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ABSTRACT

Traumatic brain injury (TBI) is a serious health and socioeconomic issue which affects thou-

sands of lives annually in the United States. Computational simulations play an important role in

better understanding of the TBI and on how it happens. Having accurate material properties of

the brain tissue and the elements of the brain will help with more accurate computational simula-

tions. Material characterization is therefore the line on which lots of research have been conducted.

In recent years, the emerge of data driven approaches has led to better and more accurate soft

tissue characterization. In this dissertation, a metaheuristic search optimization method together

with simulation-based optimization framework, and artificial intelligence-based approaches have

been employed for macromechanical and micromechanical characterization of brain tissue. First,

a constrained particle swarm optimization (C-PSO) technique has been established for soft tissue

characterization that overcomes the shortcomings of the classical optimization methods. Through

the application of the inherent constraints in the hyperelastic and visco-hyperelastic models, it

became possible to reduce the time complexity of this optimization algorithm. Subsequently, the

developed constrained optimization method was employed to create simulation-based optimization

frameworks for characterizing the micro-level constituents of human brain white matter including

axons and extracellular matrix using the hyperelastic and visco-hyperelastic constitutive models.

This simulation-based optimization framework helps the researchers to go around the complexities

involved with the experimental techniques on micro-level characterization of soft tissues. The final

part of this dissertation is devoted to the development of the machine learning and deep learn-

ing techniques for classifying the tissue stiffness out of the finite element (FE) simulation results.

Through the training of a regularized logistic regression and deep learning convolutional neural

networks, it became possible to correctly predict more than 91% of the cases of tissues with high

stiffness. The tissues with high stiffness are usually indicative of the pathology and hence are impor-

tant from medical perspective. The outcome of this part of the work could be useful for qualitative

description of the soft biological tissue stiffness and pathology diagnosis which can be used as an

alternative to the inversion algorithms.
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1. INTRODUCTION

In this chapter, the ongoing research in TBI and the efforts for biomechanical modeling of

this problem will be presented. In particular, the characterization of soft tissues which plays a vital

role within the context of TBI simulation will be described. The dissertation objectives defined for

addressing the issues in the field of soft tissue characterization will be explained and finally, the

organization of the dissertation and its structure will be discussed.

1.1. Overview

Annually 1.5 million cases of traumatic brain injury (TBI) occur in the United States [7].

Just in year 2013, 56000 TBI related deaths were recorded in the United States which accounts

for 2.2% of overall death statistics [8]. The annual indirect financial burden of TBI is estimated

to be approximately 2.8 billion dollars [9]. All of this reiterate the importance of TBI and why it

is needed to be studied. The emerging use of computational methods such as FE in simulation of

TBI plays an important role in better understanding of TBI and how it happens. There are many

factors contributing to the accuracy of the FE simulations, from which the following factors can be

mentioned:

• Inclusion of different human head organs such as skull, cerebrospinal fluid (CSF), pia mater,

brainstem, and brain tissue in the FE model.

• Geometrical implementation of the human head organs. Ideally, they must be very close to

actual human anatomy.

• Inclusion of gender and age contributing factors to the TBI analysis and their implementation

in the FE model.

• Material characterization and the right choice of constitutive model for different organs of the

human head including brain tissue.

Each of the above items, has been a separate topic for research in which many efforts have

been made to improve the FE simulations from that perspective. Mao et al. [10] used computed

tomography and magnetic resonance imaging to develop an average male head model. Different
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head organs such as cerebrum, cerebellum, brainstem, corpus callosum, ventricles, and thalamus

were included in their developed human head FE model. Subsequently, they have used different

criteria such as brain pressure [11,12], brain motion [13], and facial bone response [14] for validating

their developed FE model by comparing 35 different simulations against experimental tests. In

another work, Tse et al. [15], developed two sets of human head FE model with the one including

the soft tissues (1.3M elements) and the another, excluding the soft tissues (0.4M elements). For

the evaluation phase, they used intracranial pressure (ICP) and relative intracranial motion data

of conducted experimental tests [11–13]. Linear elastic and linear viscoelastic constitutive models

were used for description of different organs and soft tissues. Using of computed tomography and

magnetic resonance imaging, they were able to provide subject-specific models.

For each of the organs included in the human head FE model, it is necessary to develop

appropriate constitutive models and to use right material properties for them. While many of the

organs (usually the non-soft ones) are modelled as linear elastic materials, certain components such

as brain cannot be accurately described with the linear constitutive models. Brain is an ultra-

soft tissue which exhibits large deformation under loading. Since the origin of the TBI can be

traced back to the deformation in the brain at the time of the TBI-inducing incident, it is of the

utmost importance to increase the accuracy of the mechanical behavior description of brain by

finding the most precise constitutive parameters. This task can be challenging due to the high level

of nonlinearity in those models including the hyperelastic and visco-hyperelastic models. Other

than brain, these nonlinear models have been used for characterizing different organs of the head

including pia mater [16], dura mater [17], brainstem [18], and cranial bone [19]. Numerous studies

have been conducted for material characterization of brain tissue and researchers have attested on

the complexity of brain characterization compared to other tissues [20–22]. The attempts on brain

tissue characterization is not limited to the macro-level scale and studies have been performed down

to the micro-level as well. Diffuse axonal injury (DAI) is a form of injury which is directly related to

the micro-level constituents of the brain white matter and hence motivated the researchers to put

a vast effort for micromechanical and multi-scale characterization of human brain tissue [23–25].

Besides the computational techniques, researchers use different experimental methods in-

cluding, but not limited to, uniaxial loading, biaxial loading, and indentation tests. Another useful

technique is the magnetic resonance elastography (MRE). Through the measurement of small vibra-
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tions in the tissue, it is possible to calculate the stiffness of the tissue given that certain parameters

of the tissue like density and Poisson’s ratio is known. The vibration is either induced into the tissue

through mechanical actuators or generated by natural phenomena like cardiac cycle or respiration.

MRE provides physicians with a powerful tool for diagnosing the over-stiffed tissue which could

help them in diagnosing potential pathologies.

1.2. Objectives

In this dissertation, it is first tried to identify the problems and the gaps in the field of brain

tissue characterization and then coming up with approaches for attacking those problems.

As mentioned, the choice of constitutive model is important in the accuracy of the TBI

FE simulations. For the soft tissues, and specially the brain, those constitutive models are usually

highly nonlinear. Commonly, the material parameters of the tissues are found using experimental

tests and subsequent fitting of them with their corresponding constitutive equations. Mostly in the

literature, this task of curve fitting is done using classical optimization techniques, many of them

being gradient based. These gradient-based optimization techniques are prone to yield the local

minimum of the curve fitting optimization problem which in turn, could lead to misleading results.

Moreover, while simulation-based optimization has been used for soft tissue characterization, to the

author’s best knowledge, no specific study has been done to improve their time complexity. These

optimization techniques are commonly performed in the cases where the constitutive model and/or

the simulation conditions make the analytical solution impossible. Usually, thousands of simulations

are carried on for finding the right material parameters. Hence, the second part of this dissertation

is aimed at developing a search optimization technique for finding the best material parameters in a

most accurate way, and subsequently, coming up with strategies and approaches that could reduce

the time complexity of it.

The problem of DAI in TBI-related injuries asks for a deep investigation on the micro-level

constituents of the brain white matter including axons and extracellular matrix (ECM). The DAI

happens when the axons are deformed and usually cut off during the incidents. DAI is the most

common form of the TBI. Due to the difficulty in performing micro-level experimental tests, the

researchers have widely exploited the computational FE techniques. Different loading scenarios

with different constitutive models have been the topics of studies in this field. Noticing the gap
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for time-dependent characterization of those micro-level constituents and lack of the load-agnostic

characterization, led to the third and fourth part of this dissertation.

While MRE is a powerful tool at the physicians’ disposal for finding the stiffness of soft

biological tissues, the inversion algorithms used for generating the stiffness field map out of the

displacement field could be challenging as certain material parameters (depending on the choice of

constitutive model) are needed to be known such as density and Poisson’s ratio. Usually, the average

values are begin used for different patients and hence a room for error in the stiffness measurement

should be anticipated. Moreover, the pathologic tissues usually exhibit higher stiffness compared to

the healthy ones. Therefore, since in many cases the MRE is used for pathology detection, the exact

value of the tissue stiffness is not vital to be known and the qualitative comparison of the stiffness

could be sufficient for decision making. To resolve both mentioned problems, a data-driven modeling

approach is developed by employing artificial intelligence (AI) techniques including machine learning

and deep learning methods. In these approaches, data from numerous FE simulations are used to

learn the stiffness of the model. The fifth part of this dissertation is focused on this study.

1.3. Dissertation structure

Based on what explained, the main content of this thesis can be structurally visualized in

Figure 1.1. The main objectives of this dissertation are shown on the leftmost side of Figure 1.1 and

their corresponding parts (chapters) of this dissertation are shown on the right side. The final part

of this dissertation is focused on concluding the previous parts of the dissertation and providing

some insights for possible future works.

The content of this dissertation is based on and adapted from the following published peer-

reviewed journal papers and peer-reviewed conference proceeding papers:

• [25] Ramzanpour, Mohammadreza, Mohammad Hosseini-Farid, Jayse McLean, Mariusz Ziejew-

ski, and Ghodrat Karami. "Visco-hyperelastic characterization of human brain white matter

micro-level constituents in different strain rates." Medical & Biological Engineering & Com-

puting 58, no. 9 (2020): 2107-2118. (Chapter 4)

• [26] Ramzanpour, Mohammadreza, Mohammad Hosseini-Farid, Mariusz Ziejewski, and Gho-

drat Karami. "A constrained particle swarm optimization algorithm for hyperelastic and

visco-hyperelastic characterization of soft biological tissues." International Journal for Com-
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putational Methods in Engineering Science and Mechanics 21, no. 4 (2020): 169-184. (Chapter

2)

• [27] Ramzanpour, Mohammadreza, Mohammad Hosseini-Farid, Mariusz Ziejewski, and Gho-

drat Karami. "Microstructural hyperelastic characterization of brain white matter in ten-

sion." In ASME International Mechanical Engineering Congress and Exposition, vol. 59407,

p. V003T04A009. American Society of Mechanical Engineers, 2019. (Chapter 3)

• [28] Ramzanpour, Mohammadreza, Mohammad Hosseini-Farid, Mariusz Ziejewski, and Gho-

drat Karami. "Particle swarm optimization method for hyperelastic characterization of soft

tissues." In ASME International Mechanical Engineering Congress and Exposition, vol. 59469,

p. V009T11A028. American Society of Mechanical Engineers, 2019. (Chapter 2)

• [29] Ramzanpour, Mohammadreza, Mohammad Hosseini-Farid, Jayse McLean, Mariusz Ziejew-

ski, and Ghodrat Karami. "A Logistic Regression Analysis for Tissue Stiffness Categorization

Through Magnetic Resonance Elastography." In ASME International Mechanical Engineering

Congress and Exposition, vol. 84522, p. V005T05A043. American Society of Mechanical

Engineers, 2020. (Chapter 5)
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Figure 1.1. The structure of this dissertation. The objectives in the left are correlated to the
chapters of this dissertation.
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2. DEVELOPMENT OF A CONSTRAINED PARTICLE

SWARM OPTIMIZATION FOR HYPERELASTIC AND

VISCO-HYPERELASTIC CHARACTERIZATION OF SOFT

BIOLOGICAL TISSUES

2.1. Introduction and literature review

Hyperelastic constitutive models are used for describing the behavior of the materials show-

ing elastic response under very large deformation. These models are widely used for characterization

of soft biological tissues including blood vessel [30,31], liver [32,33], and brain [34–36]. Among these

tissues, the brain is one of the most important yet most complicated organ of the human body [20].

The ongoing research for characterizing the behavior of brain tissue is a fundamental step for in-

creasing the accuracy of computational and numerical studies including finite element simulations

which are used for a better understanding of traumatic brain injury (TBI) [37–41]. The most com-

mon methods for characterization of brain tissue can be categorized into direct in-vitro uniaxial and

multiaxial testing, and in-vivo methods including MRE [42–44]. However, the mentioned in-vivo

methods can be and have been performed under in-vitro conditions as well [45], the complexity and

high cost of those methods remains as a barrier for their wide usage and hence, most of the studies

employ the uniaxial or multiaxial testing for this purpose. Many of the conducted studies in the field

of brain material characterization have used the uniaxial testing under different loading conditions

of tension, compression, and shear [1,28,46]. Moreover, most of the soft biological tissues including

brain, shows a time-dependent behavior [47–49]. The brain tissue exhibits a relaxing behavior i.e.,

the reduction in the stress of the tissue over the time when subjected to constant deformation. This

time-dependent behavior of brain tissue has been widely modeled in the literature by the means of

linear viscoelastic or nonlinear visco-hyperelastic constitutive models [1, 47,50–53].

The material in this chapter was co-authored by Mohammadreza Ramzanpour, Mohammad Hosseini-Farid, Mar-
iusz Ziejewski, and Ghodrat Karami. The content of this chapter was published in International Journal for Compu-
tational Methods in Engineering Science and Mechanics, 21(4), 169-184. Mohammadreza Ramzanpour was mainly
responsible for experimental data collection, analysis, algorithm development, and the conclusions advanced here.
The other co-authors helped in proof-reading the paper. Ghodrat Karami supervised the project.
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Strain energy functions are used to interpret the experimental data for the use in the math-

ematical constitutive modeling and numerical finite element simulations. Numerous strain energy

functions have been developed for this purpose and it is an active field of research, especially in

biomaterial characterization [22,54–56]. Some constitutive models and characterizations are devel-

oped based on the macro or micromechanical structure of a specific material [2, 57] and therefore,

they are most appropriate for those kinds of materials. Moreover, based on the application and the

conditions of testing, a specific material model or parameter may be observed to be more efficient

and accurate for describing its behavior [58].

Upon the selection of the suitable strain energy function for the material, another important

step is required and that is the search for material model parameters. Mostly in the literature,

the iterative finite element-based optimization [27, 59–61], Levenberg-Marquardt algorithm (LMA)

[62,63], and trust region reflective algorithm (TRF) [64] have been used for finding the hyperelastic

and visco-hyperelastic parameters. However, this problem can still be challenging due to the high

nonlinearity of the involved constitutive models. Gradient based minimization algorithms like LMA

can be fast on convergence, however on the downside, they are prone to get stuck in local minimum

due to the bad initial guess which in some cases can lead to parameters highly deviated from

the actual expected result. As later will be shown in this article, in some cases such as visco-

hyperelastic models, these gradient based optimization algorithms are unable to do the curve fitting.

To overcome all these hindrances, alternative optimization methods including metaheuristic search

optimization methods can be useful in this regard. Moreover, these algorithms also known as black-

box optimization methods are commonly used for iterative finite element-based optimization which

are unavoidably time consuming [18, 65]. Based upon the desired accuracy and the complexity of

the finite element model, several hundreds or thousands of simulations are required for completing

the optimization procedure to obtain the material properties [66]. Hence, any effort to improve

the efficiency of these optimization algorithms by reducing the required number of iterations for

convergence, can be beneficial in decreasing the time complexity of the material characterization

procedure.

In this part of the dissertation, the application of constrained particle swarm optimization

(C-PSO) algorithm for deriving the hyperelastic and visco-hyperelastic parameters of the bovine

brain tissue will be investigated. Since numerous studies have confirmed the effect of strain rate on
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the material properties of the brain tissue [4,67–69], the uniaxial compression tests are conducted at

different strain rates, so that the developed C-PSO algorithm can be checked against the variation

of the mechanical response caused by the change in strain rate of deformation. Thereafter, a

comparison is made with the results obtained by the gradient-based optimization methods. Finally,

different modifications that can be applied on the C-PSO algorithm to find out the fastest and most

efficient approach will be investigated.

2.2. Methodology

In this section, first, the process of performing experimental tests on the bovine brain tissue

will be explained. Thereafter, different constitutive models which will be used for describing the

mechanical response of the brain will be delineated. Finally, the C-PSO method will be explained

and the appropriate optimization problem for finding the material parameters of the constitutive

models will be established.

2.2.1. Unconfined compressive uniaxial tests on bovine brain tissue

Bovine brain samples were obtained from Animal Science Department at North Dakota

State University few hours postmortem. The samples were maintained in phosphate-buffered saline

(PBS) to avoid dehydration and consequent changes in the physical structure of brain samples.

The brain samples were cut with cylindrical shaped surgical scalpels and the respective height and

diameter of each sample were recorded as well. Great care was taken for the extraction of the

samples regarding their orientation to eliminate the need for orientational dependency analysis of

the brain material properties. To perform uniaxial unconfined compression test, the BOSE 3200

electro-force machine (BOSE Corporation, Bloomington MN, USA) was used. The upper and lower

platens were lubricated with oil to minimize the friction of the samples with platens, therefore,

satisfying the required conditions for the uniaxial unconfined compression loading. The test setup

is shown in Figure 2.1.

The samples were subjected to approximately 30% deformation with the deformation speed

of 1, 10, and 1000 mm/s, and then relaxed under constant deformation for the time of approximately

100 to 120 seconds. For each deformation speed, 10 samples were tested, and the average response

was calculated for further analyses. The description of each of the test cases are presented in Table

2.1.
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Figure 2.1. The steps for preparing the brain samples including (a) separating the right and left
lobes, (b) cutting the samples with sharp cylindrical tool, and (c) placing the samples in the lubri-
cated platens of the BOSE 3200 electro-force machine for unconfined compression tests.

Table 2.1. Unconfined uniaxial relaxation compression test specification and samples geometrical
details.

Height Diameter #Samples Deformation speed Strain rate Max strain Relaxation time
10 mm 25 mm 10 1 mm/s 0.1 s−1 -0.3 120 s
14 mm 25 mm 10 10 mm/s 0.7 s−1 -0.3 110 s
14 mm 25 mm 10 100 mm/s 7 s−1 -0.3 105 s

The sample relaxation data obtained from this experimental setup representing force and

displacement of the sample for the strain rate of 0.1 s−1 is shown in Figure 2.2. As can be seen,

first, the sample is deformed and compressed up to 3 mm corresponding to the nominal strain value

of -0.3, and then the sample will be held at this displacement to be relaxed. In the relaxation

phase, the induced force in the sample begins to reduce. The relaxation phase of the test must be

interpreted in a time-dependent manner. The averaged time-force diagram of the relaxed phase of

the test corresponding to the strain rate of 0.1 s−1 is shown in Figure 2.3. As it can be seen, due

to the small change of force in the course of the time, and the high sensitivity of the load cell in

the device, the data is noisy and therefore, appropriate smoothing methods should be applied to

the data for noise reduction. Here, the Savitzky-Golay filter [70] with the degree of 3 and window

length of 51, was used for the purpose of data smoothing. This filter is commonly used for the

signal processing and filtering the data acquired from sensors [71].
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Figure 2.2. Sample relaxation test data for brain samples with the deformation speed of 1 mm/s
corresponding to strain rate of 0.1 s−1. The displacement will be held constant at 3 mm and the
sample begins to relax thereafter.

Figure 2.3. The time-force response of the brain sample in the relaxation phase of the test with the
strain rate of 0.1 s−1. The data is noisy as the relative change of force is small with respect to time.

2.2.2. Hyperelastic and visco-hyperelastic constitutive modeling

Different hyperelastic models are considered in this study for hyperelastic characterization

of brain tissue. Neo-Hookean, Ogden, Mooney-Rivlin and Yeoh model can be named as hyperelastic
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models among which Neo-Hookean model is the simplest one, mostly appropriate for characterization

of rubber like solid materials [72] and is rarely used for soft biological tissues. Therefore, the Neo-

Hookean model is just studied for checking the accuracy of the C-PSO and LMA methods.

The first step for constitutive hyperelastic modeling is to identify and formulate the de-

formation based on the loading mode. The deformation gradient depends on the loading mode

being uniaxial, planar, or biaxial. As in our study, the experimental test is uniaxial unconfined

compression, the deformation gradient can be written as the following:

F =


λ 0 0

0 1√
λ

0

0 0 1√
λ

 (2.1)

In the above equation, F is the deformation gradient and λ = 1 + ε with ε standing for

the nominal strain value. The λ is also known as the stretch which is commonly used in nonlinear

constitutive modeling.

The Neo-Hookean model [73] for incompressible materials in uniaxial loading condition can

be stated as the following:

σ = µ

(
λ2 − 1

λ

)
(2.2)

As can be speculated from equation (2.2), the only controlling parameter is µ, also known as the

initial shear modulus which must be a positive value.

The Ogden hyperelastic model [74] is expressed based on the applied principal stretch values.

The principal stress for the Ogden model is given by the following:

σ =

N∑
i=1

2µi
αi2

(λ1
αi + λ2

αi + λ3
αi − 3) (2.3)

whereN denotes the number of terms used in the Ogden model. λi, (i = 1, 2, 3) refer to the principal

stretch values, µ is the initial shear modulus, and α is the Ogden model parameter. Therefore, the

explicit stress-stretch equation for Ogden model in the uniaxial loading condition will be stated as
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the following:

σ =
N∑
i=1

2µi
αi

[
λαi −

(
1√
λ

)αi]
(2.4)

Using the one-term Ogden model, equation (2.4) can be rewritten as the following:

σ =
2µ

α

(
λα − λ−

α
2

)
(2.5)

The one-term Ogden model has been shown to be very effective in hyperelastic characterization

and has been shown to be dominant over other hyperelastic models specifically when needed to be

calibrated for different loading modes [1].

Due to the elasticity assumption in hyperelastic models, it is vital to investigate the behavior

of hyperelastic models in low strain values i.e., λ → 1 or ε → 0. Limit analysis of the hyperelastic

constitutive models in low strain values can be performed to check if any constraints are needed to

be held in the equation or not. Performing the limit analysis of the Ogden one-term model stated

in equation (2.5) for low strain values gives the following:

lim
λ→1

2µ

α

(
λα − λ−

α
2

)
=

2µ

α

(
1

2
αε

)
= µε (2.6)

For obtaining the equation (2.6), the following identity equation is used:

lim
λ→1

λα = lim
ε→0

(1 + ε)α = 1 + αε (2.7)

For equation (2.6) to be valid, it is obvious that the following constraint must be imposed on the

model:

µ > 0 (2.8)

Following the study of Ogden model in small strain values, it possible to find an educated

guess of the initial shear modulus µ of the material. At small strains λ→ 1, the following equation

holds:

(
dσ

dλ

)
λ→1

=

[
2µ

α

(
αλα−1 +

α

2
λ

−α
2
−1
)]

= 3µ (2.9)
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which suggest the gradient of the stress with respect to the stretch at the beginning of the defor-

mation will be approximately three times greater than that of the initial shear modulus.

The Mooney-Rivlin is another hyperelastic constitutive model which is an extension of the

Neo-Hookean model [75]. For the uniaxial loading condition, the stress-stretch equation can be

written as the following:

σ = 2

(
λ2 − 1

λ

)(
c10 +

c01
λ

)
(2.10)

The limit analysis of the Mooney-Rivlin model stated in the above equation for small strain values

gives the following result:

lim
λ→1

σ = lim
λ→1

[
2
(
λ3 − 1

)
(c10 + c01)

]
= lim

ε→0
[6 (c10 + c01) ε] (2.11)

To make the above equation compatible with the linear elasticity, the term 6 (c10 + c01) must give

an approximate measure of the Young’s modulus which therefore, results in the following constraint:

c10 + c01 > 0 (2.12)

Moreover, another constraint can be extracted from the Mooney-Rivlin model based on the

Drucker stability criterion. Drucker stability criterion [76] states that irrespective of the material

deformation, the internal energy must increase, formulated as the following for the uniaxial loading:

dσ.dε > 0 (2.13)

The equation (2.13) states that the sign of dσ is the same as the sign of dε. As dλ have the same

sign as dε, the equation (2.13) can be justified to be equivalent of dσ/dλ > 0. Therefore, applying

Drucker stability criterion on equation (2.10), deducts the following:

dσ

dλ
= 2

(
2λ+

1

λ2

)(
−c01
λ2

)
> 0 (2.14)
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Looking into the above equation, the only variable involved in the Drucker stability of the Mooney-

Rivlin model is the c01 parameter. Knowing that always λ > 0 concludes the following:

c01 < 0 (2.15)

Equations (2.12) and (2.15) are the constraints that can be applied for Mooney-Rivlin character-

ization, however, it can be shown that one of the constraints, equation (2.12) is guaranteed to be

satisfied, given the right experimental data is provided in the optimization process for curve fitting.

The Yeoh hyperelastic model [77] is defined based on the Helmholtz free energy. While this

model is more accurate compared to the Neo-Hookean model, it avoids some of the stability issues

encountered with Mooney-Rivlin model. The uniaxial stress for Yeoh model is described as:

σ = 2
[
c10 + 2c20(I1 − 3) + 3c30 (I1 − 3)2

](
λ2 − 1

λ

)
(2.16)

where I1 is the first stretch invariant and from equation (2.1), can be found to be I1 = λ + 2/
√
λ.

Again, performing limit analysis for low strain values leads us to the following result:

lim
λ→1

(I1 − 3) = lim
λ→1

(
λ1.5 + 2

λ0.5
− 3

)
= lim

ε→0

3

4
ε2 > 0 (2.17)

From the above equation, in low strain values, the Yeoh model dilutes down to the Neo-Hookean

model and therefore, the following constraint must be imposed on the model:

c10 > 0 (2.18)

As a matter of fact, the stability of Yeoh model is guaranteed if ci0 > 0 (i = 1, 2, 3). However, since

negative c20 value will result in better fitting and better capturing of nonlinearity of the mechanical

response, it is a good practice to reduce the absolute value of c20 and increase the absolute value of

c10 [78].

Soft materials such as brain, exhibit a time varying decaying stress being held under constant

deformation. This phenomenon can be seen in Figure 3. For the time-dependent modeling of

relaxation tests, the most common method employed in the literature is the use of expansion Prony
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series parameters. Miller et al. [52] proposed the following strain energy function for time-dependent

modeling of soft biological tissues by using the convolution integral based on the Ogden hyperelastic

strain energy function:

W =
2

α2

t∫
0

[
µ(t− τ)

d

dτ
(λ1

α + λ2
α + λ3

α − 3)

]
dτ (2.19)

Where t is the time, α is the Ogden model parameter, and µ denotes the relaxed shear modulus

calculated based on the following equation:

µ = µ0

[
1−

n∑
i=1

qi (1− exp(−t/τi))

]
(2.20)

which µ0 is the instantaneous shear modulus, qi is the relaxation coefficient, and τi is the character-

istic time. The quantity n denotes the number of terms to be used in the Prony series. While using

more terms, results in better fitting and more accurate characterization, it adds to the complexity

of the model. Usually, two terms should be enough for good characterization of relaxation tests.

The equation (2.20) is highly non-linear and finding the coefficients q and τ for fitting the

experimental data is a challenging task. Moreover, the following relations must be held between the

coefficients:
n∑
i=1

qi < 1 (2.21)

τi − τj < 0 , for each i < j (2.22)

The above constraint in equation (2.22) can be written in the following form as well:

τi − τi+1 < 0 , i = 1, 2, ..., n− 1 (2.23)

Based on the number of terms used in the Prony series, either of equations (2.22) or (2.23) may be

more convenient to be used in the constrained optimization problem.

While stress values can be measured in different forms, in this part of the study, the first

Piola-Kirchhoff stress is employed which uses the measure of force in deformed state (current) and
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the stretch is calculated based on the initial configuration of the brain samples. The height and

diameter of the brain samples are recorded before the tests which will be used for calculating their

reference configuration area. The height and diameter of brain samples were recorded to be 10 mm

and 25 mm, respectively.

2.2.3. Constrained optimization and curve fitting

Every constrained optimization problem can be formulated as the following:

min
x

f(x), x ⊆ Rn (2.24)

where f(x) is the objective function, and x is a solution to the problem which is a vector defined in

the Rn space with the n denoting the number of variables involved in the problem. The optimization

process may be constrained with one or multiple linear or nonlinear inequality constraints stated as

the following:

gi(x) ≤ 0 i = 1, 2, ...,m (2.25)

where m denotes the number of constraints imposed on the problem. It should be noted that the

constraints in the form of g(x) ≥ 0 can be stated as −g(x) ≤ 0. Moreover, the equality constraints

such as g(x) = 0 can be stated as two inequality constraints of g(x) ≥ 0 and g(x) ≤ 0. These two

inequality constraints can be again stated and reformulated into equation (2.25). Therefore, every

constrained optimization problem can be structured in the form of equations (2.24) and (2.25).

In the constrained optimization problems, the search space can be divided into two subspaces

including constraint-satisfying and constraint-unsatisfying subdomains. The constraint-satisfying

domain satisfies all the imposed constraints on the problem while the constraint-unsatisfying sub-

domain violates one or multiple stated constraints. The penalty function approach assigns a penalty

to the potential solution vectors if the constraint is not satisfied. By defining the following cost

function, our original constrained optimization problem can be unraveled by solving series of un-

constrained optimization problem [79]:

J(x) = f(x) + h(k)H(x) (2.26)
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where f(x) is the original optimization objective function, h(k) is the dynamic penalty coefficient

dependent on the iteration number k of the solution method, and H(x) is the constraint violation

value. In this paper the h(k) = k
√
k is assigned for the dynamic penalty coefficient. The constraint

violation value can be defined as the following:

H(x) =

m∑
i=1

ϕi(x)2 (2.27)

where ϕ(x) can be defined as the following:

ϕi(x) = max [0, gi(x)] (2.28)

Up to this point, the solution strategy of the optimization problem is completely defined and

formulated . The curve-fitting problem can be converted into a least square optimization problem.

Supposedly, there are xdata and ydata values consisting of N points and it is desired to fit them into

a function ψ(x). The optimization problem for curve fitting can be defined as the following:

min
args

f(args)=
1

N

N∑
i=1

[ψ(args,xdata, i)− ydata, i]
2 (2.29)

Different equality and inequality constraints can be imposed on equation (2.29) as well. The variable

args refers to the arguments (coefficients) of the constitutive model. The quantities x and y are

independent and dependent variables where in our analysis, and they could stand for the stretch

-stress for hyperelastic and time-stress quantities for the visco-hyperelastic models, respectively.

2.2.4. Particle swarm optimization

The particle swarm optimization (PSO) algorithm tries to imitate the social behavior of

human beings or groups of insects or birds called swarm. As an analogy, every action of human

beings are influenced by two main factors, first, our cognitive understanding which is mostly based

on our past experience and second, social communication meaning that humans are inclined to

do the actions experienced by others which have produced the best results. PSO in n-variable

optimization problem or the Rn search space, assigns several particles (agents) randomly assigned in

the n dimensional space of the problem. Moreover, each particle has its own initial random velocity,
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which will project its movement in the swarm evolution. Each particle location and velocity are

shown by xp and vp, respectively which represent the state of the particles. Each particle changes

its location and velocity based on the best state it has seen and the global best state that the whole

swarm has experienced depending on the define topology of the algorithm. It should be noted that

the global best state uses the “global” topology by considering all the particles. In this part, the

hybrid weighted and constricted PSO formulated as the following is used:

vk+1
i = χ

(
ωkv

k
i + c1r1(x

k
∗i − xki ) + c2r2(x

k
g − xki )

)
(2.30)

xk+1
i = vk+1

i + xki (2.31)

where k denotes the iteration number of the algorithm, x∗i and xg stands for the best position

experienced by the particle i and the best global position experienced by the whole swarm, respec-

tively. c1 and c2 represents the cognitive and social coefficients of the algorithm which balances the

movements of the particles based on their personal best seen position and global best experienced

one. r1 and r2 are uniformly generated random numbers between 0 and 1.

The equation (30) takes advantage of both constricted PSO and weighted PSO. The con-

striction factor χ relaxes the velocity change of each particle to avoid the possible divergence. The

constriction factor is suggested to be found from the following equation [80]:

χ =
2∣∣∣2− c−√c2 − 4c

∣∣∣ (2.32)

where c = c1 +c2 > 4. In most of the conducted studies, it has been suggested to use c1 = c2 = 2.05

which the constriction factor ends up being χ = 0.729 [81]. Using the constriction factor enables

us to ignore the assignment of velocity threshold on the particles. The inertial weight is used for

controlling the velocity of particles based on the velocity of previous iterations. The adjustment of

inertia weight can lead to better global exploration or local exploration of the swarm. Higher inertia

weight allows for sharper changes of the velocity, therefore, leading to higher global discovery ability

while lower inertia weight is conducive to better local search. As a result, it is rational to improve

global search ability of the swarm at the initial iterations of the PSO by setting high inertia weight
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ω, while decreasing it gradually since the PSO hopefully reaches closer to the convergence in higher

iteration numbers. Therefore, a common way of setting the inertia weight is to vary it based on the

iteration number k as the following [82]:

ωk = ωmax − (ωmax − ωmin)
k

kmax
(2.33)

which kmax stands for the maximum number of iterations, ωmax and ωmin represents the maximum

and minimum inertia weight coinciding with the first and last iterations of the PSO. ωmax and ωmin

can be tuned specifically for each problem and in this study, we have set ωmax and ωmin equal to

1.2 and 0.1, respectively.

2.3. Results and discussion

In this section, the developed C-PSO algorithm will be used for hyperelastic and visco-

hyperelastic characterization of bovine brain tissues based on the experimental tests. The constraints

of the hyperelastic and visco-hyperelastic model identified in the previous section will be used as

constraints in C-PSO algorithm. Thereafter, the obtained results of C-PSO will be compared to

that of the traditional LMA and TRF for hyperelastic and visco-hyperelastic models, respectively.

The “curve_fit” function from “scipy.optimize” package [83] in Python is used for curve fitting with

LMA and TRF methods.

2.3.1. Hyperelastic curve fitting

The unconfined compression relaxation tests were done for different strain rates of 0.1, 0.7,

and 7 s−1 to see its effect on the material properties of the brain tissue and more importantly,

check the performance of the optimization algorithm in these different cases. The averaged ramp

part of the relaxation tests visualized in terms of stretch-stress as shown in Figure 4, are used for

hyperelastic characterization of bovine brain in different strain rates. The nominal stress is used for

calculating the induced stress in samples.

The data shown in Figure 2.4 for different strain rates are fitted to the hyperelastic con-

stitutive models by LMA and C-PSO methods. The number of particles in C-PSO method were

set to be 10 times of the number of coefficients of each hyperelastic model which will be 20, 20,

and 30 particles for Ogden, Mooney-Rivlin and Yeoh models, respectively and maximum number

of iterations were set as 100. The lower and upper bound of all the coefficients were set in the
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Figure 2.4. The ramp phase of the unconfined compression test on bovine brain sample at three
different strain rates of 0.1, 0.7, and 7 s−1. The data is smoothed with Savitzky-Golay filter.

Table 2.2. The obtained hyperelastic material properties by LMA and C-PSO methods for the
strain rate of 0.1 s−1. R2 denotes the coefficient of determination serving as a measure of accuracy
for the fitted data.

Ogden Mooney-Rivlin Yeoh Neo-Hookean

LMA
µ = 0.3489 kPa
α = −7.1094
R2 = 99.72%

c10 = 1.3190 kPa
c01 = −1.2747 kPa
R2 = 99.54%

c10 = 0.1786 kPa
c20 = 2.4941 kPa
c30 = 0.0118 kPa
R2 = 99.89%

µ = 0.8745 kPa
R2 = 83.78%

C-PSO
µ = 0.3489 kPa
α = −7.1094
R2 = 99.72%

c10 = 1.3190 kPa
c01 = −1.2747 kPa
R2 = 99.54%

c10 = 0.1933 kPa
c20 = 2.1116 kPa
c30 = 2.5149 kPa
R2 = 99.87%

µ = 0.8745 kPa
R2 = 83.78%

range of -100 to 100. For the LMA method, the initial guess for all the hyperelastic models and all

the coefficients were assigned as 0.1. The summary of the obtained results is presented in Table 2,

Table 3, and Table 4. As it can be seen, with the increase in the strain rate of the deformation,

the bovine brain tissue shows stiffer response which in turn leads to the higher shear modulus in

its hyperelastic characterization. The final resultant nominal stress for the strain rates of 0.7, and

7 s−1 are approximately 2 and 2.5 times greater than that of the 0.1s−1 strain rate, respectively.

To avoid redundancy in data presentation, the fitted data with the obtained parameters are shown

only for the strain rates of 0.1, and 7 s−1 in Figure 5 and Figure 6. As can be seen, the acquired

hyperelastic parameters for Ogden and Mooney-Rivlin model through C-PSO method is the same

as those of LMA method and moreover, the high coefficient of determination shows good accuracy
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Table 2.3. The obtained hyperelastic material properties by LMA and C-PSO methods for the
strain rate of 0.7 s−1. R2 denotes the coefficient of determination serving as a measure of accuracy
for the fitted data.

Ogden Mooney-Rivlin Yeoh Neo-Hookean

LMA
µ = 0.7836 kPa
α = −6.8127
R2 = 99.97%

c10 = 2.5869 kPa
c01 = −2.4224 kPa
R2 = 99.55%

c10 = 0.4687 kPa
c20 = 3.6660 kPa
c30 = 9.2159 kPa
R2 = 99.96%

µ = 1.8624 kPa
R2 = 86.11%

C-PSO
µ = 0.7836 kPa
α = −6.8128
R2 = 99.97%

c10 = 2.5869 kPa
c01 = −2.4224 kPa
R2 = 99.55%

c10 = 0.4251 kPa
c20 = 4.8298 kPa
c30 = 1.4005 kPa
R2 = 99.93%

µ = 1.8624 kPa
R2 = 86.11%

Table 2.4. The obtained hyperelastic material properties by LMA and C-PSO methods for the
strain rate of 7 s−1. R2 denotes the coefficient of determination serving as a measure of accuracy
for the fitted data.

Ogden Mooney-Rivlin Yeoh Neo-Hookean

LMA
µ = 1.1822 kPa
α = −5.9725
R2 = 99.97%

c10 = 2.9894 kPa
c01 = −2.6397 kPa
R2 = 99.87%

c10 = 0.6349 kPa
c20 = 6.1608 kPa
c30 = −3.0706 kPa
R2 = 99.98%

µ = 2.5026 kPa
R2 = 90.39%

C-PSO
µ = 1.1822 kPa
α = −5.9725
R2 = 99.97%

c10 = 2.9835 kPa
c01 = −2.6316 kPa
R2 = 99.53%

c10 = 0.6437 kPa
c20 = 5.9179 kPa
c30 = −1.3934 kPa
R2 = 99.98%

µ = 2.5026 kPa
R2 = 90.39%

of the fitted results. The obtained shear modulus through LMA and C-PSO for the Neo-Hookean

model is similar as well, but it does not give a good fit to the data as the low coefficient of determi-

nation and the illustration in Figure 2.5 and Figure 2.6 suggest. The inaccuracy of the Neo-Hookean

model was expected since it only has one tunable parameter, and it is not appropriate for soft bi-

ological tissues where high nonlinearity is associated with. However, it can be easily verified that

the obtained response by C-PSO and LMA method is the global minimum of the problem and no

better solution can be acquired. Looking into the Yeoh model, the parameters found with these two

algorithms exhibit a high value of R2, but the parameters are clearly far from each other and the

LMA algorithm slightly performs better as the higher coefficient of determination suggest.

The other point that should be mentioned is the accuracy of the LMA results while this

method does not consider the constraints of hyperelastic models stated in equations (1.8), (1.12),

and (1.15). Looking into the constraints and the hyperelastic constitutive equations, it can be
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(a) (b)

(c) (d)

Figure 2.5. The visualized representation of fitted hyperelastic models into experimental data,
including (a) Ogden, (b) Mooney-Rivlin, (c) Yeoh, and (d) Neo-Hookean model for the strain rate
of 0.1 s−1.

perceived that all those constraints are in accordance with the respective hyperelastic models. This

comes from the fact that for the uniaxial test, the resultant stress will be positive for positive strain

values and negative for negative strain values. Therefore, for the case of compression where λ < 1

, the term λ2 − 1/λ in the Mooney-Rivlin model becomes negative. This implies that the other

term which is c10 + (c01/λ) must be positive which is in total accordance with the constraint of

the model stated in equation (1.12), since λ is always positive. Same reasoning can be justified

for the constraints (1.8) and (1.15) of the Ogden and Yeoh models. Therefore, the unconstrained

optimization will give the same result as that of the constrained optimization. However, in some

situation, the LMA is observed to be highly dependent to initial guess and may not give appropriate

result [28]. To discuss further, as an example, if the Ogden hyperelastic model with the parameters

µ = 0.61 kPa and α = −30.5 is used to create a stress-stretch data in the stretch range of 1 to 1.1,
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(a) (b)

(c) (d)

Figure 2.6. The visualized representation of fitted hyperelastic models into experimental data,
including (a) Ogden, (b) Mooney-Rivlin, (c) Yeoh, and (d) Neo-Hookean model for the strain rate
of 7 s−1.

an artificial data set can be generated. These parameters correspond to the mechanical response

of corona radiata in tension as reported by Budday et al. [1]. Now, if an attempt is made to

find the parameters of Ogden model by fitting it to the artificially created data, the result will be

completely different compared to what originally used for creating the dataset, as can be seen in

Figure 2.7. The result obtained by LMA is found by using an initial guess of µ = 0.1 kPa and

α = 0.1. While the LMA is giving a good fit to the dataset with the accuracy of R2 = 99.8% ,

the found Ogden parameters are clearly far from the original parameters used for generating the

dataset and consequently does not return the global optimum point of the optimization problem .

Figure 2.8 shows the contour plot of the average square error of curve fitting to the Ogden

model with respect to parameters µ and α fitted to the mentioned artificial dataset. As can be

seen, there is a relatively wide range in the center of the domain wherein all the points (including
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Figure 2.7. The performance of LMA method for curve fitting of the Ogden model to the artificially
created dataset corresponding to the mechanical response of corona radiata in tension [1]. Opposed
to our expectation, the LMA does not return the same parameters as those used for creating the
artificial dataset.

the one obtained with LMA) show small error of less than 0.0015. Therefore, parameters µ and α

can change in a big range while maintaining low error.

With all said, knowing the constraints of the problem and consequently, the feasible subspace

of the model parameters i.e., the subdomain where all the constraints of the optimization problem

are satisfied, the C-PSO algorithm can be modified to increase its efficiency. To demonstrate this,

different C-PSO techniques associated with different convergence criteria are studied here. Three

different convergence criteria for C-PSO including the following are proposed and studied:

• Stagnation of the best global function evaluation (SF): The solution is converged if the fitness

(value) of the best particle changes within a set tolerance in a specified number of iterations.

• Stagnation of the best global position (SP): The convergence is met when the position of the

best particle remains unchanged within a small tolerance bound, for some number of iterations.

• Proximity radius of the swarm (PR): In this criterion, the convergence of the solution is

determined with respect to the whole swarm and opposed to the other criteria, it is not only

dependent to the best particle of the swarm. The convergence radius of the swarm can be

defined as the average distance of the particles from the best particle. The distance can be
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Figure 2.8. The contour plot of the average square error of the curve fitting to the Ogden model with
respect to the parameters µ and α. Curve fitting is performed on the artificial dataset generated
with parameters of µ = 0.61 kPa and α = −30.5 shown in Figure 2.7.

defined using the Frobenius norm of the position. This convergence criterion is visualized for

a two-dimensional case in Figure 2.9 and formulated in equations (2.34) and (2.35).

ri = ‖xi − xg‖2 (2.34)

ravg =
1

N

(
N∑
i=1

ri

)
(2.35)

In equations 2.34 and 2.35, ri and ravg refer to the distance of particle i and the average distance

of the particles from the global best particle, respectively. N denotes the total number of particles

in the swarm. The convergence is met when the average radius ravg becomes less than a fraction

of the solution domain radius i.e., the following condition:

ravg ≤ tol.‖(D1, D2, ..., Di)‖2 (2.36)
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Figure 2.9. The convergence radius of the particles in PSO algorithm. The distance of each particle
with respect to the best particle is calculated for finding their average distance to the best positioned
particle.

where tol is a small number as a tolerance and Di represents the length of ith variable (dimension)

in the solution domain and the ‖‖2 operator stands for the second norm of the vector.

Additionally, three different strategies will be used for solving the optimization problem of

the curve fitting with respect to the constraints of the problem.

• Unconstrained (UC-PSO): The problem will be solved without applying any constraints.

• Constrained (C-PSO): The constraints of the problem will be applied to the PSO by using

penalty function for constraint violation.

• Constrained with feasible initial swarm (CF-PSO): Besides applying the constraints of the

problem, the initial swarm population will be created randomly, yet in a way that all the

points lie in the feasible domain i.e., all the constraints are satisfied.

The Mooney-Rivlin curve fitting for strain rate of 0.1 s−1 is performed for 1000 times with

different combinations of convergence criteria and different strategies to evaluate the efficiency of

each technique and the results are shown in Table 2.5.

The tolerance for SF, SP and PR convergence criteria is set as 10−6 , 10−6 and 10−4,

respectively. As it can be seen, irrespective of the convergence criteria, the CF-PSO showed a

better performance and reached the convergence in fewer number of iterations. The CF-PSO was

able to drop down the convergence speed by approximately 11.0%, 6.5%, and 11.2% using SF, SP,
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Table 2.5. The efficiency and accuracy of Mooney-Rivlin hyperelastic characterization with different
PSO techniques including unconstrained, constrained, and constrained with feasible initial swarm,
associated with different convergence criteria.

Convergence criteria
SF SP PR

UC-PSO Avg it. # 59.1 96.6 56.2
Avg error 0.0005 0.0005 0.0005

C-PSO Avg it. # 58.8 96.4 56.2
Avg error 0.0005 0.0005 0.0005

CF-PSO Avg it. # 52.6 90.0 49.8
Avg error 0.0005 0.0005 0.0006

and PR convergence criteria relative to the C-PSO and UC-PSO techniques. This faster convergence

is not due to a compromise in accuracy, since, as can be seen from Table 2.5, the average error does

not show any notable difference for CF-PSO, compared to the other solution techniques.

As it can be seen from Table 2.5, the C-PSO does not show any improvement compared

to the UC-PSO method. This is expected since opposed to some other optimization techniques

such as simulated annealing, the fitness value of particles does not play any role in their evolution.

Therefore, the relative value (fitness) of the particles does not play any role in their evolution, and

the only controlling parameter is the location of the best particle which is very likely to lie in the

feasible subdomain of the solution.

2.3.2. Visco-hyperelastic curve fitting

As mentioned earlier, the visco-hyperelastic curve fitting is relatively more complicated com-

pared to that of the hyperelastic due to the higher number of variables and the imposed constraints

on the problem. As a result, coming up with the right choice of initial guess becomes harder for the

visco-hyperelastic characterization.

The relaxation test data for unconfined compression test on the bovine brain tissue with the

strain rate of 0.1, 0.7, and 7 s−1 is shown in Figure 2.10.

Using the Ogden visco-hyperelastic model expanded by two terms Prony series, our goal is

to find the parameters q1, q2 and τ1, τ2 that minimizes the error of curve fitting, while satisfying

the constraints explained in equations (2.21) and (2.22). These constraints lead to the following
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Figure 2.10. The relaxation phase of the unconfined compression test for bovine brain sample at
three different strain rates of 0.1, 0.7, and 7 s−1. The sample is relaxed for between 100 to 120
seconds for each corresponding strain rate.

inequalities for two term Prony series expansion:

q1 + q2 < 1 (2.37)

τ1 − τ2 < 0 (2.38)

The initial shear modulus and the respective Ogden parameter are found before as presented

in Table 2.2 to 2.4. Looking into equation (2.37) as a constraint, the parameters q1 and q2 clearly

needs to be bounded. In this case, the application of LMA method is not justifiable anymore,

since the commercially available packages cannot use LMA for bounded optimization problems.

It should be noted that the “scipy.optimize.curve_fit” optimization package in Python uses trust

region reflective (TRF) algorithm [64] to solve for the curve fitting optimization in bounded cases.

Applying the C-PSO, the Prony series parameters for different strain rates are found and

compared with that of the TRF algorithm as presented in Table 6. The lower and upper bound

of the parameters q1 and q2 were set to be 0.001 and 0.999, and the parameters τ1 and τ2 were

29



bounded in the range of 0.001 s to 120 s (corresponding to total time of relaxation test) for both

C-PSO and TRF algorithms. All the parameters were set equal to 0.1 as an initial guess for the TRF

algorithm. Several other initial guesses were made, but the outcomes were no different. The C-PSO

method was able to approximate the Prony series parameters with better accuracy leading to higher

coefficient of determination. Looking into Table 2.6, the coefficient of determination for the TRF

algorithm in the cases with the strain rates of 0.7, and 7 s−1 turns out to be a large negative value

which clearly shows the poor performance of the TRF algorithm. The negative R2 value suggest

that using the average value of the stress for approximation yields more accurate approximation

than that of the TRF algorithm. Figure 2.11 shows the curve fitting and approximation with the

visco-hyperelastic coefficients found by C-PSO and TRF algorithms. It can be clearly seen that

the TRF algorithm cannot provide a good approximation which consequently leads to negative

coefficient of determination for the strain rates of 0.7 and 7 s−1.

Table 2.6. The obtained Prony series expansion parameters for Ogden visco-hyperelastic constitutive
model through C-PSO, and TRF algorithms.

Strain rate (s−1) q1 τ1 (s) q2 τ2 (s) R2 (%)
C-PSO 0.1 0.4080 0.9191 0.2834 40.4249 98.53
TRF 0.1 0.4038 0.9444 0.2852 40.4104 98.39
C-PSO 0.7 0.3991 1.4030 0.2160 33.6624 98.80
TRF 0.7 0.001 110.0000 0.2214 110.0000 -3846
C-PSO 7 0.6424 0.01 0.1771 12.4351 87.28
TRF 7 0.3347 3.4801 0.2465 40.1121 -5641

Similar to what was done for hyperelastic fitting, the efficiency of different C-PSO techniques

are investigated by running the algorithms for 1000 times for the case with the strain rate of 0.1

s−1. The average of the square of error and the required iterations for convergence (using different

convergence criteria) are inspected and presented in Table 2.7.

Given the results in Table 2.7, the CF-PSO technique slightly reduces the number of re-

quired iterations compared to the C-PSO and UC-PSO and the efficiency improvement is not as

considerable as what was noticed in hyperelastic characterization. The SF convergence criteria re-

quired lower number of iterations for reaching the convergence and hence can be beneficial when
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Table 2.7. The efficiency and accuracy of Ogden visco-hyperelastic characterization with different
PSO techniques including unconstrained, constrained, and constrained with feasible initial swarm,
associated with different convergence criteria.

Convergence criteria
SF SP PR

UC-PSO Avg it. # 43.0 73.4 69.6
Avg error 0.00018 0.00019 0.00017

C-PSO Avg it. # 44.0 74.4 70.1
Avg error 0.00019 0.00019 0.00017

CF-PSO Avg it. # 42.9 70.9 69.5
Avg error 0.00017 0.00019 0.00017

used in simulation-based optimizations. The average error noticed for all these techniques are very

close to each other.

2.4. Conclusion

In this study, the C-PSO algorithm as a derivative free optimization method, was employed

for characterization of bovine brain tissue. Due to the nonlinear behavior of brain, the hyperelas-

tic models including one-term Ogden, Mooney-Rivlin, Yeoh, and Neo-Hookean, and Ogden visco-

hyperelastic model was used for time-independent and time-dependent material characterization,

respectively. The results obtained by C-PSO method was then compared with that of the classic

LMA and TRF gradient-based optimization methods. The least-square error and penalty function

approach were employed for defining the optimization problem and handling the constraints, re-

spectively. Results show that the C-PSO method was able to give as accurate result as that of the

LMA for Ogden and Mooney-Rivlin hyperelastic model while ensuring that the imposed constraints

of the hyperelastic models are satisfied. However, the result for Yeoh model was not the same and

LMA method gives slightly better accuracy in terms of coefficient of determination. In the Yeoh

model, the values obtained from PSO and LMA method are high and close to each other, but the

resultant parameters are not close and relatively large difference is observed. Further analysis may

be necessary to evaluate which sets of parameters are better. One of the factors lending help to

such an analysis is the stability of the model in the higher range of strains.

The application of C-PSO method becomes more notable and worthy in the case of visco-

hyperelastic modeling since the imposed constraints become more challenging and certain param-

eters in Prony series expansion need to be bounded as well. The bounded optimization cannot be
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handled by LMA algorithm and hence, TRF algorithm which is commercially available in Python

"Scipy" package was used as an alternative. While TRF algorithm is designed for solving bounded

curve fitting, it failed to find the Prony series parameters for the strain rates of 0.7 and 7 s−1 while

the C-PSO method successfully found the Prony series parameters with high coefficient of determi-

nation. Moreover, for the strain rate of 0.1s−1 where TRF algorithm showed success, it was still

less accurate compared to the C-PSO algorithm. It was shown that the constrained PSO algorithm

can characterize the brain tissue in terms of Ogden visco-hyperelastic by finding the parameters of

two-term Prony series expansion. Moreover, the efficiency of the C-PSO algorithm was shown to

be improved up to 11% in convergence speed, upon creating an initial feasible swarm, regardless of

the convergence criteria in use.

Given the results of this study, while the LMA method showed good performance in hypere-

lastic characterization, C-PSO method can be used as an extra assurance method to make sure that

the result is the global optimum of the problem and not the local minima. However, it seems com-

pletely necessary to use C-PSO or other derivative free optimization techniques for visco-hyperelastic

curve fitting. Moreover, the suggested modifications to the C-PSO method can be beneficial in re-

ducing the time complexity of the algorithm specially for simulation-based characterization of soft

tissues.
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(a)

(b)

(c)

Figure 2.11. The fitted Ogden visco-hyperelastic model to the relaxation test data by the parameters
found through C-PSO and TRF algorithm presented in Table 6 for the strain rates of (a) 0.1 s−1,
(b) 0.7 s−1, and (c) 7 s−1.
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3. OPTIMIZED MICROMECHANICAL HYPERELASTIC

CHARACTERIZATION OF HUMAN BRAIN WHITE

MATTER

3.1. Introduction and literature review

TBI can happen due to many factors including sudden movement of the head, ballistic

impact, or shock waves created by explosions. Computational techniques such as finite element

enables us to conduct simulations for modeling the human brain response under different loading

scenarios. Extensive research has been done in this field, some of which are mentioned here as

references [37, 38, 84–87]. However, the validity and exactness of computer simulations using finite

element human head model remains a challenge. Material properties and right constitutive model

are some of the most important factors required for accurate assessment of the mechanical behavior

of the brain and other organs of human head. To this end, numerous studies have been conducted

to obtain material properties of the brain in macro-scale using experimental techniques [47, 52, 54,

88–91].

DAI is one of the most common form of TBI which accounts for 40-50% of TBI cases [92,93].

DAI happens with the formation of lesions in brain stem and corpus callosum [94] and is associated

with the separation and disconnection of axons [95]. As axons are micro-level constituents of brain

white matter, their micro-structural analysis can be helpful for ongoing research in the biomechanical

field and therefore, it is required to find its material property.

The study of the brain white matter at the scale of its constituents enables us to find the

micro-level stress in the brain under TBI-causing loading scenarios. Micromechanical simulations

that have been extensively used for analysis of fibrous composites [96,97] can be used for this purpose.

Usually a representative volume element (RVE) can be used to represent the whole structure by

repeating itself in different directions.

The material in this chapter was co-authored by Mohammadreza Ramzanpour, Mohammad Hosseini-Farid, Mar-
iusz Ziejewski, and Ghodrat Karami. Mohammadreza Ramzanpour was mainly responsible for data collection,
analysis, algorithm development, and the conclusions advanced here. The other co-authors helped in proof-reading.
Ghodrat Karami supervised the project.
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Micromechanical studies have been conducted for material characterization of brain white

matter tissue as well. Different regions of brain white matter such as brain stem and corpus callo-

sum have highly oriented axons in the extra-cellular matrix which resembles the fibrous composite

structure [98]. Abolfathi et al. [99] used linear viscoelastic model for both axon and ECM to obtain

the anisotropic material properties of brain white matter under small deformation. They showed

that brain white matter exhibits transverse isotropic behavior. Moreover, the effect of the axons’

volume fraction and its undulation on the brain material properties were investigated. Karami et

al. [100] used micromechanical analysis to simulate brain white matter under large deformation by

the Ogden hyperelastic model. Using material properties of axons and ECM in guinea pig optic

nerves reported by Meany et al. [3], they obtained the mechanical response of brain white matter

tissue. It was shown that the increase in the axons’ volume fraction results in increase of normal

stress applied to the axons. Cloots et al. [23] studied the effect of axons’ orientation and presence of

inclusion on brain tissue deformation under loading. By modeling three different cases with maxi-

mum axons diversion angles of 30◦, 45◦ and 60◦, maximum increase of 250% in logarithmic strain of

axons were observed. The presence of rigid inclusion was reported to cause 60% increase in logarith-

mic strain of axons compared to the no-inclusion case. Yousefsani et al. [36] applied an embedded

element technique to estimate the localized stress of axons in transverse large deformation using

the hyperelastic Ogden model. Moreover, they compared the results of two different RVEs, uniform

and randomly distributed axons. It was shown that the tissue response is not contingent upon the

distribution pattern of axons in RVE. This result will be later used as a ground for coming up with

our simplified model. In those studies, the micromechanical stress, and the transfer of stress from

macro to micro level were studied which requires the knowledge of the material properties of brain

white matter constituents.

Genetic algorithm (GA) is an evolutionary algorithm based on natural selection process that

can be used for both constrained and unconstrained single-objective and multi-objective optimiza-

tion problems [101]. Many studies have employed GA for material constitutive modeling. Ning et

al. [18] applied the GA algorithm with iterative finite element analysis, to determine viscoelastic

material properties of a porcine brainstem in three different directions for small shear deformation.

Javid et al. [2] optimized axon and ECM viscoelastic material properties of the porcine brainstem.

In their study, they performed an experimental uniaxial tension test on brain samples and used
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its data to find the material properties of axons and ECM which gives the closest result to their

experimental test. However, the linear viscoelastic model used by Javid et al. is appropriate for

small deformation and the reported properties of axons and ECM are only calibrated for tensile

loading and cannot be used for other loading modes such as compression or shear.

This paper is aimed to identify hyperelastic material properties of axons and ECM in dif-

ferent uniaxial loading conditions including tension, compression, and shear. For this purpose, GA

optimization procedure is employed to find the properties of axons and ECM that minimize the error

of approximation with the known corpus callosum mechanical response from quasi-static experimen-

tal tests reported in [1]. Additionally, Nelder-Mead simplex optimization method is employed to

find best-fit parameters that can best describe the behavior of axons and ECM for all three uniaxial

loading cases.

3.2. Methodology

In this section, micromechanical simulations which is a backbone of further analyses will be

discussed, the hyperelastic constitutive formulation for different loading scenarios would be investi-

gated, and in the final subsection, the global optimization framework needed for finding the optimal

and best-fit parameters will be introduced.

3.2.1. Micromechanical finite element modeling

Micromechanical modeling studies the materials at the scale of their constituents. The

key idea behind micromechanical simulation is to find the proper heterogeneous RVE that, by its

repetition, the whole structure will be approximately formed. Brain white matter tissue including

corpus callosum and brain stem has unidirectional, highly oriented fibrous composite structure.

This fact agrees with the provided Scanning Electron Microscopy (SEM) of brainstem published

by Javid et al. [2] and diffusion tensor imaging of the brain tissue [1] representing the direction of

nerve bundles for different regions of brain including corpus callosum where the nerve fiber bundles

are shown to be highly oriented.

Here, it is assumed that axons have same size and uniform cross section with no undulation,

distributed throughout the ECM. Moreover, the distributions of axons can be further simplified

into more disciplined structured format. Figure 3.1 shows square distribution of axons in ECM

with its corresponding RVE. As mentioned earlier, these simplifying assumptions are based on the

previous studies such as [2, 36] where it was confirmed that there is no notable difference between
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the results of the random and simple RVE. The volume fraction of axons is taken to be 52.7% which

is the reported value by Javid et al [2] (Figure 3.1a). They found the volume fraction of axons

by processing the SEM image of the porcine brainstem shown in Figure 3.1a. The validity of the

meshed RVE model and its respective element size was checked through mesh convergence analysis

by performing sample simulations.

(a)

(b) (c)

Figure 3.1. (a)Scanning Electron Microscopy image of porcine brainstem shows axons distribution
in ECM presented by red circles [2],(b) Three-dimensional representation of axons distribution in
extracellular matrix (ECM) based on the simplifying assumptions, (c) Schematic two dimensional
view of axons distribution in ECM and the respective representative volume element (RVE).

To make the RVE repeats itself in the desired directions, periodic boundary conditions (PBC)

must be applied to it. PBC controls the displacement of the opposing faces, edges and nodes of the

RVE with respect to one another. In this regard, one of the faces/nodes is taken as the controlling

face/node with no restriction applied, while the opposing face/node is taken as a controlled, which

its displacement is determined and controlled by the displacement of the controlling face/node. In

Figure 3.2, faces 1, 3 and 5 are controlling faces while faces 2, 4 and 6 are controlled ones. In a

three-dimensional case, the PBC can be written as stated in equations 3.1 to 3.8 with respect to

Figure 3.2. Since, the undulation of axons is ignored in the Z-direction, the depth of the RVE in
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the Z-direction does not play any role after applying the PBC and only two layers of meshed finite

element model is used here.

Figure 3.2. Overview of controlling and controlled faces, corner nodes and edge nodes in meshed
three-dimensional RVE.

uCi+1 = −uCi , i = 1, 3, 5 (3.1)

uFi+1 = −uFi − uCi + uCi+1 , i = 1, 3, 5 (3.2)

uE(i+1)(j+1)
= uEij − 2uCi − 2uCj , ij = 13, 15, 35 (3.3)

uE(i+1)(j+1)
= uEi(j+2)

− 2uCi − 2uCj+1 , ij = 12, 14, 34 (3.4)

uc235 + uc146 + 2uC1 − 2uC3 − 2uC5 = 0 (3.5)

uc236 + uc145 + 2uC1 − 2uC3 + 2uC5 = 0 (3.6)

uc245 + uc136 + 2uC1 + 2uC3 − 2uC5 = 0 (3.7)
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uc246 + uc135 + 2uC1 + 2uC3 + 2uC5 = 0 (3.8)

These equations must be satisfied for all translational degrees of freedom in which u is the dis-

placement of the node or node sets, Fi (i = 1, 2, ..., 6) refers to the node sets lying on faces 1 to 6,

Ci (i = 1, 2, ..., 6) denotes center nodes at the corresponding faces, cijk is the corner node at the

intersection of Fi, Fj and Fk and Eij is the node set on the edge lying on Fi and Fj intersection.

Moreover, great care should be taken to enforce the mesh nodes on the opposite faces to be precisely

matched together. Additionally, the meshing geometry on the faces must be exactly symmetrical

with respect to the center node of the corresponding face. To avoid rigid body motion, the center

node of the structure is fixed in the Z-direction, center nodes of faces 1 and 2 (C1 and C2) are fixed

in the X and Y-direction and one arbitrary node on E25 edge is fixed in the X-direction.

While the micromechanical simulation result, demonstrates the stress-strain distribution

in the micro scale, to approximate the result at the higher scale (macro), the volume averaging

technique can be used since RVE represents a point from the bulk volume of material. The averaging

can be done based on the following equation:

σ̄ =

∑m
i=1 σivi∑m
i=1 vi

, ε̄ =

∑m
i=1 εivi∑m
i=1 vi

(3.9)

in which σ̄ and ε̄ are averaged stress and strain values, σi and εi are the local stress and strain values

for the ith element of the finite element model, and vi is the ith element volume size. The obtained

averaged stress and strain values can further be used to obtain the hyperelastic material properties

of brain white matter.

3.2.2. Hyperelastic constitutive modeling

For the cases where large deformation happen, linear elasticity can be generalized into a

nonlinear form for predicting stress-strain time-independent behavior of materials. Characterizing

hyperelastic properties can be done using the hyperelastic strain energy function W . The strain

energy function can be written in terms of the strain invariants I1, I2, and I3 or principal strains

(or stretches).
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One of the most common strain energy functions applied to soft biological tissues is the

hyperelastic Ogden model which depends on principal stretch values [102] as stated in the following:

WOgden =

N∑
i=1

2µi
αi2

(λαi1 + λαi2 + λαi3 − 3) (3.10)

where αi is the material parameter, µi is the initial shear modulus and N is the number of terms

used in the Ogden model. λk, k = 1, 2, 3 are the principal stretch values which can be obtained

from the principal strain values εk, k = 1, 2, 3 based on the following equation.

λk = 1 + εk k = 1, 2, 3 (3.11)

It should be noted that in equation 3.10, compressibility term is ignored for Ogden strain energy

function under assumption that brain is incompressible [103]. For uniaxial compression or tensile

loading conditions, the deformation gradient tensor F and the principal stretches can be stated as

the following:

F =


λ 0 0

0 1√
λ

0

0 0 1√
λ

 (3.12)

λ1 = λ, λ2 = λ3 =
1√
λ

(3.13)

in which λ1, λ2, and λ3 are the principal stretches. By using equations 3.13 and 3.10, Cauchy

stress for uniaxial tension and compression (σii) can be written as the following for one-term Ogden

model:

σii =
2µ

α

(
λα −

(
1√
λ

)α)
(3.14)

in which λ is the maximum principal stretch for tension and minimum principal stretch for com-

pression loading, µ is the initial shear modulus and α is the Ogden model parameter. Equation

3.14 is used for fitting the obtained stress and stretch values in uniaxial tension and compression

loading to find the Ogden material parameters.
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For the incompressible simple shear mode with plane stress condition, deformation gradi-

ent and principal stretch can be written as follows assuming the shear force is employed in Y Z

component of the tensor notation of stress.

F =


1 0 0

0 1 γ

0 0 1

 (3.15)

where γ is the shear strain. It should be noted that equation 3.15 is true by the assumption that

the cross section of the object remains constant during the shear deformation which is the case in

our study. In the case of simple shear, shear strain can be formulated as γ = ∆l/H with ∆l and H

shown in Figure 3.3.

Figure 3.3. Material deformation in the case of simple shear; the bottom plate is fixed, and the
shear force is taking place at the upper plate causing length change of ∆l. The amount of shear is
denoted by γ.

For the simple shear loading mode, the principal stretches λ1, λ2, and λ3 can be stated as

the following:

λ1 =
γ

2
+

√
1 +

γ2

4
, λ2 =

1

λ1
, λ3 = 1 (3.16)

Thereafter, the Cauchy shear stress can be found by equation 3.17:

σij =
2µ

α

1

λ1 + λ2
[λ1

α − λ2α] (3.17)

in which σij is the ij component of the stress tensor where i 6= j assuming the non-zero strain

and displacement corresponds to the ij component of the strain tensor, λ1 and λ2 (λ1 > λ2) are
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the principal stretches found from equation 3.16, µ is the initial shear modulus and α is the Ogden

material parameter. For more details, readers are referred to [46,74,104].

3.2.3. Optimization framework

Several studies have used optimization techniques for finite element-based characterization

of materials [27,28,60,66]. In this study, the experimental data reported by Budday et al. [1] is used

for hyperelastic characterization of corpus callosum (brain white matter) to find the hyperelastic

Ogden parameters of axon and ECM. Budday et al. [1] tested human brain tissue in different loading

conditions of shear, compression, and tension to find its mechanical response. The obtained data was

then fitted to five different hyperelastic models including neo-Hookean, Mooney-Rivlin, Demiray,

Gent, and Ogden. In their work, it was shown that material parameters obtained in one specific

loading condition cannot be used for predicting the material behavior in other loading conditions.

Therefore, in a try to calibrate their result for all loading modes, it was demonstrated that the

Ogden model is the only model capable of giving a good simultaneous fit to all three uniaxial

loading modes of simple shear, compression, and tensile loadings.

To find the material properties of axon and ECM, in this study, iterative micromechanical

finite element modeling in ABAQUS (ABAQUS 2016, Dassault Systems, Providence RI) was used

with the GA algorithm in MATLAB (version 9.4.0 R2018a, Mathworks inc., Natick MA). The

Ogden hyperelastic model was chosen as it was found to be the best model for describing brain

deformation in different loading conditions as stated earlier. The flowchart of the optimization

procedure is illustrated in Figure 3.4. A script is written to change the material parameters of axon

and ECM, execute the simulation on ABAQUS, reading the output data from the ABAQUS and

feed it to the objective function which is aimed to be minimized. The Ogden material properties

found in Budday et al. studies for corpus callosum [1] in compression, tension and shear are used to

find the stress in arbitrary range of stretch corresponding to the loading mode. For each iteration of

micromechanical simulation, the obtained stress-stretch data is fitted to its respective Ogden model

to find respective µ and α for the whole structure. These parameters are used to find the stress

values at the same range of stretch used for the data in [1]. Thereafter, the objective function E
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Figure 3.4. Flowchart of the optimization control for finding optimum Ogden hyperelastic mate-
rial properties. The iterative procedure continues until the change in objective Function in two
consecutive iterations (denoted by i and i+ 1) falls under the function tolerance level.

which is a function of axon and ECM material parameters is calculated as given in the following:

E(µaxon, αaxon, µECM , αECM ) =

(
1

n

n∑
k=1

(
Smicrok − Sexpk

)2) 1
2

(3.18)

n is the total number of points considered in stress-stretch dataset, Smicro denotes the averaged stress

values from micromechanical analysis and Sexp corresponds to the stress-stretch values obtained

from experimental tests conducted by Budday et al. [1]. The objective function defined in equation

3.18 is dependent on the results of micromechanical simulation. Therefore, the gradient of this

function cannot be calculated and gradient based optimization methods such as gradient descent

cannot be applied here. Derivative free optimization methods also known as black-box optimization

are suitable to be used under these circumstances and GA optimization algorithm [82] is selected in

this study. GA continues to create generations until the change in objective function gets smaller

than the set function tolerance level. It should be noted that good choice of initial parameters which

affects the initial population in GA, is very advantageous for accelerating the convergence.
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In this paper, the parameters obtained from the optimization framework illustrated in Figure

3.4 are named as optimal parameters. These parameters are derived for specific loading modes

including tension, compression, and simple shear. Hence, these parameters are likely to vary for

each loading mode and the parameters for one loading mode cannot be used for the another. To

obtain one set of parameters that can best describe the behavior of the material in all uniaxial

loading modes, the Nelder-Mead simplex optimization algorithm [105] is employed to minimize the

error of approximation when one set of parameters, called as best-fit parameters, is used for all

loading modes. In other words, the procedure of finding the best fit parameter can be interpreted

as a simultaneous fitting to the three loading modes. The objective function in this case can be

constructed as stated in the following, considering the one-term Ogden model:

E(µbest, αbest) =

3∑
i=1

∫ λi2

λi1

(σbest − σi)2 dλ (3.19)

where i = 1, 2, 3 corresponds to the loading modes of tension, compression, and shear. µbest and αbest

denotes the best-fit parameters, λi1 and λi2 refer to the initial and final stretch/shear strain values in

the corresponding loading modes, σbest and σi represents the approximated stress using the best-fit

parameters and the target stress of each loading mode, respectively. σbest for compression/tension

and simple shear are calculated based on equations 3.14 and 3.17, respectively.

3.3. Results

The GA optimization procedure is carried on minimizing the difference of averaged microme-

chanical stresses with the mechanical response of corpus callosum in arbitrary range of stretch or

shear strain values. The optimization parameters are taken to be µaxon, µECM , αaxon and αECM

for Ogden hyperelastic model. It should be noted that if no constraint is applied to these parame-

ters, the optimization procedure will result in the same parameters as those of the corpus callosum.

Therefore, an equality constraint of µaxon/µECM = 3.0 is imposed on the solution which is consistent

to different previous studies [2, 3, 99, 100]. GA algorithm was executed with the function tolerance

level set as 10−4 and it converged after 94, 51 and 101 generations for tension, compression, and

simple shear modes.

Table 3.1 presents the known Ogden material parameters for corpus callosum [1] and the

calculated optimal material parameters of axon and ECM (micro level constituents) in tension,
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compression, and shear mode by the proposed optimization framework. The calculated best-fit

parameters for axon and ECM are presented in Table 3.1 as well.

Table 3.1. Optimal material parameters (Ogden hyperelastic) for corpus callosum and its corre-
sponding axon and ECM in different loading conditions and the best fit parameters.

Material Tension Compression Shear Best fit
µ(kPa) α µ(kPa) α µ(kPa) α µ(kPa) α

Corpus Callosum 0.35 -26.6 0.43 -22.8 0.32 -22.8 0.35 -25.30
Axon 0.51 -26.51 0.63 -22.73 0.48 -22.68 0.531 -25.13
ECM 0.17 -26.67 0.21 -22.84 0.16 -22.65 0.177 -25.23

The reported Ogden hyperelastic properties of corpus callosum is characterized through

quasi-static experimental tests by Budday et al. [1]. As a result, the obtained material parameters

of axon and ECM corresponds best to the applications with low strain rates. Several studies have

investigated the strain rate dependency of brain tissue mechanical response by characterizing it in

dynamic strain rates [25,26,53,55,106,107].

Figure 3.5 illustrates the stress-stretch behavior of axon in tension, compression, and shear

for the stretch range of (1, 1.1), (0.9, 1) and shear strain range of (0, 0.2), respectively using optimal

and best-fit parameters. The stretch and shear ranges used here are the ones that have used for

material characterization in the optimization framework and is consistent with the experiments of

Budday et al. [1]. Figure 3.6 presents same diagrams for ECM. The coefficient of determination (R2)

for the approximation with the best-fit parameter compared to optimal parameters is presented in

Table 3.2. R2 values show a close approximation between best fit and optimal parameters while

having best match for the tension mode and worst for the shear mode for both axon and ECM.

Table 3.2. Coefficient of determination (R2) for best fit parameters in stress-stretch correlation of
axon and ECM in different loading conditions.

Material Coefficient of determination (R2)
Tension Compression Shear

Axon 99.5% 99.3% 84.5%
ECM 99.6% 99.3% 83.6%
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(a) (b)

(c)

Figure 3.5. Comparison of the stress-stretch or stress-shear behavior of axon material using optimal
and best fit parameters which is obtained by minimizing the error of fitting for three modes of
tension, compression, and shear for (a) tension, (b) compression, and (c) shear modes.

Micromechanical simulations can be performed using the obtained material properties of

axon and ECM. The micromechanical simulation gives the insight into micro-level stress distribution

in the brain white matter which shows how the stress magnifies scaling from macro to micro level.

Using optimal parameters of axon and ECM, the micromechanical simulation is performed

in tension, compression, and shear loading by applying displacement in the "Z" direction for tension

and compression and "YZ" tensorial direction for simple shear (Figure 3.2). The results are shown

in Figure 3.7. The final stretch values λ for the tension and compression modes are set to be 1.1

and 0.9, respectively. For the shear load, the final shear strain is set to have a final value of 0.2.

Figure 3.7 illustrates the stress distribution for the final mentioned stretch or shear strain value.

To check the accuracy of the calculated optimal parameters and the validity of the applied

optimization algorithm, the response of corpus callosum is found by calculating the volume averaged

stress of RVE from micromechanical simulations. The obtained results for the three different loading
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(a) (b)

(c)

Figure 3.6. Comparison of the stress-stretch or stress-shear behavior of ECM material using optimal
and best fit parameters which is obtained by minimizing the error of fitting for three modes of
tension, compression, and shear for (a) tension, (b) compression and (c) shear modes.

(a) (b)
(c)

Figure 3.7. Deformed state representation of stress distribution of axon and ECM in micromechan-
ical simulation applying obtained optimal parameters from GA for (a) tension at the stretch value
of 1.1, (b) compression at the stretch value of 0.9 and (c) shear for shear of 0.2.

modes are compared with the reported result of Budday et al. [1] and as shown in Figure 3.8, the

results are in excellent agreement with referenced values which shows the high accuracy of the

predicted optimal parameters for axon and ECM.
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(a) (b)

(c)

Figure 3.8. Comparison of the stress-stretch behavior of corpus callosum applying optimal param-
eters found by GA and results of Budday et al. [1] using the reported Ogden parameters for (a)
tension, (b) compression and (c) shear.

(a) (b) (c)

Figure 3.9. Deformed state representation of stress distribution of axon and ECM in micromechani-
cal simulation using best fit parameters obtained by Nelder-Mead simplex method (simultaneous fit
to three modes of loading) for (a) tension at the stretch value of 1.1, (b) compression at the stretch
value of 0.9 and (c) shear for the shear strain of 0.2.

Moreover, the micromechanical simulation for uniaxial tension, compression, and shear load-

ing is done with the best fit parameters, as shown in Figure 3.9. Comparing the results with those

presented in Figure 3.7, the maximum stress obtained by applying best fit parameters shows approx-
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imate change of +2%, -1%, and 29% for tension, compression, and shear mode, respectively. This

result is consistent with the data presented in Table 3.2 as the best fit parameters showed lowest

coefficient of determination for shear loading mode compared to other ones. Figure 3.10 shows me-

chanical response of corpus callosum in different loading conditions obtained from micromechanical

simulations (shown in Figure 3.9) and compared with the referenced data [1] using the axon and

ECM best-fit parameters.

(a) (b)

(c)

Figure 3.10. Comparison of the stress-stretch behavior of corpus callosum applying best fit param-
eters of axon and ECM and results of Budday et al. [1] using reported Ogden parameters for (a)
tension, (b) compression and (c) shear.

3.4. Discussion

If the material parameters of the axon and ECM in the heterogeneous RVE are set to be

equal, the RVE would change into a homogeneous RVE which results in a uniform constant stress

distribution. This fact underscores the importance of setting a constant for initial shear modulus

ratio of axons and ECM (µaxon/µECM ). If this ratio constant is not considered in the optimization
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problem, the objective function would be optimized with the parameters of axons and ECM equal

to the parameters of the corpus callosum.

Moreover, the choice of axons volume fraction is important in the final optimized results. In

this paper, the axons volume fraction was obtained from a published study conducted on porcine

brainstem [2]. To the authors best knowledge, there is a lack of information on this quantity for

human brain white matter and specifically, corpus callosum. However, this parameter can be easily

changed and modified in our framework.

Different material properties have been reported in the literature for axons which vary in

a wide range. Compared to the best-fit axons shear modulus of 0.531 kPa obtained in this study

for human brain white matter, Meaney et al. [3] found the shear modulus of axons in guinea pig

optic nerve to be approximately 0.29 kPa and the reported shear modulus of axons for porcine

brainstem was 12.9 kPa (tensile loading mode with the strain rate of 5.5 s−1 [2]). This value for the

porcine corona radiata was found to be about 1.4 kPa according to Yousefsani et al. [108]. Different

factors such as the loading mode, strain rate of deformation, and the kind of the tissue used in the

experimental study (as the input data) are influential in this variation of the reported results. In

this study, the loading mode factor was omitted by introducing the best-fit parameters.

3.5. Conclusion

In this paper, GA optimization method was employed to find the hyperelastic properties of

human brain white matter (corpus callosum) constituents including axon and ECM. A square RVE

with the axon volume fraction of 52.7% was used and periodic boundary condition was applied to

ensure the repetition of the RVE in all directions. The hyperelastic properties of corpus callosum

was obtained from Buuday et al. [1] in terms of Ogden hyperelastic model.

The optimal parameters found by GA was then applied in micromechanical analysis and

the obtained results were compared with the published result of Budday et al. [1] showing an excel-

lent agreement. This is a confirmation to the authenticity of the proposed optimization algorithm

which is based on genetic algorithm and iterative micromechanical finite element simulation. It was

shown that these constituents have different properties (called as optimal parameters) in tension,

compression, and simple shear loading. Therefore, to report one set of parameters that can best de-

scribe the behavior of axons and ECM in all loading modes, best-fit parameters were found through

another optimization procedure which minimizes the error for three loading modes simultaneously.
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The obtained optimal and best-fit parameters of axon and ECM can be used in the study of brain

micromechanics and to find micro level stress and stress concentration in human brain white matter

structure. The material characterization for axons and ECM were done by using hyperelastic model.

Employing visco-hyperelastic models for time-dependent modeling in different loading scenarios can

be done for a future work. Moreover, two parameters of the initial shear modulus ratio of the axons

and ECM, and the axons volume fraction can highly affect the resultant parameters. Therefore, if

future experimental studies would be able to find the more accurate estimation of those values, the

optimal parameters should be updated accordingly.
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4. VISCO-HYPERELASTIC CHARACTERIZATION OF

HUMAN BRAIN WHITE MATTER MICRO-LEVEL

CONSTITUENTS IN DIFFERENT STRAIN RATES

4.1. Introduction and literature review

Traumatic brain injury (TBI) is a common pathology and a major health problem worldwide.

Each year, an average of 1.4 million cases of TBI are reported in the United States alone [109]. TBI

may happen due to the sudden movement of the head, impact, shock waves due to a blast and

generally any mechanical load applied to the head. State of the art research suggests that the

primary reason for TBI is the deformation and mechanical strain happening in the brain [110].

Common symptoms associated with TBI include dizziness, headaches, and loss of memory; studies

have shown that DAI is the primary cause [111]. DAI which is characterized by the formation of

contusions and lesions in the brain white matter happens due to the shear deformation of axons in

brain white matter. Corpus callosum and corona radiata are parts of the brain white matter which

are known to be commonly affected by the DAI [112]. Understanding the extent of DAI severity

and its mechanism can be helpful in preventing such a pathology.

Due to the infeasibility and risks associated with experimental tests, computational tech-

niques are suitable procedures for the simulation of the incidents leading to TBI. In this respect,

different scenarios such as coup and contrecoup injuries in impact induced TBIs [38], ballistic im-

pacts [113,114], and blast induced injury [115,116] have been simulated through numerical modeling

to find the stress and strain distribution of the brain at the time of the incident. Different factors

and parameters lend help to make those simulations more accurate among which, geometrical model

exactness, inclusion of different organs of the head and brain in the model, and choice of material

properties can be mentioned. As such, extensive efforts have been made to characterize the brain

The material in this chapter was co-authored by Mohammadreza Ramzanpour, Mohammad Hosseini-Farid, Jayse
McLean, Mariusz Ziejewski, and Ghodrat Karami. The content of this chapter was published in the journal of Medical
& Biological Engineering & Computing, 58(9), 2107-2118. Mohammadreza Ramzanpour was mainly responsible for
experimental data collection, analysis, algorithm development, and the conclusions advanced here. The other co-
authors helped in proof-reading the paper. Ghodrat Karami supervised the project.
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tissue material properties. Brain tissue is an ultra-soft, strain rate sensitive material which shows

a nonlinear behavior under loading. Hyperelastic models have been used in numerous studies to

model such a behavior. Mihai et al. [58] introduced several hyperelastic models for brain tissue

modeling. They focused on development of an appropriate strain energy function that can pre-

dict behavior of human brain tissue in mixed loadings of shear, compression, and tension. They

found that Ogden model provides a better solution compared to other hyperelastic models such as

Mooney-Rivlin, Neo-Hookean, Gent, and Fung in the case of multiaxial loading [58]. Budday et

al. [1] tested the human brain tissue in tension, compression, and shear; the mechanical response

of the tissue was fitted with several hyperelastic constitutive models. They found that the material

property parameters for a specific loading mode cannot be used for other loading modes. In order to

obtain one set of material property parameters to be used for general loading cases, they calibrated

the material properties to the specific loadings. They also found that the Ogden model outperforms

other hyperelastic models in describing the mechanical behavior of brain in all three loading modes

by one set of parameters.

Another category of commonly used technique for brain tissue characterization is the inden-

tation test. Feng et al. and Qiu et al. [117, 118] used this test for characterization of injured brain

tissue using elastic and viscoelastic constitutive models, respectively. Budday et al. [89] performed

long-range and short-range flat punch indentation tests on different parts of the bovine brain tissue.

They found out that the white matter was approximately 40% stiffer compared to grey matter.

Feng et al. [119] used inverse finite element modeling in conjunction with experimental asymmetri-

cal indentation tests to find the hyperelastic transversely isotropic parameters of the porcine brain

white matter under large strain deformation. Moreover, by performing the indentation tests parallel

and perpendicular to the brain axonal fiber direction, the orientational dependency of the material

parameters were investigated as well.

The study of TBI is usually associated with evaluating the dynamic response of the brain.

Brain as a soft material shows a time-dependent behavior where hyperelastic models are not able

to provide such information for brain. The time varying stiffness of the solids and specifically soft

materials are referred to as viscosity and should be addressed in studying the dynamic behavior of

brain. Hosseini-Farid et al. [48] investigated the dynamic response of brain tissue by measuring the

instantaneous and equilibrium response of the brain tissue in different strain rates. The instanta-
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neous response was calculated using quasi-linear viscoelasticity theory and the equilibrium response

was measured through equilibrium stress evaluation. Hyper-viscoelastic models have also been pro-

posed for describing the behavior of other soft biological tissues such as ligaments [120]. Rashid

et al. [53] performed relaxation compression tests on brain in different strain rates with the strain

values of 0.3 and characterized its response by using hyper-viscoelastic model. The Ogden based

hyper-viscoelastic model which its relaxation time-dependent part is based on Prony series expan-

sion was used for this purpose. The strain energy function was derived in the form of convolution

integral.

Micromechanical analysis has been used to find the anisotropic response of the brain white

matter. The studies in this area were inspired by the micromechanical study of composite materi-

als [121, 122]. Abolfathi et al. [99] found the anisotropic properties of brain white matter through

micromechanical analysis. A viscoelastic constitutive model which is appropriate for small deforma-

tion was used with Prony series expansion to account for time-dependent properties of both axons

and ECM as constituents of the brain white matter. To obtain all the anisotropic coefficients of

the linear viscoelastic model, six different simulations including three uniaxial tensile loading in

three different direction and three simple shear tests were performed by the means of finite element

simulations. In their study, the material properties of axons and ECM were obtained from another

published papers [98]. Moreover, the effects of axons undulation and volume fraction on the overall

properties of brainstem were studied as well. Nonlinear modeling of brain white matter was the

target of study in the paper of Karami et al. [100]. Using the mechanical properties of axons and

ECM from [3], the mechanical response of brain white matter was found for large deformation cases

by the assumption of isotropic behavior of brain white matter.

The mentioned studies in the the micromechanical analysis were aimed at finding the me-

chanical response of the homogeneous brain white matter by knowing the mechanical properties of

heterogeneous representative volume element (RVE) constituents. However, as mentioned in [99],

the availability of the experimental data to calculate the properties of micro-level constituents is

a point of challenge since experimental techniques such as nanoindentation [123] and atomic force

microscopy (AFM) [124] can be quite complex and laborious in terms of design of experiments

and sample preparation of soft biological tissues. On the contrary, the macro-level tests such as

uniaxial loading tests can be done with much lower cost and with higher availability and accessi-
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bility. Therefore, several studies aimed at finding the mechanical properties of brain white matter

micro-level constituents (including axons and ECM) by using the experimental data of macro-level

tests performed on brain white matter. To this end, simulation-based optimization by finite el-

ement modelling has been extensively used in different fields [59, 60] including the biomechanical

engineering. Javid et al. [2] tried to find the mechanical properties of axons and ECM of the porcine

brainstem through relaxation tensile tests for up to 5% of deformation. The viscoelastic constitutive

model was used for both axons and ECM in micromechanical simulations. Applying the averaging

technique for homogenization, they minimized the difference between micromechanical simulations

and experimental results through conducting iterative finite element simulations. Moreover, the

effect of different types of RVE including hexagonal, square, and randomly distributed were studied

as well. The obtained results showed good agreements between micromechanical simulation and

experimental data. While the viscoelastic model can only be used in the cases associated with small

deformation, it still captures the time-dependent response of the brain. Yousefsani et al. [36] used an

embedded element technique to perform transverse-plane hyperelastic micromechanical simulation

of brain white matter. The RVE used in their study was formed by probabilistic distribution of

axons embedded in ECM. Directional dependency was observed in transverse plane loading mode.

4.2. Materials and methods

In this section, first, the constitutive models used for describing the behavior of brain tissue

will be explained. Thereafter, the details on the micromechanical simulation methodology will be

delineated and finally, the developed simulation-based optimization framework used for micro-level

characterization of human brain white matter will be investigated.

4.2.1. Material constitutive modeling

The Ogden hyperelastic model has been extensively used for describing the behavior of

rubber-like materials and soft tissues including brain. The Ogden strain energy function can be

written as the following:

Wogden =

N∑
i=1

2µi
αi2

(λ1
αi + λ2

αi + λ3
αi − 3) (4.1)

where λ1, λ2 and λ3 denote the principal stretch values, µi and αi are Ogden material parameters,

and N is the number of terms used in the Ogden model. As expected, increasing the number
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of terms (N) in the Ogden model will consequently increase the accuracy of curve fitting to the

experimental data. However, as demonstrated in various studies, using one term will be sufficient

most of the time, which is the case in our study as well.

Relaxation test is one of the most common types of tests used for characterizing the time-

dependent behavior of soft materials [54,55,125]. Soft materials such as brain, exhibit time varying

stiffness when being held under specific deformation for a period. As brain is subjected to constant

deformation, the induced stress value drops over time. As a result, a time-dependent model is

required to express such a behavior. Miller et al. [52] proposed the following strain energy function

for soft biological tissues. While this strain energy function was originally used to describe the

behavior of brain tissue in tension, there is no inherent loading mode specific constraint involved

and it has been utilized successfully for the compression mode as well [4, 53].

W =
2

α2

t∫
0

[
µ (t− τ)

d

dτ
(λ1

α + λ2
α + λ3

α − 3)

]
dτ (4.2)

As stated in equation 4.2, convolution integral is employed for formulation of the strain energy

function. The term µ which represents the relaxed shear modulus, is calculated based on the

following equation:

µ = µ0

[
1−

n∑
i=1

gi (1− exp (−t/τi))

]
(4.3)

where µ0 is the instantaneous shear modulus, gi is the relaxation coefficient, t denotes the time,

and τi is the characteristic time coefficient. n is the number of terms utilized in the Prony series

expansion and usually two terms (n = 2) can provide a good approximation.

4.2.2. Micromechanical modeling

Micromechanical modeling studies the materials at the scale of their constituents by using a

heterogeneous RVE, hence, providing an insight into stress and strain distribution at the micro-level.

The key idea behind micromechanical modeling is to find the heterogeneous RVE that can represent

the whole structure of macro-level homogeneous material. The concept of the micromechanical

modeling has been tested in the analysis of composite materials [96,97,126,127]. Brain white matter

has a fibrous structure with the axons highly oriented and dispersed in the ECMmaterial. The axons

stem surrounded by myelin, also known as nerve fibers, are highly oriented. Therefore, attempts
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have been made to model the brain white matter as a fibrous composite structure. From one point

of view, the research in this area can be divided into two separate categories. One contains the

studies that are aimed at finding the material properties of brain white matter when the properties

of its constituents are known [99, 100]. Second category includes those studies conducted to find

properties of brain white matter constituents from known response and mechanical properties of

the brain white matter [2, 36] through macro tests.

The first step toward micromechanical analysis is to identify the appropriate RVE. This

is usually done through microscopic images of materials, which shows the micro-level structure,

the volume fraction of each constituent, and geometrical shape of them. The scanning electron

microscopy (SEM) images of porcine brainstem [2] and histology slide of guinea pig optic nerve [3]

can be seen in Figure 4.1(a) and Figure 4.1(b). These figures can be used for estimating the

volume fraction of axons and verifying their orientation in the matrix. As it can be seen in Figure

4.1(a), the axons vary in diameter size, and show random distribution. While it seems that the most

realistic representation of RVE can be created by considering this randomness, different independent

studies [2,100,108] confirmed that simplified representation of RVE with uniform diameter of axons

and organized dispersion structure can lead to results just as accurate as the more complicated

randomly dispersed RVE. Moreover, using random RVE has its own challenges, since the meshing

in RVE must be completely symmetrical with respect to all coordinate axis, which would be almost

impossible for random RVEs. In this study, the square RVE as shown in Figure 4.1(c) is employed.

To make representation of a whole brain white matter possible, certain equations need to be applied

on the meshed RVE. These equations that ensure the repetition of RVE in all directions are known

as the periodic boundary conditions (PBC) and must be applied as constraints to the meshed

RVE in the finite element simulations, for which the readers are referred to second chapter of this

dissertation.

As mentioned, applying PBC, makes RVE to repeats and extends itself in all directions,

thus, the RVE represents a small point in macro sized material, and this is the key idea behind

the micromechanical analysis. The RVE can then be used in different finite element simulations

of interest including relaxation test which is used in this study. For homogenization purposes, the
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Figure 4.1. The overview of tissues with nerve fibers structure (a) porcine brain stem scanning
electron microscopy (SEM) showing dispersion of axons in ECM [2] (b) immunohistochemistry of
the guinea pig optic nerve [3] (c) the square RVE for representing the patterned structure of brain
white matter and other tissues with oriented dispersion of axons and nerve fibers.

macro-level stress and strain will be found by volume averaging of the micro-level stress and strain

fields over the RVE, based on the following equations:

σ =
1

V

m∑
i=1

σivi, ε =
1

V

m∑
i=1

εivi (4.4)

where σi , εi, and vi denotes the stress, strain and volume of the ith element of the meshed RVE,

respectively, and V the is total volume of the RVE.

4.2.3. A framework for the visco-hyperelastic simulation-based optimization

Time-dependent characterization of human brain white matter has been performed for dif-

ferent parts of the brain [47]. However, there is no similar experimental data for dynamic behavior

of micro-level constituents of brain white matter. Using derivative-free optimization methods in

the context of micromechanical finite element modeling, the goal is to find the visco-hyperelastic
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Figure 4.2. The flowchart of the optimization framework for finding the parameters of brain white
matter constituents.

properties of axons and ECM. The key idea is the fact that if right material properties are chosen for

those constituents, the overall response of brain white matter obtained from micromechanical finite

element modeling will be close to that of the experimental relaxation tests. To this end, an iterative

optimization framework must be defined which changes the material properties of constituents until

the desired results will be obtained. The schematic representation of the optimization framework is

shown in Figure 4.2. In Figure 2, J(p) is the objective (cost) function which is dependent to the pa-

rameters of the visco-hyperelastic model including µ, gi, and τi introduced in equation (4.3). These

parameters must be separately assigned to both constituents of the brain white matter. Therefore,

the number of parameters in the constitutive model doubles up in the objective function to account

for the material properties of both axon and ECM. Consequently, the following cost function is

defined to perform the optimization procedure in the context of iterative finite element simulation.

J(p) =

t2=500s∫
t1=0

[σFE(p, t)− σexp(t)]2 (4.5)

in which J denotes the cost function, σFE represents the averaged stress values obtained from the

numerical micromechanical finite element simulation, t is the time, p represents the independent

variables on which the cost function (and hence, numerical simulated stress) is dependent on (listed

in Table 4.1) and σexp denotes the experimental stress corresponding to the data presented in Figure

3 and Figure 4 appearing in the subsequent section of this thesis.
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Table 4.1. List of the arguments p in the cost function defined in equation (5) which correspond to
the constitutive model described in equations (4.1) to (4.3).

Axon ECM
µ0,α,g1, g2,τ1,τ2 µ0,α,g1, g2,τ1,τ2

As listed in Table 4.1, total number of 12 variables control the finite element obtained

stress values which consequently, the cost function will be dependent on. Moreover, the following

constraints must be held between the variables for both axons and ECM:

g1 + g2 < 1 (4.6)

τ1 − τ2 < 0 (4.7)

Different derivative-free optimization algorithms can be used for the proposed optimization

framework in Figure 4.2 [128–130]. In this part, the constrained particle swarm optimization (C-

PSO) algorithm. The C-PSO algorithm is widely used for black-box optimization problems where

the function of interest is not explicitly stated in terms of its independent variable or when the

function is time-consuming to be evaluated. PSO algorithm was originally introduced by Kennedy

and Eberhart [131]. In PSO, several particles are randomly placed in the search domain of the

objective function. The search domain is n-dimensional space where n denotes the number of

variables associated with the objective function. For the initial iteration, each particle will be

randomly located in the search space and objective function will be evaluated at those points.

In the next iterations, the particles will displace themselves in the search domain by using the

information from the history of their own and the communicative information acquired from other

particles in the swarm. This process continues until the whole swarm is converged i.e., gets very

close to a specific point in the search domain. This point is the optimum solution to the objective

function. The swarm particles update their trajectory based on the following equations:

−→vi k+1
= −→vi k + c1r1

(−→x∗ik −−→xi k)+ c2r2

(−→xgk −−→xi k) (4.8)
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−→xi k+1
= −→xi k +−→vi k+1 (4.9)

In the above equations, k denotes the iteration number, −→vi k represents the velocity of the ith particle,

−→xgk is the global best location experienced by the whole swarm in the kth iteration, −→x∗ik denotes the

best location experienced by the ith particle up to the kth iteration, r1 and r2 are uniform random

numbers, and finally c1 and c2 are constant coefficients which can be adjusted from problem to

problem. Commonly c1 = c2 = 2.05 is employed in this implementation of PSO. The second and

third terms on the right-hand side of equation (4.8) qualifies the cognitive and social behavior of

particles in their search process and therefore, the choice of c1 and c2 affects the weights of these

terms in evolution of particles and balances the self-learning and swarm-learning effects. Usually,

boundaries can be set up for the search space domain, and therefore, the velocity quantity must

be bounded as well. Restricting the velocity of particles, however, can slow down the process of

convergence, but it helps to avoid the divergence of particles. It should be noted that while mostly

in the literature and particle swarm optimization terminology, the term −→vi is referred to as the

velocity of the particles, it is in fact, a type of displacement and corresponds to the displacement

of a particle in the two consecutive iterations. To be consistent with the literature, this term will

be mentioned as velocity in this dissertation as well.

As can be speculated from Equation (4.8), all the particles are learning from the swarm by

moving toward the global best experienced location. Therefore, there is a probability that all or a

majority of particles will be attracted to the global best point and get stuck in the local optimum

of the objective function. Linearly decreasing weighted PSO, balances the local and global search

properties of the swarm by applying a decreasing weight on the velocity of the particles from previous

iteration as stated in the following equations [82]:

−→vi k+1
= ω−→vi k + c1r1

(−→x∗ik −−→xi k)+ c2r2

(−→xgk −−→xi k) (4.10)

ω = ωmax − (ωmax − ωmin)
k

kmax
(4.11)
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where k denotes the current iteration number in the optimization iterative process, kmax is the

maximum number of iterations, ωmax and ωmin are the upper and lower boundaries imposed on

the ω which is the PSO velocity relaxation coefficients. In this study, the values of ωmax and ωmin

was set to be 1.1 and 0.1, respectively. This way, the search procedure will be more inclined to

global exploration in the initial iterations and more to the exploitation as the number of iterations

increases.

It is worthy to mention that other derivative-free algorithms such as genetic algorithm or

pattern search algorithm can be used for optimization process as well. However, the gradient based

optimization algorithms such as gradient descent may fail to provide a reasonable approximation

since they can get stuck in the local minimum of the optimization problem [26]. The derivative-free

optimization algorithms get around this problem and are more likely to find the global minimum.

However, in this part, the C-PSO algorithm is used and will be employed the optimization problem

by imposing the constraints stated in equations (4.6) and (4.7). For more details on the C-PSO, how

to configure it for imposing the constraints of the optimization problem, and on its modification for

faster convergence, readers are referred to [26,28].

4.3. Results

In this section, first, the results from micro-level characterization of brain white matter

in different strain rates will be presented. Thereafter, the possibility of generalizing the material

properties of axons by studying its dependency to the strain rate will be studied.

4.3.1. Micromechanical optimization of the constituents’ properties

The relaxation compression tests at different strain rates conducted in [4] were used as the

input data for the optimization procedure. Based on [4], stress relaxation test on the brain white

matter was performed by holding the sample at the compressive stretch value of λ = 0.7 (corre-

sponding to the compressive strain value of 0.3) for the duration of 500 seconds. The finite element

simulation of compression relaxation test was created in ABAQUS (ABAQUS Inc., Providence, RI)

with the same deformation speed and relative sample size as that of the [4] by use of the meshed

RVE introduced in previous sections. Figure 4.3 and Figure 4.4 show the ramp and relaxation part

of the relaxation tests performed by Forte et al. [4].

Using curve fitting techniques by the C-PSO algorithm [26], the visco-hyperelastic material

parameters of the brain white matter are found to be as presented in Table 4.2.
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Figure 4.3. The ramp part of the relaxation test at different strain rates of 0.0001, 0.01, and 1 s−1

obtained from [4]. As can be seen, the stiffness of the tissue increases with the increase in the strain
rate value.

Figure 4.4. The compression relaxation test data of Forte et al. [4] at the stretch value of λ = 0.7.
The relaxation test is done by holding the sample for 500 s. The points in the original paper are
digitized through image processing techniques.
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Table 4.2. Visco-hyperelastic material properties of brain white matter using the experimental data
presented in Figure 4.3 and Figure 4.4.

Strain rate (1/s) µ0 (kPa) α g1 g2 τ1 (s) τ2 (s)
0.0001 0.2751 -3.4996 0.172 0.256 123.348 441.027
0.01 0.5669 -4.5181 0.303 0.326 2.240 71.522
1.0 1.1783 -4.7659 0.653 0.206 0.448 15.007

Table 4.3 and Table 4.4 list the obtained optimal material properties for axons and ECM

after conducting the particle swarm optimization method. These results are obtained by setting the

volume fraction of axons in RVE, equal to 0.527 and the ratio of initial shear modulus of axon to the

initial shear modulus of ECM equal to 3.0 (µ0axon/µ0ECM = 3.0). It should be noted that it is vital

to impose the ratio of the initial shear modulus as a constraint into the optimization framework.

Otherwise, the material properties of axon and ECM will be the same as the material properties of

the brain white matter itself and the defined cost function stated in equation (4.5) will be exactly

zero corresponding to its global minimum.

Table 4.3. The optimal material properties for axons with respect to the compression relaxation
test.

Strain rate (1/s) µ0 (kPa) α g1 g2 τ1 (s) τ2 (s)
0.0001 0.4018 -3.4258 0.184 0.293 121.546 438.412
0.01 0.8280 -4.6221 0.4430 0.2431 4.2587 72.200
1.0 1.7210 -4.7549 0.651 0.219 0.398 16.259

Table 4.4. The optimal material properties for ECM with respect to the compression relaxation
test.

Strain rate (1/s) µ0 (kPa) α g1 g2 τ1 (s) τ2 (s)
0.0001 0.1339 -3.4346 0.176 0.285 123.530 441.235
0.01 0.2760 -4.7330 0.310 0.335 2.539 70.326
1.0 0.5737 -4.8021 0.634 0.219 0.463 16.008

Figure 4.5 demonstrates the averaged mechanical response of RVE in micromechanical fi-

nite element simulation using the acquired optimal material properties of axons, compared with

the experimental data from the compressive relaxation test for three different deformation strain
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Figure 4.5. Comparison of the experimental results of relaxation test on human brain white matter
[4] and the obtained numerical results of micromechanical finite element simulation by using the
acquired optimal parameters of axons and ECM presented in Table 4.3.

rates. As it can be seen, good agreement is observed which implies on the success of our proposed

optimization framework. The cost function J has the value of 0.0248, 0.0359, and 0.0199 for three

strain rates of 0.0001, 0.01 and 1 s−1, with the acquired optimal parameters and the coefficient of

determination comparing the numerical micromechanical results with experimental result stand at

high values of R2 = 99.59%, R2 = 99.14%, and R2 = 99.45% which again confirms the high accu-

racy of the resultant optimization process and micro-level constituents’ characterization of human

brain white matter. Figure 4.6 shows the relaxed stress of axons and ECM with respect to time.

Since the obtained Prony series parameters of axon and ECM are close to each other, the overall

pattern of Ogden shear modulus reduction for both materials seems to be nearly identical. Both

axon and ECM experience more than 50% reduction in the shear modulus compared to the initial

shear modulus expressed by Ogden constitutive model.
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4.3.2. Strain rate dependency of the axons material properties

In this section, the aim is to correlate the material properties of axons with respect to the

deformation strain rate. In Figure 4.7, the obtained initial shear modulus of axons is depicted with

respect to the strain rates of the compression tests. As represented in Figure 4.7, if logarithmic

scale is used for demonstration of strain rates values, a linear relationship is observable between the

strain rate and the axons initial shear modulus. To predict the initial shear modulus of axons with

respect to the strain rate, a linear regression is performed, and the predicted initial shear modulus

of axons is also represented in Figure 4.7 by a solid line. The prediction line can be stated by the

following equation:

µ0 (kPa) = 0.1432 ln (ε̇) + 1.6432 (4.12)

Moreover, finding the reduced shear modulus of axons can be of interest as well. Figure 4.8

shows the reduced shear modulus of axons at t = 5s. The linear pattern seen for the initial shear

modulus is not observable here anymore. The maximum reduced shear modulus after 5 s is seen for

the strain rate of 0.01 s−1. The following equations state the first and second order regression for

predicting the reduced shear modulus of axons for the intermediate strain rate values, respectively.

µ5 (kPa) = 0.0112 ln (ε̇) + 0.5381 (4.13)

µ5 (kPa) = −0.0053(ln (ε̇))2 − 0.0374 ln (ε̇) + 0.5008 (4.14)

where µ5 stands for the reduced shear modulus of axons at t = 5s.

Figure 4.9 demonstrates several micromechanical finite element simulations with the ob-

tained optimal parameters for the strain rate of 1 s−1, shown at different times of 1 s, 10 s and 25

s. These simulations can provide us with a detailed understanding of the stress distribution at the

micro-level. In this case, where the uniaxial compression relaxation test is performed, the stress is

uniformly distributed in the axon and ECM, with the stress of axons being approximately 3 times

greater than that of the ECM. This is true for the three shown instances, since the Prony series

expansion parameters for both constituents are close to each other.
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4.4. Discussion

To bridge between the micromechanical simulations and the macro-level tests, and to plausi-

bly find the micro-level constituents, the micromechanical simulation and macro-level tests must be

in high degree of resemblance to each other. One point that may raise concerns upon the validity of

the micromechanical simulation is the orientational dependency of the brain white matter stiffness.

Forte et al. paper [4] from which the experimental data was obtained, does not concern itself with

the orientation of the axonal fibers in the brain white matter samples for the uniaxial tests and this

seems to be a reasonable approximation and approach; since Budday et al. [1] performed uniaxial

tests in different axonal fiber orientations and they posited that there is no statistically significant

dependency between the shear modulus of axons and the axonal fiber orientation. Hence, in this

study, the micromechanical simulation and uniaxial loading is performed along the direction of the

axonal nerves while using the macro-level compression test data from Forte et al [4], on the premise

of the conclusion asserted by Budday et al [1], as explained. Moreover, the no-friction boundary

condition of the uniaxial testing was considered in our micromechanical simulations as well.

There is a wide range of reported properties for axons in different biological tissues as can be

found in the literature. The reported initial shear modulus of axons in guinea pig optic nerves, using

the Ogden hyperelastic model by Meaney [3] was in the range of 0.28 to 0.29 kPa. The initial shear

modulus of axons in porcine brainstem under tensile test with the strain rate of 5.5 s−1 was found

to be approximately 12.9 kPa, as reported by Javid et al. [2]. In this study, this value was found

to be in the range of 0.4 to 1.7 kPa for axons of human brain white matter under compression.

This variation may be originated from difference in tissues used for experimental tests, regional

variation, load dependency, strain rate dependency, and the employed constitutive models. The

degree of dependency of the axons shear modulus to the strain rate of deformation was found to be

notable, showing 4.5 times increase as the strain rate rise from 0.0001 to 1.0 s−1.

The quality of the first and second order regression for approximating the initial and reduced

shear modulus of axons is another point which deems to be worthy of discussion. Looking into

Figure 4.8, it can be elicited that the first order regression with the independent variable of ln(ε̇), as

reflected in equation (4.13), could not give a good approximation of reduced shear modulus of axons

(at t = 5s) for the intermediate range of strain rates. Alternatively, the second order regression
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as stated in equation (4.14) can be used for approximating purposes, however, it should be noted

that we should be cautious when using this equation for finding the reduced shear modulus in the

strain rates outside the range of 0.0001 s−1 to 1s−1. In other words, extrapolation may lead to

far inaccurate and irrational approximations. Moreover, since the regression is built upon 3 points,

the second order regression will be identical as the second order interpolation and the associated

error of prediction will be zero, which could result in overfitting and inaccurate results if used for

the ranges of the strain rate beyond what was discussed here. Therefore, a great care should be

taken upon the decision of whether using the first or second order regression for approximating the

reduced shear modulus of axons in the intermediate strain rate values.

The resultant material properties for axons and ECM are dependent to some of the as-

sumptions made in the optimization framework including the axons volume fraction and the ratio

of the initial shear modulus of axons to ECM. As mentioned earlier, there must be a fixed initial

shear modulus ratio, to carry on the optimization procedure since if the material properties of both

axons and ECM are set to equal parameters, the RVE represents a homogeneous material with the

property equivalent to that of the assigned ones. The axons volume fraction is another factor that

affects the constituents’ properties. In this paper, those parameters were assigned based on the

previous published studies [2, 100]. However, those values are not specifically derived for human

brain white matter tissue, and hence, experimental micro-level tests on human brain white matter

could be beneficial for better approximation of that kind.

The utilization of biphasic constitutive models could open a new line of research in the

field of micromechanical characterization of the brain [55, 61]. The biphasic model breaks down

the brain structure into two independent phases of solid and fluid, as water constitutes 80% of the

volume fraction of brain. A recent study involved with macro-characterization analysis, suggests a

calibrated shear modulus of 1.8 kPa for bovine brain tissue in three deformation speed of 10, 100,

and 1000 mm/s [55]. However, to the authors best knowledge, there is no reported biphasic proper-

ties for micromechanical constituents of brain tissue as there are some limitations and hindrances.

Due to the lack of specific direct micro-level experimental tests, there are some parameters with

unknown values such as hydraulic conductivity, permeability, and water fraction for both axons and

ECM. Therefore, besides the added computational complexity to the optimization framework due
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to the increased number of parameters, more assumptions will be required to correlate between the

properties of those micro-level constituents.

4.5. Conclusion

In this part of the dissertation, a C-PSO algorithm as a derivative free optimization method

in conjunction with finite element micromechanical simulation was used to find the visco-hyperelastic

material properties of axons and ECM as micro-level constituents of human brain white matter. As

brain white matter is a heterogeneous material at the micro-level, consisting of axons embedded in

ECM, a sample RVE representing a smallest recognizable unit of brain white matter was developed

with the axons volume fraction of 52.7% [2]. The experimental compressive relaxation experiment

performed in [4] was used as the input experimental data in this study. The cost function was defined

as the sum of the square of error between the finite element and experimental results. Thereafter, a

particle swarm optimization algorithm was used to find the optimal material properties of axon and

ECM. The Ogden hyperelastic model with Prony time series expansion was used to account for the

viscous behavior of the brain in a relaxation test. Comparing the results of the micromechanical

simulation carried on with the obtained optimal parameters and experimental data showed a high

quality agreement. A high coefficient of determination and low-cost function value proves the

validity of the conducted optimization framework. The Prony series expansion parameters of axons

and ECM were found to be close to that of the human brain white matter. In addition, the strain

rate dependency of the initial shear modulus and reduced shear modulus of axons were studied

through first and second order regression. It was shown that linear approximation may not be

beneficial for approximating the reduced shear modulus of axons at the intermediate strain rate

values. The results of this study can be used for the studies focused on the DAI, drug delivery or

any other research which requires the knowledge of the micro-level constituent properties of human

brain white matter.

69



Figure 4.6. Relaxation stress of axon and ECM using the Ogden visco-hyperelastic constitutive
model for different strain rates.
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Figure 4.7. The obtained initial shear modulus of axons in different strain rates and the predicted
initial shear modulus with respect to strain rate.

Figure 4.8. The obtained reduced shear modulus of axons at t = 5s for different strain rate values
and the corresponding first and second order regression for predicting the reduced shear modulus
at intermediate strain rate values.
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Figure 4.9. The micromechanical stress distribution in the RVE used for simulating human brain
white matter in unconfined compression relaxation test at (a) t = 1s, (b) t = 10s, and (c) t = 25s.
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5. ARTIFICIAL INTELLIGENCE BASED APPROACHES FOR

QUALITATIVE DESCRIPTION OF TISSUE STIFFNESS

FROM MAGNETIC RESONANCE ELASTOGRAPHY

SIMULATIONS

5.1. Introduction and literature review

Alongside the development of different imaging techniques for diagnosis of different patholo-

gies in human organs tissues, palpation is still commonly used by physicians to detect the tissues

affected by diseases. Generally, the pathologic tissues are prone to have more stiffness compared

to normal tissues [132,133]. MRE is a non-invasive technique used for quantitative and qualitative

measurement of tissue stiffness. In MRE, shear waves are generated in the tissue either by mechan-

ical actuation [134] or intrinsic phenomena such as heartbeat rate or respiratory system [135, 136].

The small displacement of the tissue is then visualized by magnetic resonance imaging which in

fact depicts the propagation of shear waves in the tissue. Thereafter, the phase contrast sequenc-

ing [137] is performed to find either quantitative or qualitative stiffness mapping of the tissue. The

stiffness of the tissue and its material property affects the shear wavelength propagating in the

tissue. While conventional imaging techniques such as CT-Scan and MRI only provide information

on the pathologies affecting the morphological characteristics of the tissue, the MRE goes further

by giving additional information on quantifying the stiffness of the tissue. Another advantage of the

MRE lies in its capability of in-vivo characterization of the tissue, while other methods are mostly

done for in-vitro conditions which may affect the material properties of the tissue being measured

post-mortem [44]. While it is theoretically possible to perform in-vivo MRE, due to the difficulties

of such an experiment, some of the works in this field are done for in-vitro conditions.

The material in this chapter was co-authored by Mohammadreza Ramzanpour, Mohammad Hosseini-Farid, Mar-
iusz Ziejewski, and Ghodrat Karami. Mohammadreza Ramzanpour was mainly responsible for data collection,
analysis, algorithm development, and the conclusions advanced here. The other co-authors helped in proof-reading
the paper. Ghodrat Karami supervised the project.
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Numerous MRE-based studies have been conducted for brain [43, 138], liver [139–141], tra-

becular bone [142], and other biological tissues. Kruse et al. [132] used MRE to approximate the

shear modulus of in-vivo human brain cerebral tissue. They used an acoustic actuator for vibration

of the target tissue and employed a modified gradient echo pulse sequence for MRE acquisition.

Using a linear elastic model for finding the stiffness, they concluded that brain white matter is ap-

proximately 2.5 times stiffer than brain grey matter. Time-dependent modeling of tissues has also

been a point of study where Green et al. [42] tried to characterize the brain by viscoelasticity under

in-vivo condition. By using the harmonic excitation, they were able to calculate the viscoelastic

parameters of the tissue by solving for a displacement field equation induced by acoustic wave prop-

agation using inversion techniques. Schmidt et al. [143] implemented a transversely isotropic model

to analyze the ex-vivo MRE experimental results on porcine brain white matter. Moreover, finite

element simulation was conducted to verify their results. For the incompressible transverse isotropic

model, 3 parameters are needed to characterize the material behavior. In their study, they found

the anisotropic shear properties of porcine white matter by fitting numerical FE simulations to the

experimental results in hand. Moreover, good agreement was found with theoretical estimation of

shear wave propagation in transverse isotropic material. They concluded that porcine brain white

matter is mildly anisotropic in shear.

Chen et al. [45] investigated the effects of material properties, excitation frequency, boundary

conditions, and applied tension on the stiffness calculation derived from MRE. Assuming a plane

wave condition, linear elastic material model was used for this purpose. Theoretically, in the linear

elastic model, the shear wavelength induced in the solid is proportional to the shear modulus of the

solid [134]. Performing MRE on agarose gel phantom, they were able to find the shear wavelength by

measuring peak displacement values in the excitation frequency of the range 150 to 200 Hz. Finite

element model of MRE was used to verify the results from experimental MRE. Good agreement

was found between experimental and FE results.

While various studies have focused on the quantitative analysis of the tissue based on dif-

ferent material modeling [144–146], the inversion scheme and solution of the displacement field can

be challenging for more advanced constitutive models. Characterization of tissue based on more

advanced constitutive models has been done by employing inverse finite element analysis and com-

parison of the numerical displacement of the tissue and experimental results [143,147] of the MRE
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and observing the induced shear wavelength. Moreover, in some cases the exact stiffness of the tissue

is not required in the clinical processes and the comparative stiffness of the tissue could be useful in

diagnosing the pathological effects as well [148]. Moreover, a quick estimation of the tissue stiffness

can be useful in clinical procedures as well. To this end, simulation-based optimizations [25,59] have

been widely used for material characterization in different fields. These optimization techniques are

mostly time consuming and therefore are not beneficial in cases where quick decision-making process

is important. In this part of the dissertation, a new statistical framework is introduced for catego-

rizing the stiffness of the tissue by numerical MRE simulation. We will show that considering the

shear wavelength as the sole factor for parameterizing the tissue stiffness would not be effective and

nodal displacement at different cycles of the induced harmonic displacement will be used instead.

The effect of different constitutive models on the pattern of the induced harmonic displacement in

the tissue will be discussed as well in this paper.

Upon the development of artificial intelligence and machine learning approaches in different

fields of engineering and science, they have found their ways into the biomechanical and biomedical

research as well. Liang et al. [149], employed artificial neural networks (ANN) as a FE surrogate for

estimating stress distribution on heart aorta. Using statistical shape model, they generated 729 FE

model of aorta with different geometrical parameters, and the FE simulations were performed to

obtain the corresponding stress distribution. In the first step of their proposed DL pipeline, shape

decoding is done through the use of an ANN which encodes a 5000 node FE model into three nodes.

Thereafter, the shape encoded FE model is employed within the context of another multilayer neural

network with two hidden layers to find the stress code which will be subsequently used to find the

stress distribution. Their trained DL pipeline was capable of predicting the stress distribution

with the average error of 0.492% and 0.891% in terms of he Von-Mises and peak Von-Mises stress,

respectively.

Murphy et al. [150] explored finding the stiffness of brain tissue using neural network inver-

sion (NNI) algorithm. Training of the NNI was done on 5×5×5 3D patches with 3-mm isotropic

voxels. The stiffness of the tissue was varied in the range of 0.1 to 5 kPa and the wave source vary-

ing from 1 to 10 randomly located in a spherical shell. They used 54 features as an input of their

brain-NNI model including the real and imaginary parts of the first harmonic displacement data.
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Good agreement was seen between the NNI and direct inversion (DI) algorithm with the coefficients

of determination R2 evaluated as 0.974 and 0.915 for brain and liver tissues, respectively.

Scott et al. [151] used ANN for estimating the tissue stiffness from MRE simulation data

on inhomogeneous materials on the notion that consideration of inhomogeneity will yield a better

spatial stiffness estimation accuracy. They used coupled harmonic oscillators to generate three-

dimensional displacement map dataset. Smooth variation in spatial material properties were im-

plemented in the material. The curl of the wave field was used as an input to the ANN model as

each simulation consisted of a 16×16×16 patch of isotropic voxels. They were able to demonstrate

the higher efficiency of the ANN approach compared to finding the stiffness with homogeneous

assumptions using DI algorithms.

In this paper, in addition to the stiffness of the tissue, other material properties of the

tissue including Poisson’s ratio, and density will be varied in different FE simulations. While these

parameters are used for generating the simulation dataset, they will not be used as an input feature

for the prediction phase.

5.2. Methodology

In this section, first, the finite element model used for simulating the MRE process will

be described. Then, the machine learning and deep learning algorithms used for building the

statistical inference frameworks including logistic regression and convolutional neural networks will

be delineated.

5.2.1. Finite element simulation

The propagation of the shear wave in the tissue depends on the material properties and stiff-

ness of the tissue. Shear waves can be generated by applying a harmonic displacement in the tissue.

In this study, an axi-symmetrical model is created in finite element package ABAQUS/Standard

2016 (ABAQUS Inc., Providence, RI) as shown in Figure 5.1. The model is 200 mm in width and

20 mm in height and it is meshed with a total number of 561 nodes and 500 quad elements of the

type 4-node bilinear axi-symmetric quadrilateral, with reduced integration and hourglass control.

Upon guaranteeing the stability of the model, the bottom edge of the model is fixed in the vertical

direction. Chen et al. [45] has validated this finite element model using experimental MRE results.

A harmonic displacement with an amplitude of 1 mm and a frequency of 200 Hz is applied to the

center of the model governed by the equation Dh = 0.001cos(400πt) where Dh stands for the har-
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monic displacement in meters, t denotes time in seconds, and the 400π corresponds to the circular

frequency.

In the first step, the first 20 modes of the natural frequency of the created FE model are

calculated using Block-Lanczos eigen-solver [152] and in another step, a transient dynamic modal

analysis simulation is performed upon the application of harmonic displacement which runs for 10

ms corresponding to the completion of two complete cycles of the displacement. The time step of

the transient dynamic modal analysis was set to be 0.1 ms. Upon the completion of simulations,

a subroutine script is executed to capture the vertical displacement of all nodes of the model at

different time steps of the simulation. This data can be used for finding the shear wavelength and

patterns of displacement of the nodes in the model.

The controlling parameters in the simulation are stiffness, density, and the Poisson’s ratio.

The density was changed from 1040 kg/m3 to 1050 kg/m3 with the incremental steps of 1 kg/m3.

The Poisson’s ratio was varied from 0.4 to 0.495 with step size of 0.005. Finally, the stiffness

(elastic constants) was set in the range of 1 kPa to 10 kPa with the step size of 1 kPa merged

with four additional stiffness values of 3.5, 3.51, 6.5, 6.51 kPa. Total number of 3080 simulations

were carried on with all possible combination of the values from the controlling parameters. The

vertical displacement of all nodes of the model were recorded at the end of the first and second cycle

of the simulation. Subsequently, the dataset yielded from these 3080 simulations were randomly

assigned into two separate training and testing dataset with the training dataset consisted of 2156

simulation instances while the rest were assigned to the testing dataset. Finally, for the labeling

Figure 5.1. The two-dimensional axi-symmetrical finite element model for simulation of the actua-
tion in MRE. The harmonic displacement is applied at the center of the model.
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purpose, the simulations carried on with the elastic constants of less than or equal to 3.50 kPa were

labeled as "low", the ones greater than 3.5 kPa and less than 6.51 kPa were assigned to the class

named as "medium", and the instances with the elastic modulus of greater than or equal to 6.51

kPa were placed in the "high" class. It should be noted density and Poisson’s ratio parameters

were not included as the features of the model (for training purposes) to check how robust those AI

models are toward the changes in those material parameters.

5.2.2. Artificial intelligence techniques

In this section, introduction and explanation on the machine learning and deep learning tech-

niques used for classification of the tissue stiffness will be provided. In the first part, a generalized

linear technique known as logistic regression and the context on which was used will be explained

and then the convolutional neural network as a deep learning approach will be investigated.

5.2.2.1. Logistic regression

Logistic regression is a widely used algorithm in machine learning for classification applica-

tions [153]. Given θ to be the features of the training data including the bias term, it is desired

to find a hypothesis hθ(x) that can estimate the probability of the input x falling into one of the

provided classes in the training data, where θ represents the features of the hypothesis (from the

dataset). This probability can be estimated using the Sigmoid function stated as f(u) = 1/(1+e−u).

Here, for training the logistic regression hypothesis, only the vertical displacement of the upper edge

nodes (51 nodes from the surface that harmonic displacement is being applied) at the end of the

first and second cycle are used. Therefore, there will be a total number of 102 features. Hence, using

a vectorized form, this generalized linear probabilistic hypothesis can be written in the following

form [153]:

hθ(x) = f(θTx) =
1

1 + e−θT (x)
(5.1)

whereas mentioned before, function f is the Sigmoid function. The vector θ = [θ0, θ1, ..., θ102] refers

to the coefficients of the trained logistic regression with the θ0 begin the bias coefficient. The matrix

x = [x0, x1, ..., x102] represent the values of the features of the problem i.e., the vertical displacement

of the upper 51 nodes of the model at the end of the first and second cycles.
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Upon the presence of three classes in our training data, and by employing “one vs rest”

technique [154] , three different logistic regression models are trained with respect to three existing

classes. The cost function associated with logistic regression which should be minimized to find the

optimal parameters of the model θ can be stated as the following:

C(θ) = − 1

n

n∑
i=1

l(i)log(hθ(x
(i)) + (1− l(i))(1− log(hθx

(i))) + λ

m∑
j=1

θ2j (5.2)

where l(i) refers to the label (class) of the ith training data and C(θ) denotes the defined cost

function for logistic regression. The n stands for the number of samples in the training data which

in our case is equal to 3080. The λ is the regularization constant which is used to improve the

generalization of the logistic regression by attacking the problem of overfitting or underfitting and

the m denotes the number of features in our logistic regression hypothesis which is equal to 102 in

our case. It should be noted that the coefficient of the bias term θ0 is not regularized. Note that,

when using “one vs rest” technique, the labels are either 0 or 1 with respect to the formulation of

equation (5.2). For example, if training a logistic regression hypothesis for the class "medium" is

desired, all the instances labeled as "medium" would be considered 1 and the rest (including "low"

and "high") would be labeled as 0.

To minimize the cost function stated in equation (5.2), the gradient descent algorithm can be

used which is a gradient based optimization technique. To this end, a gradient of the cost function

stated in equation 5.2) is required which can be stated as the following:

∂C(θ)

∂θj
=

1

n

n∑
i=1

(hθ(x
(i) − y(i))x(i)j +

λ

m
θj (5.3)

The equation (5.3), demonstrates the derivative of the cost function with respect to its jth

variable. The x(i)j refers to the jth coordinate of the ith training instance. The gradient descent

algorithm uses the gradient of the cost function to adjust the parameters based on the provided

initial guess, as the following:

θk+1
j = θkj − r

∂C(θ)

∂θj
, j = 1, 2, ...,m (5.4)

79



where k denotes the iteration number of the gradient descent algorithm and the parameter r is

known as the learning rate and it is usually less than 1.0. Each iteration consists of repetition of

the equation (5.4) for all m features of the dataset.

5.2.2.2. Convolutional neural network

Convolutional neural network (CNN) is a type of multi-layer perceptron, mostly appropriate

for the type of data which has a grid pattern [155]. Benefiting from a special kind of weights known

as kernels (or filters), they can capture the spatial features of the input data, and to dynamically

learn low- and high-level patterns. A typical CNN has three main components including convolu-

tional layers, pooling layers, and fully connected layers. Convolutional layers weights are adaptively

optimized to extract the spatial features of the image, pooling layer is designed to down sample the

image to obtain higher order patterns with the small kernel size, and finally, the fully connected

layer works with the flattened extracted features of the previous layers to do the classification task.

However, it should be noted that the state-of-the-art CNN architectures may have additional ele-

ments such as batch normalization, and dilated convolution. The main advantage of the CNN over

regular artificial neural networks (ANN) with the fully connected layers, is the independency of the

number of its parameters from the input data. This becomes available using kernels and convolu-

tional operations. Since the focus of this paper is not on the CNN, but rather on its application,

the details of the CNN will not be discussed and readers are referred to [156] for more information.

Since the MRE FE model has a grid and matrix-wise pattern, CNN can be applied on it for

the classification task. As mentioned, the FE model used for MRE simulation had 561 nodes in a

11×51 matrix fashion. With the bottom edge of the model being fixed, the vertical displacement

of the nodes lying on this edge will always be zero, and hence, this spurious information can be

dropped giving a 10×51 matrix. Given that the vertical displacement of the nodes was recorded

at two time instances (end of first and second cycle), the input to the CNN can be viewed as a

10×51×2 tensor. In computer vision terminology, this input is equivalent to a two-channel image

with the resolution of 10(width)×51(height). Here, since this approach would result in a matrix

with high aspect ratio, it was decided to form the input data by vertical concatenation of the data

at the end of each cycle. The vertical concatenation of two 10×51 matrix, will yield a 20×51 matrix

with one channel as can be seen from Figure 5.2. By replicating this matrix in the third dimension,

a three-channel input with the dimension of 20×51×3 can be obtained.
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Figure 5.2. The process of preparing the input data for the CNN. The matrix of displacement at
the end of the first and the second cycle are vertically concatenated to form a 20×51 matrix. This
matrix can be further replicated in the third dimension to represent a three channeled image.

Figure 5.3. ResNet34 architecture [5] originally designed for image classification task on ImageNet
dataset [6] with 1000 distinct categories (classes).

Two well-tested CNN architectures, ResNet18, and ResNet34 [5] have been explored by the

researchers for performing the classification tasks. These networks have relatively low number of

parameters compared to some other famous networks such as AlexNet and VGGNet. Moreover,

due to the presence of skipping layers and by passing the data from one layer to the further sub-

sequent layers, it can overcome the problem of vanishing gradient [157] while enjoying the benefit

of increasing the number of layers. The high-level view of the ResNet34 architecture is shown in

Figure 5.3 [5].

As can be inferred from Figure 5.3, this specific architecture was originally developed to

classify an image into a 1000-category problem and hence, it is needed to be modified (ResNet18

as well) to be appropriate for a three-category classification problem. This task was done through

modifying the last layer by changing the final 1000 node into a three-node layer. Moreover, in

this dissertation, a simple custom CNN was developed with only 11 layers of two-dimensional

convolutional and batch normalization operators, accompanied by a fully connected neural network.

This architecture is much simpler compared to the ResNet18 and ResNet34 with much smaller
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number of trainable parameters. The architecture of this custom-built CNN is illustrated in Figure

5.4.

Figure 5.4. The structure of the developed CNN (custom-built). All the layers are accompanied
by a batch normalization and nonlinear rectified linear unit (ReLU) activation function. The final
layer is a fully connected network with ReLU activation function as well. The matrix sizes are not
proportional the actual size of them. The ci stands for the convolutional operation size in the ith

layer and si denotes the stride of that convolutional layer. The si = (1, 1) except for the cases
written otherwise.

5.3. Results

In this section, first, the results of FE MRE simulations will be demonstrated. Subsequently,

the outcome of the trained logistic regression and CNN from the FE simulation dataset will be

presented.

5.3.1. Shear wave propagation

As mentioned before, the simulations were done for different values of elastic modulus, den-

sity, and Poisson’s ratio. Finite element simulations are performed in the finite element package of

ABAQUS (ABAQUS Inc., Providence, RI). As an example, Figure 5.5 shows the vertical displace-

ment field of the whole model for different elastic modulus values of 2 kPa, 5 kPa, and 8 kPa with

the density of 1040 kg/m3 and Poisson’s ratio of 0.495. Figure 5.6 shows the shear wave propagation

in the model at the end of the first and the second cycles of the induced harmonic displacement.

Since the harmonic displacement has the frequency of 200 Hz, each cycle takes 5 ms to complete,
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and therefore, the first and the second cycles correspond to the simulation running time of 5 ms

and 10 ms, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 5.5. FE simulation results showing the vertical displacement field of the model with the
assigned elastic modulus values of (a)&(b) 2 kPa, (c)&(d) 5 kPa, and (e)&(f) 8 kPa at the end of
the first and the second cycle of the harmonic displacement, respectively.

As it can be seen, in some cases, there is a significant difference between the wave propagation

in the first and the second cycle e.g., 5 and 8 kPa. More importantly, no specific obvious correlation

can be found through the displacement of the center or any other point of the model, as they are

not directly commensurate to the elastic modulus.

5.3.2. Training a logistic regression hypothesis and evaluation

In this section, the training process for training the logistic regression hypothesis defined in

equation 5.1 and further evaluation of it will be demonstrated. In a randomly fashion, 60% of the

3080 simulations were assigned for training, 10% went to the CV dataset, and the remaining 30%

was used for testing. As can be seen from equation 5.2, the regularized form of the cost function

is employed to avoid the possible problem of overfitting or underfitting. To find the appropriate

regularization constant λ, several logistic regression models were trained with different values of λ

and then were tested on the cross-validation (CV) dataset. The one with the highest score on the
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(a) (b)

(c)

Figure 5.6. Shear wave formation i.e., the upper edge vertical displacement for different elastic
constants of (a) 2 kPa, (b) 5 kPa, and (c) 8 kPa corresponding to low, medium, and high stiffness
value at the end of the first and the second cycle of the induced harmonic displacement.

CV dataset, was then evaluated against the testing dataset. Total of 197 different regularization

constants ranging from 10−4 to a large value of 106 were tested with a conclusion that the best value

for the regularization constant is λ = 2× 104. Figure 5.7 shows how the performance and accuracy

of the model varies as the regularization constant λ changes evaluated on testing dataset. It can be

seen using large numbers for regularization constant helps the hypothesis to better generalize and

alleviates the problem of overfitting. However, going beyond the optimal value of λ = 2× 104, the

performance starts to drop shifting the model to be biased.

Testing the trained logistic regression hypothesis with the regularization constant of 2× 104

on the testing dataset provided the accuracy of 91.3%. The distribution of the classes on the testing

dataset and the performance of the hypothesis with respect to each class can be seen in Figure 5.8.
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Figure 5.7. The performance of the regularized logistic regression hypothesis with different regular-
ization constants.

In Table 5.1, different criteria such as sensitivity (recall), specificity, precision, F1 score, and

accuracy for each of the three classes of interest are listed.

Table 5.1. The sensitivity, specificity, precision, F1 score, and accuracy for each of the classes
including Low, Medium, and High stiffness.

Class Sensitivity Specificity Precision F1 score Accuracy
Low 0.932 0.973 0.932 0.932 0.961

Medium 0.882 0.931 0.876 0.879 0.913
High 0.930 0.965 0.936 0.933 0.952

5.3.3. CNN training and evaluation

Using the field displacement of the model at two-time steps (end of the first and the second

cycle), three different CNN models are trained using a data-driven approach to build a tissue

stiffness classifier. ResNet18, ResNet34, and one custom-built CNN were trained on the same

3080 simulations used for logistic regression hypothesis training, however, in lieu of using only the

upper edge nodes displacement, the whole field displacement was used as input to the CNN. The

specifications of these CNNs were discussed in the Methodology section. For training of the CNNs,

no CV dataset was involved, and the training was done on 70% of the whole data to be further
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Figure 5.8. The accuracy demonstration for each specific class. The portion of mislabeled predictions
can be seen for each class.

evaluated on the rest 30% of the dataset corresponding to 924 simulation cases. The Table 5.2

summarizes the evaluation of the trained CNNs on our testing dataset which was kept the same for

all the three CNNs.

Table 5.2. Different trained CNNs and the accuracy of their evaluation on the same testing dataset.
The number of trainable parameters of the models are also shown.

CNN Number of parameters Accuracy
ResNet18 11.7 M 0.861
ResNet34 21.2 M 0.863

Custom-built 4241 0.895

As it can be seen from the Table 5.2, the best accuracy was achieved with our custom-built

CNN, while the performance of the ResNet18 and ResNet34 was close together. All the listed CNNs

were trained for 300 epochs with the batch size of 256. The Adam optimizer was used for minimizing

the loss function (cross entropy loss) with the variable learning rate ranging from 10−4 to 10−6.

5.4. Discussion

There is a main difference between the way the logistic regression and the CNN were con-

structed and that was in the terms of the input to those prediction models. While for the logistic

regression, only the vertical displacement of the upper edge nodes in two-time steps was used, the

complete field displacement of the model was considered as input for the CNN models. In this

way, the number of features (input) for the logistic regression was 102 (51 nodes in 2-time steps)
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while the input to the CNN was vertically stacked matrices of displacement from one half of the

axi-symmetrical FE model, where each matrix corresponds to the field displacement at one time

step yielding a merged 20 × 51 matrix.

As in the MR imaging, there would be limited access to the displacement of the inner nodes

of the model, the logistic regression construction is closer to the real-world application and the

study on the CNN can be viewed as evaluating the feasibility of data-driven modeling approaches

for tissue stiffness classification. However, even when seemingly more information was used as input

for the CNN structure, the performance i.e., correct prediction of the class of the instances, drops

and demonstrate a sub-par performance compared to the logistic regression. The most plausible

explanation for this is the level of difficulty associated with training of the deep learning models

compared to the linear ones. Per Table 5.2, even for our own simple custom-built CNN, the number

of trainable parameters is high which makes the model prone to overfitting and consequently poor

generalization. This problem was tried to be fixed by reducing the number of layers and nodes in

the fully connected layers, but it was not possible to achieve a better performance. This explanation

is further buttressed through the fact that the complicated models such as ResNet18 and ResNet34

show worse performance compared to our custom-built CNN. This is what was expected from the

beginning, since the large number of parameters in those networks make them in need of much

larger dataset opposed to what has been used for their training1.

It should be noted that our model is density and Poisson’s ratio agnostic. While these two

variables were changed in different simulations, they were not considered as input (feature) to both

of the proposed AI approaches. This can be viewed as an advantage of this AI-based approach of

ours compared to the inverse-analysis. This exclusion of those parameters is aligned to the real-world

situation, as there is always a variation in person-to-person biological tissues material properties.

However, upon the inclusion of these two parameters (density and Poisson’s ratio) in the logistic

regression and with the proper amount of regularization, 100% accuracy was obtained.

In our simulations, the control parameters were stiffness, density, and Poisson’s ratio. These

parameters may be close from one instance to another and hence, the nodes displacements would

be close as well. Therefore, the question rises, if we can simply assign the class of an unknown

instance to the class of the closest (in terms of the nodes displacement) simulation with a known
170% of the total 3080 simulations were used for training.
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category? This is basically, a definition to the K-Means classification technique. The possibility of

exploiting the K-Means as a possible classification technique was examined. Even by using a high

number of neighbor nodes such as 27, the obtained accuracy level was no more than 0.84 which is

behind what gained with logistic regression. This is a confirmation on the fact that the displacement

pattern of the nodes in MRE simulation is more complex that could be taken care of with the simple

closest-simulation finding approach i.e., K-Means.

Looking into class-specific performance of the trained logistic regression in Table 5.1, it can

be seen that it performs better for the Low and High classes compared to the Medium class. The

instances of the High class can be critical in terms of the medical diagnosis, as the higher level of

stiffness are usually associated with pathology. For example, the sensitivity measure, determines

how many of the instances with the actual High stiffness class are predicted. As can be seen from

the same table, the sensitivity for High class was found to be better compared to that of the Medium

class. From Table 5.1, it seems that our logistic regression hypothesis is performing better in the

marginal classes and the performance drops in the middle class. One possible explanation could be

from the fact that there are higher number of instances closer to other ones. For example, while

certain number of instances in Low classes are close to the Medium instances, this number could be

potentially doubled for the Medium class, as some are close to the Low and some other are close to

the High class.

5.5. Conclusion

In this part of the dissertation, a data-driven AI approach for creating a tissue stiffness

classifier framework based on the FE simulation of MRE was created. Two AI-based approaches

including regularized logistic regression and deep convolutional neural networks were studied. The

vertical displacement of the upper edge nodes of the model were used as an input features to

the logistic regression model and the concatenated vertical displacement field matrix of the model

obtained at the end of the first and second cycle of the imposed harmonic displacement was used

as an input tensor to the different CNNs studied here.

A two-dimensional axi-symmetrical model was created for FE simulations and a harmonic

displacement imposed at the center of the model was used to simulate the mechanical actuator

commonly used in the MRE process. To find the field displacement of the model at different time

steps, a transient dynamic modal analysis was performed.
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Total of 3080 simulations through realistic variation of three control parameters including

stiffness, density, and Poisson’s ratio were conducted. Based on the linear elastic constants assigned

to the tissue, the simulation instances were labeled into one of the three classes including Low,

Medium, and High stiffness in a near evenly distributed fashion. Training and hyper-tuning the

logistic regression hypothesis on the training and CV dataset, it became possible to obtain the

accuracy of 0.913. This accuracy measure indicates the fraction of the testing dataset instances

which the prediction was the same as our expected class assignment of those simulations (based on

their stiffness values). Moreover, the high value of sensitivity on the instances with High stiffness

class, indicates the high success rate of the logistic regression model in pathology diagnosis with

the assumption that the pathology increases the stiffness of certain biological tissues. While the

deep learning CNN approach is more complicated compared to the linear logistic regression and

even more data is fed to the CNN for training (whole displacement field rather than the upper

edge displacement), it cannot reach the level of the performance observed with logistic regression.

While ResNet18 and ResNet34 architectures are among some of the very well-known models for

classification purposes, the number of trainable parameters in them are too high for appropriate

training and hence generalization. On the contrary our simple developed CNN with simple stride

convolutional and batch normalization layer was able to obtain better performance but still not to

the level of logistic regression.
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6. CONCLUSION AND SUGGESTIONS FOR FUTURE

WORKS

In this chapter, A conclusion on the previous parts of this dissertation is provided. Moreover

some suggestions for continuing this research on the possible future works that can be carried on

will be looked into.

6.1. Conclusion

The problem of brain tissue material characterization shows its importance in the simulation

of TBI and upon the recognition of several gaps and challenges in the field, several research topics

were carried on addressing those issues as reflected in this dissertation.

First, C-PSO algorithm was developed which helps to find the most accurate parameters of

different hyperelastic and visco-hyperelastic constitutive models. To this end, the constraints of the

hyperelastic and visco-hyperelastic models were identified and used to reduce the time complexity of

the developed optimization algorithm. To test the algorithm, several uniaxial and relaxation tests

were performed on the bovine brain tissue. The curve fitting for hyperelastic models were done

with both C-PSO and classical LMA and for most of the hyperelastic models, the performance of

those two algorithms were noticed to be nearly equal. However, the performance of the C-PSO was

found to be highly superior compared to another classical curve fitting algorithm (for constrained

optimization), TRF algorithm, for the visco-hyperelastic model. Even for the relaxation tests with

high strain rate, the performance of the TRF was found to be even worse than the naive approach

of stress averaging. The accuracy of the curve fitting with the C-PSO was found to be higher

than 99% while it was found to be negative for TRF algorithm results. Additionally, through

the exploration of different convergence strategies with PSO implementation, it was found that the

proximity radius criterion can reduce the time complexity up to 11% while maintaining the accuracy

of the fitting. The importance of this developed optimization technique and modifying it to reduce

the time complexity comes from the fact that it could be used for both experimental data curve

fitting and simulation-based optimizations.
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The better understanding of the DAI as a common form of TBI requires better understand-

ing of the brain white matter micro-level constituents including axons and ECM. The hyperelastic

characterization of these micro-level constituents were performed for three different uniaxial loading

modes of tension, compression, and simple shear. The uniaxial tension, compression, and shear

uniaxial loading tests performed on corpus callosum was obtained from [1]. The micromechanical

simulation was then used in the context of a simulation-based optimization framework to obtain the

hyperelastic properties of the axons and ECM in terms of the Ogden one term model. The initial

shear modulus of the axons was found to be 0.51, 0.63, and 0.48 kPa for tension, compression, and

shear uniaxial loading modes, respectively. The difference on mechanical behavior of the axons in

these loading modes was a source of motivation to find and report the best-fit parameters that can

best describe its behavior in all loading modes. Since these best-fit parameters are defined to mini-

mize the error of estimation on all loading modes combined, it could be load agnostic hyperelastic

parameters. The best-fit initial shear modulus (using Ogden one-term model) of the axons was

found to be 0.531 kPa.

Moreover, the time-dependent characterization of axons and ECM was done for the visco-

hyperelastic characterization of axons and ECM to describe their time-dependent behavior. Using

the developed C-PSO in a simulation-based optimization framework, the visco-hyperelastic param-

eters of axons and ECM were found for different strain rates of 0.0001, 0.01, and 1.0 s−1 from the

macro-level experimental relaxation tests on human brain white matter [4]. Since the relaxation

tests were done for the time of 500 seconds, it was of the utmost importance to use the modified

C-PSO that is efficient in terms of the time complexity as previously described. The initial shear

modulus of the axons for the strain rates of 0.0001, 0.01, and 1.0 s−1 were found to be 0.4018,

0.8280, and 1.7210, respectively. The first and second order regression were successfully performed

to capture the initial and reduced shear modulus dependency of the axons to the strain rate. While

the first order regression was found to be sufficient for the initial shear modulus, the reduced shear

modulus was found to be better described through the second order regression.

Finally, in another part of the dissertation, the possibility of using a data-driven AI based

approach for classifying the tissue stiffness for detection of the tissues with high level of stiffness

was explored. A two-dimensional axi-symmetrical model with the height of 10 mm and the width

of 200 mm was created in the ABAQUS FE package and a harmonic displacement was imposed
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at the center of the model with the frequency of 200 Hz to simulate the mechanical actuator

used in the MRE process. MRE FE simulation was done through two steps. First, finding the

natural frequencies of the model and later, using the transient dynamic modal analysis to find

the displacement field of the model. Total number of 3080 simulations were performed through

the combinatorial variation of stiffness, density, and Poisson’s ratio quantities. Using the linear

elastic model, the stiffness values of the material were changed from 2 to 10 kPa, the Poisson’s

ratio was varied from 0.4 to 0.495, and the density was ranged from 1040 to 1090 kg/m3. In an

evenly distributed fashion, the simulation instances were labeled as Low, Medium, and High stiffness

classes based on their stiffness values. First, a logistic regression hypothesis was trained based on

the 60% of the simulation data as the training dataset. The regularization parameter was found

through the process of hyperparameter tuning and evaluation on the cross-validation dataset which

constitutes 10% of the total dataset instances. Testing the trained regularized logistic regression on

the remaining 30% of the data, showed the accuracy performance of 0.9134 indicating the fraction

of the instances which were correctly classified. The high sensitivity of the logistic regression model

for the class of "High" stiffness, with the amount of 0.93 could be a well-accepted performance

for detection of the pathological tissues. The CNN-style architecture was then explored as a deep

learning approach for classification purpose. ResNet18, ResNet34, and a custom-built CNN were

trained and tested on the simulation dataset. While only the vertical displacement of the upper edge

nodes of the model were used as an input for the logistic regression, the whole vertical displacement

field of the FE model was used for CNN training. This means that more information was used as

an input to the CNN compared to logistic regression and the highest accuracy was obtained by the

custom-built CNN with the value of 0.893. While not as good as logistic regression, the acceptable

performance of these AI-based approaches on the context of data-driven modeling opens the door for

quick decision-making process which could help the physicians for detection of pathological tissues.

Moreover, these AI-based approaches were agnostic of the density, and Poisson’s ratio. While

these parameters were changed in the simulations, they were not considered as input parameters

for training of the logistic regression and the CNN. This is an improvement over the inversion

algorithms where these properties need to be known for stiffness field map generation.
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6.2. Suggestions for future works

The simulation-based optimization framework reflected in this dissertation is based on iter-

ative FE simulations to minimize a defined objective (cost) function. Based on what experienced

through the studies of this dissertation, several thousands of simulations were needed for microme-

chanical characterization of brain white matter. Given the time required for completion of each

single FE simulation, this process is highly time-consuming. AI-based regression techniques can

be used to predict the results of the FE simulation from the previous simulations without run-

ning the FE simulation, which helps to save time and further reduce the time complexity of the

simulation-based optimization.

Biphasic constitutive models have been developed for macromechanical characterization of

brain [55, 158]. Given the presence of liquid water in the brain tissue, development of the biphasic

models for the micromechanical characterization of brain tissue can be of the interest.

Finally, upon the confirmation of the efficiency of the AI-based approaches for tissue stiffness

classification, the experimental validation of those AI frameworks can be performed, if the MRE

technology is accessible. Moreover, three-dimensional FE models can be studied with the same

introduced AI frameworks as well.
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