
ALIGNMENT OF GENETIC VARIATION, PLASTICITY, AND SELECTION, AND THE 

EFFECTS OF COST OF PLASTICITY 

 

 

 

A Dissertation 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Monica Anderson Berdal 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Major Department:  

Biological Sciences 

 

 

 

  

March 2021 

 

 

 

 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
 

ALIGNMENT OF GENETIC VARIATION, PLASTICITY, AND 

SELECTION, AND THE EFFECTS OF COST OF PLASTICITY 

  

  

  By   

  
Monica Anderson Berdal 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Ned Dochtermann 

 

  Chair  

  
Julia Bowsher 

 

  
Steven Travers 

 

  
Lauren Hanna 

 

   

   

  Approved:  

   

 4/12/2021  Kendra Greenlee  

 Date  Department Chair  

    

 



 

iii 

ABSTRACT 

Phenotypic expression depends on both the underlying genetics and the environment the 

phenotype is expressed in, i.e., plasticity. Adaptive theory predicts that selection should align 

with the dimensions of most genetic variation and plasticity because this will increase the 

evolutionary rate of a population, meaning that a population would reach its fitness optimum 

faster than if they were misaligned. Alignment with selection is only predicted if there is 

directional selection, and not under stabilizing selection. In addition, only adaptive plasticity is 

predicted to align with both selection and genetic variation, with the proportion of the plastic 

variation consisting of adaptive plasticity determining how well aligned plasticity should be. In 

the first chapter of this dissertation, I outline the evolutionary consequences of the relationship 

between selection, genetic variation, and plasticity, as well as what the predictions are for their 

alignments and how to estimate them. In my second chapter I empirically test the alignment 

between selection, among- and within-individual variation (used as proxies for genetic variation 

and plasticity respectively) for three behaviors in a wild population of deer mice (Peromyscus 

maniculatus). I found that selection, among- and within-individual variation were all misaligned, 

and that there was very little variation in all three behaviors. This could indicate that the 

behaviors have already reached their fitness optimum due to previous selection pressure. 

Consequently, this population might not be able to adapt to environmental change. In my last 

chapter I investigate the cost of plasticity in response to a predatory cue on reproductive outputs 

in isogenic lines of the banded cricket (Gryllodes sigillatus). Plasticity is assumed to have 

associated costs which would affect its alignment with selection and genetic variation. I found no 

evidence for cost of plasticity in G. sigillatus, and in addition there was no genetic variation in 

plasticity among the lines. Again, previous selection might drive the population’s mean plasticity 
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to its fitness optimum, reducing the variation and the costs of plasticity, making it harder to 

detect.   
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1. GENERAL INTRODUCTION 

Traits under selection should have a phenotypic distribution reflecting the selection 

pressure within a population (Phillips and Arnold 1989, Armbruster and Schwaegerle 1996, 

Arnold et al. 2008). A phenotype consists of both genetic and environmental variation, and 

selection can act upon both to shape the phenotype. To understand the distribution of a 

phenotype it is therefore necessary to understand the relationship between selection, genetic 

variation, and adaptive phenotypic plasticity (i.e., the phenotypic changes based on the 

environment the phenotype is expressed in). Theory predicts that both the dimension with most 

genetic variation and most plastic variation should align with each other and with the directional 

selection gradient (β), i.e., they should all be collinear (Jones et al. 2007, Arnold et al. 2008, 

Draghi and Whitlock 2012, Berdal and Dochtermann 2019, Noble et al. 2019, Wright et al. 

2019).  

Because traits often correlate with other traits, selection on one trait will have an effect on 

correlated traits, and vice versa (Lande 1979, Lande and Arnold 1983, Phillips and Arnold 1989), 

and when investigating how selection shapes a phenotypic distribution it should be done from a 

multi-trait point of view. For genetic variation, this multivariate structure is captured in the 

genetic variance-covariance matrix, i.e., the G-matrix (Lande and Arnold 1983), where the 

dominant eigenvector from this matrix (gmax) corresponds to the dimension of most genetic 

variation (Lande and Arnold 1983). Theoretical models have shown that gmax and β should align 

over time, especially when the fitness optimum is stable (Jones et al. 2007, Arnold et al. 2008). 

Populations where gmax and β are aligned will respond faster to the selection pressure, reaching 

their fitness optimum faster than if there was a misalignment (Schluter 1996). A misalignment 

might indicate that either the traits being investigated have reached their fitness optimum and are 
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no longer under directional selection, or that the selection pressure has changed, and the 

underlying genetics have not had enough time to realign with the new selection gradient. 

Because the phenotype also consists of environmental variation, adaptive phenotypic 

plasticity could increase the alignment between phenotypic variation and selection, even though 

the genetic variation is misaligned. Adaptive plasticity allows an individual to match its 

phenotype to the environment, and plasticity should therefore be aligned with selection 

(Gavrilets and Scheiner 1993). Plasticity should also align with genetic variation because 

plasticity masks the genetic variation in this dimension, decreasing the selection pressure and 

thus increasing the genetic variation in this dimension (Draghi and Whitlock 2012). While 

genetic variation takes several generations to realign with the selection gradient, plasticity can 

respond much quicker to a change in selection pressure and might be more important for a 

population establishing in a new environment (Price et al. 2003, Ghalambor et al. 2007, Draghi 

and Whitlock 2012), giving genetic variation time to realign with the new selection gradients 

over time (Jones et al. 2007, Arnold et al. 2008).  

The alignment between plasticity and both selection and genetic variation is affected by 

two factors, namely what proportion of phenotypic plasticity consist of adaptive plasticity and 

the cost of plasticity. Phenotypic plasticity consists of other types of plasticity than adaptive 

plasticity, e.g., passive plasticity and organismal error (Westneat et al. 2015). Only adaptive 

phenotypic plasticity is predicted to align with selection and genetic variation, and if adaptive 

plasticity only contributes a small proportion of the phenotypic plasticity the alignment will be 

reduced (Westneat et al. 2015, Berdal and Dochtermann 2019). High cost of plasticity will also 

reduce the alignment between plasticity and selection and genetic variation because it will reduce 
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the benefit of the plastic response and not be as strongly favored by selection (DeWitt et al. 

1998, Murren et al. 2015).  

In my first chapter I explain in depth the adaptive theory predicting the alignment 

between genetic variation, plasticity, and selection, as well as factors that could lead to 

misalignment between them, as summarized above. I also outline a method for how to estimate 

alignment. In my second chapter I use a field experiment on a wild population of deer mice 

(Peromyscus maniculatus) where I empirically test for alignment between selection, genetic 

variation, and plasticity based on the prediction and suggested methods described in my first 

chapter. The use of a wild population allows me to calculate selection gradients for individuals 

under natural selection, an important factor for testing the predicted alignments. I repeatedly 

captured individuals using live traps and tagged them at first capture for identification at 

subsequent recaptures. I recorded repeated measures of three behaviors for each individual: 

activity, aggression, and response to a predator cue. In this study I used among- and within-

individual covariance matrices as proxies for genetic variation and plasticity, respectively. The 

among-individual covariance matrix consists of both genetic and permanent environmental (PE) 

variation, where about 50 % of the variation is contributed by genetic variation (Dingemanse and 

Dochtermann 2014, Dochtermann et al. 2015). The within-individual covariance matrix consists 

of temporal environmental variation, including adaptive reversible plasticity (Whitman and 

Agrawal 2009, Westneat et al. 2015). Selection gradients were estimated from survival 

probability based on recapture data. Estimating selection gradients, among-individual variation 

(genetic variation), and within-individual variation (plasticity) allowed me to empirically test my 

predictions laid out in my first chapter, something that, to my knowledge, has not been done in a 

wild population before.  
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 In my third and final chapter I investigate the cost of plasticity in isogenic lines of banded 

crickets (Gryllodes sigullatus), as cost of plasticity is one of the main predicted causes for 

misalignment between plasticity and both genetic variation and selection. Isogenic lines allow 

me to look at the expression of the same genotype in different environment, which is necessary 

for investigating cost of plasticity (Van Tienderen 1991, Van Buskirk and Steiner 2009). 

Plasticity was measured as absolute change in activity level in the absence vs. presence of a 

predator cue, while fitness was measured as number of eggs laid in females and spermatophore 

mass in males. A cost of plasticity would be detected if there was a substantial negative 

correlation between plasticity and fitness, i.e., genotypes that invest more in plastic responses 

have reduced fitness. I also investigated the inter- and intra-genetic variation among the lines. 

Inter-genetic variation (i.e., genetic variation among the lines) is necessary for any potential 

evolutionary change in a trait and estimating this allowed me to investigate whether there was 

any potential for plasticity to be under selection in this population. Intra-genetic variation is also 

interesting to investigate as this shows that some genotype varies more in their phenotypic 

expression than other, which could be a form of bet-hedging (Stamps et al. 2013, Ayroles et al. 

2015). 

My dissertation lays out an in-depth explanation for the prediction for alignment between 

genetic variation, plasticity, and selection based on evolutionary theory, as well as a method for 

how to estimate these alignments. I also empirically tested these predictions in a wild population 

of deer mice, something that has not been tested in wild population before. Lastly, I tested the 

assumption that there are costs associated with plasticity, which is one of the main factors 

causing a misalignment between plasticity and both genetic variation and selection.  
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2. ADAPTIVE ALIGNMENT OF PLASTICITY WITH GENETIC VARIATION AND 

SELECTION 

2.1. Abstract 

Theoretical research has outlined how selection may shape both genetic variation and the 

expression of phenotypic plasticity in multivariate trait space. Specifically, research regarding 

the evolution of patterns of additive genetic variances and covariances (summarized in matrix 

form as G) and complimentary research into how selection may shape adaptive plasticity lead to 

the general prediction that G, plasticity, and selection surfaces are all expected to align with each 

other. However, less well discussed is how this prediction might be assessed and how the 

modelled theoretical processes are expected to manifest in actual populations. Here, we discuss 

the theoretical foundations of the overarching prediction of alignment, what alignment 

mathematically means, how researchers might test for alignment, and important caveats to this 

testing. The most important caveat concerns the fact that, for plasticity, the prediction of 

alignment only applies to cases where plasticity is adaptive, whereas organisms express 

considerable plasticity that may be neutral or even maladaptive. We detail the ramifications of 

these alternative expressions of plasticity vis-à-vis predictions of alignment. Finally, we briefly 

highlight some important interpretations of deviations from the prediction of alignment and what 

alignment might mean for populations experiencing environmental and selective changes. 

2.2. Introduction 

Understanding the distribution of phenotypes within a population requires understanding 

three major and interacting contributors: genetic variation, phenotypic plasticity, and how each is 

shaped by natural selection. Selection shapes the distribution of phenotypes in many ways but, 

most simply, it is predicted to drive a population’s mean phenotype towards a fitness optimum 
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and deplete genetic variation around that optimum (Figure 2.1.A.; Fisher 1930). In particular, 

under stabilizing selection, a population which has its mean at the fitness optimum is expected to 

lose variation around this mean, with the distribution of phenotypes narrowing around the 

optimum (Figure 2.1.A.). However, selection does not usually operate on single traits (Lande 

1979, Lande and Arnold 1983), but instead affects multiple traits simultaneously. For example, 

particular combinations of traits might have a higher fitness compared to others combinations, 

i.e. correlational selection (Figure 2.1.B.; Endler 1986), and thus a population’s distribution of 

phenotypes in multivariate trait space is expected to narrow around a multivariate optimum 

(Figure 2.1.C.) and can give rise to covariances among traits at the genetic level (Phillips and 

Arnold 1989, Armbruster and Schwaegerle 1996, Roff 1997).  
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Figure 2.1. A. Response of a population under stabilizing selection where the population’s mean 

is at the optimum (θ). Over successive generations, if the optimum does not change, variation 

around the mean is lost. B. An example of a selection surface (ω) for which fitness increases as 

traits approach intermediate values for both traits, i.e. when trait combinations are along the 

adaptive ridge. C. If a population’s multivariate mean is at an optimum, variation will be 

depleted over successive generations so as to mirror the selection surface (B)—note that under 

stabilizing selection the distribution of variation is visualized as being similar to the topography 

of the selection surface and that, as a result, most variation is present in the direction of weakest 

selection (i.e. under stabilizing selection G is orthogonal to ω). 

This narrowing of variation around an optimum changes the distribution of phenotypes in 

a population by changing the amount of genetic variation for those traits under selection (direct 

or otherwise) and by changing the magnitude and direction of trait covariances. Put another way, 

selection can affect the multidimensional geometric structure of genetic variances and 

covariances, as captured by the “G matrix” (following conventional notation bold values denote 

matrices and vectors rather than single values or effects). Phillips and Arnold (1989) provided 

the means by which the response of G to selection could be calculated (equation 2 therein) and 

simulation experiments have subsequently explored the long-term dynamics of how G is 

expected to track fitness optima (Jones et al. 2003, Jones et al. 2004, Jones et al. 2007). One 



 

8 

general finding from both analytical theory and simulations is that, over time and under 

directional selection, G is expected to align with the direction of selection, as measured either by 

selection gradients, β (Lande 1980), or Gaussian selection surfaces ω, (Jones et al. 2007, Arnold 

et al. 2008). Alignment in this regard can be defined as the dominant eigenvector of the G matrix 

(gmax, Schluter 1996) being collinear with a selection gradient or the dominant eigenvector of a 

static selection surface (Arnold et al. 2008) and can more generally be defined as geometric 

collinearity. Note that alignment only occurs when traits are under directional selection, where 

the fitness optimum is outside the existing genetic variation. Under stabilizing selection genetic 

variation will be depleted, and gmax will be in the direction of weakest selection (Figure 2.1.B. 

and 2.1.C.).  

Two related factors affect the alignment between G and the selection surface: i) the 

stability of G over evolutionary time, and ii) whether the fitness optimum is constant, 

fluctuating, or changing in a constant direction. The stability of G will be determined by the 

relative contribution of pleiotropy versus selection-induced linkage disequilibrium (Roff 1997, 

Conner 2002, Conner et al. 2011), the contribution of mutations to covariances (e.g. Jones et al. 

2007, Arnold et al. 2008), and the orientation of G relative to selection. For a linearly moving 

optimum, Jones et al. (2004) showed that G was more stable if the movement of the optimum 

was in the same direction as the gmax. In contrast, an optimum moving in a direction different 

from gmax, will decrease the stability of G (Jones et al. 2004). gmax will therefore be better aligned 

with the selection surface if the optimum is stable or moving in a constant direction. 

While the above discussion provides general expectations as to the relationship between 

genetic covariation and selection, it ignores the fact that the distribution of phenotypes within a 

population is only partially due to genetic variation. In fact, the average heritability of traits is 
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estimated to be around 0.3 – 0.4 for behavior, physiological, and life-history traits and 0.55 for 

morphological traits (Mousseau and Roff 1987, Stirling et al. 2002, Dochtermann et al. 2019). 

The remaining ~70 – 45% of phenotypic variation stems from the influence of environmental 

factors on phenotypes, i.e. phenotypic plasticity—as well as developmental noise, e.g. stochastic 

gene expression—raising the question of whether we can similarly predict how environmental 

contributions to phenotypic variation and covariation should be oriented relative to selection. 

Differences among individuals in phenotype due to differences in the environment 

experienced by these individuals fall under a broad operational definition of phenotypic plasticity 

(Lynch and Walsh 1998). If we partition phenotypic variation solely into genetic variation (i.e. 

G) and environmental variation (i.e. E), E necessarily captures the effects of plasticity on 

phenotypic variation (Whitman and Agrawal 2009). E also captures the effects of correlated 

plasticity on the expression of phenotypic traits: the off-diagonal elements of E are trait 

covariances due to environmental effects. These off-diagonal elements represent “multivariate 

trait plasticity” (Whitman and Agrawal 2009) which may stem from common developmental 

pathways, trade-offs in allocation of energy, or optimal combinations of phenotypic expression. 

When there is among-genotype variation in plasticity within a population—i.e., gene-by-

environment interactions—plasticity can also respond to selection. Specifically, plasticity is 

expected to evolve such that the fitness of individuals increases when plasticity is expressed. 

Thus, if adaptive, plasticity should be aligned with selection surfaces (Gavrilets and Scheiner 

1993, Draghi and Whitlock 2012). Put another way, adaptive plasticity is expected to alter an 

individual’s phenotype to be closer to a fitness optima (Gotthard and Nylin 1995) and so the 

expression of variation due to environmental effects will be oriented in the direction of selection. 
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The multivariate expression of plasticity, as summarized by the geometric properties of E, will 

thus be expected to align with directional selection surfaces. 

Interestingly, plasticity itself might also contribute to alignment between genetic 

covariation and the selection surface (Draghi and Whitlock 2012). Draghi and Whitlock (2012) 

argued that because the mechanisms necessary for phenotypic plasticity are expected to be more 

strongly expressed along the main axis of a selection surface, this would also increase the genetic 

variance found in this dimension. Phenotypic plasticity therefore contributes to the accumulation 

of cryptic genetic variation (Gibson and Dworkin 2004). Because adaptive plasticity masks this 

genetic variation, it is under weakened selection and genetic variation will therefore be greatest 

in the direction of plasticity, except when depleted under very strong selective pressure 

(Gavrilets and Scheiner 1993). If the new fitness optimum is stable over evolutionary time, this 

adaptive facilitation may ultimately contribute to evolution via genetic assimilation (Lande 

2009), and gmax and the fitness surface will again be aligned. 

The relevance of the above areas of research can be synthesized as: i) the distribution of 

genetic variation should align with selection surfaces (Jones et al. 2003, Jones et al. 2004, Jones 

et al. 2007, Arnold et al. 2008), ii) if plasticity is adaptive, it should be expressed such that 

variation aligns with selection surfaces (Gotthard and Nylin 1995, Draghi and Whitlock 2012), 

and iii) genetic variation and variation due to plasticity should be aligned if both are aligned to 

selective surfaces and this may be reinforced by the influence of plasticity on adaptation (Draghi 

and Whitlock 2012). Taken together this leads to a general prediction: adaptive plasticity, genetic 

variation (G), and selection surfaces should all be aligned in multidimensional trait space. 

Understanding the alignment among these three components (Figure 2.2.) can also help explain 
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why genetic variation sometimes acts as an evolutionary constraint and emphasizes the 

importance of plasticity for adaptation. 

 

Figure 2.2. Relationship among G, E, P, and β in two populations (A and B). In both 

populations the main axes of genetic and environmental variation (i.e. the dominant eigenvector 

of G and E) are closely aligned with a minimal angle (r°) between them. Consequently, 

phenotypic variation is similarly oriented (P). However, in A, variation at all levels (G, E and P) 

is misaligned with the direction of selection (β) by ~45°. In contrast, in B, G, E, P, and β are all 

approximately aligned. Assuming the same amount of variation is present in each population and 

that the strength of selection is the same, this difference in alignment with β between the two 

populations means that population B will more rapidly respond to selection than will population 

A. 

The only empirical test of the general prediction of alignment among G, plasticity, and 

selection that we are aware of was with Daphnia pulex that were exposed to cues of one of two 

predators, after which G, selection responses, and plasticity were estimated (Lind et al. 2015). G 

matrices and the expression of plasticity differed between predatory regimes but the difference 
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between the expressions of plasticity was greater than that observed for G matrices. Plasticity 

and G were also only aligned in one of the two predator exposure treatments.  

While further tests of this general prediction are needed, two important questions about 

such testing remain: i) how do we test for this alignment; and ii) to what degree should we expect 

plasticity—manifested as environmental variation (E)—to be aligned with either G or selection? 

Here we describe statistical methods for empirically testing alignment among genetic variation, 

plasticity, and the selection surface, as well as an overview of contributors to G and E, and what 

implications these contributors have for the general prediction of alignment.  These predictions 

unfortunately lack testing, and our motivation for discussing these issues here is because 

alignment, or lack thereof, is informative as to whether, how, and how quickly populations might 

respond to selection. The relative alignments of E and G with β or ω might also lead to 

hypotheses about current versus past selective pressures (Table 2.1.). 

Table 2.1. Relevant evolutionary alignments and some of their biological significance. 

  Biological Significance Relevant references 

G || ω or β 

Alignment between the dominant eigenvector of 

G (gmax) and the direction or shape of selection. 

This alignment results in populations more 

rapidly responding to selection and suggests the 

possibility that the geometry of G has responded 

to selection and is itself adaptive. 

Schluter (1996), Arnold 

et al. (2008) 

E || ω or β 

Alignment between the dominant eigenvector of 

E (emax) and the direction or shape of selection. 

With this alignment plasticity is adaptive in that 

the expression of plasticity produces phenotypes 

approaching the optima. 

this paper and Draghi and 

Whitlock (2012), Lind et 

al. (2015) 

G || E 

Alignment between the dominant eigenvectors of 

G (gmax) and of E (emax). If these are misaligned, 

and we assume plasticity is adaptive, it might 

suggest that current selective pressures are 

different than those in the past.  

this paper and Draghi and 

Whitlock (2012), Lind et 

al. (2015) 
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2.3. Testing for alignment 

Alignment, as operationally defined by Arnold et al. (2008, defined therein as shared 

eigenvectors), can be mathematically defined in terms of orientation in space, specifically as the 

angle between two vectors in n dimensional space (see also Lind et al. 2015). This can be 

calculated as the inner dot product of two vectors, (e.g. the dominant eigenvectors of G and the 

dominant eigenvectors of a matrix describing the shape of the selection surface (ω, Table 2.1.), 

i.e. the vector correlation: 

 𝑟° =
𝑽𝑨

𝑻𝑽𝑩

‖𝑽𝑨‖ ‖𝑽𝑩‖
  (Equation 2.1.) 

where VA and VB are the two vectors being compared. For this application the absolute value of 

the vector correlation, |r°|, is of interest and can also be converted to degrees: 

 𝑎𝑟𝑐𝑐𝑜𝑠(|𝑟°|) ×
180

𝜋
  (Equation 2.2) 

An |r°| statistically indistinguishable from 1, i.e. the angle is indistinguishable from 0°, would 

then mean that matrices or matrices and the selection surface are aligned, or that there is 

insufficient power to detect differences. Alternatively, vector correlations significantly different 

from 1 would demonstrate misalignment. 

Correlations are typically evaluated against a null expectation of 0 (corresponding to an 

angle of 90° between vectors), but here we are interested in whether alignment differs from a 

vector correlation of 1. As such, conventional approaches to calculating p-values are not 

appropriate. Moreover, because we are comparing vectors and matrices within the same 

population, randomization approaches described by Roff et al. (2012) and Aguirre et al. (2014) 

to generate null expectations for vector correlations between groups are not appropriate either as 

there are no groups over which randomization could be conducted. Given these limitations, and 

until better alternatives can be developed, two approaches exist for testing the significance of 
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alignment. First, when only point estimates of covariance matrices and/or vectors are available, 

standard approaches to comparing correlation coefficients can be used. Specifically, |r°| can be 

converted to a Z value by taking its inverse hyperbolic tangent and testing its difference from 

null expectations (e.g. 𝑟𝑛𝑢𝑙𝑙
o = 0.975; if set to 1, equation 2.3 goes to -∞). The difference 

between the Z values is then divided by the pooled standard deviation and compared to a normal 

distribution (mean = 0, standard deviation = 1) to determine significance: 

 𝑧 =  
𝑎𝑟𝑐𝑡𝑎𝑛ℎ(|𝑟°|)−𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑟𝑛𝑢𝑙𝑙

° )

√
2

𝑛−3

 (Equation 2.3) 

where n is an estimate of the sample size after controlling for non-independence (see also Noble 

et al. 2017). n can be estimated as the sample size at the highest level of the data’s hierarchical 

structure (e.g. number of families or number of parent-offspring pairs rather than the total 

number of individuals sampled) or via adjusting for trait repeatability (Noble et al. 2017). Since 

𝑟𝑛𝑢𝑙𝑙
o  does not have an associated sample size it is here assumed to have the same uncertainty as 

r° leading to the specified denominator (Zar 1999). 

 As an example of the calculation of vector correlations and the Z-value based testing 

approach, consider two matrices: 

M1 = [
30 −15 0

−15 40 0
0 0 50

] and M2 = [
25 0 0
0 40 20
0 20 55

] 

The dominant eigenvector for M1 is [
0.58

−0.81
0

] and the dominant eigenvector for M2 is [
0

0.57
0.82

]. 

Based on equation 2.1 |r°| is 0.46. Following equation 2.3, with an n of 25 Z is then -5.60. From 

this we would then conclude that M1 and M2 have an angle of 62.48 and that this angle 

significantly differs from 1 (p = 2.19 × 10-8). 
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Two main caveats to these approaches should be noted. First, the relationship between 

the vector correlation r° and the angle in degrees is not linear (Figure 2.3.A.). Since r° is 

estimated with uncertainty, this non-linearity results in uncertainty that is not uniform over the 0 

: 90 degrees by which vectors might differ (Figure 2.3.B.). Because this uncertainty is highest 

around r° = 0.7, estimation of intermediate angles and angles approaching 0 will be more 

imprecise than larger angles. Second, this approach is dependent on the degree to which √
2

𝑛−3
 

accurately estimates the uncertainty in r°. Given that estimates of G are typically made with 

considerable uncertainty, more uncertainty than is expected for correlation coefficients, equation 

2.3 will be anticonservative for G. When possible, more appropriate standard errors should be 

used in the denominator. Given these concerns, significance—or lack thereof—of r° should be 

interpreted with caution despite its biological importance. 

 A second approach is possible if posterior distributions from Bayesian analyses are 

available instead of just point estimates of matrices and vectors. Following Ovaskainen et al. 

(2008) and Lind et al. (2015), the posterior distributions of two matrices or vectors (A and B) can 

be compared based on the distribution of the observed vector correlation between A and B versus 

a null expectation of this angle (A versus A and B versus B across two estimates within the 

posterior): 

 𝜓𝑟°(𝜆𝐴, 𝜆𝐵) = [𝑟°(𝜆𝑖
𝐴, 𝜆𝑗

𝐴) + 𝑟°(𝜆𝑖
𝐵, 𝜆𝑗

𝐵)] − [𝑟°(𝜆𝑖
𝐴, 𝜆𝑗

𝐵) + 𝑟°(𝜆𝑖
𝐵, 𝜆𝑗

𝐴)] (Equation 2.4) 

where λA and λB are the posterior distributions of the dominant eigenvectors of matrices A and B 

(i.e. an estimate of G, plasticity, or selection surfaces) or the posterior estimate of a selection 

gradient. i and j correspond to two different posterior samples from the posterior distribution of 

either A or B. The distribution of 𝜓r° can then be assessed versus 0 and, if 95% of 𝜓r° estimates 

are greater than 0, A and B can be deemed significantly misaligned.  
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Figure 2.3. A. Relationship between a vector correlation and the degree of the angle between 

two vectors in multivariate space. The shaded area represents a 95% confidence interval around 

the degree of the angle for constant uncertainty of the vector correlation. B. The breadth of the 

95% CI (A) around the degrees of the angle relative to the magnitude of a vector correlation. 

Uncertainty around r° was held constant but because of the non-linear relationship (A), the 

uncertainty in the angle is greatest at high values of r°.  
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2.4. Expectations for the alignment of E 

As previously discussed, several lines of theoretical research lead to the prediction that 

selection surfaces, G, and the direction in phenotypic space in which plasticity manifests will be 

aligned. However, it is important to ask what this means for natural systems and how alignment 

will be expressed in populations. From the perspective of quantitative genetics, another way to 

ask this question is: how do we expect particular variance-covariance matrices and vectors to be 

aligned? 

 Starting from the simplest conceptualization of variances and covariances, we can model 

the (co)variances of quantitative traits of an organism as stemming from the additive contribution 

of genetic and environmental (co)variances: 

 𝐏 = 𝐆 + 𝐄  (Equation 2.5) 

where P, G, and E are symmetrical matrices containing phenotypic, genetic, and environmental 

variances, respectively, along the diagonal and covariances off the diagonal. While E is often 

dismissed as random or residual variation, it is necessarily phenotypic plasticity as, under 

equation 2.5, all variation expressed among genotypes due to experiencing different 

environments will be partitioned into the E matrix (Whitman and Agrawal 2009). While 

plasticity expressed in response to known environmental influences may be directly estimated by 

estimating equation 2.5 using mixed-effect animal models (Kruuk 2004), plasticity—adaptive or 

otherwise—in response to unknown or otherwise unmodeled environmental influences will still 

be captured by E. 

 Given this, we can predict that G and E should be “aligned” insofar as E captures 

adaptive plasticity and, following equations 2.1 – 2.4, the significance of departure from this 

alignment can be assessed. However, in real organisms, both G and E subsume considerable and 
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important biology. G can be further decomposed to the unique effects of additive, dominance, 

and other epistatic effects. All the contributors to G (e.g. dominance and other epistatic effects) 

might be predicted to be aligned with a selection surface or gradient, although this has been 

examined primarily for additive effects alone (Arnold et al. 2008). Likewise, E contains 

numerous sources of environmental influences each of which can be considered “plasticity” 

according to the operational definition given earlier. More specific contributors to E can be 

defined by collapsing categories from Westneat et al. (2015) and include: 

Active irreversible plasticity (AI; West-Eberhard 2003): the phenotype of an organism 

changes in response to an environmental cue indicative of selective pressures. These 

changes are persistent—at least over the entire time period of measurement, i.e. 

permanent environmental effects (Lynch and Walsh 1998).  

Active reversible plasticity (AR): reversible changes in an individual’s phenotype 

expressed in response to environmental cues indicative of selective pressures and for 

which variability can occur within an individual (also termed phenotypic flexibility; 

Piersma and Drent 2003, Piersma and Van Gils 2011).  

Passive plasticity: phenotypic changes in response to environmental conditions rather 

than cues of selective pressures. This includes passive responses to abiotic conditions, 

such as hypoxic conditions (Whitman and Agrawal 2009), and thus includes 

developmental instability. This passive plasticity can take the form of either passive 

irreversible (PI) or passive reversible plasticity (PR). 
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Organismal error: changes to an organism’s phenotype due to a failure to process a cue 

correctly. This error can take the form of either irreversible (OI) or reversible organismal 

error (OR). 

While this list of six contributors to E is hardly comprehensive (see also Whitman and 

Agrawal 2009, Forsman 2015, Westneat et al. 2015), it illustrates the point that the prediction 

that E will align with selection surfaces and G is imprecise: not all of these sources of 

environmental variation are expected to align with selection surfaces or G. Specifically, we 

would only predict that active irreversible (AI) and active reversible plasticity (AR) are aligned 

with selection surfaces or G. Passive plasticity and organismal error are expected to be largely 

independent of selection and thus to produce variation orthogonal or otherwise misaligned with 

selection.  

We can include these concerns within equation 2.5 by incorporating the relevant 

contributors to variances and covariances: 

          

 (Equation 2.6) 

  

  

If individual organisms are measured across environmental conditions or individuals are 

measured multiple times specific contributors to PE can be estimated (Taylor et al. 2012, 

discussed below, Thomson et al. 2018), potentially distinguishing among some of the matrices of 

equation 2.6. Unfortunately for our prediction of matrix alignment, it will often be impossible to 

distinguish all active plasticity from passive plasticity and organismal error, as they will be 

occurring simultaneously. Thus AI, PI, and OI will be conflated as general “permanent 

𝐏 = 𝐆 + 𝐀𝐈 + 𝐏𝐈 + 𝐎𝐈 + 𝐀𝐑 + 𝐏𝐑 + 𝐎𝐑 

Permanent 
Environmental 

Effects (PE) 

Temporary 

Environmental 
Effects (TE) 
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environmental effects” (PE) and AR, PR, and OR effects will typically be conflated as general 

“temporary environmental effects” (TE). As a result, matrix alignment of G and E will be 

reduced by the degree of misalignment of passive plasticity and organismal error and their 

relative contributions to trait correlations.  

 Following Roff (1997) and Dingemanse and Dochtermann (2014) the combined 

contributions of these contributors to permanent and temporary environmental effects and to 

environmental correlations (i.e. the pair-wise correlation coefficients corresponding to the off-

diagonal elements of E and its components) are: 

 𝑟𝑃𝐸 = 𝑟𝐴𝐼√
𝑉𝐴𝐼𝑦

𝑉𝑃𝐸𝑦

 
𝑉𝐴𝐼𝑧

𝑉𝑃𝐸𝑧

+ 𝑟𝑃𝐼√
𝑉𝑃𝐼𝑦

𝑉𝑃𝐸𝑦

 
𝑉𝑃𝐼𝑧

𝑉𝑃𝐸𝑧

+ 𝑟𝐼𝑂√
𝑉𝐼𝑂𝑦

𝑉𝑃𝐸𝑦

 
𝑉𝐼𝑂𝑧

𝑉𝑃𝐸𝑧

  (Equation 2.7) 

 𝑟𝑇𝐸 = 𝑟𝐴𝑅√
𝑉𝐴𝑅𝑦

𝑉𝑇𝐸𝑦

 
𝑉𝐴𝑅𝑧

𝑉𝑃𝐸𝑧

+ 𝑟𝑃𝑅√
𝑉𝑃𝑅𝑦

𝑉𝑇𝐸𝑦

 
𝑉𝑃𝑅𝑧

𝑉𝑇𝐸𝑧

+ 𝑟𝑅𝑂√
𝑉𝑅𝑂𝑦

𝑉𝑇𝐸𝑦

 
𝑉𝑅𝑂𝑧

𝑉𝑇𝐸𝑧

  (Equation 2.8) 

 𝑟𝐸 = 𝑟𝑃𝐸√
𝑉𝑃𝐸𝑦

𝑉𝐸𝑦

 
𝑉𝑃𝐸𝑧

𝑉𝐸𝑧

+ 𝑟𝑇𝐸√
𝑉𝑇𝐸𝑦

𝑉𝐸𝑦

 
𝑉𝑇𝐸𝑧

𝑉𝐸𝑧

  (Equation 2.9) 

where V__y and V__z correspond to the variance of traits y and z due to a particular factor (_, 

above). Likewise, the correlation coefficients on the right hand side of equations 2.7 – 1.9 are the 

correlations between traits y and z due to each of the factors described above. These correlation 

coefficients are calculated by variance-standardizing the covariances in each matrix in equation 

2.6. With this framework we can begin to understand how the prediction of alignment will be 

manifested. Importantly, given equations 2.6 – 2.9, the alignment between G and E can be quite 

different than expected, even if active plasticity (AI and AR) and genetic variation (G) are 

perfectly aligned.  
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As a simple worked example, assume that three traits each have a heritability of 0.3 

(Mousseau and Roff 1987, Stirling et al. 2002, Dochtermann et al. 2019), that the phenotypic 

variance of the three traits differ (here 0.60, 4.27, and 4.13, randomly drawn from a uniform 

distribution), that the genetic correlation between traits is 0.57 (Dochtermann 2011), and that the 

magnitude of alignment (|r°|) is 1 among active irreversible plasticity (AI), active reversible 

plasticity (AR), and genetic variation (G, Table 2.1.). For demonstration purposes we will also 

assume that organismal error results in an environmental correlation that is orthogonal to that 

observed for active plasticity and that passive plasticity is uncorrelated among traits (Table 2.2.). 

If all the components contributing to VTE and VPE do so equally (Table 2.2.), the end result is that 

rE = 0 because active plasticity and organismal error offset each other. Given rG = 0.57, r° is then 

0.70 (45.4°) and G and E are partially misaligned.  

Table 2.2. Components contribution to phenotypic variation with example expected values and 

corresponding correlations. Equation 2.5. – 2.7. can also be represented as covariances. 

Correlations are presented to simplify equations.  

Variances and 

correlations 

Expected 

value 
Rationale 

 

VP    

VG 0.3 × VP 

Average heritability of life-

history, physiological, and 

behavioral traits is 

approximately 0.3 

(Mousseau and Roff 

1987, Stirling et al. 

2002) 

VPE 0.3 × VP 

VG and VPE   are of similar 

magnitude for behavior, 

although this relationship is 

unknown for other traits  

(Dochtermann et al. 

2015) 

VAI 0.1 × VP Assumes these three 

components contribute 

equally to VPE . 

 

VPI 0.1 × VP  

VOI 0.1 × VP  
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Table 2.2. Components contribution to phenotypic variation with example expected values and 

corresponding correlations (continued). Equation 2.5. – 2.7. can also be represented as 

covariances. Correlations are presented to simplify equations.  

Variances and 

correlations 

Expected 

value 
Rationale  

VTE 0.4 × VP VTE  = VP – VG – VPE    

VAR 0.13̅ × VP Assumes all three 

components contribute 

equally to VTE  

 

VPR 0.13̅ × VP  

VOR 0.13̅ × VP  

VE  0.7 × VP Equation 5  

rG 0.57 
Absolute average of genetic 

correlations for behaviors  
(Dochtermann 2011) 

rPE Equation 6   

rAI 0.57 
Assumes perfect alignment 

between gmax and plasticity 
 

rPI 0 

Assumes that passive 

plasticity is agnostic to 

selection 

(Whitman and Agrawal 

2009) 

rOI -0.57 

Assumes that errors result in 

phenotypes orthogonal to 

gmax 

 

rTE Equation 7   

rAI 0.57 
Assuming perfect alignment 

between gmax and plasticity 
 

rPI 0 

Assumes that passive 

plasticity is agnostic to 

selection 

(Whitman and Agrawal 

2009) 

rOR -0.57 

Assumes that errors result in 

phenotypes orthogonal to 

gmax 

 

 

As the relative contribution of active plasticity to E increases, so too will alignment 

between G and E, if active plasticity and G are both aligned with the population’s selection 

surface. For example, under the same conditions as above except without passive plasticity and 

with active plasticity contributing twice as much to permanent and temporary environmental 

variation as organismal error, rE now equals 0.19, and r° is 0.99 (6.3°), indicating alignment. The 

ability to detect alignment therefore depends, in part, on the relative contribution of each 
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component in equation 2.6 and the contribution to E from factors besides active plasticity will 

lead to an underestimate of r°. 

Because environmental (co)variances are frequently ignored or moved to the denominator 

of effect sizes and test statistics, the relative contributions of each source of variation described 

in equation 2.6 is currently unknown. Fortunately, common approaches to estimating G also 

allow estimation of permanent environmental effects on phenotypic covariances. When 

groupings of individuals that may have experienced similar environmental effects are known, a 

multiple-matrix animal model approach allows estimation of permanent environmental 

covariances (Thomson et al. 2018). Using a multiple-matrix animal model, Taylor et al. (2012) 

estimated the contribution of additive genetic effects and three sources of permanent 

environmental (co)variation to phenotypic covariance in North American red squirrels 

(Tamiasciurus hudsonicus). The three, possibly adaptive, sources of permanent environmental 

effects considered were: i) environmental effects unique to individuals (based on repeated 

measures), ii) cohort determined permanent environmental effects (based on birth year), and iii) 

maternal effects, although maternal effects also have a heritable component (Räsänen and Kruuk 

2007). In these red squirrels Taylor et al. (2012) found that the magnitude of these permanent 

environmental effects on phenotypic variation were of similar magnitude to the magnitudes 

estimated for additive genetic effects. More relevant to our discussion here, permanent 

environmental and maternal covariances were also of a similar magnitude and sign to the 

estimated additive genetic covariances (Taylor et al. 2012). This suggests that aspects of AI 

(equation 2.6) were indeed aligned with G.  
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2.5. Conclusions 

Although previous research has suggested that G (e.g. Arnold et al. 2008) and E (e.g. 

Draghi and Whitlock 2012, Lind et al. 2015) should align with selection surfaces, this has not 

previously been detailed in the context of both theoretical models of the evolution of G and vis-

à-vis plasticity. Moreover, previous research did not consider this issue specifically in terms of 

the E matrix. Considering the general prediction of alignment in terms of E emphasizes the 

generality of the prediction of alignment. While alignment of G and relevant contributors to E 

will be obscured due to the considerable biology each of these matrices subsumes (equation 2.6), 

we still consider the estimation of alignment to be an interesting and important pursuit. 

Alignment informs us of the ability of populations to respond to selection and the relative 

contribution of active plasticity to fitness. When selection surfaces have been estimated for 

natural populations, alignment also informs us of the effects of the structure of G and E on 

fitness and possible rates of adaptation. Moreover, detection of misalignment generates 

evolutionarily interesting hypotheses. For example, if E and β are aligned with each other but G 

is misaligned with both, one possible reason would be that current selection pressures (β) differ 

from those that shaped G. The genetic correlations will in this case be quantitively constraining 

evolutionary responses, but phenotypic expression may still match a fitness optimum through 

plasticity, i.e. E still aligns with the new fitness surface. Finally, estimation of alignment with 

current selective surfaces versus projected selective surfaces may provide indications of the 

ability of populations to respond to the increasing effects of humans on natural populations. 
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3. MISALIGNMENT OF SELECTION, PLASTICITY, AND AMONG-INDIVIDUAL 

VARIATION: A TEST OF THEORETICAL PREDICTIONS WITH PEROMYSCUS 

MANICULATUS 

3.1. Abstract 

Genetic variation and phenotypic plasticity are predicted to align with selection surfaces, 

a prediction that has rarely been empirically tested. Understanding the relationship between 

sources of phenotypic variation (primarily genetic variation and plasticity) and selection surfaces 

improves our ability to predict a population’s ability to adapt to a changing environment and our 

understanding of how selection has shaped phenotypes. Here, we estimated the (co)variances 

among three different behaviors (activity, aggression, and predator cue response) in a natural 

population of deer mice (Peromyscus maniculatus). Using multi-response generalized mixed 

effects models, we divided the phenotypic covariance matrix into among- and within-individual 

matrices. The among-individual covariances include genetic and permanent environmental 

covariances and the within-individual (co)variances include reversible phenotypic plasticity. To 

determine whether genetic variation, plasticity and selection align in multivariate space we 

calculated the dimensions containing the greatest among-individual variation and the dimension 

in which most plasticity was expressed (i.e. the dominant eigenvector for the among- and within-

individual covariance matrices respectively), and estimated selection coefficients based on 

survival estimates from a mark-recapture model. Alignment between the dominant eigenvectors 

of behavioural variation and the selection gradient was estimated by calculating the angle 

between them, with an angle of 0 indicating perfect alignment. The angles between vectors 

ranged from 68° to 89°, indicating that genetic variation, phenotypic plasticity, and selection are 

misaligned in this population. This misalignment could be due to the behaviors being close to 
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their fitness optima, which is supported by low evolvabilities, or because of low selection 

pressure on these behaviors. 

3.2. Introduction 

Populations under selection should have phenotypic distributions reflecting this selection 

(Phillips and Arnold 1989, Armbruster and Schwaegerle 1996, Arnold et al. 2008), and to 

maximize fitness the majority of phenotypic variation should align with selection gradients (β, 

Berdal and Dochtermann 2019, Noble et al. 2019, Wright et al. 2019). Put another way, the axes 

of most phenotypic variation should be collinear with selection gradients. Both genetic and 

environmental variation contribute to a population’s phenotypic variation and both sources of 

variation are expected to align with selection (Jones et al. 2007, Arnold et al. 2008, Draghi and 

Whitlock 2012, Berdal and Dochtermann 2019). 

 Because traits often covary, selection pressures on one trait affect the mean and variance 

of other traits and vice versa (Lande 1979, Lande and Arnold 1983, Phillips and Arnold 1989). It 

is therefore necessary to investigate alignment between variation and selection from a multi-trait 

perspective. In quantitative genetics, the G-matrix summarizes additive genetic variation and 

covariation across traits (Lande and Arnold 1983), with the greatest variation present in the 

matrix’s dominant eigenvector, gmax. A population where β and gmax are aligned will reach a 

fitness optimum faster than if there was a misalignment (Schluter 1996). Simultaneously, 

selection is expected to have shaped G and models have shown that gmax will align with selection 

surfaces given enough time and stable selection pressures (Jones et al. 2007, Arnold et al. 2008). 

 Misalignment between gmax and β can be ameliorated by adaptive phenotypic plasticity, 

contingent on costs of being plastic. That is, phenotypic plasticity allows an individual to change 

their expression of a trait based on the environment and increase their fitness, i.e. adaptive 
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phenotypic plasticity (Ghalambor et al. 2007). Adaptive phenotypic plasticity is predicted to 

evolve in more heterogeneous environments, allowing populations to move closer towards trait 

optimum within environments (Van Tienderen 1991, Scheiner 1998, Sultan and Spencer 2002). 

Consequently, adaptive plasticity should align with the selection gradient (Gavrilets and Scheiner 

1993).  

 More recently, Draghi and Whitlock (2012) showed that phenotypic plasticity should be 

expressed so as to align with gmax, because it maintains, and possibly increases, genetic variation 

(Draghi and Whitlock 2012). Consistent with this, Noble et al. (2019) found via meta-analysis a 

significant alignment between gmax and direction of plasticity in novel environments. While 

genetic adaptation can only occur over several generations, phenotypic plasticity can change 

within the same generation and might therefore be the major contributor to alignment between 

phenotypic variation and selection in new environments (Price et al. 2003, Ghalambor et al. 

2007, Draghi and Whitlock 2012).  

 However, because individuals do not show the full repertoire of phenotypes present in a 

population, fitness costs and/or limits to plasticity are expected to frequently be substantial 

(DeWitt et al. 1998, Van Buskirk and Steiner 2009, Murren et al. 2015). As costs to plasticity 

increase, gmax is predicted to more quickly align with selection, reducing the need for plasticity 

and its costs (DeWitt et al. 1998, Schneider and Meyer 2017). Consistent with this, Johansson et 

al. (2020) showed that divergence among populations of damselflies (Lestes sponsa) was aligned 

with both genetic variation and plasticity and that it had been shaped by selection.  

 In natural populations G is difficult to estimate because it requires both a pedigree and 

trait measurements. Consequently, alignment among G, plasticity, and selection gradients has 

rarely been assessed and existing predictions about their interplay have not been tested. 
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Fortunately, the among-individual variance-covariance matrix (I) can be estimated for a single 

generation by repeatedly sampling individuals from a population. The I-matrix consists of the 

joint effects of G and permanent environmental (PE) correlations (Dingemanse and 

Dochtermann 2014), each explaining approximately 50% of repeatable variance in behaviors 

(Dochtermann et al. 2015). Moreover, consistent with Cheverud’s conjecture, phenotypic 

correlations are concordant with both genetic correlations (Cheverud 1988, Dochtermann 2011) 

and among-individual correlations (Brommer and Class 2017). I can therefore be used as a proxy 

for the G-matrix, albeit with caveats. Similarly, plasticity can be difficult to measure in wild 

populations. However, the within-individual variance-covariance matrix (W-matrix) contains 

temporary environmental (TE) correlations, i.e. correlation among traits due to changes in the 

environment within the timeframe of trait measurement. This includes adaptive reversible 

plasticity (Whitman and Agrawal 2009, Westneat et al. 2015) and wmax, the dominant eigenvector 

of W, is the direction in which most plasticity is expressed. Thus, using among- and within-

individual variance-covariance matrices as proxies for genetic variation and phenotypic plasticity 

respectively allows us to estimate their alignment with each other and selection surfaces without 

the need of a pedigree.  

 Here we examined alignment between selection, among-individual covariances, and 

phenotypic plasticity in a wild population of deer mice, Peromyscus maniculatus, by estimating 

the angles between the selection gradient (β) and the dimensions in phenotypic space containing 

the greatest amount of among- and within-individual behavioral variation. If fitness optima are 

stable both within and across generations for our population of deer mice, both among- and 

within-individual variation are expected to be aligned with the selection gradient and each other. 

However, if the selection pressure has changed recently, only plasticity is predicted to align with 
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the selection gradient, as genetic variation has not yet had enough time to realign. In addition, if 

the traits are close to the fitness optimum or under stabilizing selection genetic variation and 

selection gradients are predicted to be misaligned.   

3.3. Methods 

3.3.1. Study species 

A wild population of deer mice was sampled at Cassel wood, Minnesota, USA (Figure 

A.1.). Deer mice are highly suited for our questions because repeatability (Brehm and Mortelliti 

2018, Brehm et al. 2020) and appreciable additive genetic variation (Careau et al. 2011) have 

been previously demonstrated for behaviors similar to those measured here, making among-

individual correlations more likely to be a suitable proxy for G. In addition, behavioral 

covariances have previously been estimated in the closely related congener P. leucopus (Bester‐

Meredith and Marler 2007). All research was conducted in accordance with institutional 

guidelines (NDSU IACUC A17055) and the guidelines of the Animal Behavior Society (Animal 

Behaviour Society 2020) and the American Society of Mammalogists (Sikes et al. 2016). 

3.3.2. Trapping and tagging 

Individuals for whom phenotypes and selection were estimated were repeatedly captured 

using Sherman live traps (5.2 × 6.4 × 22.9cm). Traps were set in a 9 × 11 grid, with traps 12.5 m 

apart, totaling 99 traps. Mixed birdseed and rolled oats were mixed with peanut oil and used to 

bait traps, and cotton was added to provide insulation. Trapping was conducted between May 

30th and October 13th in 2017, with trapping occurring around three times a week. Traps were set 

between 3-6 pm and checked starting at 6 am the following morning.  

Individual deer mice were tagged with metal ear tags in both ears at first capture for 

identification at recaptures. All captured individuals were identified by individual ID, had their 
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mass and sex recorded, and identified as either juvenile or adult (developmental stage). 

Individual ID was recorded to allow subsequent mark-recapture analysis, the estimation of 

survival, and for repeated behavioral trials.  

3.3.3. Behavioural assays 

To investigate the relationships between behavioral syndromes, plasticity, and selection 

in this population, captured deer mice were tested in three behavioral assays: an open field test, a 

mirror image stimulation test, and a predator cue response test. All behavioral tests were 

conducted in arenas (60 × 60 × 40 cm) made of 2 cm thick plywood. Transparent plexiglass was 

used as lids and a video camera was mounted above each arena (Figure A.2.). Deer mice were 

always put through the assays in the same order: 1) open field test, 2) mirror image stimulation 

test, and 3) predator cue response test. This was done to avoid any carry-over effects from 

interacting with the mirror on open field tests or from the exposure of the predator cue affecting 

open field or mirror image response. Individuals that had been through all three assays at least 

three times were given a shelter (cardboard cup with a small hole in the bottom) in their 

subsequent trials to see how this would affect their behavior. After the deer mice had been run 

through all three assays they were released at the same location as they were caught.  

3.3.3.1. Open field test 

In the open field assay, the arena was empty and was used to measure general activity 

level (Reale et al. 2007). Activity in an open field arena has been shown to give repeatable 

measures for general movement in several species of rodents (Herde and Eccard 2013, Hewes et 

al. 2017) including Peromyscus maniculatus (Brehm and Mortelliti 2018, Brehm et al. 2020). At 

the start of the open field assay deer mice were placed under a cup (11.5 cm in diameter) and 

given one minute to acclimate. The shelter was then removed, and the deer mouse had 6 minutes 
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to explore the arena. We walked at least 20 m away from the recording area to reduce any 

disturbance caused by our presence. After the deer mouse completed the open field assay, the 

cup was placed over the deer mouse again, and a cardboard plate was pushed under it to enable 

us to transport it to the mirror arena. Individual activity and location in the open field and other 

assays was tracked using Ethovision X (Noldus Information Technology, Wageningen, The 

Netherlands). Tracking was started 2 minutes into the video to eliminate disturbance from setting 

up assays that were simultaneously run for other individuals (see below) and to move away from 

the arena area. Distance moved (in cm) in the open field was used as a measure of activity.  

3.3.3.2. Mirror image stimulation test 

The arena for the mirror image stimulation test had a mirror attached along one wall 

(Figure A.2.). Mirror tests have been shown to be an appropriate measure of agonistic behavior 

in several species of rodents (Svendsen and Armitage 1973, Boon et al. 2008, Uchida et al. 

2020), and to correlate with aggression towards conspecifics in other rodents (Dochtermann et al. 

2012). Mirror tests also have the advantage of standardizing size differences between the 

opponents as well as avoiding any injury to individuals being tested. Here, deer mice were 

moved from the open field arena into the mirror arena, where they were again given one minute 

to acclimate under a cup. Video analysis started 1.5 minutes after removal of the cup (again, to 

avoid any disturbance caused by starting the predator cue response trial and then move 20m 

away) and the time spent on the mirror side of the arena was recorded in seconds and used as a 

proxy for aggression. If deer mice perceived their reflection as a conspecific, spending more time 

in front of the mirror would indicate interaction with conspecifics, while time spent away from 

the mirror indicates avoidance.  
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3.3.3.3. Predator cue response test 

For the predator cue response assay a circular filter paper (11 cm in diameter) soaked in 

coyote urine was placed in the upper left corner of the behavioral arena (Figure A.2.).  Small 

rodents have been shown to have aversive responses towards predator cues (Nolte et al. 1994, 

Hegab et al. 2014), including the closely related species P. gossypinus (Brinkerhoff et al. 2005). 

Both coyotes (Lupus latrans) and red foxes (Vulpes vulpes) have been observed in the study area, 

making canid urine generally and coyote urine specifically a suitable cue of predator presence for 

this deer mouse population. The filter papers were prepared elsewhere and stored at -20˚C until 

the morning of behavioral trials. After completing the mirror test, a deer mouse was moved to the 

predator cue response arena and put under a cup for a 1-minute acclimation period. In subsequent 

video analysis, tracking started 30 seconds into the video, and predator cue response was 

measured as the mean distance from the predator cue (in cm). More responsive individuals were 

predicted to increase their distance from the predator cue, indicating shy behavior, while bolder 

and less responsive individuals would stay closer to the cue.   

3.3.4. Statistical analyses 

Statistical analyses were conducted using the packages RMark (Laake 2013) and 

MCMCglmm (Hadfield 2010) in R (R Development Core Team 2015).  

3.3.4.1. Assay validity  

Mixed effect models were used to investigate the validity of the behavioral assays by 

comparing the average responses towards the mirror and the predator cue to behavior in the open 

field arena using the MCMCglmm package in R (Hadfield 2010). For the mirror assays, the time 

spent on the mirror side of the arena was compared with time spent on the equivalent side in the 

open field trial. This allowed us to investigate the behavioral response of individuals towards the 
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mirror stimuli, where a difference in time spent on the mirror side of the arena in the mirror test 

compared to the open field assay would indicate that individuals did respond to their own 

reflection. Similarly, in the predator cue response assay the distance from the predator cue was 

compared to the distance from the equivalent location in the open field assay, and an increase in 

distance from the predatory cue in the predator cue assay compared to the open field would 

indicate that individuals are avoiding the cue. Arena type (open field, mirror stimulation assay, 

and predator cue assay) was used as a fixed effect and animal ID was added as a random effect. 

Models were run with an inverse-Wishart prior and for 650,0000 iterations, with a thinning 

interval of 5,000, and a 150,0000 iteration burn-in. pMCMC values (used similarly to p-values 

for maximum likelihood statistics) were used to determine whether there was a substantive effect 

of arena type. pMCMC was calculated here as the proportion of estimates of the fixed effects 

from the posterior distribution that were below 0. A high proportion (>0.95) indicates that most 

estimates are below 0, while a low proportion (<0.05) indicates that most estimates are above 0. 

Both high and low proportion means that the posterior distribution has a very low overlap with 0 

and is therefore considered to have a substantive effect on the behaviors.  

3.3.4.2. Repeatabilities and correlation matrices 

Repeatability and among- and within-individual variance-covariance matrices (I and W) 

were estimated for distance moved (activity), time spent in front of the mirror (aggression), and 

mean distance from predator cue (predator cue response) using a multi-response mixed effect 

model (Dingemanse et al. 2012, Dingemanse and Dochtermann 2013) also using the 

MCMCglmm package (Hadfield 2010). Sex, developmental stage, mass, and the presence of a 

shelter were included as fixed effects, where mass was within-subject centered (Van de Pol and 

Wright 2009). Individual ID was included as a random effect. Because distance moved had a 
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left-skewed distribution, this variable was square root transformed prior to all statistical analyses. 

All three behaviors were mean centered and scaled by their standard deviations to facilitate 

model fit. The number of iterations, thinning intervals, and burn-in was the same as above. Priors 

were minimally informative for (co)variances and flat for correlations.  Repeatabilities, 

correlation matrices, and estimates of individual behaviour (i.e. best linear unbiased predictors, 

BLUPs) were estimated from the posterior distributions. pMCMC values were used to determine 

if the fixed effects had any substantial effect on behaviors (calculated as above).  

3.3.4.3. Selection gradients 

Directional selection gradients (β) for the three behaviors (activity, aggression, and 

predator cue response) were estimated from the effect of individual behavior (BLUPs from the 

multi-response generalized mixed effect model) on survival probability from mark-recapture 

models fitted using Program MARK and RMark (Laake 2013). Sex, developmental stage, mass, 

and the BLUPS for distance moved, time spent in front of the mirror, and mean distance from 

predator cue were included as covariates. We assumed a closed population and recapture 

probability was set as constant throughout the season. Because some of the individuals were too 

young to identify sex, sex was recorded as female (1 0), male (0 1), or unidentified (1 1). The 

coefficients for survival for the three behaviors were converted to a traditional Lande and Arnold 

(1983) directional selection gradient (β) using the method detailed in Waller and Svensson 

(2016).  

To investigate whether behaviors had a substantive effect on survival, seven additional 

mark-recapture models were fit with 1-3 of the behavioral covariates to allow for comparison 

(Table A.1.). If any of the behaviors had a substantial effect on survival, models 1 – 7 would 
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have a better fit than the model with no behavior covariates (model 8). Relative model fit was 

determined based on AICc values. 

3.3.4.4. Alignment  

We used the among- and within-individual covariance matrices (I- and W-matrices) as 

proxies for genetic covariation and multivariate expression of adaptive plasticity respectively, to 

test predictions regarding alignment. imax was the dominant eigenvector for the I-matrix and was 

the dimension with the most among-individual variation while wmax was the same for the W-

matrix. The dominant eigenvectors for both the among- and within-individual covariance 

matrices were estimated from their posterior distributions estimated by the multi-response mixed 

effects model. These were then used to calculate the vector correlation and the angle between (i) 

imax and wmax, (ii) imax and the selection gradient (β), and (iii) wmax and β. Vector (V) correlations 

were calculated using equation 2.1 and converted to degrees using equation 2.2. A vector 

correlation that does not differ from 1 (i.e., an angle that does not differ from 0) would mean that 

the vectors are aligned.  

Because we were interested in whether a vector correlation was statistically 

distinguishable from 1, rather than common null expectation of 0, standard statistical analyses 

were not appropriate. We therefore used a Bayesian approach developed by Ovaskainen et al. 

(2008), which uses posterior distributions. Using the posterior distribution from the multi-

response mixed effects model, we obtained 1000 estimates of the dominant eigenvectors for the 

among- and within-individual correlation matrices. To get similar estimates for the selection 

gradients, the full mark-recapture model described in Table A.1. (Model 1) was re-fit using the 

1000 posterior estimates of the BLUPs for the three behaviors from the multi-response mixed 

effects model. Probability of alignment between among- and within-individual eigenvectors, 
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among-individual eigenvectors and selection gradients, and within-individual eigenvectors and 

selection gradients was then estimated using equation 2.4 (Ovaskainen et al. 2008, Berdal and 

Dochtermann 2019). The correlation between samples of the same vectors should be 1, thus the 

first part of the equation ≈ 2. The inclusion of this term incorporates estimation uncertainty 

present in the posterior distribution. The second part of the equation is the correlation between 

estimates of different vectors. If two vectors are highly correlated, the second part of the 

equation is also ≈ 2, and 𝜓r° ≈ 0, with sampling error allowing 𝜓r° to be below zero. As the 

correlation between ʎA and ʎB decreases, 𝜓r° approaches 2.  If 95 % of the estimated 𝜓r° are 

above 0, the two matrices are considered misaligned. We therefore calculated the proportion of 

𝜓r° values that were positive, with a higher value meaning that more estimates exclude 0 and will 

in this case indicate a substantial misalignment.  

Unfortunately, the method of Ovaskainen et al. (2008) can be sensitive to low power so 

to further understand the alignment between vectors we also compared the estimated vector 

correlation to three different null expectations of the correlation following equation 2.3 (Berdal 

and Dochtermann 2019). The null expectations where set to 0.975, 0.95, and 0.9, which are 

considered highly correlated and indicates that the vectors are aligned. The differences between 

observed and null correlations were then transformed to z-values. Z-values larger than 0 would 

indicate that the estimated vector correlation was higher than the null expectation, which would 

mean that the vectors were aligned. One thousand estimates of vector correlations between imax 

and wmax, between imax and β, and between wmax and β were compared to the null expectations. 

We then calculated how many of the Z-values were above 0, i.e., how many of the estimated 

vector correlations were above null expectations. As before, if more than 95% of the estimates 

are above this value the misalignment was considered to be substantial.  
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3.3.4.5. Testing for historical and stabilizing selection 

After comparing the eight mark-recapture models (Table A.1.) we found that the model 

without behavioral traits had the best fit, indicating that the behaviors measured here were under 

weak or no directional selection. Two post-hoc analyses were therefore carried out to estimate 

evolvability and the possibility of stabilizing selection (Table A.2.) for the three behavioral traits 

(see Appendix A), as both low variation and stabilizing selection will reduce alignment with the 

behavioral variation and selection. Evolvability was estimated as:  

 𝐼𝐴 =
𝑉𝐴

𝜇2
 (Equation 3.1) 

where VA is the trait variance and µ is the trait mean. VA was scaled based on number of 

individuals in the different categories of sex and developmental stage. 

3.4. Results 

We sampled the population for 30 nights and captured 92 individuals (including 

individuals that escaped prior to being tagged or identified) with a mean recapture rate of 3. Of 

these, 72 individuals were behaviorally assayed and used in analyses. This included 32 females, 

36 males, and 4 individuals of unidentified sex, where 48 were adults and 24 were juveniles. The 

other 20 individuals managed to escape either while being tagged or during the trials and were 

never caught again, meaning they had insufficient behavioral data collected to be used in our 

analyses. In total, we conducted 641 behavioral assays (Table A.3.), with a mean number of trials 

per individual of 3.13±2.65, 2.65±2.23, and 2.79±2.56 for activity, aggression, and predator cue 

response respectively. 

3.4.1. Assay validity 

We found that deer mice responded as predicted to the predator cue, increasing their 

distance from the cue in the predator response test compared to the corresponding corner during 
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the open field test (pMCMC = 0.00, Figure A.3.A.). Deer mice also spent more time on the 

mirror side of the arena compared to the controlled open field test (pMCMC = 0.008, Figure 

A.3.B.). In addition, repeatability for staying on the mirror side of the arena was 0.36 for the 

mirror-trial, while for the open field trial side preference was indistinguishable from 0, indicating 

that the deer mice stayed on one side of the arena consistently when the mirror was present but 

not when absent, providing further validation of the assay.  

3.4.2. Average behavior 

From the multi-response generalized mixed effect model we found that males had a 

higher activity level compared to females (pMCMC = 0.007), and the presence of a shelter 

reduced the distance moved in the open field, (pMCMC = 1,) and predator cue response assay, 

(pMCMC = 0.96). No other fixed effect substantively affected the assayed behaviors (Table 

A.4.).  

3.4.3. Behavioral variation 

All behaviors were moderately repeatable: activity, aggression, and predator cue response 

had estimated repeatabilities of 0.47 (0.35-0.60), 0.36 (0.24-0.50), and 0.33 (0.21 – 0.46) 

respectively (Figure 3.1.).  
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Figure 3.1. The mean and standard deviation for A) repeatability, B) among-individual variation, 

and C) within-individual variation for activity level (red, Act), aggression (blue, Agg), and 

predator cue response (yellow, PR). Behaviors were mean centered which is why the among- and 

within-variances are scaled between 0 and 1.  

3.4.4. Correlation matrices  

Predator cue response and activity in the open field were negatively correlated at both the 

among- and within-individual levels. Put another way, less active individuals stayed further away 

from the predator cue and individuals that reduced their activity level also increased their 

distance from the predator cue (Table 3.1.). The among-individual correlation between predator 

cue response and aggression was around 0, while the within-individual correlation was slightly 

negative (Table 3.1.). This negative correlation suggests that when individuals increased their 

time in front of the mirror, they also reduced their distance to the predator cue. The largest 

difference between the among- and within-individual correlation was for the relationship 

between activity and aggression (Table 3.1.). Here, the among-individual correlation was 

negative while the within-individual correlation was positive. This means that while individuals 

that are more active spend less time in front of the mirror, an individual that increases its activity 
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level will also increase its time spent in front of the mirror. However, only the within-individual 

correlations between activity and aggression and between activity and predator cue response 

were substantively different and statistically distinguishable from zero (Table 3.1.)  

Table 3.1. Among-individual correlations (above the diagonal) and within-individual 

correlations (below the diagonal) between activity, aggression, and predator cue response. 

Substantive correlations (pMCMC > 0.95 or pMCMC < 0.05) are bolded. Evolvabilities are 

shown on the diagonal (shaded). All estimates are presented with their corresponding 95% 

credibility intervals in parentheses. 

 Activity (Act) Aggression (Agg) 
Predator cue response 

(PR) 

Act 0.22 (0.08 – 0.36) 
-0.25 (-0.54 – 0.07) 

pMCMC = 0.92 

-0.25 (-0.59 – 0.05) 

pMCMC = 0.91 

Agg 
0.17 (0.03 – 0.36) 

pMCMC = 0.01 
0.03 (0.003 – 0.08) 

-0.06 (-0.32 – 0.40) 

pMCMC = 0.50 

PR 
-0.14 (-0.31 – 0.02) 

pMCMC = 0.96 

-0.16 (-0.30 - 0.04) 

pMCMC = 0.94 
0.01 (0.001 – 0.03) 

 

3.4.5. Mark-recapture results 

None of the three behaviors had a significant effect on survival coefficients (Table A.5.), 

and the model with no behavioral terms had the lowest AICc score (Table A.6.). The same was 

found when investigating the presence of stabilizing selection on the behaviors, where the model 

with no quadratic terms had the best fit (Table A.7., Table A.8.). However, the model without 

behaviors did not statistically differ from one including a quadratic term for aggression (AICc < 

2 points away from the reduced model), indicating the possibility of stabilizing selection on 

aggressive behavior.  

 Despite the lack of clear effects on survival, we converted the selection coefficients for 

the effects of behaviors on survival to Lande and Arnold’s directional selection gradients (β, 

Lande and Arnold 1983) which were used to estimate vector correlations and angles with among-

and within-individual eigen vectors. The βs were -0.67 (-1.23 – 0.45), 0.23 (-1.10– 1.19), and -
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0.62 (-1.22 – 1.19) for activity, aggression, and predator cue response, respectively. This 

indicates that selection favored lower level of activity, but a higher level of aggression and for 

individuals to keep a longer distance from a predator cue.  

3.4.6. Vector correlations and angles 

The vector correlations between the dominant eigenvectors for the among- and within-

individual covariance matrices, and with selection gradients, were low, leading to angles around 

70˚ to 90˚ (Figure 3.2., Table A.9.). 

 

Figure 3.2. Angles between A) imax (dashed blue line) and wmax  (dotted black line), posterior 

HPD-inteval = 29.32 – 90.00, B) imax and β (solid red line), posterior HPD-inteval = 26.50 – 

89.98, and C) wmax and β, posterior HPD-inteval = 20.32 – 89.75. The angles between lines are 

based on the posterior distribution from the multi-response mixed effects model, and the shaded 

areas show the 95% HPD interval, where the non-shaded area indicates minimal angles between 

the vectors. 

Using the Bayesian method for matrix comparison described by Ovaskainen et al. (2008), 

the three vectors were not clearly misaligned, but the probability of misalignment (i.e. proportion 

of estimates > 0) was quite high, particularly between imax and wmax (Table 3.2.). Because this 

method has low power, we also investigated the possibility of misalignment by comparing 

estimates to null distributions. This alternative method indicated that most of the estimated 



 

42 

vector correlations were less than 0.9 (Table 3.2.), consistent with genetic variation, plasticity, 

and selection gradients being misaligned.  

Table 3.2. 𝜓θ and proportion of 𝜓θ > 0 for the alignment between among – and within-individual 

variation (imax and wmax respectively) and selection gradient (β), and proportion of estimates (out 

of 1000) that are below three different null expectations (correlation of 0.975. 0.95, and 0.90) for 

the vector correlation between imax, wmax, and β. Because the proportion of 𝜓θ estimates > 0 was 

less than 0.95 none of the vectors were clearly misaligned. However, the vector correlations 

where substantially different from the three null expectations (except for wmax:β compared to the 

null expectation of  a correlation of 0.90), indicating a misalignment between the three vectors.  

 
𝜓θ 

Estimates of 

𝜓θ > 0 

Estimates < 0 

Null = 0.975 

Estimates < 0 

Null = 0.95 

Estimates < 0 

Null = 0.90 

imax:wmax 1.24 (-0.25 - 1.80) 0.90 0.99 0.98 0.96 

imax:β 0.14 (-0.92 – 1.42) 0.71 0.99 0.98 0.95 

wmax:β 0.22 (-0.41 – 1.58) 0.81 0.97 0.96 0.93 

 

3.5. Discussion 

Contrary to our predictions we found little evidence for alignment between among-

individual variation, plasticity (within-individual variation), and selection in a wild population of 

deer mice. Most estimates of alignment were greater than 0 (0.71– 0.90, Table 3.2.), indicating 

matrix differences. In addition, the results from the Z-transformation analysis indicated that all 

the three vectors have a vector correlation substantially different from 1, i.e., they are misaligned 

(Table 3.2.). A misalignment between among-individual variation and the selection gradient is 

predicted when there has been a change in selection pressure and the genetic architecture has not 

had enough time to realign with the fitness landscape (Jones et al. 2007). However, because 

phenotypic plasticity can respond quicker to selection pressure (Gavrilets and Scheiner 1993), 

plasticity is still predicted to align with selection. This was not the case in our study system, and 

there are at least three reasons for the apparent misalignment between the selection gradient and 

both among- and within-individual variation.  
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First, the estimates of the selection gradient might be biased. Developmental stage had an 

effect on recapture probability, with adult individuals having a higher chance of being recaptured 

than juveniles. Juvenile deer mice have a higher rate of dispersal at the end of the breeding 

season (Fairbairn 1978), which might be why recapture probability was lower for juveniles in 

our system. One of the assumptions of the mark-recapture model used is that we were monitoring 

a closed population, meaning that an individual that has not been recaptured for a long time is 

assumed to be dead. However, this was not necessarily the case for our population, and deer 

mice were able to migrate out of our trapping location, which means that there might be some 

biases in the survival estimates. Unfortunately, given the structure of our data, this assumption 

was necessary to estimate the effect of behaviors on survival.  

Second, the behaviors measured here might be under weak or no directional selection. 

Consistent with this, only mass had a substantive effect on survival probability, with larger 

individuals having a greater chance of surviving compared to smaller individuals. Including 

behavior in the mark-recapture model did not improve the model’s fit (Table A.6.). This 

indicates that the behavioral variables had only small (or no) effects on survival probability, and 

that they are not under strong directional selection. If selection pressure is weak it might not be 

strong enough to have shaped G to align with selection. Thus, the behaviors measured here 

might not have been appropriate for this population of deer mice. However, the deer mice 

increased their time spent on the mirror side of the arena in the mirror image stimulation test 

compared to the open field test (Figure A.3.A.), and likewise increased their distance from the 

predator cue compared to the same corner in the open field test (Figure A.3.B.). This indicates 

that the deer mice did respond to these cues in the predicted manner and validates the use of 

these assays and behaviors in this study. All behaviours were also repeatable, meaning that deer 
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mice were consistent in their responses to these cues as well as in their activity level. In addition, 

previous studies have shown that there is additive genetic variation for distance moved (Careau 

et al. 2011) and underlying genes influencing aggressive behavior (Shorter et al. 2014) for P. 

maniculatus, further supporting the suitability of these methods to record the behaviors used in 

this study.  

While the most parsimonious explanation for our results is that these behaviors are not 

under selection, such a finding would be particularly surprising. The behaviors we measured are 

frequently associated with fitness across taxa (Smith and Blumstein 2008). Exploration, response 

to cues of predator presence, and mirror image stimulation are also frequently argued to be 

particularly ecologically meaningful (Dingemanse et al. 2004, Shonfield et al. 2012, Haage et al. 

2017, Haapakoski et al. 2018). For example, rats (Rattus spp.) decrease their foraging time in the 

presence of a fresh predator cue (Bytheway et al. 2013). Likewise, female red squirrels 

(Tamiasciurus hudsonicus) with a higher activity level were more risk-prone, which led to a 

lower winter survival for the female herself, but a higher survival of her offspring because the 

offspring could remain in their natal territory (Boon et al. 2008). 

Third, the behaviors might be under stabilizing selection, be at their fitness peak, or have 

low genetic variation. Only traits under directional selection are predicted to align with the 

selection gradient (Berdal and Dochtermann 2019). If the behaviors are under stabilizing 

selection, the variation of the traits will be around the fitness optima and variation in the traits is 

predicted to be orthogonal to selection. Consistent with this, Blows et al. (2004) found that the 

genetic correlations among cuticular hydrocarbons in male Drosophila serrata were misaligned 

with directional selection, most likely due to a reduction in genetic variation caused by sexual 

selection through strong female preference. Thus, both weak directional selection and stabilizing 
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selection could explain the misalignment of genetic variation (here among-individual variation) 

and the selection gradient.  

However, we could not determine whether the behaviors were under stabilizing selection 

based on our original a priori analysis. We therefore carried out the described post-hoc analysis 

(see Appendix A) to estimate stabilizing selection by adding quadratic terms to the mark-

recapture model (Lande and Arnold 1983). These results were similar to those focusing on linear 

terms, and the behaviors were not under clear stabilizing selection (Table A.7., Table A.8.). 

Specifically, the model without any quadratic terms for behaviors had the best fit but was not 

distinguishable from a model including a quadratic term for aggression. The coefficient for 

aggression was negative (Table A.7.), indicating that aggression could be under stabilizing 

selection. Aggression has been found to be under stabilizing selection in both water voles 

(Arvicola terrestris) and house mice (Mus musculus) as a result of female choice, where females 

favoured males with a medium aggression level over overaggressive or docile males (Evsikov et 

al. 2006). Similarly, female meadow voles (Microtus pennsylvanicus) avoid mating with 

overaggressive males (Storey 1994), thus hindering selection for increased aggressiveness in 

male voles, i.e., aggression is not under directional selection. Sexual selection on aggression 

could also be the case for our population of deer mice and could reduce the alignment between 

among-individual variation and selection. Unfortunately, at this time, stabilizing selection cannot 

be clearly distinguished from no selection, due to the AIC values not being substantively 

differnet.  

Haller and Hendry (2014) demonstrated that selection in traits that have reached their 

fitness peak is difficult to detect and we therefore sought to explore the possibility of stabilizing 

selection further. Another potential indicator of populations being under strong selection is a loss 
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of variation (Mousseau and Roff 1987, Houle 1992). As a second post hoc analysis we therefore 

calculated the mean standardized among-individual variation of the behaviors (i.e., evolvability, 

Ii). These values were low compared to the estimates in Hansen et al. (2011), indicating low 

evolvability in these behavioral traits (Table 3.1.). This observed low Ii is consistent with 

behaviors being close to the fitness peak for this population, which would also explain the 

misalignment of among- and within-individual variation with the selection gradient.  

As mentioned, among- and within-individual covariation were also misaligned. The 

among- and within-individual correlations were low to moderate, and only the within-individual 

correlation between activity and aggression and activity and predator cue response were found to 

be substantive (pMCMC > 0.95 or < 0.05, Table 3.1.). The lack of substantial correlation for the 

among-individual behaviors is surprising, as this has been found in several other rodents 

(Dochtermann and Jenkins 2007, Taylor et al. 2012), including closely related species (P. 

californicus and P. leucopus, Bester‐Meredith and Marler 2007). However, the other Peromyscus 

species where from laboratory colonies (Bester-Meredith and Marler, 2007) and artificial 

breeding for several generations could have change the behavioral correlations in a different way 

than natural selection would have.  

The within-individual correlation between activity and predator cue response was 

negative, meaning individuals that reduced their activity level also increased their distance from 

the cue. Activity and aggression, on the other hand, were positively correlated at the within-

individual level, which means that individuals that increase their activity level would also 

increase their aggression towards a conspecific. However, the among-individual correlation 

between activity and aggression was negative, indicating that individuals with higher activity 

levels would be less aggressive. The opposite signs for the correlations between activity and 
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aggression might be the main reason why we did not observe an alignment between the among- 

and within-individual covariance matrices. Within-individual variation includes other forms of 

phenotypic plasticity in addition to adaptive plasticity – e.g., passive plasticity, measurement 

error, and organismal error – (Whitman and Agrawal 2009, Westneat et al. 2015, Berdal and 

Dochtermann 2019). Only adaptive plasticity is predicted to align with the selection surface and 

genetic variation, while other sources of plastic variation are not (Berdal and Dochtermann 

2019).  Thus, the proportion of the within-individual variation that is made up by adaptive 

plasticity determines how well within-individual variation should align with both genetic 

variation and the selection surface (see worked example in Berdal and Dochtermann 2019). 

Here, our finding of misalignment also shows the importance of separating among- and within-

individual covariation as they can differ greatly, are produced by different underlying causes, 

and have different implications (Dingemanse et al. 2010, Dingemanse and Dochtermann 2013, 

Berdal and Dochtermann 2019).  

Several models have examined how genetic and plastic variation is shaped by selection, 

as well as how they affect each other (Gavrilets and Scheiner 1993, Jones et al. 2003, Jones et al. 

2004, Draghi and Whitlock 2012), but few empirical studies have addressed this topic (but see 

Lind et al. 2015, Johansson et al. 2020). Here, we found no evidence for alignment among these 

attributes in this wild population of deer mice. The lack of alignment combined with weak or no 

selection on these behaviors and the low evolvabilities suggests the possibility that the 

behaviours measured here might be close to their fitness optimum. Furthermore, the low 

evolvabilities indicate that this population has very low potential of responding to a change in 

selection pressure. Subjecting a sample of this population to a new selection regime in a lab 

setting would provide a better idea of the adaptive potential of this population and whether there 
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is enough phenotypic plasticity to overcome the apparent lack of genetic variation suggested by 

the low evolvability of each trait.   
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4. NO COST OR GENETIC VARIANCE FOR BEHAVIORAL PLASTICITY IN 

CRICKETS 

4.1. Abstract 

Plasticity has been assumed to have costs because no individual within a population 

typically displays the entire range of a trait observed within the population. However, the costs 

of plasticity are often conflated with the costs of a phenotype, an important distinction because 

the costs of plasticity compares the trade-off of plasticity and fitness while cost of phenotype 

measures the cost of expressing one phenotype over another within the same environment. These 

costs have very different impacts on how selection shapes a phenotype. In this study we used 23 

isogenic lines of Gryllodes sigillatus to investigate the costs of plasticity in response to 

environmental cues on reproductive success. We also estimated the inter- and intra-genetic 

variation among the lines in plasticity, mass, and reproduction. The former indicates whether 

there is variation in plasticity among the genotypes, i.e., if there is potential for plasticity to 

undergo evolutionary change. The latter shows whether there are differences in variability 

among lines. We found no evidence for costs of plasticity of the fitness traits measured here. In 

addition, there was no inter-genotypic variation in plasticity for either males or females. 

However, we did find differences in intra-genetic variation in plasticity among lines for females, 

meaning that some genotypes produced more variation in their responses than others. Previous 

selection pressure might have optimized plasticity, removing both variation in plasticity among 

the lines as well as reducing cost of plasticity. The differences in intra-genetic variation among 

lines could be a bet-hedging strategy to increase variability among individuals to increase the 

probability that some of them will have a phenotype that better match the environment, since the 
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lack of inter-genotypic variation in plasticity means there is no longer the potential for 

evolutionary change in plasticity.  

4.2. Introduction 

Phenotypic plasticity allows organisms to match their phenotype to different 

environments and is considered to be adaptive if this phenotypic change increases an individual’s 

fitness (Ghalambor et al. 2007). As for any other trait, genetic variance is needed for the trait to 

be able to respond to selection. For plasticity this would mean that individuals differ in their 

ability to respond to environmental cues, another way of describing gene-by-environment 

interactions (GxE). Put another way, genotypes within the same population will have different 

reaction norm slopes across environments (Figure 4.1., Dingemanse et al. 2010). Several studies 

have found that individuals within the same population differ in how plastic they are for certain 

traits (Mathot et al. 2011, Morand-Ferron et al. 2011). For example, plasticity has been shown to 

respond to selection in several traits, including thorax size in Drosophila melanogaster (Scheiner 

and Lyman 1991) and timing of reproduction in great tits, Parus major, (Nussey et al. 2005). 

Phenotypic plasticity is therefore evolvable and is an important factor for a population’s 

evolutionary trajectories, i.e., the evolutionary changes of a trait over time (Stearns and Koella 

1986, Draghi and Whitlock 2012, Fischer et al. 2016). 
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Figure 4.1. Differences in cost of phenotype and cost of plasticity A) G1 (blue line) and G2 (red 

line) are fixed genotypes and the expressed phenotype is the same regardless of the environment 

(absence vs. presence of a predator). G3 (black line) is a plastic genotype and the phenotypic 

expression changes according to the environment the genotype is expressed in. B) The fitness of 

G1 and G2 depends on which environment they are expressed in, where fitness will be higher in 

an environment where the phenotype matches. The difference between the red and the blue line 

measures the cost of phenotype. The plastic phenotype matches both environment and will have 

the same fitness in both. However, it will have a lower fitness than the optimized fixed 

phenotype due to the costs of being plastic. The difference between the red and the black line in 

an environment without predators and the difference between the blue and the black line in an 

environment with predators measures the fitness cost of plasticity.  

The observation that individuals differ in their degree of plasticity (Mathot et al. 2011, 

Morand-Ferron et al. 2011) means that no individual expresses the full range of a trait observed 

in a population, suggesting that there might be limits and/or costs to plasticity (DeWitt et al. 

1998). Often, costs of plasticity have been measured by comparing a trait in individuals raised in 

the presence of an environmental cue (e.g., predation risk or population density) with individuals 

that have developed in the absence of the cue (Scheiner and Berrigan 1998). Measure of fitness 

are then compared between the groups. For example, in Dahpnia pulex individuals develop a 
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defensive neck spine if they are raised in the presence of predator cues. Individuals that develop 

these spines produce fewer offspring, develop at a smaller size at maturity, and lower intrinsic 

growth rate compared to individuals that developed without the presence of the cue (Ketola and 

Vuorinen 1989, Walls and Ketola 1989, Black and Dodson 1990). However, this comparison 

measures the cost of phenotype, not the actual cost of plasticity (Murren et al. 2015). That is, 

costs of plasticity are conflated with the costs of actually developing the defensive spine. This is 

an important distinction because even if an individual does not need to change the trait because it 

stays in a constant environment, the trait still has the potential to change, meaning that the cost of 

the plastic machinery has already been paid. The cost of plasticity should therefore be considered 

as the cost of having a trait with the potential to vary with the environment as opposed to being 

fixed (Van Buskirk and Steiner 2009). 

To properly estimate these costs of plasticity, it is therefore necessary to compare 

variation in potential plasticity to variation in fitness (Van Tienderen 1991, DeWitt et al. 1998, 

Van Buskirk and Steiner 2009). Further, to measure variation in plasticity the same genotype 

needs to be repeatedly measured across different environments. This allows for the estimation of 

magnitude of plasticity for each genotype, or, put another way, different reaction norm slopes 

within a population (Figure 4.1.). Repeated measures of the same genotype in the same and in 

different environment can be achieved using organisms with known pedigrees, like sib-families, 

or by using iso-genic lines (Van Tienderen 1991, Van Buskirk and Steiner 2009). The use of 

isogenic lines is especially powerful because individuals within a line will be genetically 

identical, and the only difference in trait expression should be caused by differences in the 

environment, i.e., plastic responses. For example, Scheiner and Berrigan (1998) used isogenic 

lines of Daphnia spp. where individuals from the same line were divided into two groups: 
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developing in the presence or absence of a predatory cue. The absolute difference in trait 

expression (spine length, mass, and time to maturity) between the two groups within the same 

line was used as a proxy for plasticity while clutch size and intrinsic rate of increase were used as 

fitness measurements. Both plasticity and the mean measurements of the traits for each line in 

each environment were regressed on fitness, where the trait mean refers to the phenotypical cost 

of the trait. No cost of plasticity was found in this case, a finding that seems to be common when 

investigating plasticity costs. In a meta-analysis examining only those studies that estimated 

costs of plasticity by regressing fitness over plasticity, Van Buskirk and Steiner (2009) found 

that actual costs of plasticity were most often weak. However, they also found that these costs 

varied broadly across studies and that increased stress had the potential of increasing the chance 

of detecting a cost. This indicates that a cost of plasticity might only be present under highly 

stressful situations.  

Cost of plasticity is in most cases measured in trait with developmental plasticity, i.e., 

traits that responds to a cue early in life and stays the same for the rest of that organism’s 

lifespan, i.e., irreversible plasticity. This includes neck spine in daphnia (Krueger and Dodson 

1981), birdsong in some species of birds (Marler and Peters 1987), and tail development in 

tadpoles (Van Buskirk 2000). However, some traits can be changed throughout an organism’s 

lifetime, i.e., reversible plasticity. Irreversible and reversible plasticity, also named 

developmental and activational plasticity respectively for behavior in a review by Snell-Rood 

(2013), are expected to have different costs associated with them because the underlying 

mechanisms for detecting cues and responding to these cues differ. Traits with developmental 

plasticity only respond to a cue at one time in an organism’s lifetime and will not be responsive 

to any cues after the trait has been developed. These traits can possibly be more integrated as 
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several traits will develop in response to the cue at once, leading to increased correlations among 

traits. Activational plasticity, on the other hand, respond to their environment constantly, which 

means that the neural networks to detect environmental cues and respond appropriate to these 

cues are always activated. Activational plasticity might therefore have a higher cost than 

developmental plasticity due to the need to maintain larger neural network over an individual’s 

lifetime rather than just during development (Snell-Rood 2013). 

Another example of both types of plasticity is observed in individuals from the same 

isogenic line raised in the same environment conditions, but differ in their trait expression, with 

some genotypes being more variable than others (Stamps et al. 2013). This variation, called 

intra-genotypic variation (IGV), might be the result of bet-hedging or organismal error. For bet-

hedging, genotypes producing different phenotypes based on random expression processes rather 

than as a response to the environment. The different expressed phenotypes might either be fixed 

within individuals throughout their lifetime or vary across time (Stamps et al. 2013, Ayroles et 

al. 2015). Both increases the variability of the phenotype, but at different levels, i.e., within an 

individual or among individuals within a population.  Organismal error also increases the 

variability of the genotype, but where bet-hedging increases the variability to increase the chance 

that some of the expressed phenotypes will match the environment and benefit from an increase 

in fitness, organismal error will result in a mismatch between the expressed phenotype and the 

environment and should be selected against.  

In this study we used 23 isogenic populations of Gryllodes sigillatus to investigate cost of 

plasticity on reproductive success. Because this species is not clonal in nature, like for example 

daphnia, this system lets us use the power of iso-genetic lines in a species where this is usually 

not possible. We focused on a behavior that expresses reversible plasticity. As discussed above, 



 

55 

costs of reversible plasticity are expected to be greater than as observed for irreversible 

plasticity, making these costs easier to detect. Plasticity was measured as absolute change in 

activity in the absence and presence of a predator cue and reproductive success was measured as 

spermatophore mass in males and egg count in females. If plasticity is costly, we would predict a 

negative correlation between magnitude of plastic response and reproductive output among lines. 

We also investigated the potential for evolution in this species by seeing if there was significant 

among-line variation in plasticity, as well as differences in within-line variance.  

4.3. Methods 

4.3.1. Breeding 

The crickets used for this experiment were from nine lines of crickets that have been 

inbred through full sibling crossings for 20 generations (Ivy 2005), which results in an 

inbreeding coefficient of 0.986 (Falconer and Mackay 1996). The lines have been allowed to 

continue to breed within-lines for another 55-60 generations after the initial crosses, leading to 

an even higher inbreeding coefficient. Individuals from the same line are therefore close to 

genetically identical, making it possible to investigate genetic differences in plasticity among 

lines. Eight of the inbred lines were bred together within lines and among lines creating 23 

genetically distinct lines. Two females from one line and two males from the same line or a 

different line was put in a box (34.6 x 21 x 12.4 cm) where they were provided with water, chick 

feed, egg carton for shelter, and an oviposition cup filled with peat moss. The boxes were kept at 

around 26°C. The oviposition cup was checked every other day to make sure it was kept damp 

and to see whether there were any hatchlings. As soon as hatchlings were observed the parents 

were removed.  
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4.3.2. Rearing 

Boxes with hatchlings were checked every other day to ensure that the soil was damp and 

that the hatchlings had access to food and water. As the hatchlings started to mature the boxes 

were checked every day, and adults were put into individual cups (11.5cm in diameter). This 

ensured that all the individuals used in the study were virgins. Each individual box was provided 

with a water vial, a small dish with chick feed, and egg carton for shelter, and was kept at around 

26°C. Adult crickets were then run through behavioral trials.  

4.3.3. Behavioral tests 

Plasticity in activity was measured by introducing crickets to two different environments: 

environments with and without the presence of a predatory cue. Other species of crickets have 

shown response to chemical cues from predators fed on crickets (Hoefler et al. 2012) and the 

predatory cue used here consisted of a filter paper soaked in diluted excreta collected from 

leopard geckos (Eublepharis macularius) fed crickets. The filter paper was put in the bottom of a 

round arena (15 cm in diameter). The test without the predatory cue was set up in the same way, 

but with a filter paper soaked in distilled water. Whether a cricket was run through the trial with 

predatory cues or control cues first was randomized to control for any order effect.  

 Four crickets were tested at the same time in separate arenas. At the start of the trial the 

crickets were placed under a plastic cup in a hole cut in the middle of the filter papers for 30 

seconds to acclimate. This way the crickets would not interact with the cues until the start of the 

trial. The cups were then removed, and the crickets had 3 minutes and 40 seconds to explore the 

arena. After the trial, the crickets were weighted and then put back into their individual housing.  

All trials were recorded, and the videos were analyzed using Ethovision version 10. 

Tracking was started after 40 seconds to make sure that the observer had time to release all the 
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crickets and place the lid over the arena, and thus avoid any disturbance during video analysis. 

Activity level in both trials were recorded as distance moved (in cm), and plasticity was 

calculated as the absolute difference in distance moved between the two trials. Previous studies 

have shown that G. sigillatus increase their activity level in the presence of a predatory cue 

(unpublished data) and that activity level is higher for individuals that have previously been in 

contact with predators (Bucklaew and Dochtermann 2021), which could therefore be an escape 

response. Other species of closely related crickets also increase their activity levels in the 

presence of these predator cues (Royauté and Dochtermann 2017, Royauté et al. 2019). 

However, crickets have also been observed to freeze in the presence of predators (Hedrick and 

Kortet 2012) and using absolute values will therefore capture the plasticity in both directions.  

4.3.4. Reproductive measurements 

After both behavioral trials were complete, reproductive measurements were recorded for 

both males and females. Male reproduction was measured as spermatophore mass, which was 

sampled by holding the cricket between the thumb and index finger, and gently pressing the 

thumb on the abdomen to release the spermatophore. A probe was used to transport the 

spermatophore to a weighing paper, and the spermatophore was weighted to the nearest 

milligram. If a male had no spermatophore it was noted as 0 mg. The mass of males was also 

recorded.  

Female reproduction was measured as number of eggs laid. Females were mated with 

males from the same line that were not otherwise used in the behavioural trials to avoid any 

effects of stress due to handling. Because some females lay eggs in the water vials, all water 

vials were changed before the males were added. The males had their mass recorded and then 

were added to the female’s home container for 24 hours. The males were then removed, and an 
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oviposition cup with sand was added to the female’s box. The females were given three days to 

lay eggs before the oviposition cup was removed. The cups were covered in cling film and stored 

in a fridge at ~4 °C. The eggs were counted by mixing the sand with water and pouring the water 

into a petri dish. Because the eggs are lighter than the sand the eggs would be poured out with 

the water and could easily be counted.  

4.3.5. Statistical analysis 

4.3.5.1. Trait correlations within and between sexes 

The correlations between plasticity, mass, and fitness were estimated using linear mixed 

effect models using the nlme packaged in R (Pinheiro et al. 2017), and correlations were 

estimated piecewise in separate bivariate models. Among-line correlations within the sexes are 

expected to be negative, as this would indicate a trade-off between fitness, growth, and the 

plastic machinery. Similarly, if the underlying genetics are similar for the sexes, the among-line 

correlations between sexes are predicted to be negative, also indicating trade-offs. The within-

sex correlation within-line is predicted to be positive, as individuals within a line would be 

genetically identical and the only difference between them would be due to the environment. 

Thus, any variance within a line would be due to unmeasurable micro-environmental differences.  

For between-sex correlations, only among-line correlations can be estimated. Bivariate 

response models were fitted by using two of the traits (e.g., fitness and plasticity) as response 

variables and trait type as a fixed effect in combination with sex, resulting in a factor with four 

levels (e.g., female fitness, male fitness, female plasticity, and male plasticity). For the random 

effect, this factor was nested within line allowing for random slopes for each sex and trait type. 

This allows us to use a univariate model to estimate multivariate parameters, like among-line 

correlations.  
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A model without the among-line correlations were run to allow an AIC comparison to see 

if the correlations were substantial. The correlations between sexes for the same trait were 

qualitatively compared to one, indicating whether or not the trait should be considered to be the 

same for both sexes (correlation ≈ 1) or to be two different traits (correlation < 1). 

The models estimating the within-sex correlations were run in a similar way but allowed 

for within-line correlations (full model), since this was estimable here. Additional models 

allowing for only among-line correlation, only within-line correlation, or no correlation (null 

model) were run to allow AIC comparison to see whether the among- and/or within-line 

correlations were substantial. Models different from the null model with an AIC greater than 2 

indicate substantively better fit of this model, i.e., the correlation(s) were substantial. If a model 

including the among-line correlations and the full model had a significantly better fit than the 

null model, but the model with only the within-line correlation did not, only the among-line 

correlation was considered substantial, and vice versa.  

4.3.5.2. Among- and within-line variation 

The inter- and intra-genotypic (among- and within-line) variation for the three traits were 

estimated for each sex separately and was done by comparing four univariate models of 

increasing complexity. The null model was a linear model without any random effects, thus not 

allowing for any variance differences either among or within lines. The second model was a 

mixed effect model with line as the random effect, which allows for among-line variance. The 

third model was a linear model without line as random effect, but that did allow for 

heterogeneous residuals, i.e., differences in within-line variation. Finally, the full model was a 

mixed effect model with line as a random effect and allowing heterogeneous residuals. Similar to 

the model comparisons for correlations, models that had substantively better fit than the null 
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model indicated substantial effect of the variance partitioning. Again, the model with only 

among-line variance must have a substantively better fit than the null model for the variance to 

be considered to have a substantial effect. If the full model has a significantly better fit than the 

null model, but the model only allowing for among-line variance does not, then the among-line 

variance is not considered substantial, even though the full model includes among-line variance. 

The same goes for the model only allowing for within-line variance.  

4.4. Results 

4.4.1. Trait correlations within and between sexes 

No cost of plasticity was found for either males or females as none of the among-line 

correlations between fitness and plasticity were negative (Figure 4.1.). However, a strong 

positive correlation was found within males, indicating that genotypes with a higher level of 

plasticity would also produce larger spermatophores (Figure 4.2., Table 4.1.-4.2.). This 

relationship held even after controlling for an isometric relationship between fitness and mass. In 

addition, the correlation between fitness and mass was significant among- and within line for 

males and within-lines for females. This means that males with a genotype for increased size will 

also produce a larger spermatophore, and that larger individuals within a line will also produce 

larger spermatophores (or lay more eggs). Only two between-sex correlations were significant, 

namely between male fitness and either female plasticity or female mass (Figure 4.1., Table 4.1.-

4.2.).  
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Figure 4.2. Correlations between plasticity, mass, and fitness in G. sigillatus among and within 

the two sexes. The values above the diagonal are among-line correlations and below the diagonal 

are within-line correlations. Substantial correlations are shown with a grey background. 
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Table 4.1. Model comparisons to investigate whether the among-line correlations between 

plasticity, mass, and fitness between the sexes were substantial. ΔAIC values are calculated by 

subtracting the AIC values of the model with correlations estimated from the AIC values of the 

model without correlation estimated. ΔAIC < -2 indicate substantial correlations. Models with 

substantially better fit are shown in bold. For all models with correlation K = 7 and for all 

models without correlation K = 6. 

 AIC values  

Model With correlations  Without correlations ΔAIC 

Female fitness x male fitness 6304.13 6302.37 1.76 

Female mass x male mass 4955.10 4954.83 0.27 

Female plasticity x male plasticity 6265.53 6265.24 0.29 

Female fitness x male plasticity 5981.59 5981.27 0.32 

Female mass x male fitness  6013.60 6015.61 -2.01 

Female plasticity x male mass 5539.91 5540.85 -0.94 

Female fitness x male mass 5255.83 5254.45 1.38 

Female mass x male plasticity 5692.53 5690.58 1.95 

Female plasticity x male fitness 6587.07 6591.95 -4.88 

 

Table 4.2. Model comparisons to investigate whether the among- and within-line correlations 

between plasticity, mass, and fitness within the sexes were substantial. Null models are fitted 

without any correlations, “only among” models include only the among-line correlations, “only 

within” models include only within-line correlations, and full models are fitted with both 

correlations. Models with substantially better fit than the null model (ΔAIC > 2) are shown in 

bold. 

Within female 

Model  Fitness x Mass Fitness x Plasticity Plasticity x Mass 

 df AIC ΔAIC AIC ΔAIC AIC ΔAIC 

Full 8 5552.55 0.59 6121.39 1.99 5839.97 2.92 

Only among  7 5553.73 1.77 6122.90 3.50 5838.03 0.98 

Only within 7 5551.96 0 6119.40 0 5839.04 1.99 

Null 6 5554.74 2.78 6121.08 1.68 5837.05 0 

Within male 

 df AIC ΔAIC AIC ΔAIC AIC ΔAIC 

Full 8 5702.07 0 6443.27 1.16 5396.74 2.62 

Only among  7 5712.90 10.83 6442.11 0 5395.51 1.39 

Only within 7 5716.47 14.4 6450.58 8.47 5395.45 1.33 

Null 6 5730.32 28.25 6449.09 6.98 5394.12 0 

 

4.4.2. Among- and within-line variation 

Female fitness had significant intra- and inter genetic variance, meaning that there is a 

difference in both mean fitness and within-line variance among lines (Figure 4.3., Table 4.3.). 
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For male fitness, male mass, and female mass only among-line variance was significant, meaning 

there are mean differences among lines, but the variance within line is similar. Neither among- or 

within-line variance was significant for male plasticity, but within-line variance was significant 

for female variance, indicating that mean plasticity is similar across lines, but that the within-line 

variances differ among lines for females (Figure 4.3., Table 4.3.).  

Table 4.3. Model comparison to investigate whether the among- and within-line variation was 

substantial. For null models, the variances among and within lines were equal. For “only among” 

models the variance among lines were allowed to vary, and for “only within” models the within-

line variances were allowed to vary, while both among-and within line variance was allowed to 

vary for full models. Models with substantially better fit than the null model (ΔAIC > 2) are 

shown in bold.  

Within female 

Model   Fitness Mass Plasticity 

 Variance df AIC ΔAIC AIC ΔAIC AIC ΔAIC 

Null VA =, Vw = 2 2919.18 3.24 3645.46 11.56 3416.27 7.77 

Only among  VA ≠, Vw = 3 2918.67 2.73 3633.56 0 3417.74 9.24 

Only within VA =, Vw ≠ 24 2927.86 11.92 2661.99 28.43 3408.50 0 

Full VA ≠, Vw ≠ 25 2915.94 0 2654.95 21.39 3408.74 0.27 

Within male 

 Variance df AIC ΔAIC AIC ΔAIC AIC ΔAIC 

Null VA =, Vw = 2 3392.59 8.23 2425.61 89.88 3265.94 0 

Only among  VA ≠, Vw = 3 3384.36 0 2335.73 0 3267.95 2.01 

Only within VA =, Vw ≠ 24 3415.95 31.59 2402.87 67.14 3279.44 13.50 

Full VA ≠, Vw ≠ 25 3396.99 12.63 2355.45 19.72 3281.45 15.51 
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Figure 4.3. Raincloud plots showing the inter- and intra-genetic variation for A) fitness, B) 

plasticity, and C) mass for males (blue) and females (red) for each line. Because the fitness 

measures differed for the two sexes (spermatophore mass for males and egg count for females) 

the mean fitness for male is higher than for females. There is also a significant difference in 

fitness among the lines for both males and females, and the intra-genetic variance is significant 

for females. No among-line differences were found for plasticity, though again there was a 

significant intra-genetic variance for females. Lastly, females were significantly larger than 

males across all lines and among-line variance was significant for both sexes.  
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4.5. Discussion 

We found no evidence for cost of plasticity in the cricket G. sigillatus, i.e., we did not 

find a negative correlation between fitness and plasticity among lines (Figure 4.1., Table 4.1.-

4.2.). We did, however, find a strong significant positive correlation between fitness and 

plasticity among lines for males, which means that males from lines that produced larger 

spermatophores also showed higher levels of plasticity. This is contrary to our predictions that 

individuals investing in higher levels of plasticity will not have as many resources to invest in 

reproduction. Similarly, we found a positive correlation between fitness and mass among lines 

for males, again contrary to our predictions of a trade-off. One reason for this lack of trade-off 

between plasticity, fitness, and mass is that the trade-off is with a trait not measured here, for 

example longevity. The lack of an observed trade-off could also be a result of variation in 

acquisition and allocation of resources between genotypes (Van Noordwijk and de Jong 1986). 

This means that some genotypes have a higher efficiency at acquisition of resources which leads 

to them being able to put more energy into several traits at the same time, thus masking the 

trade-off between investment in a specific trait and fitness (Van Noordwijk and de Jong 1986). 

This has been shown to be the case for several species, for example seed beetles (Callosobruchus 

maculatus), where a positive correlation was observed between fecundity and longevity when 

seed availability was high (Messina 2003). However, when seeds were scarce, the correlation 

became negative. The trade-off between fecundity and longevity was therefore only observed 

during stressful conditions, while during seed abundance some individuals were able to more 

allocate energy to both fecundity and longevity, masking the trade-off (Messina 2003).  

The within-line correlation between fitness and mass was found to be significant and 

positive for both males and females (Figure 4.1., Table 4.1.-4.2.). Because the lines are 
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genetically identical and are raised in the same environment, the variation within lines is caused 

by differences in the unmeasurable micro-environment, which would in this case be slight 

differences in temperature and possible accessibility to food and water. Individuals within the 

same line that were, for example, housed in a location with a slightly higher temperature would 

have a benefit over individuals of the same genotype the were exposed to slightly lower 

temperatures. The positive correlation observed here is therefore as predicted, as individuals of 

the same genotype with more resources would be able to invest more in both reproduction and 

growth at the same time.  

Cost of plasticity might be assumed to be low if previous selection has reduced the costs 

(Murren et al. 2015). If that is the case plasticity might be hard to detect. However, activational 

plasticity is predicted to remain costly due to the need to maintain a large neural network to 

constantly detect environmental cues (Snell-Rood 2013). This was the basis of focusing on 

plasticity in a behavioral response towards a predator cue here. However, since detection of 

predators is likely highly beneficial, previous selection pressure might have consistently favored 

plasticity in this trait and reduced associated costs.  

The correlations between sexes among lines for the same trait varied among the three 

traits measured here (Figure 4.1.). The between-sex correlation for mass was close to 1 (0.944), 

which indicates that mass can be considered the same trait for both sexes, i.e., it has the same 

underlying genetic architecture in both sexes. The between-sex correlation for plasticity, on the 

other hand, was close to 0 (0.038). There is therefore no apparent relationship between the genes 

for plasticity for the two sexes, and plasticity should therefore be considered different traits for 

males and females. Lastly, the between-sex correlation for fitness was intermediate between 0 

and 1 (0.417), which means that there are some shared genetics between the sexes for fitness, but 
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that there are also sex-specific genes controlling this trait. This is not surprising as fitness was 

measured differently for the two sexes (egg count for females and spermatophore mass for 

males). However, both traits demand high investment and would therefore have the potential for 

a trade-off with other traits that demand investments, like growth and plasticity, which was why 

they were used as fitness measures in this study. If the selection pressure for a trait differs 

between the two sexes, a high between-sex correlation will lead to sexual discordant selection 

and could impact evolutionary trajectories (Westneat and Sih 2009). For example, if males in our 

population were selected to have smaller mass, while females were selected to be larger, only the 

sex with the strongest selection pressure would reach its optimum, and the time to reach the 

optimum would be slowed down due to the opposite selection pressure in the other sex 

(Westneat and Sih 2009). If the selection pressure differs between the sexes for plasticity, on the 

other hand, the trait could evolve freely in both sexes due to the low between-sex correlation.  

The only cross-trait correlation between sexes that were significant were for male fitness 

with both female plasticity and female mass, which were both positively correlated (Figure 4.1., 

Table 4.1.-4.2.). This means in lines where males produce larger spermatophores, the females 

would be larger and exhibit a higher level of plasticity. This is, again, contrary to our prediction 

of a trade-off between these traits, though this prediction depended on the traits being controlled 

by the same underlying genetics for the two sexes, which in this case was only true for mass. If 

the traits were controlled by the same underlying genetics for both sexes, a trade-off between 

fitness, mass, and plasticity is predicted to be the same between sexes as within sexes among 

lines. However, due to the low cross-sex correlation fitness can be considered a semi-

independent trait and plasticity a completely independent trait for the two sexes the trade-off 
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between fitness and plasticity between the two sexes is no longer predicted as these traits are 

controlled by different genes.  

Both fitness and mass were found to have significant inter-genotypic variation for both 

males and females, meaning that there were genetic differences among lines in mean level for 

these two traits (Figure 4.2., Table 4.3.). For female fitness there was also significant intra-

genotypic variation, which means that some genotypes were more variable in fitness output than 

others. Significant intra-genotypic variation was also found for plasticity in females, though 

inter-genotypic variation was not significant. Thus, there was no difference in mean level of 

plasticity among the lines, but some lines showed more variation in their responses than others. 

The intra-genotypic variation could be a result of bet-hedging, where some genotypes produce a 

wider range of phenotypes based on gene expression process, like epigenetic markers and 

maternal effects, rather than as a response to an environmental cue (Stamps et al. 2013, Ayroles 

et al. 2015). This increases the probability of producing a phenotype that will better match the 

environment, especially in a habitat where environmental cues are less reliable. Neither inter- nor 

intra-genotypic variation were found for plasticity in males.  

The lack of evidence for cost of plasticity and inter-genetic variation in plasticity among 

lines could be caused by prior selection pressure that has optimized plasticity in this population, 

reducing the variance and any associated cost of plasticity (Murren et al. 2015). Another 

possibility for the lack of cost of plasticity is that the olfactory machinery is used in other 

contexts, like foraging, and is therefore already being maintained. Being able to detect predators 

might not have any additional cost to the perseverance of the olfactory machinery, or only a 

small additional cost, which would be hard to detect.  
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Because there was no genetic variation in plasticity there can be no evolutionary changes 

in this trait. The intra-genetic variation for plasticity in females might therefore be a bet-hedging 

strategy to increase variability among individuals increasing the chance that some of them might 

develop a phenotypic response that better matches the environment they live in. Females might 

have a greater benefit from this variability than males, as females must move through different 

environments in their search for a mate, while males stay in one place, often close to a burrow, 

where they call to attract females (Sakaluk 1987). The male strategy will therefore be the same 

every time a predatory cue is detected, namely run and hide in the burrow, while female’s 

strategy depends on which habitat she is in. A futures study on the benefit of intra-genotypic 

variation in plasticity, and whether this benefit is greater for female than male crickets could 

increase our understanding for the evolutionary consequences for intra-genetic variation.  
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APPENDIX 

 

Figure A.1. Map of the Cassel wood, Minnesota (46°56'34.6"N, 96°47'03.2"W). The trapping 

grid’s location is indicated by the white square.  

 

Figure A.2. Arena set up. The black line indicates the position of the mirror in the mirror arena, 

while the circle indicates the position of the predator cue in the anti-predator arena.  
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Table A.1. The eight mark-recapture models fit to investigate the effect of behavior on survival. 

Model Behavioral covariates 

1 Effect of all behaviors on survival 
Activity, aggression, and anti-

predator response 

2 Effect of activity and aggression on survival Activity and aggression 

3 
Effect of activity and anti-predator response on 

survival 

Activity and anti-predator response 

4 
Effect of aggression and anti-predator response 

on survival 

Aggression and anti-predator 

response 

5 Effect of Activity on survival Activity 

6 Effect of aggression on survival Aggression 

7 Effect of anti-predator response on survival Anti-predator response 

8 No effect of behaviors on survival No behaviors 

 

A.1. Testing for historical and stabilizing selection 

Because we found that the behavioral traits were under weak (or no) directional selection, 

two post-hoc analyses were carried out to investigate if the behaviors had low evolvability and/or 

were under stabilizing selection. The first post-hoc analysis was the calculation of mean 

standardized variances for the three behaviors, i.e. evolvability, IA, (Hansen et al. 2011).  

 𝐼𝐴 =
𝑉𝐴

𝜇2 (Equation A.1) 

where VA is the additive genetic variance of a trait, and µ is the mean of the same trait. This 

gives an estimate of the evolutionary potential of a population. Mean-scaling the variances 

allows us to compare these estimates across traits and species. Low values of evolvability 

suggest that a trait has been under strong historical selection, leading to a depletion of variation. 

However, in our case evolvability is estimated based on among-individual variance instead of 

just the additive genetic variance, meaning our estimate also included dominance- and epistatic 

variance as well as permanent environmental effects (Dochtermann and Royauté 2019). The 

estimated intercepts from the multi-response generalized mixed effect models were used for the 

behavioral means in equation A.1. 
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 Second, we added quadratic terms for behaviors to the mark-recapture model (Arnold and 

Lande 1983) where a negative coefficient on the quadratic term would indicate stabilizing 

selection (Schluter 1988). As before, eight models were fit (Table A.1.) and AICc values were 

used to compare the model fit. All models included sex, developmental stage, mass, and the 

linear terms (i.e. the BLUPS) for the behaviors (Table A.1., Model 1), and only differed in the 

number of quadratic terms for the behaviors that were added (none, one, two, or three quadratic 

terms). If the behavioral traits were under stabilizing selection, models including these terms and 

with negative coefficients should have a better fit.  

Table A.2. The eight mark-recapture models fit to investigate stabilizing selection on the three 

different behaviors. The directional selection terms for the three behaviors are included in all 

models. 

Model Behavior quadratic covariates 

1 Quadratic term for all three behaviors 
Activity, aggression, and anti-predator 

response 

2 Quadratic term for activity and aggression Activity and aggression 

3 
Quadratic term for activity and anti-predator 

response 

Activity and anti-predator response 

4 
Quadratic term for aggression and anti-predator 

response 

Aggression and anti-predator response 

5 Quadratic term for activity  Activity 

6 Quadratic term for aggression Aggression 

7 Quadratic term for anti-predator response Anti-predator response 

8 No quadratic terms No quadratic terms for behaviors 

 

Table A.3. Number of trials for the different sexes and developmental stages.  

 Activity Aggression Anti-predator  

response 

Adult female 98 84 93 

Adult male 84 67 71 

Adult unknown 3 3 3 

Juvenile female 13 12 11 

Juvenile male 21 19 17 

Juvenile unknown 6 6 6 

Total 225 191 201 
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Figure A.3. Mean differences in A) distance from predator cue in the predator response test 

(PRT) and the open field (OF), and B) time spent on the mirror side of the arena in the mirror 

test (MT) and open field. The distance from the predator cue was substantially larger in the 

predator response test (pMCMC = 0.00), and the time spent in front of the mirror was 

substantially longer in the mirror test compared to the open field (pMCMC = 0.008).  

Table A.4. Coefficients as standard deviation for the fixed effect from the multi-response 

generalized mixed effect model. Values in parenthesis shows 95% HDP-intervals.  

 Activity Aggression AP 

Shelter -1.07 (-1.46 – -0.69) 

pMCMC = 1.00 

-0.45 (-1.01 – 0.30) 

pMCM = 0.90 

-0.41 (-0.87 – 0.03) 

pMCM = 0.96) 

SexM 0.51 (0.09 – 0.91) 

pMCM = 0.007 

0.13 (-0.29 – 0.57) 

pMCM = 0.29 

-0.09 (-0.60 – 0.31) 

pMCM = 0.65 

SexU 0.67 (-0.31 – 1.58) 

pMCM = 0.07 

0.25 (-0.83 – 1.16) 

pMCM = 0.32 

0.18 (-0.81 – 1.17) 

pMCM = 0.35 

Developmental  

stage 

-0.05 (-0.46 – 0.33) 

pMCM = 0.59 

0.27 (-0.21 – 0.76) 

pMCM = 0.14 

0.01 (-0.52 – 0.48) 

pMCM = 0.47 

Mass (among- 

individual  

centred) 

0.01 (-0.03 – 0.05) 

pMCM = 0.29 

0.01 (-0.03 – 0.05) 

pMCM = 0.27 

0.02 (-0.06 – 0.03) 

pMCM = 0.79 

Mass (within- 

individual  

centred) 

-0.04 (-0.10 – 0.01) 

pMCM = 0.94 

0.01 (-0.06 – 0.07) 

pMCM = 0.45 

0.05 (-0.02 – 0.10) 

pMCM = 0.06 
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A.2. Mark-recapture model 

Only mass had a substantive effect on survival and only developmental stage had a 

substantive effect on recapture probability (Table A.5.). Larger individuals were found to have a 

higher survival probability than smaller individuals and adult individuals had a higher chance of 

being recaptured compared to juveniles. The selection coefficient for the behaviors were 

relatively low, especially for aggression. This low effect of behaviours on survival is further 

emphasised by the model comparison results, where the model with no behavioral terms had the 

lowest AICc score (Table A.6.). The same results were found when investigating the presence of 

stabilizing selection on the behaviors, where the model with no quadratic terms had the best fit 

(Table A.7, Table A.8.). 

Table A.5. Survival and recapture coefficients estimated for sex, developmental stage, mass, and 

the three behavioral measurements based on the full mark-recapture model (Table A.1., Model 

1).  

Trait Survival coefficients 

Estimate (95 % CIs) 

Recapture coefficients 

Estimate (95 % CIs) 

Intercept 0.46 (-2.24 – 3.15) -0.66 (-3.24 – 1.92) 

Sex1 0.03 (-1.54 – 1.62) 0.56 (-1.26 – 2.39) 

Sex2 -0.66 (-2.39 – 1.07) 0.68 (-1.17 – 2.52) 

Developmental stage -0.88 (-2.32 – 0.57) 1.18 (0.15 – 2.21) 

Mass 0.19 (0.08 – 0.30) -0.03 (-0.09 – 0.03) 

Activity -0.79 (-1.61 – 0.03) 0.15 (-0.31 – 0.61) 

Aggression -0.23 (-1.21 – 0.76) -0.22 (-0.66 – 0.23) 

Anti-predator response -0.70 (-1.85 – 0.45) 0.06 (-0.49 – 0.61) 
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Table A.6. AICc values for the 8 mark-recapture models. The reduced model has the best fit, 

indicating that the behavioral traits had very little impact on survival.  

Model AICc ΔAICc K 

No effect of behaviour on survival 

~ Sex + Developmental stage + Mass 

739.28 0.00 3 

Effect of only activity on survival 

~ Sex + Developmental stage + Mass + Activity 

741.33 2.05 4 

Effect of only aggression on survival 

~ Sex + Developmental stage + Mass + Aggression 

742.48 3.20 4 

Effect of only anti-predator response on survival 

~ Sex + Developmental stage + Mass + Anti-predator response 

743.51 4.23 4 

Effect of activity and anti-predator response on survival 

~ Sex + Developmental stage + Mass + Activity + Anti-predator 

response 

744.52 5.24 5 

Effect of activity and aggression response on survival 

~ Sex + Developmental stage + Mass + Activity + Aggression  

744.57 5.29 5 

Effect of aggression and anti-predator response on survival 

~ Sex + Developmental stage + Mass + Aggression + Anti-predator 

response 

746.78 7.50 5 

Effect of all three behaviors on survival 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response 

747.67 8.39 6 
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Table A.7. Effect of sex, developmental stage, mass, and the linear and quadratic terms for the 

three behavioral measurements on survival and recapture probability based on the post-hoc 

mark-recapture model. 

Trait Survival probability Recapture probability 

Intercept 0.20 (-2.69 – 3.09) -0.71 (-3.25 – 1.83) 

Sex 1 -0.41 (-1.99 – 1.16) 0.75 (-0.97 – 2.46) 

Sex 2 -0.74 (-2.50 – 1.02) 0.79 (-0.95 – 2.54) 

Developmental stage -1.30 (-2.77 -0.17) 1.43 (0.47 -2.40) 

Mass 0.21 (0.09 – 0.34) -0.04 (-0.10 – 0.03) 

Activity  -0.65 (-1.83 -0.53) 0.11 (-0.37 – 0.59) 

Aggression 0.03 (-1.41 – 1.48) -0.29 (-0.72 – 0.14) 

Anti-predator response -0.15 (-1.64 – 1.34) -0.02 (-0.68 – 0.65)  

Activity^2 0.55 (-0.65 – 1.74) -0.15 (-0.77 – 0.48) 

Aggression^2 2.66 (-0.76 – 6.08) -0.17 (-1.00 – 0.67) 

Anti-predator response^2 -0.76 (-2.82 – 1.30) 0.05 (-1.12 – 1.21) 
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Table A.8. AICc comparison for the mark-recapture models with quadratic terms. The reduced 

model has the best fit, but not significantly different from the model with the quadratic term for 

aggression.  

Model AICc ΔAICc K 

No quadratic terms for behavior 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response 

747.67 0.00 6 

Quadratic term for aggression 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response + Aggression^2 

749.44 1.77 7 

Quadratic term for activity 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response + Activity^2  

751.69 4.02 7 

Quadratic term for anti-predator response 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response + anti-predator response^2 

752.15 4.48 7 

Quadratic term for activity and aggression 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response + Activity^2 + Aggression^2  

753.21 5.54 8 

Quadratic term for aggression and anti-predator response 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response + Aggression^2 + anti-predator response^2 

753.71 6.04 8 

Quadratic term for activity and anti-predator response 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response + Activity^2 + anti-predator response^2 

756.11 8.44 8 

Quadratic term for all three behaviors 

~ Sex + Developmental stage + Mass + Activity + Aggression + Anti-

predator response + Activity^2 + Aggression^2 + anti-predator 

response^2 

757.33 9.66 9 
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Table A.9. Vector correlations (above the diagonal) and angles (below the diagonal) between the 

dominant eigen vector of the among- and within-individual covariance matrices and the selection 

gradient (β). 

 imax wmax β 

imax  0.36(0.00004 – 0.87) 0.01(0.0004 – 0.90) 

wmax 68.63˚(29.47˚ – 90.00˚)  0.18(0.009 – 0.94) 

β 89.23˚(26.50˚ – 89.97˚) 79.42˚(20.32˚ - 89.75˚)  
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