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ABSTRACT

In this dissertation, we study the testing of hypotheses on streams of observations that

are driven by Lévy processes. This is applicable for sequential decision making on the state of

two-sensor systems. In one case, each sensor receives or does not receive a signal obstructed by

noise. In another, each sensor receives data driven by Lévy processes with large or small jumps. In

either case, these give rise to four possible outcomes for the hypotheses. Infinitesimal generators

are presented and analyzed. Bounds for likelihood functions in terms of super-solutions and sub-

solutions are computed. As an application, we study a change point detection hypothesis test for

the detection of the distribution of jump size in one-dimensional Lévy processes. This is shown to be

implementable in relation to various classification problems for a crude oil price data set. Machine

and deep learning algorithms are implemented to extract a specific deterministic component from

the data set, and the deterministic component is implemented to improve the Barndorff-Nielsen &

Shephard (BN-S) model, a commonly used stochastic model for derivative and commodity market

analysis.
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2.3. Itô Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4. Infinitesimal Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5. Statistical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. TWO SENSOR HYPOTHESIS TESTING USING INFINITESIMAL GENERATORS . . 13

3.1. Sequential Decision Making with Underlying Wiener Processes . . . . . . . . . . . . 13

3.2. Drift Test Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1. INTRODUCTION

One of the most classical problems arising in statistical sequential analysis is sequential

hypothesis testing (see [32]). As described in [32], a sequential test of a hypothesis means any

statistical test that gives a specific rule, at any stage of the experiment for making one of the three

decisions: (1) to accept the null hypothesis H0, (2) to reject H0, (3) to continue the experiment

by making additional observation. Consequently, the test is carried out sequentially. An objective

for the analysis of such test is to minimize the number of observations required to make a decision

subject to a given tolerance level described as Type I and Type II errors. A related problem is change

point detection, where the goal is to test hypotheses concerning the parameters of the observation

stream in order to detect the point at which these parameters shift significantly. This dissertation

addresses these two problems in specific cases where the underlying processes are assumed to be

Lévy processes.

Clearly, there are an abundance of applications of these theories, including commodity

price analysis, earthquake modeling [10], and even human weight fluctuations [27]. Basically, any

sequential data could be a suitable target application. Analyzing the price of crude oil as it varies

in time is the primary application of this dissertation, but hopefully, the theorems and methods

here can be used to aid in a variety of other goals yet to come.

There are a couple of primary approaches to this problem of developing sequential hypothesis

tests, e.g., the Bayesian and the min-max. For the first approach, each hypothesis is assigned with

an a priori probability. For the second approach, no such assumption is made and the optimal

solution is known to be given by the sequential probability ratio test (see [11]). The sequential

probability ratio test is revisited and improved in various works. For a sequential decision problem,

it is assumed that the amount of available information is increasing with time. But it is often

difficult to handle all the data as represented by a σ-algebra as the actual amount may be very

large. In [18] a reduction method is proposed that takes into account the underlying statistical

structure.

An approach of improving the sequential hypothesis testing in the Bayesian case is presented

in [15]. The sequential testing of more than two hypotheses has many important applications. In

1



[7] a sequential test (termed as MSPRT), which is a generalization of the sequential probability

ratio test, is studied. It is shown that, under Bayesian assumptions, the MSPRT approximates

optimal tests that are more intricate when error probabilities are small and expected stopping

times are large. In [13], a sequential hypothesis test is conducted when there are finitely many

simple hypotheses about the unknown arrival rate and mark distribution of a compound Poisson

process, where exactly one is correct. This problem is formulated in a Bayesian framework when

the objective is to determine the correct hypothesis with minimal error probability. A solution

of this problem is presented in that paper. In the paper [8], an improved min-max approach to

both sequential testing of many composite hypotheses and multi-decision change-point detection for

composite alternatives is proposed. New performance measures for methods of hypothesis testing

and change-point detection are introduced, and theoretical lower bounds for these performance

measures are proved that do not depend on methods of sequential testing and detection. Minimax

tests are proposed for which these lower bounds are attained asymptotically as decision thresholds

tend to infinity.

In particular, we further present in this dissertation sequential hypothesis tests for the

detection of the distribution of jump size in Lévy processes. Infinitesimal generators for the corre-

sponding log-likelihood ratios are presented and analyzed. Bounds for infinitesimal generators in

terms of super-solutions and sub-solutions are computed. This is shown to be implementable in

relation to various classification problems for a crude oil price data set. Machine and deep learn-

ing algorithms are implemented to extract a specific deterministic component from the data set,

and the deterministic component is implemented to improve the BN-S model, a commonly used

stochastic model for derivative and commodity market analysis.

The organization of the dissertation is as follows. The next chapter introduces the foun-

dational concepts pertaining to the rest of the dissertation. Chapter 3, which is based on my

previously publish paper [25], motivates and advances the concept of sequential hypothesis tests

with two streams of data. In Section 3.2, we generalize the result in [9] to a certain class of un-

derlying Lévy processes, and then propose a decision rule to determine whether there is drift in

the underlying processes. In Section 3.3, we present the infinitesimal generators for the hypothesis

testing of big versus small fluctuations. This is conducted by considering two Lévy processes, where

one has more jump intensity than the other. The existence of a viscosity solution to the related

2



partial-integro differential equation is shown, and its super- and sub-solutions are analyzed in that

section. Applying the ideas of Chapter 3 to a data series of oil prices is the goal of Chapter 4,

which is based on my published article [26]. In Section 4.2, a refined BN-S model with some of its

properties is presented. In Section 4.3, we provide a general one-dimensional jump size detection

analysis based on these hypothesis tests. In Section 4.4, an overview of the data set is provided, and

then two procedures in the predictive classification problem are introduced. Concrete numerical

results are shown in Section 4.5, and finally, Chapter 5 is a conclusion with potential future research

goals and opportunities.
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2. PRELIMINARY BACKGROUND

2.1. Brownian Motion

There are many phenomena in nature that are seemingly random. Ranging from the dif-

fusion of organisms into habitable land, to the price of a stock or commodity, to the behavioral

patterns of humans, stochastic processes have an abundance of applications. One of the most classic

examples is the Brownian motion. The motivation for such a process is a continuous symmetric

random walk.

Paraphrasing Chapter 3 of the book [31], let ω = {ω1, ω2, . . .} be a sequence of results of

fair coin tosses. That is, ωi is the outcome of the ith toss, H or T . Define

Xi =


1 if ωi = H

−1 if ωi = T

,

and Mn =
∑n

i=1Xi. Then {0,M1,M2, . . .} is a symmetric random walk. In particular, symmetric

random walks are martingales that have independent increments. A martingale is a stochastic

process that has expected value equal to the given present value for all times in the future. To have

independent increments means for each n ∈ N and each 0 ≤ t1 ≤ t2 ≤ . . . < tn+1 <∞, the random

variables (M(tj+1)−M(tj), 1 ≤ j ≤ n) are independent.

Another crucial property of a symmetric random walk is its non-zero quadratic variation.

In general, the quadratic variation of a discrete stochastic process M is

[M,M ]k :=
k∑
j=1

(Mj −Mj−1)2,

which simplifies quite conveniently in our case to k. Note that while [M,M ]k = Var(Mk) = k for

a symmetric random walk, this is not true in general. One varies dramatically for changes in the

probabilities of each coin toss, while the other, the quadratic variation, remains constant.
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Continuing toward the goal of a continuous random walk, define the scaled symmetric

random walk by

W
(n)
t =

1√
n
Mnt,

where nt ∈ Z. Otherwise, define W
(n)
t by a linear interpolation of its values for the closest integers.

This new process is similarly a martingale with independent increments and quadratic variation,

for nt ∈ Z,

[W (n),W (n)]t = t.

Finally, we obtain a standard Brownian motion as the limit of this sequence of scaled random walks.

This inspires the following definition:

Definition 2.1.1. Let (Ω,F , P ) be a probability space. For each ω ∈ Ω, suppose there is a contin-

uous function W : [0,∞)→ R that satisfies W (0) = 0 and that depends on ω. Then {W (t), t ≥ 0}

is a Brownian motion if for all 0 = t0 < t1 < . . . < tm, the increments

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

are independent and each is normally distributed with

E[W (ti+1)−W (ti)] = 0,

Var[W (ti+1)−W (ti)] = ti+1 − ti.

2.2. Lévy Processes

While Brownian motions are a classic and powerful tool for modeling a wide range of phe-

nomena, sometimes the processes take on a more sudden nature, and a process with discontinuous

capabilities is more adequate. Lévy processes are a general class of such processes. In [1], we have

the following definition of a Lévy process:

Definition 2.2.1. Let (X(t), t ≥ 0) be a stochastic process defined on a probability space (Ω,F , P ).

We say that it has stationary increments if each X(tj+1)−X(tj)
d
= X(tj+1 − tj)−X(0).
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We say that X(t) is a Lévy process if X(0) = 0 (a.s.); X has independent and stationary

increments; and X is stochastically continuous; i.e., for all a > 0 and for all s ≥ 0,

lim
t→s

P (|X(t)−X(s)| > a) = 0.

Having a quick way of classifying Lévy processes is crucial to the remainder of this disser-

tation. To do so, we use the following definition and theorem from [1]:

Definition 2.2.2. Let ν be a Borel measure defined on Rd \ {0}. We say that it is a Lévy measure

if ∫
Rd\{0}

(|y|2 ∧ 1)ν(dy) <∞,

where a ∧ b := min{a, b} for any a, b ∈ R.

Theorem 2.2.3. (Lévy-Itô decomposition) Let (Xt)t≥0 be a Lévy process on R and ν its Lévy

measure. Then

1. ν is a random measure on R \ {0} and verifies:
∫
|x|≤1 |x|

2ν(dx) <∞, and
∫
|x|≥1 ν(dx) <∞.

2. The jump measure of X, denoted by JX , is a Poisson random measure on [0,∞) × R with

intensity measure ν(dx)dt.

3. There exist γ, σ ∈ R, with σ > 0, and a Brownian motion (Wt)t≥0 such that

Xt = γt+ σWt +X l
t + lim

ε→0
X̃ε
t , (2.1)

where X l
t =

∫
|x|≥1,s∈[0,t] xJX(ds× dx), and X̃ε

t =
∫
ε≤|x|<1,s∈[0,t] x (JX(ds× dx)− ν(dx)ds).

4. The terms in (2.1) are independent and the convergence in X̃ε
t is almost sure and uniform in

t ∈ [0, T ].

In particular, every Lévy process is uniquely determined by its characteristic triplet (γ, σ, ν)

in the decomposition above. Many of the novel theorems in this dissertation rely on manipulations

of these characteristic triplets.

There are a host of familiar processes that can be represented with these characteristics. The

following are examples, along with representative sample paths. These show that Lévy processes

6



are suited to model a wide variety of phenomena, including the prices of commodities, as considered

in Chapter 3.

� Example 1 Brownian motion: γ = 0, σ = 1, ν(dx) = 0.

� Example 2 Poisson Process: γ = 0, σ = 0, ν(dx) = λδ1(dx).

Figure 2.1. Sample paths of a standard Brownian motion and of a Poisson process with λ = 1/4.

� Example 3 Gamma Process: γ = −
∫ 1

0 xν(dx), σ = 0, ν(dx) = βx−1e−αx1x≥0 dx.

� Example 4 Cauchy Process: γ = 0, σ = 0, ν(dx) = f(x)dx, where f(x) = |x|−2, x 6= 0.

Figure 2.2. Sample paths of a Gamma process with mean and variance 1 and of a Cauchy process.

� Example 5 Wiener Process: γ = m, σ = s, ν(dx) = 0.

� Example 6 Subordinator Jump Process: γ = 0, σ = 0, ν(dx) = f(x)dx, where f(x) ≥ 0:

x > 0 and f(x) = 0: x < 0.

7



Figure 2.3. Sample paths of a Wiener process with γ = 0.2 and σ = 1 and of a subordinator
process, an inverse Gaussian process with mean 1.

2.3. Itô Calculus

The rest of the dissertation uses multiple different concepts of integration. In particular,

we often integrate with respect to some stochastic process. As such, it is important to understand

the following definition from [12]:

Definition 2.3.1. Let Wt be a Brownian motion and φ be a simple cádlág (right-continuous with

left limits) process with partition π = (0 = T0, T1, ..., Tn+1 = T ); i.e.

φt = φ01t=0 +

n∑
i=0

φi1[Ti,Ti+1).

Then the Brownian stochastic integral
∫
φdW is defined as

∫ T

0
φtdWt =

n∑
i=0

φi(WTi+1 −WTi).

The above definition can, as usual in analysis, be extended to the closure of the set of simple

processes. Of note, the set of square-integrable cádlág processes adapted to the same filtration as

the Brownian motion, is in the closure.

This definition gives rise to another definition of a class of processes called Itô processes,

by which we will define another integral.

8



Definition 2.3.2. ([31]) Let W (t), t ≥ 0 be a Brownian motion and F(t), t ≥ 0 be an associated

filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0
∆(t)dW (u) +

∫ t

0
Θ(u)du,

where X(0) is nonrandom, and ∆ and Θ are adapted stochastic processes.

Theorem 2.3.3. In particular, Itô processes have quadratic variation

[X,X](t) =

∫ t

0
∆(u)2du.

Naturally, the previous definition inspires the integral

∫ t

0
Γ(u)dX(u) :=

∫ t

0
Γ(u)∆(u)dW (u) +

∫ t

0
Γ(u)Θ(u)du,

for an adapted process Γ and Itô process X.

Finally, we can state the following:

Theorem 2.3.4. (Itô formula) Let X(t), t ≥ 0 be an Itô process and let f(t, x) define a function

for which partial derivatives ft, fx, and fxx are defined and continuous. Then for every T ≥ 0,

f(T,X(T )) =f(0, X(0)) +

∫ T

0
ft(t,X(t))dt+

∫ T

0
fx(t,X(t))∆(t)dW (t)

+

∫ T

0
fx(t,X(t))Θ(t)dt+

1

2

∫ T

0
fxx(t,X(t))∆(t)2dt,

which may be written, for convenience,

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))dX(t)dX(t).

This is often the case for the remainder of this dissertation: technical integrals are written

in differential notation for convenience.

The Itô formula permits us to solve a large number of stochastic differential equations and

is crucial in a thorough understanding of the BN-S model, which is investigated in further sections,
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but for now, let us state a uniqueness and existence theorem for stochastic differential equations

from [20]:

Theorem 2.3.5. The system

dX(t) = α(t,X(t))dt+ σ(t,X(t))dW (t) +

∫ t

0

∫
Rn
γ(s,X(s−), z) (JX(ds× dx)− ν(dx)ds)

with X(0) = x0 ∈ Rn and where α : [0, T ] × Rn → Rn, σ : [0, T ] × Rn → Rn×m, and γ :

[0, T ]× Rn × Rn → Rn×l and ν = ν1 × . . .× νn satisfy the conditions:

1. There exists a constant C1 <∞ such that

‖σ(t, x)‖2 + |α(t, x)|2 +

∫
R

l∑
k=1

|γk(t, x, z)|2νk(dzk) ≤ C1(1 + |x|2)

for all x ∈ Rn.

2. There exists a constant C2 <∞ such that

‖σ(t, x)− σ(t, y)‖2 + |α(t, x)− α(t, y)|2

+
l∑

k=1

∫
R
|γ(k)(t, x, zk)− γ(k)(t, y, zk)|2νk(dzk) ≤ C2|x− y|2

for all x, y ∈ Rn,

has a unique cádlág adapted solution X(t) such that

E[|X(t)|2] <∞ for all t.

In the time homogeneous case, when the coefficients do not depend on t, the solutions are

called jump diffusions.

2.4. Infinitesimal Generators

Jump diffusions sometimes have what are called infinitesimal generators.

10



Definition 2.4.1. Let X(t) ∈ Rn be a jump diffusion. Then the infinitesimal generator A of X is

defined on functions f : Rn → R by

Af(x) = lim
t→0+

1

t
(Ex[f(X(t))]− f(x))

when the limit exists, and where Ex[f(X(t))] = E[f(X(x)(t))] and X(x)(0) = x.

We care particularly about how to find infinitesimal generators when a certain Lévy triplet

is known, and [21] gives a very efficient and powerful theorem, which arises from the Itô formula.

Theorem 2.4.2. Let X be a d-dimensional Lévy process with characteristics (b,Σ, ν) then the

infinitesimal generator A of X is, for any bounded and twice continuously differentiable function

f : Rd → R, and any x ∈ R,

Af(x) =
∑
i

bifxi(x)− 1

2

∑
i,j

fxixj (x) +

∫
Rd

(
f(x+ y)− f(x)−

∑
i

yifxi(x)

1 + ‖y‖

)
ν(dy).

2.5. Statistical Background

A crucial concept in statistics is error. Every practical model should allow for variation in

its predictions. The errors of type I and type II specifically address errors in classification.

Definition 2.5.1. We say a particular classification is a type I error if it is a rejection of a true

null hypothesis; alternatively, a type II error is a non-rejection of a false null hypothesis.

Thus, one might intuitively consider a type I error to be doing a bad thing, while a type II

error is failing to do a good thing. In general, each type of error has its own cost for each specific

scenario, but often, hypothesis tests are framed in a way to make type I error worse.

Another tool used in this dissertation is the likelihood function and its more computationally

convenient counterpart the log-likelihood function. A likelihood function is a function that measures

the goodness of fit of a model with varying parameters to a set of data points. The likelihood

function is a function on the space of parameters in the model. Its peaks represent optimal choices

of the parameters to fit a model to the data set. On the other hand, the log-likelihood function

is simply the natural logarithm of the likelihood function. Often the likelihood function is a ratio,

and so, the log-likelihood becomes a difference, which is computationally simpler. Thus, in this
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dissertation, we formulate our decision rules based on the log-likelihood functions resulting from

our underlying processes.

Finally, we have the idea of sequential hypothesis tests. Normally, hypothesis tests have

fixed sample size and duration, say, when testing a drug on the effectiveness of curing an illness.

Perhaps the study would have a large sample of people with the illness, and the researchers would

be interested in the proportion of participants who end up cured after a period of a few months.

This sample of people creates a stochastic process, the proportion of people cured. The idea of

testing the hypotheses sequentially is that if a significant proportion is cured before the few months

is over, the test can be concluded, and the medication can be more quickly distributed to the rest

of the population. In particular, one might consider the log-likelihood function of the distributions

induced by the hypotheses that the medication does nothing and that the medication works. Then,

depending on the error probabilities, which side of an interval the log-likelihood process exits

determines the outcome of the sequential hypothesis test. In essence, while a normal hypothesis

test only concludes when a predetermined time period has elapsed, a sequential hypothesis test

considers new information as it is available and evaluates the hypotheses dynamically to reduce

the time requirements of the study. One might call the test optimal if the time requirements are

minimized with respect to desired error probabilities. In the next chapter, we construct decision

rules for sequential hypothesis tests based on the Bayesian approach. However, due to certain

difficulties, we only have optimality results for a few cases.
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3. TWO SENSOR HYPOTHESIS TESTING USING

INFINITESIMAL GENERATORS

3.1. Sequential Decision Making with Underlying Wiener Processes

The initial inspiration for the majority of this section is [9]. It seeks to devise a two-sensor

hypothesis test based upon a two-dimensional Wiener process z = (z1, z2) where

dz
(k)
t = σkdW

(k)
t + µkdt, k = 1, 2,

where W
(k)
t are Brownian motions with correlation ρ. The hypotheses

H00 : µ1 = 0, µ2 = 0, H10 : µ1 = m1 6= 0, µ2 = 0,

H01 : µ1 = 0, µ2 = m2 6= 0, H11 : µ1 = m1 6= 0, µ2 = m2 6= 0 (3.1)

are tested. Consequently, the analysis presented is applicable for sequential decision making on the

state of a two-sensor system with uncorrelated noise. Each sensor receives or does not receive a

signal obstructed by said noise. This gives rise to four possibilities, viz. 〈noise, noise〉 (denoted by

00), 〈signal, noise〉 (denoted by 10), 〈noise, signal〉 (denoted by 01), and 〈signal, signal〉 (denoted

by 11).

The two-dimensional Wiener process generates a filtration, which will be denoted Ft, along

with marginal filtrations F (1)
t and F (2)

t . Further, the hypotheses and diffusion correlation ρ induce

probability measures Pij,ρ and marginal probability measures P
(k)
i . Further, [9] seeks to create an

optimal decision rule (τ, δτ ), where τ is a stopping rule with respect to Ft, and δτ is a random

variable taking values in the index set {00, 01, 10, 11}, representing which of the hypotheses to

accept. Optimality will be based on minimizing the observation time required for given error

probabilities αij,ρ := Pij,ρ(δτ 6= ij).

Let the log-likelihood function be

u
(i,k)
t = log

dP
(k)
i

dP
(k)
1−i

. (3.2)
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We define a rectangle R := [l1, r1]× [l2, r2] ⊂ R2 and denote

τk = inf{t ≥ 0 : u
(i,k)
t /∈ [lk, rk]},

δ(i,k)
τk

= 1− i, if u(i,k)
τk
≤ lk,

δ(i,k)
τk

= i, if u(i,k)
τk
≥ rk. (3.3)

The decision rule for the two-dimensional test is defined as

τ = τ1 ∨ τ2

δ(i,j)
τ = δ(i,1)

τ1 δ(j,2)
τ2 , (3.4)

where τ1 ∨ τ2 = max{τ1, τ2}.

The following theorem concerns the infinitesimal generator of the processes u
(i,k)
t :

Theorem 3.1.1. Assuming the Brownian motions of the two one-dimensional processes z1 and z2

are uncorrelated and with u
(i,k)
t defined as in (3.2), we have two-dimensional infinitesimal genera-

tors, for the processes ui,jt = (u
(i,1)
t , u

(j,2)
t ),

Lij,ρ =
m2

1

2σ2
1

(
∂x1x1 + (−1)i+1∂x1

)
+
m2

2

2σ2
2

(
∂x2x2 + (−1)j+1∂x2

)
+ ρ

m1m2

σ1σ2
∂x1x2 .

The proof of this theorem is classically known and does not rely on Lévy characteristics or

the powerful Theorem 2.4.2, but of course, using them gives consistent results. While the theorem

permits ρ 6= 0, the special case ρ = 0 is further investigated in [9], and by using the symmetry of the

solutions of the partial differential equations Lij,0ξij,0 = 0 based on the infinitesimal generators, the

bounds of the decision rule rectangle are obtained, completing the task of developing a well-defined

decision rule. Finally, the optimality of that rule based on minimizing the time required to observe

the underlying Wiener process is proved.

Before moving on, we must strictly define what type of optimality we are considering.

Definition 3.1.2. A decision rule of the form (3.4) has optimality of order 3 if

Eij,0(τ1 ∨ τ2)− Eij,0(τ1) = o(1), (3.5)
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as the error probabilities αij,0 → 0.

With this, the following theorem summarizes the main results from [9]:

Theorem 3.1.3. The decision rule (3.4) when applied to hypotheses (3.1) has optimality of order

3, and choosing three of the four values for Type I errors αij,0 induces the value of the fourth by

(1− α00,0)(1− α11,0) = (1− α01,0)(1− α10,0).

Then, setting the value of l1 will determine the other three, fully defining the decision rule through

the system

ln

(
α10,0 − α00,0

1− α00,0

)
< l1 < ln

(
α10,0

1− α00,0

)
,

r1 = − ln

(
1− 1− el1

(1− α10,0)/(1− α00,0)

)
,

er1 =
(1− α10,0)/(1− α00,0)

er2
(1−α01,0)+(1−α00,0er2 ) − 1

,

r2 = − ln

(
1− 1− el2

(1− α01,0)/(1− α00,0)

)
.

The paper [9] further analyzes briefly the cases when ρ 6= 0, relating these cases to the

uncorrelated case by considering

∆ξij,ρ := ξij,ρ − ξij,0.

In particular, it is shown that if ρ > 0, with ij ∈ {00, 11} or ρ < 0, with ij ∈ {01, 10}, we have

that ∆ξij,ρ(u
(1)
t∧τ1 , u

(2)
t∧τ1) is a supermartingale, and in the other cases, it is a submartingale.

This ultimately gives us a result that can be condensed into a theorem:

Theorem 3.1.4. When the correlation between the Brownian motions ρ is not 0, the stopping times

defined in (3.3) have upper bounds based on the stopping times in the cases where |ρ| = 1. The

{00} case with ρ = 1 and {01} case with ρ = −1 have expected stopping times at most E
(x=0)(1)
0 (τ1)

while the {11} case with ρ = 1 and {10} case with ρ = −1 have expected stopping times at most

E
(x=0)(1)
0 (τ1). These are bounds also in the |ρ| < 1 cases.
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While Theorem 3.1.3 provides an optimal decision rule for Wiener processes, often we

experience processes with jump terms as well. We seek to generalize the result in [9] to a certain

class of underlying Lévy processes.

3.2. Drift Test Generalization

For various financial time series data, jumps play an important role. Jumps in a stochastic

model are typically captured by a Lévy process. In this section, we generalize the analysis presented

in [9]. We present the analysis for the case when the signals are driven not only by a Brownian

motion, but by a generalized Lévy process.

Consider z = (z1, z2) a two-dimensional Lévy process defined by Lévy triplet (µ,Σ, ν∗),

where µ = [µ1, µ2] is the two-dimensional drift, Σ =

 σ2
1 ρ

ρ σ2
2

 is a symmetric non-negative

definite matrix representing the diffusion, and ν∗ is a two-dimensional Lévy measure defined by a

product of two identical one-dimensional Lévy measures ν. Under this setting, we wish to test the

hypotheses

H00 : µ1 = 0, µ2 = 0, H10 : µ1 = m1 6= 0, µ2 = 0,

H01 : µ1 = 0, µ2 = m2 6= 0, H11 : µ1 = m1 6= 0, µ2 = m2 6= 0. (3.6)

Note that these hypotheses strictly address the drift terms of the Lévy processes. The primary

difference is that we include a Lévy measure, despite its not changing based on the hypotheses.

The Lévy process generates a filtration, which will be denoted Ft, along with marginal

filtrations F (1)
t and F (2)

t . Further, the hypotheses and diffusion correlation ρ induce probability

measures Pij,ρ and marginal probability measures P
(k)
i . We seek to create an optimal decision rule

(τ, δτ ), where τ is a stopping rule with respect to Ft and δτ is a random variable taking values in

the index set {00, 01, 10, 11}. Optimality will be based on minimizing the observation time required

for given error probabilities αij,ρ := Pij,ρ(δτ 6= ij).

Using the same notation as in (3.2), (3.3), and (3.4), of course with different underlying

processes, we have the following theorem concerning the infinitesimal generator of u
(i,k)
t :

Theorem 3.2.1. Assuming the Brownian motions of the two one-dimensional processes z1 and

z2 are uncorrelated, we have two-dimensional infinitesimal generators for the processes ui,jt =
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(u
(i,1)
t , u

(j,2)
t ),

Lij,0 =
m2

1

2σ2
1

(
∂x1x1 + (−1)i+1∂x1

)
+
m2

2

2σ2
2

(
∂x2x2 + (−1)j+1∂x2

)
.

Proof. Since zk is a Lévy process with characteristics (0, σ2
k, ν) under P

(k)
0 and characteristics

(mk, σ
2
k, ν) under P

(k)
1 , we can apply a generalized Girsanov’s Theorem (see [33] Theorem 1.20).

Using β = (−1)i+1mk/σk, we obtain

dP
(k)
i

dP
(k)
1−i

= E
(

(−1)i+1mk

σk
W.

)
t

,

where W is a standard Brownian motion. Further, by [12] (Proposition 8), we obtain characteristics

((−1)i
m2
k

2σ2
k
,
m2
k

σ2
k
, 0) for u

(i,k)
t . Then the process

(
u

(i,1)
t , u

(j,2)
t

)
is well-known to have generator

Lij,0 = (−1)i+1 m
2
1

2σ2
1

∂x1 + (−1)j+1 m
2
2

2σ2
2

∂x2 +
m2

1

2σ2
1

∂x1x1 +
m2

2

2σ2
2

∂x2x2 ,

as claimed.

These infinitesimal generators are then used to determine the bounds of the rectangle by

applying them to the likelihood functions ψij : R→ [0, 1] which represents the probability of being

in world ij at any position inside the rectangle. When in the correct world, the likelihood function

does not change with respect to that world’s generator: i.e., Lij,0ψij = 0.

Next we present a theorem of optimality. The proof of this theorem follows directly from

the method in [9].

Theorem 3.2.2. The decision rule for (3.6) defined in (3.4) has asymptotic optimality of order-3.

Proof. The key tool in this proof is the exponential killing trick; i.e., for any nonnegative random

variable Y with no point mass at zero,

E(e−λY ) = E(FY (Xλ)),
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where FY is the cumulative distribution function for Y and Xλ is an exponential random variable

with parameter λ. We use this on τ1 and τ2 from (3.4):

Eij,0(e−λτ1) = Eij,0(Fτ1(Xλ)),

Eij,0

(
e−λ(τ1∨τ2)

)
= Eij,0(Fτ1(Xλ)Fτ2(Xλ)),

as τ1 and τ2 are independent when ρ = 0. Applying Laplace transforms, simplifying, and applying

exponential killing in (3.5), we find

Eij,0(τ1 ∨ τ2)− Eij(τ1) = lim
λ→0

Eij,0(Fτ1(Xλ)(1− Fτ2(Xλ)))

λ
. (3.7)

Because our log-likelihood processes are Brownian motions with drift, and so their exit times are

finite, this difference on the left is finite. Define

0 < Ak := elk < 1 < Bk := erk <∞,

and

C1 :=
1− α10,0

1− α00,0
→ 1 as αij,0 → 0,

C2 :=
1− α11,0

1− α10,0
→ 1 as αij,0 → 0.

Due to this and 3.1.3, lk = −rk as αij,0 → 0.

Further, also by 3.1.3,

C1 +B1

B1
· C2 +B2

B2
=

1

1− α00,0
→ 1 as αij,0 → 0.

Because Bk > 1, we see that rk → ∞ as αij,0 → 0, and so, lk → −∞. Hence, Fτk → 0 as well.

Finally, applying the dominated convergence theorem,

lim
αij,0→0

lim
λ→0

Eij,0(Fτ1(Xλ)(1− Fτ2(Xλ)))

λ
= lim

λ→0
lim

αij,0→0

Eij,0(Fτ1(Xλ)(1− Fτ2(Xλ)))

λ
= 0,

which yields the desired asymptotic optimality limit.
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3.3. Hypothesis Tests on the Lévy Measure

In this section, we expand the idea presented in the last section. Before presenting the

analysis, we briefly introduce a possible application of this work. A commonly used stochastic

model for the derivative market analysis is the BN-S model (see [3, 6, 5, 4, 19, 30]). The BN-S

model is also implemented in the commodity market (see [30, 29]). Though this model is very

efficient and simple to use, it suffers from the absence of a long-range dependence and many other

issues. Mathematically, for the BN-S model, the stock or commodity price S = (St)t≥0 on some

filtered probability space (Ω,F , (Ft)0≤t≤T ,P) is modeled by

St = S0 exp(Xt), (3.8)

dXt = (µ+ βσ2
t ) dt+ σt dWt + ρ dZλt, (3.9)

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (3.10)

where the parameters µ, β, ρ, λ ∈ R with λ > 0 and ρ ≤ 0 and r is the risk-free interest rate where

a stock or commodity is traded up to a fixed horizon date T . In this model, Wt is a Brownian

motion, and the process Zt is a subordinator. Also Wt and Zt are assumed to be independent, and

(Ft) is assumed to be the usual augmentation of the filtration generated by the pair (Wt, Zt).

In a recent work [29], it is shown that for various derivative and commodity price dynamics,

the jump is not completely stochastic. On the contrary, there is a deterministic element in crude

oil price that can be implemented in the existing models for an extended period of time. It may

be shown that the dynamics of Xt in (3.9) can be more accurately written when we use a convex

combination of two independent subordinators, Z and Z(b) as:

dXt = (µ+ βσ2
t ) dt+ σt dWt + ρ

(
θ dZλt + (1− θ)dZ(b)

λt

)
, (3.11)
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where θ ∈ [0, 1] is a deterministic parameter. The process Z(b) in (3.11) is a subordinator that has

greater intensity than the subordinator Z. In this case (3.10) will be given by

dσ2
t = −λσ2

t dt+ θ′dZλt + (1− θ′)dZ(b)
λt , σ2

0 > 0, (3.12)

where, as before, θ′ ∈ [0, 1] is deterministic.

We observe that even for commonly implemented stochastic models, it is important to

detect when a “smaller” fluctuation (Z) turns into a “larger” fluctuation (Z(b)). Consequently,

it is important to determine a method for sequential testing of the jump size distribution. The

advantages of the dynamics given by the refined BN-S model, given by (3.8), (3.11), and (3.12), over

existing models are significant. This minor change in the model incorporates long-range dependence

without actually changing the model.

With this in mind, we consider z = (z1, z2) a two-dimensional Lévy process defined by

Lévy triplet (µ,Σ, ν∗), where µ = [µ1, µ2] is the two-dimensional drift, Σ =

 σ2
1 ρ

ρ σ2
2

 is a

symmetric non-negative definite matrix representing the diffusion, and ν∗ is a two-dimensional

Lévy measure defined by a product of two one-dimensional Lévy measures ν1 and ν2 with densities

νk(dx) = (1 + αkx)ν(dx) for some Lévy measure ν defined on R+.

We wish to test the hypotheses

H00 : α1 = 0, α2 = 0, H10 : α1 = a1 > 0, a2 = 0,

H01 : a1 = 0, α1 = a2 > 0, H11 : α1 = a1 > 0, α1 = a2 > 0. (3.13)

These now address the size of the jumps in the Lévy process.

Similar to the previous section, the Lévy process generates a filtration, which will be denoted

Ft, along with marginal filtrations F (1)
t and F (2)

t . Further, the hypotheses and diffusion correlation

ρ induce probability measures Pij,ρ and marginal probability measures P
(k)
i . We seek to create

optimal decision rules (τ, δτ ), where τ is a stopping rule with respect to Ft and δτ is a random

variable taking values in the index set {00, 01, 10, 11}.
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Let u
(i,k)
t be defined as in (3.2) and still consider a rectangle [l1, r1] × [l2, r2] ⊂ R2. The

decision rules for the non-correlated one-dimensional cases are as in (3.3), with the combined

decision rule in (3.4).

It is known that if (Xt)t≥0 is a Lévy process then there exists a unique cádlág process

(Zt)t≥0 such that

dZt = Zt− dXt, Z0 = 1.

Z is called the stochastic exponential or Doléans-Dade exponential of X and is denoted by Z =

E(X). We can now derive the infinitesimal generators:

Theorem 3.3.1. With the process u
(i,k)
t defined as in (3.2), we have two-dimensional infinitesimal

generators, for the process ui,jt = (u
(i,1)
t , u

(j,2)
t ), defined by

Lij,ρξ(x) = (−1)i+1γ1ξx1(x) + (−1)j+1γ2ξx2(x) +
1

2
β2

1ξx1x1(x) +
1

2
β2

2ξx2x2(x) + ρβ1β2ξx1x2(x)

+(−1)i+j
∫
R2
+

(
ξ(x+ y)− ξ(x)− y1ξx1(x) + y2ξx2(x)

1 + ‖y‖

)
K1(dy1)K2(dy2),

for any suitable ξ, where

x = (x1, x2), y = (y1, y2)

βk = −ak
∫
xk>0

(1 ∧ xk)σ−1
k xkν(dxk) (3.14)

mk = ak

∫
xk>1

xkν(dxk) (3.15)

γk = mk −
β2
k

2
+

∫ 1

0
(log(1 + xk)

2 − xk)akν(dxk). (3.16)

Kk = ak log(1 + xk)νk. (3.17)

Proof. Since zk is a Lévy process with characteristics (µk, σ
2
k, νk) under P

(k)
0 and characteristics

(µk, σ
2
k, (1 + akxk)νk) under P

(k)
1 , we apply the generalized Girsanov’s Theorem. Using βk as in

(3.14), we obtain

dP
(k)
i

dP
(k)
1−i

= E
(

(−1)i+1N (k).
)
t
,
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where

N
(k)
t = βkWt +

∫ t

0

∫
xk>0

akxk(Jk − νk)(ds, dxk),

akJk is the jump measure for N , W is a standard Brownian motion, and E is the Doléans-Dade

exponential. This gives that N
(k)
t is a Lévy process with characteristics

((−1)imk, β
2
k, (−1)i+1akνk).

Then, by [12] (Proposition 8), we obtain characteristics

((−1)iγk, β
2
k, (−1)i+1Kk)

for u
(i,k)
t . Finally, by [12] and Theorem 2.4.2, the process

(
u

(i,1)
t , u

(j,2)
t

)
has the stated generator.

Assign ξij,ρ to be the probability of a correct decision in world ij. Then we have the partial

integro-differential equation Lij,ρξij,ρ = 0 with boundary conditions

ξ00,ρ(l1, l2) = 1, ξ01,ρ(l1, r2) = 1,

ξ00,ρ(r1, y) = 0, ξ01,ρ(x, l2) = 0,

ξ00,ρ(x, r2) = 0, ξ01,ρ(r1, y) = 0,

ξ10,ρ(r1, l2) = 1, ξ11,ρ(r1, r2) = 1,

ξ10,ρ(l1, y) = 0, ξ11,ρ(l1, y) = 0,

ξ10,ρ(x, r2) = 0, ξ11,ρ(x, l2) = 0, (3.18)

for x ∈ [l1, r1] and y ∈ [l2, r2]. Further, we have ξij,ρ > 0 inside R = (l1, r1)× (l2, r2).

Before proceeding to prove the existence of a solution to such a boundary value problem,

we state the following definitions and a theorem from [2] that will be used.

Definition 3.3.2. An upper semicontinuous function l : R2 → R is a subsolution of

F (0, ξ,Dξ,Dξ2, I[ξ](x)) = 0
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subject to boundary conditions (4.14) if for any test function φ ∈ C2(R2), at each maximum point

x0 ∈ R̄ of l − φ in Bδ(x0), we have

E(l, φ, x0) := F (x0, l(x0), Dφ(x0), D2φ(x0), I1
δ [φ](x0) + I2

δ [l](x0)) ≤ 0 if x0 ∈ R

or

min(E(l, φ, x0);u(x0)− g(x0)) ≤ 0 if x0 ∈ ∂R,

where

I1
δ [φ](x0) =

∫
|z|<δ

(φ(x0 + z)− φ(x0)− (Dφ(x0) · z)1B(z)) dµx0(z),

I2
δ [u](x0) =

∫
|z|≥δ

(u(x0 + z)− u(x0)− (Dφ(x0) · z)1B(z)) dµx0(z).

Similarly, a lower semicontinuous function u : R2 → R is a supersolution of the same

boundary value problem if for any test function φ ∈ C2(R2), at each minimum point x0 ∈ R̄ of

u− φ in Bδ(x0), we have

E(u, φ, x0) ≥ 0 if x0 ∈ R

or

max(E(l, φ, x0);u(x0)− g(x0)) ≤ 0 if x0 ∈ ∂R.

Finally, a viscosity solution is a function whose upper and lower semicontinuous envelopes are

respectively a sub-solution and a super-solution.

Theorem 3.3.3. If F : R2 × R × R2 × S2 × R → R, where Sn is the space of n × n symmetric

matrices, and

(A1) F (x, u, p,X, i1) ≤ F (x, u, p, Y, i2) if X ≥ Y and i1 ≥ i2,

(A2) there exists γ > 0 such that for any x ∈ R2, u, v ∈ R, p ∈ R2, X ∈ S2, and i ∈ R,

F (x, u, p,X, i)− F (x, v, p,X, i) ≥ γ(u− v) if u ≥ v,
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for some ε > 0 and r(β)→ 0 as β → 0, we have

F (y, v, ε−1(x− y), Y, i)− F (x, v, ε−1(x− y), X, i) ≤ ωR(ε−1|x− y|2 + |x− y|+ r(β)),

(A3) F is uniformly continuous with respect to all arguments,

(A4) supx∈R |F (x, 0, 0, 0, 0)| <∞,

(A5) K = K1 ×K2 is a Lévy-Itô measure,

(A6) the inequalities in (3.19) are strict,

(A7) for any R > 0, there exists a modulus of continuity ωR such that, for any x, y ∈ R2, |v| ≤ R,

i ∈ R, and for any X,Y ∈ S2 satisfying

 X 0

0 Y

 ≤ 1

ε

 I −I

−I I

+ r(β)

 I 0

0 I

 ,

then there is a unique solution to F (0, ξ,Dξ,D2ξ, I[ξ](x)) = 0 between any pair of super-solution

and sub-solutions, where

I[ξ](x) :=

∫
R2
+

(
ξ(x+ y)− y1ξx1(x) + y2ξx2(x)

1 + ‖y‖

)
K1(dy1)K2(dy2).

Lemma 3.3.4. In particular, our function

F (x, u, p,X, i) := Mu+ 〈γ1, γ2〉 · p− Tr


 β1/2 0

0 β2/2

X
− i

satisfies (A1)-(A4) and our measure K satisfies (A5) in (3.3.3), where

M =

∫
R2
+

K1(dy1)K2(dy2).
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Proof. First, consider (A1):

F (x, u, p,X, i1)− F (x, u, p, Y, i2) = Tr


 β1/2 0

0 β2/2

 (Y −X)

+ i2 − i1 ≥ 0

if i2 ≤ i1 and Y ≤ X.

Next, F (x, u, p,X, i)−F (x, v, p,X, i) = M(u−v), so choosing γ = M > 0, we have property

(A2).

Property (A3) is satisfied because F is linear in each argument, and (A4) is satisfied because

F does not depend on its first argument explicitly. Last, K is a Lévy-Itô measure by the assumptions

of the underlying Lévy processes.

Note that the F above corresponds to case ij = 00. The other three cases can be similarly

satisfied through manipulation of the signs in F . Before proceeding, we present a few formal

definitions:

Definition 3.3.5. We write that a function f(x) = O(g(x)) if we have some M, ε ∈ R satisfying

|f(x)| ≤ Mg(x) for all x > ε. Similarly, we write that a function f(x) = o(g(x)) if for every

M > 0, there exists ε ∈ R satisfying |f(x)| ≤Mg(x) for all x > ε.

The norm ‖f‖∞ is defined as the essential supremum of the absolute value of f over Ω. It

is the smallest number so that {x : |f(x)| ≥ ‖f‖∞} has measure zero.

We now state the additional limit assumptions on F from [2]:

lim inf
y→x,y∈Ω̄,η↓0,d(y)η−1→0

[
sup

0<δ∈[d(y),r)
inf

s∈[−R,R]
F (y, s, pη(y),Mη(y), Iη,δ,r(y))

]
< 0,

lim sup
y→x,y∈Ω̄,η↓0,d(y)η−1→0

[
inf

0<δ∈[d(y),r)
sup

s∈[−R,R]
F (y, s,−pη(y),−Mη(y),−Iη,δ,r(y))

]
< 0, (3.19)

where

pη(y) = O(ε−1) +
k1 + o(1)

η
Dd(y),

Mη(y) = O(ε−1) +
k1 + o(1)

η
D2d(y)− k2 + o(1)

η2
Dd(y)⊗Dd(y),
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Iη,δ,r(y) = −νIext,1
δ,r (y) + 2‖u‖∞Iint,1

β(ν),r(y)

− k1 + o(1)

η

(
Itr(y) + Iint,2

β(η),r(y) + Iext,2
δ,r (y)− ‖D2d‖∞I4

δ,β(η),r(y)
)

+O(ε−1)
(

1 + o(1)Iint,3
β(η),r(y) + o(1)Iext,3

δ,r (y)
)
,

with O(ε−1) not depending on k1 nor k2, and

Aδ,β,r(x) := {z ∈ Br : −δ ≤ d(x+ z)− d(x) ≤ β},

Aext
δ,r (x) := {z ∈ Br : d(x+ z)− d(x) < −δ},

Aint
β,r (x) := {z ∈ Br : d(x+ z)− d(x) > β},

Iext,1
δ,r (x) :=

∫
Aext
δ,r (x)

dµx(z),

Iext,2
δ,r (x) :=

∫
Aext
δ,r (x)

Dd(x) · zdµx(z),

Iext,3
δ,r (x) :=

∫
Aext
δ,r (x)

|z|dµx(z),

Iint,1
β,r (x) :=

∫
Aext
β,r (x)

dµx(z),

Iint,2
β,r (x) :=

∫
Aext
β,r (x)

Dd(x) · zdµx(z),

Iint,3
β,r (x) :=

∫
Aext
β,r (x)

|z|dµx(z),

I4
δ,β,r(x) :=

1

2

∫
Aδ,β,r(x)

|z|2dµx(z),

Itr(x) :=

∫
r<|z|<1

Dd(x) · zdµx(z).
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Theorem 3.3.6. The partial integro-differential equation Lij,0ξij,0 = 0 subject to boundary condi-

tions (4.14) and 0 < ξij,ρ has a viscosity solution between sub-solution and super-solution

Lij(x, y) = Eij

sinh
(
A(1,2−i)

√
B2
ij(1) + L

)
sinh

(
A(2,2−j)

√
B2
ij(2) + L

)
sinh

(
r1−l1
β1

√
B2
ij(1) + L

)
sinh

(
r2−l2
β2

√
B2
ij(2) + L

) ,

Uij(x, y) = Eij

sinh
(
A(1,2−i)

√
B2
ij(1) − L

)
sinh

(
A(2,2−j)

√
B2
ij(2) − L

)
sinh

(
r1−l1
β1

√
B2
ij(1) − L

)
sinh

(
r2−l2
β2

√
B2
ij(2) − L

) ,

where

A =

 x−l1
β1

r1−x
β1

y−l2
β2

r2−y
β2

 ,
Bij =

[
γ1+(−1)jC

β1

γ2+(−1)iC
β2

]
,

C =

∫
R2
+

yi
1 + ‖y‖

K1(dy1)K2(dy2),

Eij = exp
(
A(1,i+1)Bij(1) +A(2,j+1)Bij(2)

)
,

and L is a positive constant, provided (A6) and (A7) are satisfied.

Proof. We define

H(x) =

∫
R2
+

ξ(x+ y)K1(dy1)K2(dy2),

ξ(x) = f(x1)g(x2).

Consequently,

0 = Lij,0ξ(x) =(−1)i+1γ1ξx1(x) + (−1)j+1γ2ξx2(x) +
1

2
β2

1ξx1x1(x) +
1

2
β2

2ξx2x2(x)

+ (−1)i+j
∫
R2
+

(
ξ(x+ y)− ξ(x)− y1ξx1(x) + y2ξx2(x)

1 + ‖y‖

)
K1(dy1)K2(dy2)
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can be rewritten as

0 =(−1)i+1γ1f
′(x1)g(x2) + (−1)j+1γ2f(x1)g′(x2) +

1

2
β2

1f
′′(x1)g(x2) +

1

2
β2

2f(x1)g′′(x2)

+ (−1)i+jH(x) + (−1)i+j+1Mf(x1)g(x2)

+ (−1)i+j+1Cf ′(x1)g(x2) + (−1)i+j+1Cf(x1)g′(x2).

When ij ∈ {00, 11}, the sign on H is positive; therefore, we have sub-solution equations,

through separation of variables,

1

2
β2

1

f ′′(x1)

f(x2)
+
(
(−1)i+j+1C + (−1)i+1γ1

) f ′(x1)

f(x1)
= −λ1,ij + (−1)i+jM,

1

2
β2

2

g′′(x2)

g(x2)
+
(
(−1)i+j+1C + (−1)j+1γ2

) g′(x2)

g(x2)
= λ1,ij .

Alternatively, when ij ∈ {01, 10}, we have these as super-solution equations.

On the other hand, since ξ > 0 inside R, there exists some K > 0 so that

ξ(x+ y)− ξ(x) ≤ Kξ(x) ⇐⇒ H(x)−
∫
ξ(x)K1(dy1)K2(dy2) ≤ KMf(x1)g(x2).

Using this, in cases ij ∈ {00, 11}, we have super-solution equations

1

2
β2

1

f ′′(x1)

f(x2)
+
(
(−1)i+j+1C + (−1)i+1γ1

) f ′(x1)

f(x1)
= −λ2,ij + (−1)i+j+1KM,

1

2
β2

2

g′′(x2)

g(x2)
+
(
(−1)i+j+1C + (−1)j+1γ2

) g′(x2)

g(x2)
= λ2,ij .

When ij ∈ {01, 10}, we have these as sub-solution equations instead.

Now, choosing L = max{KM,M} and λk,ij to yield ±L/2 on the right-hand sides, the

boundary-value problem gives the super-solution and sub-solutions claimed. Due to the mono-

tonicity of sinh and exp, we see that the super-solution and sub-solutions are ordered so that

Uij ≥ Lij ≥ 0. Finally, by [2], we have existence of a viscosity solution to Lij,ρξij,ρ = 0 with

boundary conditions (4.14).
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Remark 3.3.7. Note that due to the structure of Uij and Li,j, as L/B2
ij → 0, the super-solution

and sub-solutions tend toward each other. While this cannot occur precisely, it grants a particularly

interesting condition that can reduce the size of the rectangle used in the decision rule.

In the following figures (Figures 1, 2, and 3), we plot a super-solution and a sub-solution

for a special case. Figure 1 depicts the monotonic nature of U00 and L00, and shows the boundary

conditions are met. Note that the sides of the rectangle, and therefore the bounds of the domain of

x here, would be chosen in such a way as to have 1−α00 between the graphs along the line x = 0 in

Figure 2. Finally, Figure 3 fully shows the super-solution and sub-solution of a viscosity solution.

Figure 3.1. The y = l2 = −1 cross-section,
with boundary conditions met.

Figure 3.2. The y = 0 cross-section, showing
the region that determines the actual bounds
of R.

The super-solution and sub-solutions depend on the hypothesis parameters ak. With regards

to conducting the hypothesis test, one option is to bound ak < A. After doing so, Uij and Lij

create two sets of inequalities

{Uij(0, 0) ≥ 1− αij : ij ∈ {00, 01, 10, 11}},

{Lij(0, 0) ≤ 1− αij : ij ∈ {00, 01, 10, 11}}.

These can potentially be solved for upper and lower estimates for the sides of the rectangle (l1, r1)×

(l2, r2). While no longer optimal, these estimates can be used to conduct hypothesis tests with Type

I error probability at most αij .

In summary, we have studied a sequential decision making problem in connection to the

Lévy processes. Sequential decision making describes a situation where the decision maker makes
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Figure 3.3. The functions U00 and L00, which envelope the viscosity solution ξ00.

successive observations of a process before a final decision is made. The procedure to decide when

to stop taking observations and when to continue is called the stopping rule. This problem can

be implemented for financial derivative or commodity markets. A single stochastic model may

not appropriately represent derivative or commodity market dynamics. However, the procedure

presented in this chapter can be incorporated to determine the fluctuations in the jump term of

the Lévy processes. Consequently, the jump term can be replaced or modified. Thus with a

minor adjustment, the original model becomes more effective. This modification also enables long-

range dependence in the new model without significantly changing the model. The next chapter is

dedicated to implementing these ideas in a concrete application, focused on oil prices.
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4. ONE DIMENSIONAL APPLICATION TO OIL PRICE

DATA

4.1. Oil Price Motivation

Various existing hedging algorithms and insurance risks depend on the underlying statis-

tical model of the commodity market. Consequently, an improvement in the underlying model

directly improves the hedging strategies and the understanding of insurance risks. In this chapter,

we develop a novel statistical methodology for the refinement of stochastic models using various

machine and deep learning algorithms.

As availability of information to the public through alternative data sources increases, ma-

chine learning is necessary for adequate analysis. Currently, 97% of North American businesses are

using machine learning capabilities to analyze and apply data sources to their trading platforms

and analytic focused activities (see [24]). The advent of these technologies allows participants to

train, test, and project models using data that have historically been inaccessible. “Any innovation

that makes better use of data, and enables data scientists to combine disparate sources of data in

a meaningful fashion, offers the potential to gain competitive advantage” (see [24]). Trading capa-

bilities, scale, scope, and speeds have increased exponentially with advancements in applications of

Artificial Intelligence and Algorithmic trading.

As stated in the previous chapter, a commonly used stochastic model for derivative and

commodity market analysis is the BN-S model (see [3, 6, 5, 4, 17, 19, 22]). In [30], the BN-S model

is implemented to find an optimal hedging strategy for the oil commodity from the Bakken, a new

region of oil extraction that is benefiting from fracking technology. In [34], the BN-S model is used

in this way, in the presence of quantity risk for oil produced in that region. In the recent paper

[29], a machine learning-based improvement of the BN-S model is proposed. It is shown that this

refined BN-S model is more efficient and has fewer parameters than other models which are used in

practice as improvements of the BN-S model. Machine learning-based techniques are implemented

for extracting a deterministic component (θ) out of processes that are usually considered to be

completely stochastic. Equipped with the aforementioned θ, the obtained refined BN-S stochastic
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model can be implemented to incorporate long-range dependence without actually changing the

model.

It is clear that the real challenge is to obtain an estimation of the value of the deterministic

component for an empirical data set. In [29], a näıve way to find this value for crude oil price

is proposed. The method proposed in that paper provides an algorithm to form a classification

problem for the data set. After that, various machine and deep learning techniques are implemented

for that classification problem.

The primary motivation for this chapter is the fact that the refined BN-S model can be

successfully implemented for the analysis of crude oil price. In addition, it seems reasonable that

some parameters of the refined BN-S model can be estimated by using various machine/deep

learning algorithms. Consequently, it opens up the scope of an abundance of financial applications of

the model to the commodity markets. With this, we investigate the problem from the perspective of

sequential hypothesis testing and change point detection. Subsequently, machine and deep learning

algorithms can be implemented to extract a deterministic component from a financial data set,

improving on the results from [34].

In Section 4.2, a refined BN-S model from [34] is presented, along with some of its properties.

In Section 4.3, we provide a general one-dimensional jump size detection analysis based on the

sequential testing of hypotheses. In Section 4.4, an overview of the data set is provided, and then

two procedures in the predictive classification problem are introduced. Finally, concrete numerical

results are shown in Section 4.5.

4.2. A Refined Barndorff-Nielsen & Shephard Model

Many models in recent literature try to capture the stochastic behavior of time series. As

an example, for the BN-S model, the stock or commodity with price S = (St)t≥0 on some filtered

probability space (Ω,G, (Gt)0≤t≤T ,P) is modeled by (3.8), (3.9), and (3.10), where the parameters

µ, β, ρ, λ ∈ R with λ > 0 and ρ ≤ 0 and r is the risk free interest rate where a stock or commodity

is traded up to a fixed horizon date T . In the above model Wt is a Brownian motion, and the

process Zλt is a subordinator. Also W and Z are assumed to be independent, and (Gt) is assumed

to be the usual augmentation of the filtration generated by the pair (W,Z).

However, the results and theoretical framework are far from being satisfactory. The BN-S

model does not incorporate the long-range dependence property. As such, the model fails signifi-
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cantly for longer ranges of time. To incorporate long-range dependence, a class of superpositions

of Ornstein-Uhlenbeck (OU)-type processes is constructed in literature in terms of integrals with

respect to independently scattered random measures (see [3, 16]). With appropriate conditions,

the resulting processes are incorporated with long-range dependence. A limiting procedure results

in processes that are second-order self-similar with stationary increments. Other resulting limiting

processes are stable and self-similar with stationary increments. However, it is statistically unap-

pealing to fit a large number of OU processes, at least by any formal likelihood-based method. To

address this issue, in [29] a new method is developed.

As proposed in [29], S = (St)t≥0 on some filtered probability space (Ω,F , (Ft)0≤t≤T ,P), is

given by (3.8), where the dynamics of Xt in (3.9) is given by (3.11), where Z and Z(b) are two

independent subordinators, and θ ∈ [0, 1] is a deterministic parameter. Machine learning algorithms

can be implemented to determine the value of θ. The process Z(b) in (3.11) is a subordinator that

has greater intensity than the subordinator Z. Also, W , Z and Z(b) are assumed to be independent,

and (Ft) is assumed to be the usual augmentation of the filtration generated by (W,Z,Z(b)).

In this case (3.10) will be given by (3.12) where, as before, θ′ ∈ [0, 1] is deterministic. It is

worth noting that when θ = 0, (3.11) reduces to (3.9). Similarly, when θ′ = 0, (3.12) reduces to

(3.10).

We conclude this section with some properties of this new model. Note that (1− µ) dZλt +

µdZ
(b)
λt , where µ ∈ [0, 1], is also a Lévy subordinator that is positively correlated with both Z and

Z(b). Note that the solution of (3.12) can be explicitly written as

σ2
t = e−λtσ2

0 +

∫ t

0
e−λ(t−s)

(
(1− θ′)dZλt + θ′dZ

(b)
λt

)
. (4.1)

The integrated variance over the time period [t, T ] is given by σ2
I =

∫ T
t σ2

s ds, and a straight-forward

calculation shows

σ2
I = ε(t, T )σ2

t +

∫ T

t
ε(s, T )

(
(1− θ′)dZλt + θ′dZ

(b)
λt

)
, (4.2)

where

ε(s, T ) = (1− exp(−λ(T − s))) /λ, t ≤ s ≤ T. (4.3)
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We derive a general expression for the characteristic function of the conditional distribution of the

log-asset price process appearing in the BN-S model given by equations (3.8), (3.11) and (3.12).

For simplicity, we assume

θ = θ′.

As shown in [29], the advantages of the dynamics given by (3.8), (3.11), and (3.12) over

the existing models are significant. The following theorem is proved in [29]. From this result,

it is clear that as θ is constantly adjusted, for a fixed s, the value of t always has an upper

limit. Consequently, Corr(Xt, Xs) never becomes very small, and thus long-range dependence is

incorporated in the model.

Theorem 4.2.1. If the jump measures associated with the subordinators Z and Z(b) are JZ and J
(b)
Z

respectively, and J(s) =
∫ s

0

∫
R+ JZ(λdτ, dy), J (b)(s) =

∫ s
0

∫
R+ J

(b)
Z (λdτ, dy); then for the log-return

of the improved BN-S model given by (3.8), (3.11), and (3.12),

Corr(Xt, Xs) =

∫ s
0 σ

2
τdτ + ρ2(1− θ)2J(s) + ρ2θ2J (b)(s)√

α(t)α(s)
, (4.4)

for t > s, where α(ν) =
∫ ν

0 σ
2
τdτ + νρ2λ((1− θ)2Var(Z1) + θ2Var(Z

(b)
1 )).

We implement the above analysis to empirical data sets. For example, we consider the West

Texas Intermediate (WTI or NYMEX) crude oil prices data set for the period June 1, 2009 to May

30, 2019 (Figure 1). In the recent paper [29], the appropriateness of modeling such data with a BN-S

type stochastic volatility model is discussed. It is clear that such a process is dependent on random

shocks, and thus an implementation of the classical model is argued in [29]. However, in Figure

2, we provide the autocorrelation function of the given data set. It is clear that the long-range

dependence criteria must be incorporated in the stochastic model. This justifies the implementation

of the refined BN-S model presented in this section. We will discuss a detailed data analysis in

Section 4.4. The implementation of the refined BN-S model in lieu of the classical BN-S model

comes with the price of the estimation of θ as described earlier. In the later sections, this serves as

a motivation to apply sequential hypothesis testing combined with various machine/deep learning

algorithms. This leads to some novel numerical results related to the present data set.
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Figure 4.1. Crude oil close price.

Figure 4.2. Autocorrelation in crude oil close price.

We denote Z(e) = (1 − θ)Z + θZ(b). Note that Z(e) is also a subordinator. We call this

the effective subordinator. We denote the cumulant transforms as κ(e)(θ) = logEP[eθZ
(e)
1 ]. In this

work, we make the following assumption similar to [23, 28].

Assumption 4.2.2. Assume that θ̂(e) = sup{θ ∈ R : κ(e)(θ) < +∞} > 0.

We state the following well-known result from [23, 28] and denote the real part and imagi-

nary part of z ∈ C as <(z) and =(z), respectively.

Theorem 4.2.3. Let Z be a subordinator with cumulant transform κ, and let f : R+ → C be a

complex-valued, left continuous function such that <(f) ≤ 0. Then

E

[
exp

(∫ t

0
f(s) dZλs

)]
= exp

(
λ

∫ t

0
κ(f(s)) ds

)
. (4.5)

The above formula still holds if Z = Z(e) satisfies Assumption 4.2.2 and f is such that <(f) ≤ θ̂(e)

(1+ε) ,

for ε > 0.
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The Laplace transform of XT |t, the conditional distribution of XT given the information

up to time t ≤ T , is given by φ(z) = EP[exp(zXT )|Ft], for z ∈ C such that the expectation is

well-defined.

Theorem 4.2.4. In the case of the general BN-S model described in equations (3.8), (3.11) and

(3.12), the Laplace transform φ(z) = E[exp(zXT )|Ft] of XT |t is given by

φ(z) = exp

(
z(Xt + µ(T − t)) +

1

2
(z2 + 2βz)ε(t, T )σ2

t + λ

∫ T

t
G(s, z) ds

)
, (4.6)

where G(s, z) = κ(e)
(
ρz + 1

2(z2 + 2βz)ε(s, T )
)
.

The transform φ(z) is well-defined in the open strip S = {z ∈ C : <(z) ∈ (θ−, θ+)}, where

θ− = sup
t≤s≤T

{−β − ρ

ε(s, T )
−
√

∆1},

and

θ+ = inf
t≤s≤T

{−β − ρ

ε(s, T )
+
√

∆1},

where ∆1 = (β + ρ
ε(s,T ))2 + 2 θ̂(e)

ε(s,T ) .

Proof. We obtain from equation (3.11)

XT = ζ + βσ2
I +

∫ T

t
σs dWs + ρ

∫ T

t
dZ

(e)
λs ,

where ζ = Xt + µ(T − t). Let G denote the σ-algebra generated by Z(e) up to time T and by Ft.

Then, proceeding by iterated conditional expectations, we obtain

φ(z) = EP[exp(zXT )|Ft]

= EP
[
EP
[
exp(z(ζ + βσ2

I +

∫ T

t
σs dWs + ρ

∫ T

t
dZ(e)))|G

]
|Ft
]

= EP
[
exp(z(ζ + βσ2

I + ρ

∫ T

t
dZ

(e)
λs ))EP

[
exp(z

∫ T

t
σs dWs)|G

]
|Ft
]

= EP
[
exp

(
z(ζ + βσ2

I + ρ

∫ T

t
dZ

(e)
λs ) +

1

2
σ2
Iz

2

)
|Ft
]
.
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Using (4.2) we obtain

φ(z) = exp

(
ζz +

1

2
ε(t, T )σ2

t (z
2 + 2βz)

)
EP
[
exp

(∫ T

t

(
ρz +

1

2
(z2 + 2βz)ε(s, T )

)
dZ

(e)
λs

)]
.

Clearly if z ∈ S, then <(ρz + 1
2(z2 + 2βz) < θ̂. Thus the result follows from (4.5).

4.3. Jump Size Change Point Detection Based on Hypothesis Tests

In Section 4.2, it is observed that the refined BN-S model can be successfully implementable

only when θ can be successfully computed for (3.11) and (3.12) (with θ = θ′). Note that, as

discussed in the previous section, the value of θ is in the interval 0 ≤ θ ≤ 1. However, in order to

simplify the subsequent analysis, θ is rounded to either 0 or 1. This is motivated by the simplistic

assumption that the jumps are either from one distribution or another. Also, in this case it is

easier to interpret the confusion matrix corresponding to a related classification algorithm. To find

θ, in [29], a machine learning based empirical analysis is implemented. However, the procedure

implemented in that paper does not incorporate any hypothesis testing for θ. In this section, we

provide a more theoretical jump size detection analysis based on the sequential test of a hypothesis.

4.3.1. Theoretical results

We consider a Lévy process Z defined by Lévy triplet (µ, σ2, ν∗), where µ is the drift, σ is the

diffusion, and ν∗(dx) = (1 + αx)ν(dx) for some Lévy measure ν defined on R+. We are interested

in detecting a significant jump in the process. Consequently, we wish to test the hypotheses

H0 : α = 0, H1 : α = a > 0, (4.7)

which clearly address the size of the jumps in the Lévy process.

The Lévy process generates a filtration, which will be denoted F (i)
t , i = 0, 1. Further, the

hypotheses induce probability measures Pi, i = 0, 1. We seek to create a decision rule (τ, δτ ), where

τ is a stopping rule with respect to Ft, and δτ is a random variable taking values in the index set

{0, 1}, denoting which hypothesis to reject.

Let the log-likelihood ratio of the marginal density be given by

ut = log
dP0

dP1
, (4.8)
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and consider an interval [l, r] ⊂ R with l < 0 < r. We define the decision rules to be

τ = inf{t ≥ 0 : ut /∈ [l, r]},

δτ = 1, if uτ ≤ l,

δτ = 0, if uτ ≥ r. (4.9)

Theorem 4.3.1. With the process ut defined as in (4.8), we have infinitesimal generators, given

by

Lξ(x) := −γξ′(x) +
1

2
β2ξ′′(x) +

∫
R+

(
ξ(x+ y)− ξ(x)− yξ′(x)

1 + |y|

)
K(dy),

for any suitable ξ, where

β = −a
∫
x>0

(1 ∧ x)σ−1xν(dx), (4.10)

m = a

∫
x>1

xν(dx), (4.11)

γ = m− β2

2
+

∫ 1

0
(log(1 + x)2 − x)aν(dx), (4.12)

K = a log(1 + x)ν. (4.13)

Proof. Since z is a Lévy process with characteristics (µ, σ2, ν) under P0 and characteristics (µ, σ2, (1+

ax)ν) under P1, we apply the generalized Girsanov’s Theorem. Using β as in (4.10), we obtain

dP0

dP1
= E (−N.)t ,

where

Nt = βWt +

∫ t

0

∫
x>0

ax(J − ν)(ds, dx),

aJ is the jump measure for N , W is a standard Brownian motion, and E is the Doléans-Dade

exponential, defined previously. This gives that Nt is a Lévy process with characteristics

(m,β2,−aν).
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Then, by [12] (Proposition 8), we obtain characteristics

(γ, β2,−K),

for ut. Finally, by [12] and Theorem 2.4.2, the process has the stated generator.

Assign ξ to be the probability of a correct decision given H0. Then we have the partial

integro-differential equation Lξ = 0 with boundary conditions

ξ(l) = 1, ξ(r) = 0. (4.14)

Further, we have ξ > 0 inside R = (l, r).

The following are one-dimensional adaptations of 3.3.3 and 3.3.4:

Theorem 4.3.2. If F : R5 → R, and

(A1) F (x, u, p,X, i1) ≤ F (x, u, p, Y, i2) if X ≥ Y and i1 ≥ i2,

(A2) there exists γ > 0 such that for any x, u, v, p,X, i ∈ R,

F (x, u, p,X, i)− F (x, v, p,X, i) ≥ γ(u− v) if u ≥ v,

for some ε > 0 and r(β)→ 0 as β → 0, we have

F (y, v, ε−1(x− y), Y, i)− F (x, v, ε−1(x− y), X, i) ≤ ωR(ε−1|x− y|2 + |x− y|+ r(β)),

(A3) F is uniformly continuous with respect to all arguments,

(A4) supx∈R |F (x, 0, 0, 0, 0)| <∞,

(A5) K is a Lévy-Itô measure,

(A6) the inequalities in (3.19) are strict,
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(A7) for any R > 0, there exists a modulus of continuity ωR such that, for any x, y ∈ R, |v| ≤ R,

i ∈ R, and for any X,Y ∈ R satisfying

 X 0

0 Y

 ≤ 1

ε

 1 −1

−1 1

+ r(β)

 1 0

0 1

 ,

then there is a unique solution to F (0, ξ,Dξ,D2ξ, I[ξ](x)) = 0 between any pair of super-solution

and sub-solutions, where

I[ξ](x) :=

∫
R+

(
ξ(x+ y)− yξ′(x)

1 + |y|

)
K(dy).

Lemma 4.3.3. In particular, the function

F (x, u, p,X, i) := Mu+ γp− β

2
X − i

satisfies (A1)-(A4) and our measure K satisfies (A5) in (4.3.2), where

M =

∫
R+

K(dy).

Proof. First, consider (A1):

F (x, u, p,X, i1)− F (x, u, p, Y, i2) =
β

2
(Y −X) + i2 − i1 ≥ 0

if i2 ≤ i1 and Y ≤ X.

Next, F (x, u, p,X, i)−F (x, v, p,X, i) = M(u−v), so choosing γ = M > 0, we have property

(A2).

Property (A3) is satisfied because F is linear in each argument, and (A4) is satisfied because

F does not depend on its first argument explicitly. Last, K is a Lévy-Itô measure by the assumptions

of the underlying Lévy process.
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We now use the infinitesimal generators to prove the existence of a viscosity solution. Using

all of the previous, we can finally state the existence theorem.

Theorem 4.3.4. If ξ is monotonic, then the partial integro-differential equation Lξ = 0, subject

to boundary conditions (4.14) and ξ > 0 has a viscosity solution between sub-solution and super-

solution

g(x) = exp(B(x− l))
sinh

(
r−x
β

√
2M +B2

)
sinh

(
r−l
β

√
2M +B2

) ,
f(x) =

exp(2Br)− exp(2Bx)

exp(2Br)− exp(2Bl)
,

where

C =

∫ ∞
0

y

1 + |y|
K(dy),

B =
2(C + γ)

β2
,

M =

∫ ∞
0

K(dy).

Proof. We define

H(x) =

∫ ∞
0

ξ(x+ y)K(dy),

M =

∫ ∞
0

K(dy).

Consequently,

0 = Lξ(x) = −γξ′(x) +
1

2
β2ξ′′(x) +

∫
R+

(
ξ(x+ y)− ξ(x)− yξ′(x)

1 + |y|

)
K(dy)

can be rewritten as

0 =− γξ′(x) +
1

2
β2ξ′′(x) +H(x)−Mξ(x)− Cξ′(x).
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The sign on H is positive; therefore, we have sub-solution equation

0 =
1

2
β2ξ′′(x)− (C + γ)ξ′(x)−Mξ(x).

On the other hand, since ξ is monotonic and positive inside R,

ξ(x+ y)− ξ(x) ≤ 0 ⇐⇒ H(x)−Mξ(x) ≤ 0.

Using this, we have super-solution equation

0 = −γξ′(x) +
1

2
β2ξ′′(x)− Cξ′(x).

Finally, applying the previous theorem 4.3.2, we have the existence of a viscosity solution.

Remark 4.3.5. The monotonicity assumption yields a tighter super- and sub-solution envelope

and is here to make the application of this theorem to time series data more effective, but is not

necessary for the proof of a viscosity solution’s existence.

4.3.2. Jump size detection algorithm

We will use the prior super- and sub-solutions as envelopes to approximate an important

parameter in the following algorithm that uses the previous hypothesis test to classify Lévy processes

as having small or large jumps.

Given oil price close values in length-n work day periods, we do the following:

1. An inverse Gaussian density ν(dx) is fit to the distribution of negative percent daily jumps

for the entire (training) data set.

2. We then fit the density of the Lévy measure from 4.3.1, ν∗(dx) = (1 + ax)ν(dx), to the

distribution of the negative percent daily jumps for the n-length period. This gives a test

statistic a for the parameter in the hypothesis test.

3. We calculate the standard deviation σ of all daily percent changes for the n-length period.

4. Using the density ν∗ and standard deviation σ, we calculate γ, β, and C from 4.3.1 and 4.3.4.
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5. The left side of the interval is chosen to be −1, then using a, σ, β, γ, and C in the super-

and sub-solution equations in 4.3.4, we can solve for the right side of the interval using

f(0) = 1−α0 and g(0) = 1−α0, and take the average of the two. The parameter α0 is chosen

to be the maximum desired probability of a type I error.

6. Simulations of the log-likelihood process with drift γ, volatility β, and jumps represented by

an inverse Gaussian process with expected value −t
∫∞

0 xK(dx) at time t, are run. We record

the frequency of exits out of the right-side of the interval to get a number that represents,

relatively, the size of the jumps. We call this number the right-exit frequency.

7. Time periods whose right-exit frequencies are at or above a certain threshold p∗ are then

classified as having large jumps, while the others are classified as having small jumps.

To demonstrate the capacity of the hypothesis testing algorithm in distinguishing between

processes with small and large jumps, we run it on simulated data. Multiple classes of Lévy

processes are simulated, all of which start initially at 100:

1. a training data time series with drift 1, diffusion 0.5, and jumps that follow an inverse Gaussian

distribution with mean 1 and scale factor 1, which gives a Lévy measure ν,

2. a control data set of 100 processes with parameters identical to the training data,

3. a data set of 100 processes with obvious large negative jumps: the parameters are the same

as the training set except the Lévy measure is now represented by (1 + x)ν(dx), and

4. a data set of 100 processes with subtle large negative jumps: the drift is increased to 3 to

compensate for the previous increase in jump size.

The training time series is run for 500 time periods, and the other three are run for 30 each, with

representatives shown in Figure 4.3.

The hypothesis test algorithm with p∗ = 8 and α0 = 0.1 is run on each data set. (The

parameter p∗ is chosen here to give desirable results and will be used in the application in the next

section.) For the control, 79 out of the 100 processes are correctly identified as coming from the

distribution with small jumps. This is to be expected because some number of processes would

randomly have significantly larger jumps just by chance. All 100 from the obvious large jumps set
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Figure 4.3. The training data and a representative from each other data set.

are identified as having large jumps, and 85 out of the 100 processes in the subtle large jumps set

are correctly identified.

Alternatively, a näıve approach of simply classifying each 30 day period based on comparing

only the mean jump size relative to the training data’s mean jump size results in only 28 of the

100 control processes being correctly identified; although it correctly identifies all but 3 of the large

jump simulations. Because of the significant potential for type I error in this näıve approach, the

hypothesis test algorithm has evident advantages.

4.4. Prediction Method

We briefly discussed the data set in Section 4.2. In this section, we present an overview of

the data set in its entirety, and then develop two procedures used in the predictive classification

problem. As discussed in Section 4.2, we consider the West Texas Intermediate (WTI or NYMEX)

crude oil prices data set for the period June 1, 2009 to May 30, 2019. West Texas Intermediate crude

oil is described as light sweet oil traded and delivered at Cushing, Oklahoma. WTI usually refers

to the price of the New York Mercantile Exchange (NYMEX) WTI Crude Oil futures contract. For

WTI, spot and futures prices are used as a benchmark in oil pricing. The WTI crude oil futures

contract specifies the deliverable asset for the contract to be a blend of crude oil, as long as it is of

acceptable lightness and sweetness. The data set is available online in [14]. We index the available

dates from 0 (for June 1, 2009) to 2529 (for May 30, 2019).
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The following table summarizes various estimates for the data set.

Table 4.1. Properties of the empirical data set.

Daily Price Change Daily Price Change %

Mean -0.0047 0.01370 %

Median 0.04399 0.06521 %

Maximum 7.62 12.32 %

Minimum -8.90 -10.53 %

In Figure 4.4 the distribution plot for close oil price is provided. Histograms for daily change

in close oil price and daily change percentage in close oil price are provided in Figure 4.5 and Figure

4.6, respectively, for exploratory purposes.

Figure 4.4. Distribution plot for close oil price.

In the following subsections, two procedures are described for constructing the related

classification problem. The procedures differ in the features used for the analysis: percent daily

changes and right-exit frequencies. In each, the algorithm at the end of Section 4.3 is used to

determine whether an individual time period has large or small jumps, represented by the right-

exit frequency of that time period. The machine learning algorithms are then used to predict

whether the right-exit frequency of the next time period will be large or small. Consequently,

before truncation, the resulting probabilities of large jumps from each machine learning algorithm

can be used to update θ from the refined BN-S model in Section 4.2 each period.

4.4.1. Percent daily changes as features

We implement the following procedure to create a machine learning classification problem:

45



Figure 4.5. Histogram for daily change in close oil price.

Figure 4.6. Histogram for daily change percentage in close oil price.

1. We consider the percent daily changes for the historical oil price data and create a new data-

frame from the old where the columns will be n consecutive daily change percentages. For

example, if the changes are

a1, a2, a3, ...,

then the first row of the data set will be

a1, a2, ..., an,

and the second row will be

a2, a3, ..., an+1,
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and so forth.

2. We create a target column that is 0 if the right-exit frequency of the next disjoint n days is

less than some threshold p∗, and is 1 otherwise. For example, if the time period

a1+n, a2+n, ..., a2n−1

has a significant frequency of right-exits, then the time period

a1, a2, ..., an

is given a target value 1.

3. We run various classification algorithms where the input is a list of n consecutive close prices,

and the output is a 1 to represent large jumps or 0 to represent small jumps of the next n

consecutive close prices. Classification reports and confusion matrices are evaluated for each

algorithm.

4.4.2. Right-exit frequencies as features

We implement the following procedure to create a machine learning classification problem:

1. Similar to the previous, we consider close prices for the historical oil price data and create a

new data-frame exactly as before.

2. A new column is created that holds the right-exit frequencies for each consecutive set of n

days, say,

b1, b2, b3, ....

These represent how large the jumps in close prices are for the previous n days.

3. From this column, a new staggered data-frame is created, similar to before.

4. Finally, a target column is created: if the row is

b30, b31, ..., b30+n−1,
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then the entry in the target column will be b30+2n−1. This is the right-exit frequency of the

next disjoint n-day period.

5. We run various classification algorithms where the input is a list of n consecutive right-exit

frequencies, and the output is 1 to represent large jumps or 0 to represent small jumps of the

next n consecutive close prices. Classification reports and confusion matrices are evaluated

for each algorithm.

4.5. Numerical results

Now we apply the procedures described in the previous section to specific cases. For this

section, the period length n = 30. Further, α, the parameter representing an approximation for the

type I error of the test is chosen to be α = 0.9, and because it worked optimally in the simulation

study, the cut off for significant right-exit frequencies is chosen to be p∗ = 8. Two different time

periods are used for training, and two are used for testing. The time periods are

� T1: training data (index): October 21, 2009 (100) to May 17, 2013 (1000); and testing data

(index): April 21, 2017 (2000) to April 10, 2019 (2500);

� T2: training data (index): August 11, 2009 (50) to May 13, 2013 (1500); and testing data

(index): October 5, 2015 (1600) to January 29, 2019 (2450).

Because the data is significantly imbalanced in favor of small jump time periods, random

small jump periods from the training data are removed while performing algorithms 4.4.1 and 4.4.2.

This allows the neural nets and other algorithms to isolate the attributes of large and small jump

periods without becoming distracted by the imbalanced frequency of small jump periods. Without

doing so, the algorithms often predict all time periods to be small jump periods – simply because

those are more prevalent. The results of the machine learning algorithms using the time periods

above are recorded in the following tables (Tables 4.2-4.5). Those used are linear regression (LR),

decision trees (DT), random forests (RF), and three different types of neural nets, (A) a standard

net, (B) a long-short term memory net, and (C) a LSTM net with a batch normalizer.

Most of the machine learning algorithms perform better than how one might expect from

guessing uniformly whether the next time period would have big jumps. Some perform notably
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poorly, however, particularly the LSTM neural nets without a batch normalizer. However, the

neural nets with a batch normalizer consistently perform quite well.

Figure 4.7 provides a histogram showing the distribution of right-exit frequencies for period

lengths of 30 business days in the T2 testing data. For each set of 30 consecutive days, 10 simulations

are run, and the frequency of right-exits is recorded. The x-axis in the figure is the number of

simulated processes that exit to the right of the testing interval for a given period, while the y-axis

is the number of 30 day periods with that frequency of right-exits.

Once the value of θ is estimated, this can be implemented in the refined BN-S model (3.11)

(and (3.12), with θ = θ′). Equipped with θ, as described in [29] and as shown in Theorem 4.2.1, the

refined BN-S stochastic model can be used to incorporates long-range dependence without actually

changing the model. In addition, this shows a real-time application of data science for extracting a

deterministic component out of processes that are thus far considered to be completely stochastic.

By the deterministic component, it is meant that θ is a deterministic signal. This is deterministic in

the sense that its value is extracted from the data before the model is implemented. Once the value

of θ is obtained, it is kept constant for a certain period of time. For the computational effectiveness

of θ, the results in Tables 4.2-4.5 show better estimation compared to the benchmark study in [29].

Table 4.2. Various estimations for T1, using daily percent changes as features.

LR DT RF Neural Network (A) LSTM (B) BN (C)

precision θ = 0 0.92 0.89 0.89 0.88 0.83 0.93

recall θ = 0 0.61 0.56 0.64 0.54 0.77 0.88

f1-score θ = 0 0.74 0.69 0.74 0.67 0.80 0.90

support θ = 0 340 340 340 340 340 340

precision θ = 1 0.29 0.24 0.25 0.22 0.19 0.53

recall θ = 1 0.76 0.67 0.60 0.64 0.26 0.66

f1-score θ = 1 0.42 0.35 0.36 0.33 0.22 0.59

support θ = 1 70 70 70 70 70 70
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Table 4.3. Various estimations for T1, using right-exit frequencies as features.

LR DT RF Neural Network (A) LSTM (B) BN (C)

precision θ = 0 0.89 0.92 0.87 0.83 0.88 0.85

recall θ = 0 0.66 0.67 0.69 0.56 0.21 0.71

f1-score θ = 0 0.76 0.77 0.77 0.67 0.34 0.77

support θ = 0 340 340 340 340 340 340

precision θ = 1 0.24 0.30 0.25 0.17 0.18 0.21

recall θ = 1 0.61 0.70 0.50 0.43 0.86 0.39

f1-score θ = 1 0.37 0.42 0.33 0.24 0.30 0.27

support θ = 1 70 70 70 70 70 70

Table 4.4. Various estimations for T2, using daily percent changes as features.

LR DT RF Neural Network (A) LSTM (B) BN (C)

precision θ = 0 0.79 0.74 0.79 0.80 0.77 0.75

recall θ = 0 0.82 0.50 0.57 0.66 0.58 0.91

f1-score θ = 0 0.80 0.59 0.66 0.72 0.66 0.82

support θ = 0 519 519 519 519 519 519

precision θ = 1 0.57 0.37 0.42 0.47 0.41 0.65

recall θ = 1 0.53 0.63 0.68 0.63 0.63 0.37

f1-score θ = 1 0.55 0.46 0.52 0.54 0.50 0.47

support θ = 1 241 241 241 241 241 241

Table 4.5. Various estimations for T2, using right-exit frequencies as features.

LR DT RF Neural Network (A) LSTM (B) BN (C)

precision θ = 0 0.80 0.76 0.79 0.76 0.80 0.75

recall θ = 0 0.54 0.56 0.58 0.54 0.16 0.63

f1-score θ = 0 0.65 0.64 0.67 0.63 0.27 0.68

support θ = 0 519 519 519 519 519 519

precision θ = 1 0.42 0.39 0.42 0.39 0.34 0.40

recall θ = 1 0.70 0.62 0.66 0.64 0.91 0.54

f1-score θ = 1 0.52 0.48 0.52 0.49 0.49 0.46

support θ = 1 241 241 241 241 241 241
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Figure 4.7. Histogram for daily (previous 30 days) right-exit frequencies.
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5. CONCLUSION

Motivated by the fact that the refined BN-S model can be successfully implemented to the

analysis of crude oil price, and that the parameters of the refined BN-S model can be estimated

by using various machine/deep learning algorithms, in this dissertation we study the refined BN-S

model from the sequential hypothesis testing perspective, with an application to the oil market.

Mathematical modeling of oil price data is directly inspired by various stochastic models.

Thorough understanding and theoretical development of appropriate stochastic models contribute

to a better understanding of the risk-management problem of various commodities, and various ex-

isting algorithms in a financial market depend on the underlying statistical model. Consequently,

an improvement in the underlying model directly improves the existing algorithms. A sequential

decision making problem in connection to Lévy processes is studied to analyze the jump size distri-

bution. This is coupled with various machine and deep learning techniques to improve the existing

stochastic models. Consequently, the analysis presented in this dissertation provides a necessary

mathematical framework for an appropriate generalization of various stochastic models.

Future works related to this topic should definitely include seeking to find a more adequate

approximation for the right side of the decision rule intervals. This would greatly increase the sensi-

tivity of the algorithms in classifying large-jump time periods, thereby requiring less computational

power for even better results. Applications to other data sets more independent of exogenous forces,

and constructing decision rules for hypothesis tests on other parameters in the underlying processes

could open up this type of analysis to more generalized scenarios, as well, and studying applications

across multiple streams of data using methods similar to those in Chapter 3, should also be ex-

plored. For this dissertation, only the case ρ = 0 is considered. The situation becomes much more

involved when ρ 6= 0. This will be considered as a follow-up work of this dissertation. Further, it is

worth investigating whether some method exists to determine analytically exact bounds of the rect-

angle used in these decision rules based on super-solutions or sub-solutions. Even more generally,

additional hypothesis tests could be developed. One of such could be a test on the Lévy measures

while keeping a constant diffusion coefficient for each underlying Lévy process. Another could be

a test on the diffusion terms with no drift terms in either process. Last, it is worth exploring the
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one-dimensional test more, which could yield a solution useful for finding final boundary conditions

for the two-dimensional test, giving uniqueness of the likelihood function solution.
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[5] O. E. Barndorff-Nielsen and N. Shephard. Lévy Processes: Theory and Applications, chapter
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