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ABSTRACT 

 Chromatin interactions play increasingly important roles in three-dimensional genome 

organization and long-range gene regulation. Analyzing the three-dimensional structure of the 

plants is currently a growing field and we noticed that there is lack of computing resources on 

chromatin interactions for the plants. So, we are introducing a database of statistically significant 

chromatin interactions processed using Hi-C experimental approach. The users can search in the 

database using a set of genes or regions for a selected plant organism through a web browser and 

it lists down all the statistically significant chromatin interactions involved those genes or 

regions with the confidence scores, Gene Ontology information and pathway information. It 

serves as a computing resource for biologists and scientists who want to study plant genomes 

under the context of three-dimensional structure without any programming experience. 
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1. INTRODUCTION 

 DNA stores the genetic information of an organism and consists of two complementary 

strands which form a double-helix structure. Mainly DNA is made of a sugar phosphate 

backbone and four types of nucleotides: Adenine, Thymine, Cytosine and Guanine as the ATCG 

bases. Adenine pairs with Thymine and Cytosine pairs with Guanine inside DNA. 

 In the Eukaryotic cells, DNA is wrapped around the histone proteins, which are again re-

wrapped as a very tight coil structure called a chromatin. Chromatin is a very long strand that 

tightly fits inside the tiny space of a nucleus and it was discovered that the different parts of the 

chromatin that are in proximity interact with each other. These are called Locus-Locus 

interactions or chromatin interactions. Chromatin interactions are further broken down into the 

interactions that occur within the same chromosome (intra chromosomal interactions) and 

interaction that occur between different chromosomes (inter chromosomal interactions). 

 With the development of the technologies to analyze the three-dimensional structure of 

the genome and the increasing need to analyze the proximal regions led the number of chromatin 

interaction experiments to grow rapidly. Considering the genome wide analyzing techniques 

such as Hi-C or 4C, the raw data size is enormous, and the processing takes ample amount of 

computational power, memory and time. In addition, the people need to have programming skills 

and knowledge about the available tools in order to process raw data and get the result. So, the 

availability of computing resources for three-dimensional data is crucial for the people who do 

not have enough computational power or time. We analyzed the available computing resources 

on chromatin interactions for the plants, and we noticed that there is a lack of computing 

resources available online. Since analyzing plant genomes plays an important role in agriculture, 
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we figured that the availability of three-dimensional genome computing resources is essential for 

the plants and that is our main motivation to perform this study. 

 In this study, we first performed a thorough analysis of all the available chromatin 

conformation capture experiments for the plants. Then we selected three plants (Arabidopsis 

thaliana, rice, corn) that have majority of Hi-C experiments for the initial version of this 

application. As the results, we gathered publicly available 10 experiment publications for A. 

thaliana, 6 experiment publications for rice and 5 experiment publications for corn. Then we 

used separate tools to process the raw sequence data of Hi-C and extracted the significant 

interactions using a statistical measurement. In addition, we processed the gene distribution 

among the whole genome for each plant organism along with the gene ontology and pathway 

information. We built separate collections of Hi-C data with other necessary information related 

to the experiments and interactions. Finally, we developed a web interface for users to query 

statistically chromatin interactions.  

 The users have two main options to query the interactions which are either using a 

collection of genes or using a single or pair of regions for a selected organism. The results 

consist of multiple tabs. The web application first lists down all the interactions that are common 

to all the selected genes or regions and it will separately show interactions by individual gene or 

region as well. It will show additional information for each interaction such as gene ontology, 

pathway, significant level and normalized counts. Each experiment linked to its publication and 

raw experiment data as well.  
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2. BACKGROUND AND RELATED WORK 

2.1. The importance of studying chromatin interactions 

 The approximately two-meter-long DNA is packed in a tiny nucleus of about six 

micrometers in diameter. In order to fit into this micro space, chromatin regions that are far apart 

from each other in the genome, are inevitably packed in very close proximity inside the nucleus. 

Deciphering the packaging and organization of the DNA in this tiny space is important to 

understand the functions of the different loci of the genome and their roles in gene regulation. 

More importantly this organization plays a critical role in determining the cell functions such as 

which genes are turned on or off in the cell and at what times those genes are active or inactive. 

 A recent study introduced a new method called Micro-c, to provide a better imaging 

technology on how smaller regions of DNA are organized in the three-dimensional space [1]. 

The study demonstrated that the smaller loci of DNA can control gene activities and when the 

regions are close enough, they can affect the process of recruiting proteins, which affects how 

genes are turned on or off. Thus, analyzing the close regions will help us to discover how the 

genes are controlled in the three-dimensional space and may provide opportunities to develop 

treatments according to the understanding of the gene activity regulation in the healthy and 

diseased cells. 

 Phanstiel et al. compared genome-wide high-resolution looping maps using Hi-C [2]. 

They discovered that the genes at loops that are newly formed or newly activated have increased 

gene expression levels, which leads us to believe that the complex network of chromatin loops is 

involved in coordinating changes in transcription during cell development. To identify a 

chromatin loop, we need to identify the proximal starting and ending regions of the 

corresponding loops and those can be identified by studying chromatin interactions. 
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 Another team of researchers focused on the positions of the genes of the nucleus during 

different cell cycles [3]. In this study, the researchers analyzed thousands of different cells in 

different cell cycles. They discovered that the genes do not have a fixed location of the nucleus 

and the genes change positions in different stages of the cell cycle. This shows us the importance 

of analyzing the chromatin interactions in different cell cycles which illustrates how changes of 

the locations of the gene affect normal development and diseases. 

 Finn et al. combined Hi-C with an imaging method – high-throughput fluorescence in situ 

hybridization to physically map and visualize regions of DNA [4]. Their findings demonstrated 

that the organization and packaging of the DNA inside the nucleus varies among different cells 

and because of that the interaction counts between different regions are highly diversified across 

single cells. This is important because interactions between number of different single cells need 

to be analyzed in order to get an understanding of how the organization of genes affects in 

healthy and disease conditions in the cells. 

2.2. Arabidopsis Thaliana, Rice(Oryza sativa) and Corn(Zea mays) 

 Arabidopsis Thaliana is a widely used organism in biology as a model plant to identify 

genes and their functions and it is the first plant to have its genome sequenced. It is a small 

flowering plant and a member of the mustard (Brassicaceae) family. Arabidopsis Thaliana has a 

relatively small genome with around 135 mega base pairs, and only five chromosomes. The 

latest genome release of Arabidopsis Thaliana is called TAIR10 and it contains 27,416 protein 

coding genes, 4827 pseudogenes or transposable element genes and 1359 ncRNAs (33,602 genes 

in all, 41,671 gene models). Apart from having a short genome, Arabidopsis Thaliana has a very 

short generation time and a large number of offspring. These combined facts constitute 

advantages for genome analysis.  
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 Oryza sativa commonly known as rice, is widely used as a food for human. It also acts as 

a model organism for cereal biology and popular for being easy to genetically modify. It has a 

genome with around 373 mega base pairs and 12 chromosomes. The genome release of Oryza 

sativa is called IRGSP-1.0. The genome has 49,066 gene models and 39,045 total genes.  

 Zea mays commonly known as corn, is one of the most importance crops for human 

throughout the world. It is used as a food for humans as well as a source of biofuel. It has 

relatively large genome with around 2.1 giga bases and 10 chromosomes. We are using the 

genome version B73-AGPv4. The genome has 55801 total genes. 

2.3. Experimental methods for chromatin interactions 

2.3.1. Chromosome conformation capture (3C) 

3C is one of the pioneering methods to identify the locations of the chromosomal 

interactions. It has later become the foundation for many of the other techniques [6]. 3C is used 

to identify the interaction frequency counts between two specific regions of the genome (one-to-

one mapping). 3C process can be used to prove the existence of the chromatin loops between 

chromatin regions that are in proximity, and therefore show that they are involved in gene 

regulation. 3C method also provides high resolution visualization of the interactions. 

The steps of the 3C process involves crosslinking the regions that are spatially proximal 

in the nucleus with formaldehyde which helps to freeze the contacts, cutting DNA with the 

restriction enzyme to separate out the contacts, ligating DNA fragments, purifying and detecting 

the site with Polymerase chain reaction (PCR). PCR is a method to make huge amounts of copies 

of a DNA sample which helps to study a small amount of DNA fragments. 
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2.3.2. Circular chromosome conformation capture (4C) 

4C method is a derivative of 3C method and is used to identify the genomic sites in the 

whole genome interacting with a specific genomic site of interest (one-to-many mapping) [5]. 4C 

method can be used to provide high resolution contact maps around the genomic site of interest 

and involves a smaller number of reads compare to the other methods like Hi-C. The main 

difference between 3C and 4C method is cutting the fragment using two restriction enzymes 

instead of one, which helps to ligate the fragment in circular. In 4C, the genomic site of interest 

is called the viewpoint and the interacting sites are called captures. 

Similar to the 3C method, 4C method also has the steps of crosslinking the ligation sites 

and then cutting DNA into fragments using the first restriction enzyme which is called primary 

restriction enzyme. After the fragments are ligated in situ, the crosslinks are removed and 

purified. Then the resulting fragments are trimmed using a second restriction enzyme and ligate 

again to form circularized ligations. The circularized ligations are processed with inverse PCR 

method to break the ligations and bind the primers to the viewpoint. Finally, the captures are 

sequenced using the next generation sequencing method and the contact frequencies are 

calculated using the proportion of the population mapped to the specific genomic sites. 

2.3.3. Chromosome conformation capture with high throughput sequencing (Hi-C) 

Hi-C is also an extension of the 3C method and it has proven to be more successful than 

the other methods when finding genome-wide pairwise chromatin interactions. Unlike the 3C 

and 4C methods, Hi-C method is used to identify interaction frequencies between all possible 

genomic sites in the whole genome (many-to-many mapping) [7]. So, it is very useful when the 

purpose of the study is to analyze the chromatin interaction map across the whole genome. The 

drawback of this method is the low resolution of the contact maps because sequencing cost 
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increases tremendously to cover the whole genome. Therefore, frequencies are grouped together 

into fixed-size bins. 

 Hi-C process has the same initial steps as 3C with crosslinking and cutting them with the 

restriction enzyme. It extends the 3C process by filling and marking the four ends with biotins 

which help to identify the ligation sites. Then it includes the ligation and shearing the DNA from 

the crosslinks. The process ends with reading the chimeric reads using the high throughput 

paired-end sequencing. 

2.4. Computational methods 

2.4.1. HiC-Pro 

HiC-Pro [5] is one of the many tools that are capable of processing Hi-C data. Unlike the 

other available tools to process Hi-C data such as HOMER [6], HICUP [7], HiC-inspector [8], 

HiCdat [9] and HiC-box [10], HiC-Pro offers a full pipeline to process Hi-C data from raw reads 

to normalized contact maps including recovery of chimeric reads and correction of systematic 

biases. The hiclib [11] package is also capable of offering full pipeline as HiC-Pro but not being 

a standalone tool rather a python package and its limitations of parallelization and normalization 

of high-resolution data made HiC-Pro a better solution over hiclib for our study. Besides hiclib is 

not an actively maintained library. 

HiC-Pro’s workflow consists of four steps (Figure 1); read alignment, detection and 

filtering of valid interactions, binning and normalization. HiC-Pro first uses bowtie2 to map read 

pairs and then it rescues chimeric reads using an exact matching procedure. It detects valid 

interactions by choosing pairs near restriction sites and discard invalid ligation products such as 

dangling end, self-circle ligation and duplicate fragments. Then user can specify a resolution size 

in order to generate contact map divided into bins of equal sizes. Finally, the normalization is 
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done considering different biases such as GC content, mappability and effective fragment length 

[12] [13]. It is mentioned that HiC-Pro proposes a fast sparse-based implementation of the 

iterative correction method [14] in order to perform the normalization in a short time with 

reasonable memory requirements. In addition, HiC-Pro carryout a variety of quality controls in 

each step considering the metrics such as alignment statistics, fragment size distribution, fraction 

of intra and inter chromosomal interactions and long-range versus short range intra chromosomal 

interactions. The output of HiC-Pro workflow consists of non-null contact frequencies from half 

of the contact matrix. HiC-Pro is implemented in Python and C++ programming languages and 

freely available under BSD license. 

 
Figure 1. HiC-Pro Workflow; read alignment, detection and filtering, binning and contact map 

normalization. [5] 

2.4.2. Fit-Hi-C and FitHiC2 

Fit-Hi-C [15] is a computational tool which describes the statistical significance of mid-

range chromosomal contacts and it is proven to be more successful than the previous 

methodologies such as the statistical model used by Duan et al. [16] in which every interaction is 

assumed to be equally likely. Fit-Hi-C only focuses on intra-chromosomal interactions.  
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First it fits an initial spline from the Hi-C contact maps using observed contact counts and 

genomic distances. Shape of the initial spline is the basis for the initial null model and using that, 

a threshold is determined to identify outliers. After filtering the outliers, a second spline is 

calculated to estimate the prior contact probabilities. Then it calculates P-values for all contacts, 

including null and outlier pairs using a binomial distribution and finally a Q-value is computed 

for each P-value by applying multiple hypothesis testing correction (Figure 2). 

 
Figure 2. [15] Fit-Hi-C workflow. Compute the first spline from the Hi-C contact map. Compute 

p-value from the refined model and generate q-values using multiple testing correction. 

 

 One of the drawbacks of Fit-Hi-C is that it is only calculating statistical significance of 

intra-chromosomal interactions. So, they introduced FitHiC2 [17], the latest release of Fit-Hi-C, 

which is capable of describing the statistical significance of both inter and intra chromosomal 

interactions. In addition, FitHiC2 is capable of processing the Hi-C data on higher resolution 

such as 1 and 5kb. Due to these reasons, in our study, we used FitHiC2 to compute the statistical 

confidence estimates of both intra and inter chromosomal interactions. 

2.5. Existing computing resources on chromatin interactions 

2.5.1. 4DGenome 

4DGenome [18] is the work most closely related to our study. 4DGenome is a 

comprehensive database of chromatin interactions and they claim that it is the first database that 

comprehensively documents and curates chromatin interactions generated by both experimental 
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and computational approaches. 4DGenome covers the experiment data processed via the 

methods including 3C, 4C, 5C, ChIA-PET, Hi-C, Capture-C, and IM-PET only in selected five 

organisms; Plasmodium falciparum (3D7), Drosophila melanogaster (dm3), Homo sapiens 

(hg19), Mus musculus (mm9) and Saccharomyces cerevisiae (sacCer3). It does not include any 

experimental data related to plants which is our main focus on this study. 

4DGenome provides two main methods for users to query the data such as using multiple 

regions or using multiple genes. In the output, it provides confidence scores along with the 

contact frequencies, gene and tissue data. But in our study, we provide gene ontologies and 

pathway information along with the confidence scores and these details are explained in the latter 

sections. Also, in 4DGenome, it is showing all the interactions regardless of the significance 

level of the data. But in our study, we are filtering out only the statistically significant 

interactions based on the confidence scores.  

2.5.2. LOGIQA 

 To the best of our knowledge, LOGIQA [19] is the only online database that references 

three-dimensional genome experiment data related to some plants. The database is designed to 

only show the quality score of the experiments. Experiments can be searched basically using 

organism, protocol, sample and restriction enzyme and the browser will list down the 

experiments related to the query with their relative quality score. Also, it provides the references 

to the experiment data and the publication. But LOGIQA is not capable of representing any 

individual interactions and cannot be searched by any genes or region information.  
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3. METHODOLOGY 

3.1. Data collection 

Table 1. Hi-C experiments of Arabidopsis Thaliana 

Publication Experiment Data 
Number of 

experiments/replicates 

Genome-wide Hi-C analyses in wild-type and 

mutants reveal high-resolution chromatin 

interactions in Arabidopsis. [20] 

https://trace.ncbi.nlm.nih.go

v/Traces/sra/?study=SRP043

612 

10 

Genome-wide analysis of chromatin packing 

in Arabidopsis thaliana at single-gene 

resolution [21] 

https://www.ncbi.nlm.nih.go

v/sra/?term=SRP064711 
2 

The effects of Arabidopsis genome 

duplication on the chromatin organization and 

transcriptional regulation [22] 

https://www.ncbi.nlm.nih.go

v/geo/query/acc.cgi?acc=GS

E114950 

4 

Hi-C Analysis in Arabidopsis Identifies the 

KNOT, a Structure with Similarities to the 

flamenco Locus of Drosophila [23] 

https://www.ncbi.nlm.nih.go

v/geo/query/acc.cgi?acc=GS

E55960 

3 

Genome-wide analysis of local chromatin 

packing in Arabidopsis thaliana. [24] 

https://www.ncbi.nlm.nih.go

v/sra/?term=SRP032990 
6 

Altered chromatin compaction and histone 

methylation drive non-additive gene 

expression in an interspecific Arabidopsis 

hybrid [25] 

https://www.ncbi.nlm.nih.go

v/sra/?term=SRP095993 
4 

De Novo Plant Genome Assembly Based on 

Chromatin Interactions: A Case Study 

of Arabidopsis thaliana [26] 

http://ibi.hzau.edu.cn/3dmod

el/download/mp2014_raw_d

ata.tar.gz 

2 

MORC Family ATPases Required for 

Heterochromatin Condensation and Gene 

Silencing [27] 

https://www.ncbi.nlm.nih.go

v/sra?term=SRP012587 
2 

Heat stress-induced transposon activation 

correlates with 3D chromatin organization 

rearrangement in Arabidopsis [28] 

https://www.ncbi.nlm.nih.go

v/sra?linkname=bioproject_s

ra_all&from_uid=545383 

4 

Long-range control of gene expression via 

RNA-directed DNA methylation [29] 

https://www.ncbi.nlm.nih.go

v/geo/query/acc.cgi?acc=GS

E64389 

9 

 

We gathered existing publicly available Hi-C experiments for each plant to perform this 

study. Table 1,Table 2 and Table 3 list the experiments for each plant with the link to 

corresponding experiment data and the number of experiments or replicates in each study. We 

used TAIR10 reference genome for A. Thaliana, IRGSP-1.0 reference genome for Oryza sativa 
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and B73-AGPv4 reference genome for Zea mays to process the data. In addition, we collected 

gene information, gene ontology information and pathway information as metadata to represent 

with the experiment data for each plant. 

Table 2. Hi-C experiments of Oryza sativa 

Publication Experiment Data 
Number of 

experiments/replicates  

3D Chromatin Architecture of Large Plant 

Genomes Determined by Local A/B 

Compartments [30] 

https://www.ncbi.nlm.nih.go

v/bioproject/PRJNA391551/ 
4 

Prominent topologically associated domains 

differentiate global chromatin packing in rice 

from Arabidopsis [31] 

https://www.ncbi.nlm.nih.go

v/sra/?term=SRP093806 
4 

Genome-wide Hi-C analysis reveals extensive 

hierarchical chromatin interactions in rice [32] 

https://www.ncbi.nlm.nih.go

v/sra/?term=SRP129302 
5 

Tissue-specific Hi-C analyses of rice, foxtail 

millet and maize suggest non-canonical 

function of plant chromatin domains [33] 

https://www.ncbi.nlm.nih.go

v/sra/?term=PRJNA486213 
5 

Assembly of allele-aware, chromosomal-scale 

autopolyploid genomes based on Hi-C data 

[34] 

https://bigd.big.ac.cn/gsa/bro

wse/CRA001597 
2 

Population Genomic Analysis and De Novo 

Assembly Reveal the Origin of Weedy Rice 

as an Evolutionary Game [35] 

https://www.ncbi.nlm.nih.go

v/sra/SRS3098796 
1 

 

Table 3. Hi-C experiments of Zea mays 

Publication Experiment Data 
Number of 

experiments/replicates  

3D Chromatin Architecture of Large Plant 

Genomes Determined by Local A/B 

Compartments [30] 

https://www.ncbi.nlm.nih.go

v/bioproject/PRJNA391551/ 
27 

Tissue-specific Hi-C analyses of rice, foxtail 

millet and maize suggest non-canonical 

function of plant chromatin domains [33] 

https://www.ncbi.nlm.nih.go

v/sra/?term=PRJNA486213 
12 

Widespread long-range cis-regulatory 

elements in the maize genome [36] 

https://www.ncbi.nlm.nih.go

v/geo/query/acc.cgi?acc=GS

E120304 

2 

3D genome architecture coordinates trans and 

cis regulation of differentially expressed ear 

and tassel genes in maize [37] 

https://www.ncbi.nlm.nih.go

v/bioproject/PRJNA599454/ 
12 
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3.2. Data processing 

3.2.1. HiC 

First, Hi-C data was downloaded using fastq-dump tool [38]. Each publication has 

multiple experiments and those has to be downloaded and processed separately. Each experiment 

data has two fastq files to represent the two ends of each read. Then we processed the experiment 

data separately by each publication using HiC-Pro tool [5]. We generated multiple BED files 

with the list of restriction fragments digested using restriction enzymes dpnII, hindIII, MboI, 

MseI since those are the only restriction enzymes used in all of the experiments. Then we used 

these BED files, 20,000 bin resolution as parameters to run HiC-Pro tool.  

 We analyzed the contact maps generated using HiC-Pro and applied fithic2 [17] 

evaluation on top of that for both inter and intra chromosomal interactions. We used ICED 

normalized contact maps as inputs for fithic2. Finally, we filtered the records having 

qvalue<0.05 to filter out statistically significant interactions. We processed total records of 

246,758,782 experiment data for A. thaliana, total records of 561,115,995 experiment data for 

Oryza sativa and total records of 367,241,504 for Zea mays. 

3.2.2. Gene information 

A. Thaliana TAIR 10 genome contains 27,416 protein coding genes, 4827 pseudogenes 

or transposable element genes and 1359 ncRNAs (33,602 genes in all, 41,671 gene models). 

Oryza sativa IRGSP-1.0 genome contains 49,066 gene models and 39,045 total genes. Zea mays 

B73-AGPv4 genome contains 55801 total number of genes. We do not consider the gene 

separation as gene models for all the plants and divide the genes into equal size bins same as 

experiment data. It helps to map the experiment data with the corresponding genes. 
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3.2.3. Gene ontology 

Gene ontology (GO) is a way to capture biological knowledge in a written and 

computable format [39]. So, it is arranged as a hierarchical relationship between a set of 

concepts. It defines the relationship from less specific concepts to more specific concepts and 

captures information such as biological processes, molecular functions and cellular components. 

Gene ontology helps to identify the functional information of a gene, validate the experimental 

techniques, explore functional information for novel genes and etc. 

In this study, gene ontology results are processed separately. Each gene associated with 

multiple gene ontologies. Each bin is associated with multiple genes. So, when we consider an 

interactive bin pair, there can be many gene ontologies associated with the interaction. To filter 

out the statistically significant gene ontologies we use hypergeometric test on each gene 

ontology of a bin pair.  

We calculated Hypergeometric cumulative distribution function for each gene ontology 

in each bin pair as in equation 1. We declared the total number of genes in the bin pair mapped 

with the corresponding gene ontology subtracted by 1 as the value of x. M is the total number of 

genes in the whole genome, which is a constant for the corresponding plant. K is the total 

number of genes mapped with the corresponding gene ontology. N is the total number of genes 

included in the corresponding bin pair. All the values are counted without duplication. After 

getting the results we subtract that by 1 to get the pvalues (Equation 1) and gene ontologies 

whose pvalues are less than or equal 0.05 are selected for the corresponding bin pair. 
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𝑁−𝑖
)

(𝑀
𝑁

)

𝑥

𝑖=0

 (1) 

 

𝑝𝑣𝑎𝑙𝑢𝑒 = 1 − 𝑝 (2) 

3.2.4. Pathway 

A Biological pathway is series of actions occurring between molecules in a cell that 

results in a product or change in a cell such as assembly of a new molecules, turning genes on 

and off, moving a cell and etc. Studying pathways lead to learn more about diseases such as 

cancers by identifying which genes and other molecules involved in the corresponding biological 

pathway [40].   

Pathways are processed in the same way as gene ontologies. We used the same statistical 

threshold as in gene ontologies to filter out significant pathways for a bin pair. So, the same 

equation 1 is used for the calculation. Only x and K variables are changed as x is now the total 

number of genes in the bin pair mapped with the corresponding pathway subtracted by 1 and K is 

the total number of genes mapped with the corresponding pathway. Other variable definitions 

stay same. In here, we used 0.05 threshold to filter out statistically significant pathways per bin 

pair using pvalue as well. 
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3.3. Database architecture 

 

Figure 3. Database Schema Diagram generated using MySQL WorkBench v8.0 [41]  
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 We used the MySQL version of 8.0.22 as the database management system. Figure 3 

shows the full schema diagram of the database which is generated using MySQL WorkBench 

v8.0 [41]. The database only stores the statistically significant interactions filtered using qvalue. 

Gene ontology and pathway information are stored for each bin pair and the application 

aggregates the results at the time of querying from the database with the experiment data. 

3.4. Web application architecture and data querying 

 We used the LAMP(Linux,Apache,MySQL, PHP) architecture to build our web 

application. We used the Ubuntu 20.04.1 LTS as the operating system, Apache v2.4.41 as the 

server, PHP v7.4.3 and MySQL v8.0.22. 

 To query the experiment data, we provide two methods for querying such as using a set 

of genes or using a pair of ranges for the corresponding selected plant organism. We have 

implemented the functionality of query using a set of genes in a way that it shows the 

interactions involving all the genes in the set and at least one bin of the interaction pair should 

include one gene from the set. So, we will not show the experiment data if all the genes in the set 

belongs to only one bin. Figure 4 explains possible valid pairs in more detail. The theory behind 

this is that we are interested in representing the significant interactions between genes in the 

genome. Most common use case of this is to find the interactions between two genes and in that 

case gene set only includes two genes. In that case, the results should include the interaction 

pairs in which each bin contains one of the two genes. In addition, we show interactions 

categorized by individual genes as well. 

 Functionality of querying using regions is same as the functionality of querying using 

genes as well. In this method, we only allow users to enter up to two regions and the interactions 

are filtered as both of the regions are included in the interactive pair. We consider overlapping of 
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the regions with the bins as well. Also, we show interactions by individual region as well. Web 

application can be acceded via the web site http://3dgenome.cs.ndsu.edu/. 
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Figure 4. Bin pair analysis for a given set of genes (gene1,gene2,... gene(i),gene(j).....gene(n)). (a) 

one or more genes of the gene set included in bin1 and rest of the genes included in bin2, 

overlapping of genes possible. So bin1,bin2 is a valid pair. (b) all of the genes in the gene set 

included in bin1 so none of the genes are in bin2. So bin1,bin2 is not a valid pair. (c) bin1 has 

some of the genes of the gene set and bin2 has some of the genes of the gene set. But there are 

some genes outside of bin1 and bin2. So bin1,bin2 is not a valid pair. 
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4. RESULTS AND DISCUSSION 

Table 4, Table 5 and Table 6 list all the publications we have used for this study with 

their total records and filtered significant interactions. According to the number of filtered 

records 0.56% for A. thaliana, 0.10% for Oryza sativa and 0.20% for Zea mays of total records 

has been identified as significant interactions. 

Table 4. Total number of records processed per publication and total number of records 

identified as significant interactions for each publication for A. Thaliana 

Publication Total Records 
Significant 

Interactions Count 

Genome-wide Hi-C analyses in wild-type 

and mutants reveal high-resolution 

chromatin interactions in Arabidopsis. [20] 

97,263,781 1,083,238 

Genome-wide analysis of chromatin 

packing in Arabidopsis thaliana at single-

gene resolution [21] 

11,917,993 55,362 

The effects of Arabidopsis genome 

duplication on the chromatin organization 

and transcriptional regulation [22] 

22,982,597 27,428 

Hi-C Analysis in Arabidopsis Identifies the 

KNOT, a Structure with Similarities to the 

flamenco Locus of Drosophila [23] 

18,726,981 46,379 

Genome-wide analysis of local chromatin 

packing in Arabidopsis thaliana. [24] 
17,630,390 104,347 

Altered chromatin compaction and histone 

methylation drive non-additive gene 

expression in an interspecific Arabidopsis 

hybrid [25] 

9,718,100 16,034 

De Novo Plant Genome Assembly Based on 

Chromatin Interactions: A Case Study 

of Arabidopsis thaliana [26] 

6,355,952 9,918 

MORC Family ATPases Required for 

Heterochromatin Condensation and Gene 

Silencing [27] 

8,742,893 25,927 

Heat stress-induced transposon activation 

correlates with 3D chromatin organization 

rearrangement in Arabidopsis [28] 

11,948,592 14,108 

Long-range control of gene expression via 

RNA-directed DNA methylation [29] 
41,471,503 8,850 

Sum 246,758,782 1,391,591 
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Table 5. Total number of records processed per publication and total number of records 

identified as significant interactions for each publication for Oryza sativa 

Publication Total Records 
Significant 

Interactions Count 

3D Chromatin Architecture of Large Plant 

Genomes Determined by Local A/B 

Compartments [30] 

63,880,802 24,910 

Prominent topologically associated domains 

differentiate global chromatin packing in 

rice from Arabidopsis [31] 

173,406,840 169,239 

Genome-wide Hi-C analysis reveals 

extensive hierarchical chromatin 

interactions in rice [32] 

202,035,105 303,956 

Tissue-specific Hi-C analyses of rice, 

foxtail millet and maize suggest non-

canonical function of plant chromatin 

domains [33] 

91,882,258 64,363 

Assembly of allele-aware, chromosomal-

scale autopolyploid genomes based on Hi-C 

data [34] 

11,953,341 5,937 

Population Genomic Analysis and De Novo 

Assembly Reveal the Origin of Weedy Rice 

as an Evolutionary Game [35] 

17,957,649 8,634 

Sum 561,115,995 577,039 

 

Table 6. Total number of records processed per publication and total number of records 

identified as significant interactions for each publication for Zea mays 

Publication Total Records 
Significant 

Interactions Count 

3D Chromatin Architecture of Large Plant 

Genomes Determined by Local A/B 

Compartments [30] 

207,256,614 9,380 

Tissue-specific Hi-C analyses of rice, 

foxtail millet and maize suggest non-

canonical function of plant chromatin 

domains [33] 

250,411,872 64,317 

Widespread long-range cis-regulatory 

elements in the maize genome [36] 
46,856,292 12,408 

3D genome architecture coordinates trans 

and cis regulation of differentially 

expressed ear and tassel genes in maize [37] 

74,304,499 35,136 

Sum 578,829,277 121,241 

 

 From these results we can observe that the percentage of significant interaction count 

decreases for larger genomes. The reason for this could be that it needs significantly larger 
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amount of reads in order to cover a large genome. Also using Figure 5, we can see that even 

though A. thaliana has very less total interaction count compared to the other two plants, A. 

thaliana has the most number of significant interactions after we filter the interactions using 

confidence score. 

 

 

Figure 5. Distribution of total interaction counts among the three plants vs distribution of 

significant interaction counts 

 

4.1. Understanding the results 

 First user has to select the plant organism to query the results in the home webpage. 

There are two methods to query the results; search using genes and search using regions. 

Considering the search using genes method, the user has to select the search using genes as the 

method and enter the comma separated gene list in the next text field(Ex: 

AT4G03290,AT4G05410) as shows in Figure 6. In the result webpage(Figure 7), it first shows 

all the interactions occurring between the given gene sets in a tab named common interactions. 

And then there are multiple tabs separated for each gene in the gene list. These tabs show all the 

interactions involving the corresponding gene. The result data are grouped by experiment name 

and under that experiment it shows the link to the raw experiment data and the corresponding 

publication article. Interaction data is organized in a table in a way that one row represent one 

Distrubtion of total interaction counts

A. Thaliana Oryza sativa Zea mays

Distribution of statistically significant interaction counts

A. Thaliana Oryza sativa Zea mays
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interacting pair of the genome. In the table, it shows the two loci that are interacting, normalized 

contact count, pvalue and qvalue of the corresponding interaction. As the metadata, for each 

interaction it shows the relevant gene ontology ids and pathway ids and their corresponding 

pvalues separated by commas. 

 

Figure 6. Example of search using genes; AT4G03290,AT4G05410 for plant A. thaliana 

 

 

Figure 7. Result page for the query of search using genes; AT4G03290,AT4G05410 for A. 

thaliana 
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Functionality of search using regions works same as search using genes. In the text field 

the user has to enter the comma separated regions using the format chromosome number:start 

position of the region:end position of the region (Ex: 

6:12820000:12920000,10:3480000:3580000) as shown in Figure 8 for organism Zea mays. User 

can enter up to two regions only. Result page is similar to the search using genes result page and 

it shows common interactions and the individual results separated by tabs(Figure 9). 

 

Figure 8. Example of search using regions for Zea mays; Using two regions; 1) chromosome 6, 

start index 12820000, end index 12920000, 2) chromosome 10, start index 3480000, end index 

3580000 
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Figure 9. Experiment results for the query search using regions; 

6:12820000:12920000,10:3480000:3580000 

4.2. Exporting the records 

 For the moment, the users can export individual experiment results as a comma separated 

file. In the future, we are considering of implementing an FTP server so that the users can 

download the unfiltered records as well. 

4.3. Example use case 

 Sample use cases include all the reasons to analyze the chromatin interactions as 

mentioned above. Assume that a user wants to understand if there is a relationship between two 

genes and wants to analyze whether one gene can affect the other genes behavior(gene 

regulation). As the initial step, the user can search if there are significant interactions between 

the two genes. We can use the gene AT4G03290 and gene AT4G05410 in A. thaliana organism 

as an example. From the results we can observe that multiple experiments have shown that the 

region 1440000 – 1460000 of chromosome 4 is highly interacting with region 2740000 – 

2760000 of chromosome 4(Figure 9). This observation shows an interesting fact that even 

though the two regions are more than 1 million base pairs separated in the genome, the two 
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regions are actually in proximity inside the nucleus and are significantly interacting with each 

other. In addition, since the same interaction is detected by multiple experiments, it increases the 

confidence in the corresponding interaction. Then as the next step user can analyze the gene 

ontology and their annotation trees and pathway information to identify the behaviors and 

functionalities of the two interacting regions.  
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5. FUTURE WORK 

 We want to expand this study in order to cover more plant organisms such as Foxtail 

millet, Tomato and etc and make this database as the standard 3D genome browser for plants. 

Currently, users can not download unfiltered experiment data through the website. So, an FTP 

server connecting to this web application is useful to transfer the files to the end users who want 

to analyze unfiltered data. As an additional information, we are planning to add Single 

Nucleotide Polymorphisms (SNPs) information associated with the interactions. Connecting to 

the other genome browsers such as UCSC genome browser is also essential for the users to 

further analyze the interacting regions, their functionalities and genes. Currently, we have 

included almost every Hi-C experiment results available to this date for the corresponding plants 

in our data collection and we will continue to update the database in the future as well. In order 

to continuously update the database, automated system or semi-automated system will be 

essential and we will look for the ways to implement an automated system to update the data. 
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