

shape. The histograms get more varied as the window size increases due to the increase in data.

It is also interesting to note that the window size of 128 froms a hook shape when correlated with

37

other window sizes. Values of .5 evidently tend to vary more as the size of the window increases to

128 pixels.

4.2. Digital Elevation Model

Our second example will be a DEM file take in Arizona. We will analyze this file using the

dem.py file. We will be trying to figure out how all of the DEM functions and fractal functions

are related. This will be done with both the gen clustered img and the gen pairplot img functions.

Again, we will be varying the number of aggregations in the range [3, 7]. We will make our sub

image 1000 pixels long at position (1000, 1000) because we have a very high resolution image

and want to capture a whole mountain feature in our image. To make this calculation we will

pass the following to our function: analyses=[Analysis.slope, Analysis.aspect, Analysis.standard,

Analysis.fractal, Analysis.fractal 3d], bands=[1, 1, 1, 1, 1], num aggres=[3, 4, 5, 6, 7], sub img

start=[1000, 1000], and sub img size=512. The adjusted image is in Figure 4.3.

Results of the gen clustered img function can be seen in Figure 4.5. We have used the

argument average cluster values=True to visualize the general magnitude of the cluster centers.

The most obvious thing to notice is that the aspect has a very large effect on the clustering.

Parts of the mountain facing in a general South-Western direction are darker and regions facing

generally in a North-Eastern direction have have lighter colors. We can also see that colors near the

peak of the mountain have higher values, presumably because the slope and curvature are higher

there. Lastly, we could also explain the darker colors in the lower left of the image by the fractal

dimensions. There are generally rougher structures in the lower left corner, which would correlate

with a higher fractal dimension.

Our results for the gen pairplot img function can be seen in Figure 4.4. The most obvious

correlation is between the slope and the fractal 3d analyses. A higher slope seems to correlate

with a rougher 3D shape. Observing the 2D fractal dimensions we see the values seems to be

equally split between the integer dimensions of 0 and 2. This means most features are either points

or planes. Planes seem to have lower 3D fractal dimensions, probably containing less changes in

elevation. This is also reflected in the slope, with lower slope slightly correlating with planes from

the 2D fractal dimensions. The aspect appears to be equally dispersed among the other analyses,

with generally vertical and horizontal lines for correlation. Lastly, the curvature doesn’t seem to

correlate with anything at all, logically a very separate analysis.

38

Figure 4.1. The adjusted image from a pair plot operation on a National Agricultural Imagery
Program (NAIP) file. Resulting from the maximum number of aggregations equaling 7, sum img
size = 512, and sub img start = [0, 0].

39

Figure 4.2. The output image from a pair plot operation on a National Agricultural Imagery
Program (NAIP) file. Calculated with the following parameters: sum img size = 512, sub img
start = [0, 0], analyses = [Analysis.regression, Analysis.regression, Analysis.regression, Analy-
sis.regression, Analysis.regression], bands = [[1, 2], [1, 2], [1, 2], [1, 2], [1, 2]], and num aggres =
[3, 4, 5, 6, 7].

40

Figure 4.3. The adjusted image from a pair plot operation on a DEM file. Resulting from the
maximum number of aggreagations equaling 7, sum img size = 1000, and sub img start = [1000,
1000].

Figure 4.4. The output image from a cluster operation on a DEM file. Calculated with the
following parameters: sum img size = 1000, sub img start = [1000, 1000], num clusters = 10, av-
erage cluster values = True, analyses = [Analysis.slope, Analysis.aspect, Analysis.standard, Anal-
ysis.fractal, Analysis.fractal 3d], bands = [1, 1, 1, 1, 1], and num aggres = [7, 7, 7, 7, 7].

41

Figure 4.5. The output image from a pair plot operation on a DEM file. Calculated with the follow-
ing parameters: sum img size = 1000, sub img start = [1000, 1000], analyses = [Analysis.slope,
Analysis.aspect, Analysis.standard, Analysis.fractal, Analysis.fractal 3d], bands = [1, 1, 1, 1, 1],
and num aggres = [7, 7, 7, 7, 7].

42

5. CONCLUSION

GIS methods can be improved to better handle topographical calculations. A sliding window

algorithm can be utilized to create a library to execute a variety of analyses. These analyses are

efficient, due to the nature of the algorithm’s O(log(n)) time complexity, and can be combined in

interesting ways.

We have developed a Python library. Enabling the code readability of Python while also

having the performance of C code using a package called NumpPy. This library was designed to

be open source and have a high correlation with theoretical results to enable high comprehension,

readability, and modularity of code. Methods within the library were separated into files of varying

levels of abstraction, using the design principle of data abstraction. Code was separated into groups

relating to either aggregations, DEM files, spectral images, or analysis synthesis.

Validation of this library was performed using brute-force techniques of O(n2) time com-

plexity and analytical results derived in Wolfram Mathematica. Through direct comparison of

analytical results & brute-force techniques to the results of the sliding window algorithm, valida-

tion was acheived. Visualizations of 3D Wolfram Mathematica results were generated using the

built in Plot3D function. Visualizations were compared intuitively to the sliding window algorithm’s

DEM outputs. Using calculus intuition, we saw it was reasonble to assume, even without our unit

test results, that our results were correct.

To tie our library all together, we outlined two operations enabling the synthesis of many

differnt analyses. With either pair plots or k-means clustering, we combined our analyses. Using

our pair plots we saw surprising ways in which different analyses were correlated. Using clustering,

we saw the regions of an image where different analyses could be related with a common cluster

group. We understood that additional statistical methods could be added to this library in the

future through open source innovation.

43

REFERENCES

[1] John W Allan. High resolution geographic imagery and its impact on gis, Jun 2017.

[2] Dayna Behm, Tony Bryan, Joshua Lordemann, and Steven R Thomas. The past, present, and

future of geospatial data use, Feb 2018.

[3] Laura M Castro. It was never about the language: paradigm impact on software design

decisions. 2020.

[4] Caitlin Dempsey. What is gis?, Oct 2020.

[5] A. M. Denton, M. Ahsan, D. Franzen, and J. Nowatzki. Multi-scalar analysis of geospatial

agricultural data for sustainability. In 2016 IEEE International Conference on Big Data (Big

Data), pages 2139–2146, 2016.

[6] Anne Denton, Rahul Gomes, and David Franzen. Scaling up window-based slope computa-

tions for geographic information system. In 2018 IEEE International Conference on Elec-

tro/Information Technology (EIT), pages 0554–0559. IEEE, 2018.

[7] Michael D Fleming and Roger M Hoffer. Machine processing of landsat mss data and dma

topographic data for forest cover type mapping. In LARS Symposia, page 302, 1979.

[8] J.J. Gagnepain and C. Roques-Carmes. Fractal approach to two-dimensional and three-

dimensional surface roughness. Wear, 109(1):119–126, 1986.

[9] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virta-

nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,

Robert Kern, Matti Picus, Stephan Hoyer, Marten H van Kerkwijk, Matthew Brett, Allan

Haldane, Jaime Fernández Del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,

Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and

Travis E Oliphant. Array programming with numpy. Nature (London), 585(7825):357–362,

2020.

44

[10] Kevin H Jones. A comparison of two approaches to ranking algorithms used to compute hill

slopes. GeoInformatica, 2(3):235–256, 1998.

[11] Herbert J. Kramer and Arthur P. Cracknell. An overview of small satellites in remote sensing.

International Journal of Remote Sensing, 29(15):4285–4337, 2008.

[12] Benoit Mandelbrot. How long is the coast of britain? statistical self-similarity and fractional

dimension. science, 156(3775):636–638, 1967.

[13] NASA. Landsat 7.

[14] Trisalyn A. Nelson. Trends in spatial statistics. The Professional Geographer, 64(1):83–94,

2012.

[15] David A Sharpnack. An algorithm for computing slope and aspect from elevations. Photogram-

metric Engineering, 35(3):247–248, 1969.

[16] B. Stroustrup. What is object-oriented programming? IEEE Software, 5(3):10–20, 1988.

[17] U.S. Geological Survey. Landsat missions.

[18] U.S. Geological Survey. What are the band designations for the landsat satellites?

[19] Huang Yao, Rongjun Qin, and Xiaoyu Chen. Unmanned aerial vehicle for remote sensing

applications—a review. Remote Sensing, 11:1443, 06 2019.

45

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF FIGURES
	introduction
	Geographic Information Systems
	Problem Statement
	Software Design

	concepts
	Sliding Window
	Software Architecture
	sliding_window.py
	aggregation.py
	rbg.py
	dem.py
	cluster.py
	test.py
	helper.py

	Topographical Calculations
	Slope
	Curvature

	DEM Formula Generation
	Installation
	Virtual Environment
	Rasterio Installation
	SlidingWindow Installation

	dem testing and evaluation
	Python Image Generator
	Wolfram Image Generation
	Slope
	Aspect
	Curvature

	results
	Spectral
	Digital Elevation Model

	conclusion
	REFERENCES

