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ABSTRACT

Networks can take on many different forms, such as the people from the University you

attend. Within these networks, community structure may exist. This "community structure" refers

to the clustering of nodes by a common characteristic. There are many algorithms to extract

communities within a network. These methods depend on the assumption that structure exists

within the network. Statistical tests have been proposed to test this assumption. In practice,

networks may have measurement errors. This usually comes in the form of missing data or other

faults. As a result, networks may not tell the full story at surface level and network structure often

suffer from some type of error, as there may be nodes or edges absent from the data or ones that

should not exist within the network. We wish to observe the effectiveness of the largest eigenvalue

test for community structure when error is introduced into the network.
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1. INTRODUCTION

1.1. Background

Networks are a larger part of daily life than many of us realize. We exist within a network in

nearly every part of society, such as the school you attend, the job you work at, or the neighborhood

you live in. These networks do not stop at human beings either, they exist in many other facets,

such as businesses and retail goods. With network analysis, we are able to observe such phenomena

like:“what retail items are commonly bought together” and “whether someone knows another person

because of mutual friends”. When we look at graphs of these networks, we see a scattering of points

connected by lines. Points are generally referred to as “nodes” and lines are referred to as “edges”.

In the interest of people, each “node” would represent a person, while the “edges” represent some

connection between two people. These connections represent what we are trying to analyze. If we

are looking at a graph of a group of people, the lines drawn may represent that those two people

know each other or are friends. A simple method to represent this type of network is an Erdős-Rényi

graph. An Erdős-Rényi graph can be represented by G(n,p0), where n is the number of nodes in

the graph and p0 is the probability of having an edge between two nodes (Fortunato 2010). It

can be seen that the probability of sharing an edge with another node is equal for every possible

combination. The interest is to observe patterns or clusters within the data. We refer to a cluster

in our graph as a “community”. When clusters or separation are observed in the graph, we can

say that a “community structure” may exist in the data. When referring to Erdős-Rényi graphs,

we expect to see no community structure since the probability of an edge existing between any two

nodes is equal (Fortunato 2010). A new parameter q can be defined in the model in this case that

represents the probability of an edge existing between nodes of different communities, referred to as

“between” probability. The parameter p can now be defined as the probability of an edge existing

between two nodes of the same community, referred to as “within” probability. The new model

G(n, p, q), with the restriction p ≥ q, is referred to as the stochastic block model, and can be used

to model community structure (Mossel et al. 2018). The main purpose of community detection is

to extract the communities. Whether there is community structure within a network is unknown

in practice. To test the existence of community structure, the following hypothesis test can be
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constructed using the Erdős-Rényi model and the stochastic block model (Bickel and Sarkar 2016).

H0 : The network follows an Erdős-Rényi model: G(n, p0) where p = q = p0 (1.1)

H1 : The network follows a Stochastic Block Model: G(n, p, q) where p > q (1.2)

In the case where the network follows an Erdős-Rényi model, the probability of an edge

existing within a group is the same as the probability of an edge existing between groups. As

stated before, no community structure is expected in an Erdős-Rényi graph. In the case where the

network follows a stochastic block model, we expect to see two well-defined communities (Mossel et

al. 2018). An example of the two graphs can be seen below.

(a) A Network plot from an Erdős-Rényi model. (b) A Network plot from a Stochastic Block Model.

Figure 1.1. Network plots under null and alternative hypotheses.

As we can see from the two graphs, the Erdős-Rényi model shows no particular clusters

as we see a similar number of edges between the two groups as we do within the groups. In the

stochastic block model, we can observe a higher number of edges within the two groups than we

can between them.

A network on vertex set [n] = {1, 2, . . . , n} can be represented by an adjacency matrix A,

a symmetric n x n matrix with all diagonal entries being equal to zero while all other entries are

0 or 1. A value of 1 indicates an edge between the ith and jth nodes while a value of 0 indicates

no edge. To generate a graph from stochastic block model G(n, p, q), we define an n x 1 vector Z,

where the elements of Z are randomly assigned a value 1 or -1 with probability 0.5. This defines
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our two groups of interest. Considering the within probability p and the between probability q, we

can randomly generate the edges for two given nodes using Aij ∼ Bernoulli(p) when the ith and

the jth element of Z are equal and Aij ∼ Bernoulli(q) when the ith and the jth element of Z differ.

For the adjacency matrix we need only consider i < j.

Aij = Aji =


0 if i = j

Bernoulli(p) if Zi = Zj

Bernoulli(q) if Zi 6= Zj

for i < j (1.3)

The adjacency matrix help us accomplish one of the fundamental tasks: finding communities

within a network. There are many algorithms used to detect community structure. The success

of these algorithms depend on the assumption that community structure exists. The existence

of community structure can be stated by the hypotheses (1.1) and (1.2), in which no community

structure exists for (1.1) and community structure exists for (1.2). Several statistical tests are

proposed to test this assumption, such as the subgraph-count tests in (Gao and Lafferty 2017, Jin

et al. 2018, Yuan and Nan 2020, Yuan and Wen 2021) and the largest eigenvalue test in (Bickel

and Sarkar 2016).

For simulated networks, data can usually be generated without the possibility of error.

For most real-world networks, this is generally not the case. Surveys and other methods of data

collection may give us a general idea of the structure of the network, but often imperfect (Newman

2018). This error may disturb the community structure of the network we are observing. This

disruption is caused by misplaced nodes and edges. When a node or edge that should be accounted

for in the network is missing, we have a false negative node/edge. When a node or edge that should

not exist is present within the network, we have a false positive node/edge. In addition to this,

there may exist duplications and merging of edges and nodes (Wang et al. 2012). In this thesis, we

are interested in evaluating the effectiveness of the “largest eigenvalue” test when error is present.

Here, we will consider error in the form of adding or deleting edges. We can observe the effect of

false positive edges (adding an edge that was originally absent) and false negative edges (deleting

an edge that was already present) and how the test’s ability to detect communities is impacted.
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1.2. The Largest Eigenvalue Test

For the largest eigenvalue test, we assume that the edge probabilities are constant. Again,

the purpose of the test is to determine whether the network follows an Erdős-Rényi model (no

community structure) or the network follows a stochastic block model (some community structure

exists) (Bickel and Sarkar, 2016). We can refer to (1.1) and (1.2) for the respective null and

alternative hypotheses. Under an Erdős-Rényi model, we define the statistic P as P = E[A] :

P = np~e~eT − pI, (1.4)

where ~e is a vector of length n with all entries equal to 1√
n
and I is an n x n identity matrix. We

now use P to calculate the normalized matrix Â (Bickel and Sarkar, 2016):

Â =
A− P√

(n− 1)p(1− p)
. (1.5)

Now, we can derive the eigenvalues of the normalized matrix Â. We will refer to the largest

eigenvalue of Â as λ1. In most cases, we do not know the actual value of p and q when sampling

from networks. When this is the case, we must estimate p by p̂. The estimate of p̂ can be derived

from the original adjacency matrix A and can be expressed as

p̂ =

∑n
j=1

∑n
i=1Aij

n(n− 1)
(1.6)

Simply, we are taking the sum of all the edges in the graph and dividing it by the maximum number

of edges possible in the graph. Since a node cannot share an edge with itself, the diagonal values of

the matrix are not considered in the estimation of the edge probability. Given the estimate p̂, the

previous statistics can be redefined using the estimation. We define these new statistics as P̂ , Â
′
,

and λ̂1, the largest eigenvalue of Â
′
(Bickel and Sarkar 2016).

P̂ = np̂~e~eT − p̂I. (1.7)
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Â′
=

A− P̂√
(n− 1)p̂(1− p̂)

. (1.8)

With λ̂1 we can define our test statistic θ, which converges to a Tracy-Widom distribution with

index 1 ( TW1 ) (Lee and Yin 2014, Tracy and Widom 1994).

θ := n2/3{λ̂1 − 2} → TW1. (1.9)

Using the test statistic θ, we can compute a p-value from the tables of the Tracy-Widom distribution

for which P(X ≥ θ) equals said p-value. The p-value can then be compared to a chosen significance

level and a decision on the hypothesis test can be made.

1.3. Network with Measurement Errors

We have discussed how the largest eigenvalue test can help determine whether community

structure exists within a network, but now we wish to see how reliable the test is in the face of

error. Human error tends to be a large culprit when it comes to incorrect data. In the case of

networks, we may have scenarios where we say two nodes share an edge when they actually do not.

Inversely, we may miss an edge between two nodes, especially when we are dealing with a large

number of nodes. When measuring networks of social interaction, we often need to collect data by

surveys. Many factors in these surveys can cause errors, such as incorrectly recording a response, a

misleading or poorly-worded question, or non-response (Newman 2018). The factor of interest may

cause response error as well, such as when observing a network where a "friendship" represents an

edge, the conditions of what constitutes a "friendship" may be subjective (Wang et al. 2012).

This error can be simulated in our network, and a new adjacency matrix can be created that

takes error probabilities into account. We can define two error probabilities: εa and εd, where εa

is the probability of adding an edge and εd is the probability of deleting an edge. As mentioned

previously, this simulates just one of many types of errors that may be present in a network. Using

these error terms, the “error” adjacency matrix Ã can be created. Given a membership vector Z,

the error adjacency matrix re-samples the outcomes from the adjacency matrix A from a Bernoulli

distribution, this time considering the error probabilities. The error adjacency matrix Ã is re-
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sampled as:

Ãij = Ãji =



Bernoulli(pεa) if Zi = Zj and Aij = 0, i < j

Bernoulli(qεa) if Zi 6= Zj and Aij = 0, i < j

Bernoulli(1− pεd) if Zi = Zj and Aij = 1, i < j

Bernoulli(1− qεd) if Zi 6= Zj and Aij = 1, i < j

for i 6= j (1.10)

Logistically, when Aij = 0, we are dealing with the probability of adding an edge (εa), and

when Aij = 1, we are dealing with the probability of deleting an edge (εd). For the first case, we

have a pεa probability of adding an edge between two nodes that are within the same group. For

case two, there is a qεa probability of adding an edge between two nodes that are in different groups.

For the third case, the probability of deleting an edge shared by two nodes within the same group

is 1 - pεd . Finally, for the last case, the probability of deleting an edge shared by two nodes in

different groups is 1 - qεd. It should be noted that when εa = εd = 0, A = Ã . When the error

probabilities are zero, we have a Bernoulli with probability 0 when Aij = 0, meaning the entry will

not change for Ãij . This also goes for cases three and four, as when the error probabilities are zero,

we have a Bernoulli with probability 1 when Aij = 1, implying the entry will stay the same for

Ãij . Now given the adjacency matrix A and the error adjacency matrix Ã, we can calculate the

test statistic θ and determine the size and power of the test.
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2. SIMULATION METHODOLOGY

2.1. Simulation Methods: Size

The simulations of size and power were computed using R software, where the adjacency

matrices were simulated given the parameters n, p, q, εa, and εd along with the indicator vector

Z. For decisions regarding hypothesis testing, a significance level of α = 0.05 was used. When

estimating size and power, the results from 500 repetitions were used. To estimate size, we assume

that the null hypothesis is true. This means that the network follows an Erdős-Rényi model G(n,

p0) where p0 = p = q. The adjacency matrix A will be generated with dimension n x n and the

probability that the ith and jth nodes share an edge is p0. The error adjacency matrix Ã is then

generated based on the entries of A. Since it was shown that A = Ã when εa = εd = 0, it is sufficient

to use Ã to calculate Â′ even when there is an absence of error. Although the value of p0 is defined

for the simulation and used to generate the data, we assume it is unknown when evaluating the

hypothesis. The estimate p̂ must be used instead to calculate P̂ and Â′ . Once the statistic P̂ and

the normalized matrix Â′ have been generated, we can extract the largest eigenvalue λ̂1 from Â′ to

calculate the test statistic θ. The p-value is calculated as P(X ≥ θ) from TW1 and is compared to

the significance level α = 0.05. We then record whether H0 is rejected or not. If the null hypothesis

is rejected, a type I error has been committed. This holds since the data was simulated under an

Erdős-Rényi model, but the p-value of the test statistic warrants a rejection of H0 which states that

the network follows an Erdős-Rényi model. This process is repeated 500 times and the number of

rejections of H0 is recorded. The proportion of rejections out of the 500 repetitions is reported as

the size. Simulations were done with both p0 = 0.15 and p0 = 0.25, with sample sizes of n = 30,

50, 70, 90, 120, 240, 360, and 480. The parameters εa and εd were assumed to be equal when used

and took on values of 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, and 0.35.

2.2. Simulation Methods: Power

The simulation of power is very similar to size, with a few exceptions. When size was

calculated, we assumed that H0 was true and the network followed an Erdős-Rényi model. When

simulating for power, we assume that the alternative hypothesis H1 is true and that the network

simulated follows a Stochastic Block Model G(n,p,q) (Bickel and Sarkar 2016). The probabilities of
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p and q differ in this case and p > q. The values of p and q also have the stipulation that p+q
2 =

p0. This is due to using the estimate p̂ to calculate the test statistic. The error adjacency matrix

Ã can be generated given n, p, q, εa, and εd. The test statistic θ can be calculated and a decision

on the hypothesis can be rendered given the p-value from TW1. Since the assumption was that H1

was true and the data was generated from a Stochastic Block Model, a failure to reject H0 would

result in a type II error. For 500 repetitions, we generate a test statistic and make a decision on

the hypothesis test. The number of times we fail to reject H0 is recorded, and the proportion is the

type II error β. The power can then be obtained by taking 1 – β. When size was calculated, two

different values of p0 were used, p0 = 0.15 and p0 = 0.25. For the power simulations, the values

of p and q can differ as long as p+q
2 = p0 is satisfied and p > q. Each value of p0 was broken into

three cases: a small difference between p and q, a moderate difference between p and q, and a large

difference between p and q. This gives us estimates of power for six different combinations of p and

q. The six combinations are as follows:

For p0 = 0.15:

Small difference: p = 0.17, q = 0.13

Moderate difference: p = 0.20, q = 0.10

Large difference: p = 0.25, q = 0.05

For p0 = 0.25:

Small difference: p = 0.27, q = 0.23

Moderate difference: p = 0.30, q = 0.20

Large difference: p = 0.35, q = 0.15

The condition p+q
2 = p0 is satisfied in all cases. The difference between p and q affects how

quickly the power converges given the sample size n. For this reason, different sets of sample sizes

are used for each case to display the convergence of power. When the probabilities pand q are closer,

a large sample size is needed to achieve a high power. Primarily, we look to observe the changes

in power when the error probabilities εa and εd are present. The same parameters are used for

each error probability, with all combinations of εa and εd being observed. This leaves us with 64

combinations of values for εa and εd as each value ranges from 0 to 0.35 in intervals of 0.05. Power is
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then calculated for each selected sample size given the error probability combination. This process

is repeated amongst the six sets of values for p and q.
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3. SIMULATION RESULTS

3.1. Simulation Results: Size

Before running the simulations for power, we first observe the size of the test for each value

of p0. The type I error (α) must be within an acceptable threshold, for these simulations, the

acceptable range was 0.02 ≤ α ≤ 0.06. For p0 = 0.15, the size was acceptable for all sample sizes

in the absence of the error probabilities. When looking at how εa and εd affect the size, it appears

the smaller sample sizes are impacted more by the error probabilities. When n = 30 and εa = εd =

0, we achieve a size of 0.024 whereas when εa = εd = 0.35, the size was 0.016. This slight decrease

in size is noticeable up until n = 120 where the size begins to appear more constant in the presence

of error. When p0 is increased to 0.25, the size was much lower compared to p0 = 0.15. The size

is actually outside the acceptable range when the sample size is less than 90. The size appears to

remain relatively constant across all sample sizes when the error probabilities increase.

3.2. Simulation Results: Power

The tests for power are simulated at each sample size for each of the six combinations

of the within probability p and the between probability q. Different combinations of the error

probabilities εa and εd are also used. By assuming the alternative H1 is true and that the network

follows a Stochastic Block Model, we estimate the proportion of times out of 500 that we commit

a type II error (β) and calculate the power (1-β). We will observe the trends in power as well as

the impact of the error probabilities for each of the six combinations of p and q. For this study, we

seek to obtain an acceptable power of (1-β) ≥ 0.90.

3.2.1. Small Difference: p = 0.17 and q = 0.13

Observing the trends in power for when p and q are very similar, we notice that a much

higher sample size is required to achieve an acceptable power. Three different sample sizes were

used: 360, 480, and 600. The test crossed the acceptable 0.90 threshold between n = 480 (0.768) and

n = 600 (0.994) in the absence of εa and εd. This should follow, as since p and q are very similar,

we must have a sufficient number of nodes in order to distinguish the difference. The following

community plot can help support this:
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(a) Random network plot under alternative hypoth-
esis.

(b) Clustered network plot under alternative hy-
pothesis.

Figure 3.1. Network plots under alternative hypothesis p = 0.17 and q = 0.13.

The graph on the left is not clustered, although as n increases, the two groups will begin

to appear more clustered. The graph on the right is clustered, with yellow representing the first n
2

nodes and light green representing nodes n
2 + 1 to n. This graph allows us to have a better view

of the edges between nodes. We can see the connections between nodes within each group as well

as the connections between each group. As the probabilities of sharing an edge within groups (p)

and between groups (q) are similar, we see a similar number of edges between and within at a small

sample size. As sample size increases, this difference will become more apparent. Even when n =

360, the power of the test was low (0.266), so a sample size of n = 30 would result in an extremely

low power. Taking the error probabilities into account, we can observe the change in power in

several different ways such as the individual impact of εa and εd. When holding εa constant at 0, we

can observe the change in power due to εd, the probability of deleting an edge. The plot of power

by εd for each sample size is displayed below:
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Figure 3.2. Plots of power under alternative hypothesis p = 0.17 and q = 0.13, εa = 0.

As εd increases, there appears to be a decrease in power. This decrease is most apparent

with the n = 480 sample size. In the absence of εd, the power of the test at a sample size of 480

was 0.768. When the probability of deleting an already existing edge was 0.35, the power shrunk to

0.42. The largest sample size of 600 was more resilient, especially with smaller values of εd. Next,

we can observe power when both error probabilities are present. Holding the probability of adding

an edge εa at 0.2, the obtained powers are displayed:

Figure 3.3. Plots of power under alternative hypothesis p = 0.17 and q = 0.13, εa = 0.20.
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It can be noted that the presence of εa causes an increase power. Meaning that when the

probability of adding an edge exists, this can cause an overestimation of power. The plots follow

a similar pattern as εd increases, with the plots being shifted upwards. Again, the middle sample

size of 480 was affected the most, with a power of 0.918 when εd = 0 and a power of 0.688 when εd

= 0.35. With a sample size of 600, the power stays near 1 even as εd approaches 0.35. Lastly, we

can observe power when both errors approach their most extreme. Holding εa constant at 0.35, we

obtain the following power plots:

Figure 3.4. Plots of power under alternative hypothesis p = 0.17 and q = 0.13, εa = 0.35.

With the probability of adding an edge being relatively high, this causes the power at a

sample size of 480 to be nearly 1. With the initial power being overestimated due to εa, the

decrease as εd increases are not quite as extreme. We can see that the absence of edges that should

exist cause the power to decrease, while the addition of edges that should not be present leads to

an overestimation of power.

3.2.2. Moderate difference: p = 0.2 and q = 0.1

Next, we will observe the power of the eigenvalue test and the impact of the error probabilities

when p and q are more modestly distinct. Since the probabilities used to simulate this data are

further apart, we should expect to have a higher power at lower sample sizes. For this set, sample
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sizes of 60, 90, 120, and 150 were used. When setting εa and εd equal to 0, we obtain a power of

0.162 at n = 60, a power of 0.53 at n = 90, a power of 0.91 at n = 120, and a power of 0.996 at n

= 150. We can take a look at the network plot to get a visualization of the network. The following

is a network with n = 60 nodes:

(a) Random network plot under alternative hypoth-
esis.

(b) Clustered network plot under alternative hy-
pothesis.

Figure 3.5. Network plots under alternative hypothesis p = 0.20 and q = 0.10

The plot on the left is the non-clustered community, however, we begin to see the clustering

of each group at this stage. On the right, we can examine the edges between communities and

see how there exists more edges within each group than between groups. Now, we can observe the

change in power when holding εa constant at 0 with p = 0.2 and q = 0.1. The plot of power for

each of the four sample sizes is displayed:

14



Figure 3.6. Plots of power under alternative hypothesis p = 0.20, q = 0.10, and εa = 0.

We notice a similar pattern with the change in power that was observed with the small

difference between p and q. At a sample size of 150, the test is able to withstand a large εd and

maintain a high power. When the sample size was 120, the power was an acceptable 0.91. However,

with a large error εd = 0.35, the power shrinks to 0.76. When n = 90, there is also a noticeable

decrease in power. Now, we can observe the change in power when we introduce εa into the test,

setting it constant at 0.2. The following powers are plotted for each sample size:

Figure 3.7. Plots of power under alternative hypothesis p = 0.20, q = 0.10, and εa = 0.20.
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Again, we observed a vertical shift upwards as εa went from 0 to 0.2. The addition of edges

causes an overestimation in power, as it did with the small difference between p and q. At a sample

size of 150, the sample size remains close to 1 even as εd increases. At n = 120, the power was a

bit more resilient to the decrease that εd causes, with that decrease now being most apparent with

n = 90. It appears that when the test has an initial range of power around 0.40 to 0.90, it is more

influenced by εd than powers outside this range. Finally, we observed power holding εa constant at

0.35:

Figure 3.8. Plots of power under alternative hypothesis p = 0.20, q = 0.10, and εa = 0.35.

The same patterns can again be recognized. An upwards shift is again noted as εa increased

from 0.2 to 0.35. The powers for n = 120 and n = 150 are very similar at εd = 0. However, εd has

a larger impact on the smaller sample size as it increases. At a sample size of 90, the initial power

was 0.782, but as εd increased to 0.35, the power decreased to 0.608. The patterns observed in the

medium difference of p and q were similar to that of the small difference.

3.2.3. Large difference: p = 0.25 and q = 0.05

For the final set when p0 = 0.15, we wish to observe the power of the eigenvalue test when

the probabilities of sharing an edge between groups and within groups are vastly different. Since

the two values are distinct, we expect to only need a small sample size to achieve a high power. For
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these simulations, sample sizes of 30, 40, and 50 were used. With probabilities p and q being far

apart, even at a small sample size n = 30, a power of 0.484 is achieved. The power quickly converges,

reaching 0.994 at a sample size of 50. We can observe the network plot for this simulation to see

the disparity between the two probabilities:

(a) Random network plot under alternative hypoth-
esis.

(b) Clustered network plot under alternative hy-
pothesis.

Figure 3.9. Network plots under alternative hypothesis p = 0.25 and q = 0.05.

On the left, even with an unorganized graph, we can see a pretty clear clustering of the two

groups. On the right, the clustered graph shows us the minimal number of edges between the two

groups, as most of the edges exist within each group. Next, we will analyze the power of the test at

these parameters while setting εa equal to zero. The plot of power for each sample size is displayed

as the value of εd changes:

Figure 3.10. Plots of power under alternative hypothesis p = 0.25, q = 0.05, and εa = 0.

17



The similarities of the previous plots are still present, as the largest sample size n = 50 keeps

a high power even with a large value of εd. At a sample size of 40, the power ranged from 0.882

when εd = 0 to 0.754 when εd = 0.35. Next, the value of εa will be held constant at 0.2 and the

power at each sample size will be plotted. The following plots are obtained for each sample size:

Figure 3.11. Plots of power under alternative hypothesis p = 0.25, q = 0.05, and εa = 0.20.

The vertical shift upwards in power is once again present as εa is held constant at a higher

value. At a sample size of 50, the power is maintained close to 1. At a sample size of 40, due to

the overestimation of power, the decrease in power is minimized as εd increases. Finally, we hold εa

constant at 0.35 and observe the change in power:

The power at n = 40 and n = 50 are very similar at εd = 0, but the smaller sample size is

affected more as the probability of deleting an edge increases. At a sample size of 30, the power is

overestimated at 0.716 due to a large εa value. As εd increases, the power decreases to 0.578. The

increasing error probability εd appears to have the largest impact on a test with power between 0.40

and 0.90.

3.3. Patterns for p0 = 0.25

The patterns observed when p0 = 0.15 seemed to carry on for p0 = 0.25. These plots can

be viewed in the appendix. The most notable observation is the small difference between p and q.
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Figure 3.12. Plots of power under alternative hypothesis p = 0.25, q = 0.05, and εa = 0.35.

In this case, p = 0.27 and q = 0.23. Even at a sample size of 720, a power of 0.832 is achieved

when εa and εd are both zero. The decrease in power as εd increases appears to be more extreme

in this case, as the power shrinks to 0.252 at εd = 0.35. In general, the decrease in power due to εd

seemed to be larger in the p0 = 0.25 case. As the probabilities are higher for both p and q in the p0

= 0.25 case, this means εa and εd will cause the addition and deletion of a higher number of edges,

respectively.

3.4. Patterns for constant εd

Patterns for constant εd were also observed and can be viewed in the appendix. These plots

also follow similar patterns. Rather than an upwards shift when εd is increased, we see a downwards

shift in power. This was highlighted as the increase in εd caused a decrease in power. The presence

of an increasing εa resulted in the overestimation of power, as we see the plots increasing as εa

increased. Tests with power between 0.40 and 0.90 tended to be affected the most by εa, as this is

when the increase seemed most apparent.

3.5. Behaviors for εa = εd

To help have a better idea of how the error probabilities interact with one another, we can

observe the power of the tests when εa = εd for all possible values. With these plots, we can observe

the patterns for power and determine which error probability is having more influence on the power.
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A total of six plots were created, one for each of the six combinations of p and q. For p0 = 0.15,

the following three plots are displayed:

Figure 3.13. Plots of power under alternative hypothesis p = 0.17, q = 0.13, and εa = εd.

Figure 3.14. Plots of power under alternative hypothesis p = 0.20, q = 0.10, and εa = εd.
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Figure 3.15. Plots of power under alternative hypothesis p = 0.25, q = 0.05, and εa = εd.

We can see that an increase in both of the error probabilities results in an increase in

power overall. Earlier, it was stated that εa was correlated to an increase in power. We can

make an argument that εa has more influence on power than εd in this case. Once again, tests

with a somewhat weak to a somewhat strong power seem to be influenced the most by the error

probabilities. We will also look at the other three combinations of p and q for when p0 = 0.25. The

plots for the following three combinations are shown:

Figure 3.16. Plots of power under alternative hypothesis p = 0.27, q = 0.23, and εa = εd.
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Figure 3.17. Plots of power under alternative hypothesis p = 0.30, q = 0.20, and εa = εd.

Figure 3.18. Plots of power under alternative hypothesis p = 0.35, q = 0.15, and εa = εd.

For the p0 = 0.25 case, a decrease in power as εa and εd increase was observed. This is in

contrast to the p0 = 0.15 case. In this case, we can argue that εd has more influence on power. The

decrease in power is most apparent when the baseline power (εa = εd = 0) is around the 0.40 to

0.90 range.
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4. CONCLUSION

These simulations of the largest eigenvalue test allowed us to see how powerful the test can

be, given the appropriate sample size. The results showed that even in the presence of error, a large

sample size can stabilize the power. The most intriguing discovery was the change of influence with

the error probabilities between p0 = 0.15 and p0 = 0.25, with εa having more influence on power

for p0 = 0.15, and εd having more influence on power when p0 = 0.25. The probability of adding an

edge εa, meaning edges that should not be present are added to the network, causes an inflation of

the power. On the other hand, εd, the probability of deleting an edge, caused a decrease in power.

When deleting an edge, it means we are not accounting for an edge that should be there. This seems

more plausible in practice, as it is more likely that connections are glossed over and not recorded.

The eigenvalue test performs very well in detecting community structure, given appropriate p and

q probabilities as well as large sample sizes. We also observed that when the power of a test is

initially in the range of 0.40 to 0.90 when the dependent error probability is 0, the power is affected

more by the error. This region of "fragility" further supplements the need of a large sample size to

attain the appropriate level of power.
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APPENDIX

Table A.1. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0; 0)

(0.17; 0.13; 0; 0.05) (0.17; 0.13; 0, 0.1) (0.17; 0.13; 0, 0.15)

360 0.266 0.244 0.228 0.214
480 λ1(Ã) 0.768 0.704 0.688 0.616
600 0.994 0.986 0.98 0.978
n Method (p, q, εa, εd) =

(0.17; 0.13; 0; 0.2)
(0.17; 0.13; 0; 0.25) (0.17; 0.13; 0, 0.3) (0.17; 0.13; 0, 0.35)

360 0.204 0.178 0.154 0.146
480 λ1(Ã) 0.528 0.526 0.476 0.42
600 0.948 0.93 0.902 0.834

Table A.2. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0.05, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0.05; 0)

(0.17; 0.13; 0.05; 0.05) (0.17; 0.13; 0.05, 0.1) (0.17; 0.13; 0.05, 0.15)

360 0.34 0.278 0.258 0.25
480 λ1(Ã) 0.796 0.744 0.714 0.654
600 0.996 0.99 0.99 0.976
n Method (p, q, εa, εd) =

(0.17; 0.13; 0.05; 0.2)
(0.17; 0.13; 0.05; 0.25) (0.17; 0.13; 0.05, 0.3) (0.17; 0.13; 0.05, 0.35)

360 0.22 0.202 0.194 0.182
480 λ1(Ã) 0.618 0.588 0.516 0.482
600 0.982 0.968 0.928 0.90
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Table A.3. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0.1, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0.1; 0)

(0.17; 0.13; 0.1; 0.05) (0.17; 0.13; 0.1, 0.1) (0.17; 0.13; 0.1, 0.15)

360 0.328 0.312 0.258 0.256
480 λ1(Ã) 0.83 0.802 0.766 0.75
600 1 0.992 0.992 0.982
n Method (p, q, εa, εd) =

(0.17; 0.13; 0.1; 0.2)
(0.17; 0.13; 0.1; 0.25) (0.17; 0.13; 0.1, 0.3) (0.17; 0.13; 0.1, 0.35)

360 0.252 0.23 0.216 0.174
480 λ1(Ã) 0.698 0.646 0.608 0.558
600 0.98 0.97 0.974 0.932

Table A.4. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0.15, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0.15; 0)

(0.17; 0.13; 0.15; 0.05) (0.17; 0.13; 0.15, 0.1) (0.17; 0.13; 0.15, 0.15)

360 0.362 0.33 0.314 0.296
480 λ1(Ã) 0.874 0.849 0.808 0.806
600 0.998 0.998 0.996 0.994
n Method (p, q, εa, εd) =

(0.17; 0.13; 0.15; 0.2)
(0.17; 0.13; 0.15; 0.25) (0.17; 0.13; 0.15, 0.3) (0.17; 0.13; 0.15, 0.35)

360 0.258 0.254 0.224 0.204
480 λ1(Ã) 0.766 0.708 0.662 0.616
600 0.986 0.982 0.972 0.97

Table A.5. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0.2, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0.2; 0)

(0.17; 0.13; 0.2; 0.05) (0.17; 0.13; 0.2, 0.1) (0.17; 0.13; 0.2, 0.15)

360 0.384 0.348 0.326 0.308
480 λ1(Ã) 0.916 0.88 0.864 0.83
600 1 1 0.998 1
n Method (p, q, εa, εd) =

(0.17; 0.13; 0.2; 0.2)
(0.17; 0.13; 0.2; 0.25) (0.17; 0.13; 0.2, 0.3) (0.17; 0.13; 0.2, 0.35)

360 0.274 0.25 0.236 0.228
480 λ1(Ã) 0.796 0.768 0.742 0.688
600 0.998 0.996 0.99 0.982
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Table A.6. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0.25, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0.25; 0)

(0.17; 0.13; 0.25; 0.05) (0.17; 0.13; 0.25, 0.1) (0.17; 0.13; 0.25, 0.15)

360 0.448 0.408 0.402 0.362
480 λ1(Ã) 0.94 0.918 0.892 0.89
600 1 1 0.998 0.998
n Method (p, q, εa, εd) =

(0.17; 0.13; 0.25; 0.2)
(0.17; 0.13; 0.25; 0.25) (0.17; 0.13; 0.25, 0.3) (0.17; 0.13; 0.25, 0.35)

360 0.336 0.30 0.286 0.254
480 λ1(Ã) 0.846 0.834 0.808 0.742
600 0.998 0.994 0.992 0.986

Table A.7. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0.3, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0.3; 0)

(0.17; 0.13; 0.3; 0.05) (0.17; 0.13; 0.3, 0.1) (0.17; 0.13; 0.3, 0.15)

360 0.508 0.47 0.442 0.42
480 λ1(Ã) 0.96 0.952 0.932 0.922
600 1 1 1 1
n Method (p, q, εa, εd) =

(0.17; 0.13; 0.3; 0.2)
(0.17; 0.13; 0.3; 0.25) (0.17; 0.13; 0.3, 0.3) (0.17; 0.13; 0.3, 0.35)

360 0.362 0.34 0.322 0.294
480 λ1(Ã) 0.902 0.878 0.844 0.78
600 1 0.998 0.996 0.992

Table A.8. These tables display power for when "p" and "q" are very close. Simulated Powers with
measurement error: graphs generated from G(0.17, 0.13, 0.35, εd).

n Method (p, q, εa, εd) =
(0.17; 0.13; 0.35; 0)

(0.17; 0.13; 0.35; 0.05) (0.17; 0.13; 0.35, 0.1) (0.17; 0.13; 0.35, 0.15)

360 0.558 0.494 0.48 0.446
480 λ1(Ã) 0.988 0.986 0.96 0.956
600 1 1 1 1
n Method (p, q, εa, εd) =

(0.17; 0.13; 0.35; 0.2)
(0.17; 0.13; 0.35; 0.25) (0.17; 0.13; 0.35, 0.3) (0.17; 0.13; 0.35, 0.35)

360 0.412 0.382 0.372 0.352
480 λ1(Ã) 0.922 0.908 0.902 0.872
600 1 1 0.998 0.998
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Table A.9. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0; 0)

(0.2; 0.1; 0, 0.05) (0.2; 0.1; 0, 0.1) (0.2; 0.1; 0, 0.15)

60 0.162 0.16 0.148 0.136
90 0.53 0.51 0.472 0.46
120 λ1(Ã) 0.91 0.906 0.878 0.86
150 0.996 0.996 0.994 0.994
n Method (p, q, εa, εd) =

(0.2; 0.1; 0; 0.2)
(0.2; 0.1; 0, 0.25) (0.2; 0.1; 0, 0.3) (0.2; 0.1; 0, 0.35)

60 0.136 0.126 0.124 0.124
90 0.422 0.414 0.386 0.384
120 λ1(Ã) 0.828 0.81 0.79 0.76
150 0.99 0.988 0.982 0.972

Table A.10. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0.05, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0.05; 0)

(0.2; 0.1; 0.05, 0.05) (0.2; 0.1; 0.05, 0.1) (0.2; 0.1; 0.05, 0.15)

60 0.162 0.16 0.156 0.144
90 0.554 0.524 0.506 0.48
120 λ1(Ã) 0.938 0.918 0.908 0.884
150 1 1 1 0.996
n Method (p, q, εa, εd) =

(0.2; 0.1; 0.05; 0.2)
(0.2; 0.1; 0.05, 0.25) (0.2; 0.1; 0.05, 0.3) (0.2; 0.1; 0.05, 0.35)

60 0.138 0.138 0.116 0.116
90 0.472 0.452 0.418 0.384
120 λ1(Ã) 0.866 0.854 0.816 0.786
150 0.994 0.988 0.988 0.98

Table A.11. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0.1, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0.1; 0)

(0.2; 0.1; 0.1, 0.05) (0.2; 0.1; 0.1, 0.1) (0.2; 0.1; 0.1, 0.15)

60 0.174 0.168 0.158 0.15
90 0.608 0.572 0.548 0.522
120 λ1(Ã) 0.956 0.942 0.928 0.918
150 1 1 1 0.998
n Method (p, q, εa, εd) =

(0.2; 0.1; 0.1; 0.2)
(0.2; 0.1; 0.1, 0.25) (0.2; 0.1; 0.1, 0.3) (0.2; 0.1; 0.1, 0.35)

60 0.146 0.142 0.128 0.124
90 0.488 0.464 0.44 0.43
120 λ1(Ã) 0.902 0.886 0.866 0.836
150 0.996 0.996 0.994 0.994
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Table A.12. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0.15, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0.15; 0)

(0.2; 0.1; 0.15, 0.05) (0.2; 0.1; 0.15, 0.1) (0.2; 0.1; 0.15, 0.15)

60 0.186 0.178 0.17 0.154
90 0.648 0.614 0.60 0.56
120 λ1(Ã) 0.972 0.96 0.94 0.936
150 1 1 1 1
n Method (p, q, εa, εd) =

(0.2; 0.1; 0.15; 0.2)
(0.2; 0.1; 0.15, 0.25) (0.2; 0.1; 0.15, 0.3) (0.2; 0.1; 0.15, 0.35)

60 0.15 0.142 0.136 0.136
90 0.546 0.494 0.488 0.45
120 λ1(Ã) 0.926 0.908 0.882 0.856
150 1 0.998 0.996 0.996

Table A.13. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0.2, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0.2; 0)

(0.2; 0.1; 0.2, 0.05) (0.2; 0.1; 0.2, 0.1) (0.2; 0.1; 0.2, 0.15)

60 0.196 0.182 0.178 0.166
90 0.674 0.656 0.618 0.61
120 λ1(Ã) 0.974 0.972 0.962 0.956
150 1 1 1 1
n Method (p, q, εa, εd) =

(0.2; 0.1; 0.2; 0.2)
(0.2; 0.1; 0.2, 0.25) (0.2; 0.1; 0.2, 0.3) (0.2; 0.1; 0.2, 0.35)

60 0.16 0.154 0.148 0.142
90 0.572 0.534 0.498 0.486
120 λ1(Ã) 0.944 0.934 0.914 0.90
150 1 1 0.998 0.996

Table A.14. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0.25, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0.25; 0)

(0.2; 0.1; 0.25, 0.05) (0.2; 0.1; 0.25, 0.1) (0.2; 0.1; 0.25, 0.15)

60 0.202 0.20 0.19 0.17
90 0.704 0.686 0.658 0.636
120 λ1(Ã) 0.982 0.978 0.968 0.966
150 1 1 1 1
n Method (p, q, εa, εd) =

(0.2; 0.1; 0.25; 0.2)
(0.2; 0.1; 0.25, 0.25) (0.2; 0.1; 0.25, 0.3) (0.2; 0.1; 0.25, 0.35)

60 0.168 0.164 0.158 0.15
90 0.622 0.592 0.566 0.54
120 λ1(Ã) 0.96 0.944 0.938 0.922
150 1 1 1 0.998
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Table A.15. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0.3, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0.3; 0)

(0.2; 0.1; 0.3, 0.05) (0.2; 0.1; 0.3, 0.1) (0.2; 0.1; 0.3, 0.15)

60 0.218 0.208 0.206 0.188
90 0.738 0.722 0.70 0.67
120 λ1(Ã) 0.988 0.984 0.982 0.98
150 1 1 1 1
n Method (p, q, εa, εd) =

(0.2; 0.1; 0.3; 0.2)
(0.2; 0.1; 0.3, 0.25) (0.2; 0.1; 0.3, 0.3) (0.2; 0.1; 0.3, 0.35)

60 0.186 0.174 0.166 0.156
90 0.642 0.634 0.596 0.594
120 λ1(Ã) 0.966 0.96 0.952 0.944
150 1 1 1 1

Table A.16. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.20, 0.10, 0.35, εd).

n Method (p, q, εa, εd) =
(0.2; 0.1; 0.35; 0)

(0.2; 0.1; 0.35, 0.05) (0.2; 0.1; 0.35, 0.1) (0.2; 0.1; 0.35, 0.15)

60 0.244 0.228 0.214 0.20
90 0.782 0.762 0.728 0.716
120 λ1(Ã) 0.992 0.99 0.986 0.982
150 1 1 1 1
n Method (p, q, εa, εd) =

(0.2; 0.1; 0.35; 0.2)
(0.2; 0.1; 0.35, 0.25) (0.2; 0.1; 0.35, 0.3) (0.2; 0.1; 0.35, 0.35)

60 0.192 0.19 0.172 0.172
90 0.70 0.656 0.634 0.608
120 λ1(Ã) 0.976 0.972 0.966 0.956
150 1 1 1 1

Table A.17. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0; 0)

(0.25; 0.05; 0; 0.05) (0.25; 0.05; 0, 0.1) (0.25; 0.05; 0, 0.15)

30 0.484 0.466 0.45 0.434
40 λ1(Ã) 0.882 0.868 0.854 0.828
50 0.994 0.994 0.988 0.986
n Method (p, q, εa, εd) =

(0.25; 0.05; 0; 0.2)
(0.25; 0.05; 0; 0.25) (0.25; 0.05; 0, 0.3) (0.25; 0.05; 0, 0.35)

30 0.416 0.402 0.384 0.364
40 λ1(Ã) 0.818 0.80 0.768 0.754
50 0.984 0.976 0.972 0.964
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Table A.18. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0.05, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0.05; 0)

(0.25; 0.05; 0.05; 0.05) (0.25; 0.05; 0.05, 0.1) (0.25; 0.05; 0.05, 0.15)

30 0.526 0.502 0.484 0.466
40 λ1(Ã) 0.90 0.892 0.876 0.866
50 0.996 0.994 0.994 0.99
n Method (p, q, εa, εd) =

(0.25; 0.05; 0.05; 0.2)
(0.25; 0.05; 0.05; 0.25) (0.25; 0.05; 0.05, 0.3) (0.25; 0.05; 0.05, 0.35)

30 0.448 0.426 0.416 0.396
40 λ1(Ã) 0.836 0.828 0.812 0.784
50 0.99 0.984 0.982 0.974

Table A.19. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0.1, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0.1; 0)

(0.25; 0.05; 0.1; 0.05) (0.25; 0.05; 0.1, 0.1) (0.25; 0.05; 0.1, 0.15)

30 0.556 0.536 0.514 0.498
40 λ1(Ã) 0.922 0.91 0.898 0.884
50 0.998 0.998 0.996 0.994
n Method (p, q, εa, εd) =

(0.25; 0.05; 0.1; 0.2)
(0.25; 0.05; 0.1; 0.25) (0.25; 0.05; 0.1, 0.3) (0.25; 0.05; 0.1, 0.35)

30 0.478 0.466 0.444 0.42
40 λ1(Ã) 0.874 0.854 0.838 0.822
50 0.99 0.988 0.986 0.98

Table A.20. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0.15, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0.15; 0)

(0.25; 0.05; 0.15; 0.05) (0.25; 0.05; 0.15, 0.1) (0.25; 0.05; 0.15, 0.15)

30 0.59 0.572 0.546 0.536
40 λ1(Ã) 0.94 0.928 0.918 0.91
50 0.998 0.998 0.996 0.996
n Method (p, q, εa, εd) =

(0.25; 0.05; 0.15; 0.2)
(0.25; 0.05; 0.15; 0.25) (0.25; 0.05; 0.15, 0.3) (0.25; 0.05; 0.15, 0.35)

30 0.504 0.488 0.468 0.45
40 λ1(Ã) 0.898 0.884 0.876 0.848
50 0.994 0.99 0.992 0.986
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Table A.21. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0.2, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0.2; 0)

(0.25; 0.05; 0.2; 0.05) (0.25; 0.05; 0.2, 0.1) (0.25; 0.05; 0.2, 0.15)

30 0.632 0.602 0.588 0.564
40 λ1(Ã) 0.95 0.946 0.93 0.924
50 0.998 0.998 0.998 0.998
n Method (p, q, εa, εd) =

(0.25; 0.05; 0.2; 0.2)
(0.25; 0.05; 0.2; 0.25) (0.25; 0.05; 0.2, 0.3) (0.25; 0.05; 0.2, 0.35)

30 0.542 0.528 0.516 0.47
40 λ1(Ã) 0.916 0.908 0.89 0.874
50 0.996 0.996 0.996 0.994

Table A.22. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0.25, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0.25; 0)

(0.25; 0.05; 0.25; 0.05) (0.25; 0.05; 0.25, 0.1) (0.25; 0.05; 0.25, 0.15)

30 0.652 0.644 0.616 0.594
40 λ1(Ã) 0.966 0.958 0.95 0.942
50 1 1 1 1
n Method (p, q, εa, εd) =

(0.25; 0.05; 0.25; 0.2)
(0.25; 0.05; 0.25; 0.25) (0.25; 0.05; 0.25, 0.3) (0.25; 0.05; 0.25, 0.35)

30 0.582 0.55 0.542 0.518
40 λ1(Ã) 0.938 0.922 0.92 0.902
50 0.998 0.998 0.996 0.996

Table A.23. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0.3, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0.3; 0)

(0.25; 0.05; 0.3; 0.05) (0.25; 0.05; 0.3, 0.1) (0.25; 0.05; 0.3, 0.15)

30 0.692 0.672 0.652 0.626
40 λ1(Ã) 0.972 0.964 0.962 0.954
50 1 1 1 1
n Method (p, q, εa, εd) =

(0.25; 0.05; 0.3; 0.2)
(0.25; 0.05; 0.3; 0.25) (0.25; 0.05; 0.3, 0.3) (0.25; 0.05; 0.3, 0.35)

30 0.614 0.588 0.564 0.546
40 λ1(Ã) 0.948 0.938 0.936 0.918
50 1 1 0.998 0.998
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Table A.24. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.25, 0.05, 0.35, εd),

n Method (p, q, εa, εd) =
(0.25; 0.05; 0.35; 0)

(0.25; 0.05; 0.35; 0.05) (0.25; 0.05; 0.35, 0.1) (0.25; 0.05; 0.35, 0.15)

30 0.716 0.70 0.686 0.664
40 λ1(Ã) 0.98 0.974 0.972 0.966
50 1 1 1 1
n Method (p, q, εa, εd) =

(0.25; 0.05; 0.35; 0.2)
(0.25; 0.05; 0.35; 0.25) (0.25; 0.05; 0.35, 0.3) (0.25; 0.05; 0.35, 0.35)

30 0.648 0.618 0.60 0.578
40 λ1(Ã) 0.96 0.954 0.948 0.938
50 1 1 1 0.998

Table A.25. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0; 0)

(0.27; 0.23; 0, 0.05) (0.27; 0.23; 0, 0.1) (0.27; 0.23; 0, 0.15)

480 0.162 0.132 0.11 0.11
600 λ1(Ã) 0.45 0.388 0.322 0.238
720 0.832 0.758 0.69 0.592
n Method (p, q, εa, εd) =

(0.27; 0.23; 0; 0.2)
(0.27; 0.23; 0, 0.25) (0.27; 0.23; 0, 0.3) (0.27; 0.23; 0, 0.35)

480 0.064 0.062 0.06 0.06
600 λ1(Ã) 0.188 0.148 0.144 0.12
720 0.478 0.394 0.316 0.252

Table A.26. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0.05, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0.05; 0)

(0.27; 0.23; 0.05, 0.05) (0.27; 0.23; 0.05, 0.1) (0.27; 0.23; 0.05, 0.15)

480 0.19 0.158 0.126 0.108
600 λ1(Ã) 0.464 0.426 0.364 0.276
720 0.862 0.818 0.706 0.626
n Method (p, q, εa, εd) =

(0.27; 0.23; 0.05; 0.2)
(0.27; 0.23; 0.05, 0.25) (0.27; 0.23; 0.05, 0.3) (0.27; 0.23; 0.05, 0.35)

480 0.086 0.072 0.072 0.06
600 λ1(Ã) 0.232 0.176 0.152 0.15
720 0.564 0.462 0.372 0.30
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Table A.27. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0.1, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0.1; 0)

(0.27; 0.23; 0.1, 0.05) (0.27; 0.23; 0.1, 0.1) (0.27; 0.23; 0.1, 0.15)

480 0.204 0.168 0.132 0.116
600 λ1(Ã) 0.542 0.446 0.392 0.322
720 0.898 0.844 0.78 0.698
n Method (p, q, εa, εd) =

(0.27; 0.23; 0.1; 0.2)
(0.27; 0.23; 0.1, 0.25) (0.27; 0.23; 0.1, 0.3) (0.27; 0.23; 0.1, 0.35)

480 0.10 0.074 0.068 0.068
600 λ1(Ã) 0.252 0.212 0.148 0.136
720 0.648 0.508 0.43 0.344

Table A.28. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0.15, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0.15; 0)

(0.27; 0.23; 0.15, 0.05) (0.27; 0.23; 0.15, 0.1) (0.27; 0.23; 0.15, 0.15)

480 0.228 0.184 0.178 0.132
600 λ1(Ã) 0.572 0.48 0.40 0.376
720 0.936 0.89 0.814 0.752
n Method (p, q, εa, εd) =

(0.27; 0.23; 0.15; 0.2)
(0.27; 0.23; 0.15, 0.25) (0.27; 0.23; 0.15, 0.3) (0.27; 0.23; 0.15, 0.35)

480 0.104 0.104 0.068 0.054
600 λ1(Ã) 0.276 0.25 0.186 0.158
720 0.656 0.574 0.458 0.362

Table A.29. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0.2, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0.2; 0)

(0.27; 0.23; 0.2, 0.05) (0.27; 0.23; 0.2, 0.1) (0.27; 0.23; 0.2, 0.15)

480 0.248 0.196 0.168 0.14
600 λ1(Ã) 0.63 0.53 0.466 0.368
720 0.968 0.92 0.86 0.824
n Method (p, q, εa, εd) =

(0.27; 0.23; 0.2; 0.2)
(0.27; 0.23; 0.2, 0.25) (0.27; 0.23; 0.2, 0.3) (0.27; 0.23; 0.2, 0.35)

480 0.136 0.122 0.084 0.084
600 λ1(Ã) 0.334 0.262 0.222 0.18
720 0.708 0.638 0.52 0.43
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Table A.30. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0.25, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0.25; 0)

(0.27; 0.23; 0.25, 0.05) (0.27; 0.23; 0.25, 0.1) (0.27; 0.23; 0.25, 0.15)

480 0.244 0.202 0.184 0.162
600 λ1(Ã) 0.70 0.58 0.56 0.478
720 0.972 0.924 0.878 0.844
n Method (p, q, εa, εd) =

(0.27; 0.23; 0.25; 0.2)
(0.27; 0.23; 0.25, 0.25) (0.27; 0.23; 0.25, 0.3) (0.27; 0.23; 0.25, 0.35)

480 0.138 0.108 0.098 0.082
600 λ1(Ã) 0.39 0.312 0.228 0.216
720 0.764 0.694 0.602 0.526

Table A.31. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0.3, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0.3; 0)

(0.27; 0.23; 0.3, 0.05) (0.27; 0.23; 0.3, 0.1) (0.27; 0.23; 0.3, 0.15)

480 0.302 0.266 0.212 0.182
600 λ1(Ã) 0.738 0.66 0.58 0.518
720 0.974 0.944 0.936 0.874
n Method (p, q, εa, εd) =

(0.27; 0.23; 0.3; 0.2)
(0.27; 0.23; 0.3, 0.25) (0.27; 0.23; 0.3, 0.3) (0.27; 0.23; 0.3, 0.35)

480 0.144 0.134 0.102 0.094
600 λ1(Ã) 0.396 0.338 0.282 0.246
720 0.766 0.742 0.664 0.566

Table A.32. These tables display power for when "p" and "q" are very close. Simulated Powers
with measurement error: graphs generated from G(0.27, 0.23, 0.35, εd).

n Method (p, q, εa, εd) =
(0.27; 0.23; 0.35; 0)

(0.27; 0.23; 0.35, 0.05) (0.27; 0.23; 0.35, 0.1) (0.27; 0.23; 0.35, 0.15)

480 0.356 0.254 0.232 0.212
600 λ1(Ã) 0.792 0.72 0.658 0.568
720 0.988 0.966 0.948 0.924
n Method (p, q, εa, εd) =

(0.27; 0.23; 0.35; 0.2)
(0.27; 0.23; 0.35, 0.25) (0.27; 0.23; 0.35, 0.3) (0.27; 0.23; 0.35, 0.35)

480 0.142 0.14 0.102 0.09
600 λ1(Ã) 0.466 0.408 0.344 0.274
720 0.876 0.83 0.714 0.64
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Table A.33. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0; 0)

(0.3; 0.2; 0, 0.05) (0.3; 0.2; 0, 0.1) (0.3; 0.2; 0, 0.15)

90 0.136 0.128 0.118 0.098
120 0.406 0.372 0.318 0.286
150 λ1(Ã) 0.774 0.742 0.668 0.61
180 0.972 0.954 0.93 0.888
210 0.998 0.996 0.996 0.99
n Method (p, q, εa, εd) =

(0.3; 0.2; 0; 0.2)
(0.3; 0.2; 0, 0.25) (0.3; 0.2; 0, 0.3) (0.3; 0.2; 0, 0.35)

90 0.094 0.076 0.076 0.066
120 0.248 0.216 0.188 0.158
150 λ1(Ã) 0.55 0.49 0.406 0.346
180 0.85 0.80 0.724 0.664
210 0.968 0.96 0.936 0.90

Table A.34. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0.05, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0.05; 0)

(0.3; 0.2; 0.05, 0.05) (0.3; 0.2; 0.05, 0.1) (0.3; 0.2; 0.05, 0.15)

90 0.146 0.14 0.118 0.106
120 0.44 0.39 0.356 0.324
150 λ1(Ã) 0.816 0.756 0.716 0.652
180 0.976 0.962 0.944 0.914
210 0.998 0.998 0.998 0.994
n Method (p, q, εa, εd) =

(0.3; 0.2; 0.05; 0.2)
(0.3; 0.2; 0.05, 0.25) (0.3; 0.2; 0.05, 0.3) (0.3; 0.2; 0.05, 0.35)

90 0.09 0.086 0.074 0.068
120 0.276 0.232 0.186 0.174
150 λ1(Ã) 0.558 0.52 0.44 0.40
180 0.864 0.818 0.758 0.694
210 0.988 0.966 0.958 0.918
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Table A.35. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0.1, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0.1; 0)

(0.3; 0.2; 0.1, 0.05) (0.3; 0.2; 0.1, 0.1) (0.3; 0.2; 0.1, 0.15)

90 0.158 0.142 0.122 0.114
120 0.486 0.424 0.38 0.33
150 λ1(Ã) 0.826 0.794 0.73 0.678
180 0.982 0.97 0.95 0.936
210 1 0.998 0.998 0.992
n Method (p, q, εa, εd) =

(0.3; 0.2; 0.1; 0.2)
(0.3; 0.2; 0.1, 0.25) (0.3; 0.2; 0.1, 0.3) (0.3; 0.2; 0.1, 0.35)

90 0.102 0.09 0.078 0.072
120 0.276 0.258 0.224 0.186
150 λ1(Ã) 0.626 0.56 0.502 0.436
180 0.892 0.848 0.818 0.742
210 0.99 0.984 0.968 0.946

Table A.36. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0.15, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0.15; 0)

(0.3; 0.2; 0.15, 0.05) (0.3; 0.2; 0.15, 0.1) (0.3; 0.2; 0.15, 0.15)

90 0.168 0.154 0.144 0.122
120 0.516 0.464 0.418 0.36
150 λ1(Ã) 0.856 0.834 0.774 0.728
180 0.99 0.976 0.962 0.956
210 1 1 1 0.994
n Method (p, q, εa, εd) =

(0.3; 0.2; 0.15; 0.2)
(0.3; 0.2; 0.15, 0.25) (0.3; 0.2; 0.15, 0.3) (0.3; 0.2; 0.15, 0.35)

90 0.104 0.094 0.08 0.076
120 0.316 0.26 0.24 0.196
150 λ1(Ã) 0.656 0.602 0.534 0.472
180 0.924 0.896 0.83 0.772
210 0.996 0.988 0.966 0.96
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Table A.37. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0.2, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0.2; 0)

(0.3; 0.2; 0.2, 0.05) (0.3; 0.2; 0.2, 0.1) (0.3; 0.2; 0.2, 0.15)

90 0.19 0.176 0.156 0.136
120 0.548 0.48 0.434 0.378
150 λ1(Ã) 0.89 0.856 0.808 0.74
180 0.992 0.986 0.98 0.968
210 1 1 1 1
n Method (p, q, εa, εd) =

(0.3; 0.2; 0.2; 0.2)
(0.3; 0.2; 0.2, 0.25) (0.3; 0.2; 0.2, 0.3) (0.3; 0.2; 0.2, 0.35)

90 0.118 0.10 0.088 0.078
120 0.344 0.302 0.262 0.226
150 λ1(Ã) 0.706 0.64 0.576 0.504
180 0.944 0.914 0.86 0.818
210 0.992 0.992 0.984 0.968

Table A.38. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0.25, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0.25; 0)

(0.3; 0.2; 0.25, 0.05) (0.3; 0.2; 0.25, 0.1) (0.3; 0.2; 0.25, 0.15)

90 0.202 0.168 0.156 0.138
120 0.574 0.518 0.468 0.414
150 λ1(Ã) 0.91 0.88 0.836 0.786
180 0.994 0.992 0.982 0.978
210 1 1 1 1
n Method (p, q, εa, εd) =

(0.3; 0.2; 0.25; 0.2)
(0.3; 0.2; 0.25, 0.25) (0.3; 0.2; 0.25, 0.3) (0.3; 0.2; 0.25, 0.35)

90 0.118 0.104 0.092 0.084
120 0.376 0.32 0.274 0.248
150 λ1(Ã) 0.75 0.672 0.63 0.556
180 0.954 0.928 0.896 0.842
210 0.998 0.998 0.986 0.978
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Table A.39. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0.3, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0.3; 0)

(0.3; 0.2; 0.3, 0.05) (0.3; 0.2; 0.3, 0.1) (0.3; 0.2; 0.3, 0.15)

90 0.218 0.196 0.172 0.158
120 0.614 0.57 0.508 0.45
150 λ1(Ã) 0.934 0.91 0.856 0.812
180 0.994 0.992 0.99 0.98
210 1 1 1 1
n Method (p, q, εa, εd) =

(0.3; 0.2; 0.3; 0.2)
(0.3; 0.2; 0.3, 0.25) (0.3; 0.2; 0.3, 0.3) (0.3; 0.2; 0.3, 0.35)

90 0.134 0.112 0.098 0.094
120 0.402 0.348 0.314 0.266
150 λ1(Ã) 0.76 0.71 0.66 0.61
180 0.966 0.952 0.926 0.89
210 1 0.998 0.994 0.994

Table A.40. These tables display power for when "p" and "q" are moderately distanced. Simulated
Powers with measurement error: graphs generated from G(0.3, 0.2, 0.35, εd).

n Method (p, q, εa, εd) =
(0.3; 0.2; 0.35; 0)

(0.3; 0.2; 0.35, 0.05) (0.3; 0.2; 0.35, 0.1) (0.3; 0.2; 0.35, 0.15)

90 0.232 0.214 0.18 0.16
120 0.624 0.59 0.528 0.50
150 λ1(Ã) 0.94 0.93 0.886 0.848
180 1 0.998 0.99 0.988
210 1 1 1 1
n Method (p, q, εa, εd) =

(0.3; 0.2; 0.35; 0.2)
(0.3; 0.2; 0.35, 0.25) (0.3; 0.2; 0.35, 0.3) (0.3; 0.2; 0.35, 0.35)

90 0.144 0.124 0.112 0.104
120 0.434 0.396 0.356 0.298
150 λ1(Ã) 0.808 0.746 0.694 0.65
180 0.978 0.962 0.954 0.922
210 1 0.998 0.998 0.994
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Table A.41. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0; 0)

(0.35; 0.15; 0, 0.05) (0.35; 0.15; 0, 0.1) (0.35; 0.15; 0, 0.15)

30 0.148 0.13 0.116 0.106
40 0.418 0.376 0.342 0.304
50 λ1(Ã) 0.756 0.702 0.66 0.612
60 0.948 0.926 0.90 0.862
70 0.994 0.992 0.982 0.978
n Method (p, q, εa, εd) =

(0.35; 0.15; 0; 0.2)
(0.35; 0.15; 0, 0.25) (0.35; 0.15; 0, 0.3) (0.35; 0.15; 0, 0.35)

30 0.092 0.084 0.076 0.068
40 0.272 0.244 0.218 0.184
50 λ1(Ã) 0.566 0.498 0.46 0.414
60 0.838 0.782 0.734 0.67
70 0.958 0.94 0.912 0.882

Table A.42. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0.05, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0.05; 0)

(0.35; 0.15; 0.05, 0.05) (0.35; 0.15; 0.05, 0.1) (0.35; 0.15; 0, 0.15)

30 0.152 0.138 0.122 0.116
40 0.442 0.402 0.362 0.322
50 λ1(Ã) 0.766 0.736 0.688 0.648
60 0.96 0.942 0.912 0.89
70 0.996 0.996 0.992 0.984
n Method (p, q, εa, εd) =

(0.35; 0.15; 0.05; 0.2)
(0.35; 0.15; 0.05, 0.25) (0.35; 0.15; 0.05, 0.3) (0.35; 0.15; 0.05, 0.35)

30 0.104 0.088 0.08 0.068
40 0.29 0.256 0.232 0.208
50 λ1(Ã) 0.592 0.532 0.494 0.436
60 0.852 0.804 0.766 0.71
70 0.97 0.954 0.934 0.912
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Table A.43. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0.1, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0.1; 0)

(0.35; 0.15; 0.1, 0.05) (0.35; 0.15; 0.1, 0.1) (0.35; 0.15; 0.1, 0.15)

30 0.162 0.15 0.132 0.12
40 0.456 0.43 0.386 0.348
50 λ1(Ã) 0.798 0.76 0.708 0.666
60 0.966 0.954 0.93 0.908
70 0.998 0.996 0.992 0.99
n Method (p, q, εa, εd) =

(0.35; 0.15; 0.1; 0.2)
(0.35; 0.15; 0.1, 0.25) (0.35; 0.15; 0.1, 0.3) (0.35; 0.15; 0.1, 0.35)

30 0.10 0.096 0.086 0.074
40 0.31 0.272 0.238 0.22
50 λ1(Ã) 0.616 0.57 0.52 0.472
60 0.868 0.836 0.792 0.748
70 0.976 0.966 0.95 0.918

Table A.44. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0.15, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0.15; 0)

(0.35; 0.15; 0.15, 0.05) (0.35; 0.15; 0.15, 0.1) (0.35; 0.15; 0.15, 0.15)

30 0.174 0.158 0.138 0.128
40 0.496 0.444 0.404 0.372
50 λ1(Ã) 0.828 0.776 0.738 0.704
60 0.972 0.958 0.946 0.92
70 0.998 0.996 0.994 0.99
n Method (p, q, εa, εd) =

(0.35; 0.15; 0.15; 0.2)
(0.35; 0.15; 0.15, 0.25) (0.35; 0.15; 0.15, 0.3) (0.35; 0.15; 0.15, 0.35)

30 0.114 0.10 0.092 0.08
40 0.34 0.294 0.266 0.23
50 λ1(Ã) 0.65 0.608 0.538 0.484
60 0.89 0.866 0.83 0.77
70 0.984 0.978 0.964 0.938
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Table A.45. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0.2, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0.2; 0)

(0.35; 0.15; 0.2, 0.05) (0.35; 0.15; 0.2, 0.1) (0.35; 0.15; 0.2, 0.15)

30 0.184 0.168 0.154 0.138
40 0.512 0.48 0.442 0.394
50 λ1(Ã) 0.852 0.816 0.772 0.724
60 0.98 0.97 0.956 0.94
70 1 0.998 0.998 0.996
n Method (p, q, εa, εd) =

(0.35; 0.15; 0.2; 0.2)
(0.35; 0.15; 0.2, 0.25) (0.35; 0.15; 0.2, 0.3) (0.35; 0.15; 0.2, 0.35)

30 0.128 0.106 0.096 0.084
40 0.358 0.314 0.284 0.25
50 λ1(Ã) 0.686 0.638 0.572 0.532
60 0.908 0.882 0.852 0.81
70 0.99 0.984 0.972 0.954

Table A.46. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0.25, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0.25; 0)

(0.35; 0.15; 0.25, 0.05) (0.35; 0.15; 0.25, 0.1) (0.35; 0.15; 0.25, 0.15)

30 0.202 0.18 0.16 0.146
40 0.544 0.50 0.454 0.416
50 λ1(Ã) 0.868 0.83 0.794 0.768
60 0.978 0.972 0.962 0.952
70 1 0.998 0.998 0.994
n Method (p, q, εa, εd) =

(0.35; 0.15; 0.25; 0.2)
(0.35; 0.15; 0.25, 0.25) (0.35; 0.15; 0.25, 0.3) (0.35; 0.15; 0.25, 0.35)

30 0.132 0.116 0.102 0.096
40 0.382 0.346 0.31 0.268
50 λ1(Ã) 0.716 0.664 0.62 0.568
60 0.928 0.90 0.88 0.836
70 0.992 0.986 0.978 0.964
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Table A.47. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0.3, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0.3; 0)

(0.35; 0.15; 0.3, 0.05) (0.35; 0.15; 0.3, 0.1) (0.35; 0.15; 0.3, 0.15)

30 0.22 0.192 0.172 0.158
40 0.57 0.536 0.488 0.452
50 λ1(Ã) 0.88 0.848 0.824 0.784
60 0.988 0.984 0.972 0.96
70 1 1 0.998 0.998
n Method (p, q, εa, εd) =

(0.35; 0.15; 0.3; 0.2)
(0.35; 0.15; 0.3, 0.25) (0.35; 0.15; 0.3, 0.3) (0.35; 0.15; 0.3, 0.35)

30 0.148 0.12 0.116 0.10
40 0.408 0.37 0.334 0.294
50 λ1(Ã) 0.748 0.704 0.654 0.602
60 0.94 0.926 0.898 0.862
70 0.996 0.99 0.986 0.978

Table A.48. These tables display power for when there is a large difference between "p" and "q".
Simulated Powers with measurement error: graphs generated from G(0.35, 0.15, 0.35, εd).

n Method (p, q, εa, εd) =
(0.35; 0.15; 0.35; 0)

(0.35; 0.15; 0.35, 0.05) (0.35; 0.15; 0.35, 0.1) (0.35; 0.15; 0.35, 0.15)

30 0.232 0.21 0.188 0.166
40 0.59 0.562 0.52 0.468
50 λ1(Ã) 0.898 0.884 0.846 0.812
60 0.99 0.986 0.982 0.968
70 1 1 1 0.998
n Method (p, q, εa, εd) =

(0.35; 0.15; 0.35; 0.2)
(0.35; 0.15; 0.35, 0.25) (0.35; 0.15; 0.35, 0.3) (0.35; 0.15; 0.35, 0.35)

30 0.15 0.132 0.116 0.108
40 0.442 0.398 0.358 0.324
50 λ1(Ã) 0.772 0.736 0.692 0.638
60 0.956 0.938 0.914 0.892
70 0.998 0.994 0.992 0.982
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Table A.49. Simulated size with measurement error: graphs generated from G(0.15, 0.15, εa, εd).
p = q = p0 = 0.15.

n Method (p, q, εa, εd) =
(0.15; 0.15; 0; 0)

(0.15, 0.15, 0.05, 0.05) (0.15, 0.15, 0.1, 0.1) (0.15, 0.15, 0.15, 0.15)

30 0.024 0.024 0.022 0.02
50 0.034 0.032 0.028 0.028
70 0.036 0.036 0.032 0.03
90 λ1(Ã) 0.038 0.036 0.038 0.036
120 0.04 0.036 0.038 0.034
240 0.05 0.042 0.042 0.046
360 0.052 0.06 0.046 0.046
480 0.048 0.042 0.04 0.04
n Method (p, q, εa, εd) =

(0.15; 0.15; 0.2; 0.2)
(0.15, 0.15, 0.25, 0.25) (0.15, 0.15, 0.3, 0.3) (0.15, 0.15, 0.35, 0.35)

30 0.018 0.016 0.014 0.016
50 0.024 0.024 0.022 0.022
70 0.028 0.024 0.024 0.024
90 λ1(Ã) 0.032 0.032 0.028 0.024
120 0.034 0.028 0.03 0.032
240 0.038 0.04 0.038 0.042
360 0.042 0.036 0.036 0.042
480 0.04 0.04 0.044 0.038

Table A.50. Simulated size with measurement error: graphs generated from G(0.25, 0.25, εa, εd).
p = q = p0 = 0.25.

n Method (p, q, εa, εd) =
(0.25; 0.25; 0; 0)

(0.25, 0.25, 0.05, 0.05) (0.25, 0.25, 0.1, 0.1) (0.25, 0.25, 0.15, 0.15)

30 0.01 0.008 0.006 0.008
50 0.012 0.012 0.01 0.01
70 0.014 0.01 0.014 0.012
90 λ1(Ã) 0.02 0.016 0.016 0.016
120 0.02 0.018 0.018 0.016
240 0.022 0.022 0.024 0.024
360 0.024 0.032 0.028 0.03
480 0.026 0.03 0.03 0.032
n Method (p, q, εa, εd) =

(0.25; 0.25; 0.2; 0.2)
(0.25, 0.25, 0.25, 0.25) (0.25, 0.25, 0.3, 0.3) (0.25, 0.25, 0.35, 0.35)

30 0.006 0.006 0.006 0.008
50 0.01 0.01 0.008 0.01
70 0.012 0.014 0.012 0.01
90 λ1(Ã) 0.014 0.014 0.016 0.012
120 0.016 0.016 0.016 0.018
240 0.022 0.022 0.02 0.02
360 0.024 0.024 0.03 0.03
480 0.038 0.032 0.032 0.03
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Figure A.1. Plot of Power for p = 0.17, q = 0.13, εa = 0.

Figure A.2. Plot of Power for p = 0.17, q = 0.13, εa = 0.20.
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Figure A.3. Plot of Power for p = 0.17, q = 0.13, εa = 0.35.

Figure A.4. Plot of Power for p = 0.20, q = 0.10, εa = 0.
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Figure A.5. Plot of Power for p = 0.20, q = 0.10, εa = 0.20.

Figure A.6. Plot of Power for p = 0.20, q = 0.10, εa = 0.35.
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Figure A.7. Plot of Power for p = 0.25, q = 0.05, εa = 0.

Figure A.8. Plot of Power for p = 0.25, q = 0.05, εa = 0.20.
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Figure A.9. Plot of Power for p = 0.25, q = 0.05, εa = 0.35.

Figure A.10. Plot of Power for p = 0.27, q = 0.23, εa = 0.
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Figure A.11. Plot of Power for p = 0.27, q = 0.23, εa = 0.20.

Figure A.12. Plot of Power for p = 0.27, q = 0.23, εa = 0.35.
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Figure A.13. Plot of Power for p = 0.30, q = 0.20, εa = 0.

Figure A.14. Plot of Power for p = 0.30, q = 0.20, εa = 0.20.
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Figure A.15. Plot of Power for p = 0.30, q = 0.20, εa = 0.35.

Figure A.16. Plot of Power for p = 0.35, q = 0.15, εa = 0.
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Figure A.17. Plot of Power for p = 0.35, q = 0.15, εa = 0.20.

Figure A.18. Plot of Power for p = 0.35, q = 0.15, εa = 0.35.
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Figure A.19. Plot of Power for p = 0.17, q = 0.13, εd = 0.

Figure A.20. Plot of Power for p = 0.17, q = 0.13, εd = 0.20.
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Figure A.21. Plot of Power for p = 0.17, q = 0.13, εd = 0.35.

Figure A.22. Plot of Power for p = 0.20, q = 0.10, εd = 0.

56



Figure A.23. Plot of Power for p = 0.20, q = 0.10, εd = 0.20.

Figure A.24. Plot of Power for p = 0.20, q = 0.10, εd = 0.35.
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Figure A.25. Plot of Power for p = 0.25, q = 0.05, εd = 0.

Figure A.26. Plot of Power for p = 0.25, q = 0.05, εd = 0.20.
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Figure A.27. Plot of Power for p = 0.25, q = 0.05, εd = 0.35.

Figure A.28. Plot of Power for p = 0.27, q = 0.23, εd = 0.
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Figure A.29. Plot of Power for p = 0.27, q = 0.23, εd = 0.20.

Figure A.30. Plot of Power for p = 0.27, q = 0.23, εd = 0.35.
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Figure A.31. Plot of Power for p = 0.30, q = 0.20, εd = 0.

Figure A.32. Plot of Power for p = 0.30, q = 0.20, εd = 0.20.
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Figure A.33. Plot of Power for p = 0.30, q = 0.20, εd = 0.35.

Figure A.34. Plot of Power for p = 0.35, q = 0.15, εd = 0.

62



Figure A.35. Plot of Power for p = 0.35, q = 0.15, εd = 0.20.

Figure A.36. Plot of Power for p = 0.35, q = 0.15, εd = 0.35.
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Figure A.37. Plot of Power for p = 0.17, q = 0.13, εa = εd.

Figure A.38. Plot of Power for p = 0.20, q = 0.10, εa = εd.
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Figure A.39. Plot of Power for p = 0.25, q = 0.05, εa = εd.

Figure A.40. Plot of Power for p = 0.27, q = 0.23, εa = εd.
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Figure A.41. Plot of Power for p = 0.30, q = 0.20, εa = εd.

Figure A.42. Plot of Power for p = 0.35, q = 0.15, εa = εd.
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