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ABSTRACT

We investigate various properties of two classes of operator algebras: directed graph operator

algebras and semicrossed products. First we consider analytic structure in the form of derivations

and point derivations on these algebras. Our two main results describe the structure of derivations

on graph operator algebras and point derivations on semicrossed product operator algebras. We

then investigate multivariate semicrossed products and the maps on the associated, underlying

compact Hausdorff space. We consider potential generalizations of classical 1-dimensional variants

and look for which of our multivariate analogs have nice structure with a proposed invariant for

multivariate dynamical systems. We close by developing a component-wise look at the maximal

C∗-algebra of the n×n matrices, the simplest of the direct graph operator algebras. This is the first

concrete example of a maximal C∗-algebra since the one example that accompanied the definition

in the original paper about maximal C∗-envelopes.
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1. INTRODUCTION AND PRELIMINARIES

In the study of operator algebras there are three main types of algebras: nonselfadjoint

algebras, C∗-algebras, and von Neumann algebras. The latter two have an extensive literature,

but nonselfadoint operator algebras are not as fully developed. One of the key factors in this lack

of development is the dearth of classical examples to investigate. C∗-algebras and von Neumann

algebras are connected to classically defined objects: continuous functions on compact Hausdorff

spaces, and essentially bounded measurable functions on a finite measure space, respectively. The

classical analogs of nonselfadjoint algebras do not necessarily lead directly to natural operator

algebra analogues.

There have been two approaches, then, to nonselfadjoint operator algebras. On the one

hand, looking at specific concrete examples and identifying commonalities between them drives

much of the work. An alternative approach has been to, for a nonselfadjoint operator algebra,

consider the C∗-algebra it generates and try to intuit properties on the nonselfadjoint operator

algebra from the associated C∗-algebra. Both of these approaches present their own difficulties.

In this work we focus on two classes of nonselfadjoint operator algebras: semicrossed prod-

ucts and graph operator algebras. These two classes contain many of the examples studied in

the literature and, in addition, have some overlap. In addition, there is enough structure in these

examples to provide interesting avenues of study. After going through preliminary definitions, this

work breaks out into three areas of focus which we outline now.

A classical nonselfadjoint operator algebra is the disk algebra. One property that the disk

algebra has that is not true of classical C∗-algebras is an analytic structure. In fact, the derivative

at a point in the interior of the disk is something that exists for the disk algebra but is not present

for continuous functions on the unit disk. Hence, we use an abstraction of the derivative at a point,

to consider analytic structure for semicrossed products. This extends work of [15], investigating

analytic structure for one particular type of semicrossed product and work of [15] investigating point

derivations of directed graph operator algebras. Here we investigate derivations on directed graph
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operator algebras, and then look at point derivations for certain representations of semicrossed

products. We also spend time looking at the overlap, considering what types of graph operator

algebras give rise to semicrossed products.

The next part of this disquisition focuses on a generalization of semicrossed products from

[9]. The classical semicrossed product, defined in [20], begins with a single map acting on a

compact Hausdorff space. Unlike the C∗-algebra context which typically requires that the map be

a homeomorphism semicrossed products can be defined for more general continuous functions, see

[9] for a survey of these algebras. The classical semicrossed product is generated by the continuous

functions on the given compact Hausdorff space together with an isometry that implements the

action of the continuous function. In the generalized context, Davidson and Katsoulis considered

the algebra generated by more than one map. As their work was focused on the associated algebra,

they did not spend much time investigating the dynamical-system type properties of multiple maps

acting on a compact Hausdorff space.

We begin the process of filling this gap by considering three important properties in the

classical case: periodicity, transitivity, and topological transitivity. It is not clear how to directly

translate these properties into the multivariate setting so we consider, for each, multiple variants

of the definitions. We consider the relationships between our different definitions and illustrate

with examples the limits of our definitions. In the one variable case, two dynamical systems that

are conjugate have the same properties. One of the advantages of the nonselfadjoint algebra is

that topological conjugacy is an isomorphism invariant between the associated algebras. In [23],

the author proposes that partition conjugacy is the right invariant for a multivariate dynamical

system. Their intuition is driven by the desire to make an invariant that, mimicking the single

variable case, is an isomorphism invariant. Here, taking partition conjugacy as the right invariant,

we consider our notions of periodicity, transitivity, and topological transitivity with respect to this

invariant.

In the last section, we return to the roots of nonselfadjoint operator algebras: trying to

understand how a nonselfadjoint operator algebra sits inside a C∗-algebra. Given a single algebra,

there are, in fact, many ways to embed the algebra into a C∗-algebra. Much of the classical

approach has been to look for the smallest C∗-algebra that contains the nonselfadjoint operator

algebra. While this smallest C∗-algebra has the benefit that it is often computable, it lacks any real
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connection with the underlying algebra. In [3], the author proposed an alternate enveloping C∗-

algebra which encoded all of the representation of the underlying nonselfadjoint operator algebra.

He called this the maximal C∗-algebra of an operator algebra, and in that paper he described the

maximal C∗-algebra for the simplest nonselfadjoint operator algebra, the upper triangular 2 × 2

matrices.

While the maximal C∗-algebra has begun to be used in studying operator algebras [5],

finding concrete representations of the maximal C∗-algebra for an operator algebra has not extended

beyond the initial example. Recently, in as yet unpublished work [15] developed a framework for

extending the Blecher example to upper triangular n × n matrices as well as one specific type

of semicrossed products. Here we go through some of the calculations underlying that approach,

elucidating this heretofore mysterious construction.

1.1. Introduction to Operator Algebras

In this section we provide some background definitions to put the results of this disquisition

into context. We will be studying a particular type of operator algebra, called a semicrossed

product. We start with some background material to provide context, and then we will develop

some algebraic and analytic properties for semicrossed products.

Definition 1. A vector space X over a field F is a space with two operations, addition + : X×X →

X and multiplication · : F×X → X, that satisfy the following:

1. x+ y = y + x for all x, y ∈ X

2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ X

3. there exists 0 ∈ X such that x+ 0 = x for all x ∈ X

4. for every x ∈ X, there exists −x ∈ X such that x+ (−x) = 0

5. there exists 1 ∈ F such that 1 · x = x for all x ∈ X

6. a · (x+ y) = a · x+ a · y for all a ∈ F and x, y ∈ X

7. (a+ b) · x = a · x+ b · x for all a, b ∈ F and x ∈ X

8. a · (b · x) = (ab) · x for every a, b ∈ F and x ∈ X.
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Definition 2. A vector space X becomes a normed vector space when it is equipped with a function

∥ · ∥ : X → [0,∞), called a norm, that satisfies the following:

1. ∥x∥ = 0 if and only if x = 0

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X

3. ∥ax∥ = |a|∥x∥ for all a ∈ F and x ∈ X.

Definition 3. A Banach space is a normed vector space that is complete with respect to the norm.

Definition 4. A Banach algebra A is a Banach space equipped with multiplication from A × A

into A satisfying

1. a(bc) = (ab)c for all a, b, c ∈ A

2. (a+ b)c = ac+ bc for all a, b, c ∈ A

3. a(b+ c) = ab+ ac for all a, b, c ∈ A

4. λ(ab) = (λa)b = a(λb) for all a, b ∈ A and λ ∈ F

such that the norm satisfies ∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A.

Example 1. Let X be a compact Hausdorff space. The set C(X) of all continuous, complex-valued

functions on X is a Banach algebra. The algebra multiplication is defined pointwise, and the norm

is the supremum norm ∥f∥∞ = supx∈X {|f(x)|}.

Example 2. Let B(H) denote the set of all bounded linear operators on a Hilbert space H. Define

addition pointwise and multiplication as composition (fg = g ◦ f for all f, g ∈ B(H)). Equipping

B(H) with norm ∥f∥ = sup∥h∥=1 {∥f(h)∥} makes B(H) a Banach algebra.

When H = Cn, B(H) is the set of n × n matrices with complex entries which we denote

Mn(C).

For more on these Example 1 and Example 2, we refer to Section 5.1 of [18].

Definition 5. A concrete operator algebra is a closed subalgebra B(H) of some Hilbert space H.

We refer to Chapter 2 of [3] for an overview of operator algebras.
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Example 3. The subset of Mn(C) of upper triangular matrices, denoted Tn(C), is an operator

algebra acting on Cn.

There is an abstract characterization of an operator algebra. We start by considering a

Banach algebra A. Given such an algebra there is a natural norm on the algebra of n× n matrices

with entries from A. See [19] for more detail.

Definition 6. An operator algebra A is a Banach algebra A together with matricial norms ∥ · ∥n

on Mn(A) such that

max{∥X∥n, ∥Y ∥m} ≤

∥∥∥∥∥∥∥
X 0

0 Y


∥∥∥∥∥∥∥
m,n

for all X ∈ Mn(A) and Y ∈ Mm(A) and so that ∥X · Y ∥m ≤ ∥X∥m∥Y ∥m for all X,Y ∈ Mm(A).

When talking about operator algebras, one considers natural maps between operator alge-

bras. If A,B are operator algebras, given any homomorphism π : A → B, there is, for any n an

induced homomorphism πn : Mn(A) → Mn(B).

Definition 7. Given operator algebras A and B, we say that π : A → B is a representation if π is

a homomorphism. We say it is faithful if the map is one-to-one. If πn is an isometry for every n we

say that π is a complete isometry and if πn is a contraction for every n we say that π is completely

contractive.

In practical terms, it is typically much easier to verify that something is an operator algebra

by constructing a Hilbert space on which it acts, or by embedding it into a known algebra, rather

than verifying facts about the matricial norms.

Example 4. If you consider the operator algebra C(D) where D is the closed unit disk in the

complex plane then the disk algebra is the subalgebra of C(D) consisting of those functions which

are analytic in the open unit disk. The notation for this algebra is A(D) [10].

Definition 8. An involution on a Banach algebra A is a map on A, notated a 7→ a∗, that satisfies

1. (a∗)∗ = a

2. (ab)∗ = b∗a∗

5



3. (λa+ b)∗ = λa∗ + b∗

for all a, b ∈ A and λ ∈ C.

Definition 9. A C∗-algebra is a Banach algebra with involution that satisfies the norm ∥a∗a∥ =

∥a∥2 for all a ∈ A. A homomorphism that preserves the adjoint is called a ∗-homomorphism.

The next two examples can be found in Section 5.1 of [18].

Example 5. Let X be a compact Hausdorff space. We used in Example 1 that C(X) is a Banach

algebra. C(X) becomes a C∗-algebra when an involution is defined by f∗ = f .

Example 6. For any Hilbert space H, B(H) becomes a C∗-algebra when involution is defined by

the usual adjoint operator.

A concrete C∗-algebra is a norm closed self-adjoint subalgebra of B(H) for some Hilbert

space H. It is a well known result (Gelfand-Naimark Theorem, see Theorem I.9.12 of [6]) that

every abstract C∗-algebra A is isometrically ∗-isomorphic to a concrete C∗-algebra of operators.

An important concept for nonselfadjoint operator algebras is that there may be many ways

to embed the operator algebra into bounded operators on a Hilbert space, for details of the following

see [3]. For example, by construction A(D) embeds into C(D). One can show that when you

consider the unit circle T inside D, there is an onto ∗-homomorphism π : C(D) → C(T) given by

restriction. Interestingly, π|A(D) is a completely isometric isomorphism (because of the maximum

modulus theorem for analytic functions), so it embeds in a smaller C∗-algebra. Similarly, given

any contractive operator T in a Hilbert space, there is a completely contractive homomorphism

π : A(D) → C∗(T ), and hence A(D) can sit inside larger, non-commutative operator algebras.

Understanding how an operator algebra sits inside a C∗-algebra becomes an important question.

Definition 10. A C∗-cover of an operator algebra A is a C∗-algebra C and a complete isometry

π : A → C such that i(A) generates C as a C∗-algebra. The smallest such cover is called the C∗-

envelope, denoted C∗
e (A), and the largest is called the maximal C∗-algebra for A, denoted C∗

max(A).

The existence of the C∗-envelope [9] and the maximal C∗-algebra [2] are important results

in the theory of nonselfadjoint operator algebras.
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An important fact is that there is one known computed example of the maximal C∗-algebra

of an operator algebra. In [3] it was established that for the upper triangular 2× 2 matrices, T2,

C∗
max(T2) = {f ∈ M2 (C([0, 1])) : f(0) is a diagonal scalar matrix}

We now provide the background for one of the important algebras we are going to study.

Definition 11. A topological dynamical system is a pair (X,σ) consisting of a topological space X

and a continuous map σ acting on X.

In what follows we will always be dealing with topological dynamical systems, so we will

drop the adjective topological. In addition, unless stated otherwise, we will assume that X is a

compact Hausdorff space.

Definition 12. A C∗-dynamical system is a triple (A,G, σ) consisting of a C∗-algebra A, a locally

compact group G, and homomorphism σ : G → Aut(A).

Definition 13. A covariant representation of a C∗-dynamical system (A,G, σ) is a pair of rep-

resentations (π, ρ) on a Hilbert space H consisting of a *-representation π : A → H and unitary

ρ : G → H that satisfies

ρ(g)π(a)ρ(g)∗ = π (α(g)(a))

for all a ∈ A and g ∈ G.

Definition 14. Let (A, σ) be a dynamical system, and assume that G is a countable discrete group.

Equip the polynomial algebra of continuously compactly supported A-valued functions on G

Q(A, t) =


∑

1≤i≤n
gi∈G

agitgi : agi ∈ A


with multiplication tgat

−1
g = α(tg)(a), and define the norm

7



∥∥∥∥∥∥∥∥
∑

1≤i≤n
gi∈G

agitgi

∥∥∥∥∥∥∥∥ = sup
(π,ρ) covariant

∥∥∥∥∥∥∥∥
∑

1≤i≤n
gi∈G

π (agi) ρ (tgi)

∥∥∥∥∥∥∥∥
The crossed product A⋊σ G is the completion of Q(A, t) with respect to the norm.

Remark 1. Definitions 12, 13, and 14 are found in [6]. Refer to Chapter VIII of [6] for more in

depth information about this algebra.
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2. FINITE DIRECTED GRAPHS

In this chapter we explore derivations on and representations of finite directed graphs.

2.1. Regular Representations of Semigroups

Here, we introduce the directed graph operator algebras and investigate point derivations

on these algebras. We then describe the form of a derivation for a directed graph operator algebra,

establishing that there exists a nontrivial derivation on a graph algebra, a question left open in

[12].

We first recall some facts on semigroups.

Definition 15. A semigroup S is a non-empty set with binary operation ∗ that is associative, i.e.,

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S.

Definition 16. Let X be a set. A transformation of X is a single-valued mapping from X into

itself. The full transformation semigroup of X, denoted TX , is the set of all transformations of X.

Remark 2. Section 1.1 of [4] gives an overview of semigroups and transformations. In notation, for

x ∈ X and α ∈ TX , we denote α applied to x as αx. TX is a semigroup with composition given by

(β ∗ α)x = β(αx). The associativity is a simple check of moving symbols:

(γ ∗ (β ∗ α))x = γ ((β ∗ α)x) = γ (β (αx)) = (γ ∗ β) (αx) = ((γ ∗ β) ∗ α)x

Example 7. Let X = {a, b, c}. TX has 27 elements: in mapping, each element has three possible

destinations, and combining the three possible mappings of each element yields 27 possibilities.

Denote these transformations as αi, i = 1, · · · , 27. The full list is seen in Figure 2.1.

Definition 17. The right regular representation of a semigroup S is a mapping that takes each

s ∈ S to ρs ∈ TS given by ρs(t) = ts. Similarly, the left regular representation of a semigroup S is

a mapping that takes each s ∈ S to λs ∈ TS given by λs(t) = st.

Remark 3. Section 1.3 of [4] gives an overview of these important transformations. We just point

out a few of the facts. We drop the binary operation notation ∗ when talking of S. Of note is

ρs1s2 = ρs2ρs1 and λs1s2 = λs2λs1 for every s1, s2 ∈ S via the associative property of semigroups.
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a b c

α1 a a a
α2 a a b
α3 a a c
α4 a b a
α5 a b b
α6 a b c
α7 a c a
α8 a c b
α9 a c c

a b c

α10 b a a
α11 b a b
α12 b a c
α13 b b a
α14 b b b
α15 b b c
α16 b c a
α17 b c b
α18 b c c

a b c

α19 c a a
α20 c a b
α21 c a c
α22 c b a
α23 c b b
α24 c b c
α25 c c a
α26 c c b
α27 c c c

Figure 2.1. All 27 elements of TX , where X = {a, b, c}, is shown.

Additionally, observe that the right regular representation is faithful if and only if S is left reductive

(i.e., for every s, t, x ∈ S, if xs = xt, then s = t). Similarly, the left regular representation is faithful

if and only if S is right reductive.

Let X be a set, and let E = {e} be a group consisting only of the identity. Let E0 be E

with an added 0 element, and let MX(E0) be the set of X ×X matrices with elements in E0. We

consider VX ⊆ MX

(
E0
)
as the set of matrices in which each row has exactly one element as e.

Definition 18. The natural isomorphism will be the mapping of α ∈ TX to V (α) = [vxy(α)] ∈ VX ,

which e in its x− y entry if α(x) = y and 0 otherwise.

This definition leads to the following example (as found in Section 3.5 of [4]).

Example 8. Take a semigroup S. For s ∈ S, apply the natural isomorphism to the regular repre-

sentations ρs, λs to obtain matrices R(s) = [rxy(s)] and L(s) = [ℓxy(s)] in MS
(
E0
)
given by

rxy(s) =


e if xs = y

0 otherwise

and

ℓxy(s) =


e if sx = y

0 otherwise.

We refer to R(s) and L(s) as the regular representations on the space.
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We let P =
∏

a∈S{0, e} with projection maps pa. For t ∈ S, define ξt ∈ P with pa(ξt) = e

if a = t and pa(ξt) = 0 otherwise. We can think of {ξt}t∈S as vectors on which R(s) and L(s) can

be applied. Take any y, s ∈ S. We have

R(s)ξy = [rab(s)]a,b∈S [pc(ξy)]c∈S

=

[∑
c∈S

rac(s)pc(ξy)

]
a∈S

= [ray(s)]a∈S .

Hence, R(s)ξy = 0 unless there is x ∈ S such that xs = y. If xs = y, then ray(x) = e only when

a = x, so R(s)ξy = ξx.

Similarly, if there is x ∈ S with sx = y, then L(s)ξy = ξx. L(s)ξy = 0 if no such x exists.

Definition 19. Suppose G is a group with identity e and X is a set. If there is a map H : G×X →

X : (g, x) 7→ g · x so that H(e, x) = x and H(g1, H(g2, x)) = H(g1g2, x) for every g1, g2 ∈ G and

x ∈ X, we say that G acts on the left of X.

Remark 4. Suppose G is a topological group and X is a topological space, and assume H from

Definition 19 is continuous. The pair (G,X) is called a transformation group. We refer to Section

2.1 of [25].

2.2. Directed Graphs

We first remind the reader of some basic facts about directed graphs.

Definition 20. A graph G is a set of vertices V (G) and a set of edges E(G) which represent pairs

of vertices that they connect. The graph becomes directed if it is equipped with a range map r

and a source map s that maps E(G) into V (G) that gives direction to each edge. That is, for

every e ∈ E(G), s(e) ∈ V (G) is vertex where the edge begins, and r(e) ∈ V (G) is where the edge

terminates. We use the notation G = (V (G), E(G), r, s) to describe the graph.

One can extend the range and source maps to apply to vertices by setting r(x) = x = s(x)

for any vertex, which is helpful in notation.

Definition 21. A graph G = (V (G), E(G), r, s) is finite if V (G) and E(G) are finite sets.

11



Definition 22. A path in G is either a vertex x or an object of the form eimeim−1 · · · ei1 with

ei ∈ E(G) and r(eip) = s(eip+1).

Remark 5. For e ∈ E(G), it is a common technique to write the path e = r(e)es(e) to use in

calculations, as seen below.

Definition 23. We let F+(G) denote the set of finite paths in G. We make F+(G) a semigroup

by equipping it with the concatenation operation, noting if w1, w2 ∈ F+(G), then w2w1 ∈ F+(G) if

and only if r(w1) = s(w2). In the language of [17], F+(G) is called the path space of G.

Chapter 1 of [22] is a standard introduction to these objects.

Example 9. Consider the following finite directed graph:

•x2

e3

""

e2

��
•x1

e1

JJ

•x3

e4

HH

Here, for example, s(e2) = x2 and r(e2) = x1. We also have e3e1 ∈ F+(G), but e1e3 ̸∈ F+(G).

We want to explore the algebra generated by these graphs. We let {ξw : w ∈ F+(G)} be

as defined in Example 8, and we consider the Hilbert space HG = ℓ2 (F+(G)) of square summable

sequences generated by {ξw : w ∈ F+(G)}. On this space, the creation operator λG : F+(G) →

B (HG) is given by

λG(w)ξv =


ξwv, if r(v) = s(w)

0, otherwise.

and its adjoint is given by

λG(w)
∗ξv =


ξu, if v = wu′ for some u ∈ F+(G)

0, otherwise.

12



It is clear that for w2w1 ∈ F+(G) we can see that λG(w2w1) = λG(w2)λG(w1) and λG(w2w1)
∗ =

λG(w2)
∗λG(w1)

∗. In the spirit of Example 8, we say that λG is the left regular representation on

F+(G).

We will use Lx = λG(x) for x ∈ V (G) and Le = λG(e) for e ∈ E(G) to denote these

operators. Notice that Lr(e)Le = Le = LeLs(e) for any e.

Definition 24. The free semigroupoid algebra generated by G, denoted L(G), is the closure under

the WOT-topology of the operators Le and Lx.

L(G) is studied in depth in [17] and [16].

From Remark 4.3 in [17], we note that every a ∈ L(G) has unique Fourier expansion

a ∼
∑

w∈F+(G)

awλG(w).

We will be working with the norm closed algebra but the result about Fourier expansion

works in this context as well, as long as we consider the Fourier sequence as converging in the

strong operator topology to the element of the algebra. In particular the norm-closed algebra

A(G) ⊂ L(G). In our notation we will write this similarity as an equality to minimize confusion.

For our purposes in later calculations, we need the following notation

Ai,j =
{
w ∈ F+(G) : s(w) = xj , r(w) = xi

}
in order to subdivide a Fourier series.

2.3. Derivations

We introduce a type of function that we will explore using the algebras we’re studying.

Definition 25. A derivation on an algebra A is a linear function D on A so that for every a, b ∈ A,

D(ab) = aD(b) +D(a)b.

Example 10. The usual derivative is a derivation on C∞(R).
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Remark 6. If A is an algebra with generators {gλ} and D is a continuous derivation on the set of

generators, then D extends linearly to a derivation on A. That is, if taking any generators gλ1 and

gλ2 gives D (gλ1gλ2) = gλ1D (gλ2) +D (gλ1) gλ2 , then D is a derivation on A.

Definition 26. Suppose π is a representation of an algebra A acting as an operator on a Hilbert

space H. A continuous linear function D : A → B(H) is a point derivation at π if for every a, b ∈ A,

D(ab) = π(a)D(b) +D(a)π(b).

We will see examples of point derivations involving directed graphs and semicrossed products

in later sections.

Proposition 1. If A has an identity 1, then D (1) = 0 for any derivation D.

Proof. As 1 = 1 · 1, D (1) = D(1) +D(1) from the definition of a derivation.

Example 11. Take any u ∈ A for an algebra A. Then Du(a) = ua− au is a derivation. To see this,

take any a, b ∈ A and observe that

Du(ab) = uab− abu

= aub− aub+ uab− abu

= aub− abu+ uab− aub

= a(ub− bu) + (ua− au)b

= aDu(b) +Du(a)b

Definition 27. A derivation D on an algebra A is called an inner derivation if there exists u ∈ A

such that D(a) = ua− au for all a ∈ A.

Proposition 2. If an algebra A is commutative, then there are no nontrivial inner derivations.

Proof. Suppose D is an inner derivation on A, and take u ∈ A so that D(a) = ua − au for all

a ∈ A. Then D(a) = au− au = 0.

14



Example 12. Let π be a representation of and algebra A on a Hilbert space H, and fix U ∈ B(H).

The function D : A → B(H) given by D(a) = Uπ(a)− π(a)U is a point derivation at π as

D(ab) = Uπ(a)π(b)− π(a)π(b)U

= π(a)Uπ(b)− π(a)π(b)U + Uπ(a)π(b)− π(a)Uπ(b)

= π(a)(Uπ(b)− π(b)U) + (Uπ(a)− π(a)U)π(b)

= π(a)D(b) +D(a)b

for every a, b ∈ A.

Definition 28. A point derivation D at π is said to be inner if there is U ∈ B(H) such that

D(a) = Uπ(a)− π(a)U for every a ∈ A.

Proposition 3. Suppose an algebra A has generators {gλ}λ∈Λ and representation π. If a point

derivation D at π is inner on the generators, then D is inner.

Proof. Suppose there is U ∈ B(H) such that D(gλ) = Uπ(gλ) − π(gλ)U for every λ ∈ Λ. Suppose

for some n ≥ 1,

D(gλn · · · gλ1) = Uπ(gλn · · · gλ1)− π(gλn · · · gλ1)U

Then

D(gλn+1 · · · gλ1) = π(gλn+1)D(gλn · · · gλ1) +D(gλn+1)π(gλn · · · gλ1)

= π(gλn+1)Uπ(gλn · · · gλ1)− π(gλn+1)π(gλn · · · gλ1)U

+Uπ(gλn+1)π(gλn · · · gλ1)− π(gλn+1)Uπ(gλn · · · gλ1)

= Uπ(gλn+1 · · · gλ1)− π(gλn+1 · · · gλ1)U.

Calculations for showing sums of monomials with variables from {gλ}λ∈Λ will be inner when D is

applied are similar.
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Example 13. Let A be an algebra generated by two elements a and b. Define D on A with

D(a) = ab− ba and D(b) = ba− ab, extending linearly. Using Proposition 3, it is a quick check to

show that D is a derivation on A.

Let U = −a− b. As D(a) = Ua− aU and D(b) = Ub− bU , we apply Proposition 3 to show

that D is inner.

2.4. Derivations on Finite Directed Graphs

Take any directed graph G = (V (G), E(G), r, s); say that V (G) = {xk}k∈K and E(G) =

{eℓ}ℓ∈L, and let D be an arbitrary derivation on A(G). Our goal is to say what form D must take

for arbitrary elements of A(G).

Proposition 4. For xk ∈ V (G) there exist akw such that,

D (Lxk
) =

∑
j∈K
j ̸=k

∑
w∈Ak,j

akwλG(w) +
∑
i∈K
i ̸=k

∑
w∈Ai,k

akwλG(w).

Moreover, for i, j ∈ K with i ̸= j, ajw = −aiw for w ∈ Ai,j.

Proof. Since D(Lx) is in A(G), we let {akw}w∈F+(G) be the Fourier coefficients of Lxk
, where xk ∈

V (G). Then for k ∈ K,

D (Lxk
) =

∑
i,j∈K

∑
w∈Ai,j

akwλG(w).

Take k1, k2 ∈ K; observe that

D
(
Lxk1

Lxk2

)
= Lxk1

D
(
Lxk2

)
+D

(
Lxk1

)
Lxk2

=
∑
j∈K

∑
w∈Ak1,j

ak2w λG(w) +
∑
i∈K

∑
w∈Ai,k2

ak1w λG(w) (2.1)

If k1 = k2 =: k, equation 2.1 and the fact that Lxk
is idempotent force akw = 0 if w ∈ Ak,k

and

D (Lxk
) =

∑
j∈K
j ̸=k

∑
w∈Akj

akwλG(w) +
∑
i∈K
i ̸=k

∑
w∈Ai,k

akwλG(w).
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In the case where k1 ̸= k2,

0 =
∑

w∈Ak1,k2

(
ak2w + ak1w

)
λG(w)

since Lxk1
Lxk2

= 0.

Proposition 5. There is U ∈ A(G) such that for every xk ∈ V (G),

D (Lxk
) = ULxk

− Lxk
U.

Proof. Define U =
∑

w∈F+(G) uwλG(w) by uw = −aiw for w ∈ Ai,j with i ̸= j. Choose uw = 0 for

w ∈ Ai,i.

Building from equation 2.1 and Proposition 4 itself, we obtain

D (Lxk
) =

∑
j∈K
j ̸=k

∑
w∈Ak,j

akwλG(w) +
∑
i∈K
i ̸=k

∑
w∈Ai,k

akwλG(w)

=
∑
j∈K
j ̸=k

∑
w∈Ak,j

akwλG(w) +
∑
i∈K
i ̸=k

∑
w∈Ai,k

(
−aiw

)
λG(w)

=
∑
i∈K
i ̸=k

∑
w∈Ai,k

(
−aiw

)
λG(w)−

∑
j∈K
j ̸=k

∑
w∈Ak,j

(
−akw

)
λG(w)

=
∑
i∈K

∑
w∈Ai,k

uwλG(w)−
∑
j∈K

∑
w∈Ak,j

uwλG(w)

= ULxk
− Lxk

U,

as desired.

Proposition 6. For e ∈ E(G), D(Le) = D1(Le) + D2(Le), where D1(Le) = ULe − LeU and

U ∈ A(G) is as in Proposition 5, and D2 is a (not necessarily inner) derivation.
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Proof. For e ∈ E(G), say that s(e) = xℓ and r(e) = xk. Let {bew} be the Fourier coefficients of

D(Le). Then Proposition 4 yields

D(Le) = D (Lxk
)Le + Lxk

D(Le)Lxℓ
+ LeD(Lxℓ

)

=
∑
i∈K
i ̸=k

∑
w∈Ai,k

akwλG(we) +
∑

w∈Ak,ℓ

bewλG(w) +
∑
j∈K
j ̸=ℓ

∑
w∈Aℓ,j

aℓwλG(ew).

Set

D1(Le) =
∑
i∈K
i ̸=k

∑
w∈Ai,k

akwλG(we) +
∑
j∈K
j ̸=ℓ

∑
w∈Aℓ,j

aℓwλG(ew)

D2(Le) =
∑

w∈Ak,ℓ

bewλG(w).

Notice that

ULe − LeU =
∑
i∈K

∑
w∈Ai,k

uwλG(we)−
∑
j∈K

∑
w∈Aℓ,j

uwλG(ew)

=
∑
i∈K
i ̸=k

∑
w∈Ai,k

(
−aiw

)
λG(we)−

∑
j∈K
j ̸=ℓ

∑
w∈Aℓ,j

(
−aℓw

)
λG(ew)

=
∑
i∈K
i ̸=k

∑
w∈Ai,k

akwλG(we) +
∑
j∈K
j ̸=ℓ

∑
w∈Aℓ,j

aℓwλG(ew)

= D1 (Le) ,

which is the desired result.

Proposition 7. If D is continuous, D = D1 + D2, where D1 and D2 are derivations and D1 is

inner.

Proof. For x ∈ V (G), we set D1(Lxk
) = D(Lxk

), where D1 is as in Proposition 4, and we set

D2(Lxk
) = 0. For e ∈ E(G), we use D1 and D2 as they are in Proposition 6. Applying Proposition

3 gives the result.

It is not true in general that derivations on a directed graph are inner, as the next example

shows.
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Example 14. Consider the following graph G:

•x1

e1
""

e2

88
•x2

Define D on L(G) as follows:

D (Lx1) = Le2 − Le1

D (Lx2) = Le1 − Le2

D (Le1) = Le1 + Le2

D (Le2) = Le1 + Le2

Then Propositions 4 and 6 are satisfied. Since F+(G) is finite, D can be extended to a

continuous function on L(G), which by Proposition 7 is a derivation on the algebra.

Take U = ux1Lx1 + ux2Lx2 − Le1 + Le2 . Such a U satisfies Proposition 5. However, notice

that

ULe1 − Le1U = (ux2 − ux1)Le1

ULe2 − Le2U = (ux2 − ux1)Le2 .

Hence, D is not inner.
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3. SEMICROSSED PRODUCTS

3.1. Semicrossed Products

In this chapter we introduce the semicrossed products and relate them to the graph operator

algebras of the previous section. We look at derivations in general, and then we consider point

derivations for a specific representation of a semicrossed product. Parts of the content of this

chapter appeared in [11].

The crossed product is a much studied object. We refer to Chapter VIII of [6], Chapter 2

of [25], and II.10.3 of [1] for the full construction. Semicrossed products are constructed similary.

In a crossed product, the covariant system is a triple (A,G, α), where G is a locally compact group

acting on an operator algebra A by a homomorphism α : G → Aut(A). A covariant representation

of a covariant system (A,G, α) is a pair of representations (π, U) that satisfies the covariance

relation U(g)π(a)U(g)∗ = π (α(g)(a)), where π : A → B(H) is a non-degenerate representation,

U : G → B(H) is a unitary operator, and H is some Hilbert space.

In a semicrossed product, we utilize semigroups instead of groups. Semigroups were first

studied in [20], and we remind the reader of this setting. A semigroup dynamical system is a triple

(A,S, α), where A is an operator algebra, S is a semigroup, and α is a completely contractive

endomorphism of A. A semigroup dynamical system is called a C∗-dynamical system if A is a

C∗-algebra. A pair (π, V ) is called a isometric covariant representation, where π : A → B(H),

V : A → B(H) is an isometry, and H is some Hilbert space. The covariant relation can be

given by V (s)π(a) = π(α(g)(a))V (s) or π(a)V (s) = V (s)π(α(g)(a)). Since the first choice forces

kerα ⊆ kerπ, the relation used in [20] and other sources is given by π(a)V (s) = V (s)π(α(g)(a)).

From (π, V ), we have a representation of (A,S, α) into ℓ1 (Z+, A, α). The seminorm of

ℓ1 (Z+, A, α) is obtained by taking the supremum of all pairs (π, V ), denoted F . The semicrossed

product of A by S with respect to F , denoted A ×F
α S, is the completion of P(A, T )/N . For the

computation of this seminorm and discussion of the completion, we refer to Section 2 of [8].

When discussing semigroups, we use standardized notation as seen in [21]. We consider

a dynamical system (X,σ), where X is a compact Hausdorff space and σ is continuous. The
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semicrossed product is the completion of the algebra generated by C(X) and symbol S, where

fS = S(f ◦ σ) for all f ∈ C(X). Elements of this algebra are thought of as series
∑

Snfn.

3.2. Finite Graphs Related to Semicrossed Products

Before we investigate derivations on semicrossed products we look at some relations between

semicrossed product algebras and directed graph operator algebras.

Let G = (V (G), E(G), r, s) be a finite directed graph with the property that each vertex

is the source of exactly m (m ∈ N) edges. Let n := |V (G)|, noting that |E(G)| = nm. We let

ei,j ∈ E(G) (j = 1, · · · ,m) be such that s (ei,j) = vi, i.e., {ei,j}mj=1 is the set of edges with source

vi.

Let X = {xi}ni=1 be endowed with the discrete topology, so X is a compact Hausdorff

space. Define ρ : V (G) → {1, · · · , n} by ρ(vi) = i, and for j ∈ {1, · · · ,m}, define σj : X → X by

σj(xi) = xρ(r(ei,j)).

Define π as follows:

π (Lvi) = χ{xi}

π

(
n∑

i=1

Lei,j

)
= Sj

where χ is the characteristic function on X. Extend π linearly over L(G).

Notice also that every f ∈ C(X) can be written as

f =
n∑

i=1

f (xi)χ{xi}

=
n∑

i=1

f (xi)π (Lvi) ,

21



and the covariance relation is satisfied:

fSj =

(
n∑

i=1

f (xi)π (Lvi)

)(
n∑

k=1

π
(
Lek,j

))

=

n∑
i=1

f
(
xρ(r(ei,j))

)
π
(
Lr(ei,j)Lei,j

)
=

n∑
i=1

f (σj(xi))π
(
Lei,j

)
=

n∑
i=1

π
(
Lei,j

)
f (σj(xi))π (Lvi)

=

(
n∑

k=1

π
(
Lek,j

))( n∑
i=1

f (σj(xi))π (Lvi)

)
= Sj(f ◦ σj).

Hence, we can represent the given graph as a semicrossed product.

Example 15. Consider the following graph G:

•v2

e2,1

��

e2,2

��

•v1

e1,1

;;

e1,2

''

•v3

e3,1

��

e3,2

cc

•v5e5,1
44

e5,2
jj

•v4

e4,2

HH

e4,1

RR

Here, m = 2 and n = 5. We have X = {x1, · · · , x5}, as well as π(Lvi) = χxi and Sj =
∑5

i=1 Lei,j .

Renumbering the edges out of a vertex or changing the range of an edge will give us a different

semicrossed product to work with.

3.3. Derivations on Semicrossed Products

The semicrossed product does not have a structure that is conducive to studying deriva-

tions on it directly since continuity makes the question too complex. Our goal is to develop a
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representation of a semicrossed product that has certain conditions and to study the resulting

point derivation.

In the rest of this chapter, we let X be a compact Hausdorff space with maps σ = {σℓ}mℓ=1

acting on it, and S1, · · · , Sm are contractions on a Hilbert space that satisfy the covariance relation

fSℓ = Sℓ(f ◦σℓ) for every ℓ ∈ {1, · · · ,m} =: M . Our semigroup is the free semigroup generated by

M . Let A denote the semicrossed product generated by C(X) and S1, · · · , Sm, and let W be the

set of finite words from the alphabet M .

The following example is of a derivation on a semicrossed product. We introduce this

example to demonstrate that derivations on semicrossed products are not necessarily inner. As

seen later on, the representation that we construct will have point derivations that may be inner.

Example 16. Let m = 2, and let σℓ, Sℓ, and A be as above. We take some α1, α2 ∈ C(X), and

define D on A by

D(f) = S1(f − f ◦ σ1) + S2(f − f ◦ σ2)

D(S1) = S1α1 − S1S2 + S2S1

D(S2) = S2α2 + S1S2 − S2S1.

It is routine to check that for any f, g ∈ C(X),

D(fg) = fD(g) +D(f)g,

as well as

D(fS1) = D(S1(f ◦ σ1))

D(fS2) = D (S2(f ◦ σ2)) .

Thus, if D is continuous, D is a derivation on A, as noted by Remark 6.
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We introduce X and maps to show that this derivation is not necessarily inner. Let X =

{x1, x2, x3}. Define σ1, σ2, α1, α2 as follows:

σ1 σ2 α1 α2

x1 x3 x2 1 0

x2 x2 x3 0 1

x3 x2 x2 0 1

Suppose for a contradiction that D is inner, so we have

u = u∅ + S1u1 + S2u2 + S1S1u11 + S2S1u21 + S1S2u12 + S2S2u22 + · · · ∈ A

such that D(a) = ua− au for every a ∈ A. In particular, D(Sℓ) = Sℓ (u∅ ◦ σℓ − u∅ + · · · ). Equate

this with the known form of D(Sℓ) in this example. Using ℓ = 1, 2, we obtain a system of six

equations to determine u∅. It is routine to check that this system has no solution. Therefore, no

such u exists, and D is not inner.

Example 17. Modifying the setting of Example 16, we instead let α1 and α2 be the zero functions.

Then D is inner with u = S1 + S2, provided D is continuous.

We will no longer work with derivations on A itself. Rather, we want to study point

derivations. As we will see in the remainder of the chapter, a point derivation on A will have a

nice form.

Remark 7. In [11], this was studied with m = 1. We will build the multivariate version of what was

studied in that paper. Theorem 2 of the paper concluded that point derivations at the constructed

representation were all inner derivations. In what follows, we will show that this conclusion has an

analogue in the multivariate case.

3.4. Notation and Setting

For our problem, we need to introduce some matricial notation. As usual, Mn(C) denotes

the set of n × n matrices with complex entries. We let 0n ∈ Mn(C) be the matrix with all zero

entries and In be the identity in Mn(C). We denote [ai,j ] ∈ Mn(C) as the matrix with i− j entry

ai,j . If there is a subscript P (i, j) on [ai,j ]P (i,j), we set ai,j = 0 if P (i, j) is false and ai,j as stated if
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P (i, j) is true. In P (i, j), we use ”*” on indices to denote that we use all indices in the ”*” position

that make P (i, j) true. Note that this does not mean ai, ̸= 0 if P (i, j) is true.

For example, in the following matrix

[ai,j ]i<j =



0 a1,2 a1,3 · · · a1,n−1 a1,n

0 0 a2,3 · · · a2,n−1 a2,n
...

...
...

. . .
...

...

0 0 0 · · · 0 an−1,n

0 0 0 · · · 0 0


the notation i < j means the matrix is populated with entries where the i − j entry has i < j.

Entries where i ≥ j are equal to zero.

For another example of this notation, suppose {w1, · · · , w5} = {1, ∅, 2, 12, 21}, noting that

w1 = 1w2 and w4 = 1w3. In the matrix,

[ai,j ]wi=1w∗
∗̸=j

=



a1,1 0 a1,3 a1,4 a1,5

0 0 0 0 0

0 0 0 0 0

a4,1 a4,2 0 a4,4 a4,5

0 0 0 0 0


,

the nonzero entries are in the i− j entries where wi is equal to 1w∗ for some ∗ ∈ {1, 2} and ∗ ≠ j.

Since w1 = 1w2, we populate row 1, excluding column 2. Since w4 = 1w3, we populate row 4,

excluding column 3.

For w = ip · · · i2i1 ∈ W, we use the notation

σw = σip ◦ · · · ◦ σi2 ◦ σi1

Sw = Sip · · ·Si1 .

If w is the empty word, σw and Sw are the identities on their respective spaces.
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In our problem, we fix x ∈ X and n ∈ N, and choose a set {w1, · · · , wn} ⊂ W such that

σwi(x) = σwj (x) if and only if i = j. Let N = {1, · · · , n}, and to save space, we will let xi denote

σwi(x). Let Nx = {xi}ni=1.

Remark 8. For the rest of this chapter, it will only be relevant that each xi of Nx is distinct. We

will drop the notation σwi(x) and use only xi.

3.5. A Representation π on A

In Section 4 of [15], they developed a representation for a semigroup S given by

πx,γ(f)ξs = f (σs(x)) ξs

πx,γ(St)ξs = γ(t)ξts,

where {ξs} is as in Example 8, x ∈ X is fixed, and γ is in the dual group of G = S − S

We slightly modify this representation so that we work with finite matrices. We define

π : A → Mn(C) on C(X) by

π(f) = [f (xi)]i=j

for all f ∈ C(X), where {xi}ni=1 is as above. Once we know where each Sℓ is sent, we can extend

π to all of A.

Lemma 1. For any ℓ ∈ M ,

π (Sℓ) =
[
bℓi,j

]
xi=σℓ(xj)

for some fixed {bℓi,j}xi=σℓ(xj) ⊂ C.

Proof. We know that π (Sℓ) =
[
bℓi,j

]
is fixed. For any f ∈ C(X),

π (fSℓ) =
[
f (xi) · bℓi,j

]
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and

π (Sℓ(f ◦ σℓ)) =
[
f (σℓ(xj)) · bℓi,j

]

Using the covariance relation, we have for every i, j,

0 = (f(xi)− f (σℓ(xj))) · bℓi,j .

As X is compact Hausdorff, we require xi = σℓ(xj) in order for bℓi,j to be non-zero.

Remark 9. Take ℓ ∈ M . If we construct a directed graph with Nx as the vertices and the edges

determined by σℓ in the obvious way, then π (Sℓ) is a generalized adjacency matrix of the directed

graph.

Example 18. Let X = {xi}4i=1, and consider σ1 (left) and σ2 (right) on X as follows:

•x2

ww•x1

77

•x3

bb

•x4

OO
•x2

��

•x1

<<

•x3 kk

•x4

<<

We let Sℓ (ℓ = 1, 2) be contractions that satisfy the covariance relation, and let A be the semicrossed

product as usual. By choice, π : A → M3(C) is given for f ∈ C(X) by

π(f) =


f(x1) 0 0

0 f(x2) 0

0 0 f(x3)


For notation, π (Sℓ) =

[
bℓi,j

]
. By Lemma 1, we know that

π (S1) =


0 b11,2 0

b12,1 0 b12,3

0 0 0


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This is as expected since within {x1, x2, x3}, we have one step paths from x1 to x2, x2 to x1, and x3

to x2, which gives the 2-1, 1-2, and 2-3 entries, respectively, when we think of this in the perspective

of an adjacency matrix.

Similarly, since under σ2, we have one step paths x1 to x2 and x3 to itself, and hence, as

expected, Lemma 1 yields

π (S2) =


0 0 0

b22,1 0 0

0 0 b23,3


It should be noted that π is not onto as the 3-1 and 3-2 entries will always be zero when

multipling different combinations of π(S1) and π(S2). Thinking in terms of adjacency matrices,

this means that there is no path via σ1 and σ2 from x1 or x2 to x3 when we look at paths that stay

strictly within the set {x1, x2, x3}.

In practice, we may want π to be surjective.

Proposition 8. The representation π is onto only if every element of Nx has a path to every other

element in Nx using only the set itself and the maps {σℓ}.

Proof. Take w = ℓp · · · ℓ1 ∈ W. Observe that

π (Sℓ2)π (Sℓ1) =
[
bℓ2i,j

]
xi=σℓ2

(xj)

[
bℓ1i,j

]
xi=σℓ1

(xj)

=


n∑

1≤k≤n
xi=σℓ2

(xk)

xk=σℓ1
(xj)

bℓ2i,kb
ℓ1
k,j


=

[
bℓ2i,∗1b

ℓ1
∗1,j

]
xi=σℓ2

(x∗1 )

x∗1=σℓ1
(xj)

In our notation, this means that for the i − j position to be nonzero, xi = σℓ2ℓ1(xj) and x∗1 =

σℓ1(xj) ∈ Nx.
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Continue multiplying on the left by π(Sℓk) to obtain

π(Sw) =
[
bℓki,∗k−1

b
ℓk−1
∗k−1,∗k−2

· · · bℓ2∗2,∗1b
ℓ1
∗1,j

]
xi=σℓp (x∗p−1 )

x∗p−1=σℓp−1
(x∗p−2 )

...
x∗2=σℓ2

(x∗1 )

x∗1=σℓ1
(xj)

.

In the i− j position, there is a non-zero entry only if there is a path from xj to xi using elements

of Nx via maps {σℓ}.

3.6. Point Derivation at π

Let D be any point derivation at π. The goal is to show what form D must take.

Lemma 2. There is fixed {ci,j}1≤i,j≤n
i ̸=j

⊂ C so that for every f ∈ C(X),

D(f) = [ci,j (f (xi)− f (xj))]i ̸=j .

Proof. Observe that the entries of D|C(X) are bounded and linear, so by the Riesz representation

theorem, for every f ∈ C(X),

D(f) =

[∫
f dµi,j

]

for some unique (not necessarily positive) measures µi,j . In particular, as D is a derivation, for

every f, g ∈ C(X),

D(fg) = π(f)D(g) +D(f)π(g)

= [f (xi)]i=j

[∫
g dµi,j

]
+

[∫
f dµi,j

]
[g (xi)]i=j ;

hence,

[∫
fg dµi,j

]
=

[
f (xi)

∫
g dµi,j + g (xj)

∫
f dµi,j

]
. (3.1)

Let f = g be the function that sends every x ∈ X to 1. By equation (3.1), µi,j(X) = 0

for every i, j. Take measurable closed sets E1 and E2 in X, and let f and g be their respective
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characteristic functions. Via Urysohn’s Lemma, we have continuous functions {fn : X → [0, 1]}n∈N

and {gn : X → [0, 1]}n∈N that converge to f and g, respectively. Using the Dominated Convergence

Theorem and equation (3.1), we see that

µi,j (E1 ∩ E2) = f (xi) · µi,j (E2) + g (xj) · µi,j (E1) . (3.2)

For any measurable E ⊆ X, equation 3.2 forces

µi,j(E) = (f(xi) + f(xj)) · µi,j(E).

In order for E to have nonzero measure, either (i) xi ∈ E and xj /∈ E, or (ii) xj ∈ E and xi /∈ E.

Take sets E1, E2 that both satisfy (i). Using (3.2) again, we see that

µi,j(E1) = µi,j(E1 ∩ E2) = µi,j(E2),

so sets that satisfy (i) have the same measure. A similar result holds for two sets that both satisfy

(ii). Considering E1 = {xi} and E2 = {xj}, equation 3.2 shows that sets that satisfy (i) have

measures of same magnitude but opposite signs as those that satisfy (ii).

If i ̸= j, set ci,j := µi,j(E), where E satisfies (i); this gives µi,j = ci,j

(
δ{xi} − δ{xj}

)
, where

δ is the Dirac measure.

Lemma 3. For ℓ ∈ M ,

D(Sℓ) =
[
bℓi,∗1c∗1,j − ci,∗2b

ℓ
∗2,j

]
xi=σℓ(x∗1 )
x∗2=σℓ(xj)
xi ̸=σℓ(xj)

+
[
bℓi,∗cℓ,j

]
xi=σℓ(x∗)
σℓ(xj) ̸∈Nx

−
[
ci,∗b

ℓ
∗,j

]
x∗=σℓ(xj)
xi ̸∈σℓ(Nx)

+
[
aℓi,j

]
xi=σℓ(xj)

,

where
{
bℓi,j

}
is as in Lemma 1, {ci,j} is as in Lemma 2, and {ai,j} ⊂ C.
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Proof. As a placeholder, we denote D(Sℓ) =
[
aℓi,j

]
. We will use the following sets for ℓ ∈ M :

Eℓ
1 = {(i, j) ∈ N ×N : xi = σℓ(xj)}

Eℓ
2 = {(i, j) ∈ N ×N : σℓ(xj) ∈ Nx and xi ̸= σℓ(xj)}

Eℓ
3 = {(i, j) ∈ N ×N : xi ∈ σℓ(Nx) and xi ̸= σℓ(xj)}

Eℓ
4 = {(i, j) ∈ N ×N : xi ̸∈ σℓ(Nx) and σℓ(xj) ̸∈ Nx} .

Observe that {Eℓ
1, E

ℓ
2\Eℓ

3, E
ℓ
3\Eℓ

2, E
ℓ
2∩Eℓ

3, E
ℓ
4} gives a partition of N ×N for every ℓ ∈ M and that

the equation in the statement of the lemma can be written as

D(Sℓ) =
[
bℓi,∗1c∗1,j − ci,∗2b

ℓ
∗2,j

]
(i,j)∈Eℓ

2∩Eℓ
3

+
[
bℓi,∗c∗,j

]
(i,j)∈Eℓ

3\Eℓ
2

−
[
ci,∗b

ℓ
∗,j

]
(i,j)∈Eℓ

2\Eℓ
3

+
[
aℓi,j

]
(i,j)∈Eℓ

1

.

Take f ∈ C(X) and ℓ ∈ M . Notice that

D(Sℓf) = π(Sℓ)D(f) +D(Sℓ)π(f)

=
[
bℓi,j

]
xi=σℓ(xj)

[ci,j (f(xi)− f(xj))]i ̸=j +
[
aℓi,j

]
[f(xi)]i=j

=
[
bℓi,∗c∗,j (f(x∗)− f(xj))

]
xi=σℓ(x∗)

∗≠j

+
[
aℓi,jf(xj)

]
,

and in particular,

D(Sℓ(f ◦ σℓ)) =
[
bℓi,∗c∗,j (f(σℓ(x∗))− f(σℓ(xj)))

]
xi=σℓ(x∗)

∗≠j

+
[
aℓi,jf(σℓ(xj))

]
.

We also have

D(fSℓ) = π(f)D(Sℓ) +D(f)π(Sℓ)

= [f(xi)]i=j

[
aℓi,j

]
+ [ci,j (f(xi)− f(xj))]i ̸=j

[
bℓi,j

]
xi=σℓ(xj)

=
[
aℓi,jf(xi)

]
+
[
ci,∗b

ℓ
∗,j (f(xi)− f(x∗))

]
x∗=σℓ(xj)

i ̸=∗
.
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As fSℓ = Sℓ(f ◦ σℓ), we have

0n =
[
bℓi,∗c∗,j (f(σℓ(x∗))− f(σℓ(xj)))

]
xi=σℓ(x∗)

∗≠j

(3.3)

−
[
ci,∗b

ℓ
∗,j (f(xi)− f(x∗))

]
x∗=σℓ(xj)

i ̸=∗
+
[
aℓi,j (f (σℓ(xj))− f(xi))

]

This equation will be useful in determining most of the values of {aℓi,j}.

If we take (i, j) ∈ Eℓ
4, equation (3.3) yields

0 = aℓi,j (f (σℓ(xj))− f(xi)) .

Since σℓ(xj) ̸= xi and X is compact Hausdorff, we must have aℓi,j = 0.

Now choose (i, j) ∈ Eℓ
2 ∩Eℓ

3. Again utilizing (3.3), we obtain i0, j0 ∈ N with i0 ̸= i, j0 ̸= j,

wi0 = ℓwj , and wi = ℓwj0 so that

0 = bℓi,j0cj0,j (f(xi)− f(xi0))− ci,i0b
ℓ
i0,j (f(xi)− f(xi0)) + aℓi,j (f(xi0)− f(xi))

=
(
bℓi,j0cj0,j − ci,i0b

ℓ
i0,j − aℓi,j

)
(f(xi)− f(xi0)) .

As xi ̸= xi0 , we have aℓi,j = bℓi,j0cj0,j − ci,i0b
ℓ
i0,j

.

Similarly, aℓi,j = −ci,i0b
ℓ
i0,j

for (i, j) ∈ Eℓ
2\Eℓ

3, and if (i, j) ∈ Eℓ
3\Eℓ

2, we obtain aℓi,j = bℓi,j0cj0,j .

Finally, take (i, j) ∈ Eℓ
1; from (3.3), we get 0 = 0, which gives us no known relation for aℓi,j ,

so we leave these entries as unknown values aℓi,j in our form for D(Sℓ).

Example 19. Let X = {xi}4i=1, and let σ1 (left) and σ2 (right) on X be as follows:

•x2

��

•x1

<<

•x3

bb

•x4

bb

•x2

||
•x1

// •x3 kk

•x4

<<

Let Si (i = 1, 2) and A be as usual.
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Set π : A → M3(C) by

π(f) =


f(x1) 0 0

0 f(x2) 0

0 0 f(x3)

 .

Lemma 3 tells us

D(S1) =


0 0 0

0 b12,1c1,2 + b12,3c3,2 0

0 0 0

−


c1,2b

1
2,1 0 c1,2b

1
2,3

0 0 0

c3,2b
1
2,1 0 c3,2b

1
2,3

+


0 0 0

a12,1 0 a12,3

0 0 0


since x2 = σ1(x1) and x2 = σ1(x3), and

D(S2) =


b21,2c2,1 0 b21,2c2,3

0 0 0

0 b23,1c1,2 + b23,3c3,2 0

−


c1,3b

2
3,1 0 c1,3b

2
3,3

c2,3b
2
3,1 c2,1b

2
1,2 c2,3b

2
3,3

0 c3,1b
2
1,2 0



+


0 a21,2 0

0 0 0

a23,1 0 a23,3

 .

since x1 = σ2(x2), x3 = σ2(x1), and x3 = σ3(x3).

Proposition 9. There is a U ∈ Mn(C) so that D(f) = Uπ(f)− π(f)U for every f ∈ C(X).

Proof. Set U = [ui,j ] ∈ Mn(C) by ui,j = −ci,j if i ̸= j. A simple calculation shows that

Uπ(f)− π(f)U = [ui,j ][f(xi)]i=j − [f(xi)]i=j [ui,j ]

= [ui,j(f(xj)− f(xi))]i ̸=j

= [ci,j(f(xi)− f(xj))]i ̸=j

= D(f),

as desired.
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Proposition 10. D is inner if and only if

{[
aℓi,j

]
xi=σℓ(xj)

}m

ℓ=1

=

{[
bℓi,j (ui,i − uj,j)

]
xi=σℓ(xj)

}m

ℓ=1

has a solution for {ui,i}ni=1.

Proof. Let U be as in Proposition 9. Observe that

Uπ(Sℓ)− π(Sℓ)U = [ui,j ]
[
bℓi,j

]
xi=σℓ(xj)

−
[
bℓi,j

]
xi=σℓ(xj)

[ui,j ]

=
[
ui,∗b

ℓ
∗,j

]
x∗=σℓ(xj)

−
[
bℓi,∗u∗,j

]
xi=σℓ(x∗)

=
[
ui,∗b

ℓ
∗,j

]
(i,j)∈Eℓ

2

+
[
ui,∗b

ℓ
∗,j

]
(i,j)∈Eℓ

1

−
[
bℓi,∗u∗,j

]
(i,j)∈Eℓ

3

−
[
bℓi,∗u∗,j

]
(i,j)∈Eℓ

4

=
[
bℓi,∗c∗,j

]
(i,j)∈Eℓ

3

−
[
ci,∗b

ℓ
∗,j

]
(i,j)∈Eℓ

2

+
[
bℓi,j (ui,i − uj,j)

]
(i,j)∈Eℓ

1

= D(Sℓ)−
[
aℓi,j

]
(i,j)∈Eℓ

1

+
[
bℓi,j (ui,i − uj,j)

]
(i,j)∈Eℓ

1

.

We need to find {ui,i}ni=1 that works for every ℓ ∈ M , so we require aℓi,j = bℓi,j (ui,i − uj,j) for

(i, j) ∈ Eℓ
1.

Corollary 1. If m = 1 in Proposition 10, then D is inner.
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4. MULTIVARIATE DYNAMICAL SYSTEMS

In this chapter we introduce multivariate dynamical systems, in analogue to the regular

notion of dynamical system and we introduce the three important notions we wish to consider

generalizations of: periodicity, transitivity, and topological transitivity. We then consider different

variations of these in the multivariate context, looking at relations between our definitions and how

they are impacted by the partition conjugacy invariant.

In Section 4.1, we will give classical definitions for the situation of a single map acting on

a compact Hausdorff space. We are interested in dynamical systems (X,σ), where the map σ is a

family of maps σ = {σi}i∈I acting on X. As further notation, F+(I) denotes the set of finite words

using elements of I as letters, and as before, when we have w = ik · · · i1 ∈ F+(I), the notation

σw = σik ◦ · · · ◦ σi1

is used. For w ∈ F+(I) and n ∈ N, we let un denote the word with n copies of u concatenated, and

we use the convention that u0 is the empty word.

We want to extend the definitions from Section 4.1 to the multivariate case. There is no

universal agreement on how these definitions would carry over to a multivariate dynamical system.

We will begin our discussion by looking at some possible definitions.

4.1. Dynamical Systems

In this section, the map σ in the dynamical system (X,σ) is a single map.

Definition 29. A point x ∈ X is a periodic point for the system (X,σ) if there is n ∈ N so that

σn(x) = x. The smallest such n that gives this is the period of x.

Example 20. Every x ∈ R/Z is a periodic point for the rational shift σ on R/Z given by σ(x) = x+q,

where q ∈ Q. If q = a
b (a, b ∈ Z) is in reduced form, then each x has period b since σb(x) = x+ bq =

x+ a and a ∈ Z.

Furthermore, a map on R/Z in the form σ(x) = x + q has periodic points if and only if

q ∈ Q since σn(x) = x + nq ≡ x (n ∈ N) if and only if x + nq = x + k for some k ∈ Z, i.e., if and

only if q = k
n .
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The periodic points of (X,σ) are dense if every nonempty, open U ⊆ X contains a periodic

point of (X,σ).

Example 21. As every rational point is periodic, the periodic points of the rational shift of Example

20 are dense.

Example 22. The map σ on R/Z given by σ(x) = 2x is called the doubling map. Notice that

1
6 7→ 1

3 7→ 2
3 7→ 1

3 , so
1
6 is not a periodic point in (R/Z, σ).

For k ∈ N, a periodic point x ∈ R/Z satisfies σk(x) = 2kx ≡ x, so x + n = 2kx for some

n ∈ Z, i.e., x = n
2k−1

. Notice that for any n ∈ {1, · · · , 2k−1}, σk
(

n
2k−1

)
= 2kn

2k−1
= n

2k−1
+n, so n

2k−1

is periodic. Observe that
{

1
2k−1

, 2
2k−1

, · · · , 2k−2
2k−1

, 2
k−1

2k−1

}
are distinct members of (0, 1]. Furthermore,{(

m
2k−1

, m+1
2k−1

]}2k−2

m=1
is a partition of (0, 1] and each interval is of length 1

2k−1
.

Take any (a, b) ⊂ (0, 1], and choose k ∈ N large enough so that one element of the partition{(
m

2k−1
, m+1
2k−1

]}2k−2

m=1
is contained entirely in (a, b). Call this element

(
m0

2k−1
, m0+1
2k−1

]
and note that

we have the periodic point m0+1
2k−1

∈ (a, b). Hence, the periodic points of this system are dense, but

not all points are periodic.

Definition 30. The orbit of a point x in a dynamical system (X,σ) is the set
{
σk(x)

}
k∈N.

Definition 31. A point x ∈ X is a transitive point for the system (X,σ) if its orbit under σ is

dense in X.

Example 23. This is a modification of the proof in Example 11.3.1 of [7]. Every x ∈ R/Z is a

transitive point for the irrational shift σ on R/Z given by σ(x) = x+ p, where p ∈ R\Q.

To see this, fix some x ∈ R/Z and p ∈ R\Q. Take any y ∈ R/Z and ϵ ∈ [0, 1). We use the

metric d(x, y) = min{|x− y|, 1− |x− y|}.

Choose N ∈ N so that 1
N < ϵ. For 1 ≤ m ≤ N , set Im =

[
m−1
N , mN

)
. Observe that

{Im}Nm=1 is a partition of [0, 1) and |Im| = 1
N for all m. For 0 ≤ j ≤ N , set xj = pj ∈ R/Z.

Since p is irrational, we know from Example 20 that each xj is distinct as this set is simply the

first N interations of the orbit of 0 under σ. Since there are N + 1 xj ’s and N Im’s, we can

apply the Pigeonhole Principle to obtain 1 ≤ m0 ≤ N and distinct 0 ≤ j1, j2 ≤ N such that

xj1 , xj2 ∈ Im0 . Observe that d(xj1 , xj2) < 1
N < ϵ and that xj2 − xj1 ∈

[
0, 1

N

)
∪
[
N−1
N , 1

)
. It

follows that if xj2 − xj1 ∈
[
0, 1

N

)
, then d(xj1 , xj2) = |xj2 − xj1 |, and if xj2 − xj1 ∈

[
N−1
N , 1

)
, then

d(xj1 , xj2) = 1− |xj2 − xj1 |.
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Without loss of generality, xj2 > xj1 , which gives d(xj1 , xj2) = |xj2 − xj1 |. Let ℓ = j2 − j1.

Set xℓ = xj2 − xj1 = pℓ, and note that for any i ∈ N, |[ ixℓ, (i+ 1)xℓ) | < ϵ. Notice that the

set {ixℓ}i∈N moves across R/Z in steps of length less than ϵ and that with enough iterations, the

intervals [ ixℓ, (i+ 1)xℓ) will cover R/Z. Choose iℓ ∈ N such that y − x ∈ [ iℓxℓ, (iℓ + 1)xℓ) In

particular, d(y − x, iℓxℓ) < ϵ.

Observe that

d
(
y, σiℓℓ(x)

)
= min

{
|y − σiℓℓ(x)|, 1− |y − σiℓℓ(x)|

}
= min {|y − x− piℓℓ|, 1− |y − x− piℓℓ|}

= min {|(y − x)− iℓxℓ|, 1− |(y − x)− iℓxℓ|}

= d (y − x, iℓxℓ)

< ϵ.

Hence, the orbit of x comes arbitrarily close to y. Since y was arbitrary, x is a transitive point.

Definition 32. A dynamical system (X,σ) is topologically transitive if for every pair of nonempty,

open sets U and V in X, there is n ∈ N ∪ {0} such that σn(U) ∩ V ̸= ∅.

Example 24. The irrational shift of Example 23 is topologically transitive.

Remark 10. In general, a dynamical system being topologically transitive and a dynamical system

having a transitive point are not equivalent conditions.

4.2. Semicrossed Product and Dynamics

Let X be a compact Hausdorff space.

Theorem 1. The periodic points of σ = {σi}i∈I are dense in X if and only if for every f ∈ C(X)

and ϵ > 0, there is n ∈ N and a surjective π : A → Mn(C) with ∥π(f)∥ > ∥f∥ − ϵ.

Proof. Suppose the periodic points of (X,σ) are dense. Take arbitrary f ∈ C(X) and ϵ > 0. Let

y ∈ X be where f attains its maximum modulus, and let V be the open ball centered on f(y) of

radius ϵ. As f is continuous, we may choose open U ∋ y in X so that f(U) ⊆ V . Take periodic

x ∈ V . Let n ∈ N be the period of x, and let w = in · · · i1 ∈ F+(I) be such that σw(x) = x. Set

Nx = {xi}ni=1 by x1 = x, x2 = σi1(x), · · ·, and xn = σin−1 ◦ · · · ◦ σi1(x). Define π : A → Mn(C) as
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in Section 3.5, and by Proposition 8, we know that π is surjective. Then

0 ≤ ∥f∥ − ∥π(f)∥

≤ |f(y)| − |f(x)|

= ||f(y)| − |f(x)||

≤ |f(y)− f(x)|

< ϵ.

Hence, ∥f∥ − ϵ < ∥π(f)∥.

Suppose the periodic points are not dense. Choose y ∈ X and ϵ so that there are no periodic

points in the ball U centered on y with radius ϵ. Let f ∈ C(X) be so that f is supported on U .

Notice that ∥π(f)∥ = 0 for every periodic x, and hence, π is not surjective.

Let A = C(X) ×σ Z+. Let J be an ideal of C(X), and let K ⊂ X be the closed set such

that J = {f ∈ C(X) : f |K = 0}. Let I be the ideal in A generated by J . Define π : A → Mk(A)

by

π(f) = [f |K ]i=j

π (Sℓ) = [Sℓ]i=j+1 mod k

Let A = C(X) ×σ F+. Let I be the ideal in A generated by
{
Sk1
m1

, · · · , Skp
mp

}
. Set k =

max{ki} and M = {mi}. Define π : A → Mk(A) by

π(f) = [f ]i=j

π (Sℓ) =


[Sℓ]i=j+1 mod k if ℓ /∈ M

[Sℓ]i=j+1
j≤ℓk

ℓ ∈ M

m

Theorem 2. σ : X → X is topologically transitive if and only if for every pair of ideals J1, J2 of

C(X), there is k ∈ N so that
(
πx(S

k)πx(J1)πx(S
k)
)
∩ (πx(J2)) ̸= {0}.
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Proof. Suppose σ is topologically transitive. Take any pair of ideals J1, J2 of C(X), and let U1, U2

denote the respective open sets on which their elements are supported. Let k denote the smallest

integer for which σk(U1) intersects U2. Fix x ∈ U1, and note that for any f2 ∈ U2, f2(σ
m(x)) = 0,

m < k. The k−kth entries of πx(S
k)πx(f1)πx(S

k) and πx(f2) are f1(x) and f2(σ
k(x)), respectively,

where fi ∈ Ji. Choose f1 and f2 to give the entries the same non-zero value.

If σ is not topologically transitive then there are open sets U and V such that U∩σk(V ) = ∅

for all k. Then the ideals {f : f |X\U = 0} and {g : G|X\V = 0} will satisfy
(
πx(S

k)πx(U)πx(S
k)
)
∩

(πx(V )) = {0} for all k.

The following example shows why the above theorem cannot be strengthened to use the

whole matrix.

Example 25. Consider the irrational shift σ on X = R/Z given by σ(x) = x + 1√
5
. Let U1 =

(1/10, 1/5) and U2 = (1/2, 3, 5), and let Ji =
{
f ∈ C(X) : f |X−Ui

= 0
}
. Fix x ∈ U1, and suppose

πx(S)πx(f1)πx(S)
∗ = πx(f2) for some fi ∈ Ji. It follows that f1(σ

m(x)) = f2(σ
m+1(x)), m ≥ 0.

In particular, f1(σ
m(x)) ̸= 0 implies σm(x) ∈ U1 and σm+1(x) ∈ U2, i.e., σ

m(x) ∈ (1/10, 3/5 −

1/
√
5) =: W .

As x is transitive, the orbit of x is dense in W . However, f1 vanishes off of W and off of

the orbit x. Hence, f1 must be the zero function since it is continuous, which is a contradiction.

Therefore, πx(S)πx(J1)πx(S) ∩ πx(J2) = {0}.

4.3. Beginning Multivariate Definitions

In this section, the map σ in the dynamical system (X,σ) is now a family of maps.

4.3.1. Periodicity

Definition 33. For a dynamical system (X,σ), we consider six possible definitions of what it

means for a point x ∈ X to be P(i) periodic for the system. In a dynamical system (X,σ), a point

x ∈ X is

1. P1-periodic if there is v ∈ F+(I) so that σv(x) = x

2. P2-periodic if x is periodic for (X,σi) for every i ∈ I

3. P3-periodic if there is v ∈ F+(I) so that every letter of I is used in v and σv(x) = x

4. P4-periodic if there is v ∈ F+(I) so that every letter of I is used in v nontrivially and σv(x) = x
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5. P5-periodic if for every u ∈ F+(I), there is a ∈ F+(I) so that σau(x) = x

6. P6-periodic if for every w ∈ F+(I), there is k ∈ N so that σwk(x) = x

Remark 11. We will drop the word periodic and just refer to P (i) below.

Remark 12. When we discuss P3 or P4, it will be assumed that I is finite.

Remark 13. When we discuss P5, we assume that x is not a fixed point for at least one of the maps.

We will first look at relations between these different possibilities before observing certain

properties.

Proposition 11. We have the following relations between the choices of Definition 33.

1. If x is P2 for (X,σ), then x is P1 for (X,σ).

2. If x is P3 for (X,σ), then x is P1 for (X,σ).

3. If x is P4 for (X,σ), then x is P3 for (X,σ).

4. If x is P5 for (X,σ), then x is P4 for (X,σ).

5. If x is P6 for (X,σ), then x is P5 for (X,σ).

6. If x is P2 for (X,σ), then x is P3 for (X,σ).

Proof. Points 1, 2, and 3 are immediate.

For 4, take v ∈ F+(I) so that every letter of I is used exactly once. We may assume

σv(x) ̸= x and choose a ∈ F+(I) so that σav(x) = x. Since av ∈ F+(I) uses each letter of I

nontrivially, x is P4.

For 5, take any u ∈ F+(I), and choose k ∈ N so that σwk(x) = x. As wk−1 ∈ F+(I), x is

P5.

For 6, for every i ∈ I, choose ni ∈ N so that σini (x) = x. The concatenation v of each ini

is in F+(I) and σv(x) = x. As v contains each letter of I, x is P3.

The following examples show that the converses of Proposition 11 are not necessarily true.

Example 26. Let X = R/Z, and let σ1, σ2 on X be given by σ1(x) = x + 2/5 and σ2(x) = x/2.

Notice that σ21(2/5) = 1/5, so x = 1/5 is P1. However, x = 2/5 is not periodic for σ2, so x = 2/5

is not P2.

40



Example 27. Let X = {x1, x2, x3}, and let σ1 (left) and σ2 (right) on X be as follows:

x1

33

x2 hh

x3

ss x1 // x2 hh

x3

==

Since σ11(x1) = x1, x1 is P1. However, if σ2 is ever introduced to the orbit of x1, the orbit stays at

x2. Hence, x1 is not P3.

Example 28. Let X = {x1, x2, x3, x4}, and let σ1 (left) and σ2 (right) on X be as follows:

x1
**
x2jj

x466 x3oo

x166 x2

��
x466 x3

II

As σ1221(x1) = x1, x1 is P3. Note that this path contains σ2 trivially since the application of σ22

on σ1(x1) and the application is simply the identity.

Observe that for a nontrivial path for x1, we exclude loops. Since σ2 and σ11 immediately

lead x1 back to itself, a nontrivial path for x1 back to itself must begin with σ21. Introducing σ1 at

this step leads to x4, but x4 is fixed under both σ1 and σ2. Hence, to get back to x1, σ2 must be

applied. However, σ22 loops σ1(x1) back to itself, so σ2 is in the path trivially. From x2, the only

way to return to x1 is through σ1. The possible paths are shown below:

x1

σ11,σ2

��

σ1

��
x2

σ12

��

σ22
yy

x4

σw

FF

We are not able to add nontrivial paths from x1 back to itself. Hence, x1 is not P4.

Example 29. Let X = R/Z, and let σ1, σ2 on X be given by σ1(x) = x/3 and σ2(x) = x+ 1/2.

First notice that σ21(3/4) = 3/4, so x = 3/4 is P4.
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Now observe that σ22 is the identity on X, so for any nontrivial w ∈ F+(I), σw reduces to

σ1n , where n ∈ N ∪ {0}, or σ1in21in−12···21i1 , where i1, in ∈ N ∪ {0} and i2, · · · , in−1 ∈ N. We have

σ11(3/4) = 1/12, so for any i ∈ N, σ1i11(3/4) ∈ (0, 1/12) and σ21i11(3/4) ∈ (1/2, 19/36) ⊂ (0, 3/4).

Continuing in this manner, we see that σw111(3/4) ∈ (0, 3/4) for every w ∈ F+(I). Hence, x = 3/4

is not P5.

Example 30. We use again the space X = R/Z. Let σ1, σ2 on X be given by σ1(x) = x+ 2/5 and

σ2(x) = 1− |2x− 1|.

For any w ∈ F+(I), σw(1/5) ∈ {0, 1/5, 2/5, 3/5, 4/5}. Applying σ1 an appropriate number

of times to σw(1/5) returns 1/5, so x = 1/5 is P5.

Now observe that x = 1/5 is not P6 as σ(12)k(1/5) = 2/5 for every k ∈ N.

For completion in examples of periodicity types, the following is an example of a P6 point.

Example 31. Let X = {1, 2, 3, 4, 5, 6}, and let σa (left), σb (center), and σc (right) be given by

1 → 3 1 → 3 1 → 4

2 → 6 2 → 2 2 → 3

3 → 5 3 → 6 3 → 5

4 → 5 4 → 6 4 → 5

5 → 1 5 → 1 5 → 1

6 → 1 6 → 1 6 → 1

For every w ∈ F+({a, b, c}) with |w| = 3, σw(1) = 1. Hence, for any w ∈ F+({a, b, c}), σw3(1) = 1,

so 1 is P6 for (X,σ).

Remark 14. In summary, we have chains P2 =⇒ P1 and P6 =⇒ P5 =⇒ P4 =⇒ P3 =⇒ P1,

and in these implications, we are not guaranteed the converse. As will be seen, P2 =⇒ P3, but it

is not true that P2 =⇒ P4 or P3 =⇒ P2.
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Example 32. Let X = {x1, x2, x3}, and let σ1 (left) and σ2 (right) on X be as follows:

x1

��

x2 hh

x3

\\
x1

##
x2ee

x3 XX

Here, x1 is P2 but not P4.

Example 33. Let X = {x1, x2}, and let σ1 (left) and σ2 (right) on X be as follows:

x1 // x2 hh x166 x2oo

In this case, x1 is P3 but not P2.

Remark 15. We use the standard definition of periodic points being dense that was stated in Section

4.1. In the multivariate case, we need only specifiy which version of periodicity is being used when

discussing the periodic points being dense.

Proposition 12. If the periodic points are dense for at least one σi of σ = {σi}, then P1 points

are dense for σ.

Proof. Suppose the periodic points of σi0 ∈ σ are dense in X, and take U ⊆ X. Choose x0 ∈ U

and n ∈ N so that σin0 (x0) = x0. Note that x0 is P1 using v = in0 .

4.3.2. Transitivity

Now we consider what it could mean for a point to be transitive.

Definition 34. For a dynamical system (X,σ), we consider four possible definitions of what it

means for a point x ∈ X to be Tr(i) transitive for the system. We add the notation of F∞(I) being

the sets of all finite or infinite words of I. In a dynamical system (X,σ), a point x ∈ X is

1. Tr1-transitive if for any y ∈ X and open U ∋ y in X, there is w ∈ F+(I) so that σw(x) ∈ U .

2. Tr2-transitive if x is transitive for (X,σi) for every i ∈ I.

3. Tr3-transitive if for every y ∈ X, open U ∋ y in X, and u ∈ F+(I), there is b ∈ F+(I) such

that σbu(x) ∈ U .
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4. Tr4-transitive if there is v ∈ F∞(I) so that for every y ∈ X and open U ∋ y in X, there is

a ∈ F+(I) with v = ba (b ∈ F∞(I)) and σa(x) ∈ U .

Remark 16. As with periodicity, we drop the word transitive when talking about a space that is

Tr(i) transitive.

We will first look at relations between these different possibilities before observing certain

properties.

Proposition 13. We have the following relations between the choices of Definition 34.

1. If x is Tr2, Tr3, or Tr4 for (X,σ), then x is Tr1 for (X,σ).

2. Suppose X is compact. If x is Tr3, then it is Tr4.

3. Suppose X is countable. If x is Tr3, then it is Tr4.

Proof. 1 is immediate.

For 2, for every y ∈ X, choose a neighbourhood Uy. Take {yi}ni=1 ⊂ X so that X = ∪n
i=1Uyi .

Take any u ∈ F+(I), and we may inductively choose bi ∈ F+(I) (i = 1, · · · , n) so that σbi···b1u(x) ∈

Uyi . Let v = bn · · · b1u, and the definition is satisfied.

The following examples show that the converses of Proposition 11 are not necessarily true.

Example 34. Consider X = {xi}3i=1 with the discrete topology, and let σ1 (left) and σ2 (right) on

X be as follows:

x1

}}
x2FF x3FF

x1

!!
x2FF x3FF

Observe that x1 is Tr1, but not Tr2, Tr3, or Tr4 as σw1(x1) = x2 and σw2(x1) = x3 for every

w ∈ F∞(I).
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Example 35. Consider X = {xi}4i=1 with the discrete topology, and define σ1 (left) and σ2 (right)

on X as follows:

x1 // x2

}}
x3FF x4FF

x1
��

x2

��
x3 // x4FF

Observe that x1 is Tr4 using v = 211. However, x1 is not Tr3 since σw21(x1) = x4 for any w ∈ F∞(I).

Proposition 14. If the transitive points are dense for at least one σi of σ = {σi}i∈I , then Tr1

points are dense for σ.

Proof. Immediate.

The following gives an example of a Tr3 point.

Example 36. Define σ = {σi}2i=1 on [0, 1] by σ1(z) = z3 and σ2(z) = z1/2. Observe that σ1 and σ2

are commutative and that (σ1α ◦ σ2β ) (z) = z3
α/2β for α, β ∈ N ∪ {0}.

Take any x ∈ (0, 1). Take any y ∈ (0, 1) and consider any open J ⊆ [0, 1] containing y. We

may assume without loss of generality that J is an interval (a1, a2) in (0, 1). Then J = xI , where

I =
(
ln a1
lnx , ln a2

lnx

)
⊆ R+. We want to find α, β ∈ N ∪ {0} so that x3

α/2β ∈ J , i.e., so that 3α/2β ∈ I.

It is well known that we have a dyadic rational p
2n ∈ I, where p ∈ N and n ∈ N ∪ {0}. Let

m ∈ N ∪ {0} be such that 3m ≤ p < 3m+1. Then at least one of the following three conditions

are satisfied: 3m

2n ∈ I, 3m+1

2n ∈ I, or I ⊂
(
3m

2n ,
3m+1

2n

)
. We will only do more work if only the third

condition is met. In this case, note that 2n

3m I ⊂ (1, 3) = 3(0,1).

For y ∈ R, use the notation ⌊y⌋ = max{α ∈ Z : α ≤ y} and {y} = y − ⌊y⌋. Observe that

for any y, z ∈ R, y − z = ⌊y − z⌋ + {y − z} and y − z = (⌊y⌋+ {y}) − (⌊z⌋+ {z}). Notice that

{y}− {z} ∈ (−1, 1), and that {y− z} = {y}− {z} if {y}− {z} ∈ [0, 1) and {y− z} = {y}− {z}+1

otherwise. In particular,

⌊y − z⌋ = ⌊y⌋ − ⌊z⌋+ {y} − {z} − {y − z}

=


⌊y⌋ − ⌊z⌋ if {y} − {z} ∈ [0, 1)

⌊y⌋ − ⌊z⌋+ 1 otherwise.

(4.1)
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From basic inequality and logarithm properties, we have for any k, ℓ ∈ N, 3m+ℓ

2n+k ∈
(
3m

2n ,
3m+1

2n

)
if and only if 0 < ℓ−k · ln 2

ln 3 < 1. This implies ℓ−k · ln 2
ln 3 =

{
ℓ− k · ln 2

ln 3

}
, which gives ⌊ℓ−k · ln 2

ln 3⌋ = 0.

Notice that {ℓ} = 0 and
{
k · ln 2

ln 3

}
∈ (0, 1). Applying Equation 4.1 yields ℓ = 1 +

⌊
k · ln 2

ln 3

⌋
.

Define B, a : N → R by B(b) = b · ln 2
ln 3 and a(b) = 1 + ⌊B(b)⌋. Observe that for any b ∈ N,

3a(b)

2b
=

31+B(b)−{B(b)}

2b
= 31−{B(b)} ∈ (1, 3) = 3(0,1).

Notice also that {B(b)}b∈N is an irrational rotation of 0 on R/Z, so its orbit is dense in [0, 1]

according to Example 23. Choose b ∈ N so that 31−{B(b)} ∈ 2n

3m I. Observe that 3m+a(b)

2n+b ∈ I; hence,

x3
m+a(b)/2n+b ∈ J . Hence, x is Tr1, and as x was arbitrary, any element of (0, 1) is Tr1 for (X,σ).

Furthermore, this implies every x ∈ X is Tr3.

4.3.3. Topological Transitivity

Definition 35. For a dynamical system (X,σ), where σ = {σi}i∈I , we consider three possibilities

for what it means for the system to be TTr(i) topologically transitive. A dynamical system (X,σ)

is

1. TTr1-topologically transitive if given open, nonempty U, V ⊆ X, there is w ∈ F+(I) such that

σw(U) ∩ V ̸= ∅

2. TTr2-topologically transitive (X,σi) is topologically transitive for every i ∈ I

3. TTr3-topologically transitive if given open, nonempty U, V ⊆ X and u ∈ F+(I), there is

b ∈ F+(I) such that σbu(U) ∩ V ̸= ∅

4.4. Partition Conjugacy

4.4.1. Definition

In [9], Davidson and Katsoulis introduced a concept called piecewise conjugacy when dis-

cussing multivariate systems, and a few properties that pass between piecewise conjugate systems

were explored. In [23], Ramsey refined the definition further. Definition 36 is sourced from [23].

Definition 36. We say that two dynamical systems (X,σ) and (Y, τ), where σ = {σi}i∈I and

τ = {τi}i∈I , are partition conjugate if there are clopen sets {Vi,j}i,j∈I in X and a homeomorphism

γ : X → Y such that
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1. for any fixed j, ∪i∈IVi,j = X and Vi,j ∩ Vi′,j = ∅ when i ̸= i′

2. for any fixed i, ∪j∈IVi,j = X and Vi,j ∩ Vi,j′ = ∅ when j ̸= j′

3. for any i, j, σi|Vi,j
= γ−1 ◦ τj ◦ γ

∣∣
Vi,j

4. for any i, j, σ−1
i (σi(Vi,j)) = Vi,j = γ−1

(
τ−1
j (τj ◦ γ(Vi,j))

)
Remark 17. If X and Y are connected, this is the standard definition of topological conjugacy, i.e.,

the indexing set I has a single member.

Remark 18. As noted in [23], point (4) of Definition 36 is equivalent to saying for any i, j ∈ I,

σ−1
i (σi(Vi,j)) = Vi,j = γ−1

(
τ−1
j (τj ◦ γ(Vi,j))

)
if and only if σi(Vi,j) ∩ σi(Vi,j′) = ∅ when j ̸= j′.

Example 37. Let X = (0, 1) ∪ (1, 2) ∪ (2, 3), and let V1,1 = V2,2 = V3,3 = (0, 1) and V1,2 = V2,3 =

V3,1 = (1, 2) and V1,3 = V2,1 = V3,2 = (2, 3). Clearly, these sets satisfy (1) and (2) of Definition 36.

Consider Y = (−4,−3) ∪ (−3,−2) ∪ (−2,−1), and let γ : X → Y be given by

γ(x) =


x− 2 x ∈ (0, 1)

−x− 2 x ∈ (1, 2)

(x− 2)2 − 3 x ∈ (2, 3),

noting that γ(0, 1) = (−2,−1), γ(1, 2) = (−4,−3), and γ(2, 3) = (−3,−2). Observe also that

γ−1(y) =


−y − 2 y ∈ (−4,−3)

2 +
√
y + 3 y ∈ (−3,−2)

y + 2 y ∈ (−2,−1).
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Set σ1, σ2, σ3 on X by

σ1(x) =



√
x+ 2 x ∈ (0, 1) = V1,3

2− (x− 1)2 x ∈ (1, 2) = V1,2

x− 2 x ∈ (2, 3) = V1,3

σ2(x) =


3− x2 x ∈ (0, 1) = V2,2

(x− 1)2 x ∈ (1, 2) = V2,3

4− x x ∈ (2, 3) = V2,1

σ3(x) =


2− x x ∈ (0, 1) = V3,3

√
x− 1 + 2 x ∈ (1, 2) = V3,1

√
3− x x ∈ (2, 3) = V3,2.

The respective graphs of σ1, σ2, σ3 are shown in Figures 4.1 and 4.2. It is clear that the

ranges of Vi,j and Vi,j′ with j ̸= j′ are separate under σi, so (4) of Definition 36 is satisfied (via

Remark 18).

x

y = σ1(x)

x

y = σ2(x)

Figure 4.1. The graphs of σ1 (left) and σ2 (right) of Example 37 are shown.
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x

y = σ3(x)

Figure 4.2. The graph of σ3 of Example 37 is shown.

Set τ1, τ2, τ3 on Y by

τ1(y) =


−y − 6 y ∈ (−4,−3) = γ (V3,1)

√
y + 3− 4 y ∈ (−3,−2) = γ (V2,1)

y − 1 y ∈ (−2,−1) = γ (V1,1)

τ2(y) =


(y + 3)2 − 4 y ∈ (−4,−3) = γ (V1,2)√

1−
√
y + 3− 2 y ∈ (−3,−2) = γ (V3,2)(

1− (y + 2)2
)2

− 3 y ∈ (−2,−1) = γ (V2,2)

τ3(y) =


(y + 3)2 − 2 y ∈ (−4,−3) = γ (V2,3)

√
y + 3− 2 y ∈ (−3,−2) = γ (V1,3)

y − 2 y ∈ (−2,−1) = γ (V3,3) .

It is an easy (albeit tedious) check to verify that (3) of Definition 36 is satisfied.

Thus, (X,σ) and (Y, τ) are partition conjugate.

Proposition 15. Two dynamical systems (X,σ) and (Y, τ), where σ = {σi}i∈I and τ = {τi}i∈I ,

are partition conjugate if there are clopen sets {Ui,j}i,j∈I in Y and a homeomorphism δ : Y → X

such that

1. for any fixed j, ∪i∈IUi,j = Y and Ui,j ∩ Ui′,j = ∅ when i ̸= i′.

2. for any fixed i, ∪j∈IUi,j = Y and Ui,j ∩ Ui,j′ = ∅ when j ̸= j′.
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3. for any i, j, τj |Ui,j
= δ−1 ◦ σi ◦ δ

∣∣
Ui,j

.

4. for any i, j, τj(Ui,j) ∩ τj′(Ui,j′) = ∅ when j ̸= j′.

Proof. Let δ = γ−1 and for each i, j ∈ I, Ui,j = γ(Vi,j), where γ and Vi,j are as in Definition 36.

Take any j ∈ I. As Vi,j ∩ Vi′,j = ∅ when i ̸= i′ and γ is injective, Ui,j ∩ Ui′,j = ∅ for i ̸= i′.

Since ∪i∈IVi,j = X and γ is surjective, ∪i∈IUi,j = Y . (2) is seen similarly.

Take i, j ∈ I and y ∈ Ui,j . Then y = γ(x) for unique x ∈ Vi,j ; hence, τj(y) = τj ◦ γ(x). By

Definition 36, τj(y) = γ ◦ σi(x) = γ ◦ σi ◦ γ−1(x).

In order to see (4), we utilize Remark 18. Since σi(Vi,j) ∩ σi(Vi,j′) = ∅ and γ is injective,

γ ◦ σ(Vi,j) ∩ γ ◦ σi(Vi,j′) = ∅, and hence, τj(Vi,j) ∩ τ(Vi,j′) = ∅.

The following is proved similarly as Remark 18, but (4) of Proposition 15 is easier to work

with.

Proposition 16. For any i, j ∈ I, τ−1
j (τj(Ui,j)) = Ui,j = γ−1

0

(
σ−1
i (σi ◦ γ0(Ui,j))

)
if and only if

τj(Ui,j) ∩ τj′(Vi,j′) = ∅ when j ̸= j′.

Example 38. In the setting of Example 37, U1,1 = U2,2 = U3,3 = (−2,−1) and U1,2 = U2,3 = U3,1 =

(−4,−3) and U1,3 = U2,1 = U3,2 = (−3,−2).

We check just (4) of Proposition 15.

The respective graphs of τ1, τ2, τ3 are shown in Figures 4.3 and 4.4.

y

x = τ1(y)

y

x = τ2(y)

Figure 4.3. The graphs of τ1 (left) and τ2 (right) of Example 38 are shown.
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y

x = τ3(y)

Figure 4.4. The graph of τ3 of Example 38 is shown.

It is not as easy visually to see (4) of Proposition 15 as it is in Proposition 18, so consider

Figure 4.5 for τj(Ui,j).

j\i 1 2 3

1 (−3,−2) (−4,−3) (−3,−2)

2 (−4,−3) (−3,−2) (−2,−1)

3 (−2,−1) (−2,−1) (−4,−3)

Figure 4.5. τj(Ui,j) is shown.

In each column, the entries are disjoint, so (4) is satisfied.

4.4.2. Partition Conjugacy and Periodicity

Certain dynamics properties are preserved in the multivariate case under partition conju-

gacy as they are in one map systems under conjugacy.

Proposition 17. Suppose (X,σ) and (Y, τ) are partition conjugate, and let γ and Vi,j be as in

Definition 36. If x is P1 for (X,σ), then γ(x) is P1 for (Y, τ).

Proof. Let w = im · · · i1 ∈ F+(I) be such that σw(x) = x. For every k = 1, · · · ,m, we let jk ∈ I

be the unique index so that σik−1···i1(x) ∈ Vik,jk (using σi0(x) = x). Set v = jm · · · j1 ∈ F+(I). We
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apply (3) of Definition 36 multiple times to obtain

σw(x) = γ−1 ◦ τjm ◦ γ ◦ γ−1 ◦ τjm−1 ◦ γ ◦ · · · ◦ γ−1 ◦ τi2 ◦ γ ◦ γ−1 ◦ τi1 ◦ γ(x)

= γ−1 ◦ τv ◦ γ(x).

Thus, γ(x) = τv (γ(x)).

Example 39. In the setting of Example 37, x = 1/2 and γ(x) = −3
2 are P1 for (X,σ) for (Y, τ),

respectively, since we have the relations in Figure 4.6.

1/2 (∈ V3,3)
� σ3 //

_
γ

��

3/2 (∈ V2,3)
� σ2 //

i
γ





1/4 (∈ V1,1)
� σ1 //

i
γ





5/2 (∈ V1,3)
�σ1 //

i
γ





1/2

−3/2 �
τ3

// −7/2 �
τ3

//
j

γ−1

JJ

−7/4 �
τ1

//
j

γ−1

JJ

−11/4 �
τ3

//
j

γ−1

JJ

−3/2
_

γ−1

OO

Figure 4.6. Orbit of 1/2 under partition conjugacy

In the construction of Proposition 17, w = 1123 and v = 3133. Observe that Proposition 17

does not extend to P3 or P4. x = 1/2 is P3 and P4, but the construction used did not demonstrate

that γ(x) is P3 or P4. It is true, though, that γ(x) is P3 and P4 since

−3

2

τ27→ 9

16
− 3

τ37→ −5

4

τ37→ −13

4

τ17→ −11

4

τ37→ −3

2
.

However, the next example shows that there is not an equivalent Proposition 17 for P3 or

P4.

Example 40. Let X = {x1, x2, x3}. Let σα (left) and σβ (right) on X be as follows:

x1

}}
x3 // x2 hh

x1

!!
x3

==

x2 hh

Since σβα(x1) = x1, x1 is P4 (and hence P3) for (X,σ).

Let Vα,α = {x1, x2} = Vβ,β and Vα,β = {x3} = Vβ,α. Consider Y = {a, b, c}, and set

γ : X → Y by x1 7→ b, x2 7→ c, and x3 7→ a.
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Let τα (left) and τβ (right) on Y be as follows:

a

��

cEE b

QQ a

{{
cEE boo

It is a routine check to see that (X,σ) and (Y, τ) are partition conjugate. It is also clear that

γ(x1) = b is not P3 (and hence, not P4) for (Y, τ).

There is not an equivalent Proposition 17 for P2 or P6, as we will discuss in the next

example.

Example 41. Let X = {x1, x2}, and let σa (left) and σb (right) on X be as follows:

x1
!!
x2dd

x1
��

x2
��

As σb is the identity on X, every σw, w ∈ F+(I) reduces to σbk for some k ∈ N ∪ {0}. Hence,

σw2(1) = 1, so 1 is P6 for (X,σ). It is also clear that 1 is P2.

Let Va,a = {1} = Vb,b and Va,b = {b} = Vb,a, and let τa (left) and τb (right) on X be as

follows:

x166 x2oo x1 // x2 hh

Using γ = σa, it is an easy check to show that (X,σ) and (X, τ) are partition conjugate.

However, γ(1) is not P6 since for every k ∈ N, τ1k(γ(1)) = 1 ̸= γ(1). Notice also that since

τa and τb are constant maps, γ(1) is not P2.

However, we do have an equivalent statement of Proposition 17 for P5.

Proposition 18. Suppose (X,σ) and (Y, τ) are partition conjugate. If x is P5 for (X,σ), then

γ(x) is P5 for (Y, τ).

Proof. Let γ and Ui,j be as in Definition 36. Take any u = jm · · · j1 ∈ F+(I). For every k =

1, · · · ,m, we let ik ∈ I be the unique index so that τik−1···i1(γ(x)) ∈ Uik,jk , using τi0(γ(x)) = γ(x),
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and let w = im · · · i1 ∈ F+(I). From (3) of Proposition 15, we get

τu(γ(x)) = γ ◦ σw(x).

Choose b = ip · · · im+1 ∈ F+(I) so that σbw(x) = x. For every k = m + 1, · · · , p, we let jk ∈ I be

the unique index so that τik−1···im+1(γ(x)) ∈ Uik,jk , and set a = jp · · · jm+1. As before, we have

τau(γ(x)) = γ ◦ σbw(x),

so τau(γ(x)) = γ(x).

4.4.3. Partition Conjugacy and Transitivity

We now explore some properties of transitivity that are preserved under partition conjugacy.

Proposition 19. Suppose (X,σ) and (Y, τ) are partition conjugate. If x is Tr1 for (X,σ), then

γ(x) is Tr1 for (Y, τ).

Proof. Let γ and Vi,j be as in Definition 36. Take any U ⊆ Y nonempty and open, and note

that V := γ−1(U) is nonempty and open in X. Choose v = im · · · i1 ∈ F+(I) so that σv(x) ∈ V .

There is unique j1 ∈ I so that x ∈ Vi1,j1 , and there is unique j2 ∈ I so that σi1(x) ∈ Vi2,j2 , and

so on until we have unique jm ∈ I so that σim−1···i1(x) ∈ Vim,jm . Set u = jm · · · j1. As usual,

σv(x) = γ−1 ◦ τu ◦ γ(x), so τu ◦ γ(x) ∈ γ(V ). Hence, τu(γ(x)) ∈ U , and γ(x) is Tr1 for (Y, τ).

Remark 19. Example 41 shows that there is not an equivalent Proposition 19 for Tr2.

Proposition 20. Suppose (X,σ) and (Y, τ) are partition conjugate. If x is Tr3 for (X,σ), then

γ(x) is Tr3 for (Y, τ).

Proof. Let γ and Vi,j be as in Definition 36. Take any u = jm · · · j1 ∈ F+(I) and nonempty,

open U ⊆ Y . Again, for every k = 1, · · · ,m, we let ik ∈ I be the unique index such that

σik−1···i1(x) ∈ Vik,jk (using σi0(x) = x). Let w = im · · · i1 ∈ F+(I). As usual, σw(x) = γ−1◦τu(γ(x)).

As x is Tr3, choose a = ip · · · im+1 ∈ F+(I) so that σaw(wx) ∈ γ−1(U). For k = m+1, · · · , p,

we let jk ∈ I be the unique index such that σik−1,··· ,i1 ∈ Vik,jk , and again, as usual, σaw(x) =

γ−1 ◦ τbu(γ(x)). Thus, τbu(γ(x)) ∈ U , so γ(x) is Tr1.
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4.4.4. Partition Conjugacy and Topological Transitivity

We now explore some properties of topological transitivity that are preserved under partition

conjugacy.

Proposition 21. Suppose (X,σ) and (Y, τ) are partition conjugate. If (X,σ) is TTr1, then (Y, τ)

is TTr1.

Proof. Let γ and Vi,j be as in Definition 36. Take A,B ⊆ Y nonempty and open. Then A0 :=

γ−1(A) and B0 := γ−1 are nonempty and open in X. Choose w = im · · · i1 ∈ F+(I) so that

σw(A0) ∩B0 ̸= ∅. Take any zm ∈ σw(A0) ∩B0.

First observe that γ(zm) ∈ γ(B0) = B.

Now, zm = σim(zm−1) for some zm−1 ∈ σim−1···i1(A0), and zm−1 = σim−1(zm−2) for some

zm−2 ∈ σim−2···i1(A0). Continue in this manner until we have z2 = σi2(z1) for some z1 ∈ σi1(A0)

and z1 = σi1(z0) for some z0 ∈ A0. For k = 1, · · · ,m, we let jk ∈ I be the unique index so that

zk−1 ∈ Vik,jk , and set v = jm · · · j1 ∈ F+(I). Then

zm = σim(zm−1)

= γ−1 ◦ τjm ◦ γ(zm−1)

= · · ·

= γ−1 ◦ τv ◦ γ(z0).

Since γ(z0) ∈ A, γ(zm) ∈ τv(A), so τv(A) ∩B ̸= ∅.

Proposition 22. Suppose (X,σ) and (Y, τ) are partition conjugate. If (X,σ) is TTr3, then (Y, τ)

is TTr3.

Proof. Let γ and Vi,j be as in Definition 36. Take any A,B ⊆ Y nonempty and open, and take any

v = jm · · · j1 ∈ F+(I). Notice that A0 := γ−1(A) and B0 := γ−1(B) are nonempty and open in X.

There is unique i1 ∈ I such that A0 ∩ Vi1,j1 ̸= ∅. Fix z1 ∈ A0 ∩ Vi1,j1 .

Set z2 = σi1(z1). There is unique i2 ∈ I such that z2 ∈ Vi2,j2 . Since σi1 is continuous, there

is open A1 with z1 ∈ A1 such that σi1(A1) ⊆ Vi2,j2 . Set z3 = σi2(z2). There is unique i3 ∈ I such

55



that z3 ∈ Vi3,j3 . Since σi2 is continuous, there is open A2 ∋ z2 such that σi2(A2) ⊆ Vi3,j3 . Notice

that z1 ∈ σ−1
i1

(A2).

Continue inductively in this manner. For 3 ≤ k ≤ m, set zk = σik−1
(zk−1). There is

unique ik ∈ I such that zk ∈ Vik,jk . As σik−1
is continuous, we may choose Ak−1 ∋ zk−1 so that

σik−1
(Ak−1) ⊆ Vik,jk , noting that z1 ∈ σ−1

ik−2···i1(Ak−1).

Set M = σ−1
im−2···i1(Am−1)∩σ−1

im−3···i1(Am−2)∩ · · · ∩σ−1
i1

(A2)∩A1∩A0∩Vi1,j1 . Since z1 ∈ M

and each σi is continuous, M is nonempty and open. Set u = im · · · i1 ∈ F+(I). As (X,σ) is TTr3,

choose a = ip · · · im+1 ∈ F+(I) so that σau(M) ∩B0 ̸= ∅.

Take z ∈ σau(M) ∩ B0. Note that γ(z) ∈ B. Choose y ∈ M so that σav(y) = z. Since

y ∈ Vi1,j1 , we have σi1(y) = γ−1 ◦ τj1 ◦ γ(y). Since y ∈ A1, we have σi1(y) ∈ Vi2,j2 , so σi2i1(y) =

γ−1 ◦ τj2j1 ◦ γ(y). Since y ∈ σ−1
i1

(A2), we see σi2i1(y) ∈ Vi3,j3 , so σi3i2i1(y) = γ−1 ◦ τj3j2j1 ◦ γ(y).

Continuing in this manner, we get σu(y) = γ−1 ◦ τv ◦ γ(y).

There is unique jm+1 ∈ I so that σu(y) ∈ Vim+1,jm+1 , noting σim+1u(y) = γ−1 ◦ τjm+1v ◦γ(y).

Continue this process until we have unique jp ∈ I so that σip−1···im+1u(y) ∈ Vip,jp , noting σau(y) =

γ−1 ◦ τjp◦jm+1v ◦ γ(y). Set b = jp · · · jm+1 ∈ F+(I). Thus, γ(z) = τbv(γ(y)). Since y ∈ A0, γ(y) ∈ A.

Thus, γ(z) ∈ τbv(A). Hence, τbv(A) ∩B ̸= ∅, so (Y, τ) is TTr3.

4.5. The surjective extension X̃ of a single map σ

In Section 5 of [15], they developed a surjection extension X̃ of a dynamical system. We

remind of the notation in that paper as we will use it throughout this section. We start with a

dynamical system (X,σ,S), where σ is a family of surjective maps on a compact Hausdorff space

X indexed by an abelian semigroup S. A surjective map p from (X,σ,S) to a similarly defined

dynamical system (Y, β,S) is called an extension map from (X,σ,S) into (Y, β,S) if p ◦βs = σs ◦ p

for every s ∈ S. We let G be the group S − S. A partial order on G is given by h < g if g − h ∈ S.

Set {Xg}g∈G so that Xg = X ∀g, and for g, h ∈ G with h < g, we set σu with u = g−h as Xg → Xh.

We then define

X̃ =

∑
g∈G

xgξg ∈ ΠXg : xh = σu(xg) ∀h < g ∈ G, u = g − h


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We set σ̃ = {σt}t∈S on X̃ by σ̃t ((xg)g∈G) = (σt(xg))g∈G . Set p : X̃ → X by p ((xg)g∈G) = x0,

where 0 is the identity in G. From Proposition 3 of [15], we know that p gives us a homeomorphism

extension form
(
X̃, σ̃,S

)
into (X,σ,S), and by Lemma 6 of [15], it is minimal.

In [21] the one variable case was studied. It was shown that certain properties such as

transitivity are preserved in this extension. We now want to show that this can be applied to the

multivariate definitions that we are using. We observe that if x̃ ∈ p−1{x} is P1 for (X̃, σ̃), then x

is P1 for (X,σ) since w ∈ F+(I) so that σ̃w(x̃) = x̃. Then p (σ̃w(x̃)) = p (x̃), so σw(x) = x. From

this we can conclude the following

Corollary 2. If x̃ ∈ p−1{x} is P2/P3/P4/P5/P6 for (X̃, σ̃), then x is P2/P3/P4/P5/P6 for

(X,σ).

As the next example shows, the converse of our observation about P1 and X̃ is not true.

Example 42. Let X = R/Z, and consider x = 1
5 . Set σa and σb on X by σa(x) = 2x and σb(x) = 3x.

Notice that x is P1 for (X,σ) since σa+b(x) = x.

Choose x̃ ∈ p−1{x} so that xa+b = 1
30 , noting xa = 1

10 and xb = 1
15 . Observe that in

order for σw(xa) = xa or σw(xb) = xb, we must have, respectively, the forms w = 3k or w = 2k,

k ∈ {0} ∪ N. Since no w will work for both xa and xb, x̃ is not P1 for (X̃, σ̃).

Proposition 23. x is Tr1 for (X,σ) if and only if every x̃ ∈ p−1{x} is Tr1 for
(
X̃, σ̃

)
.

Proof. Start with the forward implication. Take arbitrary ỹ =
∑

g∈G ygξg ∈ X̃ and any open Ũ ⊆ X̃

containing ỹ. We may assume that Ũ is a basic set; hence Ũ = X̃ ∩
∏

g∈G Ug, where each Ug is

open in X and Ug = X for every g ∈ G except for some finite set {gi}ni=1. For every i = 1, · · · , n,

fix si, ti ∈ S so that gi = si − ti, and set s ∈ S by s =
∑n

i=1 si. Notice we have the relations for ỹ

seen in Figure 4.7.

We look at U =
⋂n

i=1 σ
−1
s−gi

(Ugi), which is nonempty since ys lives in it. As x is Tr1,

we may choose a ∈ F+(S) so that σa(x) ∈ U , noting σa+s−gi(x) ∈ Ugi for every i. Take any

x̃ =
∑

g∈G xgξg ∈ p−1 {x}, and observe that for every i = 1, · · · , n, we obtain Figure 4.8.

From this, we see that σ̃s+a (x̃) =
∑

g∈G xg−s−aξg ∈ Ũ .

For the converse, choose any y ∈ X and neighbourhood U of y. Set Ũ = p−1(U), and choose

w ∈ F+(S) so that σ̃w (x̃) ∈ Ũ . Then p (σ̃w (x̃)) = σw(x) lives in p
(
Ũ
)
= U .
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yg1 ys1
�σt1oo

...
...

σs−gi(ys) = ygi ysi
�σtioo ys

�σs−sioo z

σs−s1

]]

D

σs−sn

��

...
...

ygn ysn
�σtnoo

Figure 4.7. The relation between terms in ỹ

xgi
� σa // xgi−a

� σs // xgi−s−a (∈ Ui)

x = x0
�

σa
// x−a (∈ U)

* σs−gi
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Figure 4.8. The relation between terms of x̃

Proposition 24. x is Tr3 for (X,σ) if and only if any x̃ ∈ p−1{x} is Tr3 for
(
X̃, σ̃

)
.

Proof. Start with the forward direction. Take any ỹ =
∑

g∈G ygξg ∈ X̃ and open Ũ ⊆ X̃ containing

ỹ. Now take any x̃ =
∑

g∈G xgξg ∈ p−1{x} and u ∈ F+(S). We may assume Ũ has form Ũ =

X̃ ∩ Πg∈GUg, where each Ug is open in X and Ug = X except for g in some finite set {gi}ni=1. For

every i = 1, · · · , n, choose si, ti ∈ S so that gi = si − ti, and set s =
∑n

i=1 si ∈ S.

Observe that σs−gi(ys) = ygi , so ys ∈ σs−gi(Ugi), i = 1, · · · , n. Set U = ∩n
i=1σs−gi(Ugi),

which is open and nonempty. As x is Tr3, we may choose a ∈ F+(S) so that σu+a(x) ∈ U ; notice

that σu+a+s−gi(x) = σu+a+s(xgi) ∈ Ugi , i = 1, · · · , n. Hence, σ̃u+a+s (x̃) =
∑

g∈G σu+a+s(xg)ξg.

Thus, x̃ ∈ σ̃u+a+s

(
Ũ
)
. Since a+ s ∈ F+(S), x̃ is Tr3 for

(
X̃, σ̃

)
.

Now the converse. Take any y ∈ X and open U ⊆ X containing y, and take any u ∈ F+(S).

Set Ũ = p−1(U), and choose a ∈ F+(S) so that σ̃u+a (x̃) ∈ Ũ . It follows that p (σ̃u+a (x̃)) = σu+a(x)

is in U .
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Remark 20. A space having a transitive point and a space being topologically transitive are not

equivalent conditions in general. However, a proposition for topological transitivity analogous to

the one above for transitive points can be proved similarly.

Proposition 25. (X,σ) is TTr1 if and only if
(
X̃, σ̃

)
is TTr1.

Proof. Suppose (X,σ) is topologically transitive. Take any open, nonempty Ũ , Ṽ ⊂ X̃; we can

assume that these are basic sets of the form Ũ = X̃ ∩
∏

g∈G Ug and Ṽ = X̃ ∩
∏

g∈G Vg, where Ug and

Vg are X except finitely often. Let {gi}ni=1 ⊆ G be where Ugi ̸= X or Vgi ̸= X. For every i, choose

si, ti ∈ S so that gi = si − ti, and set s =
∑n

i=1 si. Consider U := p
(
Ũ
)
and V :=

⋂n
i=1 σ

−1
s−gi

(Vgi).

Since (X,σ) is TTr1, we have a ∈ F+(S) so that σa (U) ∩ V ̸= ∅.

Take x ∈ σa(U) ∩ V , and choose x̃ =
∑

g∈G xgξg ∈ X̃ so that xs = x. Observe that

σs−gi(xs) = xgi ∈ Vgi for every i, so x̃ ∈ Ṽ . Now, since x ∈ (p ◦ σ̃a)
(
Ũ
)
, we have ỹ =

∑
g∈G ygξg ∈

Ũ so that x = y−a. In particular, σ̃s+a (ỹ) = x̃, so σ̃s+a

(
Ũ
)
∩ Ṽ ̸= ∅.

Now for the converse. Take open, nonempty U, V ⊂ X. Let Ũ = p−1(U) and Ṽ =

p−1(V ). Choose w ∈ F+ so that σ̃w

(
Ũ
)
∩ Ṽ ̸= ∅; take x̃ in this intersection. Notice that

p (x̃) ∈ (p ◦ σ̃w)
(
Ũ
)
= (σw ◦ p)

(
Ũ
)
, so p (x̃) ∈ σw(U).
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5. MAXIMAL ENVELOPE EXAMPLE

In this section we consider from [15] that the maximal C∗-algebra for the upper triangular

n×n matrices is contained in the matrices over the free product of copies of C[0, 1]. We investigate

how the free product multiplication interacts with the matrix multiplication to describe what

component-wise entries in the maximal C∗-algebra will look like.

In Section 1.1, we saw that there are many way to embed an operator algebra into a

C∗-algebra. In this example, we focus on the maximal C∗-algebra C∗
max(A). Recall Definition

10: for an operator algebra A, there exists a largest C∗-cover C∗
max(A). Formally, there is a

completely isometric j : A → C∗
max(A) with the following universal property: if π is a completely

contractive homomorphism from A into a C∗-algebra D, then there is a unique *-homomorphism

π̃ : C∗
max(A) → D such that π̃ ◦ j = π.

We will connect this to another C∗-algebra, the amalgamated free product.

Definition 37. Suppose A,B,D are operator-algebras and αA : D → A and αB : D → B are

completely isometric invlusions. The amalgamated free product A ∗D B is the unique operator

algebra generated by fA(A) ∪ fB(B), where fA : A → A ∗D B and fB : B → A ∗D B are injective

completely isometric representations that satisfy fA ◦αA = fB ◦αB and have the universal property

that given an operator algebra H and a completely contractive homomorphism hA : A → H and

hB : B → H satisfying hA ◦ αA = hB ◦ αB, there is h̃ : A ∗D B → H with h̃ ◦ fA = hA and

h̃ ◦ fB = hB.

In general, the algebra A∗DB is spanned by elements of the form a1 ∗ b1 ∗ · · · ∗an ∗ bn which

is a formal multiplication with the only way for elements to “pass” across ∗ is for them to be in d.

For more information about free products see [24]. In [2], it is shown that these two constructions

are related in the following sense.

Proposition 26. [2] Let A,B, and D be operator algebras with D a C∗-algebra. Then C∗
max(A ∗D

B) ∼= C∗
max(A) ∗D C∗

max(B).

(Sketch of proof)
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We denote by jA : A → C∗
max(A) and jB : B → C∗

max(B) the completely isometric in-

clusions. Then by the way the free product is constructed jA|D = jA|D and hence there is a a

completely contractive representation jA ∗ jB : A ∗D B → C∗
max(A) ∗D C∗

max(B) and by the uni-

versal property for C∗
max there is a completely contractive homomorphism π : C∗

max(A ∗D B) →

C∗
max(A) ∗D C∗

max(B).

On the other hand, there are completely isometric inclusions iA : A → A ∗D B and iB :

B → A ∗D B. By the universal property for C∗
max these lift to ∗-homomorphisms IA : C∗

max(A) →

C∗
max(A ∗D B) and IB : C∗

max(B)→C∗
max(A ∗D B). Verifying that IA|D = IB|D, yields a map

IA ∗ IB : C∗
max(A) ∗D C∗

max(B) → C∗
max(A ∗D B). Composing π and IA ∗D IB induces the identity

map on the subalgebra generated by A and B and hence the two maps must be ∗-isomorphisms,

proving the proposition.

How this helps us understand C∗-max for graph operator algebras is due to two facts about

graph algebras. The first is that Tn the algebra of upper triangular n × n matrices is the graph

algebra for the graph with n-vertices

• // • // · · · // • .

The second requires some notation. We let Dn denote the algebra of n×n diagonal matrices inside

Mn.

The result is a direct application of Theorem 4 from [13] which in our context tells us that

Proposition 27. The algebra Tn is completely isometrically isomorphic to

(T2 ⊕ Cn−2) ∗Dn (C⊕ T2 ⊕ Cn−3) ∗Dn · · · ∗Dn (Cn−2 ⊕ T2).

From there we can conclude the following about C∗
Max(Tn).

Proposition 28. For all n

C∗
max(Tn) ∼= (C∗

max(T2)⊕ Cn−2) ∗Dn (C⊕ C∗
max(T2)⊕ Cn−3) ∗Dn · · · ∗Dn (Cn−2 ⊕ C∗

max(T2)).
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When we recall that

C∗
max(T2) =


f1 f2

f3 f4

 : fi ∈ C[0, 1] and f2(0) = 0 = f3(0)


we can think about C∗

max(Tn) as free products of matrices over functions algebras. There are many

technicalities to prove but in, as yet unpublished work, Duncan [14] showed that

C∗
max(Tn) ⊂ Mn(C([0, 1]) ∗C C([0, 1]) ∗C · · · ∗C C([0, 1])).

In what follows we will look at what elements of C∗
max look like inside Mn(C([0, 1]) ∗C

C([0, 1]) ∗C · · · ∗C C([0, 1])).

We build sets as follows where F = C∗
max(T2).

Hj,k =

j−1︷ ︸︸ ︷
C⊕ · · · ⊕ C⊕F ⊕

k−1−j︷ ︸︸ ︷
C⊕ · · · ⊕ C

Thinking of those as matrices in Mk, we have

Hj,k =
{
λj
1,1e1,1 + · · ·+ λj

j−1,j−1ej−1,j−1 + f j
j,jej,j + f j

j+1,j+1ej+1,j+1

+λj
j+2,j+2ej+2,j+2 + · · ·+ λj

k,kek,k + gjj+1,jej+1,j + gjj,j+1ej,j+1

}

In these sets, the non zero diagonal off entries are in these positions:

{ai,jei,j : i− j = 1} =
{
gii+1,iei+1,i

}
{ai,jei,j : i− j = −1} =

{
gii,i+1ei,i+1

}
Each Hj,k is allowed non zero entries along each diagonal entry.

If we look at any free product, we only consider generating elements hki,jei,j rather than full

matrices. We introduce a notational convention for looking at non zero entries, noting these only

occur in i− i, (i+ 1)− i, or i− (i+ 1) positions. For

hk1i1,j1ei1,j1 ∗D · · · ∗D hkmim,jm
eim,jm = hk1i1,j1 ∗D · · · ∗D hkmim,jm

ei1,im+1 ,
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where jℓ = iℓ+1 for ℓ = 1, · · · ,m− 1 and im+1 = jm. In this, iℓ − iℓ+1 ∈ {−1, 0, 1}.

If iℓ = iℓ+1, then hkℓiℓ,iℓ+1
∈
{
C,
{
f ℓ
ℓ,ℓ

}
,
{
f ℓ−1
ℓ,ℓ

}}
If iℓ = iℓ+1 + 1, then hkℓiℓ,iℓ+1

∈
{
gℓℓ+1,ℓ

}
If iℓ = iℓ+1 − 1, then hkℓiℓ,iℓ+1

∈
{
gℓℓ,ℓ+1

}
Observe that

i1 − im+1 = (i1 − i2) + (i2 − i3) + · · ·+ (im − im+1)

= |{ℓ : iℓ − iℓ+1 = 1}| − |{ℓ : iℓ − iℓ+1 = −1}|

Take any ei,j . If we multiply by a matrix unit on the right and obtain a nonzero result, that

matrix is of the form ej,∗, if we require j − ∗ ∈ {−1, 0, 1}. That is, we have ej,j−1, ej,j , or ej,j+1.

Following this pattern, we can construct a diagram, as seen in Figure 5.1, where three arrows point

from the unit matrix to each of the possibilities of unit matrices that can give us this result.

ej−1,j−2

dd

ej−1,j−1
oo //

��
ej−1,j

rr
�� %%

ej,j−1

ff OO
22

ej,joo //vv ej,j+1

rr
�� &&

ej+1,j

ee OO
22

ej+1,j+1
oo //

II
ej+1,j+2

$$

Figure 5.1. The possible paths are shown.

To get from ej,j−1 to an element of the form ej−1,∗, we must pass through ej−1,j−2. Adjusting

the indices above as appropriate, for n > 0, we see that to get from ej−n,j−(n+1) to something of

the form ej−(n+1),∗, we must pass through ej−(n+1),j−(n+2).

To get from ej,j+1 to something of the form ej+1,∗, we must pass through ej+1,j+2. Adjusting

the indices above as appropriate, for n > 0, we see that to get from ej+n,j+(n+1) to something of

the form ej+(n+1),∗, we must pass through ej+(n+1),j+(n+2).
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We look again at

ei1,im+1 = ei1,i2ei2,i3 · · · eim−1,imeim,im+1

Let M = im+1 − i1. Without loss of generality, assume M > 0. We let N1 = i1 +1, N2 = N1 +1 =

i1 + 2, · · ·, and NM−1 = NM−1 + 1 = i1 +M − 1. Let N0 = i1 and NM = im+1.

In the sequence of indices {i1, · · · , im+1}, we have a subsequence {jℓ}Mℓ=1 with jℓ being the

first instance of Nℓ that gives us eNℓ−1,Nℓ
.

While this allows us to consider what the entries in the matrices might look like, it does

not give us a general method that extends outside this context. This method does not practically

translate into understanding C∗
max for even other finite graphs, even when using the free product

construction.
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