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ABSTRACT 

Intrusion detection systems are systems that aim at identifying malicious activities or 

violation of policies in a network. The problem of high dimensionality in intrusion detection 

systems is a barrier in processing data and analyzing network traffic.  

This work aims at tackling problems associated with high data dimensionality using a 

feature selection technique based on one way ANOVA F-test before the classification process. It 

also involves study of autoencoder as a classification technique for network data as opposed to the 

traditional use of autoencoders in image data. Experiments have been conducted using the popular 

NSL-KDD dataset and the results of those experiments are compared with existing literature.  

Keywords: Machine learning, feature selection, intrusion detection, autoencoder, ANOVA F-test, 

NSL-KDD 
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I. INTRODUCTION 

A data breach of the airline’s technology vendor made it to the headline of many online 

news portal recently. The multinational IT company ‘Société Internationale de 

Télécommunications Aéronautiques’ (SITA) gets passenger information such as membership 

number, tier status and even credit card information, to name a few, from international airlines 

including Singapore Airlines, Finnair, Malaysian Airlines etc. Although it was states by SITA 

officials that the data breach did not impact sensitive passenger information, it is not hard to 

imagine the dire consequences SITA and the associated airlines would have had in that case [1]. 

In today’s world of connected devices, security of the network is of critical importance. 

Networking revolution in recent times has provided limitless connectivity increasing, greatly, 

opportunities for malicious attacks. Unauthorized access and malicious activities are a great threat 

to confidentially, integrity, and availability that form the information security triad. Preventing 

such unwanted access to network devices is becoming more challenging and important. While 

systems cannot be completely shielded from attacks by intruders, such attempts can be detected 

and analyzed. Intrusion detection systems (IDSs) are reactive agents that detect such vulnerabilities 

in the network. The role of an Intrusion Detection System (IDS) is to detect abnormalities caused 

by an unauthorized reach into the network and send alerts. Depending on the goal of the system, 

IDSs can be differentiated into different types. Two main types of intrusion detection systems that 

are often talked about are signature-based intrusion detection systems and anomaly-based intrusion 

detection systems. 

Trying to overcome the problems faced with the usage of signature-based intrusion 

detection systems, researchers shifted their focus to anomaly detection approaches. The baseline 

dataset that was being used for the analysis of different anomaly-based intrusion detection systems 



 

2 

was the KDD’99 dataset. A group of four researchers – Mahbod Tavallaee, Ebrahim Bagheri, Wei 

Lu, and Ali A. Ghorbani conducted some statistical analysis on the KDD’99 dataset and found 

some note-worthy issues with it that would result in inept performance of the IDS using it [2]. Two 

of the most concerning issues with this publicly available KDD’99 dataset listed in their work 

were: 

• The presence of a huge number of redundant records in the dataset (78% and 75% 

redundancy in the training and test data respectively). 

• Unproportionate distribution and skewness in KDD’99 test dataset resulting in 

suspiciously high accuracy rate even with the use of simple learners. This makes it a 

poor indicator of the ability of the classifier to be used as a tool in anomaly-based 

intrusion detection systems.  

To overcome these problems, they proposed a solution in the form of a new dataset: the 

NSL-KDD dataset. At present, the NSL-KDD dataset has gained high popularity and is considered 

one of the benchmark datasets for anomaly detection system evaluation. The advantages it has 

over its predecessor are as follows [3]: 

• There is no redundancy in the training set records. This helps remove bias of the 

classifier towards duplicate records as duplicate data in training set implies that the 

‘weight’ of that record is doubled making is twice as important in the model’s 

perception.  

• It also does not include redundant records in the test set. This eliminates the problem 

that occurs when a learning algorithm has better detection rate of frequent data, 

giving an inflated sense of the model’s overall performance.   

• It has a reasonable number of records in both training and test sets. 
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 When a high-dimension dataset such as the NSL-KDD dataset is being used, using some 

feature engineering techniques enhances the performance of the system. Feature engineering is the 

process of modifying features to better encapsulate the nature of a machine learning problem. Any 

input to a machine learning model, whether it is supervised or unsupervised, includes instances 

that consist of features. Features are what provide information about instances. Depending on the 

problem at hand, identifying features that are more relevant to problem can make analyzing the 

dataset more efficient. The idea of feature engineering is to add to the enhancements made in 

performance by tuning the machine learning algorithm itself [4]. Even after tuning the 

hyperparameters in a learning algorithm, performance can be further enhanced by using feature 

engineering methods. Feature selection – a form of feature engineering helps determine those 

features in a high-dimensional dataset that are most relevant to the task at hand and makes increases 

the time-efficiency of the learning algorithm.   

The aim of this research work is two-fold. The first objective is to develop an intrusion 

detection system using a special machine learning technique known as an autoencoder to detect 

network anomaly. Performance evaluation of the proposed model is done using the NSL-KDD 

dataset introduced above. The second objective of the research is to analyze the significance of 

ANOVA F-test as a feature selection method for network intrusion data.  The future prospect of 

this work is to help identify techniques that can be used in real-time scenarios efficiently.   

As mentioned above, the machine learning algorithms of interest for this research is an 

autoencoder. Autoencoders are a learning technique, specifically artificial neural networks (ANN), 

that are capable of learning input data representation using compression followed by 

reconstruction. Building blocks of an autoencoder can be seen in figure 1 below.  
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Figure 1. Autoencoder [30]. 

Autoencoders basically work by encoding input data at the ‘encoder’ block, compressing 

data at the ‘bottleneck’ (middle) layer and reconstructing the encoded input at the ‘decoder’ block. 

While autoencoders are vastly used in image compression tasks, this research work demonstrates 

the use of autoencoders for intrusion detection.  

Now-a-days, many open source tools and frameworks are available that make the task of 

running experiments easy for programmers. One such tool is Keras. Keras, built on top of 

Tensorflow, provides APIs (Application Programming Interface) for building neural networks. It 

simplifies the use of Tensorflow and helps to translate ideas into implementation with least 

possible delays. The major advantage of using Keras is it helps developers avoid low-level 

computations. It has built-in functions that makes the training and implementation of autoencoders 

easy. 

The rest of the thesis is organized as follows. Section II sheds some light in the review of 

previous literature on which the research work is based. Section III goes into detail explanation of 

the methodology used in this study. It dives into more detailed analysis of the dataset used. It then 

gives a description of the tools and technologies used to conduct experimental runs. Subsection 

III.C. explains the preprocessing methods used on the data to make it usable by the machine 



 

5 

learning model, followed by subsections III.D. and III.E. that discuss the feature selection 

approach and the machine learning model used, respectively. The outcome of the experiments has 

been explained in section IV. Finally, in Section V. the conclusions that can be drawn from this 

research work have been discussed. 
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II. LITERATURE REVIEW 

Machine learning methods traditionally used in anomaly-based intrusion detection system 

include Naïve Bayes (NB) classifiers, Support Vector Machine (SVM), k-Nearest Neighbors 

(KNN) and decision tree classifiers. In the evaluation done by M. C. Belavagi and B. Muniyal [5] 

they have used the NSL-KDD dataset with four different classifiers: logistic regression, support 

vector machine, guassian naïve bayes and random forest classifier and presented a comparison of 

accuracies obtained in each case. Logistic regression, a statistical classifier that uses a logistic 

function to predict probability of occurrence of any event is demonstrated to be 84% accurate in 

the NSL-KDD dataset. SVM, where data points are plotted in an n-dimensional space (n being the 

number of features) and Gaussian Naïve Bayes classifier, a classifier based on Bayes theorem are 

found to have 75% and 79% accuracy, respectively. Random forest, a classifier that uses votes 

from multiple decision trees to make a prediction, outperforms the other three classifiers in this 

study with a very high accuracy of 99%. With the intent of evaluating some non-classical machine 

learning approaches, Z. Li, A. L. G. Rios, G. Xu, and L. Trajkovic deployed two deep learning 

Recurrent Neural Networks (RNNs) – Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) along with Broad Learning System (BLS) on the NSL-KDD dataset [6]. They 

concluded that LSTM and GRU deep neural networks and the BLS model all achieved comparable 

performance in terms of accuracy which were close to 83% in all cases. The experiment performed 

by B. Ingre and A. Yadav [7] on the NSL-KDD data shows results of conducting binary class and 

five-class classification using Artificial Neural Network (ANN). They have performed feature 

elimination based on observation of the dataset, removing four features as almost values in those 

features were zero. They have also eliminated eight features based on previous research [8]. Using 

tansig transfer function, Levenberg-Marquardt (LM) and Broyden–Fletcher–Goldfarb–Shanno 
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(BFGS) quasi-Newton Backpropagation, with 21 neurons in the hidden layer and changing output 

layer’s neurons to 2 for two class and 5 for five class classification, they reported the model 

accuracy to be 81.2% for intrusion detection (binary classification) and 79.9% for attack type 

classification (five class classification).   

Autoencoders are a type of artificial neural network that are capable of learning the 

representation of input data and help reduce dimensionality from the original input. This makes it 

autoencoders the model of choice for image compression. Much time and effort has been spent on 

the evaluation of autoencoder as a compression tool. The use of Convolutional AutoEncoders 

(CAEs) was projected to have better performance than traditional transforms for lossy compression 

of image data in the work by Z. Cheng, H. Sun, M. Takeuchi, and J. Katto [9]. The CAE network 

was supplied a subset of ImageNet dataset and the autoencoder was configured to use the 

Parametric Rectified Linear Unit (PreLu) activation function with Adam optimizer. The use of 

autoencoders by C. C. Tan and E. Eswaran in medical image compression (specifically 

mammograms) [10] shows promising results in terms of Mean Squared Error (MSE) and Structural 

Similarity (SSIM) index for different combinations of hidden layers. Although autoencoder has 

mainly seen popularity in image compression applications, researchers are starting to inquire if it 

can be used as a viable model for intrusion detection. M. Gharib, B. Mohammadi, S. H. Dastgerdi 

and M. Sabokrou have presented AutoIDS as an autoencoder based IDS solution[11]. By stacking 

a sparse and a reconstruction-error based autoencoders, they have created a model that was able to 

achieve an accuracy of 90%. 

Feature selection is a popular data preprocessing step in machine learning applications. 

Removing unwanted and irrelevant features from a dataset has been found to significantly improve 

the efficiency of a leaning model. N. O. F. Elssied, O. Ibrahim and A. H. Osman demonstrated the 
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use of one-way ANOVA F-Test[12] as an efficient method of feature selection in email-spam 

classification. They combined this feature selection method with SVM and concluded that this 

approach provided better performance in terms of accuracy, computation time and false positive 

rates. A study of different feature selection methods by G. Chandrashekar and F. Sahin[13] 

presents different filter and wrapper methods such as correlation criteria, genetic algorithm, and 

sequential floating forward selection (SFSS). They evaluate the use of these feature selection 

methods on different datasets and conclude that while feature selection can improve the 

performance of a model the, every algorithm will behave differently for different data and 

applications. Using dataset with mixed datatypes (categorical and non-categorical), L. A. A. 

Almeida and J. C. M. Santos[14] found that the use of VarianceThreshold function provided by 

the Python library Scikit-learn gave good results in conjunction with SVM.    
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III. METHODOLOGY 

In this section, the description of the approaches to identify anomaly using the NSL-KDD 

dataset has been discussed. As mentioned in section I, the work is divided into two parts. In the 

first part, the machine learning model learns to differentiate between ‘normal’ and ‘attack’ data 

without the implementation of any feature selection methods. A high-level flow chart of this 

process is shown in figure 2 below:     

 

Figure 2. Flow chart – normal vs. attack classification 

In the second part, the attack labels are separated into Normal, DoS, Probe, R2L and U2R. 

Then, the dataset is divided such that at one time it consists of Normal and one other attack type. 

Feature selection is applied to this subset and it is then fed to the machine learning model. This 

process is repeated for all other attack types. A high-level flow of this process is shown in the 

figure 3 below:  
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Figure 3. Flow chart – feature selection 

The rest of this section dives deeper into description of data, tools and technologies used, 

data preprocessing steps taken, description of the machine learning model and the feature selection 

method applied. 

3.1. Data description 

The NSL-KDD is an update and improvement to the KDD’99 dataset that that was 

developed for the KDD Cup competition in 1999 [15]. These datasets are publicly available and 

are very widely used for IDS experiments. The data is primarily internet traffic consisting of 43 

features per record, of which the last two are class (specific attack type or normal) and score 

(severity of traffic input) [16]. The class column provides information on whether the record is 

considered normal or is a member of one of four attack classes – Denial of Service (DoS), Probe, 

Remote-to-Local (R2L) or User-to-Root (U2R). There are 14 attack types. A mixture of categorical 

(nominal), binary and numeric variables are in the feature set. Each record has basic, content-
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related, time-related, and host-based features [17]. The attributes of this dataset are listed in table 

1 below. 

Table 1. NSL-KDD dataset attributes[18] 

Attribute Type Attribute Names 

Basic Duration, Protocol_type, Service, Flag, Src_bytes, 
Dst_bytes, Land, Wrong_fragment, Urgent 

Content related Hot, Num_failed_logins, Logged_in, Num_compromised, 
Root_shell, Su_attempted, Num_root, Num_file_creations, 
Num_shells, Num_access_files, Num_outbound_cmds, 
Is_hot_login, Is_guest_login 

Time related Count, Srv_count, Serror_rate, Srv_serror_rate, Rerror_rate, 
Srv_rerror_rate, Same_srv_rate, Diff_srv_rate, 
Srv_diff_host_rate 

Host based traffic  Dst_host_count, Dst_host_srv_count, 
Dst_host_same_srv_rate, Dst_host_diff_srv_rate, 
Dst_host_same_src_port_rate, Dst_host_srv_diff_host_rate, 
Dst_host_serror_rate, Dst_host_srv_serror_rate, 
Dst_host_rerror_rate, Dst_host_srv_rerror_rate 

 

A description of the features in the training and test datasets are presented in appendix table 

A1.  

The NSL-KDD dataset and the KDD dataset are derived from the dataset provided by 1998 

DARPA (Defense Advanced Research Projects Agency) Intrusion Detection Evaluation Program 

[28]. The 1998 DARPA dataset is based on network audit logs that have attack names based on 

attack signatures. For example, in ‘land’ attack the attack signature is the presence of identical 

source and destination addressed in network packets [29]. This method of assigning class label is 

also true in the NSL-KDD dataset as it is ultimately derived from the 1998 DARPA dataset.  

3.2. Tools and technologies 

Python: Python programming language is being used more and more for scientific 

computing. A survey conducted by Stack Overflow in 2020 shows that Python is the 4th most 
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popular programming language among programmers [19]. This consistent popularity over the 

years can partly be credited to the extensive and powerful packages python provides for data 

analysis. Some of the important packages used in this research have been described in the 

following sections.  

Anaconda Navigator: Anaconda is a flexible tool that among other features, gives access 

to different integrated development environments (IDEs). Spyder – the Python IDE in Anaconda 

was chosen for the project due to it easy-to-use editing, testing and debugging features[20]. The 

use of Anaconda Navigator greatly simplified the task of installing and managing packages.  

Scikit-learn: Scikit-learn is an important framework for data science and machine learning 

in Python. Written mostly in Python, the scikit-learn project is an active project with new 

enhancements being added constantly [21].  

Pandas: One of the reasons Python has become the programming language of choice for 

statistical computing is Pandas. The Pandas library is a data structure tool that provides various 

functionalities for data manipulation and analysis[22].  

NumPy: NumPy, another Python library that deals with data structures contrasts from 

Pandas in that it works with numerical data where Pandas works with tabular data. As this research 

project is data intensive in nature, use of the NumPy library plays a significant role in handling the 

dataset.   

Matplotlib: This library helps users create simple 2D plots in Python with just a few 

commands. All plots in this project have been created using Matplotlib.  

Keras: A general introduction to Tensorflow and Keras have been provided in section I 

above. In this project, Keras has been used with Tensorflow as the backend to implement 

autoencoder.  
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3.3. Data preprocessing 

Column names: The first step in the data preprocessing step is naming the columns in the 

training and test datasets.  

Generalizing labels: The test data set consists of an additional 15 attack types that are not 

present in the training dataset. Thus, it is useful to provide more generalized labels to the attacks 

to train the model. The 37 attack types mentioned before have been generalized into 4 categories: 

• Denial of Service (DoS) attacks: This attack group is caused when attackers make the 

network resources too busy so that legitimate users seeking access to the resources 

cannot do so.  

• Remote-to-Local (R2L) attack: R2L is a malicious attack that occurs when someone 

who doesn’t have an account in a local machine sends packets to the machine over a 

network.  

• User-to-Root (U2R) attacks: A root user has elevated privileges in a computer. In a 

U2R attack, a normal user in a computer exploits vulnerabilities to gain root access to 

the system. This can be done by password sniffing, dictionary attacks or even through 

social engineering.  

• Probe attacks: A probe attack is unique in the sense that the attacker wants the attack 

to be detected by the target system. Once the target system detects the attack and 

reports it to public repositories, attacker is able to confirm that the system is indeed 

being monitored (in this case, the attacker is also part of the public repository). A 

detailed analysis of the alert reported by the target system reveals additional system 

information such as make and model of the target’s IDS, target’s network topology 
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and how the exploit was detected. This information is in turn exploited by the 

attacker. [27]  

Table 2 shows the grouping of these attack types into the 4 labels mentioned above: 

Table 2. Generalized attack labels 

Generalized labels Attack labels in original dataset 

Denial of Service snmpgetattack, back, land, neptune, smurf, teardrop, pod, apache2, 
udpstorm, processtable, mailbomb 

Remote-to-Local snmpguess, worm, httptunnel, named, xlock, xsnoop, sendmail, 
ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, 
warezmaster 

User-to-Root sqlattack, buffer_overflow, loadmodule, perl, rootkit, xterm, ps 

Probe ipsweep, nmap, portsweep, satan, saint, mscan 

 

Out of the four classes mentioned above, DoS and Probe attacks have a higher count in the 

training and test data whereas R2L and U2R are underrepresented. Table 3 below highlight the 

distribution of these attack types in the training and test datasets: 

Table 3. Attack distribution in NSL-KDD dataset 

Attack labels Total instances 
in training data 

Percentage in 
training data 

Total instances 
in test data 

Percentage in test 
data 

DoS 45927 77.48% 7460 56.78% 

Probe 11656 19.66% 2421 18.43% 

R2L 1642 2.77% 3191 24.28% 

U2R 52 0.09% 67 0.51% 

Total 59277 100% 13139 100% 

 

There is a total of 125973 rows in the training data and 22544 rows in the test dataset. From 

the table above, we can see that analysis on the DoS and Probe attack types are more significant 

than that on R2L and U2R attacks.  
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Feature elimination: The ‘Score’ field from the dataset has been eliminated. The field has 

been eliminated at the very beginning when the training and test csv files are loaded, because it 

does not add to the analysis.  

Target field: The target field ‘label’ has been dropped in the preprocesing step and replaced 

with a ‘class’ field. In the new ‘class field, attack labels have been replaced with the generalized 

labels mentioned in table 2 above.  

One-hot encoder: An autoencoder cannot perform on non-numeric data. As the NSL-KDD 

dataset used consists of categorical data in the protocol_type, service and flag fields, one-hot 

encoder is used in the data-preprocessing step to convert them into appropriate numerical 

representation. This method converts an attribute with N possible categories into N distinct 

features. For example, in the NSL-KDD dataset, the protocol type attribute has 3 possible values 

– Internet Message Control Protocol (ICMP), Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP). One-hot encoding converts this attribute into three feature columns as 

shown in figure 4. 

 

Figure 4. One-hot encoding used in protocol type attribute. 

For the remining features, StandardScalar function has been used, which is described in the 

following section.  

StandardScalar: Values in different features within a dataset can have different scales 

making it hard to compare, analyze and visualize data. Scaling is a standard data preprocessing 
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step because features that are fed to a machine learning model as inputs at different scales do not 

contribute equally to the model fitting and learning processes which gives rise to an unwanted bias. 

In this work, StandardScalar function from the sklearn.preproessing package has been used. This 

scalar function removes the mean from the feature and scales its values to unit variance.   

3.4. Classification 

For the classification task, dropout autoencoder has been used for model training. In an 

autoencoder, dropout is an efficient method to prevent overfitting. After encoding the features with 

one-hot encoder, the dataset now contains 122 features. Input layer in the sparse autoencoder thus 

has 122 neurons. The input layer is followed by a dropout layer configured at a dropout rate of 0.5. 

This dropout layer randomly sets input units to 0 based on the dropout rate defined [23] which is 

what prevents overfitting. To make sure the overall inputs are unchanged, the input units that are 

not set to 0 are then scaled to 1/(1-rate) , which is 1/(1-0.5) in this case. The dropout layer is 

followed by a hidden layer with 8 neuron. 8 neurons in the hidden layer result in an autoencoder 

with a compression rate of 122/8. The final layer is the output layer that again has 122 neurons.  

ReLu (Rectified Linear Unit) function along with Adagrad optimizer has been used in the 

model. Choice of ReLu activation function overcomes vanishing gradient problem and it allows 

the machine learning model to speed up learning. ReLu is the most commonly used activation 

function in artificial neural networks because of it’s simplicity. For each experiment run, the model 

was trained for 10 epochs with a batch size of 100 and a validation split of 0.1.  

3.5. Feature selection 

ANOVA (Analysis of Variance) is a statistical technique that incorporates hypothesis 

testingthat, in the simplest sense, analyzes the difference among means among different groups. 

One-way ANOVA is a method determines relationship between predictor and a response variables. 
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The one-way ANOVA F-test statistics has been used in this work to eliminate unimportant features 

from the dataset. This algorithm takes one attribute into consideration at a time to see how well 

each predictor (feature) by itself predicts the target variable (output) [12]. The f_value between the 

predictor and target is calculated which is used as a parameter in the SelectPercentile method 

provided by scikit-learn. SelectPercentile then returns the percent of features to keep which is 

defined in its second parameter ‘percentile’. This feature selection method is used to transform the 

training data. For every attack type (DoS, Probe, R2L and U2R), the most meaningful 10% of the 

total features (i.e. 13 features) have been extracted in separate experimental runs. Only these 13 

features are fed as input to the autoencoder for learning.   
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IV. EXPERIMENTAL RESULTS 

The performance of each experimental run is evaluated in terms of accuracy of the machine 

learning model. Accuracy is a metric that measure how correctly the model classifies a data point 

and is calculated as follows: 

�������� =
��	
�� � ������ ����������

���� ��	
�� � ����������
 

As the model used in this project follows binary classification, the accuracy can also be 

viewed in terms of true and false positives and negatives as follows: 

�������� =  
�� + ��

�� + �� + �� + ��
 

Where TP = True Positive, TN = True Negative, FP = False Positive and FN = False Negative.  

The positive and negative values for each run can be visualized easily using a confusion 

matrix. Accuracy measure alone, however, does not provide complete information of how good 

the model performance is. A deeper analysis of these positive and negative values gives a broader 

perspective on the model performance. Performance measures that provide additional insights are: 

precision, recall and f-score. The ratio of true positive values to all positive values gives precision. 

�������� =  
��

�� + ��
 

Recall, another metric for performance evaluation, is the fraction of retrieved instances 

among all relevant instances[24]. Mathematically, recall can be defined as follows: 

������ =  
��

�� + ��
 

F-score is the harmonic mean for precision and recall. A good f-score implies a low false 

positive and low false negative rate.  
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The final output of the model is a performance table that shows how the model behaves in 

terms of accuracy, precision, recall and f score when presented with features of different nature 

and dimensions. These metrices are based on values in the confusion matrix for each case. 

4.1. Result of experiment conducted on the basis of normal vs. attack label 

Figure 5 below show the number of correctly classified and misclassified normal and attack 

labels in the form of a confusion matrix.   

 

Figure 5. Confusion matrix – normal vs. attack label 

Table 4 below shows performance of the machine learning model when it is tasked with 

distinguishing between a normal and an attack data: 

Table 4. Performance evaluation of normal vs. attack classification 

Accuracy (%) Precision Recall F1_score 

88.76 0.852 0.971 0.908 
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The table above suggests that the model is a good binary classifier for threat detection as 

all four performance metrices are high.  

4.2. Result of experiment conducted on the basis of normal vs. DoS label 

Figure 6 below illustrates the number of correctly classified and misclassified normal and 

DoS labels in the form of a confusion matrix. 

 

Figure 6. Confusion matrix – normal vs. DoS label 

Table 5 below depicts performance of the machine learning model when it is tasked with 

distinguishing between a normal and a DoS attack data: 

Table 5. Performance evaluation of normal vs. DoS classification 

Accuracy (%) Precision Recall F1_score 

84.0 0.800 0.760 0.780 
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The performance table for Normal vs. DoS classification indicates that the model can 

identify a DoS with 84% accuracy. The false positive and false negative rates are also low as shown 

by the high precision, recall (and hence f score) values. 

The list of features selected by the feature selection method for this dataset are: 

['logged_in', 'count', 'serror_rate', 'srv_serror_rate', 'same_srv_rate', 'dst_host_count', 

'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 

'service_57', 'flag_2', 'flag_9'] 

4.3. Result of experiment conducted on the basis of normal vs. probe label 

The number of correctly classified and misclassified normal and probe attack labels is 

displayed in figure 7 below, in the form of a confusion matrix. 

 

Figure 7. Confusion matrix – normal vs. probe label 

Table 6 below shows performance of the machine learning model when it is tasked with 

distinguishing between a normal and a probe attack data: 
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Table 6. Performance evaluation of normal vs. probe classification 

Accuracy (%) Precision Recall F1_score 

87.67 0.618 0.997 0.763 

 

Overall performance of the classifier shows good result for Probe attack detection.  

The list of features selected for this dataset are: 

['logged_in', 'rerror_rate', 'srv_rerror_rate', 'dst_host_srv_count', 'dst_host_diff_srv_rate', 

'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'dst_host_rerror_rate', 

dst_host_srv_rerror_rate', 'protocol_type_2', 'service_68', 'service_85', 'flag_2'] 

A closer look at the features selected by the feature selection algorithm in both DoS and 

Probe attacks suggests that logged_in attribute, which indicates a successful or an unsuccessful 

login attempt, is a good indicator for both attack types. From above, it can been observed that DoS 

attacks are mainly characterized by serror_rate whereas Probe attacks are mainly characterized by 

rerror_rate. These attributes depend on the flag attribute where serror_rate is related to flag status 

S0, S1, S2 and S3 whereas rerror_rate is related to flag status REJ. The way a connection ended 

seems to be another good indicator of an attack. A flag status ‘SF’ indicates a normal SYN/FIN 

completion, which is found to not be a characteristic of an attack from the above analysis. S0, S1, 

S2, S3 and REJ status occur in the following circumstances [26]: 

• S0 (state 0): initial SYN seen but no reply. 

• S1 (state 1): connection established (SYN's exchanged), nothing seen further. 

• S2 (state 2): connection established; initiator has closed their side. 

• S3 (state 3): connection established; responder has closed their side. 

• REJ (connection rejected): initial SYN elicited a RST in reply;   
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dst_host_srv_count is also common in both DoS and Probe attacks. It is the number of connections 

that have the same port number.  

4.4. Result of experiment conducted on the basis of normal vs. R2L label 

The number of correctly classified and misclassified normal and R2L attack labels is 

presented in figure 8 below, in the form of a confusion matrix. 

 

Figure 8. Confusion matrix – normal vs. R2L label 

Table 7 below shows performance of the machine learning model when it is tasked with 

distinguishing between a normal and an R2L attack data: 

Table 7. Performance evaluation of normal vs. R2L classification 

Accuracy (%) Precision Recall F1_score 

84.77 0.6931 0.542 0.608 
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The list of features selected for this dataset are: 

['src_bytes', 'dst_bytes', 'hot', 'num_failed_logins', 'is_guest_login', 'dst_host_srv_count',  

dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'service_31', 'service_54', 

service_57', 'service_58', 'flag_3'] 

4.5. Result of experiment conducted on the basis of normal vs. U2R label 

Figure 9 below illustrates the number of correctly classified and misclassified normal and 

U2R attack labels in the form of a confusion matrix. 

 

Figure 9. Confusion matrix – normal vs. U2R label 

Table 8 below shows performance of the machine learning model when it is tasked with 

distinguishing between a normal and a U2Rattack data: 

Table 8. Performance evaluation of normal vs. U2R classification 

Accuracy (%) Precision Recall F1_score 

85.21 0.0418 0.940 0.080 
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The low precision and high recall values in this classification indicate unbalanced data and 

that most of the predicted labels are incorrect when compared to the training labels. This shows 

that just high accuracy is not an indicator of the overall model performance.  

The list of features selected for this dataset are: 

['urgent', 'hot', 'root_shell', 'num_file_creations', 'num_shells', 'srv_diff_host_rate', st_host_count', 

'dst_host_srv_count', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'service_54', 

'service_57', 'service_89'] 

The surviving features for specific attack, 13 features with the best ANOVA F-Test scores 

are tabulated in table 9 below: 

 

Figure 10. List of surviving features for specific attack types 

4.6. Hyperparameter tuning 

In order to determine the optimal value for the ‘percentile’ parameter, experiments were 

conducted multiple times reducing the number of selected features in each run. Results of these 
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experiments in terms of accuracy is shown in figure 10 below. Based on this graph, the value of 

percentile was set to 10. This resulted in the selection of the best 10% of features (i.e. 13 features) 

that were fed to the classifier for further processing.  

 

Figure 11. Accuracy vs. percentile chart for hyperparameter tuning  
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V. CONCLUSION 

The first conclusion that can be drawn from this analysis is that the use of autoencoder for 

intrusion detection is effective as the two-class classification (Normal vs. Attack) accuracy is 

pretty high – close to 90%. This is better in comparison to the performance of traditional classifiers 

using the same dataset such as Gaussian Naïve Bayes and SVM but not as good as random forest 

algorithm. The performance is also slightly better than that of LSTM and GRU used by Z. Li, A. 

L. G. Rios, G. Xu, and L. Trajkovic.  

Performance evaluation of Normal vs. DoS and Normal vs. Probe attacks in table 4 and 5 

respectively show that the classifier can detect these attacks with an accuracy of 84% and 87.67% 

respectively. Majority of attacks in the NSL-KDD dataset are the DoS and Probe attacks and the 

machine learning model used in this research can identify these attacks with high recall.  In an 

IDS, the cost of misclassifying an attack is very high, hence high recall value is an indicator of 

good model performance. When an IDS fails to identify an attack, the security personnel will have 

no idea an attack occurred and will not be prepared for the consequences. However, when an IDS 

misclassifies a normal traffic as attack, it increases the cost of dealing with the false alarm. Thus, 

high false negative and high false positive rates are both significant when looking at the 

performance of an IDS. Low values of recall in R2L and precision in U2R attacks in this research 

suggest the need of further enhancement of the model for these attack types.  

As this method uses just a single hidden layer with 8 neurons, the training the model is not 

time-consuming, and it was easy to perform multiple experimental runs in a short period of time. 

The hyperparameters can be easily tweaked to fine-tune the model. With all features in the original 

dataset, the training time at epoch was noted to be 6s. Although the model trains quickly on the 

NSL-KDD dataset, the use of feature selection was found to reduce the training time in each epoch 
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by 1 second. The results show better performance in comparison to methods such as LSTM that 

has a training time of 4481.73s and GRU that has a training time of 1108.31s in the same dataset 

[6]. This can prove to be very significant when this model is used for real-time network threat 

monitoring and opens a possibility for the use of this application in near real-time scenario.  

The use of a single hidden layer in the autoencoder was sufficient in this project. Stacking 

is a powerful concept in autoencoders that helps it learn more complex coding (representation of 

input data). However, it is important not to use more hidden layers than necessary as it can 

negatively impact the learning process and makes it unlikely for the model to generalize well to 

new data instances [25]. The use of one hidden layer in this research, which is based on previous 

literature, was found to be good enough and consistent with earlier studies.  

Using just a small set of features, modest accuracy can be achieved. The accuracy vs. 

percentile chart in figure 10 shows that even though there is information loss when a subset of 

features is selected, the performance of classifier is decent. This finding can be used in datasets 

with higher volume of data to reduce training time. Analysis of DoS and Probe attacks (which 

make up the majority of the attacks in the NSL-KDD dataset) show that some features such as the 

login indicator and connection status (flag) are more useful in identifying attacks in network 

connection.  

Thus, this research work demonstrates that the use of a dropout autoencoder with ANOVA 

feature selection algorithm is useful for anomaly detection in intrusion detection systems and the 

viability of this approach is strongly justified through experiments. 

5.1. Limitations 

Interaction between features might be different when a different group of features are 

selected. As there are so many features in the dataset, we can end up with a large number of 
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combination of features. The feature selection method used in the work is based on previous 

literature, but it is also possible that some other method that investigates interaction of features in 

a completely different way gives a more effective result than the one presented. It cannot be 

claimed that a particular feature selection method is the best one that can be used for a certain 

dataset.  

An inherent problem with the NSL-KDD dataset is the class imbalance problem that can 

be seen in the case of R2L and U2R attacks. Table 3 shows that R2L attacks make up only 2.77% 

of the total attacks in training data whereas less than 0.1% of the total attacks in training dataset 

consists of U2R data resulting in a severe underrepresentation of these attacks.  Even when 

compared to the number of normal instances these classes have a low count (total normal labels in 

training data is about 53% of the total data) which leads to unreliable results in binary classification 

of normal vs. R2L and normal vs. U2R attacks. Machine learning model more targeted towards 

improving the efficiency of an IDS in detecting these sparse attacks, as proposed by M. R. Parsaei, 

S. M. Rostami and R. Javidan in their study [31] can be implemented as a viable alternative to 

eliminate this problem. Random over-sampling and under-sampling can be used as machine 

learning approach to tackle the problem of class imbalance. Random over-sampling duplicates 

rows randomly in minority class whereas random under-sampling deletes rows randomly in 

majority class to attain a more balanced dataset distribution. Both of these techniques can be 

repeated until the desired distribution is achieved.    
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APPENDIX. NSL-KDD FEATURE DESCRIPTION TABLE 

Feature 
type 

Feature 
number 

Feature name Description Sample Data 

Basic 1 Duration Duration of the connection 0 

2 Protocol_type Protocol used in the connection Tcp 

3 Service Destination network service used ftp_data 

4 Flag Status of connection  SF 

5 Src_bytes Number of bytes transferred from source to 
destination in a single connection 

491 

6 Dst_bytes Number of bytes transferred from destination to 
source in a single connection 

0 

7 Land 1 if source and destination IP addresses and port 
numbers are equal; else 0 

1 

8 Wrong_fragment Total number of wrong fragments in a connection 0 

9 Urgent Number of urgent packets in a connection 0 

Content 10 Hot Number of ‘hot’ indicators in the content 0 

11 Num_failed_login
s 

Count of failed login attempts  0 

12 Logged_in 

 

1 if successfully logged in; 0 otherwise 1 

13 Num_compromise
d 

Number of “compromised” conditions 0 

14 Root_shell 1 if root shell is obtained; 0 otherwise 0 

15 Su_attempted 1 if ``su root'' command attempted or used; 0 
otherwise. 

 

0 

16 Num_root Number of ``root'' accesses or number of operations 
performed as a root in the connection 

 

0 

17 Num_file_creation
s 

Number of file creation operations in the connection 0 

18 Num_shells Number of shell prompts 0 

19 Num_access_files Number of operations on access control files 0 

20 Num_outbound_c
mds 

Number of outbound commands in an ftp session 0 

21 Is_hot_login 

 

1 if the login belongs to the “hot'' list 

 

0 

22 Is_guest_login 1 if the login is a guest login 0 
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Feature 
type 

Feature 
number 

Feature name Description Sample Data 

Time-
related 

23 Count Number of connections to the same destination host 
is the current connection in the past two seconds 

2 

24 Srv_count Number of connections to the same service (port 
number) as the current connection in the past two 
seconds 

2 

25 Serror_rate The percentage of connections that have activated 
the flag (4) s0, s1, s2 or s3, among the connections 
aggregated in count (23) 

0 

26 Srv_serror_rate The percentage of connections that have activated 
the flag (4) s0, s1, s2 or s3, among the connections 
aggregated in srv_count (24)  

0 

27 Rerror_rate The percentage of connections that have activated 
the flag (4) REJ, among the connections aggregated 
in 

count (23) 

0 

28 Srv_rerror_rate The percentage of connections that have activated 
the flag (4) REJ, among the connections aggregated 
in 

srv_count (24) 

0 

29 Same_srv_rate The percentage of connections that were to 

the same service, among the connections 

aggregated in count (23) 

1 

30 Diff_srv_rate The percentage of connections that were to different 
services, among the connections aggregated in 
count (23) 

0 

31 Srv_diff_host_rate 

 

The percentage of connections that were to different 
destination machines among the connections 
aggregated in srv_count (24) 

0 

Host-
based 

32 Dst_host_count Number of connections having the same destination 
host IP address  

150 

33 Dst_host_srv_cou
nt 

Number of connections having the same port 
number 

25 

34  The percentage of connections that were to the 
same service, among the connections aggregated in 
dst_host_count (32) 

0.17 

35 Dst_host_diff_srv
_rate 

The percentage of connections that were to different 
services, among the connections aggregated in 
dst_host_count (32) 

0.03 

36 Dst_host_same_sr
c_port 

_rate 

The percentage of connections that were to the 
same source port, among the connections 
aggregated in dst_host_srv_count (33) 

0.17 

37 Dst_host_srv_diff
_host_rate 

The percentage of connections that were to different 
destination machines, among the  connections 
aggregated in dst_host_srv_count (33) 

0 

38 Dst_host_serror_ra
te 

The percentage of connections that have activated 
the flag (4) s0, s1, s2 or s3, among the connections 
aggregated in dst_host_count (32) 

0 
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Feature 
type 

Feature 
number 

Feature name Description Sample Data 

39 Dst_host_srv_serr
or_rate 

The percent of connections that have activated  the 
flag (4) s0, s1, s2 or s3, among the connections 
aggregated in dst_host_srv_count  (33) 

0 

40 Dst_host_rerror_ra
te 

The percentage of connections that have activated 
the flag (4) REJ, among the connections aggregated 
in dst_host_count (32) 

0.05 

41 Dst_host_srv_rerr
or_rate 

The percentage of connections that have activated 
the flag (4) REJ, among the connections  aggregated 
in dst_host_srv_count (33) 

0 

 


