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ABSTRACT 

This work investigates the significance of choosing appropriate recurrent neural networks 

(RNNs) architecture for a spatiotemporal next location prediction framework. Dockless shared 

micro-mobility sharing programs provide spatial trajectory data that entails essential information 

for city planners and developers. The study compares (i) the variable-sized geohash tessellation 

and (ii) two common RNN architectures: Long Short-Term Memory (LSTM) and Gated Recurrent 

Units (GRU), using bike/scooter location data for Washington DC, USA. LSTM and GRU 

networks are used for modeling and incorporating information from spatial neighbors into the 

model. The study suggests that the LSTM model yields slightly better performance than the GRU 

model based on the same tessellation. However, geohash size might play a significant role in model 

performance. The study highlights the need to explore hyperparameter tuning, multiple spatial 

partitioning techniques especially with the Google S2 library, and more trip data for improving the 

prediction performance in neural network models.  
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1. INTRODUCTION 

Human mobility is complex and stochastic as it entails several factors such as gender, age, 

activity patterns, and route choice. Understanding and predicting individual mobility provides 

many opportunities for city planners, location-based service providers, and micromobility 

operators. They are able to develop sustainable plans, offer enhanced personalized 

recommendations and reminders, utilize their assets, and improve operational performance [1]. 

Next place prediction is one of the primary tasks of spatiotemporal data mining. It refers to the 

prediction of where an individual human will go next based on historical data. It has several 

applications such as traffic forecasting, location-aware advertising, intelligent resource allocation, 

early warning of potential public emergencies, as well as in recommender services, including the 

very popular Apple Map or Google Map [2] [3] [4] .  

Shared micromobility becomes one of the best options for getting around cities and 

enhancing human mobility. It provides sustainable transportation options to communities. These 

systems have two forms; 1) dock-based model; 2) dockless model. The latter offers a higher degree 

of flexibility to pick up and leave the bikes/scooters in any accessible locations across the 

operational areas. Geolocation capabilities of dockless vehicles provide valuable mobility 

information about commuting patterns such as visited locations, trip length, and trip time [5] [6].  

The trajectory data comes from different sources: 1) sensor data like Global Positioning 

System (GPS) [7] [8], wireless fidelity (Wi-Fi) sensors [9] [10], and base stations [11], 2) users’ 

check-in data on social software [2] [12], 3) vehicle traffic data recorded by city traffic bayonets 

[13]. The mobility pattern data can be further fed into the next place prediction models. There are 

two broad categories of existing next location prediction techniques: 1) pattern-based and 2) 

model-based. The pattern-based uses historical data to extract user mobility patterns, then predict 
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the next location [3] [14] [15]. Pattern-based methods can only mine explicit patterns defined 

apriori and cannot capture all the data’s regularity. Model-based methods such as Markov models 

[16], matrix factorization (MF) [17], periodic mobility models [2], [17], [18], and recurrent neural 

networks (RNN) learn statistical models to characterize user movement regularity and make 

predictions with these learned models [4]. 

I noticed RNNs, especially long short-term memory (LSTM) comparing to other RNN 

variants like gated recurrent unit (GRU), are widely used as building blocks in the spatiotemporal 

neural networks. Irrespective of the modeling technique used, the preliminary step in modeling a 

location-based entity is to spatially partition the space because - from a human mobility flow 

perspective - it is desirable to understand aggregate flow than an individual one [19], [20], [21]. 

Therefore, I used geohashing as a spatial indexing technique to study aggregated flows at different 

aggregation levels, improve models’ predictive capability, and tackle low-precision GPS readings. 

I also believe it is imperative to examine the impact of different types of RNN on the prediction 

performance of models. To the best of my knowledge, this aspect has not been studied in the 

transportation literature. 

This gap and the works on spatiotemporal trajectory data mining motivated me to rely on 

shared micro-mobility data to study next location predictive models and best model configurations. 

I take advantage of scooter/bike-sharing program data in Washington DC and compare the 

variable-size geohashes with two main RNN variants, LSTM and GRU. In terms of model 

development, four main concerns need to be addressed: 1) choice of model, 2) anonymity of 

individuals, 3) variable trip length, and 4) numerical representation of geolocation data.  

I summarize my contributions in the following three components: 
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1. First, I develop encoder-decoder Recurrent Neural Networks (RNNs) to handle variable 

sequence length known as many-to-many representation.  

2. I also apply geohash tessellations to study the aggregated movements where data instances 

are much more context-sensitive to geographical features. 

3. Finally, I study two primary models, LSTM and GRU, with different aggregation levels, 

to find the best approach.  

The organization of this thesis is as follows. In Section 2, I review some related works. I 

describe the methodology and model development in Section 3. Then, I discuss the results in 

Section 4 and outline the conclusions in Section 5. 
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2. RELATED WORKS 

Various approaches and techniques have been applied to trajectory data. Trajectory data 

mining, specifically next location prediction, aims to discover prominent daily temporal habits and 

predict future individual activities. 

Content-based methods learn location transition probability, given that the current location 

is related to the previous position. To this end, Markov-based predictors and compressions-based 

predictors are two common approaches to predict locations. The former builds a transition 

probability from one place to another based on an object’s location history. At the same time, the 

latter depends on the number of occurrences of location prefixes. Song et al. developed several 

location predictors on a two-year trajectory trace of more than 63,000 users on Dartmouth 

College’s campus-wide Wi-Fi wireless network. Their findings show that low-order Markov 

methods to be more than complicated and space-consuming compression-based predictors [1].  

Distribution-based approaches model geographical and temporal characteristics as two 

random variables and compute and rank the probability of arrival at a location. Cho et al. proposed 

a location prediction method based, the Periodic and Social Mobility Model (PSMM), which 

describes human mobility based on periodic short-range travel and social network structures. The 

authors determined the home distance distributions of friends and all users, the distance between 

200 large cities, and the probability of friendship as a function of distance [2]. 

Pattern mining techniques extract spatiotemporal patterns to predict locations, including 

sequential patterns, frequency patterns, integrated data patterns, and periodic patterns. Monreale 

et al. proposed a decision tree model called the T-pattern, a dynamic mining method for extracting 

GPS trajectory data. First, the authors used nearest neighbor methods to analyze the density 

distribution and obtain a range of interesting dense cells. Then, they constructed a tree of 
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temporally annotated sequences and computed its relationship to the spatiotemporal pattern within 

a given time tolerance. This method finds the best path on the tree (called T-pattern) that matches 

the given trajectory in the prediction process. Hence it computes a unique score that includes the 

path and punctuality scores to make a prediction [3]. 

Human movement is related to user preferences, activities, and spatiotemporal patterns. 

All can be captured in tensor and tensor factorization methods in collaborative filtering to predict 

locations. User location history can generate a matrix, and then matrix factorization can be used to 

capture user movement preferences. Bhargava et al. used tensor factorization methods to capture 

user movement preferences via user profiles, users’ short messages in a social network, and user 

location and temporal information. Then they use multi-dimensional collaborative filtering to 

predict location [4].  

In some of the literature, researchers use social information to utilize social relations to 

model peoples’ movement and infer future visiting locations.  Sadilek et al. proposed a Bayesian 

network for modeling the effect of a users’ friend movement patterns. First, the model predicts the 

social relationships between user movement patterns. Then using social relationships improves the 

results of user location prediction. The output is also a sequence of locations that a user has visited 

over a given period [6].  

The temporal component is a missing part in many location prediction works focused on 

geography or social characteristics. Some algorithms build a time-dependent model, but using a 

stochastic process is a better choice. Stochastic process models utilize time factors as random 

variables and embed location factors into the stochastic process. A typical example is the point 

process. Du et al. developed a Recurrent Marked Temporal Point Process (RMTPP), using a non-

linear function to simultaneously model visiting time and location. The model also uses a recurrent 
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neural network to automatically learn a representation of influences from a user mobility history. 

In contrast with traditional models, time-dependent methods model time as an essential factor in 

location prediction. Although it improves the prediction performance, the correlation between 

spatial and temporal information is barely considered [22]. 

Traditional location prediction methods often cluster track points into regions and mine 

movement patterns within the regions. Such methods lose the information of points along the road 

and cannot meet specific services’ demand. Moreover, traditional methods utilizing classic models 

may not perform well with long location sequences. While traditional models use a point sequence 

as trajectory representation, some researchers have proposed new trajectory representation 

methods such as the extraction of trajectory features and representation based on deep learning.  

Noulas et al. created a dataset composed of check-in location and time tuples and then extract 

features to feed into a ranking model. Prediction features can be classified as user mobility, global 

mobility, or temporal features. However, it ignores the spatiotemporal sequence and sparsity 

characteristic of check-in data [23]. 

Semantic-based predictors enable better reasoning and, therefore, better location prediction 

results. Ying et al. proposed a semantic framework for location prediction. First, they extracted 

frequent locations of the user’s movement and the semantic information associated with these 

movements. Finally, they generated two tree structures to store semantic trajectory patterns. 

Semantic-based methods enable a better understanding of the semantic information related to visits 

to locations [24]. Karatzoglou et al. extended an LSTM network by applying Sequence to 

Sequence (Seq2Seq) learning on human semantic trajectories to improve the accuracy in a location 

prediction scenario. They compared their model against a semantic trajectory tree-based approach, 
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a probabilistic graph of first and higher-order. Sequence-to-Sequence learning shows promising 

results to model semantic trajectories and predict future human movement patterns [25].  

Kong and Wu developed a Spatial-Temporal Long-Short Term Memory (ST-LSTM) 

model. They combined spatial-temporal influence into LSTM to avoid the problem of data 

sparsity. Further, they employed a hierarchical extension of the proposed ST-LSTM (HST-LSTM) 

in an encoder-decoder manner that models the contextual historic visit information to boost the 

prediction performance [26]. Wu et al. proposed a spatial-temporal-semantic neural network 

algorithm consisted of two steps. In the first step, the spatial-temporal-semantic feature extraction 

model (STS) converts the trajectory to location sequences with fixed and discrete points in the 

road networks. Then, an LSTM model is then constructed to make further predictions [27].  

Besides the type of model, the spatial aggregation technique is also critical since studying 

mobility at the individual level is not common for many business stakeholders like city planners 

and marketing companies. Spatial aggregations are either performed using grids, where space is 

partitioned into square or rectangular grids of the fixed area [28], [29], [30], or using polygons, 

where space is partitioned into regular or irregular polygons of the variable area [31], [32], [33]. It 

is common practice in the transportation domain to apply either one of these tessellation styles for 

spatial partitioning. 

Many applications use geohashing for the storage and efficient retrieval of geolocation data 

and satellite imagery. Geohashing is used to map and link multiple events together from different 

sources. Geohash is a geocoding system using a hierarchical spatial data structure to subdivide 

space into buckets of grid shape. The resultant is an alphanumeric string used as a unique identifier 

of a latitude/longitude pair anywhere in the world. Because of the encoding mechanism, geohash 

has arbitrary precision, which allows variable-size strings and flexible precision. Hence, any 
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nearby places will often present similar prefixes meaning the longer a shared prefix is, the closer 

the two places are. One such example is Microsoft’s Bing Maps, which uses the Z-order curve, 

which uses base four numbers for indexing; hence it’s also called the quad key. The maximum 

detail we can achieve in terms of granularity happens at a string length of 22, where each quadrant 

represents a GPS coordinate.  

Hilbert curve based indexation is another alternative to Z-order curve like S2Geomtery 

developed by Google [34]. It’s open-source, and many companies like Google, MongoDB, and 

Foursquare use this approach. It aims to solve spatial indexing problems and all sorts of operations 

one would find useful in the 3-dimensional world that we live in. 
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3. METHODOLOGY 

The Deep Neural Network (DNN) is an extremely expressive learning model that can be 

used for highly complex vector-to-vector mappings. Recurrent Neural Network (RNN) is a DNN 

designed to recognize patterns in sequences of data, such as speech recognition, music generation, 

sentiment classification, DNA sequence analysis, video activity recognition, and many others. 

What differentiates RNN from other neural networks is that it takes the temporal dimension of 

data into account. RNN is one of the high performing neural networks that can process sequential 

data very well. The underlying idea behind RNN is to store relevant parts of the input (memorize 

important information from the past) and use this information while predicting the output in the 

future. It has been widely applied in many fields, such as unsegmented handwriting generation 

[35] and natural language processing [36]. It can process arbitrary-length sequences of inputs, 

especially when there are some hidden relations among different sequence elements. The 

sequential format of human mobility data leads me to RNN. Traditional neural networks cannot 

learn temporal dependencies, which was overcome by RNN. It can process arbitrary-length 

sequences of inputs, especially when the sequence elements are not independent.  

Standard RNN suffers from the vanishing and exploding gradients. Extremely small 

gradients do not contribute much to learning. Hence, for very long sequences, they cannot carry 

information from earlier steps to later ones. The former problems were successfully addressed by 

Hochreiter & Schmidhuber. They developed a long short-term memory (LSTM) architecture, 

which is resistant to the vanishing gradient problem [37]. The latter problem turned out to be 

relatively easy to address by simply truncating the gradient [38], [39]. Another alternative to 

LSTM is the Gated Recurrent Unit (GRU) introduced by Cho et al. [40]. LSTM and GRU cells’ 

schematic is illustrated in Figure 1. Three different gates regulate information flow in the LSTM 
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cell: A forget gate (Γ!), an input gate (Γ"), and an output gate (Γ#). Gate mechanisms in LSTMs 

introduce added computational expense (higher degree of complexity) and therefore added 

parameterization. The forget gate evaluates what is relevant to keep from previous steps. The input 

gate decides what information is pertinent to add from the current step. The output gate determines 

what the next hidden state should be. 

On the other hand, GRU does not have a cell state and uses a hidden state to transfer 

information. It also only has two gates, a reset gate (Γ$), and an update gate (Γ%). GRU has fewer 

tensor operations; therefore, they are a little speedier to train then LSTM’s. In this work, I use the 

LSTM architecture similar to the one developed by Alex Graves but without peep-hole connections 

[35] and GRU introduced by Cho et al. [40]:

LSTM 

𝐶#& = tanh(𝑊' . [ℎ&(), 𝑥&] + 𝑏') (3.1) 

Γ! = 𝜎5𝑊! . [ℎ&(), 𝑥&] + 𝑏!6 (3.2) 

Γ" = 𝜎(𝑊" . [ℎ&(), 𝑥&] + 𝑏") (3.3) 

Γ# = 𝜎(𝑊# . [ℎ&(), 𝑥&] + 𝑏#) (3.4) 

𝐶& = Γ! ∗ 𝐶&() + Γ" ∗ 𝐶#& (3.5) 

GRU 

𝐶#& = 𝑡𝑎𝑛ℎ	(𝑊' . [Γ$ ∗ ℎ&(), 𝑥&] + 𝑏')	 (3.6) 

Γ% = 𝜎(𝑊%. [ℎ&(), 𝑥&] + 𝑏%) (3.7) 

Γ$ = 𝜎(𝑊$ . [ℎ&(), 𝑥&] + 𝑏$) (3.8) 

𝐶& = (1 − Γ%) ∗ 𝐶&() + Γ% ∗ 𝐶#& (3.9) 
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In these equations, the W variables and the b variables are weight matrices and biases. The 

operation ∗ denotes the element-wise vector product. The LSTM’s hidden state is the 

concatenation (ℎ& , 𝑐&). Thus, the LSTM has two kinds of hidden states: a “slow” state 𝑐& that 

mitigates the vanishing gradient problem and a “fast” state ℎ& that facilitates the LSTM to make 

complex decisions over short periods of time.  

 

Figure 1. The diagram of LSTM and GRU cells [41] 
 

3.1. Sequence to Sequence Problem 

Generally, sequence prediction involves one-to-one or many-to-one problems representing 

one input time step to one output time step or multiple input time steps to one output time step, 

respectively. However, the length of location data varies case by case, as trip data might contain 

few to many locations. Given that, there are multiple input time steps and multiple-output time 

steps representing many-to-many type sequences. It is a more challenging type of sequence 

prediction problem known as sequence-to-sequence or seq-2seq for short. The sequence-to-

sequence model introduced by Google [36] aims to map a fixed-length input with a fixed-length 

output where the input and output length may differ. The RNN encoder-decoder consists of two 
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RNNs acting as encoder and decoder pairs. The encoder, which includes a stack of several 

recurrent units (LSTM or GRU), maps a variable-length input sequence to a fixed-length vector. 

The decoder maps the vector representation back to a variable-length target sequence. 

3.2. Tessellation Strategies 

The spatial pattern of mobility is critical to both city planners and operators. For this 

purpose, I use the concept of geohash tessellation, which can divide a geographical area into 

smaller sub-areas with arbitrary precision. Geohash is a public domain geocode system with a 

hierarchical spatial data structure that subdivides space into buckets of grid shape invented in 2008 

by Gustavo Niemeyer. The Niemeyer technique is similar to Morton encoding, a specialized 

instantiation of a Z-order Space-filling curve [42]. Similarly, Natural Area Codes (NAC) follow a 

similar encoding schema but employ a 30-bit encoding [43]. Niemeyer’s technique has many 

useful features: rapid computation, a single-value string representation, variable precision through 

string truncation, proximal region detection, pattern support, and straightforward human/machine 

interpretation. The advantage of using geohash over transportation analysis zones, parcel data, or 

zip code-based areas is that I can use different resolutions (granularity level) to discover any 

movement pattern as small as 1 foot by 1 foot.  

Geohash encodes a latitude-longitude coordinate into an alphanumeric string. A total of 32 

characters, namely, 0−9 and b−z (excluding a, i, l, o), are used for the base 32 encodings. Table 1 

shows the size of the geohashes at different precision levels. In geohash, each code represents a 

divided area. For example, a geographic point of 38.89778137, -77.02720642, (latitude, longitude) 

pairs encoded with precision seven will be converted to ‘dqcjr1n’ shown in Figure 2. 
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Figure 2. Example of geohash level 7 
 

Table 1. Geohash Precision Levels 

Precision Cell Width Cell Height 
1           <= 5,000 km 5,000 km 
2           <= 1,250 km 625 km 
3           <= 156 km 156 km 
4           <= 39.1 km 19.5 km 
5           <= 4.89 km 4.89 km 
6           <= 1.22 km 0.61 km 
7           <= 153 m 153 m 
8           <= 38.2 m 19.1 m 
9           <= 4.77 m 4.77 m 
10         <= 1.19 m 0.596 m 
11         <= 149 mm 149 mm 
12         <= 37.2 mm 18.6 mm 
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3.3. Problem Setting 

Spatial and temporal mobility data of individual entities are generally captured by the 

global positioning system (GPS) signals [22]. Most micromobility operators have geo-tracking 

systems and capture the real-time location of bikes or scooters. Previous studies have shown that 

such location (trip) data can provide us with rich insights about trip distributions and how they 

vary from area to area during a day, week, or year [5], [44].  

Trajectory data represent the spatiotemporal properties of moving objects. A location 

usually defines as 𝑃 = (𝑥, 𝑦, ℎ, 𝑡) where 𝑥, 𝑦, ℎ, 𝑡 represents as latitude, longitude, altitude, 

timestamp of a given moving object, respectively. In many real-world applications, ℎ is ignored; 

thus, 𝑃 = (𝑥, 𝑦, 𝑡) is commonly used. Trajectory data are either recorded actively or passively. 

The former refers to the time when people actively (deliberately) record their locations by logging 

into social network platforms like Twitter, Facebook, among others. The latter group relates to 

instances where geolocation data are automatically recorded by a satellite-based radio navigation 

system like GPS. The latitude, longitude, and timestamp are collected at various frequency rates, 

depending upon the device’s capability.  

Several potential challenges are dealing with spatiotemporal trajectory data, including but 

not limited to the randomness of movement, sparsity problems, time sensitivity, and heterogeneous 

data. The randomness comes from the inherent mobility randomness of an object. Location data is 

context-sensitive, and features defining mobility patterns are almost fuzzy; It is challenging to 

predict the next locations without any historical information of an object. This problem is referred 

to as the cold start problem. If only a few samples are available is referred to as the sparsity 

problem. Both issues are common in trajectory data mining. Trajectory data is also time sensitive. 

In other words, as the location of an object changes by time, the relative time resolution to record 
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trajectory data might result in loss of information. Finally, trajectory data are from diverse 

resources such as vehicles, animals, and peoples. Each group has different sampling rates and 

movement patterns, which add to the problem’s complexity [7].  

For location-based prediction and spatial aggregation, I used geohashing as described in 

the previous section. While other geocoding systems are available like S2 geometry, I chose 

geohashing: it has a simple structure for aggregating spatial features, and I can compare the results 

with related studies. Hence, I divided the area of interest into a set of regions 𝑅 = 𝑟), … , 𝑟*. Once 

the areas are defined, the trip sequence is generated between each pair of regions and modeled for 

analysis. Choosing the appropriate geohash precision level is highly dependent on the use case.  

Low precision geohashes represent cells that cover a large area, and high precision covers 

a small area. More location data will be located in one geohash, and trip data will be missed using 

the former case. On the other hand, smaller size geohash tends to act as individual points and will 

lose aggregation benefits. Because of the nature of micromobility trips and the average traveled 

distance by bike or scooter, I use only geohash 7 and 8. Needless to say that for other use case 

cases with different vehicle types, smaller or larger geohash sizes could also worth analyzing.  

Given the geohash level, my main experiment is an extensive search to find the best RNN 

architecture between LSTM and GRU. I employed root mean square error (RMSE) for evaluating 

LSTM and GRU models. I learned that RMSE gives high weight to large errors: RMSE should be 

more useful when a large error is particularly undesirable – like in my study -. I used root mean 

square logarithm error (RMSLE) for the loss function because of the robustness to the outliers, the 

relative error between the Predicted and Actual Values. The RMLSE has a unique property, 

penalizing the underestimation of the actual value more severely than it does for the 

overestimation. 
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𝑅𝑀𝑆𝐸(𝑦, 𝑦G) = H
1
𝑛I

(𝑦" − 𝑦G")+
*()

",-

 (3.10) 

𝑅𝑀𝑆𝐿𝐸(𝑦, 𝑦G) = H
1
𝑛I5𝑙𝑜𝑔.(1 + 𝑦G") − 𝑙𝑜𝑔.(1 + 𝑦")6

+
*()

",-

(3.11) 
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4. EXPERIMENTAL STUDY 

I provide a detailed experimental study of next location prediction modeling on the 

Helbiz® bike/scooter dataset in this section. I also evaluate the LSTM and the GRU models on 

different geohash sizes and do the hyperparameter tuning to find the best setting for this problem. 

4.1. Experimental Setup 

4.1.1. Data Description 

Shared micromobility operators – Lime, Bird, Spin, among others – are required to share 

the anonymized trip and real-time location data depending upon local regulations. Washington, 

DC, is one of those cities in the US that asks operators to publish their data via an application 

programming interface (API). Given this opportunity, these data contain valuable information 

about most visited locations, the distribution of bikes and scooters, location of vehicles against 

other operators, to name a few. However, operators limit the data by showing only when 

bikes/scooters are available for check-out in real-time, meaning no information about the vehicles’ 

locations between two consecutive check-outs is available. At the time of writing this thesis, only 

Helbiz® provides real-time location data either in-use, reserved, available for check-out, or 

broken. Such data offer better insights into most visited locations, route choice, curbside 

management, among others.   

I live-streamed Helbiz® public application programming interface (API) every 30 seconds 

for a higher degree of time resolution and an in-depth understanding of mobility for 15 days in 

August 2020. Figure 3 shows a snapshot of trips in Washington, DC, for an operator over a single 

day. The dataset before preprocessing has almost 24 million data points.  
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Figure 3. Trip distribution by an operator in the DC area 
 

4.1.2. Data Wrangling 

Figure 4 shows a snapshot of raw data from the Helbiz® public API, including the 

bike/scooter identification number, geographic coordinates (latitude and longitude), timestamp, 

and other related data. Since users are anonymous, I focused only on an individual vehicle’s 

movement and used trips made by a vehicle.  
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Figure 4. A snapshot of location data 
 

Further steps were necessary to convert the bike/scooter availability data into a sequence 

of consecutive trips. Since the vehicles are sometimes idle many reading points were not necessary 

for this case and were removed: only distinct GPS geo data points were retrieved for further 

analysis. However, if someone is interested in analyzing the number of trips, idle time, and 

turnover rate, it might be a promising avenue to follow. There were also some outliers, like moving 

vehicles from nearby cities to balance inventory and false GPS reading points not matching the 

area of interest: these are easily filtered out by checking the corresponding geohash. The number 
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of visited locations (geohashes) in a single trip – length of single trip sequence – is shown in Table 

2.  

Table 2. Data Statistics 

The number of data 

points before 

preprocessing  

(GPS readings) 

The number of 

sequences after 

initial preprocessing 

The maximum  

length of a sequence 

The minimum  

length of a sequence 

Geohash 

7 

Geohash 

8 

Geohash 

7 

Geohash 

8 

Geohash 

7 

Geohash 

8 

23,797,853 2,321 4,744 146 231 2 2 

 

Moreover, I extracted the sine and cosine of days of a week and hours of a day to capture 

the temporal periodicity. The central part of feature engineering was how to present the geohash 

alphanumeric string and the corresponding loss function for training and metrics for evaluation. 

Since handling numeric values is much easier for deep learning models, I used geohash centroid 

to represent features and target values’ locations. The final number of features is six for every trip, 

as shown in Table 3. Finally, I made a 1-step forecast using 2-step prior trip information for a 

given trip because of the variable trip length. A sample of given input and output are shown in 

Table 3.  

Table 3. Sample Input 

Input Output 

[0.5, 0.8660254, 0.43388374, -0.90096887, 39.0, -77.00523376], 

[0.5, 0.8660254, 0.43388374,  -0.90096887, 39.0, -77.00798035] 

[39., -77.00935364] 
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4.1.3. Hyperparameter Tuning 

Hyperparameters such as batch size, number of epochs, and learning rate refer to an 

external configuration that could not be estimated from data. Because of limited computational 

power, I iteratively tune one parameter while holding other parameters constant. The goal is to 

find the best hyperparameters for a pair of geohash level and RNN model. 

4.1.3.1. Batch size and number of epochs 

There are some trends between RMSE of LSTM and GRU with different geohash levels. 

While RMSE for LSTM with geohash 8 is on average lower than LSTM with geohash 7, it is the 

opposite for GRU models. As shown in Figure 5, Figure 6, Figure 7, and Figure 8, LSTM is slightly 

sensitive to batch size and epochs more than GRU. It might be because of a higher degree of 

complexity in LSTM architecture. In general, lower values of batch size yields consistent results 

over the different number of epochs.  

 

Figure 5. Batch size and number of epochs (LSTM for geohash 7) 
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Figure 6. Batch size and number of epochs (LSTM for geohash 8) 
 
 

 

Figure 7. Batch size and number of epochs (GRU for geohash 7) 
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Figure 8. Batch size and number of epochs (GRU for geohash 8) 

4.1.3.2. Optimizer 

The optimization algorithm’s appropriate choice is critical in achieving a good result in a 

reasonable time. Both models suggest AdaMax and RMSprop as effective optimizers for this 

problem, as shown in Figure 9.  The AdaMax delivers slightly better performance over the 

RMSprop. Also, geohash level 7 has a lower value of RMSE for both models. The AdaMax is 

much less sensitive to the hyper-parameters’ choice (e.g., the learning rate).  
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Figure 9. Optimizers for the LSTM and GRU models 
 
4.1.3.3. Number of neurons 

The number of neurons in the layer shows the representational capacity of the network. 

The larger number of neurons, the longer the model needs to be trained. As shown in Figure 10, in 

general, geohash level 8 yields better results than level 7. Comparing the LSTM with the GRU 

model, the GRU model shows stable and better performance in the range of 20 and 45 neurons. 

However, it is relatively smaller for the GRU model with a range of 25 and 40. 
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Figure 10. Number of neurons for the LSTM and GRU models 
 
4.1.3.4. Regularization 

Regularization is a technique to reduce the complexity of the model. It helps to solve the 

overfitting problem. There are many methods to do the regularization, and here I applied two 

techniques; adding weight constraints and drop out to neural network layers. Weight constraints 

check the size of weights at each layer. If the size exceeds a predefined threshold, they are rescaled 

to make sure the weight is below the limit or between a range. Weight constraints offer an approach 

to reduce the overfitting of a deep learning neural network model on the training data and improve 

the model’s performance on new data. Dropout is also a regularization method that approximates 

training many neural networks with different architectures in parallel. During training, some 

number of layer outputs are randomly ignored or “dropped out.” It makes the layer look-like and 

be treated-like a layer with a different number of nodes and connectivity to the prior layer. Figure 

11, Figure 12, Figure 13, and Figure 15 illustrate RMSE in logarithmic scale by various dropout 

rates (0.1, 0.3, and 0.5) and weights constraints values (1, 2, 3, 4, and 5). In general, RMSE is 
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much better with geohash level 8 than level 7 for both models. Also, changing weight constraints 

does not produce any significant positive change for almost all models. However, increasing the 

dropout rate yields a better RMSE value for nearly all models.    

 

Figure 11. Weight constraints and the dropout rate for LSTM (geohash-7) 
 

 

Figure 12. Weight constraints and the dropout rate for LSTM (geohash-8) 
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Figure 13. Weight constraints and the dropout rate for GRU (geohash-7) 
 

 

Figure 14. Weight constraints and the dropout rate for GRU (geohash-8) 
 
4.1.3.5. Activation 

Basically, activation functions introduce non-linearity into neural networks meaning that 

the neural networks can successfully approximate functions (up-to a specific error). LSTM models 

deliver lower RMSE with Softplus, very similar to Relu, enticingly smooth, and differentiable 

(Figure 15). In comparison, GRU provides better performance with S-shaped functions Sigmoid 

and Softsign. 
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Figure 15. Activation functions for the LSTM and GRU models 
 

4.1.4. Final Model and Results 

The final tuned hyperparameter settings are described in Table 4.  

Table 4. Hyperparameter Settings 

 LSTM-GEO7 GRU-GEO7 LSTM – GEO8 GRU-GEO8 

Optimizer AdaMax AdaMax RMSprop Adam 

Batch Size 64 8 32 32 

Epochs 35 20 55 55 

Number of Neurons 35 30 35 10 

Learning Rate 0.001 0.3 0.001 0.2 

Activation function Softplus Sigmoid Softplus Softsign 

Kernel Initializer Lecun uniform Normal Glorot uniform Glorot uniform 

Weight Constraint 5 5 5 4 

Dropout 0.1 0.5 0.5 0.5 
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Once the parameters are set, we split the dataset 99%, 1% between training and testing 

stages, and then feed to the LSTM and GRU. Because of the small sample size, I used 100-fold 

cross-validation, and the average results are shown in Table 5. 

Table 5. Models Performance on Training Data with 100-fold Cross-validation 

 LSTM-Geo7 GRU-Geo7 LSTM-Geo8 GRU-Geo8 

RMSE 38.57 48.96 47.46 47.32 

Loss 0.0011783709 0.0000711143 0.0000531201 0.0000000001 

 

Overall, the experimental results show that the LSTM models yield better results than the 

GRU models. Moreover, the two models show contrasting results as the geohash level increases. 

Both models are then evaluated against test data, and corresponding RMSE are described in Table 

6. 

Table 6. Models Performance on Test Data 

 LSTM-Geo7 GRU-Geo7 LSTM-Geo8 GRU-Geo8 

RMSE 41.979336 44.6361 45.71772 45.337414 
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5. CONCLUSION 

Next-visiting location problem has been studied from different perspectives. With the 

introduction of new micromobility options, a new data source is available to develop and examine 

new methods. I examined two known RNN architectures in conjunction with the geohashing 

technique to find the best model for these problems.  

My goal is to compare the two common RNNs combined with the spatial aggregation 

approach to improve the prediction performance. The proposed geohash based sequence learning 

model predicts a bike/scooter user’s next location in different areas of a city. For training purposes, 

I used a dataset that consists of 15 days of bike/scooter location data recorded every 30 seconds in 

Washington, DC. Experimental results show that the LSTM predictor slightly outperforms GRU 

models. However, GRU uses fewer training parameters, hence use less memory and perform faster 

than LSTM.  

There are several avenues for future research. First and foremost, more data improve the 

performance of the models. It requires at least a full year of location data from various operators 

to capture seasonality and distribution variation by operators. Other source data like weather data, 

points of interest, elevation, and distance to other transportation facilities are useful depending 

upon the problem’s context. 

Other tessellations strategies, especially S2 by Google and H3 by Uber, are the two top 

choices for exploring. The former uses a variable size hierarchal spatial indexing technique based 

on the Hilbert space-filling curve, while the latter uses a hexagonal indexing method. The main 

problem that needs to be addressed is how two neighboring geo-points are being treated when 

assigned to two different spatial buckets. The researcher could also extend the current work by 

analyzing a new deep learning model, temporal convolutional networks, for sequential data.  
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