A Dissertation<br>Submitted to the Graduate Faculty of the<br>North Dakota State University<br>of Agriculture and Applied Science

## By

Niloy Saha

In Partial Fulfillment of the Requirements
for the Degree of DOCTOR OF PHILOSOPHY

Major Department:
Civil and Environmental Engineering

July 2021

Fargo, North Dakota

## North Dakota State University

Title
ESTIMATION OF THE CAPACITY OF A BASIC FREEWAY AND WEAVING SEGMENT UNDER TRADITIONAL, AUTONOMOUS, AND CONNECTED AUTONOMOUS VEHICLES, USING

OVERSATURATED TRAFFIC CONDITION DATA

| By |
| :--- |
| Niloy Saha |
| The Supervisory Committee certifies that this disquisition complies with North Dakota |
| State University's regulations and meets the accepted standards for the degree of |
| DOCTOR OF PHILOSOPHY |
| SUPERVISORY COMMITTEE: |
| Dr. Diomo Motuba |
| Chair |
| Dr. Ying Huang |
| Dr. Megan Orr |
| Dr. Stephanie S. Day |

## Approved:

$\frac{02 / 03 / 2022}{\text { Date }}$ Dr. Xuefeng Chu

Department Chair


#### Abstract

Autonomous vehicles (AVs) and connected autonomous vehicles (CAVs) will be the standard in transportation in the future. The use of such vehicles could minimize traffic oscillation and travel time and boost safety and mobility on freeways. An AV is a self-driving vehicle that can make decisions by itself in any situation. CAVs include all the characteristics of AVs and additional communication with other vehicles or the infrastructure (signal system). The use of AVs and CAVs will substantially increase motorway capacity in upcoming decades. Moreover, vehicle dynamics will change as technology and algorithms become more commonplace. In the short term, capacity may have a negative impact on talent; however, as the algorithms become more aggressive, the results will improve.

Highway Capacity Manual (HCM) may need to be updated if freeway system capacity changes. As a result, the manual should focus on enhancing two freeway segments: the fundamental freeway portion and the weaving part (case study on U.S. 101 in Los Angeles, California). A microsimulation program developed by the Planung Transport Verkehr (PTV) in Karlsruhe, Germany, was used to calibrate and evaluate Wiedemann's behavioral car-following model (CFM). The Coexist project from Europe created three types of autonomous cars: AVcautious, AV-normal, and AV all-knowing.


CFMs are vital because they measure the distance between vehicles. This is crucial for capacity. The capacity of AV cautious vehicles is decreased at all levels and penetrations. When AV-cautious autonomy evolves into AV all-knowing autonomy, the capacity of the weaving section and the BFS may rise by $33 \%$ and $36 \%$, respectively.

This study provides a method for evaluating the capacity of freeways, which we estimate using AV levels and penetrations. Transportation planners and traffic engineers may utilize these
capabilities to design better traffic planning and traffic-management technology in the future. For example, highway capacity will be restricted if the AV mix is largely AV-cautious. However, the solution is likely not to expand capacity but to find ways to manage traffic as new technology develops and moves to CAVs. This research aids in the planning and design of how to bring AVs and CAVs to market.

## ACKNOWLEDGMENTS

I want to thank my dissertation committee chair Diomo Motuba for helping me complete my dissertation with proper guidance. He showed me the path to complete the incomplete work. I would also like to thank other committee members Ying Huang, Megan Orr, and Stephanie S. Day for accepting the offer to be part of the dissertation committee and providing their expert opinion for this dissertation.

Furthermore, Dr. Amiy Varma helped me develop the model over the past several years. I want to express my gratitude for their continued faith in me and for guiding me to achieve my goal.

Moreover, I would like to thank the Department of Civil and Environmental Engineering for their technical and logistics support to pursue my study and achieve my degree.

## DEDICATION

I dedicate my dissertation to my beloved parents, wife, and parents-in-law. Without their sacrifice, this achievement would have been impossible.

## TABLE OF CONTENTS

ABSTRACT ..... iii
ACKNOWLEDGMENTS ..... v
DEDICATION ..... vi
LIST OF TABLES ..... xi
LIST OF FIGURES ..... xiii
LIST OF ABBREVIATIONS ..... xv
LIST OF APPENDIX TABLES ..... xvi
LIST OF APPENDIX FIGURES ..... xviii

1. INTRODUCTION ..... 1
1.1. Background ..... 1
1.2. AVs and CAVs ..... 4
1.3. Different Levels of AVs ..... 6
1.4. AV and CAV Future Market Penetration Projections ..... 7
1.5. State of Practice of Assessing Capacity for the BFS ..... 9
1.6. State of Practice of Assessing Capacity for the Weaving Segment ..... 11
1.7. Organization of Dissertation ..... 12
2. LITERATURE REVIEW ..... 13
2.1. Previous Studies on AVs' and CAVs' Capacity Impacts ..... 13
2.1.1. Mathematical Models ..... 14
2.1.2. Simulation-Based Models with Synthetic Data Literature ..... 15
2.1.3. Simulation-Based Model with Real-World Data Literature ..... 22
2.1.4. Calibration-Based Literature ..... 22
2.2. The CFM ..... 24
2.3. Problem Statement ..... 26
2.4. Research Objectives and Research Contributions ..... 29
2.5. Summary ..... 29
3. VISSIM MODEL SETUP AND DATA COLLECTION ..... 31
3.1. Introduction ..... 31
3.2. Wiedemann's CFM ..... 32
3.3. Lane-Changing Model ..... 35
3.4. Study Area Description ..... 36
3.5. Setting Up the VISSIM Model for the Study Area ..... 39
3.6. Traffic Demand ..... 41
3.7. Summary ..... 42
4. VISSIM MODEL CALIBRATION ..... 43
4.1. Introduction ..... 43
4.2. Wiedemann Car Following Model Behavioral (CC) Parameters Data Collection, Calibration, and Validation ..... 46
4.2.1. Calibration of the Basic Freeway Segment ..... 46
4.2.2. Base Model Validation for the Basic Freeway Segment ..... 57
4.3. Calibration and Validation of Wiedemann Car Following Model for the Base/ Traditional Vehicles at Weaving Section ..... 59
4.3.1. Calibration of Weaving Segment ..... 59
4.3.2. Calibration of Lane Changing Parameters ..... 60
4.3.3. Base Model Validation for Weaving Section ..... 64
4.4. Wiedemann Parameters for the AV Vehicles Classes / Simulations ..... 67
4.5. AV Vehicle Classes Mixed Scenario Penetration Levels Identification ..... 68
4.6. Other Simulation Settings ..... 69
4.7. Summary ..... 71
5. RESULTS AND DISCUSSION ..... 72
5.1. Base Model Capacities for Basic Freeway Segment ..... 72
5.2. Capacities for Single Class AVs at Different Levels of Penetrations and FFS for Basic Freeway Segment ..... 73
5.3. Capacities of Mixed Levels of AVs at Different Penetrations for Basic Freeway Segment. ..... 81
5.3.1. 25\%AV/CAVs and 75\% Traditional Vehicles Circa Year 2045 ..... 82
5.3.2. 35\% AV/CAVs and 65\% Traditional Circa Year 2050 with Mixed ..... 83
5.3.3. 50\% AV/CAVs and 50\% Traditional Circa Year 2055 with Mixed Levels of AVs/CAVs ..... 83
5.3.4. $60 \%$ AV/CAVs and 40 \% Traditional Vehicles Circa Year 2060 with Mixed Levels of AVs/CAVs ..... 84
5.3.5. $90 \%$ AV/CAVS and $10 \%$ Traditional with Mixed Levels of AVs/CAVS Circa Year 2070 ..... 85
5.3.6. 100\%AV/CAVS and 0\% Traditional with Mixed Levels of AVs/CAVS Circa Year 2080 ..... 86
5.4. Planning Horizon Capacity for Basic Freeway Segment ..... 87
5.5. Base Model Capacities for Weaving Segment ..... 89
5.6. Capacities for Single Class AVs at Different Levels of Penetrations and FFS for Weaving Segment. ..... 90
5.7. Capacities of Mixed Levels of AVs at Different Penetrations for Weaving Segment ..... 94
5.7.1. 25\%AV/CAVs and 75\% Traditional Vehicles Circa Year 2045 ..... 94
5.7.2. 35\%AV/CAVs and 65\% Traditional Vehicles Circa Year 2050 ..... 95
5.7.3. 50\%AV/CAVs and 50\% Traditional Vehicles Circa Year 2055 ..... 96
5.7.4. 60\% AV/CAVs and $40 \%$ Traditional Vehicles Circa Year 2060 ..... 96
5.7.5. 90\% AV/CAVs and 10\% Traditional Vehicles Circa Year 2070 ..... 97
5.7.6. 100\% AV/CAVs and 0\% Traditional Vehicles Circa Year 2080 ..... 97
5.8. Planning Horizon Capacity of Weaving Section ..... 98
6. CONCLUSIONS AND RECOMMENDATIONS ..... 101
6.1. Conclusions ..... 101
6.2. Recommendations to Potential Policy Changes ..... 104
6.3. Major Shortcomings and Future Studies ..... 104
REFERENCES ..... 106
APPENDIX A. DETAILS ABOUT NGSIM DATA. ..... 113
APPENDIX B. BASIC FREEWAY \& WEAVING SEGMENT ANALYSIS ..... 117
APPENDIX C. RESULTS AND DISCUSSION ..... 119

## LIST OF TABLES

Table Page

1. Automation Level of Autonomous Vehicles (AVs) ..... 4
2. Traffic Demand (Veh/hr) Input for Various Categories. ..... 42
3. Calibration Parameter Values for Traditional Vehicle ..... 52
4. Drivers Choice Speed Distribution Used in the Simulation ..... 53
5. Excel Output of Space Mean Speeds T-Test for BFS in Calibration ..... 57
6. Excel Output of Space Mean Speeds T-Test for BFS Validation ..... 59
7. Car Following Calibration Parameters Values for Weaving Section ..... 60
8. Lane Changing Calibration Parameters Values ..... 61
9. Drivers Choice Speed Distribution Used in Figure 14 ..... 62
10. Excel Output of Space Mean Speeds T-Test for Weaving in Calibration ..... 64
11. Excel Output of Space Mean Speeds T-Test for Weaving Segment Validation. ..... 66
12. Calibration Parameters Value for AV Classes (Coexist2.4, 2018) ..... 68
13. Simulation Setup Parameters Description and Value ..... 69
14. Speed Range and Distribution for Different FFS ..... 71
15. Parameter Estimates for the Fitted Cuboid Function for Different Speed Classes and AV-Cautious Penetration Levels for a Basic Freeway Section. ..... 78
16. Parameter Estimates for a, b, c, and d for Single Class AV-Normal/All-Knowing at Different Speeds for Basic Freeway Section ..... 80
17. Capacity Change in Mixed Scenario with 75\% Traditional Cars at Basic Freeway Segment ..... 82
18. Capacity Change in Mixed Scenario with 65\% Traditional Cars at Basic Freeway Segment ..... 83
19. Capacity Change for Mixed Scenarios with $50 \%$ Traditional Cars at Basic Freeway Segment ..... 84
20. Capacity Change for Mixed Scenarios with $60 \%$ AVs and $40 \%$ Traditional Cars for Basic Freeway Segment ..... 85
21. Capacity Change for Mixed Scenarios with $90 \%$ AVs and $10 \%$ Traditional Cars for Basic Freeway Segment ..... 85
22. Capacity Change in Percent for Mixed Scenarios with 0\% Traditional Cars at Basic Freeway Segment ..... 87
23. Parameter Estimates for the Fitted Cuboid Function for Different Speed Classes and AV Cautious, Av Normal, AV All-knowing Penetration Levels for a Weaving Section. ..... 94
24. Capacity Change in Percent at Mixed Scenario with 75\% Traditional Cars at Weaving Segment ..... 95
25. Capacity Change in Percent at Mixed Scenario with 65\% Traditional Cars at Weaving Segment ..... 95
26. Capacity Change in Percent at Mixed Scenario with 50\% Traditional Cars at Weaving Segment. ..... 96
27. Capacity Change in Percent at Mixed Scenario with $40 \%$ Traditional Cars at Weaving Segment ..... 97
28. Capacity Change in Percent at Mixed Scenario with $10 \%$ Traditional Cars at Weaving Segment. ..... 97
29. Capacity Change in Percent at Mixed Scenario with 0\% Traditional Cars at Weaving Segment. ..... 98

## LIST OF FIGURES

Figure Page

1. Schematic Diagram of Basic Freeway and Weaving Segments (Wei \& Wanjing, 2013) ..... 2
2. Speed vs. Flow Curve ..... 3
3. Autonomous Vehicle (AV) Sales, Fleet, and Travel Projections (Litman, 2021) ..... 9
4. Wiedemann's Car-Following Model (CFM; Higgs, Abbas, \& Median, 2011) ..... 32
5. Different Location of Leading Car and Following Car ..... 33
6. Lane-Changing Scenario (VISSIM, 2020) ..... 36
7. Schematic Diagram of US101 (Systematic, 2005) ..... 37
8. VISSIM Screenshot of US101 Location (a) and Data Collection Positions (b) ..... 40
9. Flow Chart of Methodology ..... 45
10. Spacing vs. Relative Velocity of Paired Vehicle (Manenni et al., 2008) ..... 50
11. Comparison of Observed Vs. Simulated Drivers' Choice Speed Distribution ..... 53
12. Speed Comparison for Calibration in Macro Level (a) and Micro Level (b) ..... 55
13. Comparison of Cumulative Speed Distribution Between Modeled and Observed Speeds ..... 56
14. Speed Comparison for Validation in Macro Level (a) and Micro Level (b) ..... 58
15. Third Segment Speed Distribution Matching with Selected Drivers' Choice Speed Distribution ..... 62
16. Speed Comparison for Calibration in Macro Level (A) and Micro Level (B) ..... 63
17. Speed Comparison for Validation in Macro Level (A) and Micro Level (B) ..... 66
18. Base Model Simulated Capacities Compared to Base HCM ..... 73
19. Capacity Impacts of Single AV Class at 55 mph and Different Penetration Levels ..... 74
20. Capacity Impacts of Single AV Class at 60 mph and Different Penetration Levels ..... 75
21. Capacity Impacts of Single AV Class at 65 mph and Different Penetration Levels ..... 75
22. Capacity Impacts of Single AV Class at 70 mph and Different Penetration Levels ..... 76
23. Planning Horizon Capacities for 55MPH Roadway ..... 87
24. Planning Horizon Capacities for 60MPH Roadway ..... 88
25. Planning Horizon Capacities for 65MPH Roadway ..... 88
26. Planning Horizon Capacities for 70MPH Roadway ..... 89
27. Capacity Value Comparison between HCM And Simulation Output for Weaving Section ..... 90
28. Capacity Changes for AV All-Knowing for 55 mph FFS and Compared to Traditional Vehicles in Weaving Section ..... 91
29. Capacity Changes for AV All-Knowing for 60 mph FFS and Compared to Traditional Vehicles in Weaving Section ..... 92
30. Capacity Changes for AV All-Knowing for 65 mph FFS and Compared to Traditional Vehicles in Weaving Section ..... 92
31. Capacity Changes for AV All-Knowing for 70 mph FFS and Compared to Traditional Cars in Weaving Section. ..... 93
32. Planning Horizon Capacities for 55MPH Roadway ..... 99
33. Planning Horizon Capacities for 60MPH Roadway ..... 99
34. Planning Horizon Capacities for 65MPH Roadway ..... 100
35. Planning Horizon Capacities for 70MPH Roadway ..... 100

## LIST OF ABBREVIATIONS

AV .........................................................Autonomous Vehicle
CAV ......................................................Connected Autonomous Vehicle
NGSIM ...................................................Next-Generation Simulation
BFS........................................................Basic Freeway Segment
CFM ........................................................Car-Following Model
ACC...........................................................Adaptive Cruise Control
CC ..............................................................Calibration Component
FFS .................................................................Free-Flow Speed
OPDV ...........................................................Opening Velocity Difference
CLDV ...........................................................Closing Velocity Difference
HGV ............................................................. Heavy Goods Vehicle
SMS........................................................... Space Mean Speed

## LIST OF APPENDIX TABLES

Table Page
A.1. Aggregate Results Summary for the Entire Section (1st 15minutes) ..... 114
A.2. Aggregate Flow and Speed for Each Lane (1st 15minutes) ..... 114
A.3. Aggregate Results Summary for the Entire Section (2nd 15 minutes) ..... 115
A.4. Aggregate Flow and Speed for Each Lane (2nd 15 minutes) ..... 116
B.1. CC Parameters with Range for Basic Freeway Segment ..... 118
B.2. CC Parameters with Range for Weaving Segment ..... 118
C.1. Capacity and Standard Error of Basic Freeway Segment in the Base Case ..... 119
C.2. Capacity and Standard Error for Single Class AV (Cautious) at Basic Freeway Segment ..... 119
C.3. Capacity and Standard Error for Single Class AV (Normal) at Basic Freeway Segment ..... 119
C.4. Capacity and Standard Error for Single Class AV (Aggressive) at Basic Freeway Segment ..... 119
C.5. Capacity Value and Standard Error of Mixed Traffic Scenario with $25 \%$ AV at Basic Freeway Segment ..... 120
C.6. Capacity Value and Standard Error of Mixed Traffic Scenario with 65\% Av at Basic Freeway Segment ..... 120
C.7. Capacity Value and Standard Error of Mixed Traffic Scenario with 50\% AV at Basic Freeway Segment ..... 120
C.8. Capacity Value and Standard Error of Mixed Traffic Scenario with $60 \%$ AV at Basic Freeway Segment ..... 120
C.9. Capacity Value and Standard Error of Mixed Traffic Scenario with 90\% AV at Basic Freeway Segment ..... 121
C.10. Capacity Value and Standard Error of Mixed Traffic Scenario with $100 \%$ AV at Basic Freeway Segment ..... 121
C.11. Base Case Weaving Capacity Value with Standard Error at Weaving Segment ..... 121
C.12. Capacity Value and Standard Error of Single Class AV (Cautious) at Weaving Segment ..... 121
C.13. Capacity Value and Standard Error of Single Class AV (Normal) at Weaving Segment ..... 122
C.14. Capacity Value and Standard Error of Single Class AV (All-Knowing) at Weaving Segment ..... 122
C.15. Capacity Value and Standard Error of Mixed Traffic Scenario with 25\% AV at Weaving Segment. ..... 122
C.16. Capacity Value and Standard Error of Mixed Traffic Scenario with 35\% AV at Weaving Segment. ..... 122
C.17. Capacity Value and Standard Error of Mixed Traffic Scenario with 50\% AV at Weaving Segment ..... 123
C.18. Capacity Value and Standard Error of Mixed Traffic Scenario with $60 \%$ AV at Weaving Segment. ..... 123
C.19. Capacity Value and Standard Error of Mixed Traffic Scenario with $90 \%$ AV at Weaving Segment. ..... 123
C.20. Capacity Value and Standard Error of Mixed Traffic Scenario with 100\% AV at Weaving Segment. ..... 123

## LIST OF APPENDIX FIGURES

Figure ..... Page
A.1. Time Mean Speed and Space Mean Speed by Travel Period (1 ${ }^{\text {st }} 15$ minutes) ..... 113
A.2. Flow by Lane at Study Location ( $1^{\text {st }} 15$ minutes) ..... 113
A.3. Speed by Lane at Study Area ( $1^{\text {st }} 15$ minutes) ..... 113
A.4. Time Means Speed and Space Mean Speed by Period (2 $2^{\text {nd }} 15$ minutes) ..... 114
A.5. Flow by Lane of the Study Section ( $2^{\text {nd }} 15$ minutes) ..... 115
A.6. Speed by Lane at Study Section (2 ${ }^{\text {nd }} 15$ minutes) ..... 115
A.7. Snapshot of NGSIM Data Table from 7.55 am to 8.05 am ..... 116

## 1. INTRODUCTION

### 1.1. Background

The definition of roadway capacity is the maximum durable flow rate at which vehicles can reasonably be expected to travel a point or uniform section of a lane or road in prevailing physical, environmental, traffic, and control conditions over a particular period (Highway Capacity Manual, 2010). This definition of capacity was developed in a standard shape based on discussion and research that began in 1950 to answer the following questions (Roess \& Prasssas, Uninterrupted Flow, 2014):

1. In what units should the capacity be measured?
2. Over what period should the capacity be measured?
3. How should the characteristics of the highway be defined, and what attributes of the highway will affect the value of capacity?
4. What operating characteristics define the occurrence of capacity?
5. How should capacity be measured?

Based on the answers, the unit of capacity is the number of vehicles per hour, measured on a saturated section of road that sustains this condition for at least 15 minutes. The original measurement came from the speed vs. flow graph by Greenshields (Greenshields, 1935), where the optimum flow is the capacity. However, the capacity definition has been upgraded and is currently suitable for a $2,400 \mathrm{hr} /$ lane ( $\ln$ ) deterministic value. Some base conditions, such as no heavy vehicles; the driver population, composed primarily of regular users familiar with the facility; and a minimum lane width of $12 \mathrm{ft}(\mathrm{HCM}, 2010)$, have also been included in the definition. The Highway Capacity Manual (HCM) sets the capacity value for free flow at 55, 60, 65 , and $70-75 \mathrm{mph}$.

A freeway consists of basic freeway, weaving, merging, and diverging segments. The basic freeway segment (BFS) is the part of the freeway where traffic flows longitudinally with or without lane changing, following the speed-flow relationship; in Figure 1, Lanes 1, 2, 3, and 4 are BFSs. A weaving section forms when a diverging ramp closely follows a merging ramp. In this segment, the vehicle moves from ramp to freeway and freeway to ramp. In Figure 1, weaving is occurring in Lanes 3, 4, 5, and 6, and the vehicles in those lanes are referred to as weaving vehicles, while the others are called non-weaving vehicles. As a result, the ratio of weaving to non-weaving vehicles plays a significant role in weaving flow. Moreover, the length of the weaving section affects assessing capacity.


Figure 1. Schematic Diagram of Basic Freeway and Weaving Segments (Wei \& Wanjing, 2013)
In the transportation planning, construction, and traffic operation of roads, road and highway capacity is crucial for the safe and efficient movement of goods and people. It determines the maximum throughput of traffic between any two points and hence the efficiency of the transport system. The ability of traffic analysts to forecast where and when congestion will occur, how long it will last, and how much capacity is required in bottlenecks is beneficial for this purpose. Therefore, it is essential to identify capacity precisely for measurement and use in modeling and decision making. An unsaturated or uncongested traffic condition (Figure 2)
describes a high traffic flow state and a vehicle speed that is closely around or over posted speed limit. As traffic flow increases, the speed will decrease. At saturation, the traffic speed will be half the design speed, while the flow will be higher. This is the capacity of the saturated section of road. In oversaturated or congested conditions, both traffic flow and speed will reduce. An oversaturated condition is a state of flow where demand is higher than the capacity of the road section. For example, the capacity of a road is 2,400 vehicles (veh)/hr/ln where demand is more than 2,400. Traffic flow will ultimately decrease over time and speed, and it might be zero at one point.


Figure 2. Speed vs. Flow Curve
In recent years, independent vehicles and connected autonomous vehicles (CAVs) have received much interest and attention among researchers worldwide. Autonomous vehicles (AVs) and CAVs are poised to change the way households and individuals own, drive, and operate their vehicles and how the transportation system performs and responds to traffic. The introduction of these vehicles will reduce vehicle headway and reaction time, thereby helping to increase road capacity (Makridis, Mattas, Ciuffo, \& Thiel, 2018) and potentially improving traffic safety, as communication systems between vehicles will reduce collision probabilities (Arvin et al., 2018;

Li et al., 2018; Mittal, 2018). Moreover, the capacities of roadway facilities will potentially change; that is, more or fewer cars will be able to use existing roadways with the introduction of AVs and CAVs.

### 1.2. AVs and CAVs

AVs can drive themselves from Point A to Point B, with driver input ranging from slight to no information depending on the technology. CAVs communicate with the traffic system and other vehicles in the traffic stream. The National Highway Traffic Safety Administration (NHTSA) defines six types of AVs and numbers them from zero to five (NHTSA, 2020).

Table 1. Automation Level of Autonomous Vehicles (AVs)

| Level of Automation | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NHTSA | No automation | Functionspecific automation | Combined function automation, for example steering and acceleration at the same time. | Limited selfdriving automation. The driver can safely engage in other activities. | Full selfdriving automation. The car can drive itself without a human driver. | - |
| SAE | No automation (existing equipment such as cruise control) | Driver assistance (existing equipment such as adaptive cruise control) | Partial automation (vehicle can control speed and steering, but the driver should be alert) | Conditional automation (more advanced than previous levels, but the driver should still be alert) | High automation (automated vehicles are capable of driving in all conditions, and the driver does not need to be alert) | Full automation |

Level 0 means that there is no automation; the driver performs all driving tasks. At Level 1, the driver has some features that assist them while driving, but the vehicle is under the driver's control. Level 2 includes partial automation; that is, the vehicle has combined automation such as acceleration and steering, but the driver still takes care of all other driving tasks and monitors the environment. Level 3 denotes conditional automation; that is, a driver is necessary but not
required to observe the environment. However, the driver should be ready to take control of the vehicle at any time. A Level-4 vehicle has a high level of automation; it can perform under specific conditions, but there must be a driver, who may have the option to take control of the vehicle. Level 5 denotes full automation; that is, the vehicle can perform all driving functions in all conditions.

Furthermore, the Institute of Transportation Engineers (ITE) defines CAVs as vehicles with automation and vehicle-to-vehicle (V2V) connectivity, vehicle-to-infrastructure (V2I) connectivity, or vehicle-to-everything contact (e.g., via mobile, tablet, or other device) through 5G or Dedicated Short Range Communication (ITE, 2021). First, V2V communication is important for, inter alia, understanding the movement of surrounding vehicles during merging, diverging, lane changing, and turning from an intersection. Second, V2I connectivity is essential to reduce delays in an intersection. The vehicle will communicate with a roadside unit that collects all incoming traffic and shares it with vehicles that cross the intersection. Infrastructure also shares signal timing so that drivers can react early to start driving during a traffic light change from red to green, which helps to reduce initial lost time in green. Third, a pedestrian crossing is essential in the intersection area, and this crossing maneuver can be safer using vehicle-to-everything technology. Pedestrians or bikers will receive left- or right-turning vehicles' information through their tablet or mobile, and vice versa, while crossing the road. This will increase non-vehicular movement safety in specific locations where sight distance alone is insufficient.

AVs will potentially improve road capacities through four primary interventions: a reduction in headway between vehicles, the provision of cars that are more responsive to traffic changes, a faster response to changing traffic conditions, and a steadier flow than is possible with
traditional cars. The general implication is that current roadways will carry more AVs and CAVs than conventional cars today. However, the definitions provided by the NHTSA and the SAE are broad and do not identify how these vehicles will react to traffic conditions (e.g., how aggressive will the cars be when following other vehicles in traffic?). AVs and CAVs will more greatly reduce the speed and time gaps between vehicles in a traffic stream compared to traditional vehicles today. It is conceivable that when AVs and CAVs are first introduced, the technologies will be less aggressive due to regulations, public trust issues, and a lack of data. The European Union-funded project Coexist (Coexist, 2018) has attempted to define the different levels of aggressiveness in AVs and CAVS, as discussed in Section 1.3.

### 1.3. Different Levels of AVs

The European Union-funded Coexist project describes three levels of AV classes: AVcautious, AV-normal, and AV all-knowing (Coexist, 2018). An AV-normal vehicle behaves like a human driver with the additional capability of measuring the distances and speeds of surrounding vehicles with its range of sensors. In contrast, the cautious driving logic accurately calculates gaps and only merges when gaps are acceptable, and the vehicle slows down when its sensors face blind angles, thus avoiding any surprises. This logic does not require specific devices for vehicle communication and cooperation. In the AV all-knowing class, the vehicle is assumed to have a complete understanding and analysis of environments and other road users’ behavior, thereby leading mainly to smaller gaps for all maneuvers and situations. This type of driving logic requires devices for vehicle communication. If the devices fail, the logic may fall back to a cautious driving logic. With additional communication devices and control logic, the driving logic enables cooperation with other CAVs (Coexist1.4, 2018). Therefore, in this analysis, the AV all-knowing vehicle type is what the literature describes as a CAV. The
algorithm in AVs and CAVs as well as the vehicles' penetration levels will potentially have an impact on roadway capacities. For example, if there are only AV-cautious vehicles, which is a likely scenario in the introductory phases of AVs and CAVs, they will potentially negatively impact capacities because their algorithms will provide more significant gaps to cars in front of them than traditional cars, hence reducing the throughput of roadways. Moreover, market penetration influences capacity changes. Penetration projection is discussed in Section 1.4.

### 1.4. AV and CAV Future Market Penetration Projections

In terms of penetration levels, the adoption of AVs and CAVs will not be deterministic.
Roadways worldwide will potentially see different ratios of AVs and CAVs to traditional vehicles. In this dissertation, traditional vehicles is defined as vehicles that exist, for the most part, today and require the full attention of the driver from a trip's start to finish. A review of different car manufacturing companies indicates that manufacturer has different timelines for having fully automated vehicles or CAVs.

On the one hand, Daimler aims to produce Level 4 AVs with Bossch, Uber, and NVIDIA. Moreover, Toyota has unveiled the new Lexus LS, and Toyota Mirai-a Level 2 autonomous car-will be released in Japan and the USA in the coming fall (Raynal, 2021). On the other hand, Honda launched a world-first Level 3 AV in March 2021, 100 cars in the amount initially in Japan (Sugiura, 2021).

There is much interest in AVs in the literature, even if they are not currently accessible on the market. Studies (e.g., Arbib et al., 2017; Milakis et al., 2017) are presently being conducted to predict the market penetration of AVs and connectivity in the short and long term (i.e., 2030 and 2050, respectively) based on social, economic, and technological factors. The timeline for the penetration levels of AVs and CAVs is uncertain, and a few studies have
attempted to estimate this penetration. One study estimates that AVs will likely take longer than other vehicle technologies to become accepted due to their complexity and cost (Lavasani, Jin, \& Du, 2016). Another study that estimated the penetration of AVs and CAVs suggests that it will be at least 2045 before half of the new vehicles are autonomous, and 2060 before half of the vehicle fleets become autonomous (Litman, 2021). Figure 3 shows AVs' and CAVs' market penetration predictions, the amount of travel that will use AVs and CAVs, and the fleet projections over the next 60 years (Litman, 2021). First, the sales trajectory indicates the projected percentage of all new AVs and CAVs for high and low scenarios. According to the high scenario, AV and CAV sales will reach $60 \%$ of total sales by 2050. Second, the fleet travel trajectory estimates the amount of travel using AVs and CAVs as a percentage of full vehicle travel for high and low scenarios. Sixty percent of all travel by AVs and CAVs will be achieved a decade after new vehicle sales. This is because older, traditional vehicle fleets will still be in operation. The fleets graph (Figure 3) depicts the AVs and CAVs as a percentage of the total vehicle population. AVs and CAVs will achieve a $60 \%$ complete fleet penetration almost two decades after achieving a $60 \%$ penetration in new vehicle sales. Fleet turnover plays a significant role in the overall penetration percentages for AVs and CAVs.


Figure 3. Autonomous Vehicle (AV) Sales, Fleet, and Travel Projections (Litman, 2021)
This mixture (coexist of traditional and autonomous) implies that current generation may not be witness the full capacity benefits of AVs and CAVs until they reach critical mass in the vehicle population. The effect is that transportation capacities will become fluid and change as AVs and CAVs in the general vehicle population change. For example, according to Figure 3, the benefits of such vehicles may only be realized after 2050. Since the planning horizon for most long-range transportation plans is 30 years, it is possible that these full benefits will not materialize within the current long-range transportation plan horizons in the US. Long-range transportation plans are plans that extend 30 years from the base years. On the contrary, there may be more minimum benefits or potentially harmful impacts on capacity. It is thus essential to correctly quantify the benefits of AV and CAVs in terms of capacities to make optimal transportation planning decisions. These decisions require significant time and financial investments.

### 1.5. State of Practice of Assessing Capacity for the BFS

It has been mentioned before that the BFS capacity value according to the HCM is 2,400 veh/hr at 70-75 mph. Apart from the HCM, other researchers have also developed methods to
assess capacity, such as the headway model, the fundamental diagram, extreme value, and the breakdown method. The headway model assumes that driver components can be divided into drivers (followers) and drivers (leaders) in any traffic stream. This model can be generalized by the queuing model (Branston, 1976) and the semi-poisson model (Buckley, 1968). The distribution of control pathways at the road capacity level is expected to be the same as it would be in any safe traffic flow for restricted vehicles. Therefore, capacity $=3,600 /$ headway. The fundamental diagram process proposed by Greenshields in 1938 is based on a relationship between flow and speed.

Nonetheless, the results of the method are based on the curve chosen for analysis. Therefore, adequate data over a wide variety of flow levels must be obtained to allow for accurate curve adaptation (Brilon et al., 2011; Ambuhl et al., 2018). Extreme value is another common type of potential assessment approach that calculates the capacity of the road when the flow reaches a vital point or flattens the flow over the total observation time (Dong et al., 2015). It also assumes that road capacity equals the selected traffic flow maxima overserved during the entire observation period.

Elefteriadou et al. (1995) demonstrated that a breakdown of traffic might be an excellent choice to measure capacity. The breakdown is defined as the point in the speed profile under which traffic speed is stained for a specific time. The breakdown speed threshold is time- and location-dependent. If the threshold is sustained for a particular time, traffic volume during breakdown speed will be the capacity value (Li et al., 2015; Lorenz et al., 2011). Aside from breakdown theory, microsimulation is a popular method for capacity assessment.

### 1.6. State of Practice of Assessing Capacity for the Weaving Segment

The HCM 2010 defined the capacity equation based on density and demand. The capacity of the weaving segment based on the density reaching $43 \mathrm{pc} / \mathrm{hr} / \mathrm{ln}$ is estimated as follows:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{IWL}}=\mathrm{C}_{\mathrm{IFL}}-\left[438.2(1+\mathrm{VR})^{1.6}\right]+\left[0.0765 \mathrm{~L}_{\mathrm{s}}\right]+\left[119.8 \mathrm{~N}_{\mathrm{wl}}\right], \tag{1.1}
\end{equation*}
$$

where,
$\mathrm{C}_{\mathrm{IWL}}=$ capacity of the weaving segment under ideal conditions ( $\mathrm{pc} / \mathrm{hr} / \mathrm{ln}$ );
$\mathrm{C}_{\mathrm{IFL}}=$ capacity of the basic freeway with the same free-flow speed (FFS [pc/hr/ln]);
$\mathrm{V}_{\mathrm{R}}=$ volume ratio (weaving flow rate/ total flow rate);
$\mathrm{O}_{\mathrm{wl}}=$ number of lanes from which a weaving maneuver may be made; and
$\mathrm{Ls}=$ length of the weaving segment.
The value of CIWL is converted into the total capacity of the segment using Equation 3.2:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{w}}=\mathrm{C}_{\mathrm{IWL}} * \mathrm{~N} * \mathrm{f}_{\mathrm{HV}} * \mathrm{f}_{\mathrm{P}}, \tag{1.2}
\end{equation*}
$$

where
$\mathrm{N}=$ number of lanes within the weaving section;
$\mathrm{f}_{\mathrm{HV}}=$ adjustment factor of heavy vehicle; and
$\mathrm{P}_{\mathrm{HP}}=$ adjustment factor for driver population.
The capacities of the weaving segment based on-demand flows are as follows:

$$
\begin{align*}
& \mathrm{C}_{\mathrm{IW}}=2,400 / \mathrm{VR} \text { for } \mathrm{N}_{\mathrm{wL}}=2 \text { lanes }  \tag{1.3}\\
& \mathrm{C}_{\mathrm{IW}}=3,500 / \mathrm{VR} \text { for } \mathrm{N}_{\mathrm{WL}}=3 \text { lanes } \tag{1.4}
\end{align*}
$$

where $\mathrm{C}_{\text {IW }}$ is the capacity of all lanes in the weaving segment under ideal conditions and is converted into prevailing conditions by using

$$
\begin{equation*}
\mathrm{C}_{\mathrm{w}}=\mathrm{C}_{\mathrm{IWL}} * \mathrm{~N} * \mathrm{f}_{\mathrm{HV}} * \mathrm{f}_{\mathrm{p} .} \tag{1.5}
\end{equation*}
$$

The HCM is commonly used in USA for evaluating the capacity of the sample observed.
After processing the observed data, the capacity value of weaving segments is determined using
a density equation. However, for mixed situation assessment, we employ a process of microsimulation in this study. Microscopic simulation models usually represent each car in a traffic network. The variables in these models typically include the microscopic properties of each car, such as driver behavior, car characteristics, and road conditions. Microsimulation models use time or car models that simulate how cars work in the real world. Many models, including the optimum speed model, the intelligent driver model, the Gipps model, the speed gap model, and the Wiedemann model, are used in various applications.

### 1.7. Organization of Dissertation

The rest of this dissertation is organized as follows. First, the literature review examines previous studies on the impacts of AVs and CAVs, the problem statement, the research contribution, Wiedemann's car-following model (CFM), and the lane-changing model are described thereafter. The subsequent data and methodology chapter details the study section, data parameters, calibration, and validation process. Then, the results and discussion chapter discuss the capacity measurements of the base case scenarios, compares them with single class AVs, and presents the percentage changes in mixed case environments. The final chapter includes a conclusion and discussion of the results and recommended future work.

## 2. LITERATURE REVIEW

In this chapter, we briefly describe previous studies, including how mathematical models or simulation-based models have framed AVs' capacity change, and we identify contemporary research gaps. Thereafter, we explore the state of the art in BFS and weaving segment capacity assessment processes. In this dissertation, the simulation software VISSIM is utilized to create the simulation environment. VISSIM includes Wiedemann's CFM and lane-changing model. These two models are discussed after the state of practice.

### 2.1. Previous Studies on AVs' and CAVs' Capacity Impacts

$A V s$ and CAVs are projected to enhance highway traffic efficiency, safety, and the environment on the road by detecting, sharing, and applying appropriate control measures. They all stem from CAVs' potential to increase highway traffic capacity by minimizing the distance between cars through communication and automated control technology (Ghiasi, Ma, Zhou, \& Li, 2017; Li \& Ghiasi, 2017; Kamrani, Wali, \& Khattak, 2017). Before starting a new assessment on this topics (impact on capacity), it is necessary to discuss previous research related to capacity assessment on the freeway. In the literature, there are three main frameworks to evaluate and simulate the impacts of AVs and CAVs on capacity assessment: mathematical formulations, simulation methods using simulated data, and real-world data. First, mathematical formulations involve proposing a new equation or modifying a previous equation to measure mixed scenario capacity assessment. Second, the simulation method entails creating a scenario in a simulation environment to produce synthetic data and calculate capacity from those data. Third, real-world data can be employed to assess capacity using a simulation environment. Data are utilized to establish calibration parameters and simulation to determine capacity. Related previous studies are detailed in the following sections (2.1.1-2.1.4).

### 2.1.1. Mathematical Models

Ni et al. (2012) proposed a framework for analyzing the advantage of highway capacity impact using connected vehicles. To do this, the authors formulated the model based on a rough approximation of the resulting capacity increase, which incorporated the effects of related vehicle technologies on cars following. The authors carried out a simulation analysis to check the model, and, based on an illustrative example, their methods yielded gains ranging from $20 \%$ to $50 \%$. Their study offered policymakers and stakeholders a fundamental tool for understanding the accessibility benefits derived from connected vehicle technologies and how those benefits vary with changes in consumer penetration.

Similarly, Friedrich (2016) used a mathematical equation to demonstrate that lower headway and higher penetration levels would raise capacity up to $36 \%$. The author also noted that time headway would change based on the vehicle groups of leader and follower, contributing to the capacity improvement. The author's macroscopic models of traffic flow demonstrate that AVs will, in theory, lead to substantial improvement of capacity and make the current transport system more functional. In particular, two aspects contribute to capacity building. The first aspect is the shortening of headways between vehicles. In this sense, it is vital to retain driving comfort while anticipating the activities of the preceding cars, which allows for less acceleration and deceleration during short time gaps. Second, the speed of the vehicle category is critical in addition to the length of the time delay-the greater the speed, the more significant the traffic volume over a cross-section at a constant density. However, high speed rates can be achieved in solely autonomous traffic while sustaining traffic density.

Shi et al. (2016) modified capacity, maximum service rate, and density to account for CAVs in their studies. By maintaining shorter headways, CAVs significantly influence traffic
efficiency during crowded situations compared to uncongested conditions. While performing Monte Carlo simulations inside the traffic stream, the authors conceived a theoretical maximum capacity of $7,200 \mathrm{veh} / \mathrm{hr} / \mathrm{ln}$ and determined that the capacity increase was minimal if the CAV's headway was equivalent to that of a driver. The quality of traffic flow was unlikely to improve if CAV shares were below $2 \%$.

Chen et al. (2016) established a mathematical framework that defined the effectiveness of the transport network's optimization, the period to be implemented, and the number of AV lanes. The authors found growth in AVs' capacities in the AV-exclusive lane with a shorter headway, which was assumed, but they did not recognize the effect of AVs' existence on traffic flows in terms of capacity. Furthermore, their study was not carried out for mixed traffic situations.

The mathematical formulations present a first step in the evaluation of the impacts of AVs and CAVs. These models must be validated against real-world data to assess their effectiveness, which has not been done in this type of research to date.

### 2.1.2. Simulation-Based Models with Synthetic Data Literature

Using a simulation environment and synthetic data, numerous studies were conducted to assess freeway capacity. Theophilus et al. (2017) examined the freeway capacity using $100 \%$ CAVs by changing the headway value and the demand flow rate in VISSIM. The output revealed capacity increments from $0.46 \%$ to $16.54 \%$. The research limitations were as follows: the study considered a single type of vehicle, did not consider heavy vehicles, and avoided mixed traffic scenarios. Furthermore, Tientrakool et al. (2011) investigated capacity benefits using sensors and V2V communication. The authors simulated a vehicle in the network, and their findings indicated that the average inter-vehicle safety is lowered by both sensors and V 2 V contact, thus increasing road capacity. However, sensors and V2V communication do have a significantly
higher percentage of capcity than sensors alone. The highway capacity of each car is approximately 3.7 times the capacity of all manual vehicles at a speed of $100 \mathrm{~km} / \mathrm{h}$, where all vehicles have all sensors and communicators. In comparison, the total capacity of all cars is just 1.4 times the capacity of all sensors. In combination with connectivity, as a limited portion of vehicles on a highway are built and used, road capacity is slowly enhanced, followed by traffic volume due to increasingly rapid improvements.

Hartmann et al. (2017) conducted a study to determine the influence of AVs on the German motorway network, using microscopic traffic flow modeling. This study shows that vehicle automation considerably affects capacity when an AV is driving behavior, mainly longitudinal behavior, and their penetration rate is considered. Low penetration rates do not yield significant changes in roadway capacity, but as penetration rates rise, the potential advantages will emerge. Roadway capacity also decreases due to the cautious driving style of AVs. Research suggests that once AVs' headways drop below present restrictions, that they can be used to their full potential (up to a $30 \%$ increase in highway capacity), and road infrastructure can be better utilized. This study also found that vehicle automation can boost basic road segment capacity by $45 \%$. The capacity impact of heavy lane changes is substantial, and vehicle cooperation is essential. Partially automated vehicles and highly automated vehicles consequently have a detrimental influence on these locations. Even in the best-case scenario, connected AVs maintain short headways that are inadequate for lane changes. Therefore, the capacity gain is restricted in these locations.

In a study to distinguish between the impacts of connectivity and automation, Talebpour et al. (2016) presented an analytic and simulation-based framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct
communication capabilities. According to the results, the traffic equilibrium string could be improved by CAVs and AVs. Automation is perhaps more efficient than networking alone to avoid creating and disseminating shockwaves, as proven by simulation results. In comparison, the ability of automation grows almost linearly as sensors are used alone and the number of vehicles installed increases. The simulation findings also revealed that oscillation and collision thresholds increase with a decrease in platoon size or market permeation. In terms of capacity assessment, the authors concluded that AVs provided a higher capacity value than CAVs at a similar penetration rate.

An adaptive cruise control (ACC) system enables a vehicle to slow down when driving behind another vehicle traveling at a lower speed and to speed up to a preset speed when the lead driver accelerates. The predetermined parameters of an ACC scheme are, in theory, the time difference in the lead vehicle and the required vehicle speed. Vehicles equipped with cooperative adaptive cruise control (CACC) may share traffic information through car networks or wireless technologies that allow communication between these vehicles. The influence of automation at a broad perspective and strategic level has also been estimated using macroscopic simulation models. In 2013, Ngoduy (2013) simulated ACC and CACC using a single macroscopic model. For a given model parameter set, the authors created stability diagrams using the linear and nonlinear stability methods. Analytical results suggest that CACC cars stabilize traffic flow better than ACC vehicles under both small and large disturbances. To back up analytical conclusions, the researchers utilized numerical simulations and demonstrated analytically and numerically that the CACC system's dynamic equilibrium capacity is superior to that of the ACC system. However, the limitations of their research were the use of synthetic data, which are based on assumption.

Previous research has found that CACC systems represent the further evolution of ACC technology that has enabled the exchange of information between vehicles designed to be more precise and quicker in real time. Arem and colleagues proposed the use of a cooperative following paradigm that combines automated longitudinal control with intervehicle communication (Arem, Tampere, \& Malone, 2003; Arem, Driel, \& Visser, 2006). The traffic flow simulation model MIXIC was used to examine the influence of intelligent vehicles on traffic flow. The authors considered an example of a roadway merging from four lanes into three lanes. Compared to the merging situation without equipped vehicles, data revealed an improvement in traffic flow stability and a minor increase in traffic flow efficiency. The findings of the study have improved the current understanding of the effects of CACC on traffic flow. The idea that CACC can significantly boost roadway capacity has been debunked to some extent. This study was based on simulations only, where real-world observed data and a realistic congestion scenario were missing for performance analysis.

A CACC controller was studied to determine whether the wireless connection had any influence on its performance. The results demonstrate that CACC should be included in a networked control system (NCS; Oncu, Wouw, \& Nijmeijer, 2011). Limited bandwidth; several nodes sharing the same media; and other limitations, such as transmission delays and losses, contribute to network-induced flaws in an NCS. Constraints imposed by the networks necessitate a tradeoff between CACC performance and network specifications. Sample-and-hold and network delays due to wireless communication are included in this paper's NCS modeling framework to check the string stability. However, the study was not carried out further for capacity assessment. VanderWerf et al. (2001) created not only an overview for introducing ACC and CACC with their effects but also a mathematical model for both types of cruise control
to ensure that ACC systems are implemented such that they improve rather than degrade traffic conditions. To better understand traffic dynamics and capacity, the authors developed a new type of simulation model that includes the crucial features of driver behavior and control system design, which were previously unavailable. After a year, the researchers utilized these models to simulate the three classes of cars and to predict the highway capacity for possible combinations of market penetration of automatic and manual automobiles (Werf, Shladover, Miller, \& Kourjanskaia, 2002). The authors employed real-time speed, acceleration, and ACC status information sent between vehicles that were similarly equipped to create a CACC system. Due to its more minor headway ( 0.5 s ), it was believed that the driver would not have to intervene. The drawback of this study was that it did not assess capacity in mixed traffic situations, which will govern the next few decades on the road.

Delisi et al. (2015) investigated the impact of ACC and CACC in a traffic flow study. The second-order GKT model was used as the base model for modeling the effects of ACC and CACC vehicles on dynamic circulation as defined by both approaches. The model describes variations in speed-density dynamics in the context of a so-called balance-speed-density relationship. The numeric solution of the resulting models by developing a high-resolution finitevolume relaxation scheme is essential in the simulation process. The study concluded that CACC provided better stabilization and capacity improvement than ACC. The local capacity in front of a ramp can be automatically increased and moved to other bottlenecks, thus improving traffic operations.

According to existing research, CAV market penetration has also been identified as a significant highway capacity for mixed traffic. There is a considerable rise in roadway capacity with a higher market penetration (Kesting, Treiber, Schönhof, \& Helbing, 2017). If inter-vehicle
and infrastructure-to-car communication are used, the accuracy of traffic state determination can be improved. Using empirical loop-detector data for an afternoon rush hour as input for the upstream boundary, the authors simulated the full concept on a road stretch with an on-ramp bottleneck. Traffic stability and dynamic road capacity were improved by the ACC vehicles, according to the findings. Ntousakis, K.Nikolos, and Papageorgiou (2015) also attempted a traffic performance analysis study based on various penetration rates of ACC in Aimsun software using ACC-equipped vehicles, varied desired time gaps, and various networks to evaluate their impact on traffic flow characteristics. Moreover, Arnaout and Arnaout (2014) applied an agent-based microscopic traffic simulation model (flexible agent-based simulator of traffic) to study the influence of intelligent vehicles on traffic flow. As they studied the model's lifecycle, they considered metrics such as the flow rate of cars, travel time, and other indicators of traffic congestion. Various amounts of CACC penetration were analyzed, and findings revealed that traffic flow and capacity were better in the CACC-embedded vehicle scenario compared to the scenario without CACC-embedded vehicles. Based on market penetration and the maximum number of cars per platoon, Bujanovic et al. (2018) created an analytical model to forecast the capacity of highway segments. Technologies such as ACC and CACC made platooning possible. The authors built a decision process for a vehicle, to determine the speed it should maintain. There are two possible modes for platoon leaders: CACC mode and ACC mode. CACC vehicles obtain information from their predecessors via V2V communication. Still, they must maintain a wider spacing than if they were part of the same platoon, which would allow them to communicate with one another. Assuming a platoon size of 12, an intra-platoon time headway of 0.8 s , and an interpolation time headway of 1.3 s , the system can move 4,237 vehicles every hour.

Amoozadeha et al. (2015), Steven E. Shladover (2012), Heinovski (2018), Guériau et al. (2016), Bang et al. (2016), Wang et al. (2015), and Milanes et al. (2014) tested a simulationbased CAV platooning protocol and demonstrated a higher roadway capacity due to an extended platoon size and a narrower platoon difference. In another study, Ye et al. (2018) developed a simulation-based, two-lane, cellular automation model on a two-state safe-speed model, which resulted in increased capacity by increasing penetration rate. The authors found a significant impact in road capacity when CAV penetration was more than $30 \%$. They also presented a different study in which a dedicated CAV lane increased capacity to a greater extent than a traditional vehicle. Furthermore, Adebisi et al. (2020) investigated BFS and weaving segment capacity for $A V s$ and $C A V s$ in a simulation environment using two CAV applications on the freeway, namely CACC and advance merging, and developed capacity adjustment factors to use with the HCM capacity value. Heaslip et al. (2020) investigated interstate capacity assessment in mixed traffic scenarios deploying ACC- and CACC-equipped vehicles as AVs and CAVs using a modified MIXIC CFM. According to the results, there was a $28 \%$ capacity increase due to AV and a $92 \%$ capacity increase due to CAV. In the presence of a heavy vehicle, the results revealed a substantial increase in capacity.

The limitation of the simulation-based models is that they are based on assumptions, which are considered to be real-life situations. While hypotheses are helpful to construct a model and evaluate future traffic performance, a model can only be strengthened through proper validation by real-world data. Nevertheless, a simulation-based model using synthetic data provides a direction for developing a successful model.

### 2.1.3. Simulation-Based Model with Real-World Data Literature

Fan et al. (2019) attempted to assess capacity in mixed traffic situations using detector data and changing headway values for AVs and CAVs in VISSIM. They demonstrated the potential capacity impact for a BFS, weaving, and ramp junction mixed traffic scenario. In their study, the authors used real-world data to access Wiedemann's car-following calibration parameters, but for AVs and CAVs, real-world data were absent. Instead, the authors used a headway value of 0.9 for AVs and 0.6 for CAVs. Most of the previous studies appear to have implemented only mathematical or theoretical assumptions and simulation-based models for capacity assessment, whereas developing a mixed traffic model using real-world data has been overlooked or scarcely examined. To draw a concrete conclusion about capacity impact, it is necessary to conduct investigations using real-world data. Another shortcoming of model development is the use of point data. Previous studies have used point data (Fan et al., 2019; Manenni et al., 2008; Dong et al., 2015; Gomos et al., 2004) to calibrate and validate the developed model. However, the challenge is that such data cannot distinguish between vehicle types, resulting in improper headway distribution between vehicles. Additionally, point data might not correctly represent a study section. Trajectory data rather than point data should provide a better scenario to construct the model.

### 2.1.4. Calibration-Based Literature

Calibration and validation play an essential role in microsimulation model development. Moreover, selecting driver's choice speed distribution in VISSIM impacts model development. A detailed VISSIM calibration and validation process based on Wiedemann's CFM is discussed in Chapter 4. For the simulation-based capacity measurement, extensive research has been conducted where proper calibration and validation methodologies have been examined using

Wiedemann's 99 parameters. Wiedemann's CFM has a total of 10 parameters, which are generally calibrated such that only one variable applies to all vehicle types or solely to passenger cars. A prime example of this calibration is the driving behavior parameters in VISSIM, which were calibrated for all vehicles (Saccomanno, et al., 2009; Lu, et al., Freeway Micro-simulation Calibration: Case Study Using Aimsun and VISSIM, 2014; Kan, Ramezani, \& Benekohal, 2014). With vehicle-pair trajectory data from the US-101 and I-80 highways, Menneni et al. (2009) calibrated calibration component (CC) 1, CC2, CC3, CC4, and CC5 for all vehicle classes. Jie et al. (2013) published a study in the Netherlands that calculated CC1, CC2, CC3, CC7, and CC8 for passenger automobiles using only vehicle-pair trajectory data. However, the limitation of those studies was an assumption of the exact behavior of all vehicles on highways (Ossen \& P.Hoogendoorn; Sarvi \& Ejtemai, 2012) even though different vehicles have different following strategies.

The vehicle-following behavior of passenger cars and heavy vehicles differs depending on the type of lead vehicle and speed, according to Aghabayk et al. (2012). The authors made four cases for headway: a car following a car, a car following a heavy vehicle, a heavy vehicle following a heavy vehicle, and a heavy vehicle following a car. Regarding spacing and time headways, the case of a heavy vehicle following a heavy vehicle had the highest values, while the case of a car following a car had the lowest values. In addition, the authors discovered that for speeds below $30 \mathrm{~km} / \mathrm{h}$, the case of a car following a heavy vehicle had a more considerable headway and a greater spacing than the case of a heavy vehicle following a car. For speeds greater than $30 \mathrm{~km} / \mathrm{h}$, the reverse was observed. Furthermore, Higgs et al. (2011) discovered that truck driver behavior varies depending on the vehicle's speed, based on naturalistic driving. The
research suggests that various driving behavior characteristics should be evaluated for different speed levels.

Manenni, Sun, and Vortisch (2008) demonstrated that the speed-flow relation can be utilized as a calibration parameter where authors used detector data and classified the CC parameters value using genetic algorithms following, also illustrates how the $\mathrm{CC} 2, \mathrm{CC} 4, \mathrm{CC} 5$ value can be measured by drawing the spacing vs. relative velocity graph. Using naturalistic data, Higgs, Abbas, and Median (2011) found that the CC parameters display various values for specific speed ranges. Calibration parameters CC2, CC3, CC4, and CC5 for constant speed differences were subsequently investigated and adjusted because of speed disparity (Manjunatha, Vortisch, \& Mathew, 2013). It is comparatively easy to select drivers' choice speed distribution from unsaturated data. This distribution refers to the velocity used by drivers in a free-flow condition (flow less than $1,000 \mathrm{veh} / \mathrm{hr}$ ). Most previous studies have attempted to construct models using traffic data from unsaturated to oversaturated conditions with FFS distribution (Dong et al., 2015; Lu et al., 2013). Durrani et al. (2016) and Jolovik et al. (2012) attempted to develop a model using oversaturated traffic data, but proper validation and selection of the driver's choice speed distribution were missing. Hence, adequate calibration and validation methods using oversaturated data are necessary to generate valuable data that decision-makers can use to make optimal decisions.

### 2.2. The CFM

In traffic flow theory, the model-based car-following approach is favored. If a critical breakdown in traffic occurs, the car maintains a certain distance to prevent a collision. Additionally, the following vehicle's speed, acceleration, or deceleration depends on the leader's
behavior. Researchers have investigated this behavior in recent decades and have developed several CFMs.

In 1953, Pipes demonstrated a model that denotes the movement of vehicles controlled by a "law of separation," where the considered vehicle maintains a specific following distance from the preceding vehicle (Pipes, 1953). According to this model, safe distance headway and speed have a linear relationship.

Furthermore, the Forbes model states that the gap between two successive vehicles should be greater than or equal to the reaction time for the following vehicle. Having a leader in front to perceive the need to decelerate and apply the brake is considered (College, 2019).

In the contemporary situation, the General Motors CFM received the maximum attention (Chakroborty \& Kikuch, 1999). This stimulus-response model assumes that the following vehicle will respond to a apprehensive speed between the leading vehicles. The model also assumes that a given stimulus influences the response, depending on the distance headway between the leading and following vehicle and the following vehicle speed.

Later in 1981, Gipps proposed an accident-free model by denoting the safe distance maintained by the follower vehicle to avoid a collision. Safety distance has three components: reaction time, braking distance, and additional distance to the leading vehicle smaller than the minimum gap (M.Treiber \& A.Kesting, 2013). The concept underlying the model is that every driver prepares their speed to safely stop even in the case of sudden braking of the leading vehicle.

The intelligent driving model is another simple time-continuous CFM that measures the acceleration of the following vehicle in each phase according to its velocity, gap, and relative speed. This acceleration has two parts: desired acceleration without having a leading vehicle and
braking acceleration without having a leading vehicle. In free-driving mode, the acceleration reaches zero as the vehicle approaches the desired speed; in an urban situation, the vehicle's gap is contrasted with the desired gap, and acceleration is zero when the actual gap is the desired gap (M.Treiber et al., 2013).

Wiedemann's car-following theory is a collision-free model that addresses speed, space gap, time gap, and acceleration between two successive vehicles with four driving regimes, namely free flow, approaching, following, and braking. According to this model, a vehicle's response is triggered by the difference in speed between the lead and trailing vehicles (e.g., acceleration or deceleration). The following driver's regulation is controlled by perception thresholds of large and small relative speeds. Total 10 calibration parameters represent that four regimes that starts from CC 0 and end at CC 9 . Out of nine, two parameters are space-related, two are time-related, and three are speed- and acceleration-related. This model is a complete scenario of freeway traffic movement that is included with all necessary parameters. For this reason, we chose Wiedemann's CFM for further analysis.

The purpose of using Wiedemann's CFM is to cover every situation in the following process (four regimes defined by Wiedemann) from the braking situation to the free-flow situation. Furthermore, different regimes are separated with thresholds, as illustrated in Figure 4. The overall model structures deal with speed, distance, acceleration, and relative speed. When developing equations for diverse conditions, this model is designed to be accident-free.

### 2.3. Problem Statement

Based on the literature review above, a few shortcomings have been identified concerning capacity estimations for AVs and CAVs. The AV and CAV capacity literature used theoretical frameworks or synthetic data to calculate capacity in a mixed traffic environment. A
model must thus be developed based on real-world data. While theoretical frameworks or artificial data-related models are a useful starting point, they cannot aid in assessing capacity for a particular location explicitly. A simulation-based model is more acceptable and vital to use by traffic engineers if real-world data are created. Previous studies have used either synthetic data or unsaturated traffic condition data to replicate field situations in the simulation environment. This practice is widely used for model development or case study purposes, but there are challenges when using only oversaturated traffic data. These challenges arise when choosing the driver's choice speed distribution and speed range, which play a significant role in model calibration and validation. A driver's choice speed refers to a vehicle's driving speed based on the driver's choice rather than the roadway conditions; it is similar to or higher than the posted speed limit. This situation is seen in unsaturated conditions, but in saturated or oversaturated conditions, the driver drives the vehicle according to traffic flow. Considering only oversaturated data usage, challenges have previously been overlooked and highlight another shortcoming. Using oversaturated data and an improper driver choice distribution will result in an unacceptable calibration, validation, and overall capacity assessment in traditional, mixed traffic situations.

Aside from considering unsaturated to saturated data types, most previous studies have also used a single Wiedemann 99 CC to build the capacity assessment model; however, there was no separation between vehicle types (i.e., car, bus, truck, and motorcycle). This distinction is necessary, as all vehicles do not maintain the same space and time gaps from the leading cars. For example, passenger cars maintain a smaller gap with leading passenger cars, but a more significant gap with leading trucks or buses. Similarly, a vehicle maintains a varying gap if the leading vehicle is a car or truck. The main reason for this shortcoming is that most studies have used detector data that are readily available. Detector data are collected from a study section via
a detector embedded under the pavement or through the use of a roadside data collection device, which detects several parameters such as vehicle number, timestamp, speed, and occupancy at the detector's location. However, detector or point data do not capture the road traffic conditions of a roadway or study section that represents the whole study section and cannot differentiate between vehicle types. Thus, vehicle type segregation is necessary to define the field scenario in simulation, and it has been identified as a shortcoming of previous studies. Low-scale calibration is provided by a single vehicle and detector data, resulting in a low-profile match between the field and simulation scenarios. It is not easy to build a robust model when parameters match invisibly.

Specifically, three major shortcomings have been discussed, namely the driver's choice speed distribution from oversaturated traffic data, single-vehicle calibrating components, and the use of detector or point data sources for developing the model, In light of these shortcomings, this research aims to answer the following research questions as stated below

1. What are the appropriate data for these studies, and what methodology should be applied to fit the data set into microsimulation tools such as VISSIM?
2. What penetration levels of $A V$-cautious, $A V$-normal, $A V$ all-knowing vehicles lead to a significant change in capacities?
3. How will capacity percentages change under mixed AV, CAV, and traditional vehicle scenarios for saturated conditions?

This study addresses these research questions by setting up a microsimulation-based model analysis using Wiedemann's car-following theory on a trajectory data set with proper calibration and validation.

### 2.4. Research Objectives and Research Contributions

The main objective of this research is to evaluate the capacity impacts of AVs and CAVs for a BFS and a weaving segment under a mixed vehicles condition, including traditional AVs and CAVs, by simulating different penetrations for various mixing levels of AVs and CAVs and classic cars. To achieve this main objective, the following tasks are identified:

1. We utilize Wiedemann's car-following behavioral model to estimate the capacity impacts of AVs and CAVs in mixed settings. To this end, we employ NGSIM trajectory data for the traditional vehicle. This data set is oversaturated.
2. Merging traditional and $A V$ and CAV CFM parameters with simulation-based traffic, we build this model to assess the capacity of an essential freeway and weaving segment for single-class AV and mixed scenarios (in the presence of traditional, AV-cautious, AVnormal, and AV all-knowing vehicles). We then compare the capacities to traditional vehicles to evaluate their impacts on freeway capacities.

On the basis of the previous studies' gaps, the main contributions of the present research are as follows:

1. A step-by-step process-building of model calibration and validation using oversaturated data to assess freeway capacity-especially the process of calibration parameters from given trajectory data.
2. A planning horizon of capacity changes with mixed levels of AVs and CAVs over the next few decades for better understanding by the planners.

### 2.5. Summary

In this chapter, we presented an extensive review of previous literature on how AVs and CAVs will affect capacity. The major gap of mathematical and theoretical-based models
indicates that changing a few parameters cannot result in capacity change for a particular location in a broad sense. The synthetic data-based simulation model provides a platform for creating a simulation environment to assess capacity. However, as data are imaginary, the model still does not provide a capacity change of a particular location. Moreover, we mentioned gaps related to calibration validation, such as problem-associated detector data and single-vehicle type CC parameters in VISSIM. Thereafter, we stated the problem of this research along with the research objectives and contributions. Finally, we discussed the state of practice of the BFS and the weaving segment.

## 3. VISSIM MODEL SETUP AND DATA COLLECTION

### 3.1. Introduction

PTV Planung Transport AG has developed PTV VISSIM in Karlsruhe, Germany, as a microscopic multimodal simulation software package. First established in 1992, PTV VISSIM is now a world leader and is widely used by practitioners and academia to simulate traffic at the micro-level. Microscopic simulation in transportation means that every entity (vehicles and pedestrians) in a study area is simulated individually (i.e., represented in the simulation by a corresponding entity, considering all the relevant properties). This study used VISSIM software with the Wiedemann 99 CFM and VISSIM lane-changing model to build the capacity assessment model for a freeway.

The car-following algorithms in AVs and CAVs and the roadway FFSs, geometries, and conditions will significantly affect capacities. If these algorithms have cautious car-following algorithms that leave more significant gaps than average regular cars, their introduction will decrease abilities and potentially reduce throughput. The more aggressive they are, the higher their impacts will be on increasing capacities to optimal for different FFSs. Thus, the aggressiveness of the algorithm in AVs and CAVs with a car-following parameter as one of its measures will determine how the vehicles impact roadway capacities. The hypothesis here is that the car-following technologies in AVs and CAVs will significantly impact capacities. The speed of technological development, testing and regulatory approval, consumer travel, housing preferences, development practices, quality, affordability, and public policies are some of the factors that will affect the car-following algorithms of AVs and CAVs.

Using AV and CAV naturalistic data, the Coexist project has made significant contributions to mixed AV and CAV scenario studies (Table 12) using VISSIM as a platform.

The PTV Group in Germany created VISSIM, a commercially accessible software program for simulating microscopic traffic flows. In the 1970s, Wiedemann and others developed accidentfree psychophysical driver behaviors, considering four driving regimes, namely free driving, approaching, safe gap, and braking, which consider speed, distance, acceleration, and time between the leading and following vehicle. Later, the University of Karlsruhe included this CFM into the VISSIM software. We used VISSIM as the simulation software to build the model for capacity estimation.

### 3.2. Wiedemann's CFM

VISSIM, a microsimulation software, deploys model-based, psycho-physical carfollowing theory to simulate real-world scenarios. It is a type of microsimulation focused on Wiedemann's understanding of the driver. There are two models integrated into this software: Wiedemann 74 and Wiedemann 99. It is generally recommended to use Wiedemann 74 in the merging stage of the traffic stream, such as highway merging points, signalized intersections, arterial analysis, and network analysis. In contrast, Wiedemann 99 is recommended for freeway analysis, as it has four driving states known as free driving, approaching, safe gap, and braking.


Figure 4. Wiedemann's Car-Following Model (CFM; Higgs, Abbas, \& Median, 2011)


Figure 5. Different Location of Leading Car and Following Car
Understanding the regime of parameters is important in the tuning calibration and validation of these models to accurately represent real-world conditions. Figure 4 illustrates the relationships between the parameters in Wiedemann's CFM. The boundary between a collision and a critical situation is AX (Figure 4), which is the sum of the standstill distance (the distance traveled during a stop situation) and the length of the leading vehicle. BX is the point between a critical situation and the additional safe gap after AX. The relationship between the parameters and thresholds mentioned by Aghabayk et al. (2013) are used below:

$$
\begin{equation*}
\mathrm{AX}=\mathrm{L}+\mathrm{CC} 0, \tag{3.1}
\end{equation*}
$$

where CC 0 is the distance between the rear bumper of the front vehicle and the front bumper of the following vehicle in a stop condition, and L is the car length (Figure 5). The next parameter is CC1, which is a time gap between two successive vehicles:

$$
\begin{equation*}
\mathrm{BX}=\mathrm{AX}+(\mathrm{CC} 1 \times \mathrm{V}), \tag{3.2}
\end{equation*}
$$

where BX is the speed-dependent safe distance range, CC 1 denotes a time gap between two consecutive vehicles with additional differences after CC 0 , and V is the relative vehicle's pace. Next is CC2, which is again a distance parameter but in the unconscious following region:

$$
\begin{equation*}
\mathrm{SDX}=\mathrm{BX}+\mathrm{CC} 2, \tag{3.3}
\end{equation*}
$$

where SDX is the upper end of the unconscious region. When the following vehicle approaches the leading vehicle, it continuously decelerates until it reaches zero relative velocity, and the
following driver tries to maintain low acceleration or deceleration. Data points close to zero relative speed with spacing constitute an unconscious following region. Additionally, CC 2 is the extra protective distance that the driver must retain throughout the next unconscious cycle. The subsequent parameters are CC 3 and CC 4 , which are related to time and relative velocity (negative), respectively:

$$
\begin{equation*}
S D V=\frac{\Delta x-(S D X)}{C C 3}-C C 4 . \tag{3.4}
\end{equation*}
$$

SDV is the perception point of the driver while approaching the leading vehicle. Starting the closing process, the following vehicle detects slow-moving vehicle. Using perception and reaction time, the follower driver decelerates to maintain zero relative velocity. Moreover, $\Delta \mathrm{X}$ is the space gap between vehicle pairs, and CC3 is the time elapsed from the beginning of deceleration to the beginning of the following unconscious relative velocity during the unconscious process. The next parameter is CC6, which refers to speed oscillation:

$$
\begin{equation*}
C L D V=-\frac{C C 6}{17000} *(\underline{\Delta} \mathrm{x}-\mathrm{L})^{2}-\mathrm{CC} 4 \tag{3.5}
\end{equation*}
$$

where CLDV is the perception point when driving from a short distance, and CC6 is the speed oscillation that varies when the following vehicle is close to the lead vehicle. The next parameter is CC5, which denotes a positive relative velocity:

$$
\begin{equation*}
O P D V=\frac{C C 6}{17000} *(\underline{\Delta} \mathrm{x}-\mathrm{L})^{2}-\mathrm{CC} 5 . \tag{3.6}
\end{equation*}
$$

Here, OPDV (opening velocity difference) is the limit of the unconscious region, where the distance between the follower and the leader decreases over time. Furthermore, CC5 is the ultimate positive relative speed in the resulting unconscious process, CC 7 is the mean of acceleration in the corresponding unconscious phase, CC8 is the typical overall acceleration after pushing the car from the stationary condition, and CC9 is a 50-mph automotive acceleration.

### 3.3. Lane-Changing Model

We utilized the VISSIM lane-changing model only for weaving segment analysis in this study. Vehicle lane-changing models are used to understand the behavior of vehicles during lanechanging times. Drivers usually find a comfortable gap between trail vehicles or lead vehicles in the new lane with proper acceleration and deceleration during lane-changing time. VISSIM incorporates a lane-changing model that works with the free-lane rule, which means vehicles may overtake in each lane; the slow-lane/fast lane rule follows the German traffic code. Both rules included vehicles' maximum and accepted deceleration, diffusion time, minimum clearance, safety distance reduction factor, and maximum deceleration for cooperative braking. All parameters are described below (Vissim, 2020).

Maximum Deceleration: This refers to the upper bound of deceleration of the own vehicle (the vehicle that wants to move to a new lane; B in Figure 6) and the trail vehicle (the vehicle that is already in the new lane but behind the vehicle that seeks to move to a new lane; A in Figure 6) during the lane change. A higher absolute value denotes more aggressive lanechanging behaviors.

Accepted Deceleration: This is the lower bound of deceleration of the own and trail vehicle during the lane change.

Diffusion Time: This is the maximum amount of time a vehicle can wait at the emergency stop distance for a necessary change of lanes. A lane change during normal traffic flow might require a greater minimum distance between vehicles to maintain speed-dependent safety.

Minimum Clearance: This is the gap that must be maintained between two vehicles after a lane change.

Safety Distance Reduction Factor: This factor concerns the safety distance of trail vehicle and lane changing vehicle, whether a lane change will occur.

Maximum Cooperative Deceleration: The trail vehicle will decelerate or brake cooperatively to allow the preceding vehicle to change lanes and move into its lane. The higher the value, the stronger the braking, and the greater the probability of changing lanes.


Figure 6. Lane-Changing Scenario (VISSIM, 2020)
To the best of our knowledge, few studies have attempted to calibrate VISSIM lanechanging parameters to reflect a study area. For the German freeway system, lane-changing parameters for the BFS as well as the weaving, merging, and diverging segments were determined for free-lane selection and right-side rule (Leyn et al., 2015). The Wisconsin DOT has determined the maximum deceleration for state-wide purposes (WisconsinDOT, 2018). However, none of the studies have elaborated a step-by-step direction to determine values for a case study area.

### 3.4. Study Area Description

Next-generation simulation (NGSIM) is an open data source developed by FHWA in a trajectory format (USDOT, 2016). The data used for this study was collected on June 15, 2005, from 7.50 to 8.35 AM on US10 in Los Angeles, CA, from Lankershim Boulevard to Cahuenga Boulevard using video cameras mounted on top of 36 story buildings. The length of the Study section was 2100 feet with five main lanes, one auxiliary lane, one on-ramp, and one off-ramp. The Complete vehicle trajectory was transcribed at a resolution of 10 frames per second. Figure 7 shows the diagram of US 101 that was used in this study.

The study section is signed at 55 mph . The first 15 minutes of data show that lane space mean speeds are below 26.5 mph , indicating oversaturation conditions. The second 15 minutes data is lower than 1st 15 minutes, which also indicates an over-saturated state. For analysis purposes, the entire section was divided into three sections. $0-500 \mathrm{ft}$ is framed as 1 st section, $500-1270 \mathrm{ft}$ framed as 2 nd section, $1270-2100 \mathrm{ft}$ framed as 3 rd section (figure 7).


Figure 7. Schematic Diagram of US101 (Systematic, 2005)
The oversaturated traffic condition is critical in the traffic flow because demand is higher than capacity, resulting in reduced traffic flow and speed. In Figure 2, the flow curve from optimum point to zero point is the oversaturated traffic condition. The study section took traffic data during the morning peak period, which was an oversaturated traffic condition. It is challenging to develop a capacity assessment model to select proper driver's choice speed
distribution when oversaturated traffic. An improper selection of distribution will lead to improper calibration validation of the model and a wrong capacity assessment. So, working with the most critical condition data and finding the ultimate result was one of the vital challenges of this research, and therefore oversaturated data is considered.

The Lane numbering starts from the rightmost side of figure 7. Lane 1 to lane 5 is through lanes in this section. Lane 6 is an auxiliary lane that begins from the endpoint of the onramp and ends at the start point of the off-ramp. On-ramp is lane \#7 and Off ramp is lane \#8. A detail about the speed, flow of each lane has been mentioned in Appendix A. For basic freeway segment analysis, lane 1-4 has been considered for all three sections. For weaving segment analysis, lane 1-6 of the $2^{\text {nd }}$ segment (500-1270) has been considered.

The segment can be used to generalize to other traffic locations. The primary requirement before developing a model is the collection of appropriate traffic data from the basic freeway and weaving segments. This study location is suitable for data collection. It covers all the requirements to construct a freeway capacity assessment model, such as sufficient length of study link, number of lanes, vehicle variation, and traffic operation parameters. The study location consists of the basic freeway, merging, a diverging and weaving section, a complete picture of the freeway system. Moreover, traffic data was collected during oversaturated conditions which are defined as the most critical situation. Besides, the dataset includes all required parameters to apply Wiedemann's car-following theory, such as vehicles velocity, acceleration, space, and time headway. This segment can be generalized as an excellent example for data collection due to the reasons described above.

VISSIM requires a detailed and complete description of the layout of the geometries of the test site for meaningful output. This process has been described in the last part already.

### 3.5. Setting Up the VISSIM Model for the Study Area

VISISM needs to prepare to run the simulation of estimating capacity of the study area.
There are a few steps in VISISM microsimulation that have been described below.

1. The study location for this dissertation was applied to US 101, LA, California, as NGSIM data was collected from there. An overlapped geometry was drawn in VISSIM for five through lanes, one on-ramp, one off-ramp, the auxiliary lane with similar lane width as a field. In Figure 8 (a), the brown color road part indicates the drawn 5 through lanes, auxiliary lane, on and off-ramp roadway on VISSIM while keeping the default map behind.
2. Next, five types of vehicles were selected. Car and heavy goods vehicles (HGV) are considered traditional vehicles, AV cautious, AV normal, AV All-knowing were selected as AV vehicles. For all types of vehicles, driving behavior was determined as Freeway (free lane selection).
3. Desired speed was customized as a requirement. In this dissertation, a total of 6 types of speed distributions were selected with lower and upper bounds. The calibration, validation, and simulation setup for various free-flow speeds describe a detailed speed distribution.


Figure 8. VISSIM Screenshot of US101 Location (a) and Data Collection Positions (b)
4. The next part includes vehicle composition, where the percentage of traditional/AV classes composition is necessary to run the simulation. In the vehicle input part, traffic demand needs to be set as input. Calibration validation has a specific traffic demand which is borrowed from Cambridge Systematic (2005). This demand value was counted
from the field during observation. For capacity calculation, traffic demand was kept at 13,000 vehicles. In both cases, the first 5 minutes were spent for warm-up, which means running different vehicles initially and counting for the next 15 minutes.
5. Finally, the simulation parameter set up and evaluation parameter set up was completed to get the result. A total of six data collection points was set up in the middle of the brown color road (yellow color horizontal lines in Figure 8 (b)) to get the VISSIM output. This process was followed to set up the simulation to assess the capacity in mixed traffic environment.

### 3.6. Traffic Demand

Traffic demand is one of the significant inputs to VISSIM. Traffic demand is the number of vehicles that are using a transportation system over a preset period. This research shows the number of vehicles that traverse the roadway section described previously over 15 minutes; traffic demand value was used in three categories in this dissertation. The first category includes traffic demand input for calibration. The first 15 minutes of traffic data were used to divide five minutes, which was used as calibration input traffic demand. The second category includes traffic demand input for Seconds 15 minutes, which is part of validation. Third category traffic demand was used to measure capacity. For all three types, initial five minutes ( $0-300 \mathrm{sec}$ ) were used for simulation warm-up where demand was kept below the field observation. Vehicle output was counted for the next fifteen minutes with five minutes breaks. A detail about traffic demand has been given in table 2. The Highway Capacity Manual (HCM, 2010) suggests a single lane capacity of $2,400 \mathrm{veh} / \mathrm{hr} /$ lane for highways for saturated conditions.

The literature and VISSIM manual suggest that increments of 15 minutes be used for the demand period in the models. It means that the HCM single lane capacity is $600 \mathrm{veh} / \mathrm{hr} / \mathrm{lane}$. A
total of 5 through lanes, one auxiliary, on-ramp off-ramp each was used to replicate the roadways used in this study, as shown in table 2 for the basic freeway segment. For the weaving segment analysis, five lanes and auxiliary lanes were used in this dissertation. According to the HCM capacity manual, the five lanes can carry a maximum of 12,000 vehicles for all five lanes in the weaving section.

For this dissertation, however, since the objective was to evaluate traffic impacts in oversaturated conditions, the traffic demand was increased to $13,000 \mathrm{veh} / \mathrm{hr}$ for all four lanes during capacity analysis. It is worth noting that the actual number of vehicles that will use the network during the study period will be lower. The number of vehicles using the network in a microsimulation setting can never exceed the physical capacity of the roadway network.

Table 2. Traffic Demand (Veh/hr) Input for Various Categories.

|  | Calibration |  | Validation |  | Capacity Analysis |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BFS | Weaving | BFS | Weaving | BFS | Weaving |
| $0-300$ seconds | 4000 | 4000 | 4000 | 4000 | 4000 | 4000 |
| $300-600$ seconds | 6912 | 9240 | 6228 | 8364 | 13000 | 13000 |
| $600-900$ seconds | 6672 | 9012 | 6276 | 8352 | 13000 | 13000 |
| $900-1200$ seconds | 5472 | 7404 | 5232 | 7056 | 13000 | 13000 |

### 3.7. Summary

In this chapter, details of the VISSIM Wiedemann car-following model, lane-changing model, a brief discussion of data type, data obtaining, and preparing system have been discussed. A short description of the data collection area, the timetable for data collection, VISSIM simulation preparation for the assessment have been discussed with equation and description. In addition, the traffic demand for the VISSIM inputs were also described. The next step is the calibration and validation of the model which will be detailed in next Chapter.

## 4. VISSIM MODEL CALIBRATION

### 4.1. Introduction

The market penetration of AVs/CAVs will have an impact on capacities. An essential question that planners and traffic engineers have right now is how capacities will change with different penetration and AVs and CAVs algorithms compared to traditional vehicles as we see today. As AVs and CAVs get introduced, their algorithms will be very cautious, as seen in the current Tesla (Tesla, 2021) and other car models (Waymo, 2021) that perform self-driving functions under specific scenarios. As data from their introduction and penetration levels increase, the algorithms will get more aggressive with a headway reduction. Thus, we may have a period when we face lower capacities than traditional vehicles as AVs/CAVs get introduced and their market penetration increases. Capacity gains will occur as their algorithms get better and their market penetrations increase. It is essential to estimate these impacts to prepare our transportation systems to introduce AVs and CAVs at planning and operations levels.

The AV/CAVs literature suggests improving capacities by over $30 \%$ under the right circumstances. Transportation planners develop models that forecast traffic and its impacts on the transportation supply. The output of these models is used to create short and long-range transportation plans. With the potential effects of AVs/CAVs on capacities, transportation planners and decision-makers are constantly asking if the capacities used in these models are wrong. For example, a transportation planning model could predict that traffic on a hypothetical roadway corridor that currently has four lanes will increase by $30 \%$ over the next 15 years. The impact of this increase in traffic could call for the addition of the roadway's capacity to six lanes given traditional vehicles. However, if AVs/CAVs are introduced, the capacity implications could potentially change. The additional lanes might not be warranted given the correct
estimation of capacities. Therefore, it is necessary to assess freeway capacity under mixed traffic scenarios where the traditional vehicles, the autonomous vehicle will exist together.

On the other hand, the impacts of this $30 \%$ could be more significant with the introduction of AVs/CAVs than traditional vehicles. This could happen if the technologies in most $\mathrm{AVs} / \mathrm{CAVs}$ in the traffic stream are less aggressive than conventional cars. If the algorithm in $\mathrm{AVs} / \mathrm{CAVs}$ limits the spacing and headway between vehicles in traffic in comparison to traditional cars. Automatic Cruise Control and level one autonomy vehicles leave more significant gaps and headway than conventional cars. The implication could be that the proposed six-lane roadway will still be deficient in handling the $30 \%$ increase in traffic for the hypothetical road. There are several ongoing efforts to quantify the capacity impacts of AVs/CAVs under different traffic conditions, roadway types, and AV/CAV levels.

The mix of AVs/CAVs and classic cars will also impact capacities. It is plausible that we may have Cautious, Normal, and AV All-knowing cars driving simultaneously on the same roadway as traditional cars. The impacts will be different for a situation where there will be $100 \%$ AV cautious cars. The different penetration levels of each of these AV/CAVs will have impact capacities differently. The capacity impacts for a scenario with $80 \%$ AV cautious and $20 \%$ all-knowing will be different for a system with $80 \%$ AV all-knowing and 20\% AV cautious. AV-cautious, for example, at lower penetrations may have minimal impact on capacities. As their penetration increases concerning the total cars on the roadways, their capacities will also change to $100 \%$ penetration.

On the other hand, AV All-Knowing will perform more aggressively and have lower headways and gaps, increasing capacities more than AV Cautious vehicles. Its impacts on
capacities will be positive at perhaps most levels of penetrations and speeds. The hypothesis here is that different mixes of AV/CAVs will have other implications for highway capacities.

To test these hypotheses, a simulation analysis based on microsimulation within the VISSIM software was performed as shown in Figure 9. First, the baseline capacities using NGSIM data were built to calibrate and validate the baseline model. Next, models with single classes of AV/CAVs are built and the capacity impacts are measured followed by models with mixed types of AVs. Different penetration levels and different mixes of AV/CAVs were used for the modeling.


Figure 9. Flow Chart of Methodology
To achieve an effective model, calibration and validation is needed and detailed in this chapter. Calibration is adjusting the model input parameters so that the model closely replicates observed data, validation compares the model output data to observed data using data not used to calibrate the model.

### 4.2. Wiedemann Car Following Model Behavioral (CC) Parameters Data Collection, Calibration, and Validation

The basic freeway and weaving segments have been selected to assess this study's capacity in the mixed traffic situation. A microsimulation-based model will be built using trajectory data after proper calibration and validation. The next section will discuss the calibration and validation of the basic freeway and weaving segment separately.

### 4.2.1. Calibration of the Basic Freeway Segment

Calibration means comparing a parameter value provided by a device/ software with known real-world values. The purpose of calibration is to replicate the field scenario in a simulation environment using the proper layout of the road, adding traffic volume with proper speed distribution so that the observed traffic parameters match with simulation output. For accurate calibration, a set of CC parameters, speed distribution needs to be selected. Whether this selection is appropriate, a validation process needs to do with different day/ time traffic data where both traffic patterns are similar. The simulation software VISSIM contains calibration components (CC) parameters. Wiedemann 99 model includes a total of 9 parameters. These parameters are based on the space, time, speed, and acceleration of the following vehicle according to the reaction of the leading vehicle. The calibration process starts with finding appropriate CC parameters for passenger cars and heavy vehicles, then compares observed and simulation output using space mean speed (macro-level) and cumulative speed distribution (micro-level). Finding proper CC parameters is an iterative process. It means, initially, the CC parameters value with a range has been determined from the dataset using logic. From the range, a single value has been picked up and put into the VISSIM. A simulation ran to get space mean
speed data as an output using that particular set of parameters. This process was continued until the space mean speed from simulation output was matched with the observed value.

The four leftmost lanes between 7.50-8.05 AM were considered for this research's Basic Freeway Capacity component. There are three vehicles type available in the Dataset, passenger cars, heavy vehicles, and motorcycles. Only Passenger cars and heavy vehicles are used for this research as the percentage of the motorcycle was $1 \%$, which is negligible. CC values were determined based on these two vehicle types, as shown in

Table 3. Figure A. 7 in Appendix A is a snapshot of the data used for calibration and developing the base model of only traditional vehicles. This snapshot file includes 20 columns with the most essential variables discussed next.

The data collection provides unique ids for all cars in the traffic stream. These IDs are used to identify and track the vehicles in the traffic stream and their characteristics as they drive through the roadway section. The IDs can deter whether cars are driving in the traffic system by following each other. For example, in the first column, the vehicle ID of Figure A. 7 is 726, which is the following vehicle, and the preceding vehicle is 709. After a certain period, the prior vehicle number becomes 714. The following vehicle means the vehicle which is following while having a leading vehicle. There are eighteen attributes in the original data set, but only the following attributes were used for this study. The features that have been used from these files are vehicle length (v_length), vehicle width (v_width), vehicle class ( $\mathrm{v} \_$class, car $=2, \mathrm{HV}=3$ ), vehicle speed (v_vel), vehicle acceleration (v_acc), lane ID, Space headway (Space_hdwy = space gap from the front bumper of the leading vehicle to the front bumper of the following vehicle), Time headway (Time_hdwy = time gap from the front bumper of the leading vehicle to the front bumper of the following vehicle). The last two columns of the snapshot are the previous
vehicle velocity (pre-veh_vel) and previous vehicle class (PreVeh_Class) that has been created manually using the v_lookup formula in Microsoft excel. To discover the different CC values, different logics have been applied and are described next.

### 4.2.1.1. CC0 Standstill Distance

CC0 (space gap) is the distance the following vehicle keeps away from the leading vehicle in a standstill situation. It is the distance between the rear bumper of the front vehicle to the front bumper to the following vehicle in a stop condition. L is the vehicle length. To assess CC0, only $0-10 \mathrm{mph}$ speed ( $\mathrm{v} \_$Vel) range were considered using the filter in MS excel for the following/considered vehicle, and the corresponding space headway (AX in Figure 5) column was checked. The max and min space headway was noted, and average vehicle length was subtracted from the values. The average length of a car (L) from the entire file used in this study was 14.5 ft , and the heavy vehicle length was 32.5 ft . It is mentioned before that CC0 stands for standstill distance between vehicles; however, there was no space headway found in zero mph speed, which is why speeds between 0-10MPH were considered standstill speed.

### 4.2.1.2. CC1 Headway Time (sec)

CC 1 is the time gap between two successive vehicles that are in motion. It is time for the following vehicle to reach the lead vehicle's position in a traffic stream. This is an additional gap after CC0. More than ten mph speeds for the following vehicle were considered to determine this value, and the corresponding headway range was considered. Then (The length/Velocity) value was subtracted from the Time headway value to get CC1.

To figure out the CC2-CC5 values, the graph of spacing vs. relative velocity (Figure 10) was drawn considering different vehicle pairs where,

$$
\begin{equation*}
\text { Relative velocity }=\text { Speed of (following vehicle }- \text { Leading Vehicle) } \tag{4.1}
\end{equation*}
$$

Here, Spacing = Space headway- length of the Leading vehicle. This process has been done with several steps. The first step was using the filter option in MS excel. The choosing the following vehicle number. Suppose in the file, the vehicle with vehicle ID 51 has four preceding vehicles $(34,40,47,49)$ in different time frames while crossing the study section. Considering a single pair, for example, 51-40, a space vs. relative velocity graph was drawn, and data were extracted using a previous research result that was done by (Manenni, Sun, \& Vortisch, 2008) Figure 10 (b). In such a way, randomly, 177 pairs were considered to draw and extract the $\mathrm{CC} 2, \mathrm{CC} 3, \mathrm{CC} 4$, and CC5 values. A sample of a graph of pair numbers 54-43 has been drawn in Figure 10 (a).

### 4.2.1.3. CC2 Following Variation

CC2 (unconscious following zone) is the extra protective distance that the driver needs to maintain throughout the ensuing cycle of the unconscious. The unconscious following zone can be described following way: When a leading vehicle drives at a constant velocity, at that situation if the following vehicle approaches the leading vehicle, it continuously decelerates until it reaches zero relative velocity, and the following vehicle's driver tries to maintain low acceleration/ deceleration with an ideal gap. This is when relative velocity changes from positive to negative. The following unconscious region is the data points close to zero relative speed corresponding to low acceleration/deceleration. We selected a pair of vehicles following each other from the data set, then drew a spacing vs. relative velocity curve that will look the same as Figure 10 (b). CC2 is the difference in spacing indicated in the Y-axis distance in Figure 10 (b) (black color circle). For example, from Figure 10(a), the CC 2 value is $18 \mathrm{ft}(60-42=18$ difference in Y-axis). Overall, Figure 10 represents spacing vs. relative velocity.

When the following vehicle has a higher velocity than a leading vehicle, it comes closer, and spacing decreases. This is called the closing situation, which makes a slope in the graph.

Orange circles in both graphs are the zone of closing. When leading and the following vehicle has a comparatively lower gap while having relative velocity around zero, it creates an area indicated with a black boundary in both graphs. This is called a following unconscious region.


Figure 10. Spacing vs. Relative Velocity of Paired Vehicle (Manenni et al., 2008)

### 4.2.1.4. CC3 Time from Start of Deceleration to Start of Unconscious Process

CC3 is the time elapsed from deceleration to the beginning of the following unconscious process for the following vehicle. It is the perception threshold for the following vehicle during the closing time (close to the leading vehicle). Selecting a pair of vehicles followed by drawing spacing vs. relative velocity graph, a slope would appear the same as the red color curve in Figures a \& b, which is indicated in orange color in both figures, indicating closing to unconscious region. The slope was measured as spacing divided by Relative velocity. Only slope
values were taken from those pairs that showed in the graph. From the graph Figure 10 (a), the CC 3 value was found 1.5.

### 4.2.1.5. CC4-CC5 Negative and Positive Relative Velocity for Following Vehicle

I selected a pair of vehicles following each other from the data set, then drew a spacing vs. relative velocity curve that will look the same as Figure 10(b) (same as CC2 process) that retrieve CC4, CC5 values. These values are the two boundaries that represent negative and positive relative velocity. For example, from Figure 8 (a) $\mathrm{CC} 4, \mathrm{CC} 5$ value was found $-6,6$. The same procedure was followed for other pairs also.

### 4.2.1.6. CC6 Speed Oscillation of Following Vehicle

CC6 represents how the following vehicle's speed oscillation varies during closing time by the following vehicle to the leading vehicle. Oscillation is the repeated change, usually in time, between two or more distinct states of some measure about a central value (often a balance point). CC6 was kept as default since we could not find any explanations for estimating CC6 even after contacting the software vendor.

### 4.2.1.7. CC7 Acceleration during Unconscious Following Process

CC 7 is the acceleration during the following unconscious process, which means acceleration during the CC 2 range. During the measure of CC 2 , the corresponding acceleration range value of the following vehicle was considered.

### 4.2.1.8. CC8 Acceleration of Vehicle from Stationery State

CC8 is the acceleration after the vehicle starts moving in a stationary situation. Therefore, $0-22.5 \mathrm{ft} / \mathrm{s}$ threshold was set to get corresponding acceleration. The following vehicles' speed range was selected from the $0-22.5 \mathrm{ft} / \mathrm{s}$, and the corresponding acceleration range was considered.

### 4.2.1.9. CC9 Acceleration of Vehicle Driving Over 50 MPH

CC9 is the acceleration of a vehicle driving at or above 50 mph . Therefore, the following vehicle has considered $74 \mathrm{ft} / \mathrm{s}$ and above 50 mph to get the corresponding acceleration range.

Each of the vehicle pairs needs to be considered to estimate the extracted value. Some of them might not show proper figures due to insufficient data. Table 3 shows simulation calibration component parameters used for this study based on the observed vehicle speed. From the range of each parameter, the value was selected for each CC and tested.

Table 3. Calibration Parameter Values for Traditional Vehicle

| Parameters | Default | Car | Heavy Vehicle | Unit |
| :--- | :---: | :---: | :---: | :---: |
| CC0 | 4.92 | 8 | 18 | Ft |
| CC1 | 1.5 | 1 | 2 | Second |
| CC2 | 13.12 | 11 | 25 | Ft |
| CC3 | -8 | -3 | -3 | Second |
| CC4 | -0.35 | -1.12 | -1.8 | $\mathrm{~m} / \mathrm{s}$ |
| CC5 | 0.35 | 1.5 | 1.80 | $\mathrm{~m} / \mathrm{s}$ |
| CC6 | 11.44 | 11.44 | 11.44 | $1 /(\mathrm{m} . \mathrm{s})$ |
| CC7 | 0.82 | 0.47 | 1.70 | $\mathrm{ft} / \mathrm{s}^{2}$ |
| CC8 | 11.48 | 5.80 | 6.0 | $\mathrm{ft} / \mathrm{s}^{2}$ |
| CC9 | 4.92 | 0.51 | 1.25 | $\mathrm{ft} / \mathrm{s}^{2}$ |

### 4.2.1.10. Driver's Choice Speed Distribution

One of the key facts of setting up a simulation is evaluating driver choice speed distributions, as the improper selection may lead to a fragile structure of the model. The meaning of the driver's comfort speed has been described in the problem statement part. For this dissertation, it wasn't easy to get driver choice speed distribution for the entire segment because it was oversaturated from the beginning of the data collection period. During the simulation, a bottleneck started from the middle of the 2 nd section and propagated to the 1 st section. Therefore, the research region's third section (1270-2100 ft) (Figure 8) was used to get driver preference speed distribution. It was assumed drivers travel at their choice of speed after the third-second section. The range of the third section is the starting point from diverging point to
the end of the entire section. The observed data set found a speed range between 35 to 60 mph (FFS 55 mph for the study section). The following cumulative distribution was used as input to VISSIM for calibration, validation, and capacity analysis, as shown in Table 4.

Table 4. Drivers Choice Speed Distribution Used in the Simulation

| Speed in mph | Cumulative Distribution |
| :---: | :---: |
| 35.00 | 0.00 |
| 37.67 | 0.19 |
| 42.02 | 0.66 |
| 49.30 | 0.91 |
| 60.00 | 1.00 |

Figure 11 shows the comparison of the observed and simulated speed distributions for the third section. Again, a visual inspection shows that the simulation speed distributions match the observed speed distributions very closely. This meant the selected drivers' choice speed distribution was accurate and correctly represented in the model.


Figure 11. Comparison of Observed Vs. Simulated Drivers' Choice Speed Distribution
Due to the analysis, the segment being in a saturated state at the start of the data collection, it is not feasible to use a $35-60 \mathrm{mph}$ range for speed which means upper bound 60 mph and lower bound 35 mph . The reason is that the first segment flow affects the second
segment's flow. At the beginning of the study section (first segment), the speed distribution was tested to obtain the correct speed scale. The range of the speed for calibration purposes that was used was between 25 and 50 mph ( 25 mph difference same as driver's choice speed difference) where upper bound was set 50 mph , lower bound was set 25 mph and keeping the distribution same as the driver's choice speed distribution.

### 4.2.1.11. Calibration Measures of Effectiveness - Macro and Micro Level

Several parameters are used to compare observed and simulation data to measure how well the model replicates real-world data. The comparison includes traffic flow matching less than $15 \%$ difference and lower GEH statistics value, comparing modeled vs. field speed, comparing visually acceptable lane utilization (Crossing, 2006). In this study, speed comparison has been tested where both visual and statistical tests are performed to compare the model output to the observed data. Speed is a unique parameter collected from the field and can be directly obtained from simulation.

For visual tests, graphs at the macro (space mean speed) and micro-level speeds (cumulative speed distribution) compare the simulated output to the observed data. VISSIM allows for the placement of data collection metrics within the roadway network during simulation. The metrics were set in the middle of the entire section, which collection traffic flow value as a representative point of the section and a bottleneck location. However, field data were collected using eight video cameras mounted on top of 36 storied buildings, and data was processed later. There is no similar process in VISSIM available except putting a data collection point on the road. In the VISSIM simulation, the built-in data collection points were selected from the index and placed at the midpoint of the second segment of lanes 1-4 from the left of the travel direction ion to examine traffic speed output. At the macro level, space mean speeds
evaluate whether the simulated speed output pattern matches the observed data. Space means speeds are obtained from the detector for the simulation model. Though lane 1 data has a difference of around six mph, the other lanes show relative value and patterns. Space means speed comparison between the modeled output and the observed speeds for each of the four lanes are shown in Figure 12.


Figure 12. Speed Comparison for Calibration in Macro Level (a) and Micro Level (b)
At the micro-level, the cumulative speed distribution for the second segment was compared to the observed incremental speeds (Figure 13). Cumulative speed distribution is a distribution of the speed of a specific range called Bin ( 5 mph range in this case), then it finds the total frequency of that bin followed by the percentage of frequency. Adding percentages together cumulatively creates an S shape line. In this study, the field observed value matches with the calibration output in Figure 13, but the aim was not to do a perfect match rather than matching the pattern and similarities in how data looks. Both spaces mean speed and cumulative speeds comparison are satisfactorily calibrated to the observed speed distributions as graphs are showing good matching through eye measurement


Figure 13. Comparison of Cumulative Speed Distribution Between Modeled and Observed Speeds

In addition to the visual tests, statistical tests were performed for the macro level to verify whether the simulation output was significantly different from the observed data. A paired t-test was performed at the $95 \%$ confidence interval where the null hypothesis was no difference between the means of the observed and simulated SMS. The two-tail P-value shows 0.102966 that is greater than 0.05 with only four observed data existing, which means there's insufficient evidence in favor of the alternative hypothesis that the means differ. The equation used to find to estimate the T -value and value is given below.

$$
\begin{equation*}
\mathrm{t}_{\mathrm{c}}=\frac{m}{\mathrm{~s} / \sqrt{\mathrm{n}}} \tag{4.2}
\end{equation*}
$$

Here, $m$ is the mean difference, $n$ is the sample size, $s$ is the standard deviation of data set Excel output has been given in Table 5

Table 5. Excel Output of Space Mean Speeds T-Test for BFS in Calibration

|  | Observed | Simulation |
| :--- | ---: | ---: |
| Mean | 24.00 | 27.62 |
| Variance | 11.64 | 0.09 |
| Observations | 4 | 4 |
| Hypothesized Mean | 0 |  |
| Difference | 3 |  |
| df | -2.32 |  |
| t Stat | 0.05 |  |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail | 2.35 |  |
| t Critical one-tail | 0.10 |  |
| P(T<=t) two-tail | 3.18 |  |
| t Critical two-tail |  |  |

### 4.2.2. Base Model Validation for the Basic Freeway Segment

The next step in the modeling process was to validate the model against real-world data for another period, not calibrating the model. Validation typically involves using visual comparison tools and statistical tools. Thus, the model is validated at the micro and macro levels.

Space mean speed (SMS) from lanes 1-4 from the left side and cumulative speed distribution of the middle section were compared to the observed data as shown in Figure 14. Cumulative speed distribution indicates the entire study section's speed output, which is called microanalysis. On the other hand, space means the speed of each lane rather than the whole section compared to the macro-level analysis. It is noteworthy to mention that the 2 nd 15 minutes. For validation purposes, the second 15 minutes were chosen. SMS was lower than the first quarter (compared to the observed speed value 1st and 2 nd 15 minutes). The Speed spectrum from 20-45 mph ( 25 mph difference) is extended for validation using the same distribution used in calibration.


Figure 14. Speed Comparison for Validation in Macro Level (a) and Micro Level (b) The macroscopic comparison (SMS comparison) shows a similar match between observed and simulation data, a close straight line in testing. On the other hand, cumulative speed data distribution showing an $S$ curve matches the observed data pattern.

A paired t-test of two samples was performed to compare the observed and modeled SMS means for statistical validation. The null hypothesis was no difference in mean speed values
between the observed and modeled SMS. The P-value of two-tail was found at 0.13383 at the 95\% confidence interval. This value is greater than 0.05 , with only four observed data existing which means there's insufficient evidence in favor of the alternative hypothesis that the means differ. Detailed Excel result has been given in Table 6.

Table 6. Excel Output of Space Mean Speeds T-Test for BFS Validation

|  | Observed | Simulation |
| :--- | ---: | ---: |
| Mean | 21.15 | 22.24 |
| Variance | 1.58 | 0.09 |
| Observations | 4 | 4 |
| Pearson Correlation | 0.66 |  |
| Hypothesized Mean |  |  |
| Difference | 0 |  |
| df | 3 |  |
| t Stat | -2.04 |  |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail | 0.06 |  |
| t Critical one-tail | 2.35 |  |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail | 0.13 |  |
| t Critical two-tail | 3.18 |  |

### 4.3. Calibration and Validation of Wiedemann Car Following Model for the Base/ <br> Traditional Vehicles at Weaving Section

### 4.3.1. Calibration of Weaving Segment

The weaving segment begins at the point of the study section, where it merges with the standard freeway on the highway and proceeds to the point of exit from the road. This study used lanes 1-6 from Figure 8, the midsection (500-1270) from 7.50-8.05 AM time, to calibrate the weaving segment. A detailed traffic flow and related calculation of weaving and non-weaving have been provided in Appendix B. The set of data features three classes of vehicles. Only cars and heavy vehicles were considered; the motorcycle was excluded, as previously explained. Depending on certain types of vehicles, CC values were calculated and calibrated. A similar procedure has been followed to find CC parameters, as explained in the basic freeway segment.

Table 7 shows the CC parameters for both cars and heavy vehicles compared with the default values given in VISSIM used in this study for the weaving area.

Table 7. Car Following Calibration Parameters Values for Weaving Section.

| Parameters | Default | Car | Heavy Vehicle | Unit |
| :--- | :---: | :---: | :---: | :---: |
| CC0 | 4.92 | 8 | 18 | Ft |
| CC1 | 1.5 | 1 | 2 | Second |
| CC2 | 13.12 | $\mathbf{9}$ | 25 | Ft |
| CC3 | -8 | $\mathbf{- 1 . 9}$ | -3 | Second |
| CC4 | -0.35 | $\mathbf{- 1 . 4 6}$ | -1.8 | $\mathrm{~m} / \mathrm{s}$ |
| CC5 | 0.35 | 1.46 | 1.80 | $\mathrm{~m} / \mathrm{s}$ |
| CC6 | 11.44 | 11.44 | 11.44 | $1 /(\mathrm{m} . \mathrm{s})$ |
| CC7 | 0.82 | $\mathbf{3 . 8 5}$ | $\mathbf{1 . 7 0}$ | $\mathrm{ft} / \mathrm{s}^{2}$ |
| CC8 | 11.48 | $\mathbf{4 . 1 3}$ | $\mathbf{3 . 5 9}$ | $\mathrm{ft} / \mathrm{s}^{2}$ |
| CC9 | 4.92 | $\mathbf{2 . 5 6}$ | $\mathbf{4 . 9 2}$ | $\mathrm{ft} / \mathrm{s}^{2}$ |

CC parameters value for weaving section is almost similar for the gap, time, and relative speed, but differ for acceleration (CC7-CC9). In this section, the acceleration value during the unconscious following (CC7) region for the car is higher than the basic freeway segment. The acceleration value for vehicle speed over 50 mph representing CC9 is higher for both vehicles than the basic freeway segment. The higher value is lane changing for merging or diverging as it governs in the entire section.

### 4.3.2. Calibration of Lane Changing Parameters

Besides the car-following parameters, lane-changing parameters also need to be calibrated to represent ground truths. The second section of the study area (500-1270) (figure 7) and data from 7.50 to 8.05 were considered for this calibration. At the very beginning, only those vehicle IDs have been identified that changed lanes from ramp to freeway and freeway to ramp and those vehicles which did not change lanes (details in Appendix A). Therefore, the following parameters have been calibrated for the lane-changing model.

- Max deceleration: This is the upper bound of the deceleration range of the considered vehicle (B in Figure 6) that wants to change lanes. Consider a driver who wants to
change lanes; for example, that driver perceives the speed of the vehicles in the lane they want to change into, they will adjust their speeds based on the speed of the vehicle ahead of them in the lane they are moving into. Before changing the lane, the upper bound from the acceleration column from the data set was identified. At the same time, the trail vehicle ID of the new lane was obtained from the data set (A in Figure 6 and corresponding deceleration of that trail vehicle before considered vehicle change lane was identified. As a result, the value of similar lane-changing vehicles was determined -11.2 ft/s2 for own and -8.62 ft/s2 for trail vehicles.
- Accepted Deceleration: The steps were the same as max deceleration, but a lower bound of deceleration was considered from the data set for own and train vehicle ID. The value was determined $-0.88 \mathrm{ft} / \mathrm{s} 2$.
- There is no previous research or even VISSIM 2020 manual that describes a step-bystep work to find value for other lane-changing parameters from a given dataset. That is why all the other parameters were kept as default for this study.

Table 8 describes the values that are used for lane changing calibration in VISSIM are given below.

Table 8. Lane Changing Calibration Parameters Values

| Parameters | Own | Trail |
| :--- | :--- | :--- |
| Max deceleration (ft/s ${ }^{2}$ ) | -11.2 | -8.62 |
| $(-1) \mathrm{ft} / \mathrm{s}^{2}$ per distance | 200 ft | 200 ft |
| Accepted Deceleration | -0.88 | -0.88 |
| Waiting time before diffusion | 60 s |  |
| Safety Distance reduction factor | 0.6 |  |
| Max Deceleration for Cooperative Braking | -8.62 |  |
| Min Clearance | 1.64 ft |  |

Evaluation of driver comfort speed distributions is one of the main aspects of a simulation setup, as the improper choice of distribution will result in the wrong assessment of
capacity. It was challenging for our analysis to get preferential driver allocation for the whole section because it was excessively saturated from the data collection time. The third segment (1270-2100 ft.) of the testing area (figure 7) was used to get driver preferential speed distribution. After the end of the diverging point, we assumed drivers were driving in their choice of direction. A speed range between 35 to 60 mph (FFS 55 mph for the study section) of separate distribution was used, as shown in Table 9

Table 9. Drivers Choice Speed Distribution Used in Figure 14

| Speed in mph | Cumulative Distribution |
| :---: | :---: |
| 35.00 | 0.00 |
| 37.67 | 0.19 |
| 42.02 | 0.66 |
| 49.30 | 0.91 |
| 60.00 | 1.00 |

Figure 15 demonstrates the contrast between observed and 3rd section simulation velocity distributions. Again, the distributions of simulation speeds conform very closely to the observed distributions of distance.


Figure 15. Third Segment Speed Distribution Matching with Selected Drivers' Choice Speed Distribution

The testing was performed using macro (comparing speed for each lane) and micro (comparing speed for every $10^{\text {th }}$ of a second) levels. The space means velocity from the second segment (500-1270) was used for testing. A bottleneck formed in this segment initially during
the simulation and then propagated to the first section $(0-500 \mathrm{ft})$. The midpoint of the second section of lanes 1-4 from the left was chosen for effectiveness testing. Finally, the calibration performance was balanced by the space mean speed for each lane and the cumulative speed distribution for the second segment, as seen in figure 16 a and b . Both Micro and Macro velocities are satisfactorily matched to the speed distributions observed.


Figure 16. Speed Comparison for Calibration in Macro Level (A) and Micro Level (B)
Because the measurement section shows that the traffic is already over-saturated at the beginning of the data collection time frame, it is unacceptable to use the driver's choice of the speed range for calibration. The first segment's speed distribution was also checked for the
correct speed scale since the first segment's movement influences the second segment. The distribution was kept the same as the cumulative distribution of the driver's expectations. The speed scale used was between 25 and 50 mph . The simulation output was compared in two ways. One with each lane space means speed comparison, which shows an almost good match between observed and simulation output data Figure 16(a) which is named as macro-level analysis and another with the second segment of the study section cumulative speed comparison between observed and simulated data Figure 16(b) which is named as micro-level analysis. A further paired t-test was performed comparing speed data between each lane with a $95 \%$ confidence interval where the null hypothesis was no difference between mean. P-value was found at 0.872792 , which is more than 0.05 , with only six observed data existing which means there's insufficient evidence in favor of the alternative hypothesis that the means differ. The excel output is given below in Table 10

Table 10. Excel Output of Space Mean Speeds T-Test for Weaving in Calibration

|  | Variable 1 | Variable 2 |
| :--- | ---: | ---: |
| Mean | 26.89 | 26.56 |
| Variance | 32.35 | 0.90 |
| Observations | 6 | 6 |
| Pearson Correlation | 0.96 |  |
| Hypothesized Mean |  |  |
| Difference | 0 |  |
| df | 5 |  |
| t Stat | 0.16 |  |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail | 0.43 |  |
| t Critical one-tail | 2.01 |  |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail | 0.87 |  |
| t Critical two-tail | 2.57 |  |

### 4.3.3. Base Model Validation for Weaving Section

This section discusses the validation of the model using a different time frame that was not used for calibration. To do this, the second 15 minutes was chosen, then space means speed
(SMS) of lanes 1-6 of the midsection (500-1270) and cumulative speed distribution of the same section were compared to the observed speeds. The 2 nd 15 minutes SMS was lower than the first 15 minutes data (compared to the observed speed value 1 st and 2 nd 15 minutes). The velocity range (20-45 mph) was expanded to test the same distribution array as before. It is not easy to match the cumulative speed distribution curve (Figure 14b) because the data set contains the value of one-tenth of a second each. The macroscopic positioning shows improved visibility, a near straight-line SMS comparison in research (Figure 17a). A further paired t-test was performed again with a $95 \%$ confidence interval where the null hypothesis was no difference between mean. P-value was found at 0.909128 , which is more than 0.05 , with only six observed data existing which means there's insufficient evidence in favor of the alternative hypothesis that the means differ. The result is given in Table 11.


Figure 17. Speed Comparison for Validation in Macro Level (A) and Micro Level (B)
Table 11. Excel Output of Space Mean Speeds T-Test for Weaving Segment Validation

|  | Observed | Simulation |
| :--- | ---: | ---: |
| Mean | 23.81 | 24.00 |
| Variance | 25.15 | 1.19 |
| Observations | 6 | 6 |
| Pearson Correlation | 0.97 |  |
| Hypothesized Mean |  |  |
| Difference | 0 |  |
| df | 5 |  |
| t Stat | -0.12 |  |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail | 0.45 |  |
| t Critical one-tail | 2.01 |  |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail | 0.90 |  |

After successfully calibrating and validating the base models, the net step introduces AV/CAVs into the simulation setup. This step involves adding demand for different penetrations of AVs/CAVS and developing the CC parameters for these vehicles. Therefore, the next section discusses the implementation of CC parameters for different penetration levels of AV/CAVs.

### 4.4. Wiedemann Parameters for the AV Vehicles Classes / Simulations

The Coexist project proposed Wiedemann 99 CFM CC parameter values for different AV classes after numerous trials validated against naturalistic data. The data were gathered with actual automated standard traffic vehicles in the real traffic environment. With 3 test vehicles, several driving scenarios have been implemented. Various data kinds have been collected per device type: MOVE CAN interface, OXTS RTK-GPS, IBEO LiDAR, video capture (webcams). The data collected was assessed utilizing script algorithms that provide various charts. Data collection was completed from August 28th to September 1st, 2017, on the test track in Helmond, Netherlands, by TASS International. Given the lack of resources to estimate these parameters, this research uses the parameters from the Coexist project for CC values. Table 12 shows the parameter values for different AV classes used in this study to investigate mixed scenario capacity assessment from the Coexist project.

In this table, a default set of CC parameters also shows the difference between default with AV parameters. CC0 value is almost the same for each vehicle type except All-knowing. It maintains V2V communication; CC 1 is lower to normal due to sensor and the weakest among four due to sensor and connectivity. According to Coexist, because of the deterministic behavior of automated vehicles and to reflect much smaller oscillation in vehicle following, $\mathrm{CC} 2, \mathrm{CC} 6$ can be reduced up to zero, and CC4, CC5 can be significantly reduced (Coexist2.5, 2004). CC3 value is the same for each type except cautious vehicle as it moves cautiously to the leading vehicle.

The autonomous vehicle does not change acceleration rapidly; that's why the CC7 value is lower than the default value. From stopping, when AV starts moving while stream moves forward, cautious vehicle response slower to ensure proper safety but All-knowing vehicle response quicker due to connectivity. As a result, the CC8 value is higher for All-knowing and lower for the cautious vehicle. The same logic is applicable for CC9, which is an acceleration value of more than 50 mph .

Table 12. Calibration Parameters Value for AV Classes (Coexist2.4, 2018)

| Parameters | Default | AV Cautious | AV Normal | AV All- <br> Knowing <br> $(C A V)$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CC0 | 4.92 | 4.92 | 4.92 | 3.28 | Ft |
| CC1 | 1.5 | 1.5 | 0.9 | 0.6 | Second |
| CC2 | 13.12 | 0 | 0 | 0 | Ft |
| CC3 | -8 | -10 | -8 | -6 | Second |
| CC4 | -0.35 | -0.1 | -0.1 | -0.01 | $\mathrm{~m} / \mathrm{s}$ |
| CC5 | 0.35 | 0.1 | 0.1 | 0.1 | $\mathrm{~m} / \mathrm{s}$ |
| CC6 | 11.44 | 0 | 0 | 0 | $1 /\left(\mathrm{m} . \mathrm{s}^{2}\right)$ |
| CC7 | 0.82 | 0.33 | 0.33 | $\mathrm{ft} / \mathrm{s}^{2}$ |  |
| CC8 | 11.48 | 9.84 | 11.48 | 13.12 | $\mathrm{ft} / \mathrm{s}^{2}$ |
| CC9 | 4.92 | 3.94 | 4.92 | 6.56 | $\mathrm{ft} / \mathrm{s}^{2}$ |

### 4.5. AV Vehicle Classes Mixed Scenario Penetration Levels Identification

It is impossible to model all the possible combinations of mixed scenarios that can happen in the future. Therefore, this research identified several penetration levels of AVs based on Figure 3 shows that less than 15\% of all travel will be by AVs/CAVs by 2040. By 2045 this increases to $25 \%$. It further increases to $50 \%$ by 2055 and $75 \%$ by 2065 . This gives some context, especially to transportation planners and decision-makers. Roadways are planned to last about 30 years, and in the next, five to ten years, planners and decision-makers need to start considering the impacts of AVs/CAVs. Therefore, for this research, we use base penetration levels of AV/CAVS of 25\% (approximately the year 2045), 40\% (roughly the year 2050), $75 \%$ (the year 2065), and $100 \%$ (approximately the year 2080).

### 4.6. Other Simulation Settings

The simulation system plays a significant role in achieving the accurate performance of the analysis. Previous studies have shown that the simulation resolution, random seed, number of runs, simulation speed could all influence the output of simulations (VDOT, 2020). Therefore, the description of those parameters has been given in Table 13 below with the value/text that has been used in this dissertation.

Table 13. Simulation Setup Parameters Description and Value

| Parameters | Description (Vissim, 2020) | Value / Text | Reason to Use |
| :--- | :--- | :--- | :--- |
| Simulation <br> Resolution | The simulation resolution impacts the behavior <br> of vehicles, pedestrians, and the way they <br> interact. Therefore simulations, using different <br> simulation resolutions produce different results. | 10 | Higher resolution provides <br> smoother and realistic traffic <br> movement but also makes <br> lowers the analysis time. So, <br> getting an optimum value is |
| necessary |  |  |  |

It is therefore essential to ensure that these are used in the model. N is calculated using the equation given below (WSDOT, 2014).

$$
\begin{equation*}
\mathrm{N}=\left(* t_{0.025 N-1}\right)^{2} \tag{4.3}
\end{equation*}
$$

Here,
$\mathrm{R}=$ Confidence Interval for the true mean
$\mathrm{t}_{.025, \mathrm{~N}-1}=$ Student's t -statistic for a two-sided error of 2.5 percent (totals 5 percent) with $\mathrm{N}-1$ degrees of freedom (related to a 95\% Confidence Level).
$S=$ Standard Deviation about the mean for selected MOE
$\mathrm{N}=$ Number of required simulations runs
For calculation purposes, t value has been considered 2.3 (for ten runs referred by (WSDOT, 2014)), S value is found 4.29 (9 runs result analysis where each run provides four values as there are four lanes in basic freeway segment), $R$-value is 5 (margin of error is considered +- 5). Using these values, N values show 15.56. As part of considering integer, N is counted 15 for this study.

The basic freeway capacity of the highway section depends on the free flow rate (FFS) based on HCM. It is important to establish a separate velocity distribution for different FFS. For each free-flow speed upper bound and lower bound has been chosen within a difference of 25 $\mathrm{mph}(60-35=25 \mathrm{mph} ; 65-40=25 \mathrm{mph} ; 70-45=25 \mathrm{mph} ; 75-50=25 \mathrm{mph})$ but in each case frequency was kept same. The proposed speed range and the corresponding distribution are given below (Table 14 as part of the speed distribution in the simulation setup.

Table 14. Speed Range and Distribution for Different FFS

| 55 mph |  | 60 mph | 65 mph |  |  | 70 mph |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 35.00 | 0.00 | 40.00 | 0.00 | 45.00 | 0.00 | 50.00 | 0.00 |  |
| 37.69 | 0.19 | 42.69 | 0.19 | 47.69 | 0.19 | 52.57 | 0.19 |  |
| 42.02 | 0.67 | 46.95 | 0.66 | 51.95 | 0.66 | 57.02 | 0.66 |  |
| 49.35 | 0.91 | 54.35 | 0.91 | 59.35 | 0.91 | 64.35 | 0.91 |  |
| 60.00 | 1.00 | 65.00 | 1.00 | 70.00 | 1.00 | 75.00 | 1.00 |  |

### 4.7. Summary

In this chapter, the step-by-step calibration and validation process for both basic freeway and weaving section were described. One of the significant findings of this section is the CC value for both parts of the freeway. Earlier drivers' choice speed distribution was measured. At the end of this chapter, simulation setup parameters were discussed, speed range, and distribution for $55,60,65,70 \mathrm{mph}$.

## 5. RESULTS AND DISCUSSION

This chapter discussed the capacity measurement of a base model scenario for both basic freeway and weaving capacity and compared with mixed traffic cases from lower to higher penetration of autonomous and connected autonomous vehicles. The traditional vehicle is used only to measure the base model capacity for the basic freeway and weaving sections.

### 5.1. Base Model Capacities for Basic Freeway Segment

One of the major outputs of the simulations is the capacity calculations for each scenario. Capacity is defined as the maximum number of vehicles that can traverse a roadway over a given time (vehicles per hour for this study). The capacity resulting from the simulation is measured as the passenger car/hr/ln. Figure 18 shows the capacity (veh/hr) output from the base model simulation with only conventional cars compared to the Highway Capacity Manual values (HCM 2016) for different speeds. It shows data for a $100 \%$ passenger car scenario and a $98 \%$ passenger $\mathrm{car} / 2 \%$ heavy vehicle (truck) scenario.

The capacity from the simulation scenarios is lower in comparison to the HCM capacity for both scenarios. This is because the capacity values in the model take into account the roadway conditions, whereas the HCM capacities are an ideal capacity. The differences are expected in practice and underscore the importance of estimating the capacities rather than using predefined capacities. Additionally, the $2 \%$ scenario capacities are lower since trucks by nature occupy more space and leave bigger gaps. Increasing the percentage of trucks, even more, will further reduce the capacities.

These capacities give us a starting point for comparing the impacts of AVs/CAVs to traditional vehicles. For example, suppose capacities from scenarios that have AV/CAVs are lower than the base capacities. In that case, it means the roadway will carry fewer cars, and the

AV/CAVs/Traditional vehicle scenario will potentially reduce roadway capacities compared to today for identical roadways.


Figure 18. Base Model Simulated Capacities Compared to Base HCM
The capacity value has been determined based on the average of 15 simulation runs. Each run provides four values for basic freeways and six values for the weaving segment as there are four lanes for the basic freeway, and six lanes for the weaving segment. Each run gives analysis for five minutes flow results. Multiplying with twelve with five minutes flow data provides capacity value (veh/hr). Standard errors regarding all capacity values (base case, single class, and mixed scenarios) have been determined and shown in Appendix C for the basic freeway and weaving section.

### 5.2. Capacities for Single Class AVs at Different Levels of Penetrations and FFS for Basic <br> Freeway Segment

This section discusses the results when only one AV class is used in each model for different speeds and penetration levels compared with the base case. Here, the base case means simulation output of traditional car result with $2 \%$ truck traffic. Figure 19 to Figure 22 shows the
comparisons of each AV class at different speeds and penetrations with the base case model capacities.

Figures 19 to Figure 22 shows the comparison of different penetration levels for other AV/CAVs technologies concerning traditional vehicles. For AV cautious technology only, the curve is a polynomial concave upward sloping curve. The model output indicates that Capacities will reduce at all penetration levels and speeds for $A V$ cautious. Capacities reduce as penetration levels increase to about $75 \%$ penetration levels, where capacities increase again. $75 \%$ penetration for AV-cautious is an inflection point where the impacts of AV-cautious change from decreasing to increasing, although they will still be below traditional vehicles. At $100 \%$ penetration levels of AV-cautious, the capacities are still below traditional vehicle capacities. The implication is that AV-cautious will negatively impact capacities, and roadways will carry fewer cars than traditional cars today. There will be increased congestion if AV-cautious vehicles are the only adopted technology in AVs, ceteris paribus.


Figure 19. Capacity Impacts of Single AV Class at 55 mph and Different Penetration Levels


Figure 20. Capacity Impacts of Single AV Class at 60 mph and Different Penetration Levels


Figure 21. Capacity Impacts of Single AV Class at 65 mph and Different Penetration Levels


Figure 22. Capacity Impacts of Single AV Class at 70 mph and Different Penetration Levels The CC0 value of the cautious vehicle is lower than a traditional vehicle which results in a lower negative impact in $100 \%$ penetration than $75 \%$ penetration, and the curve looks bent upper side in cautious vehicle assessment. Studies on calibrating sensitivity parameters indicate that capacity is inversely proportional to CC0 and CC1 (Lownes \& Machemehl, 2006). This means lower CC0, CC1 results in higher capacity. There is no Vehicle to Vehicle (V2V) or Vehicle to Infrastructure (V2I) communications in AV-cautious. The results mean that V2V and V2I need to be incorporated into their technologies to truly capture AVs' benefits. Several cars like Tesla and Audis can perform certain AV functions under certain road conditions when writing this dissertation. The time gaps (CC1 in the Wiedemann model) that these vehicles keep for safety purposes are long enough that traditional vehicles typically cut in front of them in a travel stream. This is further exacerbated in oversaturated conditions where their bumper-tobumper headways (CCO) are longer than what traditional vehicles typically maintain.

Technology similar to the AV-cautious cars will perhaps be the first implemented when AVs become available. It is probably due to a combination of regulations, lack of trust, and potential legal issues. The results from this study show that we might get a period in the initial
phases of the introduction of AVs that we experience negative capacity gains. Transportation planners should consider this cautious vehicle penetration rate and plan for the future expansion of specific freeway sections. The plan includes how many years a significant capacity reduction will occur, necessary capacity enhancements, and a time frame for constructing a new capacity. To understand penetration rate, automobile manufacturing companies' production rate, vehicle sales rate, car registration rate, and most consumers' acceptance rate for autonomous vehicles should be considered.

Using curve fitting techniques, the best fit polynomial cuboid function for all the curves for the AV-cautious speed classes was developed. As a result, the functions all had r-square values of 1 , indicating a perfect fit, shown in equation 5.1.

$$
\begin{equation*}
Y=\alpha+b x+c x^{2}+d x^{3} \tag{5.1}
\end{equation*}
$$

Where,
$\mathrm{Y}=$ is the estimated percentage change incapacity,
$\alpha=$ slope of the curve
$x=$ penetration level of AV-cautious
$\mathrm{b}, \mathrm{c}$ and d are parameter estimates for the equation's first, second, and third-order derivatives.
The parameter estimates for AV-Cautious are shown in Table 15. Planners and traffic engineers can use these parameter estimates to estimate base capacity changes when forecasting the impacts of AV-cautious vehicles.

Table 15. Parameter Estimates for the Fitted Cuboid Function for Different Speed Classes and AV-Cautious Penetration Levels for a Basic Freeway Section.

| PARAMETER ESTIMATES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEED | $\alpha$ | b | c | d | r-square |  |
| 55 | -0.05 | 0.50 | -1.51 | 1.04 | 1 |  |
| 60 | -0.03 | 0.23 | -1.18 | 0.92 | 1 |  |
| 65 | -0.02 | 0.26 | -0.92 | 0.61 | 1 |  |
| 70 | -0.03 | 0.27 | -0.89 | 0.59 | 1 |  |

In contrast to AV- cautious, there are capacity improvements for AV Normal and AV All-knowing at all penetration levels. The curves shown in Figures 19 to Figure 22 follow a Sigmoid S-curve shape. This suggests the capacity impacts for these two technologies follow a logistic function found in natural, business, and technological domains and used to describe dynamic systems of competition. Using curve fitting techniques, the Capacity impacts increase slowly as AV penetration levels increase up to about a $60 \%$ penetration level which is the point of diminishing returns in terms of capacity improvements and maximum growth. Then the impacts increase at an increasing rate up to $75 \%$ penetration, increasing at a decreasing rate. The curves thus indicate that the critical mass penetration point for single class AV-normal or AVcautious is about $50 \%$ penetration levels. This is where we will start seeing increasing impacts on roadway capacities for basic highways. As expected, the effects of AV All-knowing are higher than those of AV Cautious due to the aggressiveness in the AV All-knowing cars and their ability to communicate with other vehicles and the transportation infrastructure.

The AV normal and AV all-knowing classes show capacity gains for all speeds and penetration levels as shown in comparison to traditional vehicles. AV all-knowing shows higher capacity gains than AV-normal. Due to vehicle sensors and connectivity to other vehicles and the transportation system, their vehicle response time is quicker than traditional vehicles resulting in lower CC0 and CC1. These vehicles, as expected, will leave lower time and space gaps between
a lead and the following vehicle, thereby increasing capacities without changing the transportation supply. These vehicles will become more available as the technology matures, and their confidence grows both the public and decision-makers.

The AV normal and AV all-knowing classes show capacity gains for all speeds and penetration levels as shown in comparison to traditional vehicles. AV all-knowing shows higher capacity gains than AV-normal. Due to vehicle sensors and connectivity to other vehicles and the transportation system, their vehicle response time is quicker than traditional vehicles resulting in lower CC0 and CC1. These vehicles, as expected, will leave lower time and space gaps between a lead and the following vehicle, thereby increasing capacities without changing the transportation supply. These vehicles will become more available as the technology matures, and their confidence grows both the public and decision-makers.

Interestingly, the model for AV Normal and AV-All knowing is different from the model for AV-cautious. However, using curve fitting techniques, the Sigmoidal 4-parameter Logistic (4-PL) curve was the best fit for all the curves. This is a significant finding and demonstrates the importance of correctly identifying the technology AVs will use to determine their impacts on the transportation system correctly.

The general sigmoidal 4-PL equation is shown in equation 5.2. The R -square ranges for all the models were between 0.97 ad 0.99 , offering a perfect fit between the Sigmoidal 4-PL model.

$$
\begin{equation*}
Y=d+\frac{a-d}{1+\left(\frac{x}{c}\right)^{b}} \tag{5.2}
\end{equation*}
$$

Where,
$\mathrm{Y}=$ is the estimated percentage change of capacity,
$\mathrm{a}=$ is the minimum or theoretical capacity change at zero AV penetration
$\mathrm{b}=$ Slope of the curve,
$\mathrm{c}=\mathrm{I}$ mid-range or inflection point, and
$\mathrm{d}=$ is the theoretical maximum capacity change at $100 \% \mathrm{AV}$ penetration

Table 16 shows the parameter estimates for single class AV-Normal and AV-All
Knowing for the sigmoid curve shown in equation 4.2. These values can be transferred and used in planning and traffic operations studies that measure the potential impact of AV-normal and AV-all knowing based on different penetration levels for basic freeways. The values can be used to interpolate penetration levels that are not shown in the graphs.

Table 16. Parameter Estimates for a, b, c, and d for Single Class AV-Normal/All-Knowing at Different Speeds for Basic Freeway Section

| AV-CAUTIOUS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEED | a | b | c | d |  |  |
| $\mathbf{5 5}$ | 4.35 | 7.18 | 67.03 | 24.68 |  |  |
| $\mathbf{6 0}$ | 4.95 | 6.20 | 62.23 | 24.68 |  |  |
| $\mathbf{6 5}$ | 5.50 | 6.07 | 58.63 | 26.52 |  |  |
| $\mathbf{7 0}$ | 6.66 | 7.85 | 61.62 | 29.99 |  |  |
|  | AV-All Knowing |  |  |  |  |  |
|  | $\alpha$ | b | c | d |  |  |
| $\mathbf{5 5}$ | 5.79 | 9.942 | 59.98 | 27.50 |  |  |
| $\mathbf{6 0}$ | 6.48 | 8.039 | 62.23 | 29.99 |  |  |
| $\mathbf{6 5}$ | 7.72 | 7.85 | 59.87 | 30.43 |  |  |
| $\mathbf{7 0}$ | 8.18 | 6.914 | 61.38 | 33.99 |  |  |

The operation of $A V$ will succeed if there is the ability to move safely in mixed situations. A reserved lane on the highway could be a better solution for separating autonomous and traditional vehicles for better operation. Reserve lane will be dedicated only for autonomous vehicle driving where conventional vehicles are not allowed to drive. This way, the reserved lane will provide better capacity than other lanes due to lower headway value. Also, lane speed could
be an increase in higher traffic demand. But in lower AV penetration, a reserved lane might not be a good solution as economic or socially.

In $100 \%$ penetration, capacity gains could be $33 \%$ higher than traditional vehicles only. If all vehicles are changed into AV, CAV, each lane can handle $33 \%$ more vehicles. For example, suppose we had a three-lane highway, right now with only traditional vehicles. In that case, it would be possible to reduce the three-lane highway to a two-lane highway without affecting the efficiency of the roadway. Extra lanes can be removed or repurposed and used, such as parking shared autonomous vehicles or used as bike or bus lanes. Without removing additional lanes or lanes, it might be better to turn that lane into a dedicated lane for AV heavy vehicles, including buses and trucks. The heavy vehicle has a higher ESAL than the passenger vehicle. There is a potential economic benefit to having a dedicated HOV AV lane due to heavy vehicles; pavement deteriorates more than passenger car lanes; it will be easy to identify and do the maintenance work for a dedicated lane.

### 5.3. Capacities of Mixed Levels of AVs at Different Penetrations for Basic Freeway Segment

A mixed AV/CAV situation is expected throughout the immediate future, where conventional and modern AV classes will operate together in the same segment. The results for a matrix of different penetration of traditional and various AVs (year based) are shown in Table 17 to Table 22. The scenarios were selected based on Figure 3 and represent additional planning horizon years. The following subsections discuss these results in detail. This research does not consult lower levels of penetrations as they have negligible impacts on capacities.

### 5.3.1. 25\%AV/CAVs and 75\% Traditional Vehicles Circa Year 2045

AVs will be deployed within the next two decades or sooner, decreasing traditional vehicles on the road network. The capacity impacts of various AV types and their penetration levels at $25 \%$ of total travel on transportation capacity are estimated and shown in Table 17. Two scenarios were developed with different penetration levels of the different $A V$ technologies. Scenario 1 included 10\% AV- Cautious,10\% AV-Normal, and 5\% AV All-knowing. Scenario 2 included 5\% AV-Cautious, $10 \%$ AV-Normal, and $10 \%$ AV All-knowing. Whereas there were increases in capacities for both scenarios, the maximum impact was less than $4 \%$. The impact was not significant enough in both scenarios. In the $2^{\text {nd }}$ scenario, the AV All-knowing penetration is higher than AV-cautious, resulting in higher capacity change than the $1^{\text {st }}$ scenario. As capacity increment is not significant in both cases, it will look the same in traffic congestion, delay, and overall traffic operation condition.

On top of that, there might be a smoother traffic condition during pick times as capacity will increase but not significantly level. Roads with 55 mph will see no impact or same as now, and roads with 70 mph will see the highest mark at $25 \%$ penetration levels for different AV classes. Thus, there could be reduced bottlenecks and lower speed oscillation in traffic streams than $100 \%$ traditional vehicle conditions.

Table 17. Capacity Change in Mixed Scenario with 75\% Traditional Cars at Basic Freeway Segment

|  | 25\% AV / 75\% traditional |  |  | 25\% AV / 75\% traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | $10 \%$ <br> Cautious | $\begin{aligned} & 10 \% \\ & \text { Normal } \end{aligned}$ | 5\% All- <br> Knowing | 5\% <br> Cautious | $\begin{aligned} & 10 \% \\ & \text { Normal } \end{aligned}$ | 10\% All- <br> Knowing |
| 55 |  | 1.53 |  |  | 2.14 |  |
| 60 |  | 2.47 |  |  | 2.86 |  |
| 65 |  | 2.62 |  |  | 2.96 |  |
| 70 |  | 2.97 |  |  | 3.93 |  |

### 5.3.2. 35\% AV/CAVs and $\mathbf{6 5 \%}$ Traditional Circa Year 2050 with Mixed

Three decades from now, the penetration level will go up to $35 \%$ of total vehicles Table 18. In these circumstances, mixed capacity has been determined with traditional, AV, and CAV. Simulation results show that lower CAV mixed with higher AV cautious results lower capacity increment (scenario 1), whether another method is a mix of higher CAV and lowers cautious vehicles results in higher capacity increment. But both scenarios' results are noticeable but not significant like the previous case.

Table 18. Capacity Change in Mixed Scenario with 65\% Traditional Cars at Basic Freeway Segment

| $35 \%$ AV / 65\% traditional |  |  |  | $35 \%$ AV / 65\% traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | $10 \%$ <br> Cautious | $20 \%$ <br> Normal | $5 \%$ All- <br> Knowing | $5 \%$ <br> Cautious | $10 \%$ <br> Normal | $10 \%$ All- <br> Knowing |
|  |  | 1.93 |  | 3.50 |  |  |
| 60 |  | 2.50 |  | 3.50 |  |  |
| 65 | 3.00 |  | 4.00 |  |  |  |
| 70 |  | 3.50 |  | 5.98 |  |  |

### 5.3.3. 50\% AV/CAVs and $\mathbf{5 0 \%}$ Traditional Circa Year 2055 with Mixed Levels of

## AVs/CAVs

About three decades from now, the penetration levels of AVs will potentially increase even more and make up about $50 \%$ of total vehicle travel. It is estimated that this will happen circa early to mid-2050s. It puts us on the planning horizon of most current long-range transportation plans. Two scenarios with overall $50 \%$ penetration of AVs and different AV mixes were simulated, and the results are reported in Table 19. Scenario 1 included 20\% AVCautious,20\% AV-Normal, and 10\% AV All-knowing. Scenario 2 included 10\% AVCautious, $20 \%$ AV-Normal, and $20 \%$ AV All-knowing. The capacity gains range from $2.54 \%$ to around $7.76 \%$. The results show a slightly higher percentage of change in capacity value for the
$2^{\text {nd }}$ scenario where the All-knowing percentage is higher than a cautious vehicle. If the $2^{\text {nd }}$ scenario case prevails, there will be a noticeable improvement in traffic congestion and bottleneck situation but not big enough to reduce road capacity impacts as the speeds increase as expected. Comparing the mix scenario at $50 \%$ to a single class AV, we see that the single class AV scenarios (Table 19), AV Normal, and AV All-knowing have higher capacity impacts than the mixed AV scenarios. For a 70mph basic freeway, the capacity impact of $13 \%$ for AV Allknowing is almost double the capacity impacts for the mix scenario with $50 \%$ of AV's best casemixed scenario. These results show that it is important to consider the mix of AV types when evaluating the capacity impacts of AVs.

Table 19. Capacity Change for Mixed Scenarios with 50\% Traditional Cars at Basic Freeway Segment

| $50 \%$ AVs / 50\% traditional |  |  |  |  |  |  |  |  | $50 \%$ AVs / 50\% traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | $20 \%$ <br> Cautious | $20 \%$ <br> Normal | $10 \%$ All- <br> Knowing | $10 \%$ <br> Cautious | $20 \%$ <br> Normal | 20\% All- <br> Knowing |  |  |  |  |  |
|  | 2.54 |  | 5.29 |  |  |  |  |  |  |  |  |
| 60 |  | 2.66 |  | 5.92 |  |  |  |  |  |  |  |
| 65 | 3.68 |  | 6.10 |  |  |  |  |  |  |  |  |
| 70 |  | 3.93 |  |  |  |  |  |  |  |  |  |

### 5.3.4. $60 \%$ AV/CAVs and 40 \% Traditional Vehicles Circa Year 2060 with Mixed Levels of

 AVs/CAVsFour decades from now, the penetration levels of AVs are expected to increase even further and are estimated at $60 \%$ of all vehicles.

Table 20shows the alternatives modeled under this scenario. Three alternatives are modeled for different penetration levels of AV mixes. The results show that the gains in capacity increase as the AV technologies improve. The highest growth for the scenarios presented is for the 70 mph basic freeway with 5\% AV Cautious, $30 \%$ AV-Normal, and $25 \%$ AV All-Knowing. It
is about 12 times the capacity change of the same roadway with higher levels of AV-Cautious. It will reduce other traffic congestions measures like bottlenecks, oscillations, accidents, etc. However, it is perhaps not enough to reduce the roadway capacity through lane reductions or dedicated lanes. The operations of roadways will see marked improvements, however.

Table 20. Capacity Change for Mixed Scenarios with $60 \%$ AVs and $40 \%$ Traditional Cars for Basic Freeway Segment

|  | 60\%AVs / 40\% traditional |  |  | 60\%AVs $/ 40 \%$ traditional |  |  | 60\%AVs $/ 40 \%$ traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | $30 \%$ <br> Cautious | $\begin{aligned} & 20 \% \\ & \text { Normal } \end{aligned}$ | 10\% All- <br> Knowing | $20 \%$ <br> Cautious | $\begin{gathered} 30 \% \\ \text { Normal } \end{gathered}$ | 10\% All- <br> Knowing | $5 \%$ <br> Cautious | $\begin{gathered} 30 \% \\ \text { Normal } \end{gathered}$ | $25 \%$ All- <br> Knowing |
| 55 |  | 0.71 |  |  | 5.60 |  |  | 9.87 |  |
| 60 |  | 0.59 |  |  | 6.02 |  |  | 10.06 |  |
| 65 |  | 0.78 |  |  | 6.40 |  |  | 10.76 |  |
| 70 |  | 1.15 |  |  | 7.47 |  |  | 12.07 |  |

### 5.3.5. 90\% AV/CAVS and $\mathbf{1 0 \%}$ Traditional with Mixed Levels of AVs/CAVS Circa Year

2070
Fifty years from now, around $90 \%$ of the vehicle will be autonomous. Three scenarios have been shown below. The 1st and 2nd scenarios have the same number of cautious vehicles, and the last scenarios have higher AV normal and CAV than the cautious vehicle. It is assumed that the number of cautious vehicles will be lower around that time. The results show (Table 21) that capacity increment shows higher values when there is a higher AV normal and CAV percentage. At 70 mph , capacity increase around $21 \%$ with $85 \%$ autonomous vehicle.

Table 21. Capacity Change for Mixed Scenarios with $90 \%$ AVs and $10 \%$ Traditional Cars for Basic Freeway Segment

|  | 90\%AVs / 10\% traditional |  |  | 90\%AVs / $10 \%$ traditional |  |  | 90\%AVs / $10 \%$ traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | $20 \%$ <br> Cautious | $30 \%$ Normal | 40\% All- <br> Knowing | $20 \%$ <br> Cautious | $\begin{gathered} 40 \% \\ \text { Normal } \end{gathered}$ | $30 \%$ All- <br> Knowing | $5 \%$ <br> Cautious | $\begin{aligned} & 40 \% \\ & \text { Normal } \end{aligned}$ | 45\% All- <br> Knowing |
| 55 |  | 3.53 |  |  | 10.13 |  |  | 15.91 |  |
| 60 |  | 6.26 |  |  | 13.18 |  |  | 16.96 |  |
| 65 |  | 8.54 |  |  | 14.89 |  |  | 20.24 |  |
| 70 |  | 10.48 |  |  | 17.33 |  |  | 21.29 |  |

### 5.3.6. $\mathbf{1 0 0 \%}$ AV/CAVS and $\mathbf{0 \%}$ Traditional with Mixed Levels of AVs/CAVS Circa Year 2080

About 60 years from now, the literature suggests that all vehicles will be AVs/CAVs (Litman, 2021). Two alternatives for different mixes of AV classes were developed, with the results shown in Table 21. The capacity gains are much higher than the previous scenarios ranging from $16.48 \%$ to $29.31 \%$ for the scenario with $80 \%$ AV All-knowing and $20 \%$ AV Normal. The change means that if the study section gets $100 \%$ AV All-knowing without changing the road geometry, it will automatically increase the capacity by $33 \%$. There will be an operational and economic benefit to introducing a reserved/ dedicated lane for AV/CAV or heavy vehicles in all scenarios, which will help maintain constant gaps between similar types of vehicles equivalent to platooning. Planners and engineers will be able to reduce roadway capacities through lane reductions. These could be used for parking shared AVs and CAVs or repurposed for other purposes like rapid bus transit, bike, and pedestrian facilities. Overall, the maintenance cost of these roadways will go down, accidents will probably reduce, and the overall economic and societal benefits will be positive. Compared to the $100 \%$ single class AVAll knowing alternative, the capacity gains are slightly lower but not significantly lower. The implication is that with high AV-Cautious and lower levels of AV-Normal, roadways will start seeing similar benefits to a $100 \%$ CAV situation.

Table 22. Capacity Change in Percent for Mixed Scenarios with 0\% Traditional Cars at Basic Freeway Segment

| 0\% traditional |  |  |  | 0\% traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | 10\% Cautious | $30 \%$ Normal | 60\% All- <br> Knowing | 0\% Cautious | 20\% <br> Normal | 80\% All- <br> Knowing |
| 55 |  | 16.48 |  |  | 21.06 |  |
| 60 |  | 20.32 |  |  | 26.23 |  |
| 65 |  | 21.12 |  |  | 27.42 |  |
| 70 |  | 22.99 |  |  | 29.31 |  |

### 5.4. Planning Horizon Capacity for Basic Freeway Segment

Planning horizon capacity for different free-flow speeds has been provided below as an overview of the demographics (Figure 23 to Figure 26). Underneath those, four possible outcomes have been mentioned: the best-case scenario, most probable scenario; probably scenario; and worst-case scenario. However, the best- and worst-case scenarios are different. The best- and worst-case scenarios represent capacity impacts due to single-class CAV and cautious penetration. The probable and most likely scenarios represent the mix scenario where CAV, AV normal, cautious, and traditional vehicles will co-exist in the future in some form. As it is noticeable from the graphs below, autonomous vehicles are expected to reach a certain proportion of the basic highway section in various years.


Figure 23. Planning Horizon Capacities for 55MPH Roadway


Figure 24. Planning Horizon Capacities for 60MPH Roadway


Figure 25. Planning Horizon Capacities for 65MPH Roadway


Figure 26. Planning Horizon Capacities for 70MPH Roadway

### 5.5. Base Model Capacities for Weaving Segment

Using a density-based equation, the capacity resulting from the observation and initial simulation run is measured as veh/hr/ln unit. This research included both cars ( $98 \%$ traffic) and heavy vehicles (2\%). Figure 27 shows the capacity output for the basic freeway segment compared to the simulation output for the $2 \%$ heavy vehicle scenario and the density-based HCM capacity. The capacity from the simulation scenarios is lower in comparison to the HCM capacity.


Figure 27. Capacity Value Comparison between HCM And Simulation Output for Weaving Section

### 5.6. Capacities for Single Class AVs at Different Levels of Penetrations and FFS for Weaving Segment

Compared to a traditional vehicle, capacity changes due to single class AVs have been shown in Figures 28 to 31. The results show capacity gains at all penetration rates relative to conventional automobiles for AV normal and All-knowing vehicles. Due to vehicle sensors and connections to other vehicles and the transportation network, resulting in lower CC 0 and CC 1 values (Table 12). The maximum benefit for the $55-70 \mathrm{mph}$ highway at different penetration is shown (Figure 28 to 31 ).

This impact is slightly different from than basic freeway segment. For each of the freeflow speeds, graphs show different movements for various autonomous vehicles. The blue color line denotes that AV cautious shows a significant capacity change after $50 \%$ market penetration. Same as BFS, $75 \%$ shows a higher impact than $100 \%$ as the CC0 value of the cautious vehicle is lower than a traditional vehicle.

AV normal and AV All-knowing denotes orange and ash color, showing a significant positive impact on weaving capacity after $40 \%$ market penetration. In addition, both CC0 and CC 1 values are higher for All-knowing than for a normal vehicle. As a result, AV normal shows a comparatively lower impact than All-knowing in each case of free-flow speed. Significant capacity increments during or after $40 \%$ market penetration in all FFS cases and highest in $100 \%$ penetration.


Figure 28. Capacity Changes for AV All-Knowing for 55 mph FFS and Compared to Traditional Vehicles in Weaving Section


Figure 29. Capacity Changes for AV All-Knowing for 60 mph FFS and Compared to Traditional Vehicles in Weaving Section


Figure 30. Capacity Changes for AV All-Knowing for 65 mph FFS and Compared to Traditional Vehicles in Weaving Section


Figure 31. Capacity Changes for AV All-Knowing for 70 mph FFS and Compared to Traditional Cars in Weaving Section

Like the basic freeway segment, in $100 \%$ AV penetration, extra lanes can be used as dedicated heavy vehicle lanes that will help to avoid weaving challenges for the passenger cars. Also, the dedicated lane will prioritize pavement construction due to the higher ESAL value of the truck and bus. In a mixed case scenario where there will be a higher rate of AV than a traditional vehicle, a reserve or dedicated lane for AV might show better performance than mixed lanes by speeding up the design speed even in higher demand.

Using curve fitting techniques, the best fit polynomial cuboid function for all the curves for the AV-cautious speed classes was developed. The functions all had r-square values of 1 , indicating a perfect fit, as shown in Table 23. The polynomial function follows the same equation as 4.1. Planners and traffic engineers can use these parameter estimates to estimate base capacity changes when forecasting the impacts of AV-cautious vehicles.

Table 23. Parameter Estimates for the Fitted Cuboid Function for Different Speed Classes and AV Cautious, Av Normal, AV All-knowing Penetration Levels for a Weaving Section.

| Parameter Estimates for Av Cautious |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Speed | $\alpha$ | b | c | d | r-square |
| 55 | -0.06 | 0.38 | -0.84 | 0.48 | 1 |
| 60 | -0.174 | 1.05 | -2.0567 | 1.1134 | 1 |
| 65 | -0.18 | 1.14 | -2.3256 | 1.2842 | 1 |
| 70 | -0.296 | 1.872 | 3.744 | 2.0436 | 1 |
|  | Parameter Estimates for Av Normal |  |  |  |  |
| Speed | $\alpha$ | b | c | d | r-square |
| 55 | -0.12 | 1.35 | -1.76 | 0.85 | 1 |
| 60 | 0.01 | 0.51 | -0.08 | -0.107 | 1 |
| 65 | -0.05 | 0.8867 | -0.72 | 0.2133 | 1 |
| 70 | -0.1 | 1.2667 | 1.36 | 0.533 | 1 |
|  |  | Parameter Estimates for Av All-Knowing |  |  |  |
| Speed | $\alpha$ | b | c | d | r-square |
| 55 | -0.27 | 2.2 | -2.88 | 1.28 | 1 |
| 60 | -0.33 | 2.5733 | -3.28 | 1.3867 | 1 |
| 65 | -0.33 | 2.68 | -3.6 | 1.6 | 1 |
| 70 | -0.31 | 2.6533 | -3.68 | 1.7067 | 1 |

It is applicable to determine the capacity change in percentage whiles using certain penetration of $A V$ classes using this polynomial equation.

### 5.7. Capacities of Mixed Levels of AVs at Different Penetrations for Weaving Segment

The freeway will soon experience a mixed traffic situation where traditional, AV cautious, normal, and All-knowing will exit together. To do that assessment, the different penetration levels of the traditional vehicle with various AVs have been assessed together, and the result has been shown from Table 24 to 29 .

### 5.7.1. 25\%AV/CAVs and 75\% Traditional Vehicles Circa Year 2045

If the road has $75 \%$ traditional vehicle, two scenarios have been shown below with various percentages of cautious, normal, and All-knowing vehicles. In the 1st scenario, the cautious vehicle is higher than the 2nd scenario, resulting in a lower percentage change of capacity than the 2 nd scenario, where All-knowing is higher than the cautious vehicle, resulting
in a higher percentage of capacity increment. The change will occur more in 70 mph roads rather than 55 mph freeways. Though both scenarios positively impact capacity, the 2 nd scenario seems noticeable in terms of operation, such as lees frequency of bottleneck, congestion, improvement in abrupt lane change in weaving area.

Table 24. Capacity Change in Percent at Mixed Scenario with 75\% Traditional Cars at Weaving Segment

|  | 75\% traditional / 25\% AV |  |  | 75\% traditional / 25\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $10 \%$ <br> Cautious | $\begin{aligned} & 10 \% \\ & \text { Normal } \end{aligned}$ | 5\% All- <br> Knowing | 5\% Cautious | $10 \%$ Normal | $10 \%$ All- <br> Knowing |
| 55 |  | 3.33 |  |  | 7.33 |  |
| 60 |  | 3.42 |  |  | 8.67 |  |
| 65 |  | 5.04 |  |  | 9.15 |  |
| 70 |  | 5.38 |  |  | 9.68 |  |

### 5.7.2. 35\%AV/CAVs and 65\% Traditional Vehicles Circa Year 2050

It is expected to be seen $35 \% \mathrm{AV}$ penetration in the year 2050. Two scenarios have been presented below where $1^{\text {st }}$ scenario consists of lower CAV with the higher cautious vehicle, and $2^{\text {nd }}$ scenario is consisting of higher CAV with the lower cautious vehicle. Simulation results show a noticeable increment of capacity due to higher CAV penetration ( $12.70 \%$ increase at 70 $\mathrm{mph})$ rather than a higher percentage of cautious vehicles ( $8.24 \%$ in 70 mph ).

Table 25. Capacity Change in Percent at Mixed Scenario with 65\% Traditional Cars at Weaving Segment

| 65\% traditional / 35\% AV |  |  |  | 65\% traditional / 35\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | 10\% Cautious | $\begin{gathered} 20 \% \\ \text { Normal } \end{gathered}$ | 5\% All- <br> Knowing | 5\% Cautious | 10\% Normal | 20\% All- <br> Knowing |
| 55 |  | 4.56 |  |  | 10.54 |  |
| 60 |  | 6.54 |  |  | 11.55 |  |
| 65 |  | 7.26 |  |  | 12.56 |  |
| 70 |  | 8.24 |  |  | 12.70 |  |

### 5.7.3. 50\%AV/CAVs and $\mathbf{5 0 \%}$ Traditional Vehicles Circa Year 2055

Another scenario has been introduced below where the freeway has $50 \%$ traditional vehicle. Similar scenario as the previous table, $2^{\text {nd }}$ scenario has higher All-knowing than $1^{\text {st }}$ scenario. The assessment result shows a noticeable percentage increment at 70 mph with $20 \%$ All-knowing AV. If $2^{\text {nd }}$ scenario shows up, it will improve capacity and traffic operation in better than $75 \%$ of traditional vehicle situations in a good manner. At that moment, traffic engineers might take steps for future geometry change such as lane reduction or dedicated AV lane at the leftmost side, starting with the preliminary study.

Table 26. Capacity Change in Percent at Mixed Scenario with $50 \%$ Traditional Cars at Weaving Segment

| $50 \%$ traditional / 50\% AV |  |  |  |  |  |  |  |  | $50 \%$ traditional / 50\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $20 \%$ <br> Cautious | $20 \%$ <br> Normal | $10 \%$ All- <br> Knowing | $10 \%$ <br> Cautious | $20 \%$ <br> Normal | 20\% All- <br> Knowing |  |  |  |  |  |
|  |  | 8.89 |  | 12.78 |  |  |  |  |  |  |  |
| 60 |  | 9.39 |  |  | 13.97 |  |  |  |  |  |  |
| 65 | 9.91 |  | 14.78 |  |  |  |  |  |  |  |  |
| 70 |  | 10.22 |  | 15.59 |  |  |  |  |  |  |  |

### 5.7.4. 60\% AV/CAVs and 40\% Traditional Vehicles Circa Year 2060

At $40 \%$ penetration of traditional vehicles, three scenarios have been shown in Table 22;
3rd scenario has higher AV normal and AV All-knowing penetration than the 1st and 2nd scenarios. The results indicate a significant increment of capacity for all free-flow speeds. Suppose 1st or 2nd case of scenario happens. In that case, the same types of actions might be taken: a preliminary study of changing geometry or assessing the benefit of a dedicated AV lane. However, if 3rd scenario happens, a reserved or dedicated lane will be beneficial in all senses.

Table 27. Capacity Change in Percent at Mixed Scenario with $40 \%$ Traditional Cars at Weaving Segment

|  | 40\% traditional / 60\% AV |  |  | 40\% traditional / 60\% AV |  |  | 40\% traditional / 60\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $30 \%$ <br> Cautious | $\begin{gathered} 20 \% \\ \text { Normal } \end{gathered}$ | 10\% All- <br> Knowing | $\begin{gathered} 20 \% \\ \text { Cautious } \end{gathered}$ | $30 \%$ <br> Normal | $10 \%$ All- <br> Knowing | 5\% <br> Cautious | $30 \%$ <br> Normal | $25 \%$ All- <br> Knowing |
| 55 |  | 13.33 |  |  | 18.00 |  |  | 26.67 |  |
| 60 |  | 14.63 |  |  | 19.27 |  |  | 27.33 |  |
| 65 |  | 15.32 |  |  | 19.44 |  |  | 27.34 |  |
| 70 |  | 16.13 |  |  | 19.35 |  |  | 28.39 |  |

### 5.7.5. 90\% AV/CAVs and 10\% Traditional Vehicles Circa Year 2070

Based on Litman's prediction, around $90 \%$ of the total vehicles on the road will be autonomous vehicles. Three probable scenarios have been simulated and resulted below, where all three scenarios are showing significant improvement. The difference between the three scenarios varies in terms of cautious penetration and CAV. The 1st scenario consists of the higher cautious vehicle, and the 3rd scenario consists of a lower cautious vehicle. As expected, the 3rd scenario shows more than a $30 \%$ increase in capacity due to higher AV normal and CAV vehicles.

Table 28. Capacity Change in Percent at Mixed Scenario with $10 \%$ Traditional Cars at Weaving Segment.

|  | 10\% traditional / 90\% AV |  |  | 10\% traditional / 90\% AV |  |  | 10\% traditional / 90\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $30 \%$ <br> Cautious | 40\% <br> Normal | 20\% All- <br> Knowing | $20 \%$ Cautious | $\begin{aligned} & 40 \% \\ & \text { Normal } \end{aligned}$ | 30\% All- <br> Knowing | $5 \%$ Cautious | 45\% <br> Normal | 40\% All- <br> Knowing |
| 55 |  | 14.52 |  |  | 24.69 |  |  | 29.12 |  |
| 60 |  | 16.27 |  |  | 25.63 |  |  | 30.15 |  |
| 65 |  | 17.23 |  |  | 26.18 |  |  | 31.56 |  |
| 70 |  | 18.84 |  |  | 27.45 |  |  | 32.85 |  |

### 5.7.6. 100\% AV/CAVs and $\mathbf{0 \%}$ Traditional Vehicles Circa Year 2080

A mixed scenario has been shown in Table 23, with no traditional vehicle but a significant increment of All-knowing vehicles among the three scenarios. The result shows that
when there is no traditional vehicle and cautious vehicle, lower headway and lower space headway have accelerated the significant increment of capacity, ranging from $30 \%$ to $36 \%$. All three scenarios show higher capacity gain in the weaving area, which will provide less turbulence of traffic during weaving maneuver due to speed reduction and smooth operation during peak hours. Also, bottleneck frequency will be no or lower if traffic demand does not change.

Table 29. Capacity Change in Percent at Mixed Scenario with $0 \%$ Traditional Cars at Weaving Segment

| $0 \%$ traditional |  |  | $0 \%$ traditional |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $10 \%$ | $30 \%$ | $60 \%$ All- | $0 \%$ Cautious | $20 \%$ | $80 \%$ All- |
|  | Cautious | Normal | Knowing |  |  | 32.22 |
| Knowing |  |  |  |  |  |  |
| 55 |  | 30.00 |  | 33.90 |  |  |
| 60 | 32.52 |  | 34.27 |  |  |  |
| 65 | 33.19 |  | 36.56 |  |  |  |
| 70 |  | 35.48 |  |  |  |  |

### 5.8. Planning Horizon Capacity of Weaving Section

Overview of demographic planning horizon capacity at various free-flow speeds (Figure 32 to 35). There are four potential outcomes same as basic freeway segment: best case, most likely; probable; and worst-case scenario. Best- and worst-case situations are taken from the single-class CAV and cautious penetration analysis. A mix of CAV, AV normal, cautious, and traditional cars impact have been analyzed before, and probable, and most likely cases have been taken from there. AV's penetrations are anticipated to achieve a specific percentage of basic highway sections in various years, as shown on the graphs.


Figure 32. Planning Horizon Capacities for 55MPH Roadway


Figure 33. Planning Horizon Capacities for 60MPH Roadway


Figure 34. Planning Horizon Capacities for 65MPH Roadway


Figure 35. Planning Horizon Capacities for 70MPH Roadway

## 6. CONCLUSIONS AND RECOMMENDATIONS

### 6.1. Conclusions

In this study, a simulation-based method has been built that calibrates and validates a base model using trajectory data to achieve freeway capacity. A real-world data from the European-funded Co-exist project that mimics three levels of autonomous vehicles was merged with the base model and further set up a simulation model for AVs and CAVS. Then the output capacities for different penetration levels for all three vehicles classes to the base case were compared. This study attempted to capture the mixed scenario, which is one of the primary contributions. Moreover, this research contributed to a step-by-step microsimulation process that includes calibration and validation using oversaturated traffic data with proper driver's choice speed distribution.

The Study results indicate that the level of autonomy of vehicles will impact capacities compared to traditional vehicles. In this study, two types of mixed situations have been discussed. The first type was the capacity assessment of the traditional vehicle and single class AV, where a change of freeway capacity has been shown graphically. Results indicate that penetration of $A V$ caution will negatively impact capacity. As these vehicles get introduced, their technologies will be very cautious, leading to lower capacities than traditional vehicles. It is because they will leave wider vehicle to vehicle gaps than most traditional vehicles today.

On the other hand, AV normal and All-knowing penetration showed a positive and significant impact after a certain penetration level. The second type was a reduction of traditional vehicle penetration and increasing different types of AV penetration. Various types of mixed situations have been tried to assess in this study. A preliminary study of dedicated AV lane introduction has been suggested for the planners when there is a noticeable increment. If there is
a moderate or significant increment, a dedicated AV lane has been suggested. When there is $0 \%$ penetration of traditional, dedicated AV truck lane has been suggested. The importance of this result, especially to planners and engineers, is that they need to develop tools and traffic demand management policies that will help manage the lower or higher capacity. The lower capacities could lead to significant public outcry that could impact the introduction of these vehicles and retard their potential positive impacts. As it has been seen right now, out of the thousands of accidents that happen on our roadway, every Tesla accident that involved self-driving is highly scrutinized with significant negative public attention.

This dissertation evaluated the output from the AV scenarios and compared them to the traditional vehicle-only scenarios as it exists today. The major findings from these results are as follows:

1. The use of trajectory data to estimate base capacities in microsimulation environments. They provide the models with improved input parameters that truly represent how vehicles move in traffic streams. The base capacity calculations in this dissertation are lower than what the Highway capacity suggests. The implication is that starting with the HCM capacities would have resulted in lower capacities than capacities developed from the trajectory data. The implication is that the capacity gains are slightly higher than what would have been obtained using the HCM capacities. It means that modelers need to pay attention to local conditions when making assumptions about the capacity impacts of AVs/CAVs.
2. The technology in AVs will play a big part in how they impact capacities. Technologies that leave bigger gaps represented in AV-cautious cars will reduce capacities with additional negative impacts to the transportation system, such as congestion and
environmental impacts. Capacities could be reduced up to $9 \%$. Therefore, it is plausible that in the nearest future, when AVs get introduced over the next 10-20 years, we will perhaps see a decline in capacities.
3. When technologies become more aggressive, capacities will be improved up to $37 \%$ for CAVs in weaving sections. Thus, to get the optimal impacts of AVs on our transportation systems, the technologies in the cars have to be CAVs.
4. Looking at the timeline for the adoption of AVs, we will not witness any significant capacity improvements over the next 30 years. Therefore, the most plausible scenario is that different mixes and penetrations of $\mathrm{AVs} /$ Traditional vehicles will differ over this period. The higher the mix of CAVs, the higher the capacity impacts.
5. The functional forms of the mathematical relationships between roadway capacity changes and AV classes/mixes are different for different roadway and AV types. For example, for AV-Normal and AV-All-knowing, capacity changes follow a sigmoidalcurve function for the basic freeway segment. In contrast, they follow a polynomial function for the weaving section. Additionally, the functional form for AV-cautious is different for This should be taken into account by transportation analysts and modelers who estimate the impacts of AVs and CAVs.
6. For basic freeways, capacity gains start to increase exponentially at about the $40 \%$ penetration level for single class AV-Normal and CAVs. The inflection point occurs at about the $75 \%$ percent penetration levels where the capacity gains but decreases. The implication is that the critical mass point for basic highways to start seeing capacity gains is at about $40 \%$ penetration levels of AVs. Below that, the gains are due to AVs being minimal.

### 6.2. Recommendations to Potential Policy Changes

Before the implementation of any certain plan, a preliminary study is necessary. The study above found that AV penetration rate plays a vital role in changing capacity. As a result, there should be a mutual understanding between planners, operation engineers, decision-makers. Based on market sales, consumer adaptation rate, and cost-effectiveness, the planner should incorporate a certain penetration rate of AVs during future road network planning, lane expansion, or reduction issues. For example, if capacity increment causes excess lanes for a particular location, introducing a dedicated AV might provide benefit to the mixed traffic situations. A dedicated AV truck lane might provide better results in 100\% AV / CAV penetration. Besides, traffic operation engineers should predict freeway bottleneck situations, traffic merging point handling, and travel time improvement issues based on AV penetration. A proper simulation-based assessment might help to take the necessary steps. Finally, a decisionmaker should consider spending money on the appropriate place, such as building new technology-based infrastructure for better V2V, V2I connections in ramp junction, intersection, automated parking, accident alert system. An affordable autonomous vehicle cost to the middleclass people should be the primary challenge, and huge investment is necessary for cheaper and safe technology.

### 6.3. Major Shortcomings and Future Studies

One of the major shortcomings of this study is that even though the Co-exist project simulated different AV car-following algorithms; this may not be the final algorithm that these cars will have as they are not yet in circulation. However, this study provides insight to transportation planners, engineers, and decision-makers on what to expect when these vehicles get introduced.

Additionally, the percentage of heavy vehicles was low compared to typical highways in the U.S. Thus, the capacity impacts shown in this study might be lower when more trucks are introduced into the traffic stream. Additionally, the study considered only autonomous cars and not autonomous trucks. As the coexist project only discussed the passenger vehicle, the calibrated components are missing for the AV trucks. Future studies should focus on AV truck CC parameters finding from filed data useful for research purposes.

There is a wide scope of research on AV , such as how infrastructure will be developed for connectivity, the architectural design for V2V or V2I connection, and the protocol for AVs in response to adverse weather. These all are in the broader scene. As part of traffic operation, future research should assess the freeway's capacity in a more complex situation for higher heavy vehicle percentage, managed lane, dedicated lane service. The work can be further expanded to analyze capacities of ramp influence areas as well as urban, signalized intersection, and arterials. Autonomous trucks should also be incorporated into the mix in addition to autonomous cars.

## REFERENCES

Adebisi, A., Liu, Y., Schroeder, B., Ma, J., Cesme, B., Jia, A., \& Morgan, A. (2020). Developing Highway Capacity Manual (HCM) Capacity Adjustment Factors (CAF) For Connected and Autonomous Traffic on Freeway Segment. Transportation Research Board, 2674(10), 401-415. Retrieved From Https://Doi.Org/10.1177/0361198120934797

Aghabayk, K., Sarvi, M., \& Young, W. (2012). Understanding The Dynamics of Heavy Vehicle Interactions in Car Following. 138(12).

Aghabayk, K., Sarvi, M., Young, W., \& Kautzsch, L. (2013). A Novel Methodology for Evolutionary Calibration of Vissim by Multi-Threading. Australasian Transport Research Forum, 36(1), 1-15.

Ambuhl, L., Loder, A., Bliemer, M. C., Menendez, M., \& Axhausen, K. W. (2018). Introducing A Re-Sampling Methodology for The Estimation of Empirical Macroscopic Fundamental Diagrams. 2672(20). Retrieved From Https://Journals-SagepubCom.Ezproxy.Lib.Ndsu.Nodak.Edu/Doi/Pdf/10.1177/0361198118788181

Amoozadeha, M., Deng, H., Chen-Neechuah, Zhang, H. M., \& Ghosal, D. (2015). Platoon Management with Cooperative Adaptive Cruise Control Enabled By VANET. Vehicular Communications, 110-123.

Arbib, J., \& Seba, T. (2017). Rethinking Transportation 2020-2030. Rethinkx.
Arem, B. V., Driel, C. J., \& Visser, R. (2006). The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics. 7(4). Doi:10.1109/TITS.2006.884615

Arem, B. V., Tampere, C., \& Malone, K. (2003). Modeling Traffic Flows with Intelligent Cars and Intelligent Roads. IEEE IV2003 Intelligent Vehicles Symposium. Doi:10.1109/IVS.2003.1212954

Arnaout, G. M., \& Arnaout, J.-P. (2014). Exploring The Effects of Cooperative Adaptive Cruise Control On Highway Traffic Flow Using Microscopic Traffic Simulation. 37(2). Doi:Https://Doi.Org/10.1080/03081060.2013.870791

Arvin, R., Kamrani, M., Khattak, A. J., \& Torres, J. R. (2018). Safety Impacts of Automated Vehicles in Mixed Traffic. 97th Annual Meeting of Transportation Research Board.

Bang, S., \& Ahn, S. (2016). Platooning Strategy for Connected And Autonomous Vehicles: Transition From Light Traffic. (2623). Doi:Https://Doi.Org/10.3141/2623-08

Branston, D. (1976). Models Of Single Lane Time Headway Distributions. Transportation Science, 10(2), 125-148.

Brilon, W., \& Lohoff, J. (2011). Speed-Flow Models for Freeways. 6th International Symposium on Highway Capacity and Quality of Service. 16. Stockholm: Elsevier. Retrieved From Https://Reader.Elsevier.Com/Reader/Sd/Pii/S1877042811009724?Token=DB6AB0E358

Buckley, D. J. (1968). A Semi Poison Model of Traffic Flow. Transportation Science, 107-133.
Bujanovic, P., \& Lochrane, T. (2018). Capacity Predictions and Capacity Passenger Car Equivalents of Platooning Vehicles on Basic Segments. 144(10).
Doi:10.1061/JTEPBS. 0000188
Chakroborty, P., \& Kikuch, S. (1999). Evaluation Of the General Motors-Based Car-Following Models and A Proposed Fuzzy Inference Model. Transportation Research Part C, 7, 209235.

Chen, Z., He, F., Zhang, L., \& Yin, Y. (2016). Optimal Deployment of Autonomous Vehicle Lanes with Endogenous Market Penetration. Transportation Research Part C. Doi:10.1016/J.TRC.2016.09.013

Coexist1.4. (2018). Scenario Specifications for Eight Use Cases.
Coexist2.4. (2018). PTV Vissim Extension - New Features and Improvement. PTV Group.
Coexist2.5. (2004). Micro-Simulation Guide for Automated Vehicles.
College, Cerritos. (2019, July 11). Automotive Technology. Retrieved From www.Cerritos.Edu: https://Www.Cerritos.Edu/Auto/Tf-Theory-As-Applied-Its/Pfcfm4.Htm

Crossing, C. R. (2006). VISSIM Calibration \& Validation.
Delisi, A., Nikolos, I., \& Papageorgiou, M. (2015). Macroscopic Traffic Flow Modeling with Adaptive Cruise Control: Development and Numerical Solution. Computers And Mathematics with Applications, 1921-1947.

Dong, J., Houchin, A. J., Shafieirad, N., Lu, C., \& Hawkins, N. R. (2015). VISSIM Calibration for Urban Freeways. Center For Transportation Research and Education, Institute for Transportation, Iowa State University, Ames, Iowa.

Durrani, U., Lee, C., \& Maoh, H. (2016). Calibrating The Wiedemann's Vehicle-Following Model Using Mixed Pair Interaction. Transportation Research Part C, 227-242.

Elefteriadou, L., Roger, P., \& William, R. (1995). Probabilistic Nature of Breakdown at Freeway Merge Junctions. Transportation Research Record, 80-89.

Fan, W., \& Liu, P. (2018). Impact Of Connected and Automated Vehicles on Freeway Capacity. Charlotte, NC: Center for Advanced Multimodal Mobility Solutions and Education. Retrieved From
Https://Cammse.Uncc.Edu/Sites/Cammse.Uncc.Edu/Files/Media/CAMMSE-UNCC-2018-UTC-Project-Report-04-Fan-Final.Pdf

Friedrich, B. (2016). The Effect Of Autonomous Vehicles On Traffic. In Autonomous Driving.
Ghiasi, A., Ma, J., Zhou, F., \& Li, X. (2017). Speed Harmonization Algorithm Using Connected Autonomous Vehicles. Retrieved From Https://Trid.Trb.Org/View/1438073

Gomos, G., May, A., \& Horowitz, R. (2004). Calibration Of VISSIM For a Congested Freeway. California PATH.

Greenshields, B. D. (1935). Studying Traffic Capacity by New Methods. Proceedings Of the Highway Research Board, 5(5).

Guériau, M., Billot, R., Faouzi, N.-E. E., \& Hassas, S. (2016). How To Assess the Benefits of Connected Vehicles? A Simulation Framework for The Design Of Cooperative Traffic Management Strategies. 67. Doi:Https://Doi.Org/10.1016/J.Trc.2016.01.020

Hale, D., Li, X., \& James, R. (2020). Trajectory Investigation for Enhanced Microsimulation Calibration Guidance. Saxton Laboratory.

Hartmann, M., Motamedidehkordi, N., Krause, S., \& Hoffmann, S. (2017). Impact Of Automated Vehicles on Capacity of The German Freeway Network. It's World Congress. It's World Congress.

HCM. (2010). Highway Capacity Manual. TRB.
Heaslip, K., Goodall, N., Kim, B., \& Aad, M. A. (2020). Assessment Of Capacity Changes Due to Automated Vehicles on Interstate Corridors. Virginia Transportation Research Council. Retrieved From Http://Www.Virginiadot.Org/Vtrc/Main/Online_Reports/Pdf/21-R1.Pdf

Heinovski, J. (2018). Investigating Strategies for Building Platoons of Cars. Paderborn, Germany.

Higgs, B., Abbas, M., \& Median, A. (2011). Analysis Of the Wiedemann Car Following Model Over Different Speeds Using. Transportation Research Record.

ITE. (2021). Connected/Automated Vehicle Resources. Retrieved From Www.ITE.Org.
Jie, L., Zuylen, H. V., Chen, Y., Viti, F., \& Wilmink, I. (2013). Calibration Of a Microscopic Simulation Model for Emission Calculation. 31.
Doi:Https://Doi.Org/10.1016/J.Trc.2012.04.008
Jolovik, D., \& Stevanovic, A. (2012). Using Microsimulation and NGSIM Data Set to Validate HCM Methodology for Oversaturated Freeway Weaving Segments.

Kamrani, M., Wali, B., \& Khattak, A. J. (2017). Can Data Generated by Connected Vehicles Enhance Safety? Proactive Approach To Intersection Safety Management. 2659(1). Doi:Https://Doi.Org/10.3141/2659-09

Kan, X. D., Ramezani, H., \& Benekohal, R. F. (2014). Calibration Of VISSIM For Freeway Work Zones with Time-Varying Capacity. Transportation Research Board 93rd Annual Meeting.

Kesting, A., Treiber, M., Schönhof, M., \& Helbing, D. (2017). Adaptive Cruise Control Design for Active Congestion Avoidance. 16(6). Doi:Https://Doi.Org/10.1016/J.Trc.2007.12.004

Lavasani, M., Jin, X., \& Du, Y. (2016). Market Penetrationmodel for Autonomous Vehicles On The Basis Of Earliertechnology Adoption Experience. Transportation Research Record: Journal of The Transportation Research Board, 2597, 67-74. Doi:10.3141/2597-09

Leyn, U., \& Vortisch, P. (2015). Calibrating Vissim for The German Highway Capacity Manual. Washington D.C: TRB.

Li, T., \& Kockelman, K. M. (2018). Valuing The Safety Benefit of Connected and Autonomous Vehicle Technologies. 95th Transportation Research Board Annual Meeting. Washington D.C.

Li, X., \& Ghiasi, A. (2017). Exact Method for A Simplified Trajectory Smoothing Problem with Connected Automated Vehicles. Retrieved From Https://Trid.Trb.Org/View/1439396

Li, Z., \& Laurence, R. (2015). An Analysis of Four Methodologies for Estimating Highway Capacity. 23(2). Doi:10.1007/S40534-015-0074-2

Litman, T. (2021). Autonomousvehicle Implementation Predictionsimplications for Transport Planning. Victoria Transport Policy Institute. Retrieved From Https://Www.Vtpi.Org/Avip.Pdf

Lownes, N. E., \& Machemehl, R. B. (2006). Vissim: A Multi-Parameter Sensitivity Analysis. Winter Simulation Conference.

Lu, Q., Tettamanti, T., Horcher, D., \& Varga, I. (2019). The Impact of Autonomous Vehicles on Urban Traffic Network Capacity: An Experimental Analysis by Microscopic Traffic Simulation. Transportation Letters.

Lu, X.-Y., Lee, J., Chen, D., Bared, J., Dailey, D., \& Shladover, S. E. (2013). Freeway MicroSimulation Calibration: Case Study Using Aimsun and VISSIM With Detailed Field Data.

Lu, X.-Y., Lee, J., Chen, D., Bared, J., Dailey, D., \& Shladover, S. E. (2014). Freeway MicroSimulation Calibration: Case Study Using Aimsun And VISSIM. 3rd Transportation Research Board Annual Meeting, Washington, D.C.
M.Treiber, \& A.Kesting. (2013). Car-Following Models Based on Driving Strategies. In M.Treiber, \& A.Kesting, Traffic Flow Dynamics.

Makridis, M., Mattas, K., Ciuffo, B., \& Thiel, C. (2018). Connected And Automated Vehicles on A Freeway Scenario. Effect On Traffic Congestion and Network Capacity. 7th Transport Research Arena TRA 2018 (TRA 2018) (TRA2018). Viena.

Manenni, S., Sun, C., \& Vortisch, P. (2008). Microsimulation Calibration Using Speed Flow Relationship. Transportation Research Record, 1-9.

Manjunatha, P., \& Elefteriadou, L. (2018). Analysis Of Wiedemann Car Following Thresholds Using Driving Simulator Observations. Transportation Research Board. TRB.

Menneni, S., Sun, C., \& Vortisch, P. (2009). Integrated Microscopic and Macroscopic Calibration for Psychophysical Car-Following Models. Transportation Research Board 88th Annual Meeting.

Milakis, D., Snelder, M., Arem, B. V., \& Correia, G. H. (2017). Development And Transport Implications of Automated Vehicles in The Netherlands: Scenarios For 2030 And 2050. 17(1). Doi:10.18757/Ejtir.2017.17.1.3180

Milanes, V., Shladover, S. E., Spring, J., \& Nakamura, M. (2014). Cooperative Adaptive Cruise Control in Real Traffic Situations. IEEE Transactions on Intelligent Transportation Systems. Doi:10.1109/TITS.2013.2278494

Mittal, A. (2018). Assessing The Impact of Connected Vehicles at Freeway, Arterial, And Path Level Characterization, Modeling, And Active Management. ProQuest.

Ngoduy, D. (2013). Instability Of Cooperative Adaptive Cruise Control Traffic Flow: A Macroscopic Approach. 18(10). Doi:Https://Doi.Org/10.1016/J.Cnsns.2013.02.007

NHTSA. (2020). Automated Driving Systems. Retrieved From Www.NHTSA.Gov.
Ni, D., Li, J., Andrews, S., \& Wang, A. H. (2012). A Methodology to Estimate Capacity Impact Due to Connected Vehicle Technology. International Journal of Vehicular Technology.

Ntousakis, I. A., K.Nikolos, I., \& Papageorgiou, M. (2015). On Microscopic Modelling of Adaptive Cruise Control Systems. 6. Doi:Https://Doi.Org/10.1016/J.Trpro.2015.03.010

Oncu, S., Wouw, N. V., \& Nijmeijer, H. (2011). Cooperative Adaptive Cruise Control: Tradeoffs Between Control and Network Specifications. 2011 14th International IEEE Conference on Intelligent Transportation Systems. Washington DC.

Ossen, S., \& P.Hoogendoorn, S. (N.D.). Heterogeneity In Car-Following Behavior: Theory and Empirics. 19(2). Doi:Https://Doi.Org/10.1016/J.Trc.2010.05.006

Pipes, L. A. (1953). An Operational Analysis of Traffic Dynamics. Journal Of Applied Physics. Doi:Https://Doi.Org/10.1063/1.1721265

Raynal, W. (2021). Toyota Launches Semi-Autonomous Cars in Japan, Coming to The US This Fall. Retrieved From Www.Autoweek.Com:

Https://Www.Autoweek.Com/News/Technology/A36065442/Toyota-Launches-Advanced-Driver-Assist/

Roess, R. P., \& Pracssas, E. S. (2014). The Highway Capacity Manual: A Conceptual and Research History. Springer.

Roess, R. P., \& Prasssas, E. S. (2014). Uninterrupted Flow. In R. P. Roess, \& E. S. Prasssas, The Highway Capacity Manual: A Conceptual and Research History (Vol. 1). Springer.

Saccomanno, F. F., Duong, D., Cunto, F., Hellinga, B., Philp, C., \& Thiffault, P. (2009). Safety Implications of Mandated Truck Speed Limiters on Freeways. 2096(1). Doi:Doi.Org/10.3141/2096-09

Sarvi, M., \& Ejtemai, O. (2012). Exploring Heavy Vehicles Car-Following Behavior. Australasian Transport Research Forum (ATRF), 34th, 2011, Adelaide, South Australia, Australia. TRB.

Schilperoort, L., Mcclanahan, D., \& Bjordahl, M. (2014). Protocol For Vissim Simulation. WSDOT.

Sentürk, M., Uygan, I. M., \& Guvenç, L. (2010). Mixed Cooperative Adaptive Cruise Control for Light Commercial Vehicles. 2010 IEEE International Conference on System, Man, And Cybernetics. IEEE. Doi:10.1109/ICSMC.2010.5642427

Shi, L., \& Prevedouros, P. D. (2016). Autonomous And Connected Cars: HCM Estimates for Freeways with Various Market Penetration Rates. Transportation Research Procedia, 389-402.

Steven E. Shladover, D. S.-Y. (2012). Impacts Of Cooperative Adaptive Cruise Control on Freeway Traffic Flow. Journal Of the Transportation Research Board, 63-70.

Sugiura, E. (2021, March 4). Automobiles. Retrieved From Nikkie Asia: Https://Asia.Nikkei.Com/Business/Automobiles/Honda-Launches-World-S-First-Level-3-Self-Driving-Car

Systematic, C. (2005). NGSIM US 101 Data Analysis. FHWA.
Talebpour, A., \& Mahassmani, H. (2016). Influence Of Connected and Autonomous Vehicles on Traffic Flow Stability and Throughput. Transportation Research Part C, 71, 143-163. Retrieved From Https://Doi.Org/10.1016/J.Trc.2016.07.007

Theophilus, O., \& Sobanjo, J. (2017). Capacity Analysis of Freeway with Connected and Autonomous Vehicles. TALLAHASSEE.

Tientrakool, P., Ho, Y.-C., \& Maxemchuk, N. F. (2011). Highway Capacity Benefits from Using Vehicle-To-Vehicle Communication and Sensors for Collision Avoidance. IEEE.

USDOT. (2016). Next-Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. [Dataset]. Doi:10.21949/1504477

Vanderwerf, J., Shladover, S., Kourjanskaia, N., Miller, M., \& Krishnan, H. (2001). Modeling
Effects of Driver Control Assistance Systems on Traffic. 1748(1). Doi:10.3141/1748-21
VDOT. (2020). VDOT Vissim User Guide.
Vissim. (2020). PTV Group. Retrieved From Ptvgroup.Com.
Wang, C., \& Nijmeijer, H. (2015). String Stable Heterogeneous Vehicle Platoon Using Cooperative Adaptive Cruise Control. 18th International IEEE Conference on Intelligent Transportation Systems.

Wei, N., \& Wanjing, M. (2013). Simulation-Based Study on A Lane Assignment Approach for Freeway Weaving Section. 13th COTA International Conference of Transportation Professionals (CICTP 2013). 96. Elsevier. Retrieved From
Https://Www.Researchgate.Net/Publication/275537553_Simulation-
Based_Study_On_A_Lane_Assignment_Approach_For_Freeway_Weaving_Section
Werf, J. V., Shladover, S. E., Miller, M. A., \& Kourjanskaia, N. (2002). Effects Of Adaptive Cruise Control Systems on Highway Traffic Flow Capacity. 1800(1). Doi:10.3141/180010

Wisconsindot. (2018, May 18). Manual And Standards. Retrieved From Wisconsindot.Gov.
WSDOT. (2014). Protocol For Vissim Simulation. Washington, USA.
Ye, L., \& Yamamoto, T. (2018). Impact Of Dedicated Lanes for Connected and Autonomous Vehicle On Traffic Flow Throughput. Physica A, 512, 588-597.
Doi:Https://Doi.Org/10.1016/J.Physa.2018.08.083
Ye, L., \& Yamamoto, T. (2018). Modeling Connected and Autonomous Vehicles in Heterogeneous Traffic Flow. Physica A, 269-277.
Doi:Http://Dx.Doi.Org/10.1016/J.Physa.2017.08.015

## APPENDIX A. DETAILS ABOUT NGSIM DATA

A detailed data analysis of NGSIM data for the $1^{\text {st }}$ and $2^{\text {nd }} 15$ minutes has been provided below in figures and tables. All figures and tables have been collected from a report created by Cambridge Systematic (Systematic, 2005).


Figure A.1. Time Mean Speed and Space Mean Speed by Travel Period (1 $1^{\text {st }} 15$ minutes)


Figure A.2. Flow by Lane at Study Location ( $1^{\text {st }} 15$ minutes)


Figure A.3. Speed by Lane at Study Area ( $1^{\text {st }} 15$ minutes)

Table A.1. Aggregate Results Summary for the Entire Section (1st 15minutes)

|  |  | Time means speed | Space Mean Speed |
| :---: | :---: | :---: | :---: |
| Period | Flow | mph | mph |
| $7.50 \mathrm{am}-7.55 \mathrm{am}$ | 9156 | 31.6 | 30.03 |
| $7.55 \mathrm{am}-8.00 \mathrm{am}$ | 8820 | 26.6 | 25.06 |
| 8.00 am- 8.05 am | 7860 | 25.59 | 21.22 |
| Average | 8612 | 28.06 | 25.66 |

Table A.2. Aggregate Flow and Speed for Each Lane (1st 15minutes)

| Lane | Flow | Time Mean Speed <br> $(\mathrm{mph})$ | Space Mean <br> Speed (mph) |
| :---: | :---: | :---: | :---: |
| 1 | 1528 | 23.76 | 21.45 |
| 2 | 1676 | 27.33 | 25.45 |
| 3 | 1660 | 27.27 | 26.68 |
| 4 | 1620 | 28.62 | 26.27 |
| 5 | 1664 | 29.73 | 27.7 |
| Auxiliary Lane | 464 | 39.76 | 37.45 |
| Average | 8612 | 28.06 | 26.21 |



Figure A.4. Time Means Speed and Space Mean Speed by Period (2 ${ }^{\text {nd }} 15$ minutes)


Figure A.5. Flow by Lane of the Study Section (2 ${ }^{\text {nd }} 15$ minutes)


Figure A.6. Speed by Lane at Study Section (2 ${ }^{\text {nd }} 15$ minutes)
Table A.3. Aggregate Results Summary for the Entire Section (2nd 15 minutes)

| Period | Flow | Time mean speed <br> $(\mathrm{mph})$ | Space Mean Speed (mph) |
| :---: | :---: | :---: | :---: |
| $8.05 \mathrm{am}-8.10 \mathrm{am}$ | 8136 | 26.7 | 21.41 |
| $8.10 \mathrm{am}-8.15 \mathrm{am}$ | 8484 | 26.73 | 24.97 |
| $8.15 \mathrm{am}-8.20 \mathrm{am}$ | 7428 | 20.6 | 17.94 |
| Average | 8016 | 24.83 | 21.59 |

Table A.4. Aggregate Flow and Speed for Each Lane (2nd 15 minutes)

| Lane | Flow | Time Mean Speed <br> $(\mathrm{mph})$ | Space Mean Speed (mph) |
| :---: | :---: | :---: | :---: |
| 1 | 1474 | 23.61 | 21.84 |
| 2 | 1574 | 23.39 | 20.88 |
| 3 | 1474 | 23.73 | 20.9 |
| 4 | 1518 | 24.38 | 21.19 |
| 5 | 1512 | 25.43 | 23.22 |
| Auxiliary Lane | 464 | 36.82 | 34.51 |
| Average | 8016 | 24.85 | 22.35 |



Figure A.7. Snapshot of NGSIM Data Table from 7.55 am to 8.05 am

## APPENDIX B. BASIC FREEWAY \& WEAVING SEGMENT ANALYSIS

This section has detailed information about the weaving segment, such as flow per lane, including weaving and non-weaving lanes. The calculation is given below.


Calculation for Weaving capacity
$\mathrm{Ls}=698 \mathrm{ft}$
$\mathrm{N}_{\mathrm{wL}}=2$
$\mathrm{C}_{\mathrm{IWL}}=\mathrm{C}_{\mathrm{IFL}}-[438.2(1+\mathrm{VR}) 1.6]+\left[0.0765 \mathrm{~L}_{\mathrm{S}}\right]+\left[119.8 \mathrm{~N}_{\mathrm{wl}}\right]=2045.04 \mathrm{veh} / \mathrm{hr} / \mathrm{ln}$
$\mathrm{C}_{\mathrm{w}}=\mathrm{C}_{\mathrm{IWL}} * \mathrm{~N}^{*} \mathrm{f}_{\mathrm{HV}} * \mathrm{f}_{\mathrm{p}}=12270.24 \mathrm{veh} / \mathrm{hr}$.

Table B.1. CC Parameters with Range for Basic Freeway Segment

| Parameter | Car | Truck | Range |
| :---: | :---: | :---: | :---: |
| CC0 | 8 | 18 | 0.07 to 113.44 |
| CC1 | 1 | 2 | 0.01 to 24.53 |
| CC2 | 11 | 25 | 4 to 75 |
| CC3 | -3 | -3 | -0.3 to -3.6 |
| CC4 | -1.12 | -1.8 | 3.7 to 15 |
| CC5 | 1.5 | 1.8 | 3.7 to 16 |
| CC6 | 11.44 | 11.44 | 11.44 |
| CC7 | 0.47 | 1.7 | -11.2 to 11.2 |
| CC8 | 5.8 | 6 | -11.2 to 11.3 |
| CC9 | 0.51 | 1.25 | -11.2 to 11.4 |

Table B.2. CC Parameters with Range for Weaving Segment

| Parameter | Car | Truck | Range |
| :---: | :---: | :---: | :---: |
| CC0 | 8 | 18 | 0.07 to 301 |
| CC1 | 1 | 2 | 0.13 to 21.5 |
| CC2 | 11 | 25 | 1 to 48 |
| CC3 | -3 | -3 | -0.19 to -8.0 |
| CC4 | -1.12 | -1.8 | -1 to -11 |
| CC5 | 1.5 | 1.8 | -5 to 11 |
| CC6 | 11.44 | 11.44 | 11.44 |
| CC7 | 0.47 | 1.7 | -11.2 to 11.2 |
| CC8 | 5.8 | 6 | -11.2 to 11.3 |
| CC9 | 0.51 | 1.25 | -11.2 to 11.4 |

## APPENDIX C. RESULTS AND DISCUSSION

Table C.1. Capacity and Standard Error of Basic Freeway Segment in the Base Case

| Speed (mph) | HCM | 100 \% Car | SE | 2\% Truck | SE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 55 | 2250 | 2124 | 0.708786 | 1966 | 0.700966 |
| 60 | 2300 | 2148 | 0.419003 | 2028 | 0.646183 |
| 65 | 2350 | 2172 | 0.502465 | 2064 | 0.751742 |
| 70 | 2400 | 2208 | 0.65879 | 2088 | 0.840949 |

Table C.2. Capacity and Standard Error for Single Class AV (Cautious) at Basic Freeway Segment

| Follower | Leader | 55 mph | 60 mph | 65 mph | 70 mph |
| :--- | :--- | :---: | :---: | :---: | :---: |
| AV Cautious | Traditional | 55 mph | 60 mph | 65 mph | 70 mph |
| $0 \%$ | 100 | $1966(0.7009)$ | $2028(0.6461)$ | $2064(0.7517)$ | $2088(0.8409)$ |
| $25 \%$ | 75 | $1956(0.7164)$ | $2028(0.7938)$ | $2040(0.0 .7516)$ | $2052(0.6928)$ |
| $50 \%$ | 50 | $1872(0.8064)$ | $1896(0.8006)$ | $1956(0.6559)$ | $1980(0.7003)$ |
| $75 \%$ | 25 | $1800(0.6826)$ | $1824(0.7553)$ | $1872(0.7543)$ | $1956(0.7193)$ |
| $100 \%$ | 0 | $1932(0.7531)$ | $1980(0.7461)$ | $1908(0.7916)$ | $1836(0.6982)$ |

Table C.3. Capacity and Standard Error for Single Class AV (Normal) at Basic Freeway Segment

| Follower <br> AV Normal | Leader <br> Traditional | 55 mph | 60 mph | 65 mph | 70 mph |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 0 | 100 | $1966(0.7009)$ | $2028(0.6461)$ | $2064(0.7517)$ | $2088(0.8409)$ |
| 25 | 75 | $2052(0.8156)$ | $2125(0.8246)$ | $2188(0.6913)$ | $2148(0.7994)$ |
| 50 | 50 | $2220(0.7692)$ | $2345(0.8006)$ | $2256(0.7664)$ | $2292(0.0 .7439)$ |
| 75 | 25 | $2328(0.8044)$ | $2340(0.7729)$ | $2400(0.7394)$ | $2460(0.6845)$ |
| 100 | 0 | $2604(0.7938)$ | $2616(0.7394)$ | $2640(0.7813)$ | $2652(0.8077)$ |

Table C.4. Capacity and Standard Error for Single Class AV (Aggressive) at Basic Freeway Segment

| Follower <br> AV Aggressive | Leader <br> Traditional | 55 mph | 60 mph | 65 mph | 70 mph |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 0 | 100 | $1966(0.7009)$ | $2028(0.6461)$ | $2064(0.7517)$ | $2088(0.8409)$ |
| 25 | 75 | $2080(0.7698)$ | $2160(0.6993)$ | $2052(0.7434)$ | $2064(0.7364)$ |
| 50 | 50 | $2290(0.7134)$ | $2390(0.8052)$ | $2268(0.7848)$ | $2340(0.7881)$ |
| 75 | 25 | $2508(0.7593)$ | $2520(0.8133)$ | $2544(0.8070)$ | $2580(0.8244)$ |
| 100 | 0 | $2616(0.7116)$ | $2628(0.7688)$ | $2652(0.7299)$ | $2688(0.6528)$ |

Table C.5. Capacity Value and Standard Error of Mixed Traffic Scenario with 25\% AV at Basic Freeway Segment

|  | $25 \%$ AV / 75\% traditional |  |  | $25 \%$ AV / 75\% traditional |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FFS (mph) | $10 \%$ Cautious | $10 \%$ <br> Normal | $5 \%$ All- <br> Knowing | $5 \%$ Cautious | $10 \%$ | $10 \%$ All- <br> Knowing |
| 55 | $1996(0.7511)$ |  |  | $2008(0.6284)$ |  |  |
| 60 | $2078(0.6852)$ |  |  | $2086(0.7112)$ |  |  |
| 65 | $2118(0.8064)$ |  |  | $2125(0.7266)$ |  |  |
| 70 | $2150(0.7241)$ |  |  | $2170(0.7355)$ |  |  |

Table C.6. Capacity Value and Standard Error of Mixed Traffic Scenario with 65\% Av at Basic Freeway Segment

| 35\% AV / 65\% traditional |  |  |  | 35\% AV / 65\% traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | $10 \%$ <br> Cautious | $\begin{aligned} & \hline 20 \% \\ & \text { Normal } \end{aligned}$ | 5\% All- <br> Knowing | 5\% Cautious | 10\% Normal | 10\% All-Knowing |
| 55 | 2003 (0.6351) |  |  | 2035 (0.8155) |  |  |
| 60 | 2079 (0.7244) |  |  | 2099 (0.6742) |  |  |
| 65 | 2126 (0.7328) |  |  | 2147 (0.7593) |  |  |
| 70 | 2182 (0.8041) |  |  | 2213 (0.6893) |  |  |

Table C.7. Capacity Value and Standard Error of Mixed Traffic Scenario with 50\% AV at Basic Freeway Segment

| $50 \%$ traditional / 50 \% AV |  |  |  | $50 \%$ traditional/ $50 \%$ AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS (mph) | $20 \%$ | $20 \%$ | $10 \%$ All- | $10 \%$ | $20 \%$ Normal | 20\% All- |
|  | Cautious | Normal | Knowing | Cautious |  |  |
| 55 | $2016(0.7844)$ |  |  | $2070(0.7122)$ |  |  |
| 60 | $2082(0.7266)$ |  | $2148(0.7622)$ |  |  |  |
| 65 | $2140(0.6933)$ |  | $2190(0.7436)$ |  |  |  |
| 70 | $2170(0.7266)$ |  |  | $2250(0.7438)$ |  |  |

Table C.8. Capacity Value and Standard Error of Mixed Traffic Scenario with 60\% AV at Basic Freeway Segment

|  | 40\% traditional / 60\% AV |  |  | 40\% traditional / 60\% AV |  |  | 40\% traditional / 60\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { FFS } \\ & (\mathrm{mph}) \end{aligned}$ | $30 \%$ <br> Cautious | $\begin{aligned} & \hline 20 \% \\ & \text { Normal } \end{aligned}$ | 10\% AllKnowing | $20 \%$ <br> Cautious | 30\% <br> Normal | 10\% AllKnowing | $5 \%$ <br> Cautious | $30 \%$ <br> Normal | 25\% All- <br> Knowing |
| 55 | 1980 (0.6 |  |  | 2076 (0.6588 |  |  | 2160 (0.72 |  |  |
| 60 | 2040 (0.7 |  |  | 2150 (0.7 |  |  | 2232 (0.781 |  |  |
| 65 | 2080 (0.7 | 92) |  | 2196 (0.65 |  |  | 2286 (0.73 |  |  |
| 70 | 2112 (0.7 | 16) |  | 2244 (0.7 | 36) |  | 2340 (0.7 |  |  |

Table C.9. Capacity Value and Standard Error of Mixed Traffic Scenario with 90\% AV at Basic Freeway Segment

|  | 10\% traditional / 90\% AV |  |  | 10\% traditional / 90\% AV |  |  | 10\% traditional / 90\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $\begin{aligned} & \hline 30 \% \\ & \text { Cautious } \end{aligned}$ | $40 \%$ <br> Normal | 20\% All- <br> Knowing | $20 \%$ <br> Cautious | $40 \%$ <br> Normal | 30\% All- <br> Knowing | $5 \%$ <br> Cautious | 45\% <br> Normal | 40\% All- <br> Knowing |
| 55 | 2251 (0.8254) |  |  | 2451 (0.8055) |  |  | 2538 (0.7938) |  |  |
| 60 | 2358 (0.7961) |  |  | 2548 (0.7921) |  |  | 2640 (0.7168) |  |  |
| 65 | 2420 (0.7893) |  |  | 2625 (0.7822) |  |  | 2715 (0.8391) |  |  |
| 70 | 2481 (0.7269) |  |  | 2661 (0.7644) |  |  | 2774 (0.8164) |  |  |

Table C.10. Capacity Value and Standard Error of Mixed Traffic Scenario with 100\% AV at Basic Freeway Segment

| 0\% traditional |  |  |  | 0\% traditional |  |  | 0\% traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS <br> (mph) | $10 \%$ <br> Cautious | $30 \%$ <br> Normal | 60\% AllKnowing | $0 \%$ <br> Cautious | $20 \%$ <br> Normal | 80\% All- <br> Knowing | $0 \%$ <br> Cautious | 0\% <br> Normal | $100 \%$ <br> All- <br> Knowing |
| 55 | 2290 (0.7276) |  |  | 2380 (0.7806) |  |  | 2460 (0.6833) |  |  |
| 60 | 2440 (0.6982) |  |  | 2560 (0.7156) |  |  | 2640 (0.7394) |  |  |
| 65 | 2500 (0.8045) |  |  | 2630 (0.7088) |  |  | 2710 (0.7411) |  |  |
| 70 | 2568 (0.7588) |  |  | 2700 (0.7943) |  |  | 2780 (0.7167) |  |  |

Table C.11. Base Case Weaving Capacity Value with Standard Error at Weaving Segment

| Speed $(\mathrm{mph})$ | HCM | Simulation value | SE |
| :---: | :---: | :---: | :---: |
| 55 | 2045 | 1800 | 0.7264 |
| 60 | 2095 | 1811 | 0.7622 |
| 65 | 2145 | 1847 | 0.7269 |
| 70 | 2195 | 1860 | 0.7638 |

Table C.12. Capacity Value and Standard Error of Single Class AV (Cautious) at Weaving Segment

| AV Cautious | $0.00 \%$ | $25.00 \%$ | $50.00 \%$ | $75.00 \%$ | $100.00 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 55 mph | $1800(0.7264)$ | $1787(0.7812)$ | $1800(0.7634)$ | $1763(0.7133)$ | $1727(0.7205)$ |
| 60 mph | $1811(0.7622)$ | $1860(0.7234)$ | $1847(0.7491)$ | $1823(0.7584)$ | $1775(0.7439)$ |
| 65 mph | $1847(0.7269)$ | $1883(0.6985)$ | $1860(0.7822)$ | $1847(0.7694)$ | $1715(0.7367)$ |
| 70 mph | $1860(0.7638)$ | $1860(0.7164)$ | $1871(0.7648)$ | $1800(0.7260)$ | $1643(0.7438)$ |

Table C.13. Capacity Value and Standard Error of Single Class AV (Normal) at Weaving Segment

| AV Normal | $0.00 \%$ | $25.00 \%$ | $50.00 \%$ | $75.00 \%$ | $100.00 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 55 mph | $1800(0.7264)$ | $2015(0.7155)$ | $2195(0.7861)$ | $2375(0.7648)$ | $2580(0.7168)$ |
| 60 mph | $1811(0.7622)$ | $2051(0.8014)$ | $2255(0.7943)$ | $2447(0.7294)$ | $2615(0.7468)$ |
| 65 mph | $1847(0.7269)$ | $2063(0.8066)$ | $2267(0.7162)$ | $2495(0.7361)$ | $2640(0.7269)$ |
| 70 mph | $1860(0.7638)$ | $2087(0.7843)$ | $2279(0.8237)$ | $2507(0.7943)$ | $2675(0.7146)$ |

Table C.14. Capacity Value and Standard Error of Single Class AV (All-Knowing) at Weaving Segment

| AV All-Knowing | $0.00 \%$ | $25.00 \%$ | $50.00 \%$ | $75.00 \%$ | $100.00 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 55 mph | $1800(0.7264)$ | $2003(0.7646)$ | $2291(0.7468)$ | $2435(0.7436)$ | $2555(0.7349)$ |
| 60 mph | $1811(0.7622)$ | $2039(0.8064)$ | $2375(0.7364)$ | $2471(0.7439)$ | $2579(0.7106)$ |
| 65 mph | $1847(0.7269)$ | $2075(0.7619)$ | $2411(0.7496)$ | $2591(0.7135)$ | $2615(0.7439)$ |
| 70 mph | $1860(0.7638)$ | $2100(0.7941)$ | $2435(0.7951)$ | $2495(0.7391)$ | $2651(0.7165)$ |

Table C.15. Capacity Value and Standard Error of Mixed Traffic Scenario with 25\% AV at Weaving Segment

| $25 \%$ AV / 75\% traditional |  |  | $25 \%$ AV $/ 75 \%$ traditional |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $10 \%$ Cautious | $10 \%$ | $5 \%$ All- | $5 \%$ | $10 \%$ | $10 \%$ All- |
|  |  | Normal | Knowing | Cautious | Normal | Knowing |
| 55 | $1860(0.7055)$ |  |  | $1932(0.7198)$ |  |  |
| 60 | $1873(0.7814)$ |  |  | $1968(0.6689)$ |  |  |
| 65 | $1940(0.6545)$ |  | $2016(0.8034)$ |  |  |  |
| 70 | $1960(0.6982)$ |  |  | $2040(0.7598)$ |  |  |

Table C.16. Capacity Value and Standard Error of Mixed Traffic Scenario with 35\% AV at Weaving Segment

| 65\% traditional / 35\% AV |  |  |  | 65\% traditional / 35\% AV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | 10\% Cautious | $20 \%$ <br> Normal | 5\% All- <br> Knowing | 5\% Cautious | $10 \%$ <br> Normal | 20\% All- <br> Knowing |
| 55 | 2055 (0.6922) |  |  | 2173 (0.8251) |  |  |
| 60 | 2160 (0.8259) |  |  | 2262 (0.8326) |  |  |
| 65 | 2213 (0.7361) |  |  | 2323 (0.7629) |  |  |
| 70 | 2260 (0.7629) |  |  | 2353 (0.7166) |  |  |

Table C.17. Capacity Value and Standard Error of Mixed Traffic Scenario with $50 \%$ AV at Weaving Segment

|  | $50 \%$ traditional / 50\% AV |  | $50 \%$ traditional / 50\% AV |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $20 \%$ | $20 \%$ | $10 \%$ All- | $10 \%$ | $20 \%$ | $20 \%$ All- |
|  | Cautious | Normal | Knowing | Cautious | Normal | Knowing |
| 55 | $1960(0.6792)$ |  |  | $2030(0.6492)$ |  |  |
| 60 | $1981(0.7345)$ |  |  | $2064(0.7291)$ |  |  |
| 65 | $2030(0.7962)$ |  |  | $2120(0.7923)$ |  |  |
| 70 | $2050(0.7491)$ |  |  | $2150(0.7518)$ |  |  |

Table C.18. Capacity Value and Standard Error of Mixed Traffic Scenario with 60\% AV at Weaving Segment

| $40 \%$ traditional |  |  |  |  |  |  |  |  | $40 \%$ traditional |  |  |  | $40 \%$ traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $30 \%$ | $20 \%$ | $10 \%$ All- | $20 \%$ | $30 \%$ | $10 \%$ All- | $5 \%$ | $30 \%$ | $25 \%$ All- |  |  |  |  |  |  |
|  | Cautious | Normal | Knowing | Cautious | Normal | Knowing | Cautious | Normal | Knowing |  |  |  |  |  |  |
| 55 | $2040(0.7461)$ |  | $2124(0.7034)$ |  | $2280(0.8024)$ |  |  |  |  |  |  |  |  |  |  |
| 60 | $2076(0.7926)$ |  | $2160(0.7146)$ |  | $2306(0.7634)$ |  |  |  |  |  |  |  |  |  |  |
| 65 | $2130(0.6991)$ |  | $2206(0.7824)$ |  | $2352(0.7842)$ |  |  |  |  |  |  |  |  |  |  |
| 70 | $2160(0.6828)$ |  | $2220(0.7514)$ |  | $2388(0.6559)$ |  |  |  |  |  |  |  |  |  |  |

Table C.19. Capacity Value and Standard Error of Mixed Traffic Scenario with 90\% AV at Weaving Segment

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FFS | $30 \%$ | $30 \%$ | $40 \%$ | $20 \%$ All- | $20 \%$ | $40 \%$ | $30 \%$ All- | $5 \%$ | $45 \%$ |
|  | Cautious | Normal | Knowing | Cautious | Normal | Knowing | Cautious | Normal | Knowing |
| 55 | $2061(0.7293)$ |  | $2244(0.7096)$ |  | $23(0.7033)$ |  |  |  |  |
| 60 | $2105(0.7618)$ |  | $2275(0.7391)$ |  | $2357(0.7816)$ |  |  |  |  |
| 65 | $2165(0.8045)$ |  | $2330(0.7358)$ |  | $2430(0.6952)$ |  |  |  |  |
| 70 | $2210(0.7614)$ |  | $2371(0.8122)$ |  | $2471(0.7361)$ |  |  |  |  |

Table C.20. Capacity Value and Standard Error of Mixed Traffic Scenario with 100\% AV at Weaving Segment

| $0 \%$ traditional |  |  |  | $0 \%$ traditional |  |  | $0 \%$ traditional |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFS | $10 \%$ <br> Cautious | $30 \%$ <br> Normal | 60\% All- <br> Knowing | $0 \%$ <br> Cautious | $20 \%$ <br> Normal | $80 \%$ All- <br> Knowing | $0 \%$ <br> Cautio <br> us | $0 \%$ <br> Normal | $100 \%$ <br> All- <br> Knowing |
| 55 | $2340(0.8154)$ |  |  | $2380(0.6943)$ |  | $2400(0.7615)$ |  |  |  |
| 60 | $2400(0.8078)$ |  |  | $2425(0.7182)$ |  | $2440(0.7169)$ |  |  |  |
| 65 | $2460(0.7694)$ |  |  | $2480(0.7918)$ |  | $2495(0.6926)$ |  |  |  |
| 70 | $2520(0.7491)$ |  | $2540(0.7691)$ |  | $2544(0.7066)$ |  |  |  |  |

